WO2020172964A1 - 一种带隔离器的一体化光组件结构及其加工方法 - Google Patents
一种带隔离器的一体化光组件结构及其加工方法 Download PDFInfo
- Publication number
- WO2020172964A1 WO2020172964A1 PCT/CN2019/082832 CN2019082832W WO2020172964A1 WO 2020172964 A1 WO2020172964 A1 WO 2020172964A1 CN 2019082832 W CN2019082832 W CN 2019082832W WO 2020172964 A1 WO2020172964 A1 WO 2020172964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chip
- isolator
- hole
- positioning
- machine
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2746—Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4207—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
- G02B6/4208—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
- G02B6/4209—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
- G02F1/0955—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/091—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect based on magneto-absorption or magneto-reflection
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
Definitions
- the invention relates to the field of optical communication, in particular to an integrated optical component structure with an isolator and a processing method thereof.
- optical communication technology makes up for the shortcomings of traditional telecommunications technology such as short transmission distance, large energy consumption, and slow transmission speed. It is widely used in various data transmission.
- a light source such as a laser (or exits from an optical component or optical fiber)
- part of the light will be on the end face or inside of various optical components or optical fibers, etc.
- the part is reflected or scattered.
- the isolator in the optical component becomes an indispensable component in optical communication.
- the structure of the traditional optical component is shown in Figure 1. It is composed of a metal front cover 1, a ceramic sleeve 2, a pressing block 3, a pressing block 4, a ceramic ferrule 5, an outer ring 6 and an isolator 7.
- the isolator 7 Most of them are polarization-dependent Free Space Isolator (FSI), the structure of which is shown in Figure 2:
- the isolator 7 is composed of a magnetic ring 71 and an isolator chip 72 installed in the magnetic ring 71,
- the isolator chip 72 is composed of three components: a Faraday rotator 722, a polarizer 721 arranged on the incident light side of the Faraday rotator 722, and an analyzer 723 arranged on the other side of the Faraday rotator 722.
- the Faraday rotator 722 When the Faraday rotator 722 is located in a magnetic field, it can rotate the vibrating surface of the incident light by 45°.
- the polarizer 721 and the analyzer 723 are both polarizers, which can filter light outside the target direction, so that the radiation The direction of the optical signal in the light component is unified to avoid interference.
- the installation of the magnetic ring 71 in the traditional optical assembly requires the outer ring 6 to be matched with the press block two 4.
- the installation of the magnetic ring 71, the cooperation of the isolator chip 72 and the magnetic ring 71, and the press block two 4 and the outer ring The installation between 6 will cause errors.
- the side length of the isolator chip 72 (due to the cutting process, the Faraday rotating plate is generally Square piece) needs to be about 0.5mm.
- the current Faraday rotator and polarizer are very expensive, and how to reduce the area of the isolator chip to reduce the manufacturing cost of the optical component has become an extremely important topic.
- the current mounting holes on the magnetic ring 71 for mounting the isolator chip 72 are all round holes, while the isolator chip 72 is often cut in a square shape.
- the two in order to fix the mounting angle of the isolator chip 72, it is necessary to perform Repeated corrections reduce the assembly efficiency.
- the circular hole of the magnetic ring 71 will cause the isolator chip 72 to rotate, which increases the difficulty of assembly and greatly increases the production cost of the optical component.
- the purpose of the present invention is to provide an integrated optical component structure with an isolator and a processing method thereof, so as to further improve the installation accuracy of the isolator chip, reduce the area of the isolator chip to reduce the production cost of the optical component; another aspect of the present invention
- the purpose is to provide a simple operation and high-efficiency processing technology for processing briquettes.
- the present invention adopts the following technical solutions:
- An integrated optical component structure with an isolator comprising a metal front cover, a ceramic sleeve, a pressure block, a ceramic ferrule, and an isolator chip.
- the ceramic sleeve is placed in the metal front cover and is pressed by the Block fixing, one end of the ceramic ferrule is placed in the ceramic sleeve and the other end is fixed in the pressure block, and a side of the metal front cover is provided on the pressure block for fixing the ceramic ferrule
- the other end of the ferrule positioning hole is provided with a chip receiving hole, the ferrule positioning hole communicates with the chip receiving hole, the chip receiving hole is provided with at least two positioning angles, and the isolator chip is deflected by
- the detector, the magnetic Faraday rotating plate and the analyzer are composed and installed in the chip containing hole and fixed by the positioning angle.
- the pressure block is divided into pressure block one and pressure block two, an electrical gap is formed between the two, the pressure block one is fixedly connected with the metal front cover, the ferrule positioning hole and the chip receiving hole are arranged in The second pressing block.
- the positioning angle is a right angle.
- At least two of the positioning angles are distributed diagonally.
- the number of positioning corners in the chip receiving hole is four, and they are distributed in four corners.
- the chip receiving hole is square.
- the four positioning corners of the chip receiving hole are connected by a circular arc surface.
- a processing method of an integrated optical component structure with an isolator includes the following steps:
- Step 1 Material preparation-select ⁇ 5.5 round bar material and put it into the double-spindle CNC automatic feeder, and cut off the material head;
- Step 2 Drill the center hole 1. Adjust the spindle speed to 2500r/min ⁇ 3500r/min to ensure the concentricity of the drill bit and the machine spindle. Use the 3.0 centering drill to move in the Z axis direction of the machine to locate the center hole.
- the feed rate is 0.02 ⁇ 0.03mm/revolution;
- Step 3 Drilling round holes-switch to a ⁇ 0.35 drill bit to ensure the concentricity of the drill bit and the spindle.
- the spindle speed is adjusted to 4500r/min ⁇ 5500r/min, and the drill bit moves to the Z axis direction of the machine to drill and feed
- the amount is 0.01 ⁇ 0.02mm/revolution, and the drilling depth is 3.0mm;
- Step 4 Pull the chip holding hole-switch to ⁇ 0.35 broach to ensure the concentricity between the broach and the spindle.
- the spindle speed is adjusted to 300 ⁇ 800r/min, and the broach moves to the Z axis of the machine for square hole processing.
