WO2020172996A1 - 有机发光二极管背板的制作方法 - Google Patents
有机发光二极管背板的制作方法 Download PDFInfo
- Publication number
- WO2020172996A1 WO2020172996A1 PCT/CN2019/085788 CN2019085788W WO2020172996A1 WO 2020172996 A1 WO2020172996 A1 WO 2020172996A1 CN 2019085788 W CN2019085788 W CN 2019085788W WO 2020172996 A1 WO2020172996 A1 WO 2020172996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- emitting diode
- organic light
- insulating layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 21
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 92
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 46
- 229910052738 indium Inorganic materials 0.000 claims abstract description 46
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000011787 zinc oxide Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000059 patterning Methods 0.000 claims abstract description 20
- 239000010410 layer Substances 0.000 claims description 217
- 239000011229 interlayer Substances 0.000 claims description 21
- 238000001039 wet etching Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 238000004380 ashing Methods 0.000 claims description 5
- 238000002161 passivation Methods 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 11
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
Definitions
- the present disclosure relates to the field of display technology, and in particular to a method for manufacturing an organic light emitting diode backplane.
- OLED organic light emitting diode
- the current manufacturing process of the organic light-emitting diode backplane has a complex structure and a multi-layer structure. Each additional manufacturing process not only increases the time cost and the material cost, but also accompanies the loss of the process yield.
- the manufacturing method of the organic light emitting diode backplane includes providing a substrate, forming a light emitting layer on the substrate, forming a buffer layer on the substrate and the light emitting layer, and sequentially forming indium gallium zinc oxide on the buffer layer Layer, a gate insulating layer and a first metal layer, and the first metal layer, the gate insulating layer and the indium gallium zinc oxide layer are sequentially patterned through the same photomask.
- Patterning the first metal layer, the gate insulating layer, and the indium gallium zinc oxide layer sequentially through the same photomask includes sequentially wet etching the first metal layer and dry etching through the same photomask The gate insulating layer and the indium gallium zinc oxide layer are wet-etched. The same photomask is the same halftone mask.
- the manufacturing method of the organic light emitting diode backplane further includes performing photoresist ashing treatment on the same photomask to remove the same light covering the edge of the first metal layer. Part of the hood.
- the manufacturing method of the organic light emitting diode backplane further includes sequentially patterning the edge of the first metal layer and the edge of the gate insulating layer.
- sequentially patterning the edge of the first metal layer and the edge of the gate insulating layer includes sequentially wet etching the edge and dry of the first metal layer. Etching the edge of the gate insulating layer.
- the manufacturing method of the organic light emitting diode backplane further includes peeling off the same photomask to expose the first metal layer and the indium gallium zinc oxide layer. Conducting the edge to form an anode.
- the manufacturing method of the organic light-emitting diode backplane further includes applying the buffer layer, the indium gallium zinc oxide layer, the gate insulating layer, and the first metal layer An interlayer dielectric insulating layer is formed thereon, and the interlayer dielectric insulating layer is patterned to form a plurality of via holes and light emitting regions, and the via holes and the light emitting region penetrate the interlayer dielectric insulating layer.
- the manufacturing method of the organic light emitting diode backplane further includes forming a source electrode and a drain electrode on the indium gallium zinc oxide layer, and the source electrode and the drain electrode pass through corresponding The via hole is in contact with the edge of the indium gallium zinc oxide layer.
- the manufacturing method of the organic light emitting diode backplane further includes forming a passivation layer on the interlayer dielectric insulating layer, the source electrode and the drain electrode.
- the present disclosure also provides a manufacturing method of the organic light emitting diode backplane.
- the manufacturing method of the organic light emitting diode backplane includes providing a substrate, forming a light emitting layer on the substrate, forming a buffer layer on the substrate and the light emitting layer, and sequentially forming indium gallium zinc oxide on the buffer layer Layer, a gate insulating layer and a first metal layer, and the first metal layer, the gate insulating layer and the indium gallium zinc oxide layer are sequentially patterned through the same photomask.
- the manufacturing method of the organic light emitting diode backplane further includes performing photoresist ashing treatment on the same photomask to remove the same light covering the edge of the first metal layer. Part of the hood.
- the manufacturing method of the organic light emitting diode backplane further includes sequentially patterning the edge of the first metal layer and the edge of the gate insulating layer.
