WO2020170654A1 - 車両搭載機器の制御装置 - Google Patents
車両搭載機器の制御装置 Download PDFInfo
- Publication number
- WO2020170654A1 WO2020170654A1 PCT/JP2020/000847 JP2020000847W WO2020170654A1 WO 2020170654 A1 WO2020170654 A1 WO 2020170654A1 JP 2020000847 W JP2020000847 W JP 2020000847W WO 2020170654 A1 WO2020170654 A1 WO 2020170654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- group
- signal
- sub
- main
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
Definitions
- the present invention relates to a control device for a vehicle-mounted device mounted in a vehicle such as an automobile, and more particularly to a control device for a vehicle-mounted device equipped with an abnormality diagnosis function of a sensor that detects a physical quantity that represents a driving state of the vehicle. is there.
- a driver detects a turning direction and a turning torque of a steering shaft that is turned by operating a steering wheel. Then, based on the detected torque value, the electric motor is driven so as to rotate in the same direction as the rotation direction of the steering shaft, and the steering assist torque is generated.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-74858
- an intermediate value abnormality in which the value of the sensor signal of the torque sensor falls within a predetermined range (for example, an abnormality in which the value of the sensor signal of the torque sensor is fixed to an intermediate value)
- the deviation between the generated sensor signals is obtained, and when the deviation is larger than a preset set value, it is possible to estimate and detect that one of the torque sensors is abnormal.
- An object of the present invention is to accurately identify which of the two systems sensors is truly normal or abnormal, and to safely control the vehicle-mounted device based on the detection value of the sensor on the side identified as normal. It is to provide a control device for a new vehicle-mounted device that can continue.
- a sensor unit including a first sensor group and a second sensor group
- the first sensor group includes a first main sensor and a first sub sensor
- the second sensor group includes a second main sensor and a second sub sensor
- the first main sensor detects a physical quantity representing a driving state of the vehicle and outputs a first main sensor signal
- the first sub sensor detects a physical quantity representing a driving state of the vehicle and outputs a first sub sensor signal.
- the second main sensor detects a physical quantity representing a driving state of the vehicle and outputs a second main sensor signal
- the second sub sensor detects a physical quantity representing a driving state of the vehicle and outputs a second sub sensor signal.
- a first microprocessor which includes a first same-group abnormality determination signal generation unit, a first same-group abnormality determination unit, a first different group signal comparison unit, a first different group abnormality determination unit, and a first microcomputer Including a communication unit and a first command signal generation unit,
- the first same group abnormality determination signal generation unit generates an abnormality determination signal for determining an abnormal state from the first main sensor signal and the first sub sensor signal,
- the first same-group abnormality determination unit determines whether there is an abnormality in the first sensor group based on the abnormality determination signal from the first same-group abnormality determination signal generation unit
- the first inter-microcomputer communication section obtains the second main sensor signal or the second sub-sensor signal of the second sensor group from the second inter-microcomputer communication section of the second microprocessor,
- the first different group signal comparison unit determines that the first main group sensor signal and the first sub sensor signal of the first sensor group are present when the first same group abnormality determination unit determines that the sensor of the first sensor group is abnormal.
- the first different group abnormality determination unit determines whether the first main sensor signal and the first sub sensor signal of the first sensor group are compared with the second main sensor signal or the second sub sensor signal of the second sensor group. Determine which sensor in one sensor group is operating normally,
- the first command signal generation unit is a first command signal for driving and controlling the actuator based on the sensor signal of the sensor determined to be operating normally by the sensor of the first sensor group in the first different group abnormality determination unit.
- a first microprocessor for generating A second microprocessor which includes a second same-group abnormality determination signal generation unit, a second same-group abnormality determination unit, a second different-group signal comparison unit, a second different-group abnormality determination unit, and a second microcomputer.
- the second same group abnormality determination signal generation unit generates an abnormality determination signal for determining an abnormal state from the second main sensor signal and the second sub sensor signal
- the second same-group abnormality determination unit determines whether there is an abnormality in the second sensor group based on the abnormality determination signal from the second same-group abnormality determination signal generation unit
- the second inter-microcomputer communication unit obtains the first main sensor signal or the first sub-sensor signal of the first sensor group from the first inter-microcomputer communication unit of the first microprocessor,
- the second different group signal comparing unit determines that the sensor of the second sensor group is abnormal
- the second different group signal comparing unit compares the second main sensor signal and the second sub sensor signal of the second sensor group with the second main sensor signal.
- the second different group abnormality determining unit determines whether the second main sensor signal and the second sub sensor signal of the second sensor group are compared with the first main sensor signal or the first sub sensor signal of the first sensor group. Determine which sensor of the two sensor group is operating normally,
- the second command signal generation unit is a second command signal for controlling the drive of the actuator based on the sensor signal of the sensor determined to be operating normally by the sensor of the second sensor group in the second different group abnormality determination unit.
- a second microprocessor for generating.
- the main sensor signal of one sensor group and the sub sensor when it is determined that one of the sensor groups has an abnormality from the main sensor signal and the sub sensor signal of one sensor group, the main sensor signal of one sensor group and the sub sensor The signal is compared with the main sensor signal or the sub sensor signal of the other sensor group, and within the sensors of the one sensor group, the sensor signal that matches the main sensor signal or the sub sensor signal of the other sensor group is detected. Since the output sensor is specified as a sensor that is operating normally, the reliability of the abnormality diagnosis function can be improved.
- FIG. 3 is a functional block diagram showing an embodiment of the present invention implemented by the microprocessor shown in FIG. 2.
- 4 is an explanatory diagram illustrating a relationship between a sensor signal acquisition timing and a sensor detection timing by an inter-microcomputer communication unit of the functional block of FIG. 3.
- FIG. 4 is a flowchart of a control flow executed by a microprocessor to execute the functional blocks shown in FIG. 3.
- 6 is a flowchart showing a first example of a specific control flow of step S40 in FIG. 6 is a flowchart showing a second example of a specific control flow of step S40 in FIG.
- FIG. 1 shows a configuration of a steering device including an electric power steering device as a vehicle-mounted device to which the present invention is applied.
- the steering device 10 steers the front wheels 11, 11 as the steering wheel 15 rotates, and has a rack-and-pinion type steering gear 12.
- the pinion gear 13 of the steering gear 12 is connected to the steering wheel 15 via the steering shaft 14, and the rack gear 16 of the steering gear 12 is provided on the rack shaft 17.
- Both ends of the rack shaft 17 are connected to the front wheels 11, 11 via tie rods 18, 18.
- An electric motor 20 is connected to the steering shaft 14 via a speed reduction mechanism 19, and the speed reduction mechanism 19 includes a worm 21 and a worm wheel 22.
- the worm 21 is provided integrally with the motor shaft 23 of the electric motor 20.
- the rotation torque from the motor shaft 23 is transmitted to the steering shaft 14 via the speed reduction mechanism 19.
- the steering shaft 14 is provided with a torque sensor 24 that detects a steering torque.
- the steering (turning) torque of the steering shaft 14 is one of the physical quantities that represent the driving state of the vehicle, and the torque sensor 24 functions as a sensor that detects the physical quantity that represents the driving state of the vehicle.
- a steering angle sensor that detects the steering angle of the front wheels can be used instead of the torque sensor 24 of the steering shaft 14.
- the electric motor 20 is integrally provided with an electronic control unit (ECU) 25 and a rotation angle sensor 26 for detecting the rotation angle of the motor shaft 23.
- the rotation angle sensor 26 detects the rotation angle of the electric motor 20 (motor rotation angle).
- a current sensor for detecting the current flowing through the stator winding may be provided.
- the rotation angle of the motor shaft 23 and the current flowing through the stator winding are also one of the physical quantities that represent the operating state of the vehicle, and the rotation angle sensor 26 and the current sensor detect the physical quantity that represents the operating state of the vehicle. Functions as a sensor.
- the electronic control unit 25 controls the drive current of the electric motor 20 based on the steering torque signal, the rotation angle signal, the current signal, and the vehicle speed signal detected by the vehicle speed sensor 27 to reduce the rotation torque of the electric motor 20 to a deceleration mechanism.
- the steering assist torque is applied by applying the steering assist torque to the steering shaft 14 via 19.
- FIG. 2 shows the configuration of the electronic control unit 25 that controls the electric motor 20.
- the electronic control unit 25 is configured in a redundant form including a dual control system.
- FIG. 2 shows a configuration in which the torque sensor 24 and the electronic control unit 25 are connected to each other. ) Is a dual-system three-phase motor.
- the double system winding is wound around the stator core, and the rotating torque is applied to the rotor in accordance with the electric power supplied to each winding. Therefore, when both control systems of the dual system are normal, rotational torque is applied to each winding, and when an abnormality occurs in one control system, rotational torque is applied only to the winding of the other control system. ..
- the electronic control unit 25 is configured by a dual system, one first control system supplies a drive current to the first winding group, and the other second control system supplies a drive current to the second winding group. Supply.
- a part corresponding to the first control system is appended with “a” at the end of the reference numeral, and a part corresponding to the second control system is added at the end of the reference numeral with “b”. Will be additionally described.
- the electronic control unit 25 has a control system board 28 and a power system board 29.
- the control system board 28 is a printed wiring board using a non-metal base material such as a glass epoxy resin base material, and has control system electronic components such as a microprocessor (MCU) 30 and a pre-driver (Pre-Driver) 31 on both sides. It is implemented.
- the power system board 29 uses a metal circuit board having an excellent heat transfer property, and an inverter 32 including a switching element such as a MOSFET is mounted on one surface of the power system board 29.
- a glass epoxy circuit board may be used instead of the metal circuit board.
- the torque sensor signal of the torque sensor 24, the rotation angle sensor signal of the rotation angle sensor 26, and the vehicle speed signal are input to the microprocessor 30. Further, a current signal from a current sensor that monitors the three-phase current and overcurrent is also input. The microprocessor 30 calculates the target assist torque based on each signal and outputs the calculated value to the pre-driver 31.
- the microprocessor 30 is supplied with power from a power supply IC 33 provided on the control system board 28.
- the power supply IC 33 is connected to the low power side battery or an ignition line. The same applies to the other power supply ICs 34 and 35 described later.
- An inter-microcomputer communication line 36 for transmitting and receiving information such as mutual control status and sensor signals is provided between the first microprocessor 30a and the second microprocessor 30b forming the dual system.
- each of the microprocessors 30a and 30b has a watchdog timer function, and monitors the operating state of the control program of each of the microprocessors 30a and 30b. Then, when the monitoring information is exchanged through the inter-microcomputer communication line 36 and an abnormality occurs in one of the microprocessors, the normal microprocessor that receives the abnormality signal executes the control corresponding to the abnormality.
- the sensors of each control system are provided exclusively for each control system, and the sensor signal of one control system is It is not directly input to the microprocessor of the other control system. In the present embodiment, only when one of the microprocessors requires it, the other sensor signal is taken in from the other microprocessor via the inter-microcomputer communication line 36.
- the first microprocessor 30a acquires the torque sensor signal of the second torque sensor group 24b
- the first inter-microcomputer communication unit of the first microprocessor 30a and the second microcomputer of the second microprocessor 30b can be obtained by using the intercommunication unit.
- the first microprocessor 30a does not need to have an input port for directly fetching the torque sensor signal from the second torque sensor group 24b, and the increase of the input port in the first microprocessor 30a can be suppressed. it can.
- the first microprocessor 30a is completely excluded from having the input port for directly obtaining the torque sensor signal from the second torque sensor group 24b. Not a thing. It may have an input port for directly acquiring the torque sensor signal from the second torque sensor group 24b as necessary.
- the second microprocessor 30b has the same configuration.
- the torque sensor 24 is, for example, a magnetostrictive type, and is supplied with power from a power supply IC 34 provided on the control system board 28.
- the torque sensor 24 has a first torque sensor group 24a and a second torque sensor group 24b, and the torque sensors 24 constituting the first torque sensor group 24a and the second torque sensor group 24b have two Hall ICs, respectively. Equipped with. In this way, the first torque sensor group 24a and the second torque sensor group 24b detect the same physical quantity, here, the steering (turning) torque of the steering shaft 14.
- the first torque sensor group 24a is composed of two (main and sub) torque sensors of the same detection method, and the torque sensor signals from the first main torque sensor 24am and the first sub torque sensor 24as are sent to the first microprocessor 30a. Output.
- the second torque sensor group 24b includes two (main and sub) torque sensors of the same detection method, and outputs torque sensor signals from the second main torque sensor 24bm and the second sub torque sensor 24bs to the second micro sensor. Output to the processor 30b.
- each of the first torque sensor group 24a and the second torque sensor group 24b detects the steering torque of the steering shaft 14 by the same detection method. Therefore, the first main torque sensor 24am, the first sub torque sensor 24as, the second main torque sensor 24bm, and the second sub torque sensor 24bs are magnetostrictive torque sensors.
- the first pre-driver 31a and the second pre-driver 31b output a drive command signal according to the target assist torque to the gates of the MOSFETs forming the first inverter 32a and the second inverter 32b.
- the 1st inverter 32a and the 2nd inverter 32b control the electric current to each winding group according to a drive command signal.
- the first inverter 32a and the second inverter 32b are supplied with power from the high-power battery 37.
- the rotation angle sensor 26 has a first rotation angle sensor group 26a and a second rotation angle sensor group 26b, and detects the same physical quantity, here, the rotation angle of the motor shaft 23.
- the rotation angle sensors forming the first rotation angle sensor group 26a and the second rotation angle sensor group 26b each include two magnetic detection elements.
- the rotation angle sensor 26 having a magnetic detection element detects the rotation angle of the motor shaft 23 by detecting a rotating magnetic field generated by rotation of a magnet provided on the motor shaft 23.
- the first rotation angle sensor group 26a includes two (main and sub) rotation angle sensors of the same detection method, and outputs the rotation angle sensor signals from the first main rotation angle sensor and the first sub rotation angle sensor to the first micro. Output to the processor 30a.
- the second rotation angle sensor group 26b includes two (main and sub) rotation angle sensors of the same detection method, and outputs the rotation angle sensor signals from the second main rotation angle sensor and the second sub rotation angle sensor. Output to the second microprocessor 30b.
- first rotation angle sensor group 26a and the second rotation angle sensor group 26b each detect the rotation angle of the motor shaft 23 by the same detection method (detection by a magnetic detection element).
- the first rotation angle sensor 26a is supplied with power from a power supply IC 35a provided on the control system board 28.
- the second rotation angle sensor 26b is supplied with power from the power supply IC 35b.
- the sensor signal of each rotation angle sensor group 26a, 26b is received by each of the corresponding first microprocessor 30a and second microprocessor 30b.
- the deviation of the values of the sensor signals detected by the two systems of torque sensors 24am and 24as is obtained, and the deviation is previously calculated.
- it can be estimated that one of the torque sensors 24am and 24as is abnormal.
- the deviation of the outputs of the two systems is obtained in this way, it is not possible to identify which system is out of order, and as described above, there is a problem in the reliability of the abnormality diagnosis function. That's right.
- the present embodiment proposes a control device that can accurately identify which sensor of the two systems is truly normal or abnormal, the details of which will be described below.
- the abnormality determination is executed by a control program stored in each of the microprocessors 30a and 30b. Since this control program can be regarded as a control function, it will be described below as a functional block.
- FIG. 3 shows functional blocks of control functions executed by the microprocessor according to the present embodiment.
- FIG. 3 shows an example in which the torque sensor 24 is used as the sensor, the same applies to the case of other sensors, and the description of the other sensors will be omitted.
- the torque sensor signal of the first torque sensor group 24a is input to the first microprocessor 30a via the input port.
- the first torque sensor group 24a includes a first main torque sensor 24am and a first sub torque sensor 24as.
- the sensor signals of the torque sensors 24am and 24as are input to the signal processing circuits 38am and 38as, AD-converted by the AD converters of the signal processing circuits 38am and 38as, and input to the first microprocessor 30a. ..
- the AD converter may be provided in the first microprocessor 30a, and in this case, the sensor signals of the torque sensors 24am and 24as are directly input to the first microprocessor 30a. ..
- the signal processing circuits 38am and 38as can have a self-diagnosis function, and can output self-diagnosis information when an abnormality occurs in each of the torque sensors 24am and 24as. The use of self-diagnosis information will be described later.
- the first microprocessor 30a can execute various control functions by a control program.
- the abnormality diagnosis function of the sensor which is the subject of the present invention, will be described.
- the first microprocessor 30a includes at least a first inter-microcomputer communication unit 39a, a first same-group abnormality determination signal generation unit 40a, a first same-group abnormality determination unit 41a, a first different-group signal comparison unit 42a, and It is provided with a first different group abnormality determination unit 43a and a first command signal generation unit 44a.
