WO2020170753A1 - Vehicle air-conditioning unit - Google Patents
Vehicle air-conditioning unit Download PDFInfo
- Publication number
- WO2020170753A1 WO2020170753A1 PCT/JP2020/003444 JP2020003444W WO2020170753A1 WO 2020170753 A1 WO2020170753 A1 WO 2020170753A1 JP 2020003444 W JP2020003444 W JP 2020003444W WO 2020170753 A1 WO2020170753 A1 WO 2020170753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- passage
- case
- motor space
- warm
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
Definitions
- the present disclosure relates to a vehicle air conditioning unit.
- the vehicle air conditioning unit described in Patent Document 1 has been conventionally known.
- the vehicle air conditioning unit described in Patent Document 1 has a layout in which an evaporator and a heater core are arranged on the upstream side of an air flow with respect to a blower fan of a blower. Further, a fan downstream opening that discharges air from the air passage in the air conditioning case is provided on the downstream side of the air flow with respect to the blower fan, and an aspirator (in other words, Venturi pipe) is provided at the tip of the fan downstream opening. ) Is connected.
- the aspirator is arranged outside the air conditioning case in the vehicle compartment.
- the aspirator introduces the exhaust gas from the fan downstream opening as the primary air and sucks the internal air as the secondary air by the Venturi effect due to the flow of the primary air.
- the blower motor which is the member to be cooled, is cooled by this secondary air.
- the air discharged from the fan downstream opening becomes hot air of about 75°C. Therefore, when the warm air is discharged into the instrument panel, the warm air is extremely hot, which may deteriorate the passenger's foot feeling, and the warm air is discharged to the destination. It is also necessary to consider heat damage to surrounding electronic components. In short, at the time of maximum heating, inconvenience may occur due to discharge of the warm air.
- the present disclosure has been made in view of the above-illustrated circumstances and the like, and even if the air used for cooling the blower motor is discharged into the passenger compartment, it is possible to avoid the inconvenience caused by the discharge of the air.
- An object is to provide a possible vehicle air conditioning unit.
- a vehicle air conditioning unit includes: An air-conditioning case in which a passage in the case through which the air flowing out to the passenger compartment flows is formed, A cooler that is arranged in the air-conditioning case and cools the air flowing through the passage in the case; A blower having a blower motor and an impeller that is rotated by the blower motor to generate an air flow in a passage in the case; A heater that heats the air flowing out from the cooler in the passage in the case, A motor space forming unit that forms a motor space in which a blower motor is arranged, In the motor space forming portion, a cold air inlet and a warm air inlet that communicate with the passage in the case are formed on the air flow downstream side with respect to the impeller. As the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater flows in the warm air flow. Inflow from the impeller generates an air flow in the passage in the case, the cold
- the blower motor will be cooled by temperature-controlled air that is a mixture of cold air cooled by the cooler and warm air heated by the heater. Therefore, even if the temperature-controlled air is discharged into the passenger compartment, for example, after cooling the blower motor, there is no concern of deteriorating the foot feeling of the occupant, and heat damage to electronic components arranged around the vehicle air conditioning unit. There is no fear of giving it. That is, even if the air used for cooling the blower motor is discharged into, for example, the passenger compartment, it is possible to avoid the inconvenience caused by the discharge of the air.
- FIG. 2 is a sectional view schematically showing a II-II section of FIG. 1 in the first embodiment.
- FIG. 3 is a cross-sectional view schematically showing a III-III cross section of FIG. 1 in the first embodiment.
- FIG. 5 is a cross-sectional view schematically showing the VV cross section of FIG. 4 in the second embodiment and is a view corresponding to FIG. 3.
- the vehicle air conditioning unit 10 of the present embodiment includes an air conditioning case 12, an evaporator 16, a heater core 18, a blower 20, a plurality of air volume ratio adjusting doors 23 and 24, and an upstream partition wall 26. , And a downstream side partition wall 27.
- the vehicle air conditioning unit 10 is installed in the vehicle compartment, and is, for example, arranged inside an instrument panel provided in the forefront portion of the vehicle interior.
- each arrow DR1, DR2, DR3 of FIG. 1 and FIG. 2 shows the direction of the vehicle in which the vehicle air conditioning unit 10 is mounted. That is, the arrow DR1 in FIG. 1 indicates the vehicle front-rear direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle left-right direction DR3, that is, the vehicle width direction DR3.
- the air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10.
- the air conditioning case 12 has a plurality of air introduction parts 121 and 122 and a plurality of blowout openings. Inside the air conditioning case 12, an in-case passage 124 through which the air flowing out into the vehicle compartment flows is formed.
- the blower 20 has a blower fan 201 which is arranged in the case passage 124 and rotates around the fan axis CLf, and a blower motor 202 which rotationally drives the blower fan 201.
- the blower fan 201 is an impeller that is rotated by the blower motor 202 to generate an air flow in the case internal passage 124. Further, in the present embodiment, the blower fan 201 is a centrifugal fan, so the blower 20 is a centrifugal blower.
- the blower 20 sucks air from one side in the axial direction DRa of the fan axis CLf by the rotation of the blower fan 201 and blows the sucked air to the outside in the radial direction of the blower fan 201.
- the air blown outward in the radial direction is guided by the inner wall surface of the air conditioning case 12, and is directed to the downstream side of the air flow with respect to the blower fan 201 in the case inner passage 124 (for example, the rear side in the vehicle longitudinal direction DR1 in FIG. 1). Flows.
- the axial direction DRa of the fan axis CLf does not have to match the vehicle front-rear direction DR1, but in the present embodiment, the fan axis CLf axial direction DRa matches the vehicle front-rear direction DR1. Further, the axial direction DRa of the fan axis line CLf may be referred to as the fan axial direction DRa.
- the radial direction of the blower fan 201 is the radial direction of the fan axis CLf in other words. The radial direction of the fan axis CLf may be referred to as the fan radial direction.
- the blower motor 202 is an electric motor that rotates the blower fan 201 when energized. Since the blower motor 202 is energized, it also generates heat as the blower fan 201 rotates.
- the upstream partition wall 26 is arranged on the upstream side of the air flow with respect to the blower fan 201 in the case passage 124.
- the upstream partition wall 26 partitions the passage in the case 124 on the upstream side of the air flow from the blower fan 201 into two upstream passages 125a and 126a.
- the two upstream passages 125a and 126a are a first upstream passage 125a and a second upstream passage 126a provided in parallel with the first upstream passage 125a.
- the downstream partition wall 27 is disposed in the case passage 124 on the downstream side of the air flow with respect to the blower fan 201.
- the downstream partition wall 27 partitions the passage in the case 124 on the downstream side of the air flow from the blower fan 201 into two downstream passages 125b and 126b.
- the two downstream passages 125b and 126b are a first downstream passage 125b and a second downstream passage 126b provided in parallel with the first downstream passage 125b.
- the respective air flows in the two downstream side passages 125b and 126b are separated into the two upstream side passages 125a and 126a.
- the air flowing out from the second upstream side passage 126a passes through the blower fan 201 and hardly flows into the first downstream side passage 125b, and flows exclusively into the second downstream side passage 126b.
- the first downstream side passage 125b is connected in series to the first upstream side passage 125a in the air flow of the in-case passage 124, and the first upstream side passage 125a and the first downstream side passage 125b as a whole.
- the first passage 125 is configured.
- the second downstream passage 126b is connected in series to the second upstream passage 126a in the air flow of the in-case passage 124, and the second upstream passage 126a and the second downstream passage 126b. Constitute the second passage 126 as a whole.
- the in-case passage 124 is partitioned by the upstream partition wall 26 and the downstream partition wall 27 into the first passage 125 and the second passage 126 provided in parallel with the first passage 125. Can be said to have been.
- the air flowing through the first passage 125 and the air flowing through the second passage 126 may slightly mix with each other in the blower fan 201, but almost never mix with each other and flow in the air conditioning case 12 respectively.
- the air flow passing through the blower fan 201 is twisted in the circumferential direction of the fan axis CLf between the upstream side and the downstream side of the air flow of the blower fan 201 as the blower fan 201 rotates. Therefore, in accordance with the twist of the air flow in the blower fan 201, the two downstream passages 125b and 126b are arranged to be twisted in the circumferential direction of the fan axis CLf with respect to the two upstream passages 125a and 126a.
- arrows FLa, FLb, FLc, FLd, FLe, FLf, FLg, FLh, FLi, FLj, FLk, and FLm in FIGS. 1 to 3 indicate air flows in the in-case passage 124.
- each of the plurality of air introducing portions 121, 122 is formed with a vent hole for introducing air from outside the air conditioning case 12 into the case internal passage 124. It is connected to the air flow upstream side of the in-case passage 124. Specifically, the first air introduction part 121 of the plurality of air introduction parts 121, 122 is connected to the air flow upstream end of the first upstream passage 125a. The second air introduction part 122 of the plurality of air introduction parts 121 and 122 is connected to the air flow upstream end of the second upstream passage 126a.
- Suction switching doors are provided in the plurality of air introducing units 121 and 122, and the suction modes of the vehicle air conditioning unit 10 are the outside air mode, the inside air mode, and the inside/outside according to the operation of the suction switching doors. It can be switched to the two-layer mode.
- the outside air which is the air outside the vehicle compartment
- the inside air is introduced into both the air introducing portions 121 and 122, and the inside air flows into both of the two upstream passages 125a and 126a.
- the first air introduction part 121 functions as an outside air introduction part, and the outside air is introduced into the first air introduction part 121.
- the second air introduction part 122 functions as an inside air introduction part, and the inside air is introduced into the second air introduction part 122. Therefore, in the inside/outside air two-layer mode, the outside air flows exclusively through the first upstream passage 125a and the inside air flows exclusively through the second upstream passage 126a. That is, in the inside/outside air two-layer mode, the first passage 125 including the first upstream side passage 125a functions exclusively as an outside air passage through which the outside air flows, and the second passage 126 including the second upstream side passage 126a exclusively receives inside air. It functions as a flowing inside air passage. Strictly speaking, the outside air flows more in the first passage 125 than the inside air, and the inside air flows in the second passage 126 more than the outside air.
- the evaporator 16 is a heat exchanger for cooling that cools the air passing through the evaporator 16. In short, the evaporator 16 is a cooler.
- the evaporator 16 is arranged in the air conditioning case 12 and cools the air flowing through the case passage 124. Specifically, the evaporator 16 is arranged so as to straddle both the first upstream side passage 125a and the second upstream side passage 126a. Therefore, the evaporator 16 has the first cooling unit 161 arranged in the first upstream passage 125a and the second cooling unit 162 arranged in the second upstream passage 126a.
- the evaporator 16 constitutes a well-known refrigeration cycle device that circulates a refrigerant together with a compressor, a condenser, and an expansion valve (not shown).
- the evaporator 16 exchanges heat between the air passing through the evaporator 16 and the refrigerant, and the heat exchange evaporates the refrigerant and cools the air.
- the blower 20 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. That is, the vehicle air conditioning unit 10 of the present embodiment has a suction layout in which the blower fan 201 is arranged on the air flow downstream side with respect to the evaporator 16.
- the blower 20 is arranged so that one side of the fan axial direction DRa, which is the air suction side of the blower fan 201, faces the air outflow surface 16b of the evaporator 16. Therefore, the blower fan 201 is arranged such that the other side of the fan axis line CLf, which coincides with the other side in the fan axis direction DRa, extends toward the air flow downstream side of the in-case passage 124.
- the heater core 18 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201.
- the heater core 18 is arranged on the air flow downstream side of the blower fan 201 in the case internal passage 124.
- the heater core 18 is a heater (in other words, a heat exchanger for heating) that heats the air flowing out from the evaporator 16 in the case internal passage 124.
- the heater core 18 heats the air passing through the heater core 18 among the air blown from the blower fan 201.
- the heater core 18 is arranged so as to straddle both the first downstream side passage 125b and the second downstream side passage 126b. Therefore, the heater core 18 has the first heating part 181 arranged in the first downstream side passage 125b and the second heating part 182 arranged in the second downstream side passage 126b.
- the first air volume ratio adjustment door 23 and the second air volume ratio adjustment door 24 are so-called air mix doors, and are arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201.
- the first air volume ratio adjustment door 23 and the second air volume ratio adjustment door 24 are slide type door mechanisms, and are slid by an electric actuator.
- the first air volume ratio adjusting door 23 is arranged on the upstream side of the air flow with respect to the first heating part 181 of the heater core 18 in the first downstream passage 125b. Then, the first air volume ratio adjusting door 23 controls the air volume of the air passing through the first heating section 181 and the first heating section 181 among the air flowing out from the first cooling section 161 of the evaporator 16 in the first passage 125. Adjust the ratio with the air volume of the bypass air flow. As a result, the temperature of the air blown into the vehicle compartment through the first downstream passage 125b is adjusted.
- the second air volume ratio adjusting door 24 is arranged on the air flow upstream side of the second heating portion 182 of the heater core 18 in the second downstream passage 126b. Then, the second air volume ratio adjustment door 24 controls the air volume of the air passing through the second heating section 182 and the second heating section 182 among the air flowing out from the second cooling section 162 of the evaporator 16 in the second passage 126. Adjust the ratio with the air volume of the bypass air flow. As a result, the temperature of the air blown into the vehicle compartment through the second downstream passage 126b is adjusted.
- the air-conditioning case 12 has a plurality of first blowout openings (not shown) connected to the downstream side of the first heating portion 181 of the heater core 18 in the first flow passage 125b.
- the air conditioning case 12 has a plurality of second blowout openings (not shown) that are connected to the downstream side of the second heating portion 182 of the heater core 18 in the second flow path 126b.
- These first and second outlets are connected to mutually different vehicle interior outlets provided in the vehicle interior via ducts and the like, and the air flowing out from the first and second outlets is , Is blown into the vehicle interior from the vehicle interior air outlet.
- the plurality of first blowout openings are provided with blowout opening doors that open and close the first blowout openings for each of the first blowout openings.
- blowout opening doors that open and close the first blowout openings for each of the first blowout openings.
- the plurality of second outlet openings are provided with outlet opening doors that open and close the second outlet openings for each second outlet opening.
- the blowout opening door is called, for example, a face door, a foot door, or a defroster door.
- Comfort of the vehicle interior is controlled by blowing out the conditioned air whose temperature is adjusted by the operation of the air volume ratio adjustment doors 23, 24 from the desired vehicle interior outlet to the vehicle interior.
- the vehicle air conditioning unit 10 includes a motor space forming portion 30 arranged in an air conditioning case 12, a warm air passage portion 32 forming a warm air introduction passage 32a, and a vehicle interior communication. It is provided with the vehicle interior communication part 34 which forms the passage 34a.
- the motor space forming unit 30 forms a motor space 30a in which the blower motor 202 is arranged. Specifically, the motor space forming unit 30 is arranged so as to be surrounded by the in-case passage 124. The motor space forming unit 30 forms a motor space 30a inside the motor space forming unit 30, and the blower motor 202 is housed in the motor space 30a.
- blower motor 202 is housed in the motor space 30a does not necessarily mean that the blower motor 202 is entirely inside the motor space 30a, but most of the blower motor 202 is inside the motor space 30a. All you have to do is enter. Therefore, even if a part of the rotating shaft or the non-rotating part of the blower motor 202 is exposed to the outside of the motor space 30a, if most of the blower motor 202 is in the motor space 30a, the blower motor 202 will be in the motor space. It can be said that it is housed in 30a.
- the motor space forming unit 30 is configured as a partition wall that partitions the motor space 30a and the case internal passage 124.
- the motor space forming unit 30 is also arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. ing.
- the motor space forming unit 30 is arranged in the air conditioning case 12 on the upstream side of the air flow with respect to the heater core 18 and the air volume ratio adjusting doors 23 and 24.
- the blower motor 202 and the motor space forming unit 30 are arranged on the other side of the blower fan 201 in the fan axis direction DRa.
- the motor space forming unit 30 is fixed to the air conditioning case 12, and the non-rotating part of the blower motor 202 is fixed to the air conditioning case 12 via the motor space forming unit 30.
- the motor space forming unit 30 is configured such that the cool air cooled by the evaporator 16 and the hot air heated by the heater core 18 flow into the motor space 30a from the in-case passage 124 as the blower 20 operates.
- the operation of the blower 20 is that the blower fan 201 is rotated by the blower motor 202 to generate an air flow in the case internal passage 124.