- sequentially patterning the edge of the first metal layer and the edge of the gate insulating layer includes sequentially wet etching the edge and dry of the first metal layer. Etching the edge of the gate insulating layer.
- the manufacturing method of the organic light emitting diode backplane further includes peeling off the same photomask to expose the first metal layer and the indium gallium zinc oxide layer. Conducting the edge to form an anode.
- the manufacturing method of the organic light-emitting diode backplane further includes applying the buffer layer, the indium gallium zinc oxide layer, the gate insulating layer, and the first metal layer An interlayer dielectric insulating layer is formed thereon, and the interlayer dielectric insulating layer is patterned to form a plurality of via holes and light emitting regions, and the via holes and the light emitting region penetrate the interlayer dielectric insulating layer.
- the manufacturing method of the organic light emitting diode backplane further includes forming a source electrode and a drain electrode on the indium gallium zinc oxide layer, and the source electrode and the drain electrode pass through corresponding The via hole is in contact with the edge of the indium gallium zinc oxide layer.
- the manufacturing method of the organic light emitting diode backplane further includes forming a passivation layer on the interlayer dielectric insulating layer, the source electrode and the drain electrode.
- the same photomask is the same halftone mask.
- sequentially patterning the first metal layer, the gate insulating layer, and the indium gallium zinc oxide layer through the same photomask includes sequentially wetting through the same photomask. Etching the first metal layer, dry etching the gate insulating layer and wet etching the indium gallium zinc oxide layer.
- the first metal layer and the gate insulating layer are sequentially patterned through the same photomask.
- the manufacturing process can be improved, and the cycle time and cost of the manufacturing process can be saved.
- FIG. 1 shows a flowchart of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 2 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 3 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 4 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 5 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 6 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 7 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 8 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 9 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 10 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 11 shows a schematic diagram of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure
- FIG. 12 shows a flowchart of a manufacturing method of an organic light emitting diode backplane according to an embodiment of the present disclosure.
- an embodiment of the present disclosure provides a manufacturing method of an organic light emitting diode backplane, which includes the following steps.
- step 1 provide a substrate 110.
- the substrate 110 is, for example, a glass substrate.
- step 2 forming a light-emitting layer 120 on the substrate 110.
- the light emitting layer 120 includes, for example, a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
- a red light emitting layer, a green light emitting layer and a blue light emitting layer are sequentially formed on the substrate 110.
- step 3 forming a buffer layer 130 on the substrate 110 and the light-emitting layer 120.
- the thickness of the buffer layer 130 is greater than or equal to 4000 Angstroms (Angstrom, A).
- step 4 an indium gallium zinc oxide layer 140, a gate insulating layer 150, and a first metal layer 160 are sequentially formed on the buffer layer 130.
- step 5 the first metal layer 160, the gate insulating layer 150, and the indium gallium zinc oxide layer 140 are sequentially patterned through the same photomask 20.
- sequentially patterning the first metal layer 160, the gate insulating layer 150, and the indium gallium zinc oxide layer 140 through the same photomask 20 includes sequentially wet etching through the same photomask 20.
- the first metal layer 160, the gate insulating layer 150 are dry etched, and the indium gallium zinc oxide layer 140 is wet etched.
- the same photomask 20 is the same halftone mask.
- step 6 performing photoresist ashing (ash) processing on the same photomask 20 to remove a part of the same photomask 20 covering the edge of the first metal layer 160.
- step 7 patterning the edges of the first metal layer 160 and the gate insulating layer 150 sequentially.
- sequentially patterning the edge of the first metal layer 160 and the edge of the gate insulating layer 150 includes sequentially wet etching the edge of the first metal layer 160 and dry etching the gate.
- the edge of the polar insulating layer 150 includes sequentially wet etching the edge of the first metal layer 160 and dry etching the gate.
- step 8 stripping off the same photomask 20 to expose the first metal layer 160 and conducting a conductive treatment on the edge of the indium gallium zinc oxide layer 140 to form an anode 142.
- step 9 forming an interlayer dielectric insulating layer 170 and patterns on the buffer layer 130, the indium gallium zinc oxide layer 140, the gate insulating layer 150 and the first metal layer 160
- the interlayer dielectric insulating layer 170 is formed to form a plurality of via holes 172 and light emitting regions 174, and the via holes 172 and the light emitting regions 174 penetrate the interlayer dielectric insulating layer 170.