- the first same group abnormality determination signal generation unit (CMPA-1) 40a includes a first main torque sensor signal of the first main torque sensor 24am and a first sub torque sensor 24as of the first sub torque sensor 24as, which form the first torque sensor group 24a. It has a function of comparing one auxiliary torque sensor signal. Further, the comparison result in the first same-group abnormality determination signal generation unit 40a is used as an "abnormality determination signal" for the abnormality determination executed by the first same-group abnormality determination unit (EMGA-1) 41a in the subsequent stage. However, it can take various forms.
- the first main and sub torque sensors 24am and 24as can be specified by, for example, the port number of the input port. Further, since the AD conversion data of the torque sensor signal is stored in the internal data register corresponding to the port number, the AD conversion data of this internal data register is used to determine the first main, the first main from the sub torque sensors 24am, 24as, The value of the sub torque sensor signal is read.
- the AD converter is provided in the signal processing circuits 38am and 38as, but it may be provided in the input circuit of the first microprocessor 30a.
- a deviation between the values of the first main torque sensor 24am and the first main torque sensor 24as and the auxiliary torque sensor signals can be output as an "abnormality determination signal".
- This deviation includes information on whether or not there is an abnormality in either the first main torque sensor 24am or the first sub torque sensor 24as.
- the comparison result (deviation) of the first same-group abnormality determination signal generation unit 40a is sent to the first same-group abnormality determination unit 41a, and any one of the torque sensors 24am and 24as of the first torque sensor group 24a has an abnormality. A determination is made whether there is.
- the first same-group abnormality determination unit 41a determines which torque sensor 24am the deviation of the first main/sub torque sensor signals sent from the first same-group abnormality determination signal generation unit 40a is, for example, a predetermined value or less. , 24as are also judged to be normal.
- the abnormal state is determined from the magnitude of the deviation, so this example will be described below.
- the first same group abnormality determination unit 41a When the values of the first main torque sensor 24am and the first main torque sensor auxiliary signal from the first auxiliary torque sensor 24as match (the deviation is smaller than a predetermined value), the first same group abnormality determination unit 41a , And outputs a command for calculating a control signal to the first winding set to the first command signal generator (CNTA) 44a, which is regarded as normal.
- CNTA first command signal generator
- the first command signal generating unit 44a preferentially uses the first main torque sensor signal from the first main torque sensor 24am to calculate the control signal.
- the control signal calculated by the first command signal generator 44a is sent to the first pre-driver 31a shown in FIG. 2, and the first pre-driver 31a further controls the first inverter 32a to control the first winding group. Drive the windings.
- the first same group abnormality determination unit 41a when the values of the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as do not match (the deviation is larger than a predetermined value). Is determined to be abnormal in one of the torque sensors 24am and 24as of the first torque sensor group 24a. When it is determined that one of the torque sensors 24am and 24as of the first torque sensor group 24a is abnormal, the determination result is sent to the first different group signal comparison unit (CMPA-2) 42a.
- CMPA-2 first different group signal comparison unit
- the first main and sub torque sensor signals from the torque sensors 24am, 24as of the first torque sensor group 24a and the second main torque sensor 24bm of the second torque sensor group 24b are detected.
- the comparison with the two main torque sensor signals or the second sub torque sensor signal from the second sub torque sensor 24bs is performed. That is, the first different group signal comparison unit 42a compares the values of at least three sensor signals.
- the second main torque sensor signal from the second main torque sensor 24bm of the second torque sensor group 24b is captured, so the second main torque sensor signal will be described below.
- the second auxiliary torque sensor signal from the second auxiliary torque sensor 24bs may be used.
- both the second main and sub torque sensor signals from the torque sensors 24bm, 24bs of the second torque sensor group 24b can be taken in as needed.
- the acquisition of the second main torque sensor signal from the second main torque sensor 24bm is executed on the assumption that the second main torque sensor 24bm is normal.
- the second sub torque sensor signal from the second sub torque sensor 24bs is used, it is executed on the assumption that the second sub torque sensor 24bs is normal.
- the second microprocessor 30b causes the second main group abnormality determination unit 41b to determine whether the second main unit abnormality determination unit 41b determines that the respective torque sensors 24am and 24as of the second torque sensor group 24b are normal.
- a gate unit 45b is provided for sending the second main torque sensor signal from the torque sensor 24bm or the second sub torque sensor signal from the second sub torque sensor 24bs to the second inter-microcomputer communication unit 39b.
- the first microprocessor 30a also includes the first main torque sensor 24am only when the first same-group abnormality determination unit 41a determines that the respective torque sensors 24am and 24as of the first torque sensor group 24a are normal. There is provided a gate section 45a for sending the first main torque sensor signal from the first sub torque sensor 24as or the first sub torque sensor signal from the first sub torque sensor 24as to the first inter-microcomputer communication section 39a.
- the acquisition timing of the second main torque sensor signal is when the first different group signal comparison unit 42a is operated, and the second main torque sensor signal from the second main torque sensor 24bm is fetched at a timing other than this acquisition timing. Not not. As a result, the communication capacities of the respective inter-microcomputer communication units 39a and 39b can be kept low.
- the first same-group abnormality determination unit 41a determines a deviation between the first main sensor torque signal of the first main torque sensor 24am and the first sub torque sensor signal of the first sub torque sensor 24as. When the deviation is larger than a predetermined value, it is determined that one of the torque sensors 24am and 24as has an abnormality.
- the second main torque sensor signal from the second main torque sensor 24bm is fetched via the first inter-microcomputer communication unit 39a, and then the first main torque sensor 24am The values are compared with the values of one main torque sensor signal and the first sub torque sensor signal of the first sub torque sensor 24as.
- the values of the three torque sensor signals of the second main torque sensor signal of the sensor 24bm are compared.
- This comparison result is sent to the first different group abnormality determination unit (EMGA-2) 43a, and it is determined which of the torque sensors 24am and 24as of the first torque sensor group 24a is operating normally. In other words, the torque sensors 24am and 24as in which the abnormality has occurred are specified.
- the value of the first main torque sensor signal of the first main torque sensor 24am and the value of the second main torque sensor signal of the second main torque sensor 24bm If they match, the first main torque sensor 24am is determined to be in a normal state. On the contrary, the value of the first sub torque sensor signal of the first sub torque sensor 24as does not match the value of the second main torque sensor signal of the second main torque sensor 24bm, so the first sub torque sensor 24as is abnormal. It is judged as a state.
- the first sub torque sensor 24as is in the normal state. Is judged. On the contrary, since the value of the first main torque sensor signal of the first main torque sensor 24am does not match the value of the second main torque sensor signal of the second main torque sensor 24bm, the first main torque sensor 24am is abnormal. It is judged as a state.
- match means that the values of the respective torque sensor signals completely match, and that the values of the respective torque sensor signals are within the predetermined allowable range.
- the first torque sensor group 24a is determined to be the first torque sensor group 24a based on the matching state with the second main torque sensor signal of the second main torque sensor 24bm of the second torque sensor group 24b. It is possible to specify which of the main torque sensor 24am and the first sub torque sensor 24as has an abnormality.
- the first command signal generation unit 44a determines that the state is in the normal state. Based on the torque sensor signal of the torque sensor, a command for calculating a control signal to the first winding group is output.
- the first command signal generation unit 44a calculates the control signal using the torque sensor signal of the torque sensor determined to be in the normal state.
- the control signal calculated by the first command signal generation unit 44a is sent to the first pre-driver 31a, and the first pre-driver 31a further controls the first inverter 32a to drive the windings of the first winding set. To do.
- the operation of the second microprocessor 30b will be described. Basically, the same operation as that of the first microprocessor 30a is performed, but the operations of the respective microprocessors are not synchronized, and they are operated independently.
- the torque sensor signal of the second torque sensor group 24b is input to the second microprocessor 30b via the input port.
- the second torque sensor group 24b includes a second main torque sensor 24bm and a second sub torque sensor 24bs.
- the sensor signals of the torque sensors 24bm and 24bs are input to the signal processing circuits 38bm and 38bs, AD-converted by the AD converters of the signal processing circuits 38bm and 38bs, and input to the second microprocessor 30b. ..
- the AD converter may be provided in the second microprocessor 30b, and in this case, the sensor signals of the torque sensors 24bm and 24bs are directly input to the second microprocessor 30b. ..
- the signal processing circuits 38bm and 38bs can also have the self-diagnosis function as described above, and can output self-diagnosis information when an abnormality occurs in each of the torque sensors 24bm and 24bs.
- the second microprocessor 30b includes at least a second inter-microcomputer communication unit 39b, a second same-group abnormality determination signal generation unit 40b, a second same-group abnormality determination unit 41b, and a second The different group signal comparison part 42b, the 2nd different group abnormality determination part 43b, and the 2nd command signal generation part 44b are provided.
- the second same group abnormality determination signal generation unit (CMPB-1) 40b configures the second torque sensor group 24b, and the second main torque sensor signal of the second main torque sensor 24bm and the second main torque sensor signal of the second sub torque sensor 24bs. It has a function of comparing two sub torque sensor signals. Further, the comparison result in the second same group abnormality judgment signal generation unit 40b is used as an "abnormality judgment signal" of the abnormality judgment executed by the second same group abnormality judgment unit (EMGB-1) 41b in the subsequent stage. However, it can take various forms.
- the specification of the second main and sub torque sensors 24bm, 24bs can be specified, for example, from the port number of the input port. Further, since the AD conversion data of the torque sensor signal is stored in the internal data register corresponding to the port number, from the AD conversion data of this internal data register, the second main, the second main from the sub torque sensors 24bm, 24bs, The value of the sub torque sensor signal is read.
- the AD converter is provided in the signal processing circuits 38bm and 38bs, but it may be provided in the input circuit of the second microprocessor 30b.
- the deviation between the values of the second main and sub torque sensor signals of the second main torque sensor 24bm and the second sub torque sensor 24bs can be output as an "abnormality judgment signal".
- This deviation also includes information as to whether or not there is an abnormality in either the second main torque sensor 24bm or the second sub torque sensor 24bs.
- the comparison result (deviation) of the second same group abnormality determination signal generation unit 40b is sent to the second same group abnormality determination unit 41b, and any one of the torque sensors 24bm and 24bs of the second torque sensor group 24b has an abnormality. A determination is made whether there is.
- the second same-group abnormality determination unit 41b determines which torque sensor 24bm the deviation between the second main and sub torque sensor signals sent from the second same-group abnormality determination signal generation unit 40b is equal to or less than a predetermined value. , 24bs are also normal. On the other hand, if the deviation between the second main and sub torque sensor signals is greater than or equal to a predetermined value, it can be determined that one of the torque sensors 24bm and 24bs is abnormal. In the present embodiment, the abnormal state is determined from the magnitude of the deviation, so this example will be described below.
- the second same group abnormality determination unit 41b determines that the values of the second main torque sensor 24bm and the second main torque sensor signals from the second auxiliary torque sensor 24bs match (the deviation is smaller than a predetermined value). , And outputs a command for calculating a control signal to the second winding set to the second command signal generation unit (CNTB) 44b, which is regarded as normal.
- the second command signal generator 44b preferentially uses the second main torque sensor signal from the second main torque sensor 24bm to calculate the control signal.
- the control signal calculated by the second command signal generator 44b is sent to the second pre-driver 31b shown in FIG. 2, and the second pre-driver 31b further controls the second inverter 32b to control the second winding group. Drive the windings.
- the second different group signal comparison unit 42b the second main and sub torque sensor signals from the torque sensors 24bm and 24bs of the second torque sensor group 24b, and the second main torque sensor 24am from the first torque sensor group 24a of the first torque sensor group 24a.
- the comparison with the one main torque sensor signal or the first sub torque sensor signal from the first sub torque sensor 24as is performed. That is, the second different group signal comparison unit 42b compares the values of at least three sensor signals.
- the first main torque sensor signal from the first main torque sensor 24am of the first torque sensor group 24a is fetched, so the first main torque sensor signal will be described below.
- the first sub torque sensor signal from the first sub torque sensor 24as may be used.
- the second different group signal comparing section 42b from the first inter-microcomputer communication section 39a of the first microprocessor 30a to the first main torque sensor 24am of the first torque sensor group 24a via the second inter-microcomputer communication section 39b.
- the first main torque sensor signal of is acquired. Note that both the first main and sub torque sensor signals from the torque sensors 24am and 24as of the first torque sensor group 24a can be taken in as needed.
- the acquisition of the first main torque sensor signal from the first main torque sensor 24am is executed on the assumption that the first main torque sensor 24am is normal.
- the first sub torque sensor signal from the first sub torque sensor 24as is used, it is executed on the assumption that the first sub torque sensor 24as is normal.
- the first microprocessor 30a causes the first same-group abnormality determination unit 41a to perform the first determination only when the torque sensors 24am and 24as of the first torque sensor group 24a are determined to be normal.
- a gate unit 45a is provided for sending the first main torque sensor signal from the main torque sensor 24am or the first sub torque sensor signal from the first sub torque sensor 24as to the first inter-microcomputer communication unit 39a.
- the acquisition timing of the first main torque sensor signal is when the second different group signal comparison unit 42b is operated, and at other times than this acquisition timing, the first main torque sensor signal from the first main torque sensor 24am is fetched. Not not. As a result, the communication capacities of the respective inter-microcomputer communication units 39a and 39b can be kept low.
- the second same-group abnormality determining unit 41b causes the deviation between the second main sensor torque signal of the second main torque sensor 24bm and the second sub torque sensor signal of the second sub torque sensor 24bs to be predetermined.
- the deviation is larger than a predetermined value, it is determined that one of the torque sensors 24bm and 24bs has an abnormality.
- the second different group signal comparison unit 42b takes in the first main torque sensor signal from the first main torque sensor 24am of the first torque sensor group 24a via the second inter-microcomputer communication unit 39b, and then the The second main torque sensor signal from the second main torque sensor 24bm and the second sub torque sensor signal from the second sub torque sensor 24bs are compared.
- the second main torque sensor signal of the second main torque sensor 24bm of the second torque sensor group 24b, the second sub torque sensor signal of the second sub torque sensor 24bs, and the first main torque of the first torque sensor group 24a are compared.
- the comparison result is sent to the second different group abnormality determination unit (EMGB-2) 43b, and it is determined which of the torque sensors 24bm and 24bs of the second torque sensor group 24b is operating normally. In other words, the torque sensors 24bm and 24bs in which the abnormality has occurred are specified.
- the second different group abnormality determination unit 43b of the three sensor signals, the value of the second main torque sensor signal of the second main torque sensor 24bm and the value of the first main torque sensor signal of the first main torque sensor 24am. If they match, the second main torque sensor 24bm is determined to be in a normal state. On the contrary, since the value of the second auxiliary torque sensor signal of the second auxiliary torque sensor 24bs does not match the value of the first main torque sensor signal of the first main torque sensor 24am, the second auxiliary torque sensor 24bs is abnormal. It is judged as a state.
- the second sub torque sensor 24bs is in the normal state. Is judged. On the contrary, since the value of the second main torque sensor signal of the second main torque sensor 24bm does not match the value of the first main torque sensor signal of the first main torque sensor 24am, the second main torque sensor 24bm is abnormal. It is judged as a state.
- match means that the values of the respective torque sensor signals completely match, and that the values of the respective torque sensor signals are within the predetermined allowable range.
- the second torque sensor group 24b is changed from the second torque sensor group 24b to the second torque sensor group 24b based on the matching state with the first main torque sensor signal of the first main torque sensor 24am of the first torque sensor group 24a. It is possible to specify which of the main torque sensor 24bm and the second sub torque sensor 24bs has an abnormality.
- the second command signal generation unit 44b determines that the state is in the normal state. Based on the torque sensor signal of the torque sensor, a command for calculating a control signal to the second winding group is output.
- the second command signal generation unit 44b uses the torque sensor signal of the torque sensor determined to be in the normal state to calculate the control signal.
- the control signal calculated by the second command signal generator 44b is sent to the second pre-driver 31b, and the second pre-driver 31b further controls the second inverter 32b to drive the windings of the second winding set. To do.
- the torque sensor 24 has been described in the present embodiment, but it goes without saying that the rotation angle sensor 26 and the current sensor other than this can have the same configuration.
- a sensor that compares the main sensor signal or the sub sensor signal of the other sensor group and outputs the sensor signal that matches the main sensor signal or the sub sensor signal of the other sensor group among the sensors of the one sensor group. Is specified as a sensor that is operating normally, the reliability of the abnormality diagnosis function can be improved.
- the first inter-microcomputer communication unit 39a of the first microprocessor 30a notifies the second microprocessor 30b of the first abnormality.