- the knife feed rate is 0.005 ⁇ 0.01mm/revolution, and the processing depth is 1.5mm;
- Step 5 Roughing the outer circle-switch to the outer rough turning tool, adjust the spindle speed to 2000 ⁇ 2500r/min, and the turning tool moves in the X axis direction of the machine for external rough turning, the feed is 0.02 ⁇ 0.03mm/ Turn, reserve margin 0.1 ⁇ 0.2mm;
- Step 6 Finish turning the outer circle-switch to the outer circle precision turning tool, adjust the spindle speed to 3000 ⁇ 3500r/min, and the turning tool moves in the X axis direction of the machine for external circle finishing, the feed amount is 0.01 ⁇ 0.02mm/ turn;
- Step 7 Cut-switch to cutting knife, adjust the spindle speed to 2000 ⁇ 2500r/min, the turning tool moves in the X axis direction of the machine to cut, the feed rate is 0.01 ⁇ 0.02mm/revolution, the reserved cutting length is 0.1mm, When cutting, the sub-spindle needs to clamp the outer diameter of the workpiece step;
- Step 8 Trimming the section-adjust the speed of the counter shaft to 2500 ⁇ 3000r/min, the tool feed rate is 0.01 ⁇ 0.02mm/revolution, and trim the cut surface;
- Step 9 Drilling the center hole 2: Adjust the speed of the counter shaft to about 2500r/min ⁇ 3500r/min to ensure the concentricity of the drill bit and the machine counter shaft, and use the 3.0 centering drill to move to the Z axis direction of the machine to make the center hole Positioning, the drill bit feed rate is 0.02 ⁇ 0.03mm/revolution;
- Step 10 Drill the core positioning hole-switch to a ⁇ 1.2 drill to ensure the concentricity of the drill bit and the secondary shaft, adjust the speed of the secondary shaft to 2500r/min ⁇ 3500r/min, and the drill bit moves towards the Z axis of the machine for drilling
- the feed rate is 0.01 ⁇ 0.02mm/revolution
- the drilling depth is 0.7mm;
- Step 11 Boring-switch to a ⁇ 1.24 boring tool, adjust the speed of the counter shaft to 2500r/min ⁇ 3500r/min, move the drill to the Z axis of the machine for boring, the feed amount is 0.01 ⁇ 0.02mm /Rev, boring depth 0.7mm.
- the present invention Compared with the prior art, the present invention has obvious advantages and beneficial effects. Specifically, the present invention uses the same pressing block to simultaneously press the ceramic ferrule and accommodate the isolator chip, eliminating the outer ring, and making the isolator chip installation required
- the two assembly changes into one assembly which improves the assembly accuracy, can reduce the area of the isolator chip under the condition of ensuring full coverage of the optical path, and greatly reduces the material cost; at the same time, the present invention is used for assembly isolation in the compact
- the positioning angle is set in the chip receiving hole of the isolator chip, which makes the positioning of the isolator chip more accurate during installation without complicated correction, avoiding the rotation of the isolator chip in the later stage, and greatly reducing the difficulty of assembling the isolator chip.
- the assembly cost is improved, and the production efficiency is improved; at the same time, the invention also provides a briquetting process with low cost and simple operation, so that the briquetting production is more efficient.
- Figure 1 is a schematic cross-sectional structure diagram of a traditional optical component
- FIG. 2 is a schematic diagram of the structure of the isolator 7 in a conventional optical component
- Figure 3 is a cross-sectional view of the optical component structure of the present invention.
- FIG. 4 is a schematic diagram of the structure of the isolator chip 50 used in the present invention.
- Figure 5 is a cross-sectional view of the second block 32
- FIG. 6 is a schematic diagram of the installation of the isolator chip 50 in the first embodiment
- FIG. 7 is a schematic diagram of the installation of the isolator chip 50 in the second embodiment.
- an integrated optical component structure with an isolator including a metal front cover 10, a ceramic sleeve 20, a pressure block 30, a ceramic ferrule 40 and an isolator chip 50, in which,
- the ceramic sleeve 20 is placed in the metal front cover 10 and fixed by the pressure block 30, one end of the ceramic ferrule 40 is placed in the ceramic sleeve 20, and the other end is fixed on the pressure block 30
- the pressure block 30 is provided with a ferrule positioning hole 322 for fixing the ceramic ferrule 40 on one side of the metal front cover 10, and a chip receiving hole 321 is provided on the other end.
- the ferrule positioning hole 322 communicates with the chip receiving hole 321;
- the isolator chip 50 is composed of a polarizer 51, a magnetic Faraday rotator 52, and an analyzer 53, so that the isolator chip 50 is self-magnetic; due to the current isolation
- Most of the isolator chip 50 is cut in a square shape to make it a square shape. Therefore, in order to accurately position the isolator chip 50 when it is installed, to ensure that its installation angle is within the expected range, while preventing the isolator chip 50 from being Rotational deviation occurs during and after installation to cause installation errors.
- the chip accommodating hole 321 is provided with at least two positioning angles 321a to fix at least two corners of the isolator chip 50, reducing assembly difficulty and improving assembly accuracy .
- the pressure block 30 is divided into a pressure block 31 and a pressure block 32, an electrical gap is formed between the two, and the pressure block 31 is fixedly connected to the metal front cover 10.
- the ferrule positioning hole 322 and the chip accommodating hole 321 are arranged on the second pressing block 32.
- the positioning angle 321a is a right angle; further, in order to better prevent the isolator chip 50 from rotating offset during the installation process, the positioning angle 321a has at least two Are distributed diagonally.
- the number of positioning corners 321a in the chip receiving hole 321 is four, and they are distributed in four corners.
- the present invention provides two embodiments to illustrate the shape thereof.
- the embodiment proposed by the present invention does not limit the specific shape of the chip receiving hole 321, and only proposes a preferred embodiment. Therefore, in actual production, the shape of the chip receiving hole 321 has at least two positions.
- the angle 321a can be arbitrary, that is, the connecting surface between the positioning angles can be a single plane, multiple planes, or a circular arc surface or even a multi-curved surface:
- a chip receiving hole 321 is opened at the bottom of the ferrule positioning hole 322, which is a square, and the four corners of the square are positioning angles 321a.
- the size of the chip receiving hole 321 is larger than that of the isolator.
- the chip 50 is slightly larger, so that the installation angle deviation of the isolator chip 50 can be kept within ⁇ 8°.