- the motor space forming unit 30 has a cold air inlet 30b, a warm air inlet 30c, and a cooling air outlet 30d connected to the motor space 30a.
- the cold air inlet 30b and the warm air inlet 30c communicate with the in-case passage 124 on the air flow downstream side of the blower fan 201. More specifically, the cold air inlet 30b and the warm air inlet 30c communicate with the first passage 125 of the in-case passage 124 instead of the second passage 126.
- the communication between the motor space 30a and the in-case passage 124 is blocked by the motor space forming unit 30, except for the communication via the two inlets 30b and 30c. It is preferable that the motor space forming portion 30 completely prevent the communication, but the motor space 30a is provided inside the case at a position other than the two inflow ports 30b and 30c via a small gap generated due to manufacturing reasons. It is permissible to allow slight communication with passageway 124.
- the cooling air outlet 30d is connected to one end of the vehicle interior communication passage 34a, and the other end of the vehicle interior communication passage 34a is opened to the vehicle interior as a cooling air outlet. That is, the cooling air outlet 30d communicates with the vehicle interior through the vehicle interior communication passage 34a.
- the vehicle interior communication section 34 is formed in a tubular shape, and is arranged so as to cross the in-case passage 124. More specifically, the vehicle interior communication portion 34 crosses the second downstream passage 126b of the in-case passage 124. Then, the vehicle interior communication portion 34 separates the vehicle interior communication passage 34 a formed therein from the case interior passage 124.
- the cold air inlet 30b of the motor space forming unit 30 communicates with the in-case passage 124 on the upstream side of the air flow with respect to the heater core 18 and the air volume ratio adjusting doors 23 and 24.
- the cold air inlet 30b since the cold air inlet 30b communicates with the first downstream passage 125b of the in-case passage 124, the air flow upstream with respect to the first heating portion 181 of the heater core 18 and the first air volume ratio adjustment door 23. And communicates with the first downstream passage 125b on the side. Therefore, the motor space forming unit 30 is configured such that the cold air cooled by the evaporator 16 can flow into the motor space 30a regardless of the operating state of the first and second air volume ratio adjusting doors 23 and 24. There is.
- the cold air inlet 30b is formed as a through hole formed in the wall-shaped motor space forming portion 30. Further, the cold air inlet 30b is opened to the case inner passage 124 in a direction not receiving the dynamic pressure of the air flowing through the case inner passage 124.
- the direction that does not receive the dynamic pressure of the air flowing in the case internal passage 124 is the direction orthogonal to the direction of the air flow of the case internal passage 124, or the direction toward the downstream side of the air flow compared to the direction orthogonal to the direction. It was the direction I was in.
- An arrow FL1 in FIG. 1 indicates a flow of cold air flowing from the in-case passage 124 through the cold air inlet 30b into the motor space 30a.
- the warm air passage portion 32 is formed, for example, in a tubular shape having a flat cross section, and a warm air introduction passage 32 a is formed inside the warm air passage portion 32.
- the warm air introduction passage 32a is an air passage for guiding the warm air heated by the heater core 18 to the warm air inlet 30c.
- An arrow FL2 in FIGS. 1 and 3 indicates a flow of warm air flowing from the in-case passage 124 into the motor space 30a through the warm air introduction passage 32a and the warm air inlet 30c.
- the warm air introduction passage 32a is a passage that connects the in-case passage 124 (specifically, the first downstream passage 125b in the in-case passage 124) and the warm air inlet 30c. Then, in detail, the outlet end which is one end of the warm air introduction passage 32a is connected to the warm air inlet 30c. The inlet end 32c, which is the other end of the warm air introduction passage 32a, is connected to the first heating part 181 of the heater core 18 from the motor space forming part 30 side of the first heating part 181.
- the air on the downstream side of the first heating portion 181 in the first downstream passage 125b flows into the warm air introduction passage 32a after passing through the first heating portion 181. That is, the warm air introduction passage 32a allows the air in the first downstream passage 125b on the downstream side of the air flow with respect to the first heating portion 181 to flow from the side opposite to the motor space forming portion 30 side of the first heating portion 181 to the motor space.
- the first heating unit 181 is passed to the formation unit 30 side and then guided to the warm air inlet 30c.
- the motor space forming part 30 side of the first heating part 181 is the front side in the vehicle front-rear direction DR1, and the side opposite to the motor space forming part 30 side of the first heating part 181 is the vehicle front-rear direction. It is the rear side of DR1.
- the warm air introduction passage 32a extends through a portion outside both the movable range R1 of the first air volume ratio adjusting door 23 and the movable range R2 of the second air volume ratio adjusting door 24. Specifically, the warm air introduction passage 32a extends between the two movable ranges R1 and R2 and extends from the air flow downstream side of the air volume ratio adjusting doors 23 and 24 in the in-case passage 124 to the upstream side. .. Therefore, in the motor space forming unit 30 having the warm air inlet 30c to which the warm air introduction passage 32a is connected, the warm air heated by the heater core 18 is irrespective of the operating state of the air volume ratio adjusting doors 23, 24. It is configured to be able to flow into.
- the inlet end 32c of the warm air introduction passage 32a is connected to the first heating unit 181, as described above, the inlet end 32c of the warm air introduction passage 32a is connected to the first downstream passage 125b.
- the first downstream passage 125b is open toward the downstream side of the air flow. That is, the inlet end 32c of the warm air introduction passage 32a opens toward the first downstream passage 125b in a direction not receiving the dynamic pressure of the air flowing through the first downstream passage 125b.
- the flow resistance of the cold air passing through the cold air inlet 30b the flow resistance of the warm air passing through the warm air inlet 30c and the warm air introducing passage 32a, and the flow resistance of the exhaust air passing through the cooling air outlet 30d and the vehicle interior communication passage 34a.
- the exhaust flow resistance is the smallest.
- the cold air cooled by the evaporator 16 flows into the motor space 30a from the in-case passage 124 via the cold air inlet 30b as indicated by the arrow FL1. ..
- the warm air heated by the heater core 18 also flows into the motor space 30a from the in-case passage 124 via the warm air introduction passage 32a and the warm air inlet 30c as indicated by an arrow FL2.
- the cold air and the hot air are mixed in the motor space 30a to be temperature-controlled air
- the fan motor 202 is cooled by the temperature-controlled air that is the motor cooling air.
- the temperature-adjusted air used for cooling the blower motor 202 is discharged into the vehicle interior as indicated by an arrow FL3 through the cooling air outlet 30d and the vehicle interior communication passage 34a.
- the cold air inlet port communicating with the in-case passage 124 on the air flow downstream side of the blower fan 201.
- 30b and the warm air inlet 30c are formed.
- the blower fan 201 generates an air flow in the in-case passage 124
- the cold air cooled by the evaporator 16 flows into the motor space 30a from the cold air inlet 30b.
- the warm air heated by the heater core 18 also flows into the motor space 30a from the warm air inlet 30c.
- the blower motor 202 arranged in the motor space 30a is cooled by temperature-controlled airflow that is a mixture of the cold air cooled by the evaporator 16 and the warm air heated by the heater core 18. Therefore, the motor cooling air discharged from the cooling air outlet 30d into the vehicle compartment after cooling the blower motor 202 is not the cold air or the warm air but the temperature-controlled air. Even if such temperature-controlled air is discharged into the passenger compartment, there is no concern that the foot feeling of the occupant will be deteriorated, and the electronic components arranged around the vehicle air conditioning unit 10 may be damaged by heat. Absent. That is, even if the air used for cooling the blower motor 202 is discharged into the vehicle compartment, it is possible to avoid the inconvenience caused by the discharge of the air.
- the venturi effect of the aspirator is used to obtain the motor cooling air for cooling the blower motor
- the air volume discharged from the air conditioning case is the motor cooling air. It increases with the amount of wind. This leads to an increase in power consumption of the vehicle air conditioning unit.
- the venturi effect is not used, and the air that becomes the motor cooling air is taken in from the case internal passage 124 in the air conditioning case 12. Therefore, as compared with the vehicle air conditioning unit of Patent Document 1, a sufficient amount of motor cooling air can be easily secured, and an increase in power consumption of the vehicle air conditioning unit 10 can be suppressed.
- the blower 20 and the motor space forming unit 30 are arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. Then, the motor space forming unit 30 partitions between the in-case passage 124 and the motor space 30a. Therefore, depending on the amount of air blown by the blower 20, the blower motor 202 is likely to be overcooled by the cool air from the evaporator 16 flowing around the motor space forming portion 30, and the temperature control air is a mixture of the cold air and the warm air. The blower motor 202 can be cooled appropriately.
- the motor space forming unit 30 controls the motor space regardless of whether the cool air cooled by the evaporator 16 and the hot air heated by the heater core 18 are operated by the air volume ratio adjusting doors 23, 24. It is configured such that it can flow into 30a. Therefore, it is possible to allow the cold air and the hot air to flow into the motor space 30a even during the maximum cooling or the maximum heating, for example. In short, it is possible to cool the blower motor 202 with temperature-controlled air that is a mixture of the cold air and the warm air without being affected by the operating states of the air volume ratio adjusting doors 23 and 24.
- the cold air inlet 30b of the motor space forming portion 30 is provided with the first passage of the in-case passage 124 on the upstream side of the air flow with respect to the heater core 18 and the first air volume ratio adjusting door 23. It communicates with 125. Therefore, it is possible to easily realize the inflow of the cold air into the motor space 30a without being affected by the operating state of the first air volume ratio adjusting door 23 by the arrangement of the cold air inlet 30b.
- the warm air passage portion 32 forms the warm air introduction passage 32a, and the warm air introduction passage 32a connects the in-case passage 124 and the warm air inlet 30c to supply the warm air. Lead to the warm air inlet 30c.
- the warm air introduction passage 32a extends through a portion outside the movable ranges R1 and R2 of the first and second air volume ratio adjusting doors 23 and 24. Therefore, it is possible to easily realize the inflow of the warm air into the motor space 30a without being affected by the operating states of the first and second air volume ratio adjusting doors 23 and 24 by the arrangement of the warm air introduction passage 32a. It is possible.
- the heater core 18 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201 and the motor space forming unit 30.
- the warm air introduction passage 32a moves the air in the air passage downstream side of the heater core 18 in the in-case passage 124 from the side opposite to the motor space forming portion 30 side of the heater core 18 to the motor space forming portion 30 side. After passing, it is guided to the warm air inlet 30c. Therefore, the air heated by passing through the heater core 18 reaches the motor space forming portion 30 side of the heater core 18 at the same time when passing through the heater core 18. Therefore, it is possible to shorten the warm air introduction passage 32a that guides the air heated by the heater core 18 (that is, the warm air) to the warm air inlet 30c of the motor space forming unit 30. This leads to downsizing of the vehicle air conditioning unit 10.
- the in-case passage 124 includes the first passage 125 and the second passage 126 provided in parallel with the first passage 125 by the upstream partition wall 26 and the downstream partition wall 27. It is divided into In the inside/outside air two-layer mode, the outside air flows through the first passage 125 more than the inside air, and the inside air flows more than the outside air through the second passage 126.
- the cold air inlet 30b and the warm air inlet 30c communicate with the first passage 125 of the in-case passage 124 instead of the second passage 126.
- the outside air has a lower humidity than the inside air. Therefore, for example, the dew condensation prevention effect of the blower motor 202 can be improved as compared with the case where the cold air inlet 30b and the warm air inlet 30c communicate with the second passage 126 instead of the first passage 125.
- FIGS. 4 and 5 in the present embodiment, the route along which the warm air introduction passage 32a extends is different from that in the first embodiment.
- FIG. 2 described above is also a cross-sectional view schematically showing the cross section IIa-IIa of FIG. 4 in the present embodiment.
- the warm air introduction passage 32a extends through a portion outside the movable ranges R1 and R2 (see FIG. 1) of the first and second air volume ratio adjusting doors 23 and 24. Therefore, the warm air introduced into the warm air introduction passage 32a can flow into the motor space 30a regardless of the operating state of the air volume ratio adjusting doors 23 and 24. Further, the outlet end of the warm air introduction passage 32a is connected to the warm air inlet 30c. These are the same as in the first embodiment.
- the inlet end 32c of the hot air introduction passage 32a in the present embodiment is opened to the first downstream passage 125b on the upstream side of the heater core 18 in the first downstream passage 125b. doing. That is, the inlet end 32c of the hot air introduction passage 32a is provided on the motor space forming portion 30 side of the heater core 18.
- a part of the heater core 18 is provided in the warm air introduction passage 32a.
- the air entering from the inlet end 32c into the warm air introduction passage 32a passes through the heater core 18 from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side as indicated by an arrow FL4a. It becomes hot air when heated.
- the warm air introduction passage 32a guides the warm air from the side opposite to the side of the motor space forming portion 30 of the heater core 18 to the hot air inlet 30c of the motor space forming portion 30 by bypassing the heater core 18 as indicated by an arrow FL4c. Extends to.
- the warm air introduction passage 32a allows the air on the upstream side of the air flow with respect to the heater core 18 in the case internal passage 124 from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side.
- the motor space forming portion 30 side of the heater core 18 is the front side in the vehicle front-rear direction DR1
- the opposite side of the heater core 18 to the motor space forming portion 30 side is the rear side in the vehicle front-rear direction DR1.
- an arrow FL4a in FIG. 4 and arrows FL4b and FL4c in FIG. 5 indicate flows of air flowing from the in-case passage 124 into the motor space 30a via the warm air introduction passage 32a and the warm air inlet 30c.
- this embodiment is the same as the first embodiment. Then, in the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is achieved by the configuration common to the first embodiment described above.
- the warm air introduction passage 32a guides the air in the case inside passage 124 on the upstream side of the air flow to the heater core 18 as shown by an arrow FL4a in FIG. That is, in the warm air introduction passage 32 a, the air in the air flow upstream side of the heater core 18 in the case internal passage 124 is moved from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side. And then to the warm air inlet 30c.
- the air before being passed through the heater core 18 by the warm air introduction passage 32a has not yet passed through the heater core 18 in the case internal passage 124.
- the air that has already passed through the heater core 18 in the in-case passage 124 is passed through the heater core 18 again when flowing into the warm air introduction passage 32a.
- the motor cooling air used to cool the blower motor 202 is discharged from the motor space 30a into the vehicle interior. Not limited to the passenger compartment. In short, the discharge destination of the motor cooling air may be outside the vehicle air conditioning unit 10.
- partition walls 26 and 27 are provided in the air conditioning case 12, and the in-case passage 124 is provided with the partition walls 26 and 27. It is divided into the first passage 125 and the second passage 126, but this is an example.
- the partition walls 26 and 27 may not be provided, and the in-case passage 124 may not be divided into a plurality of passages provided in parallel. That is, the vehicle air conditioning unit 10 may not be capable of changing the suction mode to the inside/outside air two-layer mode.
- the blower fan 201 is arranged so that the other side of the fan axis line CLf faces the direction extending toward the air flow downstream side of the in-case passage 124.
- the direction of the blower fan 201 is not limited to this.
- the vehicle air conditioning unit includes the motor space forming portion that forms the motor space in which the blower motor is arranged.
- a cold air inlet and a warm air inlet that communicate with the in-case passage are formed on the downstream side of the air flow with respect to the impeller. Then, as the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater is heated. Inflow from the hot air inlet.
- the blower and the motor space forming unit are arranged in the air conditioning case on the downstream side of the air flow with respect to the cooler, and the motor space forming unit partitions the passage in the case and the motor space. ing. Therefore, depending on the amount of air blown by the blower, the blower motor in the motor space forming portion is likely to be overcooled by the cold air flowing around the motor space forming portion. Can be appropriately cooled.
- the air volume ratio adjustment door is arranged in the air conditioning case, and the air volume of the air flowing out of the cooler that passes through the heater and the air volume of the air that bypasses the heater and flow. Adjust the ratio of.
- the motor space forming unit is configured to allow the cold air and the warm air to flow into the motor space regardless of the operating state of the air volume ratio adjustment door. Therefore, it is possible to allow the cold air and the warm air to flow into the motor space even during the maximum cooling or the maximum heating, for example. In short, it is possible to cool the blower motor with temperature-controlled air that is a mixture of the cold air and the warm air without being affected by the operating state of the air volume ratio adjustment door.
- the heater is arranged on the downstream side of the air flow with respect to the impeller in the air conditioning case.