- the second main torque sensor 24bm of the two-torque sensor group 24b has a function of transmitting a second main torque sensor signal or a sensor signal request command for requesting transmission of the second sub torque sensor signal of the second sub torque sensor 24bs. ing.
- the second microprocessor communication unit 39b causes the first microprocessor 30a to operate.
- a function of transmitting a sensor signal request command that requests transmission of the first main torque sensor signal of the first main torque sensor 24am of the first torque sensor group 24a or the first sub torque sensor signal of the first sub torque sensor 24as. have.
- the torque sensor signals of the respective sensor groups 24a and 24b are not always transmitted, but the torque sensor signals are transmitted when the sensor signal request command is received from the respective microprocessors. It is possible to suppress an increase in communication capacity in the two-microcomputer communication units 39a and 39b.
- the first different group signal comparison unit 42a detects the second main torque sensor signal based on the "elapsed time” between the detection timing and the acquisition timing of the second main torque sensor signal acquired via the first inter-microcomputer communication unit 39a.
- the first detection timing of the first main and sub torque sensor signals to be obtained is obtained.
- the first main and sub torque sensor signals detected at the first detection timing that is close in time to the detection timing obtained based on the "elapsed time” can be obtained.
- the first main and sub torque sensor signals are sequentially stored and erased, and the data for a predetermined number of times of detection are stored and held while being updated in a new order.
- the sensor signal of the torque sensor is detected at a predetermined detection timing with the passage of time, and the first detection timing (T1mt) of the first main torque sensor 24am and the second main torque sensor 24bm are detected. It is generated without being synchronized with the second detection timing (T2mt). However, the detection intervals (intervals) are the same time, the first main torque sensor signal (Sam) of the first main torque sensor 24am is detected every predetermined time, and the second main torque sensor 24bm of the second main torque sensor 24bm is detected. The signal (Sbm) is detected.
- the first different group signal comparison unit 42a calculates a time (detection timing) retroactive to the captured “elapsed time” from the time when the acquisition timing (Tst) occurred, and the first time is close to the retroactive time.
- the first main and sub torque sensor signals detected at one detection timing are obtained. The flow is indicated by a dashed arrow.
- the second detection timing of the second main torque sensor signal of the second main torque sensor 24bm and the first detection timing of the first main torque sensor signal of the first main torque sensor 24am are close in time. .. Therefore, the first different group signal comparison unit 42a uses the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as whose detection timings are close in time, and the second main torque sensor. The 24 bm second main torque sensor signal can be compared.
- the second different group signal comparison unit 42b also obtains the second main and sub torque sensor signals by the same method. Therefore, the detection timing of the first main torque sensor signal of the first main torque sensor 24am and the detection timing of the second main torque sensor signal of the second main torque sensor 24bm are close in time. Therefore, also in the second different group signal comparison unit 42b, the second main torque sensor 24bm and the second main torque sensor signal and the second main torque sensor signal of the second auxiliary torque sensor 24bs whose detection timings are close to each other in time, and the first main torque. The first main torque sensor signal of the sensor 24am can be compared.
- the values of the torque sensor signals of the two systems of torque sensor groups 24a and 24b change from moment to moment depending on the detection timing. Therefore, if the detection timing is different, the values of the torque sensor signals of the torque sensor groups 24a and 24b are different. .. Considering the transmission time of the torque sensor signal from the torque sensor groups 24a and 24b to the microprocessors 30a and 30b, and further the communication cycle in the inter-microcomputer communication units 39a and 39b, the microprocessors 30a and 30b are able to calculate the torque Due to the acquisition timing of acquiring the torque sensor signals of the sensor groups 24a and 24b, there is a time lag in the detection timing of the torque sensor groups 24a and 24b.
- the torque sensor signal that is closest in time may be selected, or the closest torque sensor signal may be selected. You may choose.
- the physical quantities detected as the driving state of the vehicle are the same physical quantities, and in the case of the steering shaft 14, the first main torque sensor 24am, the first sub torque sensor 24as, the second main torque sensor 24bm, and the second main torque sensor 24as.
- the steering (rotation) torque of the steering shaft 14 is detected by the sub torque sensor 24bs.
- the rotation angle of the motor shaft 23 is detected by the first main rotation angle sensor, the first sub rotation angle sensor, the second main rotation angle sensor, and the second sub rotation angle sensor.
- the current flowing through the stator winding is detected by the first main current sensor, the first sub-current sensor, the second main current sensor, and the second sub-current sensor.
- the processing circuit of the sensor can be shared by the same processing circuit, and further, the calculation of the control program can be simplified.
- the first torque sensor group 24a (the first main torque sensor 24am and the first sub torque sensor 24as) uses the same detection method as each other, and the second torque sensor group 24b (the second main torque sensor 24bm and the second sub torque sensor 24bm). 24bs) may have the same detection method, and the torque sensors of the first torque sensor group 24a and the second torque sensor group 24b may detect the steering (rotation) torque of the steering shaft by different detection methods. ..
- the torque sensor of the first sensor group 24a is a magnetostrictive type and the torque sensor of the second sensor group 24b is a strain gauge type
- the magnetostrictive type sensor data and the strain gauge type sensor data are converted into maps. You can leave it.
- the strain gauge type sensor data of the second sensor group 24b is converted into the magnetostrictive type sensor data of the first sensor group 24a.
- the magnetostrictive sensor data of the first sensor group 24a is converted into the strain sensor data of the second sensor group 24b. Be compared.
- the electric motor is a steering actuator that steers the front wheels of the vehicle, and the steering actuator requires high reliability of the torque sensor. Therefore, the abnormality determination is performed from the sensor signals of the respective torque sensors of the first torque sensor group 24a and the second torque sensor group 24b, and in addition to this, the abnormality signal is compared with the sensor signals of the other torque sensor groups. Since the sensor is specified, it is possible to perform highly reliable steering actuator control.
- the steering actuator is shown to steer the front wheels, but it may be the one to steer the rear wheels. Further, the steered wheels may be mechanically connected to the steering wheel, or the steered wheels may be driven only by an electric motor instead of being mechanically connected.
- the electric motor includes a stator winding, a motor rotor, a motor rotation angle sensor that detects a rotational position of the motor rotor, and a current sensor that detects a current flowing through the stator winding.
- a stator winding a stator winding
- a motor rotor a motor rotation angle sensor that detects a rotational position of the motor rotor
- a current sensor that detects a current flowing through the stator winding.
- the second main sensor and the second sub sensor either one or both of the motor rotation angle sensor and the current sensor are used.
- the first microprocessor 30a includes a first inter-microcomputer communication section 39a and a first auxiliary inter-microcomputer communication section 39a-A
- a second microprocessor 30b includes a second inter-microcomputer communication section 39a.
- a second auxiliary microcomputer communication unit 39b-A can be provided.
- the first auxiliary microcomputer communication unit 39a-A receives the torque sensor signal of the second sensor group 24b from the second auxiliary microcomputer communication unit 39b-A, and the second auxiliary microcomputer communication unit 39b-A
- the torque sensor signal of the first sensor group 24a can be input from the first inter-microcomputer communication unit 39a-A.
- the communication between the microcomputers is performed not only between the first inter-microcomputer communication section 39a and the second inter-microcomputer communication section 39b, but also between the first sub-microcomputer communication section 39a-A and the second sub-microcomputer communication. This can also be performed between the communication units 39b-A, and the reliability of inter-microcomputer communication can be improved.
- step S10 the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as forming the first torque sensor group 24a are fetched.
- the acquisition of the first main and auxiliary torque sensor signals is carried out at the execution cycle of every predetermined time, and may be synchronized with the execution cycle of this control flow or may be another execution cycle.
- the process proceeds to step S11.
- the specification of the first main and sub torque sensors 24am and 24as is specified by the port number of the input port. Further, since the AD conversion data of the torque sensor signal is stored in the internal data register corresponding to the port number, the first main and sub torque sensor signals from the first main and sub torque sensors 24am and 24as are stored from this internal data register. The value of is read.
- Step S40 the control step is indicated by a broken line, but this shows the case where the control flow of FIGS. 6 and 7 is interposed, which will be described with reference to FIGS. 6 and 7. Since this embodiment deals with an intermediate value abnormality, it can be omitted if it is not necessary to intervene the control flows of FIGS. 6 and 7.
- step S11 the first main torque sensor signal of the first main torque sensor 24am and the first sub torque sensor signal of the first sub torque sensor 24as are compared. In this step S11, it outputs as the deviation of the torque sensor signal of the first main torque sensor 24am and the first sub torque sensor 24as. If the deviation of the torque sensor signal is less than a predetermined value, which torque sensor 24am, 24as Is also normal, and if the deviation of the torque sensor signal is a predetermined value or more, it is determined that one of the torque sensors 24am and 24as is abnormal.
- step S11 when the values of the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as match (the deviation is smaller than the predetermined value), the first torque sensor Both the torque sensors 24am and 24as of the group 24a are considered to be normal, and the process proceeds to step S12.
- This step S11 corresponds to the functional blocks of the first same-group abnormality judgment signal generation unit 40a and the first same-group abnormality judgment unit 41a in FIG.
- step S12 since the first torque sensor group 24a is in a normal state, normal control is executed.
- the first main torque sensor signal of the first main torque sensor 24am is preferentially used according to the setting of the control logic.
- step S13 the second main torque sensor signal of the second main torque sensor 24bm of the second torque sensor group 24b or the second sub torque sensor of the second torque sensor group 24b is output from the inter-microcomputer communication unit 39b of the second microprocessor 30b.
- the second auxiliary torque sensor signal is fetched by the inter-microcomputer communication unit 39a of the first microprocessor 30a.
- the second main torque sensor signal is captured, the following description will also be based on this.
- step 11 the second main torque sensor 24bm takes in the second main torque sensor signal.
- step 11 the values of the first main torque sensor signal and the first auxiliary torque sensor signal of the first main torque sensor 24am match. Only when it is determined that the second main torque sensor signal is not acquired, the second main torque sensor signal of the second main torque sensor 24bm is not fetched.
- the torque sensor signal of the second sensor group 24b is not always transmitted, but the torque sensor signal is transmitted when the sensor signal request command from the first microprocessor 30a is received. It is possible to suppress an increase in communication capacity in the two-microcomputer communication units 39a and 39b.
- the process proceeds to step S14.
- step S14 the first main torque sensor 24am of the first torque sensor group 24a and the first main and sub torque sensor signals of the first sub torque sensor 24as, and the second main captured in step S13. A comparison of the three torque sensor signals of the second main torque sensor signal of the torque sensor 24bm is made.
- the second main torque sensor signal of the normal second main torque sensor 24bm of the second torque sensor group 24b is fetched from the second inter-microcomputer communication section 39b via the first inter-microcomputer communication section 39a. I'm out.
- the first main torque sensor 24am if the value of the first main torque sensor signal of the first main torque sensor 24am matches the value of the second main torque sensor signal of the second main torque sensor 24bm, the first main torque sensor 24am is in the normal state. Is judged. Then, as a reverse of this, since the value of the first auxiliary torque sensor signal of the first auxiliary torque sensor 24as does not match the value of the second main torque sensor signal of the second main torque sensor 24bm, the first auxiliary torque sensor 24as Is judged to be abnormal.
- the first main torque sensor 24am is abnormal. Is judged.
- the first sub torque sensor signal of the first sub torque sensor 24as matches the value of the second main torque sensor signal of the second main torque sensor 24bm, the first sub torque The sensor 24as is determined to be in a normal state.
- the match determination is determined as “match” when the deviation of the three torque sensor signals of the respective torque sensor sensors 24am, 24as, 24bm is smaller than a predetermined value, and conversely, the torque sensor sensors 24am, 24as, When the deviation of the three torque sensor signals of 24 bm is larger than a predetermined value, it is determined as "mismatch".
- step S15 When the first main torque sensor signal of the first main torque sensor 24am matches the second main torque sensor signal of the second main torque sensor 24bm and the normal state is determined, the process proceeds to step S15, and the second main torque sensor If it is determined that the first main torque sensor 24am does not match the second main torque sensor signal of 24bm and is in an abnormal state, the process proceeds to step S16.
- step S14 since the torque sensor in which the intermediate value abnormality has occurred is specified in step S14, an abnormality code corresponding to this can be created and stored in the flash ROM or the like. By reading the abnormality code stored in the flash ROM, it is possible to recognize which torque sensor has the intermediate value abnormality.
- This control step S14 corresponds to the functional blocks of the first different group signal comparing section 42a and the first different group abnormality judging section 43a in FIG.
- step S15 since the first main torque sensor 24am is determined to be in the normal state, it is set to use the first main torque sensor signal of the first main torque sensor 24am determined to be in the normal state. To do. When the setting using the torque sensor signal of the first main torque sensor 24am is completed, the process proceeds to step S17. Step S17 will be described later.
- step S16 since the first sub torque sensor 24as is determined to be in the normal state, it is set to use the first sub torque sensor signal of the first sub torque sensor 24as determined to be in the normal state. To do. When the setting using the first sub torque sensor signal of the first sub torque sensor 24as is completed, the process proceeds to step S17.
- step S17 when it is determined that the first main torque sensor 24am or the first auxiliary torque sensor 24as is in the normal state, the first based on the torque sensor signal of the torque sensor determined to be in the normal state. Calculate the control signal to the winding set.
- control signal calculated in step S17 is sent to the first pre-driver 31a, and the first pre-driver 31a further controls the first inverter 32a to drive the windings of the first winding set.
- This control step S17 corresponds to the functional block of the first command signal generator 44a in FIG.
- the main sensor of the one sensor group when it is determined that one of the sensor groups has an abnormality from the main sensor signal and the sub sensor signal of the one sensor group, the main sensor of the one sensor group The signal and the sub sensor signal are compared with the main sensor signal or the sub sensor signal of the other sensor group, and within the sensors of the one sensor group, the main sensor signal or the sub sensor signal of the other sensor group Since the sensor that outputs the matched sensor signal is specified as the sensor that is operating normally, the reliability of the abnormality diagnosis function can be improved.
- Step S40 relates to abnormality diagnosis such as ground fault, power fault, and power supply abnormality, and shows an example in which the value of the sensor signal of the torque sensor fluctuates greatly like the upper limit value or the lower limit value.
- step S10 the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as forming the first torque sensor group 24a are fetched. In this case, even if the torque sensor signal is not output due to the power supply abnormality or the disconnection of the signal line described above, the loading operation is executed.
- step S20 the process proceeds to step S20.
- step S10 functions as a first same-group input state signal generation unit.
- step S20 it is determined whether or not the first main torque sensor 24am inputs the first main torque sensor signal.
- the first main torque sensor 24am can be specified from the port number of the input port. Further, since the AD conversion data of the torque sensor signal is stored in the internal data register corresponding to the port number, the input state of the first main torque sensor signal of the first main torque sensor 24am is calculated from the AD conversion data of this internal data register. Can be determined.
- step S20 When it is determined that the normal first main torque sensor signal is input from the first main torque sensor 24am in step S20, the process proceeds to step S21, and the torque sensor signal is not input from the first main torque sensor 24am. If it is determined, the process proceeds to step S24.
- the first sub torque sensor 24as can also be specified from the port number of the input port. Further, since the AD conversion data of the torque sensor signal is stored in the internal data register corresponding to the port number, the input state of the first sub torque sensor signal of the first sub torque sensor 24as is calculated from the AD conversion data of this internal data register. Can be determined.
- step S21 when it is determined that the first auxiliary torque sensor signal is normally input from the first auxiliary torque sensor 24as, the process proceeds to step S22, and the first auxiliary torque sensor signal is input from the first auxiliary torque sensor 24ab. If it is determined that there is not, the process proceeds to step S23.
- Step S22 the first main torque sensor 24am and the first sub torque sensor 24as input the first main and sub torque sensor signals, so the first main torque sensor 24am and the first sub torque are input. Both sensors are determined to be in the input state.
- the process proceeds to step S11, and thereafter, the control step relating to the subsequent intermediate value abnormality shown in FIG. 3 is executed.
- steps S20 to S22 function as a first same-group input state abnormality determination unit.
- steps S21 and S23 function as a first same-group input state abnormality determination unit.
- Step S24 Since it is determined in step S20 that the first main torque sensor 24am does not input the first main torque sensor signal, in step S24, the first sub torque sensor 24as outputs the first sub torque sensor signal. Performs a determination of whether there is input. In the same manner as in step S21, the first sub torque sensor 24as can be specified from the port number of the input port, and the first sub torque sensor 24as of the first sub torque sensor 24as can be determined from the AD conversion data of the internal data register corresponding to the port number. The input state of the signal can be judged.