- the side length of the chip accommodating hole 321 is 0.35mm ⁇ 0.02mm, assuming that the chip accommodating hole 321 is biased to one side under the limit error
- this patent cancels the outer ring 6 and uses the same pressing block 30 to press the ceramic ferrule 40 and the isolator chip 50 at the same time, and there is no magnetic ring 71, so 0.02mm is the isolator Unilateral error when chip 50 is installed.
- the coaxiality error requirement of the outer ring 6 of the traditional optical component installed in the pressure block 2 4 is ⁇ 0.06mm
- the coaxiality error requirement between the pressure block 2 4 and the ceramic ferrule 5 It is ⁇ 0.02mm. If the error of the isolator chip 72 being installed in the magnetic ring 71 and the magnetic ring 71 in the outer ring 6 is added, the installation error of the isolator chip 72 can reach 0.08 mm on one side.
- the error of the integrated optical component structure provided by the present invention is greatly reduced compared with the error of the traditional optical component at the laser incident end, so that the distance between the center of the isolator and the optical path is reduced, and the side length of the required isolator is reduced to 0.3 mm.
- the chip area of the isolator is greatly reduced, which greatly reduces the manufacturing cost of the isolator and the difficulty of assembling optical components.
- the four positioning corners 321a of the chip receiving hole 321 are connected by a circular arc surface, that is, four positioning corners 321a are formed on the basis of the circular hole.
- the length of the straight side of the positioning angle 321a needs to ensure that the isolator chip 50 is still located between the four positioning angles 321a after rotating by 8° without touching the arc surface.
- This structure is simple to process and convenient to locate. It can ensure that the installation angle of the isolator chip 50 is within ⁇ 8° while reducing the processing difficulty and processing cost of the chip receiving hole 321, further improving production efficiency and reducing light. The production cost of the component.
- the processing of briquettes must also be efficient.
- the present invention provides a processing method of an integrated optical component structure with an isolator, which adopts a double-spindle CNC lathe processing method to solve the problems of low efficiency and low precision in traditional processing, and specifically includes the following steps:
- Step 1 Material preparation-select ⁇ 5.5 round bar material and put it into the double-spindle CNC automatic feeder, and cut off the material head;
- Step 2 Drill the center hole 1. Adjust the spindle speed to 2500r/min ⁇ 3500r/min to ensure the concentricity of the drill bit and the machine spindle. Use the 3.0 centering drill to move in the Z axis direction of the machine to locate the center hole.
- the feed rate is 0.02 ⁇ 0.03mm/revolution;
- Step 3 Drilling round holes-switch to a ⁇ 0.35 drill bit to ensure the concentricity of the drill bit and the spindle.
- the spindle speed is adjusted to 4500r/min ⁇ 5500r/min, and the drill bit moves to the Z axis direction of the machine to drill and feed
- the amount is 0.01 ⁇ 0.02mm/revolution, and the drilling depth is 3.0mm;
- Step 4 Pull the chip holding hole-switch to ⁇ 0.35 broach to ensure the concentricity between the broach and the spindle.
- the spindle speed is adjusted to 300 ⁇ 800r/min, and the broach moves to the Z axis of the machine for square hole processing.
- the knife feed rate is 0.005 ⁇ 0.01mm/revolution, and the processing depth is 1.5mm;
- Step 5 Roughing the outer circle-switch to the outer rough turning tool, adjust the spindle speed to 2000 ⁇ 2500r/min, and the turning tool moves in the X axis direction of the machine for external rough turning, the feed is 0.02 ⁇ 0.03mm/ Turn, reserve margin 0.1 ⁇ 0.2mm;
- Step 6 Finish turning the outer circle-switch to the outer circle precision turning tool, adjust the spindle speed to 3000 ⁇ 3500r/min, and the turning tool moves in the X axis direction of the machine for external circle finishing, the feed amount is 0.01 ⁇ 0.02mm/ turn;
- Step 7 Cut-switch to cutting knife, adjust the spindle speed to 2000 ⁇ 2500r/min, the turning tool moves in the X axis direction of the machine to cut, the feed rate is 0.01 ⁇ 0.02mm/revolution, the reserved cutting length is 0.1mm, When cutting, the sub-spindle needs to clamp the outer diameter of the workpiece step;
- Step 8 Trimming the section-adjust the speed of the counter shaft to 2500 ⁇ 3000r/min, the tool feed rate is 0.01 ⁇ 0.02mm/revolution, and trim the cut surface;
- Step 9 Drilling the center hole 2: Adjust the speed of the counter shaft to about 2500r/min ⁇ 3500r/min to ensure the concentricity of the drill bit and the machine counter shaft, and use the 3.0 centering drill to move to the Z axis direction of the machine to make the center hole Positioning, the drill bit feed rate is 0.02 ⁇ 0.03mm/revolution;
- Step 10 Drill the core positioning hole-switch to a ⁇ 1.2 drill to ensure the concentricity of the drill bit and the secondary shaft, adjust the speed of the secondary shaft to 2500r/min ⁇ 3500r/min, and the drill bit moves towards the Z axis of the machine for drilling
- the feed rate is 0.01 ⁇ 0.02mm/revolution
- the drilling depth is 0.7mm;
- Step 11 Boring-switch to a ⁇ 1.24 boring tool, adjust the speed of the counter shaft to 2500r/min ⁇ 3500r/min, move the drill to the Z axis of the machine for boring, the feed amount is 0.01 ⁇ 0.02mm /Rev, boring depth 0.7mm.
- the main point of the design of the present invention is to use the same pressure block to simultaneously press the ceramic ferrule and the isolator chip, eliminate the outer ring, and use the isolator chip with its own magnetic, so that the two assembly required for the installation of the isolator chip becomes one.
- the assembly improves the assembly accuracy, reduces the area of the isolator chip under the condition of ensuring full coverage of the optical path, and greatly reduces the material cost; at the same time, the present invention is used in the press block for assembling the isolator chip in the chip receiving hole
- the positioning angle is set to make the positioning of the isolator chip more accurate during installation, avoiding the rotation of the isolator chip after installation, and no need to perform complex corrections, greatly reducing the difficulty of assembling the isolator chip, reducing the assembly cost, and improving
- the invention also provides a method for processing an integrated optical component structure with an isolator.