- the cold air inlet communicates with the passage inside the case on the upstream side of the air flow with respect to the heater and the air volume ratio adjusting door. Therefore, it is possible to easily realize the inflow of the cold air into the motor space without being affected by the operating state of the air volume ratio adjustment door by the arrangement of the cold air inlet.
- the warm air passage portion forms a warm air introduction passage
- the warm air introduction passage connects the in-case passage and the warm air inlet to guide the warm air to the warm air inlet. ..
- the hot air introduction passage extends through a portion outside the movable range of the air volume ratio adjustment door. Therefore, it is possible to easily realize the inflow of the warm air into the motor space without being affected by the operating state of the air volume ratio adjusting door by the arrangement of the warm air introduction passage.
- the heater is arranged on the downstream side of the air flow with respect to the impeller and the motor space forming unit in the air conditioning case.
- the warm air introduction passage is configured to allow the air on the downstream side of the air flow to the heater in the passage in the case to pass through the heater from the side opposite to the motor space forming portion side of the heater to the motor space forming portion side. , Lead to the warm air inlet. Therefore, the air heated by passing through the heater reaches the motor space forming portion side of the heater at the same time as passing through the heater. Therefore, it is possible to shorten the hot air introduction passage that guides the air heated by the heater (that is, the hot air) to the hot air inlet of the motor space forming unit. This leads to downsizing of the vehicle air conditioning unit.
- the warm air introduction passage is configured such that the air in the case internal passage on the upstream side of the air flow with respect to the heater is opposite to the motor space forming portion side of the heater from the motor space forming portion side. After passing the heater to the side, lead to the warm air inlet.
- the air before being passed through the heater by the hot air introduction passage is on the upstream side of the air flow to the heater in the case internal passage, it has not yet passed through the heater in the case internal passage.
- the air before being passed through the heater by the hot air introduction passage is temporarily on the downstream side of the air flow with respect to the heater in the case internal passage, the air is In some cases, the heater may have already passed through the passage in the case.
- the seventh aspect when the warm air is introduced into the motor space through the warm air introduction passage, it is necessary that the air that has passed through the heater once passes through the heater again. Since it is not so, there is an advantage that it is easy to secure the air volume of the warm air.
- the passage in the case is partitioned into a first passage and a second passage provided in parallel with the first passage.
- the outside air flows more than the inside air in the first passage, and the inside air flows more than the outside air in the second passage.
- the cold air inlet and the warm air inlet communicate with the first passage in the case inner passage.
- the outside air has a lower humidity than the inside air. Therefore, for example, the dew condensation prevention effect of the blower motor can be improved as compared with the case where the cold air inlet and the warm air inlet communicate with the second passage instead of the first passage.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
A vehicle air-conditioning unit is provided with an air-conditioning case (12) in which an intra-case passage (124) is formed, and a cooler (16) that cools the air flowing through the intra-case passage. The vehicle air-conditioning unit is provided with a blower (20) having an impeller (201) that is rotated by a blower motor (202) to generate airflow through the intra-case passage, and a heater (18) that heats the air flowing out of the cooler in the intra-case passage. The vehicle air-conditioning unit is provided with a motor space formation part (30) that forms a motor space (30a) in which the blower motor is disposed. In the motor space formation part, a cold air inlet (30b) and a hot air inlet (30c) which communicate with the intra-case passage on the airflow downstream side relative to the impeller are formed. As the impeller generates airflow through the intra-case passage, the cold air cooled by the cooler flows into the motor space through the cold air inlet, and the hot air heated by the heater flows into the motor space through the hot air inlet.
Description
本出願は、2019年2月21日に出願された日本特許出願番号2019-29676号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2019-29676 filed on February 21, 2019, the description of which is incorporated herein by reference.
本開示は、車両用空調ユニットに関するものである。
The present disclosure relates to a vehicle air conditioning unit.
この種の車両用空調ユニットとして、例えば特許文献1に記載された車両用空調ユニットが従来から知られている。この特許文献1に記載された車両用空調ユニットは、送風機の送風ファンに対する空気流れ上流側に蒸発器とヒータコアとが配置されたレイアウトとなっている。また、送風ファンに対する空気流れ下流側には、空調ケース内の空気通路から空気を排出するファン下流開口部が設けられ、そのファン下流開口部の先には、アスピレータ(別言すれば、ベンチュリー管)が接続されている。
このアスピレータは、車室内において空調ケースの外に配置されている。そして、アスピレータは、ファン下流開口部からの排気を1次空気として導入し、その1次空気の流れによるベンチュリ効果によって内気を2次空気として吸引する。被冷却部材である送風機モータは、この2次空気によって冷却される。このとき、1次空気であるファン下流開口部からの排気とは、具体的には空調ケース内の空調空気であるので、その排気の温度は、エアミックスドアの作動状態に応じて変化する。 As this type of vehicle air conditioning unit, for example, the vehicle air conditioning unit described in Patent Document 1 has been conventionally known. The vehicle air conditioning unit described in Patent Document 1 has a layout in which an evaporator and a heater core are arranged on the upstream side of an air flow with respect to a blower fan of a blower. Further, a fan downstream opening that discharges air from the air passage in the air conditioning case is provided on the downstream side of the air flow with respect to the blower fan, and an aspirator (in other words, Venturi pipe) is provided at the tip of the fan downstream opening. ) Is connected.
The aspirator is arranged outside the air conditioning case in the vehicle compartment. Then, the aspirator introduces the exhaust gas from the fan downstream opening as the primary air and sucks the internal air as the secondary air by the Venturi effect due to the flow of the primary air. The blower motor, which is the member to be cooled, is cooled by this secondary air. At this time, since the exhaust air from the fan downstream opening, which is the primary air, is specifically the conditioned air in the air conditioning case, the temperature of the exhaust air changes according to the operating state of the air mix door.
このアスピレータは、車室内において空調ケースの外に配置されている。そして、アスピレータは、ファン下流開口部からの排気を1次空気として導入し、その1次空気の流れによるベンチュリ効果によって内気を2次空気として吸引する。被冷却部材である送風機モータは、この2次空気によって冷却される。このとき、1次空気であるファン下流開口部からの排気とは、具体的には空調ケース内の空調空気であるので、その排気の温度は、エアミックスドアの作動状態に応じて変化する。 As this type of vehicle air conditioning unit, for example, the vehicle air conditioning unit described in Patent Document 1 has been conventionally known. The vehicle air conditioning unit described in Patent Document 1 has a layout in which an evaporator and a heater core are arranged on the upstream side of an air flow with respect to a blower fan of a blower. Further, a fan downstream opening that discharges air from the air passage in the air conditioning case is provided on the downstream side of the air flow with respect to the blower fan, and an aspirator (in other words, Venturi pipe) is provided at the tip of the fan downstream opening. ) Is connected.
The aspirator is arranged outside the air conditioning case in the vehicle compartment. Then, the aspirator introduces the exhaust gas from the fan downstream opening as the primary air and sucks the internal air as the secondary air by the Venturi effect due to the flow of the primary air. The blower motor, which is the member to be cooled, is cooled by this secondary air. At this time, since the exhaust air from the fan downstream opening, which is the primary air, is specifically the conditioned air in the air conditioning case, the temperature of the exhaust air changes according to the operating state of the air mix door.
特許文献1の車両用空調ユニットにおいてエアミックスドアの作動パターンを考えた場合、例えば最大冷房時には、ファン下流開口部から排出される空気は5℃程度の冷風になる。そのため、車両用空調ユニットが設置されたインストルメントパネル内へその冷風が排出される場合には、乗員の足元が冷えて足元フィーリングを悪化させるおそれがある。要するに、最大冷房時には、その冷風の排出に起因した不都合が発生するおそれがある。
Considering the operation pattern of the air mix door in the vehicle air conditioning unit of Patent Document 1, for example, at the time of maximum cooling, the air discharged from the fan downstream opening becomes cool air of about 5°C. Therefore, when the cool air is discharged into the instrument panel in which the vehicle air conditioning unit is installed, the feet of the occupant may be cooled and the foot feeling may be deteriorated. In short, during maximum cooling, inconvenience may occur due to the discharge of the cold air.
また、別の例として例えば最大暖房時には、ファン下流開口部から排出される空気は75℃程度の温風になる。そのため、インストルメントパネル内へその温風が排出される場合には、その温風は非常に高温であるので、乗員の足元フィーリング悪化の可能性があることに加え、その温風の排出先周辺の電子部品に対する熱害に配慮することも必要になる。要するに、最大暖房時には、その温風の排出に起因した不都合が発生するおそれがある。
Also, as another example, for example, during maximum heating, the air discharged from the fan downstream opening becomes hot air of about 75°C. Therefore, when the warm air is discharged into the instrument panel, the warm air is extremely hot, which may deteriorate the passenger's foot feeling, and the warm air is discharged to the destination. It is also necessary to consider heat damage to surrounding electronic components. In short, at the time of maximum heating, inconvenience may occur due to discharge of the warm air.
また、上記の電子部品に対する熱害を回避するため、例えばダクトまたは風向ガイドを設置し、上記温風の排出場所を電子部品から遠ざけることも可能であるが、そのようにすることは、評価および設計の工数増加や部品点数の増加につながる。発明者の詳細な検討の結果、以上のようなことが見出された。
Further, in order to avoid heat damage to the electronic components, for example, it is possible to install a duct or a wind direction guide and move the hot air discharge place away from the electronic components. This leads to an increase in design man-hours and the number of parts. As a result of a detailed study by the inventor, the above has been found out.
本開示は、上記に例示した事情等に鑑みてなされたものであり、送風機モータの冷却に使用された空気を車室内へ排出しても、その空気の排出に起因した不都合を回避することが可能な車両用空調ユニットを提供することを目的とする。
The present disclosure has been made in view of the above-illustrated circumstances and the like, and even if the air used for cooling the blower motor is discharged into the passenger compartment, it is possible to avoid the inconvenience caused by the discharge of the air. An object is to provide a possible vehicle air conditioning unit.
上記目的を達成するため、本開示の1つの観点によれば、車両用空調ユニットは、
車室内へ流出する空気が流れるケース内通路が形成された空調ケースと、
空調ケース内に配置され、ケース内通路に流れる空気を冷却する冷却器と、
送風機モータとその送風機モータにより回転させられケース内通路に空気流れを発生させる羽根車とを有する送風機と、
ケース内通路において冷却器から流出した空気を加熱する加熱器と、
送風機モータが配置されたモータ空間を形成するモータ空間形成部とを備え、
モータ空間形成部には、羽根車に対する空気流れ下流側にてケース内通路に連通する冷風流入口および温風流入口が形成されており、
羽根車がケース内通路に空気流れを発生させることに伴って、モータ空間には、冷却器により冷却された冷風が冷風流入口から流入し、且つ、加熱器により加熱された温風が温風流入口から流入する。 In order to achieve the above object, according to one aspect of the present disclosure, a vehicle air conditioning unit includes:
An air-conditioning case in which a passage in the case through which the air flowing out to the passenger compartment flows is formed,
A cooler that is arranged in the air-conditioning case and cools the air flowing through the passage in the case;
A blower having a blower motor and an impeller that is rotated by the blower motor to generate an air flow in a passage in the case;
A heater that heats the air flowing out from the cooler in the passage in the case,
A motor space forming unit that forms a motor space in which a blower motor is arranged,
In the motor space forming portion, a cold air inlet and a warm air inlet that communicate with the passage in the case are formed on the air flow downstream side with respect to the impeller.
As the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater flows in the warm air flow. Inflow from the entrance.
車室内へ流出する空気が流れるケース内通路が形成された空調ケースと、
空調ケース内に配置され、ケース内通路に流れる空気を冷却する冷却器と、
送風機モータとその送風機モータにより回転させられケース内通路に空気流れを発生させる羽根車とを有する送風機と、
ケース内通路において冷却器から流出した空気を加熱する加熱器と、
送風機モータが配置されたモータ空間を形成するモータ空間形成部とを備え、
モータ空間形成部には、羽根車に対する空気流れ下流側にてケース内通路に連通する冷風流入口および温風流入口が形成されており、
羽根車がケース内通路に空気流れを発生させることに伴って、モータ空間には、冷却器により冷却された冷風が冷風流入口から流入し、且つ、加熱器により加熱された温風が温風流入口から流入する。 In order to achieve the above object, according to one aspect of the present disclosure, a vehicle air conditioning unit includes:
An air-conditioning case in which a passage in the case through which the air flowing out to the passenger compartment flows is formed,
A cooler that is arranged in the air-conditioning case and cools the air flowing through the passage in the case;
A blower having a blower motor and an impeller that is rotated by the blower motor to generate an air flow in a passage in the case;
A heater that heats the air flowing out from the cooler in the passage in the case,
A motor space forming unit that forms a motor space in which a blower motor is arranged,
In the motor space forming portion, a cold air inlet and a warm air inlet that communicate with the passage in the case are formed on the air flow downstream side with respect to the impeller.
As the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater flows in the warm air flow. Inflow from the entrance.
このようにすれば、送風機モータは、冷却器により冷却された冷風と加熱器により加熱された温風とを混合した温調風で冷却されることになる。従って、その温調風が送風機モータの冷却後に例えば車室内へ排出されたとしても、乗員の足元フィーリングを悪化させる懸念はなく、車両用空調ユニット周辺に配置された電子部品に対し熱害に与えるおそれもない。つまり、送風機モータの冷却に使用された空気を例えば車室内へ排出しても、その空気の排出に起因した不都合を回避することが可能である。
In this way, the blower motor will be cooled by temperature-controlled air that is a mixture of cold air cooled by the cooler and warm air heated by the heater. Therefore, even if the temperature-controlled air is discharged into the passenger compartment, for example, after cooling the blower motor, there is no concern of deteriorating the foot feeling of the occupant, and heat damage to electronic components arranged around the vehicle air conditioning unit. There is no fear of giving it. That is, even if the air used for cooling the blower motor is discharged into, for example, the passenger compartment, it is possible to avoid the inconvenience caused by the discharge of the air.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Note that the reference numerals in parentheses attached to the respective constituent elements and the like indicate an example of a correspondence relationship between the constituent elements and the like and concrete constituent elements and the like described in the embodiments described later.
以下、図面を参照しながら、各実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
Each embodiment will be described below with reference to the drawings. In the following respective embodiments, the same or equivalent portions are designated by the same reference numerals in the drawings.
(第1実施形態)
図1および図2に示すように、本実施形態の車両用空調ユニット10は、空調ケース12、蒸発器16、ヒータコア18、送風機20、複数の風量比率調整ドア23、24、上流側仕切壁26、および下流側仕切壁27を備えている。この車両用空調ユニット10は車室内に設置されており、例えば、車室内の最前部に設けられたインストルメントパネルの内側に配置されている。なお、図1および図2の各矢印DR1、DR2、DR3は、車両用空調ユニット10が搭載される車両の向きを示す。すなわち、図1の矢印DR1は車両前後方向DR1を示し、矢印DR2は車両上下方向DR2を示し、図2の矢印DR3は車両左右方向DR3すなわち車両幅方向DR3を示している。 (First embodiment)
As shown in FIGS. 1 and 2, the vehicleair conditioning unit 10 of the present embodiment includes an air conditioning case 12, an evaporator 16, a heater core 18, a blower 20, a plurality of air volume ratio adjusting doors 23 and 24, and an upstream partition wall 26. , And a downstream side partition wall 27. The vehicle air conditioning unit 10 is installed in the vehicle compartment, and is, for example, arranged inside an instrument panel provided in the forefront portion of the vehicle interior. In addition, each arrow DR1, DR2, DR3 of FIG. 1 and FIG. 2 shows the direction of the vehicle in which the vehicle air conditioning unit 10 is mounted. That is, the arrow DR1 in FIG. 1 indicates the vehicle front-rear direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle left-right direction DR3, that is, the vehicle width direction DR3.