- step S24 When it is determined in step S24 that the first auxiliary torque sensor signal is input from the first auxiliary torque sensor 24as, the process proceeds to step S25, and the first auxiliary torque sensor signal is not input from the first auxiliary torque sensor 24ab. If it is determined that, the process proceeds to step S26.
- step S20 it is determined that the first main torque sensor 24am does not input the first main torque signal, and in step S24, it is determined that the first sub torque sensor 24as inputs the first sub torque signal. Therefore, in step S25, the first main torque sensor 24am is determined to be in an abnormal state, and the first sub torque sensor 24as is determined to be in a normal state. After this, the process proceeds to step S16, and thereafter, the subsequent step S17 shown in FIG. 3 is executed.
- steps S20, S24, and S25 function as a first same-group input state abnormality determination unit.
- step S20 it is determined that the first main torque sensor 24am does not input the first main torque sensor signal, and in step S24, it is determined that the first sub torque sensor 24as does not input the first sub torque sensor signal. Therefore, in step S26, it is determined that both the first main torque sensor 24am and the first sub torque sensor are in an abnormal state. After this, the process proceeds to step S27.
- steps S24 and S26 function as a first same-group input state abnormality determination unit.
- Step S27 Abnormality processing is executed in Step S27.
- the abnormality processing stops the driving of the windings of the first winding set by the first microprocessor 30a, or outputs the torque sensor signal of the second torque sensor group 24b from the first inter-microcomputer communication unit 39a to the first microprocessor. Captured in the processor 30a.
- the process goes to the end, but when the torque sensor signal of the second torque sensor group 24b is used, the process proceeds to step S17.
- step S17 the control signal to the first winding group is calculated based on the second main torque sensor signal from the second main torque sensor 24bm. Then, the control signal calculated in step S17 is sent to the first pre-driver 31a, and the first pre-driver 31a further controls the first inverter 32a to drive the windings of the first winding set.
- the input states of the respective torque sensors are monitored.
- the signal processing circuits 38am and 38as have a self-diagnosis function
- abnormality occurs in the respective torque sensors 24am and 24as
- the self-diagnosis information can be output.
- the self-diagnosis function determines whether or not the first main and sub torque sensor signals from the first main torque sensor 24am and the first sub torque sensor 24as include self-diagnosis information. It is possible to judge the abnormality of the sensor.
- step S10 the first main and sub torque sensor signals of the first main torque sensor 24am and the first sub torque sensor 24as forming the first torque sensor group 24a are fetched.
- the first main torque sensor 24am and the signal processing circuits 38am and 38as of the first sub torque sensor 24as have a self-diagnosis function, when abnormality is detected and self-diagnosis information is output, This self-diagnosis information is stored in the self-diagnosis memory of the signal processing circuits 38am and 38as.
- step S10 functions as a first self-diagnosis signal generator of the same group.
- step S30 it is determined whether or not the self-diagnosis information is added to the first main torque sensor signal from the first main torque sensor 24am.
- the first main torque sensor 24am can be specified from the port number of the input port.
- the self-diagnosis information is added to the data frame of the torque sensor signal, it is determined from this data frame whether the self-diagnosis information is added to the first main torque sensor signal from the first main torque sensor 24am. You can
- step S30 if it is determined that the first main torque sensor signal from the first main torque sensor 24am does not include self-diagnosis information, the process proceeds to step S31, and the first main torque sensor signal from the first main torque sensor 24am. If it is determined that the self-diagnosis information has been added to, the process proceeds to step S34.
- the first sub torque sensor 24as can also be specified from the port number of the input port.
- the self-diagnosis information is added to the data frame of the torque sensor signal, it is determined from this data frame whether the self-diagnosis information is added to the first sub torque sensor signal from the first sub torque sensor 24as. You can
- step S31 When it is determined in step S31 that the first sub-torque sensor signal from the first sub-torque sensor 24as has no self-diagnosis information, the process proceeds to step S32, and the first sub-torque sensor signal from the first sub-torque sensor 24ab is detected. If it is determined that there is self-diagnosis information in step S33, the process proceeds to step S33.
- step S32 the first main torque sensor 24am and the first main torque sensor 24am from the first sub torque sensor 24as have no self-diagnosis information. Both the 1st sub torque sensor are considered to be in a normal state.
- step S11 the control step relating to the subsequent intermediate value abnormality shown in FIG. 3 is executed.
- steps S30 to S32 function as a first same-group self-diagnosis abnormality determination unit.
- Step S30 it is determined that the first main torque signal from the first main torque sensor 24am has no self-diagnosis information, and in step S31, the self-diagnosis information is included in the first sub-torque signal from the first sub-torque sensor 24as. Since it has been determined that the first auxiliary torque sensor 24am is added, the first main torque sensor 24am is determined to be in the normal state and the first auxiliary torque sensor 24as is determined to be in the abnormal state in step S33. After this, the process proceeds to step S15, and thereafter, the subsequent step S17 shown in FIG. 3 is executed.
- steps S31 and S33 function as a first self-diagnosis abnormality determination unit of the same group.
- the first sub-torque sensor 24as can be identified from the port number of the input port, and the self-diagnosis information is added to the data frame of the torque sensor signal. It is possible to judge whether the self-diagnosis information is added to the torque sensor signal of the sub torque sensor 24as.
- step S34 When it is determined in step S34 that the first sub torque sensor signal from the first sub torque sensor 24as has no self-diagnosis information, the process proceeds to step S35, and the first sub torque sensor signal from the first sub torque sensor 24ab. If it is determined that there is self-diagnosis information in step S36, the process proceeds to step S36.
- steps S30, S34, and S35 function as a first same-group self-diagnosis abnormality determination unit.
- Step S30 it is determined that the self-diagnosis information is added to the first main torque signal from the first main torque sensor 24am, and in step S31, the first sub-torque signal from the first sub-torque sensor 24as is self-diagnostic. Since it is determined that the diagnostic information is added, it is determined in step S36 that both the first main torque sensor 24am and the first sub torque sensor are in an abnormal state. After this, the process proceeds to step S37.
- steps S34 and S36 function as a first self-diagnosis abnormality determination unit of the same group.
- Step S37>> Abnormality processing is executed in step S37.
- the abnormality processing stops the driving of the windings of the first winding set by the first microprocessor 30a, or outputs the torque sensor signal of the second torque sensor group 24b from the first inter-microcomputer communication unit 39a to the first microprocessor. Captured in the processor 30a.
- the process goes to the end, but when the torque sensor signal of the second torque sensor group 24b is used, the process proceeds to step S17.
- step S17 a command for calculating a control signal to the first winding group is output based on the second main torque sensor signal from the second main torque sensor 24bm. Then, the control signal calculated in step S17 is sent to the first pre-driver 31a, and the first pre-driver 31a further controls the first inverter 32a to drive the windings of the first winding set.
- the main sensor signal of one sensor group or the sub sensor signal is compared with the main sensor signal and the sub sensor signal of the other sensor group, and the sensor of one sensor group does not match the main sensor signal and the sub sensor signal of the other sensor group. Since the sensor that outputs the sensor signal is specified as the sensor in which the abnormality has occurred, the reliability of the abnormality diagnosis function can be improved.