- a double-spindle CNC lathe is used in conjunction with a broach, and the entire pressing block can be processed in one clamping to make the optical component
- the processing efficiency and accuracy of the optical components have been improved, which is suitable for large-scale optical component production.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
一种带隔离器的一体化光组件结构及其加工方法,包括金属前盖(10)、陶瓷套管(20)、压块(30)、陶瓷插芯(40)和隔离器芯片(50),陶瓷套管(20)置于金属前盖(10)内,陶瓷插芯(40)一端置于陶瓷套管(20)内、另一端固定在压块(30)中,压块(30)上设置有一插芯定位孔(322)和芯片容纳孔(321),芯片容纳孔(321)设置有至少两个定位角(321a),隔离器芯片(50)自带磁性并安装于芯片容纳孔(321)内且由定位角(321a)定位固定;利用同一个压块(30)同时压陶瓷插芯(40)和容纳隔离器芯片(50)并在芯片容纳孔(321)中设置了定位角(321a),使隔离器芯片(50)安装由两次装配变为一次装配,提高了装配精度,降低了装配难度,在保证光路全覆盖的条件下使隔离器芯片(50)面积减小,降低了物料成本,同时提升了光组件的生产效率与加工精度。
Description
本发明涉及光通信领域,尤其是指一种带隔离器的一体化光组件结构及其加工方法。
近年来,随着数据传输的增量提速,传统的电通信已无法满足各个领域的传输需求,而光通信技术弥补了传统电通信技术传输距离短、能耗大、传输速度慢等缺点,如今被广泛应用在各种数据传输中。而在光通信模块中,光从激光器等光源中入射进各种光学元件或者光纤中(或从光学元件或者光纤中射出)时,其部分光线会在各种光学元件或光纤的端面或内部等部位被反射或散射,当这些被反射或折射的光经由原路返回时会对光信号产生干扰,影响光通信的信号质量与稳定性。因此,光组件中的隔离器成为光通信中一种不可或缺的零件组成。
传统光组件的结构如图1所示,由金属前盖1、陶瓷套管2、压块一3、压块二4、陶瓷插芯5、外环6和隔离器7组成,其中隔离器7多为偏振相关的自由空间隔离器(Free Space Isolator,简称FSI),其结构如图2所示:所述隔离器7由磁环71和安装于该磁环71内的隔离器芯片72组成,所述隔离器芯片72由法拉第旋转片722、设置在法拉第旋转片722入射光一侧的起偏器721、设置在法拉第旋转片722另一侧的检偏器723这三个部件组成。当所述法拉第旋转片722位于磁场中时,可将入射光的振动面旋转45°,所述起偏器721和检偏器723均为偏振片,可过滤目标方向以外的光线,从而将射入光组件中的光信号的方向统一,避免产生干扰。但传统光组件中磁环71的安装需通过所述外环6与压块二4相配合,然而磁环71的安装、隔离器芯片72与磁环71的配合以及压块二4与外环6之间的安装都 会产生误差,为保证隔离器芯片72对光路的全覆盖,其面积需要足够大以容纳这些安装误差,因此隔离器芯片72的边长(由于切割工艺,法拉第旋转片一般为方形片)需要做到0.5mm左右。但目前法拉第旋转片和偏振片的价格十分昂贵,如何缩小隔离器芯片的面积以减少光组件的制造成本成为了一项极其重要的课题。
同时,目前磁环71上用于安装隔离器芯片72的安装孔都为圆孔设置,而隔离器芯片72往往采用方形切割,二者安装时为了使隔离器芯片72的安装角度固定,需要进行多次的校正,降低装配效率,同时磁环71的圆孔会使得所述隔离器芯片72产生旋转,增加装配难度,使得光组件的生产成本大大增加。
为进一步减少光组件的物料使用以及降低光组件的生产成本,研究人员对此进行深入研究,遂有本案产生。
发明内容
(一)要解决的技术问题
本发明目的在于提供一种带隔离器的一体化光组件结构及其加工方法,以进一步提高隔离器芯片的安装精度、减小隔离器芯片面积以降低光组件的生产成本;本发明的另一目的在于提供一种操作简单、用于加工压块的高效加工工艺。为实现上述之目的,本发明采取如下技术方案:
(二)技术方案
一种带隔离器的一体化光组件结构,包括金属前盖、陶瓷套管、压块、陶瓷插芯和隔离器芯片,所述陶瓷套管置于所述金属前盖内并由所述压块固定,所述陶瓷插芯一端置于所述陶瓷套管内、另一端固定在所述压块中,所述压块上位于所述金属前盖一侧设置有一用于固定所述陶瓷插芯的插芯定位孔、另一端设置有一芯片容纳孔,所述插芯定位孔与所述芯片容纳孔相连通,所述芯片容纳孔设置有至少两个定位角,所述隔离器芯片由起偏器、磁性法拉第旋转片和检偏器组成并安装于所述芯片容纳孔内且由所述定位角定位固定。
所述压块分为压块一和压块二,二者之间形成电气间隙,所述压块一与所述金属前盖固定连接,所述插芯定位孔与所述芯片容纳孔设置于所述压块二上。
优选地,所述定位角为直角。
进一步,所述定位角至少有两个呈对角分布。
进一步,所述芯片容纳孔中定位角的数量为四个,并呈四角分布。
进一步,所述芯片容纳孔为正方形。
进一步,所述芯片容纳孔的四个定位角之间通过圆弧面连接。
一种带隔离器的一体化光组件结构的加工方法,包括以下步骤:
步骤一、备料——选取Φ5.5的圆棒料放进双主轴CNC自动送料机内,切除料头;
步骤二、钻中心孔一——将主轴转速调至2500r/min~3500r/min,保证钻头与机台主轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;
步骤三、钻圆孔——切换成Φ0.35的钻头,保证钻头与主轴的同心度,主轴转速调整为4500r/min~5500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度3.0mm;
步骤四、拉芯片容纳孔——切换成□0.35拉刀,保证拉刀与主轴的同心度,主轴转速调整为300~800r/min,拉刀向机台Z轴方向运动进行方孔加工,拉刀进给量为0.005~0.01mm/转,加工深度1.5mm;
步骤五、粗车外圆——切换成外圆粗车刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行外圆粗车,进给量0.02~0.03mm/转,预留余量0.1~0.2mm;
步骤六、精车外圆——切换成外圆精车刀,主轴转速调至3000~3500r/min,车刀向机台X轴方向运动进行外圆精车,进给量0.01~0.02mm/转;
步骤七、切断——切换成切断刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行切断,进给量0.01~0.02mm/转,预留切断长度0.1mm,切断的时候需副主轴夹持住工件台阶外径处;
步骤八、修断面——副轴转速调至2500~3000r/min,刀具进给量0.01~0.02mm/转,修整切断面;
步骤九、钻中心孔二——将副轴转速调至2500r/min~3500r/min左右,保证钻头与机台副轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;
步骤十、钻插芯定位孔——切换成Φ1.2的钻,保证钻头与副轴的同心 度,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度0.7mm;
步骤十一、镗孔——切换成Φ1.24的镗刀,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行镗孔,进给量为0.01~0.02mm/转,镗孔深度0.7mm。