- the first metal layer 160 is a gate.
- step 10 forming a source electrode 180 and a drain electrode 190 on the indium gallium zinc oxide layer 140, the source electrode 180 and the drain electrode 190 pass through the corresponding via 172 and the indium gallium zinc oxide layer 140 The edge of the oxide layer 140 contacts.
- step 11 forming a passivation layer 200 on the interlayer dielectric insulating layer 170, the source electrode 180, and the drain electrode 190.
- the organic light emitting diode backplane of the embodiment of the present disclosure may be a top gate thin film transistor (thin Film transistor, TFT) COA (color filter on array) bottom light-emitting backplane.
- TFT thin Film transistor
- the first metal layer 160, the gate insulating layer 150, and the indium gallium zinc oxide layer 140 are completed through the same photomask manufacturing process, and the conductive indium gallium zinc oxide layer 140 serves as the anode 142, Therefore, the additional anode 142 film forming and patterning process in the prior art is not required. It also saves the pixel definition layer (pixel defining layer, PDL) and planarization layer (planarization layer, PLN).
- the pixel definition layer and the flat layer are both organic materials.
- the embodiment of the present disclosure does not require a pixel definition layer, there will be no reduction in the organic light emitting diode backplane caused by the outgasing of the pixel definition layer in the prior art. The lifetime and efficiency of luminescent materials are affected. Since the embodiment of the present disclosure does not require a flat layer, the light transmittance of the organic light emitting diode backplane is increased. Because in the prior art, the light transmittance of the flat layer is, for example, less than 75%. Therefore, the embodiment of the present disclosure does not require a flat layer, and the light transmittance of the organic light emitting diode backplane is greater than 75%.
- the interlayer dielectric insulating layer 170 of the embodiment of the present disclosure has a pixel definition function, and therefore can replace the pixel definition layer of the conventional technology.
- the disclosed embodiments can improve the process and save the tact time of the process (tact time) and cost.
- the first metal layer, the gate insulating layer, and the indium gallium zinc oxide layer are sequentially patterned through the same photomask, which can improve the manufacturing process , Save the cycle time and cost of the manufacturing process.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种有机发光二极管背板的制作方法。所述有机发光二极管背板的制作方法包括提供基板(110),在所述基板(110)上形成发光层(120),在所述基板(110)及所述发光层(120)上形成缓冲层(130),在所述缓冲层(130)上依次形成铟镓锌氧化物层(140)、栅极绝缘层(150)和第一金属层(160),通过同一光罩(20)依次图案化所述第一金属层(160)、所述栅极绝缘层(150)和所述铟镓锌氧化物层(140)。