- the present invention is not limited to the above-described embodiment, and various modifications are included.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Power Engineering (AREA)
- Power Steering Mechanism (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
第1センサグループの第1主センサ信号と第1副センサ信号とを比較してどちらかのセンサに異常があると判断された場合は、第1センサグループの第1主センサ信号及び第1副センサ信号と、第2センサグループの第2主センサ信号或いは第2副センサ信号とを比較し、第1センサグループのセンサの内で、第2主センサ信号或いは第2副センサ信号と一致するセンサ信号を出力したセンサを正常に動作しているセンサとして特定する。これによって、異常診断機能の信頼性を向上することができる。
Description
本発明は自動車のような車両に搭載されている車両搭載機器の制御装置に係り、特に車両の運転状態を表す物理量を検出するセンサの異常診断機能を備えた車両搭載機器の制御装置に関するものである。
車両搭載機器の制御装置の例として、例えば、自動車の電動パワーステアリング装置の制御装置においては、運転者がステアリングホィールを操作することにより回動するステアリングシャフトの回動方向と回動トルクとを検出し、この検出トルク値に基づいてステアリングシャフトの回動方向と同じ方向へ回動するように電動モータを駆動し、操舵アシストトルクを発生させるように構成されている。
そして、回動トルクを検出するトルクセンサの異常発生に対応するため、従来から2系統のトルクセンサを有する電動パワーステアリング装置が知られている。例えば、特開2009-74858号公報(特許文献1)では、一方のトルクセンサの異常が検出された場合には、異常が検出されていない側のトルクセンサにより検出される回動トルクを使って操舵アシスト制御を継続している。
ところで、特許文献1のような従来の電動パワーステアリング装置においては、2系統のトルクセンサを備えているものの、異常モードによっては、何れのトルクセンサに異常が生じているのか特定することができない場合がある。
例えば、地絡、天絡、電源異常等による異常に関しては、トルクセンサのセンサ信号の値が上限値、或いは下限値のように大きく変動するので、系統毎に独立して異常を検出することができ、どちらのトルクセンサに異常が生じているか特定することができる。
一方、トルクセンサのセンサ信号の値が所定範囲内に収まる中間値異常(例えば、トルクセンサのセンサ信号の値が中間のある値に固定されてしまう異常)に関しては、2系統のトルクセンサにより検出されたセンサ信号どうしの偏差を求め、その偏差が予め設定した設定値よりも大きい場合には、何れか一方のトルクセンサが異常であると推定して検出することができる。
しかしながら、中間値異常の場合においては、2系統の出力の偏差を求めても何れの系統のセンサに故障が生じているのか特定することができない。このため、どちらのトルクセンサが真に正常、或いは異常なのか正確に特定することができず、異常診断機能の信頼性に課題を有している。尚、この課題は電動パワーステアリング装置に限らず、これ以外の車両に搭載されている車両搭載機器についても同様の課題を有している。
本発明の目的は、2系統の何れのセンサが真に正常、或いは異常なのか正確に特定でき、かつ、正常と特定された側のセンサの検出値に基づいて、安全に車両搭載機器の制御を継続できる新規な車両搭載機器の制御装置を提供することにある。
本発明の一実施形態に係る車両搭載機器の制御装置においては、
センサ部であって、第1センサグループと、第2センサグループと、を含み、
第1センサグループは、第1主センサと第1副センサとを含み、
第2センサグループは、第2主センサと第2副センサとを含み、
第1主センサは、車両の運転状態を表す物理量を検出して第1主センサ信号を出力し、第1副センサは、車両の運転状態を表す物理量を検出して第1副センサ信号を出力し、
第2主センサは、車両の運転状態を表す物理量を検出して第2主センサ信号を出力し、第2副センサは、車両の運転状態を表す物理量を検出して第2副センサ信号を出力する、センサ部と、
第1マイクロプロセッサであって、第1同グループ異常判断信号生成部と、第1同グループ異常判断部と、第1異グループ信号比較部と、第1異グループ異常判断部と、第1マイコン間通信部と、第1指令信号生成部と、を含み、
第1同グループ異常判断信号生成部は、第1主センサ信号と第1副センサ信号から、異常状態を判断する異常判断信号を生成し、
第1同グループ異常判断部は、第1同グループ異常判断信号生成部からの異常判断信号に基づき、第1センサグループの異常の有無を判断し、
第1マイコン間通信部は、第2マイクロプロセッサの第2マイコン間通信部から第2センサグループの第2主センサ信号或いは第2副センサ信号を入手し、
第1異グループ信号比較部は、第1同グループ異常判断部で第1センサグループのセンサに異常が有ると判断されたとき、第1センサグループの第1主センサ信号及び第1副センサ信号と第2センサグループの第2主センサ信号或いは第2副センサ信号とを比較し、
第1異グループ異常判断部は、第1センサグループの第1主センサ信号及び第1副センサ信号と第2センサグループの第2主センサ信号或いは第2副センサ信号との比較結果に基づき、第1センサグループの何れのセンサが正常に動作しているかを判断し、
第1指令信号生成部は、第1異グループ異常判断部において、第1センサグループのセンサで正常に動作していると判断されたセンサのセンサ信号に基づき、アクチュエータを駆動制御する第1指令信号を生成する、第1マイクロプロセッサと、
第2マイクロプロセッサであって、第2同グループ異常判断信号生成部と、第2同グループ異常判断部と、第2異グループ信号比較部と、第2異グループ異常判断部と、第2マイコン間通信部と、第2指令信号生成部と、を含み、
第2同グループ異常判断信号生成部は、第2主センサ信号と第2副センサ信号とから、異常状態を判断する異常判断信号を生成し、
第2同グループ異常判断部は、第2同グループ異常判断信号生成部からの異常判断信号に基づき、第2センサグループの異常の有無を判断し、
第2マイコン間通信部は、第1マイクロプロセッサの第1マイコン間通信部から第1センサグループの第1主センサ信号或いは第1副センサ信号を入手し、
第2異グループ信号比較部は、第2同グループ異常判断部で第2センサグループのセンサに異常が有ると判断されたとき、第2センサグループの第2主センサ及び第2副センサ信号と第1センサグループの第1主センサ信号或いは第1副センサ信号とを比較し、
第2異グループ異常判断部は、第2センサグループの第2主センサ信号及び第2副センサ信号と第1センサグループの第1主センサ信号或いは第1副センサ信号との比較結果に基づき、第2センサグループの何れのセンサが正常に動作しているかを判断し、
第2指令信号生成部は、第2異グループ異常判断部において、第2センサグループのセンサで正常に動作していると判断されたセンサのセンサ信号に基づき、アクチュエータを駆動制御する第2指令信号を生成する、第2マイクロプロセッサと、を有する。
センサ部であって、第1センサグループと、第2センサグループと、を含み、
第1センサグループは、第1主センサと第1副センサとを含み、
第2センサグループは、第2主センサと第2副センサとを含み、
第1主センサは、車両の運転状態を表す物理量を検出して第1主センサ信号を出力し、第1副センサは、車両の運転状態を表す物理量を検出して第1副センサ信号を出力し、
第2主センサは、車両の運転状態を表す物理量を検出して第2主センサ信号を出力し、第2副センサは、車両の運転状態を表す物理量を検出して第2副センサ信号を出力する、センサ部と、
第1マイクロプロセッサであって、第1同グループ異常判断信号生成部と、第1同グループ異常判断部と、第1異グループ信号比較部と、第1異グループ異常判断部と、第1マイコン間通信部と、第1指令信号生成部と、を含み、
第1同グループ異常判断信号生成部は、第1主センサ信号と第1副センサ信号から、異常状態を判断する異常判断信号を生成し、
第1同グループ異常判断部は、第1同グループ異常判断信号生成部からの異常判断信号に基づき、第1センサグループの異常の有無を判断し、
第1マイコン間通信部は、第2マイクロプロセッサの第2マイコン間通信部から第2センサグループの第2主センサ信号或いは第2副センサ信号を入手し、
第1異グループ信号比較部は、第1同グループ異常判断部で第1センサグループのセンサに異常が有ると判断されたとき、第1センサグループの第1主センサ信号及び第1副センサ信号と第2センサグループの第2主センサ信号或いは第2副センサ信号とを比較し、
第1異グループ異常判断部は、第1センサグループの第1主センサ信号及び第1副センサ信号と第2センサグループの第2主センサ信号或いは第2副センサ信号との比較結果に基づき、第1センサグループの何れのセンサが正常に動作しているかを判断し、
第1指令信号生成部は、第1異グループ異常判断部において、第1センサグループのセンサで正常に動作していると判断されたセンサのセンサ信号に基づき、アクチュエータを駆動制御する第1指令信号を生成する、第1マイクロプロセッサと、
第2マイクロプロセッサであって、第2同グループ異常判断信号生成部と、第2同グループ異常判断部と、第2異グループ信号比較部と、第2異グループ異常判断部と、第2マイコン間通信部と、第2指令信号生成部と、を含み、
第2同グループ異常判断信号生成部は、第2主センサ信号と第2副センサ信号とから、異常状態を判断する異常判断信号を生成し、
第2同グループ異常判断部は、第2同グループ異常判断信号生成部からの異常判断信号に基づき、第2センサグループの異常の有無を判断し、
第2マイコン間通信部は、第1マイクロプロセッサの第1マイコン間通信部から第1センサグループの第1主センサ信号或いは第1副センサ信号を入手し、
第2異グループ信号比較部は、第2同グループ異常判断部で第2センサグループのセンサに異常が有ると判断されたとき、第2センサグループの第2主センサ及び第2副センサ信号と第1センサグループの第1主センサ信号或いは第1副センサ信号とを比較し、
第2異グループ異常判断部は、第2センサグループの第2主センサ信号及び第2副センサ信号と第1センサグループの第1主センサ信号或いは第1副センサ信号との比較結果に基づき、第2センサグループの何れのセンサが正常に動作しているかを判断し、
第2指令信号生成部は、第2異グループ異常判断部において、第2センサグループのセンサで正常に動作していると判断されたセンサのセンサ信号に基づき、アクチュエータを駆動制御する第2指令信号を生成する、第2マイクロプロセッサと、を有する。
本発明の一実施形態によれば、一方のセンサグループの主センサ信号と副センサ信号からどちらかのセンサに異常があると判断された場合は、一方のセンサグループの主センサ信号、及び副センサ信号と、他方のセンサグループの主センサ信号、或いは副センサ信号とを比較し、一方のセンサグループのセンサの内で、他方のセンサグループの主センサ信号、或いは副センサ信号と一致したセンサ信号を出力したセンサを正常に動作しているセンサとして特定するので、異常診断機能の信頼性を向上することができる。
以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
本発明の具体的な実施形態を説明する前に、本発明が適用される電動パワーステアリング装置を備えた操舵装置の構成について説明する。
図1は、本発明が適用される車両搭載機器としての電動パワーステアリング装置を備えた操舵装置の構成を示している。
操舵装置10は、ステアリングホイール15の回転に伴い前輪11、11を転舵させるもので、ラック・アンド・ピニオン式のステアリングギア12を有している。ステアリングギア12のピニオンギア13は、ステアリングシャフト14を介してステアリングホイール15と連結されており、ステアリングギア12のラックギア16は、ラック軸17に設けられている。
ラック軸17の両端は、タイロッド18、18を介して前輪11、11と連結されている。ステアリングシャフト14には、減速機構19を介して電動モータ20が連結されており、減速機構19は、ウォーム21とウォームホイール22とで構成されている。ウォーム21は電動モータ20のモータシャフト23と一体に設けられている。
モータシャフト23からの回転トルクは、減速機構19を介してステアリングシャフト14に伝達される。ステアリングシャフト14には、操舵トルクを検出するトルクセンサ24が設けられている。このステアリングシャフト14の操舵(回動)トルクは、車両の運転状態を表す物理量の1つであり、トルクセンサ24は、車両の運転状態を表す物理量を検出するセンサとして機能する。
尚、ステアリングシャフト14のトルクセンサ24に代えて、前輪の操舵角を検出する操舵角センサを使用することもできる。
また、電動モータ20には、電子制御部(ECU)25、及びモータシャフト23の回転角を検出する回転角センサ26が一体に設けられている。回転角センサ26は、電動モータ20の回転角(モータ回転角)を検出する。更には、ステータ巻線に流れる電流を検出する電流センサが設けられていても良い。
このモータシャフト23の回転角、及びステータ巻線に流れる電流も、車両の運転状態を表す物理量の1つであり、回転角センサ26、及び電流センサは、車両の運転状態を表す物理量を検出するセンサとして機能する。
電子制御部25は、操舵トルク信号、回転角信号、電流信号、及び車速センサ27により検出された車速信号に基づいて、電動モータ20の駆動電流を制御し、電動モータ20の回転トルクを減速機構19を介してステアリングシャフト14に与えることで、操舵アシストトルクを付与する。
図2は、電動モータ20を制御する電子制御部25の構成を示している。この電子制御部25は、二重系統の制御系からなる冗長形式に構成されている。
図2は、トルクセンサ24と電子制御部25を接続した構成を示しており、電動モータ20は、三相巻線により構成されるステータを二組(第1巻線組、第2巻線組)有する二重系統の三相モータである。
つまり、二重系統の巻線がステータコアに巻回されており、夫々の巻線に供給される電力に対応してロータに回転トルクが与えられる。したがって、二重系統の制御系が共に正常であると、夫々の巻線で回転トルクが与えられ、一方の制御系に異常が生じると、他方の制御系の巻線だけで回転トルクが与えられる。
電子制御部25は、二重系統で構成されており、一方の第1制御系統は第1巻線組に駆動電流を供給し、他方の第2制御系統は第2巻線組に駆動電流を供給する。以下の説明において、両系統を区別する場合、第1制御系統に対応する部位には符号の末尾に「a」を付記し、第2制御系統に対応する部位には符号の末尾に「b」を付記して説明する。
電子制御部25は、制御系基板28、及びパワー系基板29を有している。制御系基板28は、ガラスエポキシ樹脂基材等の非金属基材を用いたプリント配線基板からなり、マイクロプロセッサ(MCU)30、プリドライバ(Pre-Driver)31等の制御系電子部品が両面に実装されている。パワー系基板29は、熱伝達性に優れた金属回路基板を用いたもので、MOSFETのようなスイッチング素子からなるインバータ32が片面に実装されている。尚、金属回路基板に代えてガラスエポキシ回路基板を用いることもできる。
マイクロプロセッサ30には、トルクセンサ24のトルクセンサ信号、回転角センサ26の回転角センサ信号、及び車速信号が入力されている。また、三相電流、及び過電流を監視する電流センサからの電流信号も入力されている。マイクロプロセッサ30は、各信号等に基づいて目標アシストトルクを演算し、その演算値をプリドライバ31へ出力する。
マイクロプロセッサ30は、制御系基板28に設けられた電源IC33から電力が供給されている。電源IC33は、弱電側バッテリ、またはイグニションラインと接続されている。尚、後述する他の電源IC34、35についても同様である。
二重系統を構成する第1マイクロプロセッサ30a、及び第2マイクロプロセッサ30bの間には、互いの制御状態やセンサ信号等の情報を送受信するためのマイコン間通信線36が設けられている。
例えば、マイクロプロセッサ30a、30bの夫々には、ウォッチドックタイマー機能が備えられており、夫々のマイクロプロセッサ30a、30bの制御プログラムの動作状態を監視している。そして、この監視情報がマイコン間通信線36でやり取りされ、どちらかのマイクロプロセッサに異常が生じると、異常信号を受け取った正常なマイクロプロセッサで、異常に対応した制御を実行する。
また、本実施形態では、夫々の制御系統のセンサ類(トルクセンサ、回転角センサ、電流センサ等)は、夫々の制御系統に合せて専用に設けられており、一方の制御系統のセンサ信号が他方の制御系統のマイクロプロセッサに直接入力されていない。本実施形態では、一方のマイクロプロセッサが必要とした場合にだけ、マイコン間通信線36を介して他方のマイクロプロセッサから他方のセンサ信号を取り込むように動作する。
これによって、例えば、第1マイクロプロセッサ30aが第2トルクセンサグループ24bのトルクセンサ信号を取得する場合において、第1マイクロプロセッサ30aの第1マイコン間通信部、及び第2マイクロプロセッサ30bの第2マイコン間通信部を用いることで第2トルクセンサグループ24bのトルクセンサ信号を得ることができる。
これによって、第1マイクロプロセッサ30aは、直接的に第2トルクセンサグループ24bからトルクセンサ信号を取り込むための入力ポートを持つ必要が無く、第1マイクロプロセッサ30aにおける入力ポートの増大を抑制することができる。もちろん、第2マイクロプロセッサ30bにおいても同様である。
尚、本実施形態においては、上述の構成としているが、第1マイクロプロセッサ30aが、第2トルクセンサグループ24bから直接的にトルクセンサ信号を取得するための入力ポートを持つことを一切、排除するものではない。必要に応じて第2トルクセンサグループ24bからのトルクセンサ信号を直接的に取得するための入力ポートを持つものであっても良い。もちろん、第2マイクロプロセッサ30bにおいても同様の構成とされている。
トルクセンサ24は、例えば磁歪式であり、制御系基板28に設けられた電源IC34から電力が供給されている。トルクセンサ24は、第1トルクセンサグループ24a、及び第2トルクセンサグループ24bを有し、第1トルクセンサグループ24a、及び第2トルクセンサグループ24bを構成するトルクセンサ24は、夫々2つのホールICを備えている。このように、第1トルクセンサグループ24a、及び第2トルクセンサグループ24bは、同じ物理量、ここではステアリングシャフト14の操舵(回動)トルクを検出している。
第1トルクセンサグループ24aは、同じ検出方式の2つ(主、副)のトルクセンサからなり、第1主トルクセンサ24amと第1副トルクセンサ24asからのトルクセンサ信号を第1マイクロプロセッサ30aに出力する。同様に、第2トルクセンサグループ24bは、同じ検出方式の2つ(主、副)のトルクセンサからなり、第2主トルクセンサ24bmと第2副トルクセンサ24bsからのトルクセンサ信号を第2マイクロプロセッサ30bに出力する。
更に、第1トルクセンサグループ24aと第2トルクセンサグループ24bの夫々は、同じ検出方式でステアリングシャフト14の操舵トルクを検出している。したがって、第1主トルクセンサ24am、第1副トルクセンサ24as、第2主トルクセンサ24bm、及び第2副トルクセンサ24bsは、磁歪式のトルクセンサとされている。
第1プリドライバ31a、及び第2プリドライバ31bは、目標アシストトルクに応じた駆動指令信号を、第1インバータ32a、及び第2インバータ32bを構成するMOSFETのゲートに出力する。第1インバータ32a、及び第2インバータ32bは、駆動指令信号に応じて夫々の巻線組への電流を制御する。ここで、第1インバータ32a、及び第2インバータ32bは、強電側バッテリ37から電力が供給されている。
また、回転角センサ26は、第1回転角センサグループ26a、及び第2回転角センサグループ26bを有し、同じ物理量、ここではモータシャフト23の回転角を検出している。第1回転角センサグループ26a、及び第2回転角センサグループ26bを構成する回転角センサは、夫々2つの磁気検出素子を備えている。磁気検出素子を有する回転角センサ26は、モータシャフト23に設けられたマグネットが回転して発生する回転磁界を検出することにより、モータシャフト23の回転角を検出する。