図1および図2に示すように、本実施形態の車両用空調ユニット10は、空調ケース12、蒸発器16、ヒータコア18、送風機20、複数の風量比率調整ドア23、24、上流側仕切壁26、および下流側仕切壁27を備えている。この車両用空調ユニット10は車室内に設置されており、例えば、車室内の最前部に設けられたインストルメントパネルの内側に配置されている。なお、図1および図2の各矢印DR1、DR2、DR3は、車両用空調ユニット10が搭載される車両の向きを示す。すなわち、図1の矢印DR1は車両前後方向DR1を示し、矢印DR2は車両上下方向DR2を示し、図2の矢印DR3は車両左右方向DR3すなわち車両幅方向DR3を示している。 (First embodiment)
As shown in FIGS. 1 and 2, the vehicle
空調ケース12は、車両用空調ユニット10の外殻を成す樹脂製の部材である。空調ケース12は、複数の空気導入部121、122と複数の吹出開口部とを有している。空調ケース12の内部には、車室内へ流出する空気が流れるケース内通路124が形成されている。
The air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10. The air conditioning case 12 has a plurality of air introduction parts 121 and 122 and a plurality of blowout openings. Inside the air conditioning case 12, an in-case passage 124 through which the air flowing out into the vehicle compartment flows is formed.
送風機20は、ケース内通路124に配置されファン軸線CLfまわりに回転する送風ファン201と、その送風ファン201を回転駆動する送風機モータ202とを有している。
The blower 20 has a blower fan 201 which is arranged in the case passage 124 and rotates around the fan axis CLf, and a blower motor 202 which rotationally drives the blower fan 201.
送風ファン201は、送風機モータ202により回転させられケース内通路124に空気流れを発生させる羽根車である。そして、本実施形態では、送風ファン201は遠心ファンであるので、送風機20は遠心送風機である。
The blower fan 201 is an impeller that is rotated by the blower motor 202 to generate an air flow in the case internal passage 124. Further, in the present embodiment, the blower fan 201 is a centrifugal fan, so the blower 20 is a centrifugal blower.
送風機20は、送風ファン201の回転によりファン軸線CLfの軸方向DRaの一方側から空気を吸い込み、その吸い込んだ空気を送風ファン201の径方向外側へ吹き出す。その径方向外側へ吹き出された空気は、空調ケース12の内壁面によって導かれ、ケース内通路124のうち送風ファン201に対する空気流れ下流側(例えば図1では車両前後方向DR1での後側)へと流れる。
The blower 20 sucks air from one side in the axial direction DRa of the fan axis CLf by the rotation of the blower fan 201 and blows the sucked air to the outside in the radial direction of the blower fan 201. The air blown outward in the radial direction is guided by the inner wall surface of the air conditioning case 12, and is directed to the downstream side of the air flow with respect to the blower fan 201 in the case inner passage 124 (for example, the rear side in the vehicle longitudinal direction DR1 in FIG. 1). Flows.
なお、ファン軸線CLfの軸方向DRaは車両前後方向DR1に一致している必要はないが、本実施形態では、そのファン軸線CLfの軸方向DRaは車両前後方向DR1に一致している。また、ファン軸線CLfの軸方向DRaはファン軸方向DRaと称されることもある。また、送風ファン201の径方向は別言すればファン軸線CLfの径方向である。そして、そのファン軸線CLfの径方向はファン径方向と称されることもある。
The axial direction DRa of the fan axis CLf does not have to match the vehicle front-rear direction DR1, but in the present embodiment, the fan axis CLf axial direction DRa matches the vehicle front-rear direction DR1. Further, the axial direction DRa of the fan axis line CLf may be referred to as the fan axial direction DRa. In addition, the radial direction of the blower fan 201 is the radial direction of the fan axis CLf in other words. The radial direction of the fan axis CLf may be referred to as the fan radial direction.
送風機モータ202は、通電されることにより送風ファン201を回転させる電動モータである。送風機モータ202は通電されるので、送風ファン201を回転させることに伴って発熱もする。
The blower motor 202 is an electric motor that rotates the blower fan 201 when energized. Since the blower motor 202 is energized, it also generates heat as the blower fan 201 rotates.
上流側仕切壁26は、ケース内通路124において送風ファン201に対する空気流れ上流側に配置されている。そして、上流側仕切壁26は、そのケース内通路124のうち送風ファン201よりも空気流れ上流側の通路を、2つの上流側通路125a、126aに仕切っている。その2つの上流側通路125a、126aとは、第1上流側通路125aと、その第1上流側通路125aに対し並列に設けられた第2上流側通路126aである。
The upstream partition wall 26 is arranged on the upstream side of the air flow with respect to the blower fan 201 in the case passage 124. The upstream partition wall 26 partitions the passage in the case 124 on the upstream side of the air flow from the blower fan 201 into two upstream passages 125a and 126a. The two upstream passages 125a and 126a are a first upstream passage 125a and a second upstream passage 126a provided in parallel with the first upstream passage 125a.
下流側仕切壁27は、ケース内通路124において送風ファン201に対する空気流れ下流側に配置されている。そして、下流側仕切壁27は、ケース内通路124のうち送風ファン201よりも空気流れ下流側の通路を、2つの下流側通路125b、126bに仕切っている。その2つの下流側通路125b、126bとは、第1下流側通路125bと、その第1下流側通路125bに対し並列に設けられた第2下流側通路126bである。
The downstream partition wall 27 is disposed in the case passage 124 on the downstream side of the air flow with respect to the blower fan 201. The downstream partition wall 27 partitions the passage in the case 124 on the downstream side of the air flow from the blower fan 201 into two downstream passages 125b and 126b. The two downstream passages 125b and 126b are a first downstream passage 125b and a second downstream passage 126b provided in parallel with the first downstream passage 125b.
また、2つの上流側通路125a、126aと2つの下流側通路125b、126bとの相対的な配置関係により、2つの下流側通路125b、126bの各空気流れは、2つの上流側通路125a、126aの各空気流れに対し次のような関係にある。すなわち、第1上流側通路125aから流出した空気は送風ファン201を経て、第2下流側通路126bへは殆ど流れず専ら第1下流側通路125bへと流れる。それと共に、第2上流側通路126aから流出した空気は送風ファン201を経て、第1下流側通路125bへは殆ど流れず専ら第2下流側通路126bへと流れる。
Further, due to the relative positional relationship between the two upstream side passages 125a and 126a and the two downstream side passages 125b and 126b, the respective air flows in the two downstream side passages 125b and 126b are separated into the two upstream side passages 125a and 126a. There is the following relationship for each air flow of. That is, the air flowing out from the first upstream side passage 125a passes through the blower fan 201 and hardly flows into the second downstream side passage 126b, and flows exclusively into the first downstream side passage 125b. At the same time, the air flowing out from the second upstream side passage 126a passes through the blower fan 201 and hardly flows into the first downstream side passage 125b, and flows exclusively into the second downstream side passage 126b.
従って、第1下流側通路125bは、ケース内通路124の空気流れにおいて第1上流側通路125aに対し直列に連結されており、その第1上流側通路125aと第1下流側通路125bは全体として第1通路125を構成する。これと同様に、第2下流側通路126bは、ケース内通路124の空気流れにおいて第2上流側通路126aに対し直列に連結されており、その第2上流側通路126aと第2下流側通路126bは全体として第2通路126を構成する。
Therefore, the first downstream side passage 125b is connected in series to the first upstream side passage 125a in the air flow of the in-case passage 124, and the first upstream side passage 125a and the first downstream side passage 125b as a whole. The first passage 125 is configured. Similarly, the second downstream passage 126b is connected in series to the second upstream passage 126a in the air flow of the in-case passage 124, and the second upstream passage 126a and the second downstream passage 126b. Constitute the second passage 126 as a whole.
このようなことから、ケース内通路124は、上流側仕切壁26および下流側仕切壁27によって、第1通路125と、その第1通路125に対し並列に設けられた第2通路126とに仕切られていると言える。そして、第1通路125と第2通路126とのそれぞれに流れる空気は、送風ファン201で僅かに混ざり合うこともあるが、互いに殆ど混ざり合うことなく、空調ケース12内においてそれぞれ流通する。
Therefore, the in-case passage 124 is partitioned by the upstream partition wall 26 and the downstream partition wall 27 into the first passage 125 and the second passage 126 provided in parallel with the first passage 125. Can be said to have been. The air flowing through the first passage 125 and the air flowing through the second passage 126 may slightly mix with each other in the blower fan 201, but almost never mix with each other and flow in the air conditioning case 12 respectively.
なお、送風ファン201を通過する空気流れは、送風ファン201の回転に伴って送風ファン201の空気流れ上流側と下流側との間でファン軸線CLfの周方向に捩れる。そのため、その送風ファン201における空気流れの捩れに合わせて、2つの下流側通路125b、126bは、2つの上流側通路125a、126aに対しファン軸線CLfの周方向に捩れた配置となっている。また、図1~図3の矢印FLa、FLb、FLc、FLd、FLe、FLf、FLg、FLh、FLi、FLj、FLk、FLmは、ケース内通路124における空気流れを示している。
The air flow passing through the blower fan 201 is twisted in the circumferential direction of the fan axis CLf between the upstream side and the downstream side of the air flow of the blower fan 201 as the blower fan 201 rotates. Therefore, in accordance with the twist of the air flow in the blower fan 201, the two downstream passages 125b and 126b are arranged to be twisted in the circumferential direction of the fan axis CLf with respect to the two upstream passages 125a and 126a. In addition, arrows FLa, FLb, FLc, FLd, FLe, FLf, FLg, FLh, FLi, FLj, FLk, and FLm in FIGS. 1 to 3 indicate air flows in the in-case passage 124.
図1および図2に示すように、複数の空気導入部121、122にはそれぞれ、空調ケース12外からケース内通路124に空気を導入するための通気口が形成されており、その通気口はケース内通路124の空気流れ上流側に接続されている。具体的には、複数の空気導入部121、122のうちの第1空気導入部121は第1上流側通路125aの空気流れ上流端に接続されている。そして、複数の空気導入部121、122のうちの第2空気導入部122は第2上流側通路126aの空気流れ上流端に接続されている。
As shown in FIGS. 1 and 2, each of the plurality of air introducing portions 121, 122 is formed with a vent hole for introducing air from outside the air conditioning case 12 into the case internal passage 124. It is connected to the air flow upstream side of the in-case passage 124. Specifically, the first air introduction part 121 of the plurality of air introduction parts 121, 122 is connected to the air flow upstream end of the first upstream passage 125a. The second air introduction part 122 of the plurality of air introduction parts 121 and 122 is connected to the air flow upstream end of the second upstream passage 126a.
この複数の空気導入部121、122には不図示の吸込切替ドアが設けられており、その吸込切替ドアの作動に応じて、車両用空調ユニット10の吸込モードは、外気モードと内気モードと内外気二層モードとに択一的に切り替えられる。
Suction switching doors (not shown) are provided in the plurality of air introducing units 121 and 122, and the suction modes of the vehicle air conditioning unit 10 are the outside air mode, the inside air mode, and the inside/outside according to the operation of the suction switching doors. It can be switched to the two-layer mode.
外気モードでは、空気導入部121、122の両方に車室外の空気である外気が導入され、2つの上流側通路125a、126aの何れにも外気が流れる。また、内気モードでは、空気導入部121、122の両方に車室内の空気である内気が導入され、2つの上流側通路125a、126aの何れにも内気が流れる。
In the outside air mode, the outside air, which is the air outside the vehicle compartment, is introduced into both of the air introduction parts 121 and 122, and the outside air flows into both of the two upstream passages 125a and 126a. In the inside air mode, the inside air, which is the air in the vehicle compartment, is introduced into both the air introducing portions 121 and 122, and the inside air flows into both of the two upstream passages 125a and 126a.
また、内外気二層モードでは、第1空気導入部121は外気導入部として機能し、第1空気導入部121には外気が導入される。その一方で、第2空気導入部122は内気導入部として機能し、第2空気導入部122には内気が導入される。従って、内外気二層モードでは、第1上流側通路125aには専ら外気が流れ、第2上流側通路126aには専ら内気が流れる。すなわち、内外気二層モードでは、第1上流側通路125aを含む第1通路125は、専ら外気が流れる外気通路として機能し、第2上流側通路126aを含む第2通路126は、専ら内気が流れる内気通路として機能する。厳密な表現をすれば、第1通路125には内気よりも外気が多く流れ、且つ、第2通路126には外気よりも内気が多く流れる。
Further, in the inside/outside air two-layer mode, the first air introduction part 121 functions as an outside air introduction part, and the outside air is introduced into the first air introduction part 121. On the other hand, the second air introduction part 122 functions as an inside air introduction part, and the inside air is introduced into the second air introduction part 122. Therefore, in the inside/outside air two-layer mode, the outside air flows exclusively through the first upstream passage 125a and the inside air flows exclusively through the second upstream passage 126a. That is, in the inside/outside air two-layer mode, the first passage 125 including the first upstream side passage 125a functions exclusively as an outside air passage through which the outside air flows, and the second passage 126 including the second upstream side passage 126a exclusively receives inside air. It functions as a flowing inside air passage. Strictly speaking, the outside air flows more in the first passage 125 than the inside air, and the inside air flows in the second passage 126 more than the outside air.
蒸発器16は、その蒸発器16を通過する空気を冷却する冷却用熱交換器である。要するに、蒸発器16は冷却器である。
The evaporator 16 is a heat exchanger for cooling that cools the air passing through the evaporator 16. In short, the evaporator 16 is a cooler.
蒸発器16は、空調ケース12内に配置され、ケース内通路124に流れる空気を冷却する。詳細には、蒸発器16は、第1上流側通路125aと第2上流側通路126aとの両方に跨るように配置されている。従って、蒸発器16は、第1上流側通路125aに配置された第1冷却部161と、第2上流側通路126aに配置された第2冷却部162とを有している。
The evaporator 16 is arranged in the air conditioning case 12 and cools the air flowing through the case passage 124. Specifically, the evaporator 16 is arranged so as to straddle both the first upstream side passage 125a and the second upstream side passage 126a. Therefore, the evaporator 16 has the first cooling unit 161 arranged in the first upstream passage 125a and the second cooling unit 162 arranged in the second upstream passage 126a.
例えば、蒸発器16は、不図示のコンプレッサ、コンデンサ、および膨張弁とともに、冷媒を循環させる周知の冷凍サイクル装置を構成している。蒸発器16は、蒸発器16を通過する空気と冷媒とを熱交換させ、その熱交換により冷媒を蒸発させると共に空気を冷却する。
For example, the evaporator 16 constitutes a well-known refrigeration cycle device that circulates a refrigerant together with a compressor, a condenser, and an expansion valve (not shown). The evaporator 16 exchanges heat between the air passing through the evaporator 16 and the refrigerant, and the heat exchange evaporates the refrigerant and cools the air.
送風機20は、空調ケース12内において蒸発器16に対する空気流れ下流側に配置されている。すなわち、本実施形態の車両用空調ユニット10は、送風ファン201が蒸発器16に対して空気流れ下流側に配置された吸込みレイアウトとなっている。
The blower 20 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. That is, the vehicle air conditioning unit 10 of the present embodiment has a suction layout in which the blower fan 201 is arranged on the air flow downstream side with respect to the evaporator 16.
送風機20は、送風ファン201の空気吸込み側であるファン軸方向DRaの一方側が蒸発器16の空気流出面16bと対向するように配置されている。従って、送風ファン201は、ファン軸方向DRaの他方側に一致するファン軸線CLfの他方側がケース内通路124の空気流れ下流側へ延びる向きを向くように配置されている。
The blower 20 is arranged so that one side of the fan axial direction DRa, which is the air suction side of the blower fan 201, faces the air outflow surface 16b of the evaporator 16. Therefore, the blower fan 201 is arranged such that the other side of the fan axis line CLf, which coincides with the other side in the fan axis direction DRa, extends toward the air flow downstream side of the in-case passage 124.
ヒータコア18は、空調ケース12内において送風ファン201に対する空気流れ下流側に配置されている。言い換えれば、ヒータコア18は、ケース内通路124のうち送風ファン201に対し空気流れ下流側に配置されている。ヒータコア18は、ケース内通路124において蒸発器16から流出した空気を加熱する加熱器(別言すれば、加熱用熱交換器)である。詳細に言うと、ヒータコア18は、送風ファン201から吹き出された空気のうちヒータコア18を通過する空気を加熱する。
The heater core 18 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201. In other words, the heater core 18 is arranged on the air flow downstream side of the blower fan 201 in the case internal passage 124. The heater core 18 is a heater (in other words, a heat exchanger for heating) that heats the air flowing out from the evaporator 16 in the case internal passage 124. Specifically, the heater core 18 heats the air passing through the heater core 18 among the air blown from the blower fan 201.