Description
本揭示涉及显示技术领域,特别涉及一种有机发光二极管背板的制作方法。
目前有机发光二极体(organic light emitting diode, OLED)背板的制程由于结构复杂,具有多层结构,每增加一道制程,不仅增加了时间成本,物料成本,也同时伴随着制程良率带来的损失。
故,有需要提供一种有机发光二极管背板的制作方法,以解决现有技术存在的问题。
目前有机发光二极体背板的制程由于结构复杂,具有多层结构,每增加一道制程,不仅增加了时间成本,物料成本,也同时伴随着制程良率带来的损失。
为解决上述技术问题,本揭示提供有机发光二极管背板的制作方法。所述有机发光二极管背板的制作方法包括提供基板,在所述基板上形成发光层,在所述基板及所述发光层上形成缓冲层,在所述缓冲层上依次形成铟镓锌氧化物层、栅极绝缘层和第一金属层,以及通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层。通过所述同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层包括通过所述同一光罩依次湿蚀刻所述第一金属层、干蚀刻所述栅极绝缘层和湿蚀刻所述铟镓锌氧化物层。所述同一光罩为同一半色调掩膜。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括对所述同一光罩进行光阻灰化处理以去除覆盖所述第一金属层的边缘的所述同一光罩的一部份。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的边缘。
于本揭示其中的一实施例中,依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的所述边缘包括依次湿蚀刻所述第一金属层的所述边缘和干蚀刻所述栅极绝缘层的所述边缘。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括剥离所述同一光罩,以露出所述第一金属层以及对所述铟镓锌氧化物层的所述边缘进行导体化处理,以形成阳极。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括在所述缓冲层、所述铟镓锌氧化物层、所述栅极绝缘层和所述第一金属层上形成层间介电绝缘层以及图案化所述层间介电绝缘层以形成多个过孔和发光区域,所述过孔和所述发光区域贯穿所述层间介电绝缘层。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括在所述铟镓锌氧化物层上形成源电极和漏电极,所述源电极和所述漏电极通过对应的过孔与所述铟镓锌氧化物层的所述边缘接触。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法,还包括在所述层间介电绝缘层、所述源电极和所述漏电极上形成钝化层。
本揭示还提供有机发光二极管背板的制作方法。所述有机发光二极管背板的制作方法包括提供基板,在所述基板上形成发光层,在所述基板及所述发光层上形成缓冲层,在所述缓冲层上依次形成铟镓锌氧化物层、栅极绝缘层和第一金属层,以及通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括对所述同一光罩进行光阻灰化处理以去除覆盖所述第一金属层的边缘的所述同一光罩的一部份。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的边缘。
于本揭示其中的一实施例中,依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的所述边缘包括依次湿蚀刻所述第一金属层的所述边缘和干蚀刻所述栅极绝缘层的所述边缘。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括剥离所述同一光罩,以露出所述第一金属层以及对所述铟镓锌氧化物层的所述边缘进行导体化处理,以形成阳极。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括在所述缓冲层、所述铟镓锌氧化物层、所述栅极绝缘层和所述第一金属层上形成层间介电绝缘层以及图案化所述层间介电绝缘层以形成多个过孔和发光区域,所述过孔和所述发光区域贯穿所述层间介电绝缘层。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括在所述铟镓锌氧化物层上形成源电极和漏电极,所述源电极和所述漏电极通过对应的过孔与所述铟镓锌氧化物层的所述边缘接触。
于本揭示其中的一实施例中,所述有机发光二极管背板的制作方法还包括在所述层间介电绝缘层、所述源电极和所述漏电极上形成钝化层。
于本揭示其中的一实施例中,所述同一光罩为同一半色调掩膜。
于本揭示其中的一实施例中,通过所述同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层包括通过所述同一光罩依次湿蚀刻所述第一金属层、干蚀刻所述栅极绝缘层和湿蚀刻所述铟镓锌氧化物层。
相较于现有技术,为解决上述技术问题,由于本揭示的实施例中的有机发光二极管背板的制作方法,通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层,能改善制程、节省制程的节拍时间与成本。
图1显示根据本揭示的一实施例的有机发光二极管背板的制作方法的流程图;
图2显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图3显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图4显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图5显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图6显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图7显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图8显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图9显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图10显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图11显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图;