(三)有益效果
本发明与现有技术相比具有明显的优点和有益效果,具体而言,本发明利用同一个压块同时压陶瓷插芯和容纳隔离器芯片,取消了外环,使隔离器芯片安装所需的两次装配变为一次装配,提高了其装配精度,可在保证光路全覆盖的条件下使隔离器芯片面积减小,大大降低了物料成本;同时,本发明在压块中用于装配隔离器芯片的芯片容纳孔中设置了定位角,使隔离器芯片安装时定位更加准确,无需对其进行复杂的校正,避免了后期隔离器芯片发生旋转,大大降低了隔离器芯片的装配难度,降低了装配成本,提高了生产效率;同时本发明还提供了成本低、操作简单的压块加工工艺,使压块的生产更加高效。
下面参照附图结合实施例对本发明作进一步的描述。
图1是传统光组件的剖面结构示意图;
图2是传统光组件中隔离器7的结构示意图;
图3是本发明的光组件结构剖面图;
图4是本发明中使用的隔离器芯片50的结构示意图;
图5是压块二32的剖面图;
图6是实施例一中隔离器芯片50的安装示意图;
图7是实施例二中隔离器芯片50的安装示意图。
附图标号说明:
1、金属前盖 2、陶瓷套管
3、压块一 4、压块二
5、陶瓷插芯 6、外环
7、隔离器 71、磁环
72、隔离器芯片 721、起偏器
722、法拉第旋转片 723、检偏器
10、金属前盖 20、陶瓷套管
30、压块 31、压块一
32、压块二 321、芯片容纳孔
321a、定位角 322、插芯定位孔
40、陶瓷插芯 50、隔离器芯片
51、起偏器 52、磁性法拉第旋转片
53、检偏器
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图与具体实施方式对本发明作进一步描述。
请参阅图3至图7所示,一种带隔离器的一体化光组件结构,包括金属前盖10、陶瓷套管20、压块30、陶瓷插芯40和隔离器芯片50,其中,
所述陶瓷套管20置于所述金属前盖10内并由所述压块30固定,所述陶瓷插芯40一端置于所述陶瓷套管20内、另一端固定在所述压块30中,所述压块30上位于所述金属前盖10一侧设置有一用于固定所述陶瓷插芯40的插芯定位孔322、另一端设置有一芯片容纳孔321,所述插芯定位孔322与所述芯片容纳孔321相连通;所述隔离器芯片50由起偏器51、磁性法拉第旋转片52和检偏器53组成,使所述隔离器芯片50自带磁性;由于目前的隔离器芯片50多为方形裁切,使其形状为正方形,因此,为在所述隔离器芯片50安装时对其精确定位,保证其安装角度在预计范围内,同时 防止所述隔离器芯片50在安装时和安装后发生旋转偏移而产生安装误差,所述芯片容纳孔321设置有至少两个定位角321a,将所述隔离器芯片50的至少两个角固定,降低装配难度,提高装配精度。
作为一种较佳的实施例,所述压块30分为压块一31和压块二32,二者之间形成电气间隙,所述压块一31与所述金属前盖10固定连接,所述插芯定位孔322与所述芯片容纳孔321设置于所述压块二32上。
为更好的配合方形的隔离器芯片50,所述定位角321a为直角;进一步,为更好地防止所述隔离器芯片50在安装过程中发生旋转偏移,所述定位角321a至少有两个呈对角分布。
为加工方便且更进一步固定所述隔离器芯片50,所述芯片容纳孔321中定位角321a的数量为四个,并呈四角分布,对此,本发明提供两个实施例以说明其形状,但本发明所提出的实施例并未对该芯片容纳孔321的具体形状做出限定,仅为提出较佳的实施例,因此实际生产中所述芯片容纳孔321的形状在具有至少两个定位角321a的基础上可以是任意的,即各个定位角之间的连接面可以是单个平面、多个平面,也可以是圆弧面甚至是多曲面的:
实施例一、
如图6,在所述插芯定位孔322底部开有芯片容纳孔321,其为正方形,此时该正方形的四个角即为定位角321a,该芯片容纳孔321的尺寸比所述隔离器芯片50略大,可使所述隔离器芯片50的安装角度偏移保持在±8°以内。
实施例一中的误差讨论:综合加工工艺与成本,所述芯片容纳孔321的边长为0.35mm±0.02mm,假设当其在极限误差的情况下,使该芯片容纳孔321向一侧偏移0.02mm,由于相比于传统结构,本专利取消了外环6,利用同一个压块30同时压陶瓷插芯40和容纳隔离器芯片50,且无磁环71,因此0.02mm为隔离器芯片50安装时的单边误差。
传统误差分析:传统光组件的外环6安装入压块二4中的同轴度误差要求为◎0.06mm,所述压块二4与所述陶瓷插芯5之间的同轴度误差要求 为◎0.02mm,若再加上隔离器芯片72装入磁环71中、磁环71装入外环6中的误差,可使隔离器芯片72的安装误差达到单边0.08mm。
结果比较:本发明提供的一体化光组件结构的误差较传统光组件在激光入射端的误差大大减小,使隔离器中心与光路偏离距离缩小,从而使所需隔离器的边长减小至0.3mm,相比于现有结构,隔离器芯片面积大大减小,大大降低了隔离器的制造成本以及光组件的装配难度。
实施例二、
如图7,所述芯片容纳孔321的四个定位角321a之间通过圆弧面连接,即在圆孔的基础上形成四个定位角321a。所述定位角321a的直边长度需保证所述隔离器芯片50在旋转8°后仍位于四个定位角321a之间,而不会接触到圆弧面。这种结构加工简单、定位方便,在保证所述隔离器芯片50的安装角度偏移在±8°以内的同时降低所述芯片容纳孔321的加工难度与加工成本,进一步提高生产效率、降低光组件的生产成本。
由于本发明中压块尺寸极小,如何在其上加工出符合精度要求的芯片容纳孔321与插芯定位孔322成为难点,同时光组件的产量通常极大,其单个零件的生产时间很大程度上决定了光组件的产能,因此,压块的加工还必须高效。
对此本发明提供了一种带隔离器的一体化光组件结构的加工方法,采用双主轴CNC车床加工方式,以解决传统加工中效率低、精度低等问题,具体包括以下步骤:
步骤一、备料——选取Φ5.5的圆棒料放进双主轴CNC自动送料机内,切除料头;
步骤二、钻中心孔一——将主轴转速调至2500r/min~3500r/min,保证钻头与机台主轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;
步骤三、钻圆孔——切换成Φ0.35的钻头,保证钻头与主轴的同心度,主轴转速调整为4500r/min~5500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度3.0mm;
步骤四、拉芯片容纳孔——切换成□0.35拉刀,保证拉刀与主轴的同 心度,主轴转速调整为300~800r/min,拉刀向机台Z轴方向运动进行方孔加工,拉刀进给量为0.005~0.01mm/转,加工深度1.5mm;
步骤五、粗车外圆——切换成外圆粗车刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行外圆粗车,进给量0.02~0.03mm/转,预留余量0.1~0.2mm;
步骤六、精车外圆——切换成外圆精车刀,主轴转速调至3000~3500r/min,车刀向机台X轴方向运动进行外圆精车,进给量0.01~0.02mm/转;
步骤七、切断——切换成切断刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行切断,进给量0.01~0.02mm/转,预留切断长度0.1mm,切断的时候需副主轴夹持住工件台阶外径处;
步骤八、修断面——副轴转速调至2500~3000r/min,刀具进给量0.01~0.02mm/转,修整切断面;
步骤九、钻中心孔二——将副轴转速调至2500r/min~3500r/min左右,保证钻头与机台副轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;
步骤十、钻插芯定位孔——切换成Φ1.2的钻,保证钻头与副轴的同心度,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度0.7mm;