また、ヒータコア18は、第1下流側通路125bと第2下流側通路126bとの両方に跨るように配置されている。従って、ヒータコア18は、第1下流側通路125bに配置された第1加熱部181と、第2下流側通路126bに配置された第2加熱部182とを有している。
Further, the heater core 18 is arranged so as to straddle both the first downstream side passage 125b and the second downstream side passage 126b. Therefore, the heater core 18 has the first heating part 181 arranged in the first downstream side passage 125b and the second heating part 182 arranged in the second downstream side passage 126b.
第1風量比率調整ドア23と第2風量比率調整ドア24は所謂エアミックスドアと呼ばれる装置であり、空調ケース12内において送風ファン201に対する空気流れ下流側に配置されている。例えば、第1風量比率調整ドア23と第2風量比率調整ドア24はそれぞれスライド式のドア機構であり、電動アクチュエータによってスライドさせられる。
The first air volume ratio adjustment door 23 and the second air volume ratio adjustment door 24 are so-called air mix doors, and are arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201. For example, the first air volume ratio adjustment door 23 and the second air volume ratio adjustment door 24 are slide type door mechanisms, and are slid by an electric actuator.
具体的には、第1風量比率調整ドア23は、第1下流側通路125bのうちヒータコア18の第1加熱部181に対し空気流れ上流側に配置されている。そして、第1風量比率調整ドア23は、第1通路125において蒸発器16の第1冷却部161から流出した空気のうち、第1加熱部181を通過する空気の風量と第1加熱部181を迂回して流れる空気の風量との比率を調整する。これにより、第1下流側通路125bを通って車室内へ吹き出される空気の温度が調整される。
Specifically, the first air volume ratio adjusting door 23 is arranged on the upstream side of the air flow with respect to the first heating part 181 of the heater core 18 in the first downstream passage 125b. Then, the first air volume ratio adjusting door 23 controls the air volume of the air passing through the first heating section 181 and the first heating section 181 among the air flowing out from the first cooling section 161 of the evaporator 16 in the first passage 125. Adjust the ratio with the air volume of the bypass air flow. As a result, the temperature of the air blown into the vehicle compartment through the first downstream passage 125b is adjusted.
また、第2風量比率調整ドア24は、第2下流側通路126bのうちヒータコア18の第2加熱部182に対し空気流れ上流側に配置されている。そして、第2風量比率調整ドア24は、第2通路126において蒸発器16の第2冷却部162から流出した空気のうち、第2加熱部182を通過する空気の風量と第2加熱部182を迂回して流れる空気の風量との比率を調整する。これにより、第2下流側通路126bを通って車室内へ吹き出される空気の温度が調整される。
Further, the second air volume ratio adjusting door 24 is arranged on the air flow upstream side of the second heating portion 182 of the heater core 18 in the second downstream passage 126b. Then, the second air volume ratio adjustment door 24 controls the air volume of the air passing through the second heating section 182 and the second heating section 182 among the air flowing out from the second cooling section 162 of the evaporator 16 in the second passage 126. Adjust the ratio with the air volume of the bypass air flow. As a result, the temperature of the air blown into the vehicle compartment through the second downstream passage 126b is adjusted.
空調ケース12は、第1下流側通路125bのうちヒータコア18の第1加熱部181に対する空気流れ下流側に接続された不図示の第1吹出開口部を複数有している。それと共に、空調ケース12は、第2下流側通路126bのうちヒータコア18の第2加熱部182に対する空気流れ下流側に接続された不図示の第2吹出開口部を複数有している。これらの第1および第2吹出開口部はそれぞれ、車室内に設けられた相互に異なる車室内吹出口にダクト等を介して連結されており、第1および第2吹出開口部から流出した空気は、その車室内吹出口から車室内へ吹き出される。
The air-conditioning case 12 has a plurality of first blowout openings (not shown) connected to the downstream side of the first heating portion 181 of the heater core 18 in the first flow passage 125b. At the same time, the air conditioning case 12 has a plurality of second blowout openings (not shown) that are connected to the downstream side of the second heating portion 182 of the heater core 18 in the second flow path 126b. These first and second outlets are connected to mutually different vehicle interior outlets provided in the vehicle interior via ducts and the like, and the air flowing out from the first and second outlets is , Is blown into the vehicle interior from the vehicle interior air outlet.
複数の第1吹出開口部には、その第1吹出開口部毎に、その第1吹出開口部を開閉する吹出開口ドアが設けられている。この吹出開口ドアの開閉作動により、第1下流側通路125bの空調空気を、第1吹出開口部に連結された車室内吹出口のうち任意の車室内吹出口から車室内へ吹き出させることができる。
The plurality of first blowout openings are provided with blowout opening doors that open and close the first blowout openings for each of the first blowout openings. By the opening/closing operation of the blowout opening door, the conditioned air in the first downstream passage 125b can be blown into the vehicle interior from an arbitrary vehicle interior outlet out of the vehicle interior outlets connected to the first outlet opening. ..
これと同様に、複数の第2吹出開口部には、その第2吹出開口部毎に、その第2吹出開口部を開閉する吹出開口ドアが設けられている。この吹出開口ドアの開閉作動により、第2下流側通路126bの空調空気を、第2吹出開口部に連結された車室内吹出口のうち任意の車室内吹出口から車室内へ吹き出させることができる。なお、上記の吹出開口ドアは、例えば、フェイスドア、フットドア、またはデフロスタドアと呼ばれるものである。
Similarly, the plurality of second outlet openings are provided with outlet opening doors that open and close the second outlet openings for each second outlet opening. By the opening/closing operation of the blowout opening door, the conditioned air in the second downstream passage 126b can be blown into the vehicle interior from an arbitrary vehicle interior outlet out of the vehicle interior outlets connected to the second outlet opening. .. The blowout opening door is called, for example, a face door, a foot door, or a defroster door.
風量比率調整ドア23、24の作動によって温度調整された空調空気が所望の車室内吹出口から車室内へ吹き出されることで、車室内の快適性がコントロールされる。
Comfort of the vehicle interior is controlled by blowing out the conditioned air whose temperature is adjusted by the operation of the air volume ratio adjustment doors 23, 24 from the desired vehicle interior outlet to the vehicle interior.
図1~図3に示すように、車両用空調ユニット10は、空調ケース12内に配置されたモータ空間形成部30と、温風導入通路32aを形成する温風通路部32と、車室内連通路34aを形成する車室内連通部34とを備えている。
As shown in FIGS. 1 to 3, the vehicle air conditioning unit 10 includes a motor space forming portion 30 arranged in an air conditioning case 12, a warm air passage portion 32 forming a warm air introduction passage 32a, and a vehicle interior communication. It is provided with the vehicle interior communication part 34 which forms the passage 34a.
モータ空間形成部30は、送風機モータ202が配置されたモータ空間30aを形成している。詳細には、モータ空間形成部30は、ケース内通路124に囲まれるように配置されている。そして、モータ空間形成部30は、そのモータ空間形成部30の内部にモータ空間30aを形成しており、送風機モータ202はそのモータ空間30aに収容されている。
The motor space forming unit 30 forms a motor space 30a in which the blower motor 202 is arranged. Specifically, the motor space forming unit 30 is arranged so as to be surrounded by the in-case passage 124. The motor space forming unit 30 forms a motor space 30a inside the motor space forming unit 30, and the blower motor 202 is housed in the motor space 30a.
なお、その送風機モータ202がモータ空間30aに収容されていることとは、送風機モータ202の全部がモータ空間30a内に入っていることに限らず、その送風機モータ202の殆どがモータ空間30a内に入っていればよい。従って、送風機モータ202の回転軸や非回転部分の一部がモータ空間30aの外に露出していても、送風機モータ202の殆どがモータ空間30a内に入っていれば、送風機モータ202がモータ空間30aに収容されていると言える。
The fact that the blower motor 202 is housed in the motor space 30a does not necessarily mean that the blower motor 202 is entirely inside the motor space 30a, but most of the blower motor 202 is inside the motor space 30a. All you have to do is enter. Therefore, even if a part of the rotating shaft or the non-rotating part of the blower motor 202 is exposed to the outside of the motor space 30a, if most of the blower motor 202 is in the motor space 30a, the blower motor 202 will be in the motor space. It can be said that it is housed in 30a.
モータ空間形成部30は、モータ空間30aとケース内通路124との間を仕切る仕切壁として構成されている。
The motor space forming unit 30 is configured as a partition wall that partitions the motor space 30a and the case internal passage 124.
上記したように送風機20は空調ケース12内において蒸発器16に対する空気流れ下流側に配置されているので、モータ空間形成部30も、空調ケース12内において蒸発器16に対する空気流れ下流側に配置されている。
Since the blower 20 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16 as described above, the motor space forming unit 30 is also arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. ing.
また、モータ空間形成部30は、空調ケース12内においてヒータコア18と風量比率調整ドア23、24とに対する空気流れ上流側に配置されている。
Further, the motor space forming unit 30 is arranged in the air conditioning case 12 on the upstream side of the air flow with respect to the heater core 18 and the air volume ratio adjusting doors 23 and 24.
また、送風機モータ202とモータ空間形成部30は、送風ファン201に対しファン軸方向DRaの他方側に配置されている。例えば、モータ空間形成部30は空調ケース12に固定され、送風機モータ202のうちの非回転部分はモータ空間形成部30を介して空調ケース12に固定されている。
The blower motor 202 and the motor space forming unit 30 are arranged on the other side of the blower fan 201 in the fan axis direction DRa. For example, the motor space forming unit 30 is fixed to the air conditioning case 12, and the non-rotating part of the blower motor 202 is fixed to the air conditioning case 12 via the motor space forming unit 30.
モータ空間形成部30は、蒸発器16により冷却された冷風とヒータコア18により加熱された温風とが送風機20の作動に伴ってケース内通路124からモータ空間30aに流入する構成になっている。その送風機20の作動とは、送風ファン201が送風機モータ202に回転させられケース内通路124に空気流れを発生させることである。
The motor space forming unit 30 is configured such that the cool air cooled by the evaporator 16 and the hot air heated by the heater core 18 flow into the motor space 30a from the in-case passage 124 as the blower 20 operates. The operation of the blower 20 is that the blower fan 201 is rotated by the blower motor 202 to generate an air flow in the case internal passage 124.
冷風と温風とをモータ空間30aに流入させるため、具体的に、モータ空間形成部30には、モータ空間30aへ接続された冷風流入口30bと温風流入口30cと冷却風出口30dとが形成されている。その冷風流入口30bと温風流入口30cは、送風ファン201に対する空気流れ下流側にてケース内通路124に連通している。詳細に言うと、その冷風流入口30bと温風流入口30cは、ケース内通路124のうち、第2通路126ではなく第1通路125に連通している。
In order to let the cold air and the hot air flow into the motor space 30a, specifically, the motor space forming unit 30 has a cold air inlet 30b, a warm air inlet 30c, and a cooling air outlet 30d connected to the motor space 30a. Has been done. The cold air inlet 30b and the warm air inlet 30c communicate with the in-case passage 124 on the air flow downstream side of the blower fan 201. More specifically, the cold air inlet 30b and the warm air inlet 30c communicate with the first passage 125 of the in-case passage 124 instead of the second passage 126.
なお、モータ空間30aとケース内通路124との連通は、2つの流入口30b、30cを介した連通を除き、モータ空間形成部30によって阻止されている。このモータ空間形成部30による連通の阻止は完全であるのが好ましいが、2つの流入口30b、30c以外の箇所で、製造上の都合等により生じる小さな隙間などを介してモータ空間30aがケース内通路124に僅かに連通することが許容されても差し支えない。
The communication between the motor space 30a and the in-case passage 124 is blocked by the motor space forming unit 30, except for the communication via the two inlets 30b and 30c. It is preferable that the motor space forming portion 30 completely prevent the communication, but the motor space 30a is provided inside the case at a position other than the two inflow ports 30b and 30c via a small gap generated due to manufacturing reasons. It is permissible to allow slight communication with passageway 124.
冷却風出口30dには車室内連通路34aの一端が接続され、その車室内連通路34aの他端は冷却風排出口として車室内へ開放されている。すなわち、冷却風出口30dは、車室内連通路34aを介して車室内へ連通している。
The cooling air outlet 30d is connected to one end of the vehicle interior communication passage 34a, and the other end of the vehicle interior communication passage 34a is opened to the vehicle interior as a cooling air outlet. That is, the cooling air outlet 30d communicates with the vehicle interior through the vehicle interior communication passage 34a.
車室内連通部34は管状に形成され、ケース内通路124を横切るように配置されている。詳細には、その車室内連通部34は、ケース内通路124のうち第2下流側通路126bを横切っている。そして、車室内連通部34は、その内部に形成された車室内連通路34aをケース内通路124に対して隔てている。
The vehicle interior communication section 34 is formed in a tubular shape, and is arranged so as to cross the in-case passage 124. More specifically, the vehicle interior communication portion 34 crosses the second downstream passage 126b of the in-case passage 124. Then, the vehicle interior communication portion 34 separates the vehicle interior communication passage 34 a formed therein from the case interior passage 124.
モータ空間形成部30の冷風流入口30bは、ヒータコア18と風量比率調整ドア23、24とに対する空気流れ上流側にてケース内通路124に連通している。詳細には、その冷風流入口30bはケース内通路124のうち第1下流側通路125bに連通しているので、ヒータコア18の第1加熱部181と第1風量比率調整ドア23とに対する空気流れ上流側にて第1下流側通路125bに連通している。従って、モータ空間形成部30は、蒸発器16により冷却された冷風が第1および第2風量比率調整ドア23、24の作動状態に拘わらずモータ空間30aに流入することが可能な構成となっている。
The cold air inlet 30b of the motor space forming unit 30 communicates with the in-case passage 124 on the upstream side of the air flow with respect to the heater core 18 and the air volume ratio adjusting doors 23 and 24. In detail, since the cold air inlet 30b communicates with the first downstream passage 125b of the in-case passage 124, the air flow upstream with respect to the first heating portion 181 of the heater core 18 and the first air volume ratio adjustment door 23. And communicates with the first downstream passage 125b on the side. Therefore, the motor space forming unit 30 is configured such that the cold air cooled by the evaporator 16 can flow into the motor space 30a regardless of the operating state of the first and second air volume ratio adjusting doors 23 and 24. There is.
本実施形態では、冷風流入口30bは、壁状のモータ空間形成部30に形成された貫通孔として形成されている。また、冷風流入口30bは、ケース内通路124に対し、そのケース内通路124を流れる空気の動圧を受けない向きを向いて開口している。例えば、そのケース内通路124を流れる空気の動圧を受けない向きとは、ケース内通路124の空気流れの向きに直交する向き、または、その直交する向きに比して空気流れ下流側を向いた向きである。図1の矢印FL1は、ケース内通路124から冷風流入口30bを経てモータ空間30aへ流入する冷風の流れを示している。
In the present embodiment, the cold air inlet 30b is formed as a through hole formed in the wall-shaped motor space forming portion 30. Further, the cold air inlet 30b is opened to the case inner passage 124 in a direction not receiving the dynamic pressure of the air flowing through the case inner passage 124. For example, the direction that does not receive the dynamic pressure of the air flowing in the case internal passage 124 is the direction orthogonal to the direction of the air flow of the case internal passage 124, or the direction toward the downstream side of the air flow compared to the direction orthogonal to the direction. It was the direction I was in. An arrow FL1 in FIG. 1 indicates a flow of cold air flowing from the in-case passage 124 through the cold air inlet 30b into the motor space 30a.
温風通路部32は例えば扁平断面形状の管状に形成され、その温風通路部32の内部に温風導入通路32aを形成している。その温風導入通路32aは、ヒータコア18により加熱された温風を温風流入口30cへ導く通風路である。図1および図3の矢印FL2は、ケース内通路124から温風導入通路32aと温風流入口30cとを経てモータ空間30aへ流入する温風の流れを示している。
The warm air passage portion 32 is formed, for example, in a tubular shape having a flat cross section, and a warm air introduction passage 32 a is formed inside the warm air passage portion 32. The warm air introduction passage 32a is an air passage for guiding the warm air heated by the heater core 18 to the warm air inlet 30c. An arrow FL2 in FIGS. 1 and 3 indicates a flow of warm air flowing from the in-case passage 124 into the motor space 30a through the warm air introduction passage 32a and the warm air inlet 30c.