图12显示根据本揭示的一实施例的有机发光二极管背板的制作方法的流程图;以及
图13显示根据本揭示的一实施例的有机发光二极管背板的制作方法的示意图。
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。再者,本揭示所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧层、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
参照图1,本揭示的一实施例提供有机发光二极管背板的制作方法,包括如下步骤。
参照图1及图2,步骤1、提供基板110。
具体地,所述基板110例如是玻璃基板。
参照图1及图2,步骤2、在所述基板110上形成发光层120。
具体地,所述发光层120例如包括红色发光层、绿色发光层和蓝色发光层。在所述基板110上依次形成红色发光层、绿色发光层和蓝色发光层。
参照图1及图3,步骤3、在所述基板110及所述发光层120上形成缓冲层130。
具体地,所述缓冲层130的厚度大于或等于4000埃(Angstrom, A) 。
参照图1及图3,步骤4、在所述缓冲层130上依次形成铟镓锌氧化物层140、栅极绝缘层150和第一金属层160。
参照图1及图4-图7,步骤5、通过同一光罩20依次图案化所述第一金属层160、所述栅极绝缘层150和所述铟镓锌氧化物层140。
具体地,通过所述同一光罩20依次图案化所述第一金属层160、所述栅极绝缘层150和所述铟镓锌氧化物层140包括通过所述同一光罩20依次湿蚀刻所述第一金属层160、干蚀刻所述栅极绝缘层150和湿蚀刻所述铟镓锌氧化物层140。于本揭示其中的一实施例中,所述同一光罩20为同一半色调掩膜。
参照图8,步骤6、对所述同一光罩20进行光阻灰化(ash)处理以去除覆盖所述第一金属层160的边缘的所述同一光罩20的一部份。
参照图9-图10,步骤7、依次图案化所述第一金属层160的所述边缘和所述栅极绝缘层150的边缘。
具体地,依次图案化所述第一金属层160的所述边缘和所述栅极绝缘层150的所述边缘包括依次湿蚀刻所述第一金属层160的所述边缘和干蚀刻所述栅极绝缘层150的所述边缘。
参照图11,步骤8、剥离所述同一光罩20,以露出所述第一金属层160以及对所述铟镓锌氧化物层140的所述边缘进行导体化处理,以形成阳极142。
参照图12,步骤9、在所述缓冲层130、所述铟镓锌氧化物层140、所述栅极绝缘层150和所述第一金属层160上形成层间介电绝缘层170以及图案化所述层间介电绝缘层170以形成多个过孔172和发光区域174,所述过孔172和所述发光区域174贯穿所述层间介电绝缘层170。所述第一金属层160为栅极。
参照图13,步骤10、在所述铟镓锌氧化物层140上形成源电极180和漏电极190,所述源电极180和所述漏电极190通过对应的过孔172与所述铟镓锌氧化物层140的所述边缘接触。
参照图13,步骤11、在所述层间介电绝缘层170、所述源电极180和所述漏电极190上形成钝化层200。
本揭示的实施例的有机发光二极管背板可为顶栅(top gate)薄膜晶体管(thin
film transistor, TFT) COA (color filter on array)底发光背板。所述第一金属层160、所述栅极绝缘层150和所述铟镓锌氧化物层140通过同一光罩制程完成,导体化后的所述铟镓锌氧化物层140做为阳极142,因此不需要习知技术中额外的阳极142成膜及图形制程。也节省了习知技术中的像素定义层(pixel
defining layer, PDL)和平坦层(planarization
layer, PLN)。像素定义层和平坦层均为有机材料,由于本揭示的实施例不需要像素定义层,因此不会有习知技术中像素定义层的除气(outgasing)对有机发光二极管背板所造成的减少发光材料寿命及效率等影响。由于本揭示的实施例不需要平坦层,因此增加了有机发光二极管背板的光透过率。因为习知技术中,平坦层的光透过率例如小于75%。因此, 本揭示的实施例不需要平坦层,有机发光二极管背板的光透过率大于 75%。另外,本揭示的实施例的层间介电绝缘层170具有像素定义的作用,因此可取代习知技术的像素定义层。本揭示的实施例能改善制程、节省制程的节拍时间(tact
time)与成本。
由于本揭示的实施例中的有机发光二极管背板的制作方法,通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层,能改善制程、节省制程的节拍时间与成本。
尽管已经相对于一个或多个实现方式示出并描述了本揭示,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本揭示包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。
Claims (18)
- 一种有机发光二极管背板的制作方法,包括:提供基板;在所述基板上形成发光层;在所述基板及所述发光层上形成缓冲层;在所述缓冲层上依次形成铟镓锌氧化物层、栅极绝缘层和第一金属层;以及通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层;其中通过所述同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层包括通过所述同一光罩依次湿蚀刻所述第一金属层、干蚀刻所述栅极绝缘层和湿蚀刻所述铟镓锌氧化物层;以及其中所述同一光罩为同一半色调掩膜。
- 如权利要求1所述的有机发光二极管背板的制作方法,还包括对所述同一光罩进行光阻灰化处理以去除覆盖所述第一金属层的边缘的所述同一光罩的一部份。
- 如权利要求2所述的有机发光二极管背板的制作方法,还包括依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的边缘。