步骤十一、镗孔——切换成Φ1.24的镗刀,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行镗孔,进给量为0.01~0.02mm/转,镗孔深度0.7mm。
本发明的设计要点在于利用同一个压块同时压陶瓷插芯和容纳隔离器芯片,取消了外环,采用自带磁性的隔离器芯片,使隔离器芯片安装所需的两次装配变为一次装配,提高了其装配精度,可在保证光路全覆盖的条件下使隔离器芯片面积减小,大大降低了物料成本;同时,本发明在压块中用于装配隔离器芯片的芯片容纳孔中设置了定位角,使隔离器芯片安装时定位更加准确,避免了隔离器芯片在安装后发生旋转,无需对其进行复杂的校正,大大降低了隔离器芯片的装配难度,降低了装配成本,提高了生产效率;本发明还提供了一种带隔离器的一体化光组件结构的加工方法,采用双主轴CNC车床与拉刀相配合,一次装夹即可完成整个压块的加工,使光组件的加工效率和精度都得到提高,适用于大规模的光组件生产当中。
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修 改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (8)
- 一种带隔离器的一体化光组件结构,其特征在于:包括金属前盖、陶瓷套管、压块、陶瓷插芯和隔离器芯片,所述陶瓷套管置于所述金属前盖内并由所述压块固定,所述陶瓷插芯一端置于所述陶瓷套管内、另一端固定在所述压块中,所述压块上位于所述金属前盖一侧设置有一用于固定所述陶瓷插芯的插芯定位孔、另一端设置有一芯片容纳孔,所述插芯定位孔与所述芯片容纳孔相连通,所述芯片容纳孔设置有至少两个定位角,所述隔离器芯片由起偏器、磁性法拉第旋转片和检偏器组成并安装于所述芯片容纳孔内且由所述定位角定位固定。
- 根据权利要求1所述一种带隔离器的一体化光组件结构,其特征在于:所述压块分为压块一和压块二,二者之间形成电气间隙,所述压块一与所述金属前盖固定连接,所述插芯定位孔与所述芯片容纳孔设置于所述压块二上。
- 根据权利要求1或2所述一种带隔离器的一体化光组件结构,其特征在于:所述定位角为直角。
- 根据权利要求1所述一种带隔离器的一体化光组件结构,其特征在于:所述定位角至少有两个呈对角分布。
- 根据权利要求3所述一种带隔离器的一体化光组件结构,其特征在于:所述芯片容纳孔中定位角的数量为四个,并呈四角分布。
- 根据权利要求5所述一种带隔离器的一体化光组件结构,其特征在于:所述芯片容纳孔为正方形。
- 根据权利要求5所述一种带隔离器的一体化光组件结构,其特征在于:所述芯片容纳孔的四个定位角之间通过圆弧面连接。
- 一种用于权利要求1-6任意一种光组件的加工方法,其特征在于:包括以下步骤:步骤一、备料——选取Φ5.5的圆棒料放进双主轴CNC自动送料机内,切除料头;步骤二、钻中心孔一——将主轴转速调至2500r/min~3500r/min,保证钻头与机台主轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;步骤三、钻圆孔——切换成Φ0.35的钻头,保证钻头与主轴的同心度,主轴转速调整为4500r/min~5500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度3.0mm;步骤四、拉芯片容纳孔——切换成□0.35拉刀,保证拉刀与主轴的同心度,主轴转速调整为300~800r/min,拉刀向机台Z轴方向运动进行方孔加工,拉刀进给量为0.005~0.01mm/转,加工深度1.5mm;步骤五、粗车外圆——切换成外圆粗车刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行外圆粗车,进给量0.02~0.03mm/转,预留余量0.1~0.2mm;步骤六、精车外圆——切换成外圆精车刀,主轴转速调至3000~3500r/min,车刀向机台X轴方向运动进行外圆精车,进给量0.01~0.02mm/转;步骤七、切断——切换成切断刀,主轴转速调至2000~2500r/min,车刀向机台X轴方向运动进行切断,进给量0.01~0.02mm/转,预留切断长度0.1mm,切断的时候需副主轴夹持住工件台阶外径处;步骤八、修断面——副轴转速调至2500~3000r/min,刀具进给量0.01~0.02mm/转,修整切断面;步骤九、钻中心孔二——将副轴转速调至2500r/min~3500r/min左右,保证钻头与机台副轴的同心度,用3.0定心钻向机台Z轴方向运动进行中心孔定位,钻头进给量为0.02~0.03mm/转;步骤十、钻插芯定位孔——切换成Φ1.2的钻,保证钻头与副轴的同心度,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行钻孔,进给量为0.01~0.02mm/转,钻孔深度0.7mm;步骤十一、镗孔——切换成Φ1.24的镗刀,副轴转速调整为2500r/min~3500r/min,钻头向机台Z轴方向运动进行镗孔,进给量为0.01~0.02mm/转,镗孔深度0.7mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/778,416 US20230003952A1 (en) | 2019-02-28 | 2019-04-16 | Integrated optical assembly structure with isolator, and processing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910148635 | 2019-02-28 | ||
CN201910148635.9 | 2019-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020172964A1 true WO2020172964A1 (zh) | 2020-09-03 |
Family
ID=66989798
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082832 WO2020172964A1 (zh) | 2019-02-28 | 2019-04-16 | 一种带隔离器的一体化光组件结构及其加工方法 |
PCT/CN2019/097404 WO2020173042A1 (zh) | 2019-02-28 | 2019-07-24 | 一种磁环外装并具有芯片定位角的光组件及其压块结构 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/097404 WO2020173042A1 (zh) | 2019-02-28 | 2019-07-24 | 一种磁环外装并具有芯片定位角的光组件及其压块结构 |
Country Status (3)
Country | Link |
---|---|
US (2) | US20230003952A1 (zh) |
CN (2) | CN109932779B (zh) |
WO (2) | WO2020172964A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11452322B2 (en) | 2015-11-16 | 2022-09-27 | Q Sports Science, LLC | Traumatic brain injury protection devices |
US11478253B2 (en) | 2013-03-15 | 2022-10-25 | Tbi Innovations Llc | Methods and devices to reduce the likelihood of injury from concussive or blast forces |