具体的に、温風導入通路32aは、ケース内通路124(詳細には、そのケース内通路124のうちの第1下流側通路125b)と温風流入口30cとを接続する通路である。そして、詳細に言うと、温風導入通路32aの一端である出口端は温風流入口30cに接続されている。また、温風導入通路32aの他端である入口端32cは、ヒータコア18の第1加熱部181に対し、その第1加熱部181のモータ空間形成部30側から接続している。
Specifically, the warm air introduction passage 32a is a passage that connects the in-case passage 124 (specifically, the first downstream passage 125b in the in-case passage 124) and the warm air inlet 30c. Then, in detail, the outlet end which is one end of the warm air introduction passage 32a is connected to the warm air inlet 30c. The inlet end 32c, which is the other end of the warm air introduction passage 32a, is connected to the first heating part 181 of the heater core 18 from the motor space forming part 30 side of the first heating part 181.
そのため、温風導入通路32aには、第1下流側通路125bのうち第1加熱部181に対する空気流れ下流側の空気が、第1加熱部181を通ってから流入する。すなわち、温風導入通路32aは、第1下流側通路125bのうち第1加熱部181に対する空気流れ下流側の空気を、第1加熱部181のモータ空間形成部30側とは反対側からモータ空間形成部30側へ第1加熱部181を通過させてから温風流入口30cへ導く。なお、図1では、第1加熱部181のモータ空間形成部30側は、車両前後方向DR1の前側であり、第1加熱部181のモータ空間形成部30側とは反対側は、車両前後方向DR1の後側である。
Therefore, the air on the downstream side of the first heating portion 181 in the first downstream passage 125b flows into the warm air introduction passage 32a after passing through the first heating portion 181. That is, the warm air introduction passage 32a allows the air in the first downstream passage 125b on the downstream side of the air flow with respect to the first heating portion 181 to flow from the side opposite to the motor space forming portion 30 side of the first heating portion 181 to the motor space. The first heating unit 181 is passed to the formation unit 30 side and then guided to the warm air inlet 30c. In FIG. 1, the motor space forming part 30 side of the first heating part 181 is the front side in the vehicle front-rear direction DR1, and the side opposite to the motor space forming part 30 side of the first heating part 181 is the vehicle front-rear direction. It is the rear side of DR1.
また、温風導入通路32aは、第1風量比率調整ドア23の可動範囲R1と第2風量比率調整ドア24の可動範囲R2との両方から外れた箇所を通って延びている。具体的には、温風導入通路32aは、その2つの可動範囲R1、R2の間を通って、ケース内通路124における風量比率調整ドア23、24の空気流れ下流側から上流側へ延びている。従って、その温風導入通路32aが接続された温風流入口30cを有するモータ空間形成部30は、ヒータコア18により加熱された温風が風量比率調整ドア23、24の作動状態に拘わらずモータ空間30aに流入することが可能な構成となっている。
Further, the warm air introduction passage 32a extends through a portion outside both the movable range R1 of the first air volume ratio adjusting door 23 and the movable range R2 of the second air volume ratio adjusting door 24. Specifically, the warm air introduction passage 32a extends between the two movable ranges R1 and R2 and extends from the air flow downstream side of the air volume ratio adjusting doors 23 and 24 in the in-case passage 124 to the upstream side. .. Therefore, in the motor space forming unit 30 having the warm air inlet 30c to which the warm air introduction passage 32a is connected, the warm air heated by the heater core 18 is irrespective of the operating state of the air volume ratio adjusting doors 23, 24. It is configured to be able to flow into.
また、温風導入通路32aの入口端32cは第1加熱部181に対して上記のように接続しているので、その温風導入通路32aの入口端32cは、第1下流側通路125bに対し、その第1下流側通路125bの空気流れ下流側を向いて開口している。すなわち、温風導入通路32aの入口端32cは、第1下流側通路125bに対し、その第1下流側通路125bを流れる空気の動圧を受けない向きを向いて開口している。
Further, since the inlet end 32c of the warm air introduction passage 32a is connected to the first heating unit 181, as described above, the inlet end 32c of the warm air introduction passage 32a is connected to the first downstream passage 125b. The first downstream passage 125b is open toward the downstream side of the air flow. That is, the inlet end 32c of the warm air introduction passage 32a opens toward the first downstream passage 125b in a direction not receiving the dynamic pressure of the air flowing through the first downstream passage 125b.
なお、冷風流入口30bを通る冷風の流通抵抗と、温風流入口30cおよび温風導入通路32aを通る温風の流通抵抗と、冷却風出口30dおよび車室内連通路34aを通る排気の流通抵抗とのうち、排気の流通抵抗が最も小さくなっている。
Note that the flow resistance of the cold air passing through the cold air inlet 30b, the flow resistance of the warm air passing through the warm air inlet 30c and the warm air introducing passage 32a, and the flow resistance of the exhaust air passing through the cooling air outlet 30d and the vehicle interior communication passage 34a. Of these, the exhaust flow resistance is the smallest.
以上のような構成から、送風機20の作動に伴って、モータ空間30aには、蒸発器16により冷却された冷風が、ケース内通路124から冷風流入口30bを介して矢印FL1のように流入する。それと共に、モータ空間30aには、ヒータコア18により加熱された温風も、ケース内通路124から温風導入通路32aと温風流入口30cとを介して矢印FL2のように流入する。そして、その冷風と温風はモータ空間30aで混ざり合って温調風になり、モータ冷却風であるその温調風によって送風機モータ202は冷却される。そして、その送風機モータ202の冷却に用いられた温調風は、冷却風出口30dと車室内連通路34aとを介して矢印FL3のように車室内へと排出される。
With the above-described configuration, with the operation of the blower 20, the cold air cooled by the evaporator 16 flows into the motor space 30a from the in-case passage 124 via the cold air inlet 30b as indicated by the arrow FL1. .. At the same time, the warm air heated by the heater core 18 also flows into the motor space 30a from the in-case passage 124 via the warm air introduction passage 32a and the warm air inlet 30c as indicated by an arrow FL2. Then, the cold air and the hot air are mixed in the motor space 30a to be temperature-controlled air, and the fan motor 202 is cooled by the temperature-controlled air that is the motor cooling air. Then, the temperature-adjusted air used for cooling the blower motor 202 is discharged into the vehicle interior as indicated by an arrow FL3 through the cooling air outlet 30d and the vehicle interior communication passage 34a.
上述したように、本実施形態によれば、図1~図3に示すように、モータ空間形成部30には、送風ファン201に対する空気流れ下流側にてケース内通路124に連通する冷風流入口30bおよび温風流入口30cが形成されている。そして、送風ファン201がケース内通路124に空気流れを発生させることに伴って、モータ空間30aには、蒸発器16により冷却された冷風が冷風流入口30bから流入する。それと共に、モータ空間30aには、ヒータコア18により加熱された温風も温風流入口30cから流入する。
As described above, according to the present embodiment, as shown in FIGS. 1 to 3, in the motor space forming unit 30, the cold air inlet port communicating with the in-case passage 124 on the air flow downstream side of the blower fan 201. 30b and the warm air inlet 30c are formed. Then, as the blower fan 201 generates an air flow in the in-case passage 124, the cold air cooled by the evaporator 16 flows into the motor space 30a from the cold air inlet 30b. At the same time, the warm air heated by the heater core 18 also flows into the motor space 30a from the warm air inlet 30c.
そのため、モータ空間30aに配置された送風機モータ202は、蒸発器16により冷却された冷風とヒータコア18により加熱された温風とを混合した温調風で冷却されることになる。従って、送風機モータ202の冷却後に冷却風出口30dから車室内へ排出されるモータ冷却風は、上記冷風でも温風でもなく、その温調風になる。そして、そのような温調風が車室内へ排出されても、乗員の足元フィーリングを悪化させる懸念はなく、車両用空調ユニット10の周辺に配置された電子部品に対し熱害に与えるおそれもない。つまり、送風機モータ202の冷却に使用された空気を車室内へ排出しても、その空気の排出に起因した不都合を回避することが可能である。
Therefore, the blower motor 202 arranged in the motor space 30a is cooled by temperature-controlled airflow that is a mixture of the cold air cooled by the evaporator 16 and the warm air heated by the heater core 18. Therefore, the motor cooling air discharged from the cooling air outlet 30d into the vehicle compartment after cooling the blower motor 202 is not the cold air or the warm air but the temperature-controlled air. Even if such temperature-controlled air is discharged into the passenger compartment, there is no concern that the foot feeling of the occupant will be deteriorated, and the electronic components arranged around the vehicle air conditioning unit 10 may be damaged by heat. Absent. That is, even if the air used for cooling the blower motor 202 is discharged into the vehicle compartment, it is possible to avoid the inconvenience caused by the discharge of the air.
また、前述した特許文献1の車両用空調ユニットでは、送風機モータを冷却するためのモータ冷却風を得るためにアスピレータのベンチュリ効果が利用されるので、空調ケース内から排出される風量はモータ冷却風の風量に対して多くなる。このことは、車両用空調ユニットの消費電力を増大させることにつながる。これに対し、本実施形態の車両用空調ユニット10では、ベンチュリ効果は利用されず、モータ冷却風になる空気は空調ケース12内のケース内通路124から取り入れられる。従って、特許文献1の車両用空調ユニットと比較して、モータ冷却風の風量が十分に確保されやすく、車両用空調ユニット10の消費電力の増大を抑制することが可能である。
Further, in the vehicle air conditioning unit of Patent Document 1 described above, since the venturi effect of the aspirator is used to obtain the motor cooling air for cooling the blower motor, the air volume discharged from the air conditioning case is the motor cooling air. It increases with the amount of wind. This leads to an increase in power consumption of the vehicle air conditioning unit. On the other hand, in the vehicle air conditioning unit 10 of the present embodiment, the venturi effect is not used, and the air that becomes the motor cooling air is taken in from the case internal passage 124 in the air conditioning case 12. Therefore, as compared with the vehicle air conditioning unit of Patent Document 1, a sufficient amount of motor cooling air can be easily secured, and an increase in power consumption of the vehicle air conditioning unit 10 can be suppressed.
また、本実施形態によれば、送風機20およびモータ空間形成部30は、空調ケース12内において蒸発器16に対する空気流れ下流側に配置されている。そして、モータ空間形成部30は、ケース内通路124とモータ空間30aとの間を仕切っている。従って、送風機20の送風量によってはモータ空間形成部30周りを流れる蒸発器16からの冷風によって送風機モータ202が冷やされ過ぎになりやすいところ、上記冷風と上記温風とを混合した温調風で送風機モータ202を適度に冷却することが可能である。
Further, according to the present embodiment, the blower 20 and the motor space forming unit 30 are arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the evaporator 16. Then, the motor space forming unit 30 partitions between the in-case passage 124 and the motor space 30a. Therefore, depending on the amount of air blown by the blower 20, the blower motor 202 is likely to be overcooled by the cool air from the evaporator 16 flowing around the motor space forming portion 30, and the temperature control air is a mixture of the cold air and the warm air. The blower motor 202 can be cooled appropriately.
また、本実施形態によれば、モータ空間形成部30は、蒸発器16により冷却された冷風とヒータコア18により加熱された温風とが風量比率調整ドア23、24の作動状態に拘わらずモータ空間30aに流入することが可能な構成となっている。従って、例えば最大冷房時であっても最大暖房時であっても、上記冷風と上記温風とをモータ空間30aへ流入させることが可能である。要するに、風量比率調整ドア23、24の作動状態の影響を受けずに、上記冷風と上記温風とを混合した温調風で送風機モータ202を冷却することが可能である。
In addition, according to the present embodiment, the motor space forming unit 30 controls the motor space regardless of whether the cool air cooled by the evaporator 16 and the hot air heated by the heater core 18 are operated by the air volume ratio adjusting doors 23, 24. It is configured such that it can flow into 30a. Therefore, it is possible to allow the cold air and the hot air to flow into the motor space 30a even during the maximum cooling or the maximum heating, for example. In short, it is possible to cool the blower motor 202 with temperature-controlled air that is a mixture of the cold air and the warm air without being affected by the operating states of the air volume ratio adjusting doors 23 and 24.
また、本実施形態によれば、モータ空間形成部30の冷風流入口30bは、ヒータコア18と第1風量比率調整ドア23とに対する空気流れ上流側にて、ケース内通路124のうちの第1通路125に連通している。従って、その第1風量比率調整ドア23の作動状態の影響を受けずに上記冷風をモータ空間30aへ流入させることを、冷風流入口30bの配置によって容易に実現することが可能である。
Further, according to the present embodiment, the cold air inlet 30b of the motor space forming portion 30 is provided with the first passage of the in-case passage 124 on the upstream side of the air flow with respect to the heater core 18 and the first air volume ratio adjusting door 23. It communicates with 125. Therefore, it is possible to easily realize the inflow of the cold air into the motor space 30a without being affected by the operating state of the first air volume ratio adjusting door 23 by the arrangement of the cold air inlet 30b.
また、本実施形態によれば、温風通路部32は温風導入通路32aを形成し、その温風導入通路32aは、ケース内通路124と温風流入口30cとを接続し、上記温風を温風流入口30cへ導く。そして、その温風導入通路32aは、第1および第2風量比率調整ドア23、24の可動範囲R1、R2から外れた箇所を通って延びている。従って、第1および第2風量比率調整ドア23、24の作動状態の影響を受けずに上記温風をモータ空間30aへ流入させることを、温風導入通路32aの配置によって容易に実現することが可能である。
Further, according to the present embodiment, the warm air passage portion 32 forms the warm air introduction passage 32a, and the warm air introduction passage 32a connects the in-case passage 124 and the warm air inlet 30c to supply the warm air. Lead to the warm air inlet 30c. The warm air introduction passage 32a extends through a portion outside the movable ranges R1 and R2 of the first and second air volume ratio adjusting doors 23 and 24. Therefore, it is possible to easily realize the inflow of the warm air into the motor space 30a without being affected by the operating states of the first and second air volume ratio adjusting doors 23 and 24 by the arrangement of the warm air introduction passage 32a. It is possible.
また、本実施形態によれば、ヒータコア18は、空調ケース12内において送風ファン201とモータ空間形成部30とに対する空気流れ下流側に配置される。そして、温風導入通路32aは、ケース内通路124のうちヒータコア18に対する空気流れ下流側の空気を、ヒータコア18のモータ空間形成部30側とは反対側からモータ空間形成部30側へヒータコア18を通過させてから、温風流入口30cへ導く。従って、ヒータコア18を通過することで加熱される空気は、そのヒータコア18を通過すると同時にヒータコア18のモータ空間形成部30側まで来ていることになる。そのため、ヒータコア18により加熱された空気(すなわち、温風)をモータ空間形成部30の温風流入口30cへ導く温風導入通路32aを短く形成することが可能である。このことは、延いては車両用空調ユニット10の小型化につながる。
Further, according to the present embodiment, the heater core 18 is arranged in the air conditioning case 12 on the downstream side of the air flow with respect to the blower fan 201 and the motor space forming unit 30. The warm air introduction passage 32a moves the air in the air passage downstream side of the heater core 18 in the in-case passage 124 from the side opposite to the motor space forming portion 30 side of the heater core 18 to the motor space forming portion 30 side. After passing, it is guided to the warm air inlet 30c. Therefore, the air heated by passing through the heater core 18 reaches the motor space forming portion 30 side of the heater core 18 at the same time when passing through the heater core 18. Therefore, it is possible to shorten the warm air introduction passage 32a that guides the air heated by the heater core 18 (that is, the warm air) to the warm air inlet 30c of the motor space forming unit 30. This leads to downsizing of the vehicle air conditioning unit 10.
また、本実施形態によれば、ケース内通路124は、上流側仕切壁26および下流側仕切壁27によって、第1通路125と、その第1通路125に対し並列に設けられた第2通路126とに仕切られている。内外気二層モードでは、その第1通路125には内気よりも外気が多く流れ、且つ、第2通路126には外気よりも内気が多く流れる。そして、冷風流入口30bおよび温風流入口30cは、ケース内通路124のうち第2通路126ではなく第1通路125に連通している。ここで、外気は内気に比べ低湿度である。そのため、例えば冷風流入口30bと温風流入口30cとが第1通路125ではなく第2通路126に連通する場合と比較して、送風機モータ202の結露防止効果を向上させることが可能である。
Further, according to the present embodiment, the in-case passage 124 includes the first passage 125 and the second passage 126 provided in parallel with the first passage 125 by the upstream partition wall 26 and the downstream partition wall 27. It is divided into In the inside/outside air two-layer mode, the outside air flows through the first passage 125 more than the inside air, and the inside air flows more than the outside air through the second passage 126. The cold air inlet 30b and the warm air inlet 30c communicate with the first passage 125 of the in-case passage 124 instead of the second passage 126. Here, the outside air has a lower humidity than the inside air. Therefore, for example, the dew condensation prevention effect of the blower motor 202 can be improved as compared with the case where the cold air inlet 30b and the warm air inlet 30c communicate with the second passage 126 instead of the first passage 125.