第1回転角センサグループ26aは、同じ検出方式の2つ(主、副)の回転角センサからなり、第1主回転角センサと第1副回転角センサからの回転角センサ信号を第1マイクロプロセッサ30aに出力する。同様に、第2回転角センサグループ26bは、同じ検出方式の2つ(主、副)の回転角センサからなり、第2主回転角センサと第2副回転角センサからの回転角センサ信号を第2マイクロプロセッサ30bに出力する。
また、第1回転角センサグループ26aと第2回転角センサグループ26bの夫々は、同じ検出方式(磁気検出素子による検出)で、モータシャフト23の回転角を検出している。
第1回転角センサ26aは、制御系基板28に設けられた電源IC35aから電力が供給されている。また、第2回転角センサ26bは、電源IC35bから電力が供給されている。各回転角センサグループ26a、26bのセンサ信号は、対応する第1マイクロプロセッサ30a、及び第2マイクロプロセッサ30bの夫々で受信される。
上述したように、トルクセンサ24のセンサ信号の値が所定範囲内に収まる中間値異常に関しては、2系統のトルクセンサ24am、24asにより検出されたセンサ信号の値の偏差を求め、その偏差が予め設定した設定値よりも大きい場合には、何れか一方のトルクセンサ24am、24asが異常であると推定できる。しかしながら、このように2系統の出力の偏差を求めても、何れの系統が故障しているのか特定することができないため、異常診断機能の信頼性に課題を有していることは先に述べた通りである。
本実施形態では、2系統の何れのセンサが真に正常、或いは異常なのか正確に特定できる制御装置を提案するものであり、その詳細を以下に説明する。
次に夫々のマイクロプロセッサ30a、30bで実行される各センサグループの異常判断の方法について説明する。ここで、異常判断は夫々のマイクロプロセッサ30a、30bに記憶された制御プログラムによって実行されるが、この制御プログラムは制御機能として捉えることができるので、以下では機能ブロックとして説明する。
図3は、本実施形態になるマイクロプロセッサで実行される制御機能の機能ブロックを示している。尚、図3ではセンサとしてトルクセンサ24を使用した例を示しているが、他のセンサの場合も同様であるので、他のセンサの説明は省略する。
第1マイクロプロセッサ30aには、第1トルクセンサグループ24aのトルクセンサ信号が入力ポートを介して入力されている。第1トルクセンサグループ24aは、第1主トルクセンサ24amと、第1副トルクセンサ24asからなっている。ここでは、第1主トルクセンサ24amと第1副トルクセンサ24asは、上述した通り同じ検出方式のトルクセンサが使用されている。これらのトルクセンサ24am、24asのセンサ信号は、夫々の信号処理回路38am、38asに入力され、信号処理回路38am、38asのAD変換器によってAD変換されて、第1マイクロプロセッサ30aに入力されている。ここで、AD変換器は、第1マイクロプロセッサ30aに設けられていても良く、この場合は、トルクセンサ24am、24asのセンサ信号は、第1マイクロプロセッサ30aに直接的に入力されることになる。
尚、信号処理回路38am、38asは自己診断機能を備えることができ、夫々のトルクセンサ24am、24asに異常が生じると、自己診断情報を出力することができる。自己診断情報の利用については後述する。
第1マイクロプロセッサ30aは、制御プログラムによって種々の制御機能を実行することができるが、ここでは本発明の対象である、センサの異常診断機能について説明する。
第1マイクロプロセッサ30aは少なくとも、第1マイコン間通信部39aと、第1同グループ異常判断信号生成部40aと、第1同グループ異常判断部41aと、第1異グループ信号比較部42aと、第1異グループ異常判断部43aと、第1指令信号生成部44aとを備えている。
第1同グループ異常判断信号生成部(CMPA-1)40aは、第1トルクセンサグループ24aを構成する、第1主トルクセンサ24amの第1主トルクセンサ信号と、第1副トルクセンサ24asの第1副トルクセンサ信号を比較する機能を備えている。また、この第1同グループ異常判断信号生成部40aでの比較結果は、後段の第1同グループ異常判断部(EMGA-1)41aで実行される異常判断の「異常判断信号」として使用されるが、これは種々の形態をとることができる。
ここで、第1主、副トルクセンサ24am、24asの特定は、例えば、入力ポートのポート番号から特定することができる。また、ポート番号に対応した内部データレジスタにトルクセンサ信号のAD変換データが記憶されるので、この内部データレジスタのAD変換データから、第1主、副トルクセンサ24am、24asからの第1主、副トルクセンサ信号の値が読み取られる。
尚、これは例示的に示したものであり、他の構成によっても実現できる。また、上述した通り、AD変換器は、信号処理回路38am、38asに設けられているが、第1マイクロプロセッサ30aの入力回路に設けることもできる。
そして、例えば、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号の値の偏差を、「異常判断信号」として出力することができる。この偏差は、第1主トルクセンサ24amと第1副トルクセンサ24asの何れかに異常が生じているかどうかの情報を含んでいる。
次に、第1同グループ異常判断信号生成部40aの比較結果(偏差)は、第1同グループ異常判断部41aに送られ、第1トルクセンサグループ24aの何れかのトルクセンサ24am、24asに異常があるかどうかの判断が行われる。
第1同グループ異常判断部41aは、例えば、第1同グループ異常判断信号生成部40aから送られてきた第1主、副トルクセンサ信号の偏差が、所定値以下であれば何れのトルクセンサ24am、24asも正常と判断する。
一方、第1主、副トルクセンサ信号の偏差が、所定値以上であれば何れかのトルクセンサ24am、24asが異常と判断することができる。本実施形態では偏差の大きさから異常状態を判断しているので、以下ではこの例について説明を行なう。
第1同グループ異常判断部41aは、第1主トルクセンサ24amと第1副トルクセンサ24asからの第1主、副トルクセンサ信号の値が一致している場合(偏差が所定値より小さい)は、正常と見做して第1指令信号生成部(CNTA)44aに対して、第1巻線組への制御信号を演算する指令を出力する。
この時は、制御ロジックの設定によって、第1指令信号生成部44aは、第1主トルクセンサ24amからの第1主トルクセンサ信号を優先的に使用して制御信号を演算している。この第1指令信号生成部44aによって演算された制御信号は、図2に示す第1プリドライバ31aに送られ、更に第1プリドライバ31aで第1インバータ32aを制御して第1巻線組の巻線を駆動する。
一方、第1同グループ異常判断部41aで、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号の値が一致していない場合(偏差が所定値より大きい)は、第1トルクセンサグループ24aのどちらかのトルクセンサ24am、24asに異常が生じていると判断される。第1トルクセンサグループ24aのどちらかのトルクセンサ24am、24asに異常があると判断されると、この判断結果は第1異グループ信号比較部(CMPA-2)42aに送られる。
第1異グループ信号比較部42aでは、第1トルクセンサグループ24aのトルクセンサ24am、24asからの第1主、副トルクセンサ信号と、第2トルクセンサグループ24bの第2主トルクセンサ24bmからの第2主トルクセンサ信号、或いは第2副トルクセンサ24bsからの第2副トルクセンサ信号との比較が行われる。つまり、第1異グループ信号比較部42aでは、少なくとも3つのセンサ信号の値が比較されている。
ここで、本実施形態では、第2トルクセンサグループ24bの第2主トルクセンサ24bmからの第2主トルクセンサ信号を取り込んでいるので、以下では第2主トルクセンサ信号について説明する。尚、第2副トルクセンサ24bsからの第2副トルクセンサ信号を使用しても良いことはいうまでもない。
第1異グループ信号比較部42aにおいては、第1マイコン間通信部39aを介して第2マイクロプロセッサ30bの第2マイコン間通信部39bから、第2トルクセンサグループ24bの第2主トルクセンサ24bmからの第2主トルクセンサ信号を取り込んでいる。尚、必要に応じて第2トルクセンサグループ24bのトルクセンサ24bm、24bsからの第2主、副トルクセンサ信号の両方を取り込むこともできる。
ここで、第2主トルクセンサ24bmからの第2主トルクセンサ信号の取り込みは、第2主トルクセンサ24bmが正常であるという前提で実行される。同様に、第2副トルクセンサ24bsからの第2副トルクセンサ信号を使用する場合も、第2副トルクセンサ24bsが正常であるという前提で実行される。
また、より好ましくは、第2マイクロプロセッサ30bには、第2同グループ異常判断部41bで第2トルクセンサグループ24bの夫々のトルクセンサ24am、24asが正常と判断された場合にだけ、第2主トルクセンサ24bmからの第2主トルクセンサ信号、或いは第2副トルクセンサ24bsからの第2副トルクセンサ信号を第2マイコン間通信部39bに送るゲート部45bが設けられている。
同様に、第1マイクロプロセッサ30aにも、第1同グループ異常判断部41aで第1トルクセンサグループ24aの夫々のトルクセンサ24am、24asが正常と判断された場合にだけ、第1主トルクセンサ24amからの第1主トルクセンサ信号、或いは第1副トルクセンサ24asからの第1副トルクセンサ信号を第1マイコン間通信部39aに送るゲート部45aが設けられている。
第2主トルクセンサ信号の取得タイミングは、第1異グループ信号比較部42aが動作されるときであり、この取得タイミング以外では、第2主トルクセンサ24bmからの第2主トルクセンサ信号は取り込まれていない。これにより、夫々のマイコン間通信部39a、39bの通信容量を低く抑えることができる。
前に述べたように、第1同グループ異常判断部41aによって、第1主トルクセンサ24amの第1主センサトルク信号と第1副トルクセンサ24asの第1副トルクセンサ信号の間の偏差が所定値と比較され、偏差が所定値より大きいと何れかのトルクセンサ24am、24asに異常があると判断されている。
したがって、第1異グループ信号比較部42aでは、第1マイコン間通信部39aを介して、第2主トルクセンサ24bmからの第2主トルクセンサ信号を取り込み、次に第1主トルクセンサ24amの第1主トルクセンサ信号、及び第1副トルクセンサ24asの第1副トルクセンサ信号の値と比較している。
つまり、第1トルクセンサグループ24aの第1主トルクセンサ24amの第1主トルクセンサ信号、及び第1副トルクセンサ24asの第1副トルクセンサ信号と、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号の3つのトルクセンサ信号の値を比較する。
この比較結果は、第1異グループ異常判断部(EMGA-2)43aに送られ、第1トルクセンサグループ24aのどちらのトルクセンサ24am、24asが正常に動作しているかどうかの判断が行われる。言い換えれば、異常が発生しているトルクセンサ24am、24asの特定が実行される。
第1異グループ異常判断部43aにおいては、3つのセンサ信号のうち、第1主トルクセンサ24amの第1主トルクセンサ信号の値と、第2主トルクセンサ24bmの第2主トルクセンサ信号の値が一致していれば、第1主トルクセンサ24amは正常状態と判断される。逆に、第1副トルクセンサ24asの第1副トルクセンサ信号の値は、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致していないので、第1副トルクセンサ24asは異常状態と判断される。
一方、第1副トルクセンサ24asの第1副トルクセンサ信号の値と、第2主トルクセンサ24bsの第2主トルクセンサ信号の値が一致していれば、第1副トルクセンサ24asは正常状態と判断される。逆に、第1主トルクセンサ24amの第1主トルクセンサ信号の値は、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致していないので、第1主トルクセンサ24amは異常状態と判断される。
ここで、「一致」とは、それぞれのトルクセンサ信号の値が完全に一致すること、及びそれぞれのトルクセンサ信号の値が所定の許容範囲内に収まっていることを意味している。
このように、第1異グループ異常判断部43aにおいては、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号との合致状態から、第1トルクセンサグループ24aの第1主トルクセンサ24am、或いは第1副トルクセンサ24asのどちらに異常が生じているのか特定できる。
第1異グループ異常判断部43aにおいて、第1主トルクセンサ24am、或いは第1副トルクセンサ24asの一方が正常状態と判断されると、第1指令信号生成部44aに、正常状態と判断されたトルクセンサのトルクセンサ信号に基づいて、第1巻線組への制御信号を演算する指令を出力する。
そして、第1指令信号生成部44aは、正常状態と判断されたトルクセンサのトルクセンサ信号を使用して制御信号を演算する。この第1指令信号生成部44aによって演算された制御信号は、第1プリドライバ31aに送られ、更に第1プリドライバ31aで第1インバータ32aを制御して第1巻線組の巻線を駆動する。
次に、第2マイクロプロセッサ30bの動作について説明する。基本的には第1マイクロプロセッサ30aと同じ動作をおこなうが、夫々のマイクロプロセッサの動作は同期をとっておらず、それぞれ単独で動作されている。
第2マイクロプロセッサ30bには、第2トルクセンサグループ24bのトルクセンサ信号が入力ポートを介して入力されている。第2トルクセンサグループ24bは、第2主トルクセンサ24bmと、第2副トルクセンサ24bsからなっている。ここでは、第2主トルクセンサ24bmと第2副トルクセンサ24bsは、上述した通り同じ検出方式のトルクセンサが使用されている。これらのトルクセンサ24bm、24bsのセンサ信号は、夫々の信号処理回路38bm、38bsに入力され、信号処理回路38bm、38bsのAD変換器によってAD変換されて、第2マイクロプロセッサ30bに入力されている。ここで、AD変換器は、第2マイクロプロセッサ30bに設けられていても良く、この場合は、トルクセンサ24bm、24bsのセンサ信号は、第2マイクロプロセッサ30bに直接的に入力されることになる。
尚、信号処理回路38bm、38bsも、上述したように自己診断機能を備えることができ、夫々のトルクセンサ24bm、24bsに異常が生じると、自己診断情報を出力することができる。
第1マイクロプロセッサ30aと同様に、第2マイクロプロセッサ30bは少なくとも、第2マイコン間通信部39bと、第2同グループ異常判断信号生成部40bと、第2同グループ異常判断部41bと、第2異グループ信号比較部42bと、第2異グループ異常判断部43bと、第2指令信号生成部44bとを備えている。
第2同グループ異常判断信号生成部(CMPB-1)40bは、第2トルクセンサグループ24bを構成する、第2主トルクセンサ24bmの第2主トルクセンサ信号と、第2副トルクセンサ24bsの第2副トルクセンサ信号を比較する機能を備えている。また、この第2同グループ異常判断信号生成部40bでの比較結果は、後段の第2同グループ異常判断部(EMGB-1)41bで実行される異常判断の「異常判断信号」として使用されるが、これは種々の形態をとることができる。
ここでも、第2主、副トルクセンサ24bm、24bsの特定は、例えば、入力ポートのポート番号から特定することができる。また、ポート番号に対応した内部データレジスタにトルクセンサ信号のAD変換データが記憶されるので、この内部データレジスタのAD変換データから、第2主、副トルクセンサ24bm、24bsからの第2主、副トルクセンサ信号の値が読み取られる。
尚、これは例示的に示したものであり、他の構成によっても実現でき、要は夫々のトルクセンサのセンサ信号の値を求めることができれば良い。また、上述した通り、AD変換器は、信号処理回路38bm、38bsに設けられているが、第2マイクロプロセッサ30bの入力回路に設けることもできる。
そして、例えば、第2主トルクセンサ24bmと第2副トルクセンサ24bsの第2主、副トルクセンサ信号の値の偏差を、「異常判断信号」として出力することができる。この偏差も、第2主トルクセンサ24bmと第2副トルクセンサ24bsの何れかに異常が生じているかどうかの情報を含んでいる。
次に、第2同グループ異常判断信号生成部40bの比較結果(偏差)は、第2同グループ異常判断部41bに送られ、第2トルクセンサグループ24bの何れかのトルクセンサ24bm、24bsに異常があるかどうかの判断が行われる。
第2同グループ異常判断部41bは、例えば、第2同グループ異常判断信号生成部40bから送られてきた第2主、副トルクセンサ信号の偏差が、所定値以下であれば何れのトルクセンサ24bm、24bsも正常と判断する。一方、第2主、副トルクセンサ信号の偏差が、所定値以上であれば何れかのトルクセンサ24bm、24bsが異常と判断することができる。本実施形態では偏差の大きさから異常状態を判断しているので、以下ではこの例について説明を行なう。
第2同グループ異常判断部41bは、第2主トルクセンサ24bmと第2副トルクセンサ24bsからの第2主、副トルクセンサ信号の値が一致している場合(偏差が所定値より小さい)は、正常と見做して第2指令信号生成部(CNTB)44bに対して、第2巻線組への制御信号を演算する指令を出力する。
この時は、制御ロジックの設定によって、第2指令信号生成部44bは、第2主トルクセンサ24bmからの第2主トルクセンサ信号を優先的に使用して制御信号を演算している。この第2指令信号生成部44bによって演算された制御信号は、図2に示す第2プリドライバ31bに送られ、更に第2プリドライバ31bで第2インバータ32bを制御して第2巻線組の巻線を駆動する。
一方、第2同グループ異常判断部41bで、第2主トルクセンサ24bmと第2副トルクセンサ24bsの第2主、副トルクセンサ信号の値が一致していない場合(偏差が所定値より大きい)は、第2トルクセンサグループ24bのどちらかのトルクセンサ24bm、24bsに異常が生じていると判断される。第2トルクセンサグループ24bのどちらかのトルクセンサ24bm、24bsに異常があると判断されると、この判断結果は第2異グループ信号比較部(CMPB-2)42bに送られる。
第2異グループ信号比較部42bでは、第2トルクセンサグループ24bのトルクセンサ24bm、24bsからの第2主、副トルクセンサ信号と、第1トルクセンサグループ24aの第1主トルクセンサ24amからの第1主トルクセンサ信号、或いは第1副トルクセンサ24asからの第1副トルクセンサ信号との比較が行われる。つまり、第2異グループ信号比較部42bでは、少なくとも3つのセンサ信号の値が比較されている。
ここでも、本実施形態では、第1トルクセンサグループ24aの第1主トルクセンサ24amからの第1主トルクセンサ信号を取り込んでいるので、以下では第1主トルクセンサ信号について説明する。尚、第1副トルクセンサ24asからの第1副トルクセンサ信号を使用しても良いことはいうまでもない。
第2異グループ信号比較部42bにおいては、第2マイコン間通信部39bを介して第1マイクロプロセッサ30aの第1マイコン間通信部39aから、第1トルクセンサグループ24aの第1主トルクセンサ24amからの第1主トルクセンサ信号を取り込んでいる。尚、必要に応じて第1トルクセンサグループ24aのトルクセンサ24am、24asからの第1主、副トルクセンサ信号の両方を取り込むこともできる。
ここで、第1主トルクセンサ24amからの第1主トルクセンサ信号の取り込みは、第1主トルクセンサ24amが正常であるという前提で実行される。同様に、第1副トルクセンサ24asからの第1副トルクセンサ信号を使用する場合も、第1副トルクセンサ24asが正常であるという前提で実行される。