US11696766B2 (en) | 2009-09-11 | 2023-07-11 | Tbi Innovations, Llc | Methods and devices to reduce damaging effects of concussive or blast forces on a subject |
US11969033B2 (en) | 2016-03-02 | 2024-04-30 | Q30 Sports Science, Llc | Methods and devices to reduce damaging effects of concussive or blast forces on a subject |
US12137917B2 (en) | 2021-12-23 | 2024-11-12 | Tbi Innovations, Llc | Methods and devices to reduce the likelihood of injury from concussive or blast forces |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109932779B (zh) * | 2019-02-28 | 2024-01-16 | 徐俊 | 一种带隔离器的一体化光组件结构及其加工方法 |
CN110794528A (zh) * | 2019-12-06 | 2020-02-14 | 无锡市德科立光电子技术有限公司 | 应用于otdr测距收发同波长bosa光器件 |
CN114779402A (zh) * | 2022-04-01 | 2022-07-22 | 深圳市欧凌镭射科技有限公司 | 一种集成光学元件 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010012422A1 (en) * | 2000-01-28 | 2001-08-09 | Shin-Etsu Chemical Co., Ltd. | Ferrule connection type optical isolator with optical fiber |
JP2004280043A (ja) * | 2003-02-25 | 2004-10-07 | Kyocera Corp | 光アイソレータ付きレセプタクル |
CN101322059A (zh) * | 2005-12-16 | 2008-12-10 | 并木精密宝石株式会社 | 带有光隔离器的插座及其制造方法 |
CN101981483A (zh) * | 2008-03-31 | 2011-02-23 | 京瓷株式会社 | 光插座以及使用其的光组件 |
CN202196204U (zh) * | 2011-08-24 | 2012-04-18 | 苏州天孚光通信股份有限公司 | 一种绝缘光纤接口组件 |
CN207336822U (zh) * | 2017-08-23 | 2018-05-08 | 高安天孚光电技术有限公司 | 光纤接口组件 |
CN207336857U (zh) * | 2017-11-13 | 2018-05-08 | 深圳市源度科技有限公司 | 一种隔离器抗干扰贴装结构 |
CN207473128U (zh) * | 2017-08-22 | 2018-06-08 | 江西天孚科技有限公司 | 一种两片式隔离器组件 |
CN109932779A (zh) * | 2019-02-28 | 2019-06-25 | 徐俊 | 一种带隔离器的一体化光组件结构及其加工方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0854579A (ja) * | 1994-08-12 | 1996-02-27 | Tdk Corp | 光アイソレータ素子、光アイソレータ、光ファイバ付き光アイソレータ及び半導体レーザモジュール |
US6395126B1 (en) * | 1998-02-06 | 2002-05-28 | Horizon Photonics, Inc. | Method of micro-fabrication |
EP1053500B1 (en) * | 1999-01-29 | 2002-10-02 | Tokin Corporation | Optical isolator comprising a faraday rotator |
JP2001051157A (ja) * | 1999-08-11 | 2001-02-23 | Kyocera Corp | 光ファイバ固定具およびその製造方法およびそれを用いた光ファイバコネクタ |
CN100394235C (zh) * | 2004-01-29 | 2008-06-11 | 京瓷株式会社 | 带光学元件的光纤接头、光插口及光模组 |
US7791886B2 (en) * | 2006-08-25 | 2010-09-07 | Shinkosha Co., Ltd. | Heat-dissipating structure for an optical isolator |
JP2009230092A (ja) * | 2008-02-27 | 2009-10-08 | Kyocera Corp | 光アイソレータモジュールおよびそれを用いた光素子モジュール |
CN203054272U (zh) * | 2013-02-05 | 2013-07-10 | 青岛海信宽带多媒体技术有限公司 | 可粘接隔离器的圆方管体 |
CN103246027B (zh) * | 2013-05-23 | 2015-04-22 | 中航海信光电技术有限公司 | 可无源耦合的多路并行光组件及封装方法 |
CN205027990U (zh) * | 2015-08-14 | 2016-02-10 | 无限光通讯(深圳)有限公司 | 一种自由空间隔离器 |
CN205720772U (zh) * | 2016-06-06 | 2016-11-23 | 福建华科光电有限公司 | 超小型在线式双级光隔离器 |
CN206573805U (zh) * | 2016-11-03 | 2017-10-20 | 昂纳信息技术(深圳)有限公司 | 光隔离器 |
CN106959490A (zh) * | 2017-05-17 | 2017-07-18 | 莱特巴斯光学仪器(镇江)有限公司 | 一种将空间光耦合进光纤的装置 |
CN207318880U (zh) * | 2017-08-22 | 2018-05-04 | 江西天孚科技有限公司 | 一种细小隔离器 |
CN208444056U (zh) * | 2018-07-23 | 2019-01-29 | 东莞光智通讯科技有限公司 | 同轴光器件及光通信装置 |
CN209784585U (zh) * | 2019-02-28 | 2019-12-13 | 徐俊 | 一种带隔离器的一体化光组件结构 |
-
2019
- 2019-04-12 CN CN201910291871.6A patent/CN109932779B/zh active Active
- 2019-04-16 WO PCT/CN2019/082832 patent/WO2020172964A1/zh active Application Filing
- 2019-04-16 US US17/778,416 patent/US20230003952A1/en active Pending
- 2019-07-15 CN CN201910636270.4A patent/CN110308520B/zh active Active