(第2実施形態)
次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。 (Second embodiment)
Next, a second embodiment will be described. In the present embodiment, points different from the above-described first embodiment will be mainly described. Further, the same or equivalent portions as those of the above-described embodiment will be omitted or simplified for the description.
次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。 (Second embodiment)
Next, a second embodiment will be described. In the present embodiment, points different from the above-described first embodiment will be mainly described. Further, the same or equivalent portions as those of the above-described embodiment will be omitted or simplified for the description.
図4および図5に示すように、本実施形態では、温風導入通路32aが延伸する経路が第1実施形態と異なっている。なお、前述した図2は、本実施形態において図4のIIa-IIa断面を模式的に示した断面図でもある。
As shown in FIGS. 4 and 5, in the present embodiment, the route along which the warm air introduction passage 32a extends is different from that in the first embodiment. Note that FIG. 2 described above is also a cross-sectional view schematically showing the cross section IIa-IIa of FIG. 4 in the present embodiment.
本実施形態において、温風導入通路32aは、第1および第2風量比率調整ドア23、24の可動範囲R1、R2(図1参照)から外れた箇所を通って延びている。従って、その温風導入通路32aに導かれる温風は、風量比率調整ドア23、24の作動状態に拘わらずモータ空間30aに流入することが可能である。また、温風導入通路32aの出口端は温風流入口30cに接続されている。これらのことは、第1実施形態と同様である。
In the present embodiment, the warm air introduction passage 32a extends through a portion outside the movable ranges R1 and R2 (see FIG. 1) of the first and second air volume ratio adjusting doors 23 and 24. Therefore, the warm air introduced into the warm air introduction passage 32a can flow into the motor space 30a regardless of the operating state of the air volume ratio adjusting doors 23 and 24. Further, the outlet end of the warm air introduction passage 32a is connected to the warm air inlet 30c. These are the same as in the first embodiment.
しかし、第1実施形態とは異なり、本実施形態における温風導入通路32aの入口端32cは、第1下流側通路125bにおけるヒータコア18の空気流れ上流側で第1下流側通路125bに対して開口している。すなわち、その温風導入通路32aの入口端32cは、ヒータコア18のモータ空間形成部30側に設けられている。
However, unlike the first embodiment, the inlet end 32c of the hot air introduction passage 32a in the present embodiment is opened to the first downstream passage 125b on the upstream side of the heater core 18 in the first downstream passage 125b. doing. That is, the inlet end 32c of the hot air introduction passage 32a is provided on the motor space forming portion 30 side of the heater core 18.
そして、ヒータコア18の一部分が温風導入通路32a内に設けられている。温風導入通路32a内に入口端32cから入った空気は、矢印FL4aのようにヒータコア18のモータ空間形成部30側からそのモータ空間形成部30側とは反対側へヒータコア18を通過することで加熱され温風になる。温風導入通路32aは、その温風をヒータコア18のモータ空間形成部30側とは反対側から矢印FL4cのようにヒータコア18を迂回させてモータ空間形成部30の温風流入口30cにまで導くように延びている。
A part of the heater core 18 is provided in the warm air introduction passage 32a. The air entering from the inlet end 32c into the warm air introduction passage 32a passes through the heater core 18 from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side as indicated by an arrow FL4a. It becomes hot air when heated. The warm air introduction passage 32a guides the warm air from the side opposite to the side of the motor space forming portion 30 of the heater core 18 to the hot air inlet 30c of the motor space forming portion 30 by bypassing the heater core 18 as indicated by an arrow FL4c. Extends to.
このように、温風導入通路32aは、ケース内通路124のうちヒータコア18に対する空気流れ上流側の空気を、ヒータコア18のモータ空間形成部30側からそのモータ空間形成部30側とは反対側へヒータコア18を通過させてから温風流入口30cへ導く。なお、図4および図5では、ヒータコア18のモータ空間形成部30側は、車両前後方向DR1の前側であり、ヒータコア18のモータ空間形成部30側とは反対側は、車両前後方向DR1の後側である。また、図4の矢印FL4aと図5の矢印FL4b、FL4cは、ケース内通路124から温風導入通路32aと温風流入口30cとを経てモータ空間30aへ流入する空気の流れを示している。
As described above, the warm air introduction passage 32a allows the air on the upstream side of the air flow with respect to the heater core 18 in the case internal passage 124 from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side. After passing through the heater core 18, it is guided to the warm air inlet 30c. 4 and 5, the motor space forming portion 30 side of the heater core 18 is the front side in the vehicle front-rear direction DR1, and the opposite side of the heater core 18 to the motor space forming portion 30 side is the rear side in the vehicle front-rear direction DR1. On the side. In addition, an arrow FL4a in FIG. 4 and arrows FL4b and FL4c in FIG. 5 indicate flows of air flowing from the in-case passage 124 into the motor space 30a via the warm air introduction passage 32a and the warm air inlet 30c.
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
Except for what has been described above, this embodiment is the same as the first embodiment. Then, in the present embodiment, it is possible to obtain the same effect as that of the first embodiment, which is achieved by the configuration common to the first embodiment described above.
また、本実施形態によれば、温風導入通路32aは、ケース内通路124のうちヒータコア18に対する空気流れ上流側の空気を図4の矢印FL4aのように導く。すなわち、温風導入通路32aは、ケース内通路124のうちヒータコア18に対する空気流れ上流側の空気を、ヒータコア18のモータ空間形成部30側からそのモータ空間形成部30側とは反対側へヒータコア18を通過させてから、温風流入口30cへ導く。
Further, according to the present embodiment, the warm air introduction passage 32a guides the air in the case inside passage 124 on the upstream side of the air flow to the heater core 18 as shown by an arrow FL4a in FIG. That is, in the warm air introduction passage 32 a, the air in the air flow upstream side of the heater core 18 in the case internal passage 124 is moved from the motor space forming portion 30 side of the heater core 18 to the side opposite to the motor space forming portion 30 side. And then to the warm air inlet 30c.
従って、温風導入通路32aによってヒータコア18を通過させられる前の空気は、本実施形態では、ケース内通路124において未だヒータコア18を通過していない。これに対し、前述した第1実施形態の構成では、ケース内通路124において既にヒータコア18を通過した空気を、温風導入通路32aに流す際に再びヒータコア18を通過させることになる。
Therefore, in the present embodiment, the air before being passed through the heater core 18 by the warm air introduction passage 32a has not yet passed through the heater core 18 in the case internal passage 124. On the other hand, in the above-described configuration of the first embodiment, the air that has already passed through the heater core 18 in the in-case passage 124 is passed through the heater core 18 again when flowing into the warm air introduction passage 32a.
このようなことから、本実施形態では、温風導入通路32aを通じて温風をモータ空間30aへ流入させる際に、ヒータコア18を1度通過した空気を再びヒータコア18を通過させるということが必要とされない。そのため、第1実施形態と比較して、上記温風の風量を確保しやすいというメリットがある。
For this reason, in the present embodiment, when the warm air is introduced into the motor space 30a through the warm air introduction passage 32a, it is not necessary that the air that has passed through the heater core 18 once passes through the heater core 18 again. .. Therefore, as compared with the first embodiment, there is an advantage that it is easy to secure the air volume of the warm air.
(他の実施形態)
(1)上述の各実施形態では例えば図1に示すように、送風機モータ202の冷却に用いられたモータ冷却風はモータ空間30aから車室内へ排出されるが、そのモータ冷却風の排出先は車室内に限らない。要するに、そのモータ冷却風の排出先は、車両用空調ユニット10の外部であればよい。 (Other embodiments)
(1) In each of the above-described embodiments, as shown in FIG. 1, for example, the motor cooling air used to cool theblower motor 202 is discharged from the motor space 30a into the vehicle interior. Not limited to the passenger compartment. In short, the discharge destination of the motor cooling air may be outside the vehicle air conditioning unit 10.
(1)上述の各実施形態では例えば図1に示すように、送風機モータ202の冷却に用いられたモータ冷却風はモータ空間30aから車室内へ排出されるが、そのモータ冷却風の排出先は車室内に限らない。要するに、そのモータ冷却風の排出先は、車両用空調ユニット10の外部であればよい。 (Other embodiments)
(1) In each of the above-described embodiments, as shown in FIG. 1, for example, the motor cooling air used to cool the
(2)上述の各実施形態では例えば図1および図2に示すように、空調ケース12内には仕切壁26、27が設けられ、ケース内通路124は、その仕切壁26、27によって、第1通路125と第2通路126とに仕切られているが、これは一例である。例えば、その仕切壁26、27は設けられていなくてもよく、ケース内通路124は、並列に設けられた複数の通路に仕切られていなくてもよい。すなわち、車両用空調ユニット10は、吸込モードを内外気二層モードにできないものであってもよい。
(2) In each of the above-described embodiments, as shown in FIGS. 1 and 2, partition walls 26 and 27 are provided in the air conditioning case 12, and the in-case passage 124 is provided with the partition walls 26 and 27. It is divided into the first passage 125 and the second passage 126, but this is an example. For example, the partition walls 26 and 27 may not be provided, and the in-case passage 124 may not be divided into a plurality of passages provided in parallel. That is, the vehicle air conditioning unit 10 may not be capable of changing the suction mode to the inside/outside air two-layer mode.
(3)上述の各実施形態において説明した図1等の各図には、車両の向きが記載されているが、これは便宜的なものであり、車両用空調ユニット10がどのような向きで車両に搭載されるかについて限定はない。
(3) Although the orientation of the vehicle is described in each of the drawings such as FIG. 1 described in each of the above-described embodiments, this is for convenience, and the orientation of the vehicle air conditioning unit 10 may be any orientation. There is no limitation as to whether it will be installed in the vehicle.
(4)上述の各実施形態では例えば図1に示すように、送風ファン201は、ファン軸線CLfの他方側がケース内通路124の空気流れ下流側へ延びる向きを向くように配置されているが、送風ファン201の向きはこれに限定されるわけではない。
(4) In each of the above-described embodiments, as shown in FIG. 1, for example, the blower fan 201 is arranged so that the other side of the fan axis line CLf faces the direction extending toward the air flow downstream side of the in-case passage 124. The direction of the blower fan 201 is not limited to this.
(5)なお、本開示は、上述の実施形態に限定されることなく、種々変形して実施することができる。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
(5) It should be noted that the present disclosure is not limited to the above-described embodiment, and can be implemented with various modifications. Further, in each of the above-mentioned embodiments, it is needless to say that the elements constituting the embodiment are not necessarily indispensable except when explicitly indicated as being indispensable and when it is considered to be indispensable in principle. Yes.
また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
Further, in each of the above-mentioned embodiments, when numerical values such as the number of components of the embodiment, numerical values, amounts, ranges, etc. are mentioned, it is clearly limited to a particular number when explicitly stated to be essential. It is not limited to the specific number except for the case where it is done. Further, in each of the above-mentioned embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless specifically stated or in principle limited to a specific material, shape, positional relationship, etc. However, the material, shape, positional relationship, etc. are not limited.
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、車両用空調ユニットは、送風機モータが配置されたモータ空間を形成するモータ空間形成部を備える。そのモータ空間形成部には、羽根車に対する空気流れ下流側にてケース内通路に連通する冷風流入口および温風流入口が形成されている。そして、羽根車がケース内通路に空気流れを発生させることに伴って、モータ空間には、冷却器により冷却された冷風が冷風流入口から流入し、且つ、加熱器により加熱された温風が温風流入口から流入する。 (Summary)
According to the first aspect shown in part or all of each of the above-described embodiments, the vehicle air conditioning unit includes the motor space forming portion that forms the motor space in which the blower motor is arranged. In the motor space forming portion, a cold air inlet and a warm air inlet that communicate with the in-case passage are formed on the downstream side of the air flow with respect to the impeller. Then, as the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater is heated. Inflow from the hot air inlet.
上記各実施形態の一部または全部で示された第1の観点によれば、車両用空調ユニットは、送風機モータが配置されたモータ空間を形成するモータ空間形成部を備える。そのモータ空間形成部には、羽根車に対する空気流れ下流側にてケース内通路に連通する冷風流入口および温風流入口が形成されている。そして、羽根車がケース内通路に空気流れを発生させることに伴って、モータ空間には、冷却器により冷却された冷風が冷風流入口から流入し、且つ、加熱器により加熱された温風が温風流入口から流入する。 (Summary)
According to the first aspect shown in part or all of each of the above-described embodiments, the vehicle air conditioning unit includes the motor space forming portion that forms the motor space in which the blower motor is arranged. In the motor space forming portion, a cold air inlet and a warm air inlet that communicate with the in-case passage are formed on the downstream side of the air flow with respect to the impeller. Then, as the impeller generates an air flow in the passage in the case, the cold air cooled by the cooler flows into the motor space from the cold air inlet, and the warm air heated by the heater is heated. Inflow from the hot air inlet.
また、第2の観点によれば、送風機およびモータ空間形成部は、空調ケース内において冷却器に対する空気流れ下流側に配置され、モータ空間形成部は、ケース内通路とモータ空間との間を仕切っている。従って、送風機の送風量によってはモータ空間形成部周りを流れる上記冷風によってモータ空間形成部内の送風機モータが冷やされ過ぎになりやすいところ、上記冷風と上記温風とを混合した温調風で送風機モータを適度に冷却することが可能である。
Further, according to the second aspect, the blower and the motor space forming unit are arranged in the air conditioning case on the downstream side of the air flow with respect to the cooler, and the motor space forming unit partitions the passage in the case and the motor space. ing. Therefore, depending on the amount of air blown by the blower, the blower motor in the motor space forming portion is likely to be overcooled by the cold air flowing around the motor space forming portion. Can be appropriately cooled.
また、第3の観点によれば、風量比率調整ドアは空調ケース内に配置され、冷却器から流出した空気のうち加熱器を通過する空気の風量と加熱器を迂回して流れる空気の風量との比率を調整する。また、モータ空間形成部は、上記冷風と上記温風とが風量比率調整ドアの作動状態に拘わらずモータ空間に流入することが可能な構成となっている。従って、例えば最大冷房時であっても最大暖房時であっても、上記冷風と上記温風とをモータ空間へ流入させることが可能である。要するに、風量比率調整ドアの作動状態の影響を受けずに、上記冷風と上記温風とを混合した温調風で送風機モータを冷却することが可能である。
Further, according to the third aspect, the air volume ratio adjustment door is arranged in the air conditioning case, and the air volume of the air flowing out of the cooler that passes through the heater and the air volume of the air that bypasses the heater and flow. Adjust the ratio of. Further, the motor space forming unit is configured to allow the cold air and the warm air to flow into the motor space regardless of the operating state of the air volume ratio adjustment door. Therefore, it is possible to allow the cold air and the warm air to flow into the motor space even during the maximum cooling or the maximum heating, for example. In short, it is possible to cool the blower motor with temperature-controlled air that is a mixture of the cold air and the warm air without being affected by the operating state of the air volume ratio adjustment door.
また、第4の観点によれば、加熱器は、空調ケース内において羽根車に対する空気流れ下流側に配置される。そして、冷風流入口は、加熱器と風量比率調整ドアとに対する空気流れ上流側にてケース内通路に連通している。従って、風量比率調整ドアの作動状態の影響を受けずに上記冷風をモータ空間へ流入させることを、冷風流入口の配置によって容易に実現することが可能である。
Also, according to the fourth aspect, the heater is arranged on the downstream side of the air flow with respect to the impeller in the air conditioning case. The cold air inlet communicates with the passage inside the case on the upstream side of the air flow with respect to the heater and the air volume ratio adjusting door. Therefore, it is possible to easily realize the inflow of the cold air into the motor space without being affected by the operating state of the air volume ratio adjustment door by the arrangement of the cold air inlet.