- 如权利要求3所述的有机发光二极管背板的制作方法,其中依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的所述边缘包括依次湿蚀刻所述第一金属层的所述边缘和干蚀刻所述栅极绝缘层的所述边缘。
- 如权利要求3所述的有机发光二极管背板的制作方法,还包括剥离所述同一光罩,以露出所述第一金属层以及对所述铟镓锌氧化物层的所述边缘进行导体化处理,以形成阳极。
- 如权利要求5所述的有机发光二极管背板的制作方法,还包括在所述缓冲层、所述铟镓锌氧化物层、所述栅极绝缘层和所述第一金属层上形成层间介电绝缘层以及图案化所述层间介电绝缘层以形成多个过孔和发光区域,所述过孔和所述发光区域贯穿所述层间介电绝缘层。
- 如权利要求6所述的有机发光二极管背板的制作方法,还包括在所述铟镓锌氧化物层上形成源电极和漏电极,所述源电极和所述漏电极通过对应的过孔与所述铟镓锌氧化物层的所述边缘接触。
- 如权利要求7所述的有机发光二极管背板的制作方法,还包括在所述层间介电绝缘层、所述源电极和所述漏电极上形成钝化层。
- 一种有机发光二极管背板的制作方法,包括:提供基板;在所述基板上形成发光层;在所述基板及所述发光层上形成缓冲层;在所述缓冲层上依次形成铟镓锌氧化物层、栅极绝缘层和第一金属层;以及通过同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层。
- 如权利要求9所述的有机发光二极管背板的制作方法,还包括对所述同一光罩进行光阻灰化处理以去除覆盖所述第一金属层的边缘的所述同一光罩的一部份。
- 如权利要求10所述的有机发光二极管背板的制作方法,还包括依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的边缘。
- 如权利要求11所述的有机发光二极管背板的制作方法,其中依次图案化所述第一金属层的所述边缘和所述栅极绝缘层的所述边缘包括依次湿蚀刻所述第一金属层的所述边缘和干蚀刻所述栅极绝缘层的所述边缘。
- 如权利要求11所述的有机发光二极管背板的制作方法,还包括剥离所述同一光罩,以露出所述第一金属层以及对所述铟镓锌氧化物层的所述边缘进行导体化处理,以形成阳极。
- 如权利要求13所述的有机发光二极管背板的制作方法,还包括在所述缓冲层、所述铟镓锌氧化物层、所述栅极绝缘层和所述第一金属层上形成层间介电绝缘层以及图案化所述层间介电绝缘层以形成多个过孔和发光区域,所述过孔和所述发光区域贯穿所述层间介电绝缘层。
- 如权利要求14所述的有机发光二极管背板的制作方法,还包括在所述铟镓锌氧化物层上形成源电极和漏电极,所述源电极和所述漏电极通过对应的过孔与所述铟镓锌氧化物层的所述边缘接触。
- 如权利要求15所述的有机发光二极管背板的制作方法,还包括在所述层间介电绝缘层、所述源电极和所述漏电极上形成钝化层。
- 如权利要求9所述的有机发光二极管背板的制作方法,其中所述同一光罩为同一半色调掩膜。
- 如权利要求9所述的有机发光二极管背板的制作方法,其中通过所述同一光罩依次图案化所述第一金属层、所述栅极绝缘层和所述铟镓锌氧化物层包括通过所述同一光罩依次湿蚀刻所述第一金属层、干蚀刻所述栅极绝缘层和湿蚀刻所述铟镓锌氧化物层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910143946.6 | 2019-02-27 | ||
CN201910143946.6A CN109817578A (zh) | 2019-02-27 | 2019-02-27 | 有机发光二极管背板的制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020172996A1 true WO2020172996A1 (zh) | 2020-09-03 |
Family
ID=66607643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/085788 WO2020172996A1 (zh) | 2019-02-27 | 2019-05-07 | 有机发光二极管背板的制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109817578A (zh) |
WO (1) | WO2020172996A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2475003A1 (en) * | 2008-05-06 | 2012-07-11 | Samsung Mobile Display Co., Ltd. | Thin film transistor array arrangement, organic light emitting display device having the same, and manufacturing method thereof |
CN105633016A (zh) * | 2016-03-30 | 2016-06-01 | 深圳市华星光电技术有限公司 | Tft基板的制作方法及制得的tft基板 |
CN107093583A (zh) * | 2017-05-03 | 2017-08-25 | 京东方科技集团股份有限公司 | 一种阵列基板及其制备方法、显示装置 |
CN107731882A (zh) * | 2017-11-07 | 2018-02-23 | 深圳市华星光电半导体显示技术有限公司 | 一种有机薄膜晶体管阵列基板及其制备方法、显示装置 |
CN109244276A (zh) * | 2018-09-06 | 2019-01-18 | 深圳市华星光电技术有限公司 | 有机发光二极管驱动背板制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474399B (zh) * | 2013-09-12 | 2015-12-02 | 北京京东方光电科技有限公司 | Tft阵列基板制作方法及tft阵列基板、显示设备 |
CN103489874B (zh) * | 2013-09-27 | 2015-12-09 | 京东方科技集团股份有限公司 | 阵列基板及其制备方法、显示装置 |