また、上述したように、第1マイクロプロセッサ30aには、第1同グループ異常判断部41aで第1トルクセンサグループ24aの夫々のトルクセンサ24am、24asが正常と判断された場合にだけ、第1主トルクセンサ24amからの第1主トルクセンサ信号、或いは第1副トルクセンサ24asからの第1副トルクセンサ信号を第1マイコン間通信部39aに送るゲート部45aが設けられている。
第1主トルクセンサ信号の取得タイミングは、第2異グループ信号比較部42bが動作されるときであり、この取得タイミング以外では、第1主トルクセンサ24amからの第1主トルクセンサ信号は取り込まれていない。これにより、夫々のマイコン間通信部39a、39bの通信容量を低く抑えることができる。
前に述べたように、第2同グループ異常判断部41bによって、第2主トルクセンサ24bmの第2主センサトルク信号と第2副トルクセンサ24bsの第2副トルクセンサ信号の間の偏差が所定値と比較され、偏差が所定値より大きいと何れかのトルクセンサ24bm、24bsに異常があると判断されている。
したがって、第2異グループ信号比較部42bでは、第2マイコン間通信部39bを介して、第1トルクセンサグループ24aの第1主トルクセンサ24amからの第1主トルクセンサ信号を取り込み、次に第2主トルクセンサ24bmからの第2主トルクセンサ信号、及び第2副トルクセンサ24bsの第2副トルクセンサ信号を比較している。
つまり、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号、及び第2副トルクセンサ24bsの第2副トルクセンサ信号と、第1トルクセンサグループ24aの第1主トルクセンサ24amの第1主トルクセンサ信号の3つのトルクセンサ信号の値を比較する。
この比較結果は、第2異グループ異常判断部(EMGB-2)43bに送られ、第2トルクセンサグループ24bのどちらのトルクセンサ24bm、24bsが正常に動作しているかどうかの判断が行われる。言い換えれば、異常が発生しているトルクセンサ24bm、24bsの特定が実行される。
第2異グループ異常判断部43bにおいては、3つのセンサ信号のうち、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と、第1主トルクセンサ24amの第1主トルクセンサ信号の値が一致していれば、第2主トルクセンサ24bmは正常状態と判断される。逆に、第2副トルクセンサ24bsの第2副トルクセンサ信号の値は、第1主トルクセンサ24amの第1主トルクセンサ信号の値と一致していないので、第2副トルクセンサ24bsは異常状態と判断される。
一方、第2副トルクセンサ24bsの第2副トルクセンサ信号の値と、第1主トルクセンサ24asの第1主トルクセンサ信号の値が一致していれば、第2副トルクセンサ24bsは正常状態と判断される。逆に、第2主トルクセンサ24bmの第2主トルクセンサ信号の値は、第1主トルクセンサ24amの第1主トルクセンサ信号の値と一致していないので、第2主トルクセンサ24bmは異常状態と判断される。
ここでも、「一致」とは、それぞれのトルクセンサ信号の値が完全に一致すること、及びそれぞれのトルクセンサ信号の値が所定の許容範囲内に収まっていることを意味している。
このように、第2異グループ異常判断部43bにおいては、第1トルクセンサグループ24aの第1主トルクセンサ24amの第1主トルクセンサ信号との合致状態から、第2トルクセンサグループ24bの第2主トルクセンサ24bm、或いは第2副トルクセンサ24bsのどちらに異常が生じているのか特定できる。
第2異グループ異常判断部43bにおいて、第2主トルクセンサ24bm、或いは第2副トルクセンサ24bsの一方が正常状態と判断されると、第2指令信号生成部44bに、正常状態と判断されたトルクセンサのトルクセンサ信号に基づいて、第2巻線組への制御信号を演算する指令を出力する。
そして、第2指令信号生成部44bは、正常状態と判断されたトルクセンサのトルクセンサ信号を使用して制御信号を演算する。この第2指令信号生成部44bによって演算された制御信号は、第2プリドライバ31bに送られ、更に第2プリドライバ31bで第2インバータ32bを制御して第2巻線組の巻線を駆動する。
本実施形態ではトルクセンサ24について説明しているが、これ以外の回転角センサ26や電流センサについても同様の構成とすることができるのはいうまでもない。
本実施形態によれば、一方のセンサグループの主センサ信号と副センサ信号からどちらかのセンサに異常があると判断された場合は、一方のセンサグループの主センサ信号、及び副センサ信号と、他方のセンサグループの主センサ信号、或いは副センサ信号とを比較し、一方のセンサグループのセンサの内で、他方のセンサグループの主センサ信号、或いは副センサ信号と一致したセンサ信号を出力したセンサを正常に動作しているセンサとして特定するので、異常診断機能の信頼性を向上することができる。
以上が、本実施形態における車両搭載機器の制御装置の基本的な構成とその動作であるが、これに加えて特徴的な構成を次に説明する。
第1マイクロプロセッサ30aの第1マイコン間通信部39aは、第1同グループ異常判断部41aが、第1トルクセンサグループ24aに異常があると判断したときに、第2マイクロプロセッサ30bに対し、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号、或いは第2副トルクセンサ24bsの第2副トルクセンサ信号の送信を要求するセンサ信号要求指令を送信する機能を有している。
同様に、第2マイクロプロセッサ30bの第2マイコン間通信部39bも、第2同グループ異常判断部41bが、第2トルクセンサグループ24bに異常があると判断したときに、第1マイクロプロセッサ30aに対し、第1トルクセンサグループ24aの第1主トルクセンサ24amの第1主トルクセンサ信号、或いは第1副トルクセンサ24asの第1副トルクセンサ信号の送信を要求するセンサ信号要求指令を送信する機能を有している。
これによって、夫々のセンサグループ24a、24bのトルクセンサ信号を常時送信するのではなく、夫々のマイクロプロセッサからのセンサ信号要求指令を受信したときにトルクセンサ信号を送信することにより、第1、第2マイコン間通信部39a、39bにおける通信容量の増大を抑制することができる。
また、第1異グループ信号比較部42aは、第1マイコン間通信部39aを介して取得された、第2主トルクセンサ信号の検出タイミングと取得タイミングの間の「経過時間」に基づき、検出すべき第1主、副トルクセンサ信号の第1検出タイミングを求めている。これによって、「経過時間」に基づいて求められた検出タイミングに時刻的に近い第1検出タイミングで検出された第1主、副トルクセンサ信号を求めることができる。尚、第1主、副トルクセンサ信号は、順次、記憶、消去されており、所定の検出回数分のデータが新しい順番に更新されながら記憶されて保持されている。
図4にあるように、時間の経過に伴って所定の検出タイミングでトルクセンサのセンサ信号が検出されており、第1主トルクセンサ24amの第1検出タイミング(T1mt)と第2主トルクセンサ24bmの第2検出タイミング(T2mt)とは同期しないで発生されている。但し、検出間隔(インターバル)は同じ時間であり、所定時間毎に、第1主トルクセンサ24amの第1主トルクセンサ信号(Sam)が検出され、第2主トルクセンサ24bmの第2主トルクセンサ信号(Sbm)が検出されている。
この状態で、第1マイコン間通信部39aを介して、第2主トルクセンサ信号(Sbm)を取り込む取得タイミング(Tst)が発生すると、この取得タイミング(Tst)の直前に発生した第2検出タイミングの第2主トルクセンサ信号(Sbm)を、第2主トルクセンサ信号(Sbm´)として取り込む。この時、取得タイミング(Tst)が発生した時刻と直前の第2検出タイミングの時刻の「経過時間」が演算されており、これも同時に取り込まれる。
次に、第1異グループ信号比較部42aは、取得タイミング(Tst)が発生した時刻から、取り込まれた「経過時間」を遡った時刻(検出タイミング)を演算し、この遡った時刻に近い第1検出タイミングで検出された第1主、副トルクセンサ信号を求めている。その流れを破線矢印で示している。
したがって、第2主トルクセンサ24bmの第2主トルクセンサ信号の第2検出タイミングと、第1主トルクセンサ24amの第1主トルクセンサ信号の第1検出タイミングは時刻的に近いものとなっている。このため、第1異グループ信号比較部42aは、時刻的に検出タイミングが近い第1主トルクセンサ24am、及び第1副トルクセンサ24asの第1主、副トルクセンサ信号と、第2主トルクセンサ24bmの第2主トルクセンサ信号とを比較することができる。
同様に、第2異グループ信号比較部42bにおいても、同じ方法で第2主、副トルクセンサ信号を求めている。したがって、第1主トルクセンサ24amの第1主トルクセンサ信号の検出タイミングと、第2主トルクセンサ24bmの第2主トルクセンサ信号の検出タイミングは時刻的に近いものとなっている。このため、第2異グループ信号比較部42bにおいても、時刻的に検出タイミングが近い第2主トルクセンサ24bm、及び第2副トルクセンサ24bsの第2主、副トルクセンサ信号と、第1主トルクセンサ24amの第1主トルクセンサ信号とを比較することができる。
2系統のトルクセンサグループ24a、24bのトルクセンサ信号の値は、検出タイミングによって時々刻々と変化するため、検出タイミングが異なれば夫々のトルクセンサグループ24a、24bのトルクセンサ信号の値は異なってくる。トルクセンサグループ24a、24bからマイクロプロセッサ30a、30bまでのトルクセンサ信号の伝達時間、更には、マイコン間通信部39a、39bでの通信周期等を考慮すると、マイクロプロセッサ30a、30bが、夫々のトルクセンサグループ24a、24bのトルクセンサ信号を取得する取得タイミングによって、夫々のトルクセンサグループ24a、24bの検出タイミングに時間的なずれを生じる。
そこで、第1トルクセンサグループ24aのトルクセンサ信号の検出タイミングと、この検出タイミングと時刻的に近い検出タイミングで検出された第2トルクセンサグループ24bのトルクセンサ信号を比較することで、時刻的に近い検出タイミングのトルクセンサ信号同士を比較することができ、精度の高い異常判断を行うことができる。
尚、検出タイミングは、例えば、トルクセンサ4の検出周期(またはトルクセンサ信号の取り込み周期)において、時刻的に最も近いトルクセンサ信号を選択しても良いし、最も近いものの前のトルクセンサ信号を選択しても良い。
また、車両の運転状態として検出される物理量は、互いに同じ物理量であり、ステアリングシャフト14であれば、第1主トルクセンサ24am、第1副トルクセンサ24as、第2主トルクセンサ24bm、及び第2副トルクセンサ24bsによって、ステアリングシャフト14の操舵(回動)トルクが検出される。
同様にモータシャフト23であれば、第1主回転角センサ、第1副回転角センサ、第2主回転角センサ、及び第2副回転角センサによって、モータシャフト23の回転角が検出される。同様にステータの巻線であれば、第1主電流センサ、第1副電流センサ、第2主電流センサ、及び第2副電流センサによってステータの巻線に流れる電流が検出される。
これによれば、同じ検出物理量同士を比較するため、精度の高い異常判断を行うことができる。また、センサの処理回路を同一の処理回路に共通化でき、更には制御プログラムの演算を簡素化できる効果がある。
また、第1トルクセンサグループ24a(第1主トルクセンサ24amと第1副トルクセンサ24as)は、互いに同じ検出方式とし、第2トルクセンサグループ24b(第2主トルクセンサ24bmと第2副トルクセンサ24bs)は、互いに同じ検出方式とし、第1トルクセンサグループ24aと第2トルクセンサグループ24bのトルクセンサは、互いに異なる検出方式によってステアリングシャフトの操舵(回動)トルクを検出するようにしても良い。
トルクを検出するには、磁歪式、ひずみゲージ式、圧電式、光学式、静電容量式等があるので、これらを適切に選んで組み合せることができる。ここで、回転角センサや電流センサも、第1制御系統と第2制御系統とで互いに異なる検出方式を採用することもできることはいうまでもない。
尚、比較動作を行なう場合は、トルクセンサ信号の種類を揃える必要があるので、換算マップを利用してトルクセンサ信号の種類を揃えることができる。例えば、第1センサグループ24aのトルクセンサを磁歪式とし、第2センサグループ24bのトルクセンサをひずみゲージ式とした場合、磁歪式のセンサデータとひずみゲージ式のセンサデータを互いに換算してマップ化しておけば良い。
したがって、第1マイクロプロセッサ30aの第1異グループ比較部42aで比較する場合は、第2センサグループ24bのひずみゲージ式のセンサデータは、第1センサグループ24aの磁歪式のセンサデータに変換されて比較され、第2マイクロプロセッサ30bの第2異グループ比較部42bで比較する場合は、第1センサグループ24aの磁歪式のセンサデータは、第2センサグループ24bのひずみ式のセンサデータに変換されて比較される。
これによれば、第1センサグループと第2センサグループとで、検出方式を異ならせることで、共通の原因に基づく故障に対して、センサが生き残る割合を高めることができ、システム的に強いものとすることができる。
また、電動モータは車両の前輪を操舵する操舵アクチュエータとしており、操舵アクチュエータは、トルクセンサの高い信頼性が求められるものである。このため、第1トルクセンサグループ24a、及び第2トルクセンサグループ24bの夫々のトルクセンサのセンサ信号から異常判断を行い、これに加えて、他のトルクセンサグループのセンサ信号と比較して異常状態のセンサを特定するので、信頼性の高い操舵アクチュエータ制御を行うことができる。
尚、操舵アクチュエータは、前輪を操舵するものを示しているが、後輪を操舵するものであっても良い。また、操舵輪は、ステアリングホイールと機械的に連結されたものであっても良いし、機械的な接続ではなく電動モータだけで操舵輪を駆動するものであっても良い。
また、電動モータは、ステータ巻線と、モータロータと、モータロータの回転位置を検出するモータ回転角センサ、及びステータ巻線に流れる電流を検出する電流センサを含み、第1主センサ、第1副センサ、第2主センサ、及び第2副センサは、モータ回転角センサ、及び電流センサのどちらか一方、或いは両方が使用されている。
これによれば、電動モータの検出信号(モータ回転角、巻線電流)の異常判断において、同じセンサグループ内での比較だけでなく、相手側センサグループの信号とも比較することで、信頼性の高いモータ制御、ひいては信頼性の高い操舵制御を行うことができる。
また、図3にあるように、第1マイクロプロセッサ30aは、第1マイコン間通信部39aに加えて第1補助マイコン間通信部39a-Aを備え、第2マイクロプロセッサ30bは、第2マイコン間通信部39bに加えて第2補助マイコン間通信部39b-Aを備えることができる。そして、第1補助マイコン間通信部39a-Aは、第2補助マイコン間通信部39b-Aから前記第2センサグループ24bのトルクセンサ信号を入力し、第2補助マイコン間通信部39b-Aは、第1補助マイコン間通信部39a-Aから第1センサグループ24aのトルクセンサ信号を入力することができる。
これによれば、マイコン間通信を、第1マイコン間通信部39a、及び第2マイコン間通信部39bの間だけでなく、更に第1補助マイコン間通信部39a-A、及び第2補助マイコン間通信部39b-Aの間でも行うことができ、マイコン間通信の信頼性を向上させることができる。
次に、上述した機能ブロックを実行する、マイクロプロセッサ30の制御フローを図5に基づき説明する。尚、第1マイクロプロセッサ30aと第2マイクロプロセッサ30bは、実質的に同じ動作を行なうので、以下では第1マイクロプロセッサ30aについて説明する。
≪ステップS10≫ステップS10においては、第1トルクセンサグループ24aを構成する、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号を取り込む。この第1主、副トルクセンサ信号の取り込みは、所定時間毎の実行周期で取り込まれており、この制御フローの実行周期に同期しても良いし、別の実行周期でも良い。第1主、副トルクセンサ信号の取り込みが完了するとステップS11に移行する。
ここで、第1主、副トルクセンサ24am、24asの特定は、入力ポートのポート番号から特定される。また、ポート番号に対応した内部データレジスタにトルクセンサ信号のAD変換データが記憶されるので、この内部データレジスタから、第1主、副トルクセンサ24am、24asからの第1主、副トルクセンサ信号の値が読み取られる。
≪ステップS40≫ステップS40においては破線で制御ステップを示しているが、これは図6、図7の制御フローを介在させる場合を示しており、これについては図6、図7で説明する。尚、本実施形態は中間値異常に対応するものであるため、図6、図7の制御フローを介在させる必要がない場合は省略できる。
≪ステップS11≫ステップS11においては、第1主トルクセンサ24amの第1主トルクセンサ信号と、第1副トルクセンサ24asの第1副トルクセンサ信号とを比較する。このステップS11においては、第1主トルクセンサ24amと第1副トルクセンサ24asのトルクセンサ信号の偏差として出力し、このトルクセンサ信号の偏差が所定値以下であれば、何れのトルクセンサ24am、24asも正常と判断し、トルクセンサ信号の偏差が所定値以上であれば、何れかのトルクセンサ24am、24asが異常と判断する。
したがって、ステップS11は、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号の値が一致している場合(偏差が所定値より小さい)は、第1トルクセンサグループ24aのトルクセンサ24am、24asの何れも正常と見做してステップS12に移行する。
一方、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号の値が一致していない場合(偏差が所定値より大きい)は、第1トルクセンサグループ24aのトルクセンサ24am、24asのどちらかに異常が生じていると判断され、ステップS13に移行する。
このステップS11は、図3の第1同グループ異常判断信号生成部40aと第1同グループ異常判断部41aの機能ブロックに対応している。
≪ステップS12≫ステップS12においては、第1トルクセンサグループ24aが正常な状態であるので、通常の制御を実行する。この場合は、制御ロジックの設定によって第1主トルクセンサ24amの第1主トルクセンサ信号を優先的に使用する。
≪ステップS13≫ステップS13においては、第2マイクロプロセッサ30bのマイコン間通信部39bから、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号、或いは第2副トルクセンサの第2副トルクセンサ信号が第1マイクロプロセッサ30aのマイコン間通信部39aに取り込まれる。ここでは、第2主トルクセンサ信号が取り込まれているので、以下もこれに基づいて説明する。
この第2主トルクセンサ24bmの第2主トルクセンサ信号の取り込みは、ステップ11で、第1主トルクセンサ24amと第1副トルクセンサ24asの第1主、副トルクセンサ信号の値が一致していないと判断された場合だけであり、これ以外は第2主、副トルクセンサ24bmの第2主トルクセンサ信号の取り込みは行なわれない。
尚、第2主トルクセンサ24bmの第2主トルクセンサ信号の取り込みは、第2主トルクセンサ24bmの値が正常であるという前提で実行される。
これによって、第2のセンサグループ24bのトルクセンサ信号を常時送信するのではなく、第1マイクロプロセッサ30aからのセンサ信号要求指令を受信したときにトルクセンサ信号を送信することにより、第1、第2マイコン間通信部39a、39bにおける通信容量の増大を抑制することができる。第2マイクロプロセッサ30bのマイコン間通信部39bから、第2トルクセンサグループ24bの第2主トルクセンサ24bmの第2主トルクセンサ信号が取り込まれるとステップS14に移行する。
≪ステップS14≫ステップS14においては、第1トルクセンサグループ24aの第1主トルクセンサ24am、及び第1副トルクセンサ24asの第1主、副トルクセンサ信号と、ステップS13で取り込まれた第2主トルクセンサ24bmの第2主トルクセンサ信号の3つのトルクセンサ信号の比較が行われる。
ここで、ステップS13で、第1マイコン間通信部39aを介して第2マイコン間通信部39bから、第2トルクセンサグループ24bの正常な第2主トルクセンサ24bmの第2主トルクセンサ信号を取り込んでいる。