- 2019-07-24 US US16/636,337 patent/US11531219B2/en active Active
- 2019-07-24 WO PCT/CN2019/097404 patent/WO2020173042A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010012422A1 (en) * | 2000-01-28 | 2001-08-09 | Shin-Etsu Chemical Co., Ltd. | Ferrule connection type optical isolator with optical fiber |
JP2004280043A (ja) * | 2003-02-25 | 2004-10-07 | Kyocera Corp | 光アイソレータ付きレセプタクル |
CN101322059A (zh) * | 2005-12-16 | 2008-12-10 | 并木精密宝石株式会社 | 带有光隔离器的插座及其制造方法 |
CN101981483A (zh) * | 2008-03-31 | 2011-02-23 | 京瓷株式会社 | 光插座以及使用其的光组件 |
CN202196204U (zh) * | 2011-08-24 | 2012-04-18 | 苏州天孚光通信股份有限公司 | 一种绝缘光纤接口组件 |
CN207473128U (zh) * | 2017-08-22 | 2018-06-08 | 江西天孚科技有限公司 | 一种两片式隔离器组件 |
CN207336822U (zh) * | 2017-08-23 | 2018-05-08 | 高安天孚光电技术有限公司 | 光纤接口组件 |
CN207336857U (zh) * | 2017-11-13 | 2018-05-08 | 深圳市源度科技有限公司 | 一种隔离器抗干扰贴装结构 |
CN109932779A (zh) * | 2019-02-28 | 2019-06-25 | 徐俊 | 一种带隔离器的一体化光组件结构及其加工方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11696766B2 (en) | 2009-09-11 | 2023-07-11 | Tbi Innovations, Llc | Methods and devices to reduce damaging effects of concussive or blast forces on a subject |
US11478253B2 (en) | 2013-03-15 | 2022-10-25 | Tbi Innovations Llc | Methods and devices to reduce the likelihood of injury from concussive or blast forces |
US11452322B2 (en) | 2015-11-16 | 2022-09-27 | Q Sports Science, LLC | Traumatic brain injury protection devices |
US11969033B2 (en) | 2016-03-02 | 2024-04-30 | Q30 Sports Science, Llc | Methods and devices to reduce damaging effects of concussive or blast forces on a subject |
US12137917B2 (en) | 2021-12-23 | 2024-11-12 | Tbi Innovations, Llc | Methods and devices to reduce the likelihood of injury from concussive or blast forces |
Also Published As
Publication number | Publication date |
---|---|
US20230003952A1 (en) | 2023-01-05 |
US11531219B2 (en) | 2022-12-20 |
CN109932779B (zh) | 2024-01-16 |
US20210223580A1 (en) | 2021-07-22 |
CN109932779A (zh) | 2019-06-25 |
WO2020173042A1 (zh) | 2020-09-03 |
CN110308520B (zh) | 2024-06-14 |
CN110308520A (zh) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020172964A1 (zh) | 一种带隔离器的一体化光组件结构及其加工方法 | |
CN114260740B (zh) | 一种数控中心快速自动换刀装置及工作方法 | |
US8245608B2 (en) | Method for making mold core | |
CN209784585U (zh) | 一种带隔离器的一体化光组件结构 | |
CN207723913U (zh) | 双耳支座钻铰通用夹具 | |
CN203197291U (zh) | 一种刀具夹持杆 | |
CN202106214U (zh) | 加工卷板机超长辊的定位支撑装置 | |
CN212330500U (zh) | 一种主轴换刀位置检测装置 | |
CN204657989U (zh) | 一种新型的超声波加工工具夹头 | |
CN210702611U (zh) | 加工中心顶针座微调机构 | |
CN211136386U (zh) | 一种用于转向壳体的螺纹式夹具 | |
CN221966867U (zh) | 一种防振倒角铣刀 | |
CN102009379A (zh) | 磨削斜切圆柱体上与斜切面垂直孔的装夹方法及夹具 | |
CN219786853U (zh) | 万向自定心攻丝夹头 | |
CN110076356A (zh) | 自动吸料上料数控车床 | |
CN220388658U (zh) | 一种偏芯阀芯夹具 | |
CN218314501U (zh) | 一种圆柱型玻璃零件高精度夹持工装 | |
CN214920608U (zh) | 一种内撑式夹头 | |
CN214443120U (zh) | 一种用于机床主轴过渡转接的通用法兰盘结构 | |
CN221582055U (zh) | 一种新型机加夹头机构 | |
CN213560382U (zh) | 一种提高加工轴状工件中心孔同心度的双回转机构 | |
CN220196555U (zh) | 一种多角度槽线切割加工快速定位装置 | |
CN221289915U (zh) | 一种用于激光加工单晶金刚石毛坯的切割夹具装置 | |
CN219504304U (zh) | 一种多用分度盘装置 | |
CN114226776A (zh) | 一种片状薄壁类零件车削加工辅助装夹装置及加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19916741 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19/10/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19916741 Country of ref document: EP Kind code of ref document: A1 |