CN104091810A (zh) * | 2014-06-30 | 2014-10-08 | 京东方科技集团股份有限公司 | 阵列基板及其制作方法、显示装置 |
CN105226015B (zh) * | 2015-09-28 | 2018-03-13 | 深圳市华星光电技术有限公司 | 一种tft阵列基板及其制作方法 |
CN108447916B (zh) * | 2018-03-15 | 2022-04-15 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制备方法、阵列基板、显示装置 |
-
2019
- 2019-02-27 CN CN201910143946.6A patent/CN109817578A/zh active Pending
- 2019-05-07 WO PCT/CN2019/085788 patent/WO2020172996A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2475003A1 (en) * | 2008-05-06 | 2012-07-11 | Samsung Mobile Display Co., Ltd. | Thin film transistor array arrangement, organic light emitting display device having the same, and manufacturing method thereof |
CN105633016A (zh) * | 2016-03-30 | 2016-06-01 | 深圳市华星光电技术有限公司 | Tft基板的制作方法及制得的tft基板 |
CN107093583A (zh) * | 2017-05-03 | 2017-08-25 | 京东方科技集团股份有限公司 | 一种阵列基板及其制备方法、显示装置 |
CN107731882A (zh) * | 2017-11-07 | 2018-02-23 | 深圳市华星光电半导体显示技术有限公司 | 一种有机薄膜晶体管阵列基板及其制备方法、显示装置 |
CN109244276A (zh) * | 2018-09-06 | 2019-01-18 | 深圳市华星光电技术有限公司 | 有机发光二极管驱动背板制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109817578A (zh) | 2019-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7482186B2 (en) | Method for fabricating active matrix organic light emitting diode display device and structure of such device | |
WO2020192313A1 (zh) | 有机发光显示面板及制作方法、显示装置 | |
US20190326370A1 (en) | Organic light emitting display device | |
US8481373B2 (en) | Method for manufacturing thin film transistor substrate | |
US11081680B2 (en) | Pixel structure, method for forming the same, and display screen | |
US9012271B2 (en) | Thin film transistor array substrate and method of manufacturing the same | |
US10916568B2 (en) | Manufacturing method of display substrate, array substrate and display device | |
TWI483344B (zh) | 陣列基板及其製作方法 | |
WO2016165184A1 (zh) | 双栅极氧化物半导体tft基板的制作方法及其结构 | |
US20160133678A1 (en) | Organic light-emitting diode display and method for manufacturing the same | |
KR101161443B1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2017118027A1 (zh) | 发光二极管显示基板及其制作方法、显示装置 | |
CN110444567A (zh) | 一种阵列基板及其制作方法 | |
CN112103399A (zh) | 显示面板及其制造方法、显示装置 | |
KR20140141755A (ko) | 유기발광 표시장치 및 그의 제조방법 | |
CN102983281B (zh) | 有机发光装置及其制造方法 | |
JP5063294B2 (ja) | 発光装置及びその製造方法 | |
WO2016123979A1 (zh) | 薄膜晶体管及其制备方法、阵列基板和显示装置 | |
TW201334082A (zh) | 薄膜電晶體及其製作方法及顯示器 | |
CN109037243B (zh) | 用于显示装置的基板及其制作方法、显示装置 | |
WO2020206778A1 (zh) | 有机发光二极管显示装置及其制造方法 | |
JP2008034198A (ja) | 薄膜パターンの形成方法、有機elディスプレイの製造方法及び有機elディスプレイ | |
CN105633100B (zh) | 薄膜晶体管阵列面板及其制作方法 | |
WO2020172996A1 (zh) | 有机发光二极管背板的制作方法 | |
CN109742102B (zh) | 显示面板及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19916749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19916749 Country of ref document: EP Kind code of ref document: A1 |