また、第5の観点によれば、温風通路部は温風導入通路を形成し、その温風導入通路は、ケース内通路と温風流入口とを接続し上記温風を温風流入口へ導く。そして、その温風導入通路は、風量比率調整ドアの可動範囲から外れた箇所を通って延びている。従って、風量比率調整ドアの作動状態の影響を受けずに上記温風をモータ空間へ流入させることを、温風導入通路の配置によって容易に実現することが可能である。
According to a fifth aspect, the warm air passage portion forms a warm air introduction passage, and the warm air introduction passage connects the in-case passage and the warm air inlet to guide the warm air to the warm air inlet. .. The hot air introduction passage extends through a portion outside the movable range of the air volume ratio adjustment door. Therefore, it is possible to easily realize the inflow of the warm air into the motor space without being affected by the operating state of the air volume ratio adjusting door by the arrangement of the warm air introduction passage.
また、第6の観点によれば、加熱器は、空調ケース内において羽根車とモータ空間形成部とに対する空気流れ下流側に配置される。そして、温風導入通路は、ケース内通路のうち加熱器に対する空気流れ下流側の空気を、加熱器のモータ空間形成部側とは反対側からモータ空間形成部側へ加熱器を通過させてから、温風流入口へ導く。従って、加熱器を通過することで加熱される空気は、その加熱器を通過すると同時に加熱器のモータ空間形成部側まで来ていることになる。そのため、加熱器により加熱された空気(すなわち、上記温風)をモータ空間形成部の温風流入口へ導く温風導入通路を短く形成することが可能である。このことは、延いては車両用空調ユニットの小型化につながる。
Further, according to the sixth aspect, the heater is arranged on the downstream side of the air flow with respect to the impeller and the motor space forming unit in the air conditioning case. The warm air introduction passage is configured to allow the air on the downstream side of the air flow to the heater in the passage in the case to pass through the heater from the side opposite to the motor space forming portion side of the heater to the motor space forming portion side. , Lead to the warm air inlet. Therefore, the air heated by passing through the heater reaches the motor space forming portion side of the heater at the same time as passing through the heater. Therefore, it is possible to shorten the hot air introduction passage that guides the air heated by the heater (that is, the hot air) to the hot air inlet of the motor space forming unit. This leads to downsizing of the vehicle air conditioning unit.
また、第7の観点によれば、温風導入通路は、ケース内通路のうち加熱器に対する空気流れ上流側の空気を、加熱器のモータ空間形成部側からそのモータ空間形成部側とは反対側へ加熱器を通過させてから、温風流入口へ導く。
Further, according to the seventh aspect, the warm air introduction passage is configured such that the air in the case internal passage on the upstream side of the air flow with respect to the heater is opposite to the motor space forming portion side of the heater from the motor space forming portion side. After passing the heater to the side, lead to the warm air inlet.
従って、その温風導入通路によって加熱器を通過させられる前の空気はケース内通路のうち加熱器に対する空気流れ上流側にあるので、ケース内通路において未だ加熱器を通過していない。その一方で、例えばこれとは逆に、その温風導入通路によって加熱器を通過させられる前の空気がケース内通路のうち仮に加熱器に対する空気流れ下流側にある場合を想定すると、その空気はケース内通路において既に加熱器を通過している場合がある。
Therefore, since the air before being passed through the heater by the hot air introduction passage is on the upstream side of the air flow to the heater in the case internal passage, it has not yet passed through the heater in the case internal passage. On the other hand, conversely, for example, assuming that the air before being passed through the heater by the hot air introduction passage is temporarily on the downstream side of the air flow with respect to the heater in the case internal passage, the air is In some cases, the heater may have already passed through the passage in the case.
このようなことから、第7の観点によれば、温風導入通路を通じて上記温風をモータ空間へ流入させる際に、加熱器を1度通過した空気を再び加熱器を通過させるということが必要とされないので上記温風の風量を確保しやすいというメリットがある。
From this, according to the seventh aspect, when the warm air is introduced into the motor space through the warm air introduction passage, it is necessary that the air that has passed through the heater once passes through the heater again. Since it is not so, there is an advantage that it is easy to secure the air volume of the warm air.
また、第8の観点によれば、ケース内通路は、第1通路とその第1通路に対し並列に設けられた第2通路とに仕切られている。その第1通路には内気よりも外気が多く流れ、且つ、第2通路には外気よりも内気が多く流れる。そして、冷風流入口および温風流入口は、ケース内通路のうち第1通路に連通する。ここで、外気は内気に比べ低湿度である。そのため、例えば冷風流入口と温風流入口とが第1通路ではなく第2通路に連通する場合と比較して、送風機モータの結露防止効果を向上させることが可能である。
Also, according to the eighth aspect, the passage in the case is partitioned into a first passage and a second passage provided in parallel with the first passage. The outside air flows more than the inside air in the first passage, and the inside air flows more than the outside air in the second passage. The cold air inlet and the warm air inlet communicate with the first passage in the case inner passage. Here, the outside air has a lower humidity than the inside air. Therefore, for example, the dew condensation prevention effect of the blower motor can be improved as compared with the case where the cold air inlet and the warm air inlet communicate with the second passage instead of the first passage.
Claims (8)
- 車両用空調ユニットであって、
車室内へ流出する空気が流れるケース内通路(124)が形成された空調ケース(12)と、
前記空調ケース内に配置され、前記ケース内通路に流れる空気を冷却する冷却器(16)と、
送風機モータ(202)と該送風機モータにより回転させられ前記ケース内通路に空気流れを発生させる羽根車(201)とを有する送風機(20)と、
前記ケース内通路において前記冷却器から流出した空気を加熱する加熱器(18)と、
前記送風機モータが配置されたモータ空間(30a)を形成するモータ空間形成部(30)とを備え、
前記モータ空間形成部には、前記羽根車に対する空気流れ下流側にて前記ケース内通路に連通する冷風流入口(30b)および温風流入口(30c)が形成されており、
前記羽根車が前記ケース内通路に空気流れを発生させることに伴って、前記モータ空間には、前記冷却器により冷却された冷風が前記冷風流入口から流入し、且つ、前記加熱器により加熱された温風が前記温風流入口から流入する、車両用空調ユニット。 A vehicle air conditioning unit,
An air-conditioning case (12) having an in-case passage (124) through which air flowing into the vehicle compartment flows;
A cooler (16) arranged in the air-conditioning case for cooling air flowing in the case internal passage;
A blower (20) having a blower motor (202) and an impeller (201) rotated by the blower motor to generate an air flow in the passage in the case;
A heater (18) for heating the air flowing out from the cooler in the passage in the case;
A motor space forming unit (30) forming a motor space (30a) in which the blower motor is arranged,
A cold air inlet (30b) and a warm air inlet (30c) communicating with the passage in the case are formed in the motor space forming portion on the downstream side of the air flow with respect to the impeller,
When the impeller generates an air flow in the passage in the case, cold air cooled by the cooler flows into the motor space from the cold air inlet and is heated by the heater. An air conditioning unit for a vehicle, in which warm air flows in from the warm air inlet. - 前記送風機および前記モータ空間形成部は、前記空調ケース内において前記冷却器に対する空気流れ下流側に配置され、
前記モータ空間形成部は、前記ケース内通路と前記モータ空間との間を仕切っている、請求項1に記載の車両用空調ユニット。 The blower and the motor space forming unit are arranged in the air conditioning case on the downstream side of the air flow with respect to the cooler,
The vehicle air conditioning unit according to claim 1, wherein the motor space forming portion partitions the passage in the case from the motor space. - 前記空調ケース内に配置され、前記冷却器から流出した空気のうち前記加熱器を通過する空気の風量と前記加熱器を迂回して流れる空気の風量との比率を調整する風量比率調整ドア(23、24)を備え、
前記モータ空間形成部は、前記冷風と前記温風とが前記風量比率調整ドアの作動状態に拘わらず前記モータ空間に流入することが可能な構成となっている、請求項1または2に記載の車両用空調ユニット。 An air volume ratio adjustment door (23) arranged in the air conditioning case, for adjusting a ratio of an air volume of the air flowing out of the cooler and passing through the heater to an air volume of the air flowing around the heater. , 24),
The motor space forming unit is configured to allow the cold air and the warm air to flow into the motor space regardless of an operating state of the air volume ratio adjustment door. Vehicle air conditioning unit. - 前記空調ケース内において前記羽根車に対する空気流れ下流側に配置され、前記冷却器から流出した空気のうち前記加熱器を通過する空気の風量と前記加熱器を迂回して流れる空気の風量との比率を調整する風量比率調整ドア(23、24)を備え、
前記加熱器は、前記空調ケース内において前記羽根車に対する空気流れ下流側に配置され、
前記冷風流入口は、前記加熱器と前記風量比率調整ドアとに対する空気流れ上流側にて前記ケース内通路に連通している、請求項1または2に記載の車両用空調ユニット。 A ratio of an air volume of air passing through the heater and an air volume of bypassing the heater, which is arranged on the downstream side of the air flow with respect to the impeller in the air conditioning case and outflows from the cooler. Equipped with air volume ratio adjustment doors (23, 24) for adjusting
The heater is arranged in the air conditioning case on the downstream side of the air flow with respect to the impeller,
The vehicle air conditioning unit according to claim 1, wherein the cold air inlet communicates with the passage in the case on an upstream side of an air flow with respect to the heater and the air volume ratio adjusting door. - 前記ケース内通路と前記温風流入口とを接続し前記温風を前記温風流入口へ導く温風導入通路(32a)を形成する温風通路部(32)を備え、
前記温風導入通路は、前記風量比率調整ドアの可動範囲(R1、R2)から外れた箇所を通って延びている、請求項4に記載の車両用空調ユニット。 A warm air passage portion (32) that connects the in-case passage and the warm air inlet to form a warm air introduction passage (32a) that guides the warm air to the warm air inlet;
The vehicle air conditioning unit according to claim 4, wherein the warm air introduction passage extends through a portion outside the movable range (R1, R2) of the air volume ratio adjustment door. - 前記ケース内通路と前記温風流入口とを接続し前記温風を前記温風流入口へ導く温風導入通路(32a)を形成する温風通路部(32)を備え、
前記加熱器は、前記空調ケース内において前記羽根車と前記モータ空間形成部とに対する空気流れ下流側に配置され、
前記温風導入通路は、前記ケース内通路のうち前記加熱器に対する空気流れ下流側の空気を、前記加熱器の前記モータ空間形成部側とは反対側から前記モータ空間形成部側へ前記加熱器を通過させてから、前記温風流入口へ導く、請求項2に記載の車両用空調ユニット。 A warm air passage portion (32) that connects the in-case passage and the warm air inlet to form a warm air introduction passage (32a) that guides the warm air to the warm air inlet;
The heater is arranged in the air conditioning case on the downstream side of the air flow with respect to the impeller and the motor space forming portion,
The warm air introducing passage transfers air on the air flow downstream side of the heater from the side opposite to the motor space forming portion side of the heater to the motor space forming portion side in the case internal passage. The air conditioning unit for a vehicle according to claim 2, wherein the air conditioning unit is guided to the warm air inlet after passing through. - 前記ケース内通路と前記温風流入口とを接続し前記温風を前記温風流入口へ導く温風導入通路(32a)を形成する温風通路部(32)を備え、
前記加熱器は、前記空調ケース内において前記羽根車と前記モータ空間形成部とに対する空気流れ下流側に配置され、
前記温風導入通路は、前記ケース内通路のうち前記加熱器に対する空気流れ上流側の空気を、前記加熱器の前記モータ空間形成部側から該モータ空間形成部側とは反対側へ前記加熱器を通過させてから、前記温風流入口へ導く、請求項2に記載の車両用空調ユニット。 A warm air passage portion (32) that connects the in-case passage and the warm air inlet to form a warm air introduction passage (32a) that guides the warm air to the warm air inlet;
The heater is arranged in the air conditioning case on the downstream side of the air flow with respect to the impeller and the motor space forming portion,
The warm air introduction passage transfers air on the upstream side of the air flow to the heater in the case internal passage from the motor space forming part side of the heater to the opposite side to the motor space forming part side. The air conditioning unit for a vehicle according to claim 2, wherein the air conditioning unit is guided to the warm air inlet after passing through. - 前記ケース内通路は、第1通路(125)と該第1通路に対し並列に設けられた第2通路(126)とに仕切られており、
前記第1通路には内気よりも外気が多く流れ、且つ、前記第2通路には外気よりも内気が多く流れ、
前記冷風流入口および前記温風流入口は、前記ケース内通路のうち前記第1通路に連通する、請求項1ないし7のいずれか1つに記載の車両用空調ユニット。 The case internal passage is partitioned into a first passage (125) and a second passage (126) provided in parallel with the first passage,
The outside air flows in the first passage more than the inside air, and the inside air flows in the second passage more than the outside air,
8. The vehicle air conditioning unit according to claim 1, wherein the cold air inlet and the warm air inlet communicate with the first passage of the in-case passage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019029676A JP7070461B2 (en) | 2019-02-21 | 2019-02-21 | Vehicle air conditioning unit |
JP2019-029676 | 2019-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170753A1 true WO2020170753A1 (en) | 2020-08-27 |
Family
ID=72143791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003444 WO2020170753A1 (en) | 2019-02-21 | 2020-01-30 | Vehicle air-conditioning unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7070461B2 (en) |
WO (1) | WO2020170753A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009012596A (en) * | 2007-07-04 | 2009-01-22 | Denso Corp | Vehicular air conditioner |
JP2018001971A (en) * | 2016-07-01 | 2018-01-11 | 株式会社Soken | Air conditioner |
JP2018001820A (en) * | 2016-06-28 | 2018-01-11 | 株式会社デンソー | Blower unit |
JP2019081495A (en) * | 2017-10-31 | 2019-05-30 | 株式会社デンソー | Vehicular air-conditioning unit |
-
2019
- 2019-02-21 JP JP2019029676A patent/JP7070461B2/en active Active
-
2020
- 2020-01-30 WO PCT/JP2020/003444 patent/WO2020170753A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009012596A (en) * | 2007-07-04 | 2009-01-22 | Denso Corp | Vehicular air conditioner |
JP2018001820A (en) * | 2016-06-28 | 2018-01-11 | 株式会社デンソー | Blower unit |
JP2018001971A (en) * | 2016-07-01 | 2018-01-11 | 株式会社Soken | Air conditioner |
JP2019081495A (en) * | 2017-10-31 | 2019-05-30 | 株式会社デンソー | Vehicular air-conditioning unit |
Also Published As
Publication number | Publication date |
---|---|
JP2020132014A (en) | 2020-08-31 |
JP7070461B2 (en) | 2022-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6583378B2 (en) | Air conditioning unit for vehicles | |
JP6958222B2 (en) | Vehicle air conditioner | |
JP2000219026A (en) | Air conditioner for vehicle | |
CN110958953A (en) | Air conditioning unit for vehicle | |
WO2014058009A1 (en) | Air conditioning device for vehicle | |
CN106240289B (en) | Device for distributing air for an air conditioning system of a motor vehicle | |
WO2018083940A1 (en) | Air conditioning unit for vehicle | |
WO2020170754A1 (en) | Vehicle air-conditioning unit | |
JP2001088532A (en) | Air conditioner for vehicle | |
JP4178866B2 (en) | Air conditioner for vehicles | |
WO2020170753A1 (en) | Vehicle air-conditioning unit | |
US20180272833A1 (en) | Vehicle hvac system with sliding door | |
WO2020137279A1 (en) | Vehicle air-conditioning unit | |
KR101705708B1 (en) | Air conditioner for vehicle | |
US20070131407A1 (en) | Air conditioning apparatus | |
WO2019230554A1 (en) | Vehicular air conditioning device | |
JP2008265447A (en) | Vehicular air-conditioner | |
WO2023119445A1 (en) | Vehicular air-conditioning device | |
JP2022177627A (en) | Air-conditioning unit for vehicle | |
JP4538815B2 (en) | Air conditioning unit for vehicles | |
JP2021146800A (en) | Vehicle air conditioning unit | |
CN114616113A (en) | Air conditioner for vehicle | |
JP2002166720A (en) | Air conditioner for vehicle | |
JP2021003958A (en) | Air conditioner | |
JP2011131630A (en) | Vehicular air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20759655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20759655 Country of ref document: EP Kind code of ref document: A1 |