したがって、第1主トルクセンサ24amの第1主トルクセンサ信号の値が、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致していれば、第1主トルクセンサ24amは正常状態と判断される。そして、これの裏返しとして、第1副トルクセンサ24asの第1副トルクセンサ信号の値は、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致しないので、第1副トルクセンサ24asは異常と判断される。
逆に、第1主トルクセンサ24amの第1主トルクセンサ信号の値が、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致していなければ、第1主トルクセンサ24amは異常と判断される。また、これの裏返しとして、第1副トルクセンサ24asの第1副トルクセンサ信号の値は、第2主トルクセンサ24bmの第2主トルクセンサ信号の値と一致しているので、第1副トルクセンサ24asは正常状態と判断される。
これによって、第1主トルクセンサ24am、或いは第1副トルクセンサ24asが正常状態にあるのか、或いは異常状態にあるのかが特定できる。
ここで、一致判断は夫々のトルクセンサセンサ24am、24as、24bmの3つのトルクセンサ信号の偏差が所定値より小さい場合を「一致」と判断し、逆に、夫々のトルクセンサセンサ24am、24as、24bmの3つのトルクセンサ信号の偏差が所定値より大きい場合を「不一致」と判断している。
第1主トルクセンサ24amの第1主トルクセンサ信号が、第2主トルクセンサ24bmの第2主トルクセンサ信号と一致して正常状態と判断されるとステップS15に移行し、第2主トルクセンサ24bmの第2主トルクセンサ信号と一致せずに第1主トルクセンサ24amは異常状態と判断されるとステップS16に移行する。
ここで、ステップS14で中間値異常を生じたトルクセンサが特定されるので、これに対応した異常コードを作成して、フラッシュROM等に記憶することができる。フラッシュROMに記憶された異常コードを読み出せば、どのトルクセンサが中間値異常を生じているか認識することが可能となる。
この制御ステップS14は、図3の第1異グループ信号比較部42aと第1異グループ異常判断部43aの機能ブロックに対応している。
≪ステップS15≫ステップS15においては、第1主トルクセンサ24amが正常状態と判断されているので、正常状態と判断された第1主トルクセンサ24amの第1主トルクセンサ信号を使用するように設定する。第1主トルクセンサ24amのトルクセンサ信号を使用する設定を完了するとステップS17に移行する。ステップS17については後述する。
≪ステップS16≫ステップS16においては、第1副トルクセンサ24asが正常状態と判断されているので、正常状態と判断された第1副トルクセンサ24asの第1副トルクセンサ信号を使用するように設定する。第1副トルクセンサ24asの第1副トルクセンサ信号を使用する設定を完了するとステップS17に移行する。
≪ステップS17≫ステップS17においては、第1主トルクセンサ24am、或いは第1副トルクセンサ24asが正常状態と判断されると、正常状態と判断されたトルクセンサのトルクセンサ信号に基づいて、第1巻線組への制御信号を演算する。
そして、ステップS17で演算された制御信号は、第1プリドライバ31aに送られ、更に第1プリドライバ31aで第1インバータ32aを制御して第1巻線組の巻線を駆動する。この制御ステップS17は、図3の第1指令信号生成部44aの機能ブロックに対応している。
このように、図5に示した制御フローによれば、一方のセンサグループの主センサ信号と副センサ信号からどちらかのセンサに異常があると判断された場合は、一方のセンサグループの主センサ信号、及び副センサ信号と、他方のセンサグループの主センサ信号、或いは副センサ信号とを比較し、一方のセンサグループのセンサの内で、他方のセンサグループの主センサ信号、或いは副センサ信号と一致したセンサ信号を出力したセンサを正常に動作しているセンサとして特定するので、異常診断機能の信頼性を向上することができる。
次に、上述したステップS40について説明する。ステップS40は、地絡、天絡、電源異常等の異常診断に関するものであり、トルクセンサのセンサ信号の値が上限値、或いは下限値のように大きく変動する場合の例を示している。
以下、具体的な判断方法を図6に基づき説明する。
≪ステップS10≫ステップS10においては、第1トルクセンサグループ24aを構成する第1主トルクセンサ24amと、第1副トルクセンサ24asの第1主、副トルクセンサ信号を取り込む。この場合、上述した電力供給異常や信号線の断線によって、トルクセンサ信号が出力されていない場合であっても、取り込み動作が実行される。第1主、副トルクセンサ信号の取り込みが完了するとステップS20に移行する。ここで、ステップS10は第1同グループ入力状態信号生成部として機能する。
≪ステップS20≫ステップS20においては、第1主トルクセンサ24amから第1主トルクセンサ信号の入力があるかどうかの判断を実行する。尚、第1主トルクセンサ24amの特定は、入力ポートのポート番号から特定することができる。また、ポート番号に対応した内部データレジスタにトルクセンサ信号のAD変換データが記憶されるので、この内部データレジスタのAD変換データから、第1主トルクセンサ24amの第1主トルクセンサ信号の入力状態が判断できる。
ステップS20において、第1主トルクセンサ24amから正常な第1主トルクセンサ信号の入力があると判断されると、ステップS21に移行し、第1主トルクセンサ24amからトルクセンサ信号の入力がないと判断されると、ステップS24に移行する。
≪ステップS21≫ステップS20で第1主トルクセンサ24amから第1主トルクセンサ信号の入力があると判断されているので、ステップS21においては、第1副トルクセンサ24asの第1副トルクセンサ信号の入力があるかどうかの判断を実行する。
第1副トルクセンサ24asの特定も、入力ポートのポート番号から特定することができる。また、ポート番号に対応した内部データレジスタにトルクセンサ信号のAD変換データが記憶されるので、この内部データレジスタのAD変換データから、第1副トルクセンサ24asの第1副トルクセンサ信号の入力状態が判断できる。
ステップS21において、第1副トルクセンサ24asから正常な第1副トルクセンサ信号の入力があると判断されると、ステップS22に移行し、第1副トルクセンサ24abから第1副トルクセンサ信号の入力がないと判断されると、ステップS23に移行する。
≪ステップS22≫ステップS22においては、第1主トルクセンサ24am、及び第1副トルクセンサ24asから第1主、副トルクセンサ信号の入力があるので、第1主トルクセンサ24am、及び第1副トルクセンサは共に入力状態にあると判断される。この後はステップS11に移行して、以後は図3に示す後続の中間値異常に関する制御ステップを実行する。ここで、ステップS20~S22は第1同グループ入力状態異常判断部として機能する。
≪ステップS23≫ステップS20で第1主トルクセンサ24amから第1主トルク信号が入力されていると判断され、ステップS21で第1副トルクセンサ24asの第1副トルク信号の入力がないと判断されているので、ステップS23においては、第1主トルクセンサ24amは正常状態と判断され、第1副トルクセンサ24asは異常状態と判断される。この後はステップS15に移行して、以後は図3に示す後続のステップS17を実行する。ここで、ステップS21、S23は第1同グループ入力状態異常判断部として機能する。
≪ステップS24≫ステップS20で第1主トルクセンサ24amから第1主トルクセンサ信号の入力がないと判断されているので、ステップS24においては、第1副トルクセンサ24asから第1副トルクセンサ信号の入力があるかどうかの判断を実行する。ステップS21と同様の方法で、入力ポートのポート番号から第1副トルクセンサ24asが特定でき、ポート番号に対応した内部データレジスタのAD変換データから、第1副トルクセンサ24asの第1副トルクセンサ信号の入力状態が判断できる。
ステップS24において、第1副トルクセンサ24asから第1副トルクセンサ信号の入力があると判断されると、ステップS25に移行し、第1副トルクセンサ24abから第1副トルクセンサ信号の入力がないと判断されると、ステップS26に移行する。
≪ステップS25≫ステップS20で第1主トルクセンサ24amから第1主トルク信号が入力されていないと判断され、ステップS24で第1副トルクセンサ24asから第1副トルク信号が入力されていると判断されているので、ステップS25においては、第1主トルクセンサ24amは異常状態と判断され、第1副トルクセンサ24asは正常状態と判断される。この後はステップS16に移行して、以後は図3に示す後続のステップS17を実行する。ここで、ステップS20、S24、S25は第1同グループ入力状態異常判断部として機能する。
≪ステップS26≫ステップS20で第1主トルクセンサ24amから第1主トルクセンサ信号の入力がないと判断され、ステップS24で第1副トルクセンサ24asから第1副トルクセンサ信号の入力がないと判断されているので、ステップS26においては、第1主トルクセンサ24am、及び第1副トルクセンサは共に異常状態にあると判断される。この後はステップS27に移行する。ここで、ステップS24、S26は第1同グループ入力状態異常判断部として機能する。
≪ステップS27≫ステップS27においては異常処理を実行する。異常処理は、第1マイクロプロセッサ30aによる第1巻線組の巻線の駆動を停止するか、或いは、第2トルクセンサグループ24bのトルクセンサ信号を、第1マイコン間通信部39aから第1マイクロプロセッサ30aに取り込む。尚、第1マイクロプロセッサ30aによる第1巻線組の巻線の駆動を停止する場合は、エンドに抜けるが、第2トルクセンサグループ24bのトルクセンサ信号を使用する場合はステップS17に移行する。
ステップS17においては、第2主トルクセンサ24bmの第2主トルクセンサ信号に基づいて、第1巻線組への制御信号を演算する。そして、ステップS17で演算された制御信号は、第1プリドライバ31aに送られ、更に第1プリドライバ31aで第1インバータ32aを制御して第1巻線組の巻線を駆動する。
以上は第1マイクロプロセッサ30aについて説明しているが、第2マイクロプロセッサ30bについても同様の動作を行なうことができる。
図6の異常判断方法では、それぞれのトルクセンサの入力状態を監視しているが、信号処理回路38am、38asに自己診断機能を備えることで、夫々のトルクセンサ24am、24asに異常が生じると、自己診断情報を出力することができる。
したがって、自己診断機能によって第1主トルクセンサ24amと第1副トルクセンサ24asからの第1主、副トルクセンサ信号に自己診断情報が含まれているかどうかを判断して、図6と同様にトルクセンサの異常を判断することができる。
以下、具体的な判断方法を図7に基づき説明する。
≪ステップS10≫ステップS10においては、第1トルクセンサグループ24aを構成する第1主トルクセンサ24amと、第1副トルクセンサ24asの第1主、副トルクセンサ信号を取り込む。
この場合、第1主トルクセンサ24amと、第1副トルクセンサ24asの信号処理回路38am、38asには自己診断機能が備えられているので、異常が検出されて自己診断情報が出力されると、この自己診断情報は、信号処理回路38am、38asの自己診断メモリに記憶される。
そして、この自己診断メモリに記憶された自己診断情報は、トルクセンサ信号に付加されて出力されている。例えば、データフレームにトルクセンサ信号と自己診断情報を割り付けて出力することができる。トルクセンサ信号の取り込みが完了するとステップS30に移行する。ここで、ステップS10は第1同グループ自己診断信号生成部として機能する。
≪ステップS30≫ステップS30においては、第1主トルクセンサ24amからの第1主トルクセンサ信号に自己診断情報が付加されているかどうかの判断を実行する。尚、第1主トルクセンサ24amの特定は、入力ポートのポート番号から特定することができる。
また、トルクセンサ信号のデータフレームに自己診断情報が付加されているので、このデータフレームから、第1主トルクセンサ24amからの第1主トルクセンサ信号に自己診断情報が付加されているどうかの判断ができる。
ステップS30において、第1主トルクセンサ24amからの第1主トルクセンサ信号に自己診断情報がないと判断されると、ステップS31に移行し、第1主トルクセンサ24amからの第1主トルクセンサ信号に自己診断情報が付加されていると判断されるとステップS34に移行する。
≪ステップS31≫ステップS30で第1主トルクセンサ24amからの第1主トルクセンサ信号に自己診断情報がないと判断されているので、ステップS31においては、第1副トルクセンサ24asの第1副トルクセンサ信号に自己診断情報が付加されているかどうかの判断を実行する。第1副トルクセンサ24asの特定も、入力ポートのポート番号から特定することができる。
また、トルクセンサ信号のデータフレームに自己診断情報が付加されているので、このデータフレームから、第1副トルクセンサ24asからの第1副トルクセンサ信号に自己診断情報が付加されているどうかの判断ができる。
ステップS31において、第1副トルクセンサ24asからの第1副トルクセンサ信号に自己診断情報がないと判断されると、ステップS32に移行し、第1副トルクセンサ24abからの第1副トルクセンサ信号に己診断情報があると判断されると、ステップS33に移行する。
≪ステップS32≫ステップS32においては、第1主トルクセンサ24am、及び第1副トルクセンサ24asからの第1主、副トルクセンサ信号に自己診断情報がないので、第1主トルクセンサ24am、及び第1副トルクセンサは共に正常状態にあると見做される。この後はステップS11に移行して、以後は図3に示す後続の中間値異常に関する制御ステップを実行する。ここで、ステップS30~S32は第1同グループ自己診断異常判断部として機能する。
≪ステップS33≫ステップS30で第1主トルクセンサ24amからの第1主トルク信号に自己診断情報がないと判断され、ステップS31で第1副トルクセンサ24asからの第1副トルク信号に自己診断情報が付加されていると判断されているので、ステップS33においては、第1主トルクセンサ24amは正常状態と判断され、第1副トルクセンサ24asは異常状態と判断される。この後はステップS15に移行して、以後は図3に示す後続のステップS17を実行する。ここで、ステップS31、S33は第1同グループ自己診断異常判断部として機能する。
≪ステップS34≫ステップS30で第1主トルクセンサ24amからの第1主トルク信号に自己診断情報が付加されていると判断されているので、ステップS34においては、第1副トルクセンサ24asからの第1副トルクセンサ信号に自己診断情報が付加されているかどうかの判断を実行する。
ステップS31と同様の方法で、入力ポートのポート番号から第1副トルクセンサ24asが特定でき、また、トルクセンサ信号のデータフレームに自己診断情報が付加されているので、このデータフレームから、第1副トルクセンサ24asのトルクセンサ信号に自己診断情報が付加されているどうかの判断ができる。
ステップS34において、第1副トルクセンサ24asからの第1副トルクセンサ信号に自己診断情報がないと判断されると、ステップS35に移行し、第1副トルクセンサ24abからの第1副トルクセンサ信号に己診断情報があると判断されると、ステップS36に移行する。
≪ステップS35≫ステップS30で第1主トルクセンサ24amからの第1主トルク信号に自己診断情報が付加されている判断され、ステップS31で第1副トルクセンサ24asからの第1副トルク信号に自己診断情報がないと判断されているので、ステップS35においては、第1主トルクセンサ24amは異常状態と判断され、第1副トルクセンサ24asは正常状態と判断される。この後はステップS16に移行して、以後は図3に示す後続のステップS17を実行する。ここで、ステップS30、S34、S35は第1同グループ自己診断異常判断部として機能する。
≪ステップS36≫ステップS30で第1主トルクセンサ24amからの第1主トルク信号に自己診断情報が付加されている判断され、ステップS31で第1副トルクセンサ24asからの第1副トルク信号に自己診断情報が付加されている判断されているので、ステップS36においては、第1主トルクセンサ24am、及び第1副トルクセンサは共に異常状態にあると判断される。この後はステップS37に移行する。ここで、ステップS34、S36は第1同グループ自己診断異常判断部として機能する。
≪ステップS37≫ステップS37においては異常処理を実行する。異常処理は、第1マイクロプロセッサ30aによる第1巻線組の巻線の駆動を停止するか、或いは、第2トルクセンサグループ24bのトルクセンサ信号を、第1マイコン間通信部39aから第1マイクロプロセッサ30aに取り込む。尚、第1マイクロプロセッサ30aによる第1巻線組の巻線の駆動を停止する場合は、エンドに抜けるが、第2トルクセンサグループ24bのトルクセンサ信号を使用する場合はステップS17に移行する。
ステップS17においては、第2主トルクセンサ24bmの第2主トルクセンサ信号に基づいて、第1巻線組への制御信号を演算する指令を出力する。そして、ステップS17で演算された制御信号は、第1プリドライバ31aに送られ、更に第1プリドライバ31aで第1インバータ32aを制御して第1巻線組の巻線を駆動する。
以上は第1マイクロプロセッサ30aについて説明しているが、第2マイクロプロセッサ30bについても同様の動作を行なうことができる。
以上述べた通り、本発明によれば、一方のセンサグループの主センサ信号と副センサ信号からどちらかのセンサに異常があると判断された場合は、一方のセンサグループの主センサ信号、或いは副センサ信号と、他方のセンサグループの主センサ信号、及び副センサ信号とを比較し、一方のセンサグループのセンサの内で、他方のセンサグループの主センサ信号、及び副センサ信号と一致していないセンサ信号を出力したセンサを異常が生じたセンサとして特定するので、異常診断機能の信頼性を向上することができる。
尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本願は、2019年2月18日付出願の日本国特許出願第2019-026459号に基づく優先権を主張する。2019年2月18日付出願の日本国特許出願第2019-026459号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
20…電動モータ、24a…第1トルクセンサグループ、24am…第1主トルクセンサ、24as…第1副トルクセンサ、24b…第2トルクセンサグループ、24bm…第2主トルクセンサ、24bs…第2副トルクセンサ、25…電子制御部、30a…第1マイクロプロセッサ、30b…第2マイクロプロセッサ、31a…第1プリドライバ、31b…第2プリドライバ、32a…第1インバータ、32b…第2インバータ、39a…第1マイコン間通信部、39b…第2マイコン間通信部、40a…第1同グループ異常判断信号生成部、40b…第2同グループ異常判断信号生成部、41a…第1同グループ異常判断部、41b…第2同グループ異常判断部、42a…第1異グループ信号比較部、42b…第2異グループ信号比較部、43a…第1異グループ異常判断部、43b…第2異グループ異常判断部、44a…第1指令信号生成部、44b…第2指令信号生成部。
Claims (14)
- アクチュエータを含む車両の搭載機器を制御する車両搭載機器の制御装置であって、前記車両搭載機器の制御装置は、
センサ部であって、第1センサグループと、第2センサグループと、を含み、
前記第1センサグループは、第1主センサと第1副センサとを含み、
前記第2センサグループは、第2主センサと第2副センサとを含み、
前記第1主センサは、前記車両の運転状態を表す物理量を検出して第1主センサ信号を出力し、前記第1副センサは、前記車両の運転状態を表す前記物理量を検出して第1副センサ信号を出力し、
前記第2主センサは、前記車両の運転状態を表す前記物理量を検出して第2主センサ信号を出力し、前記第2副センサは、前記車両の運転状態を表す前記物理量を検出して第2副センサ信号を出力する、前記センサ部と、
第1マイクロプロセッサであって、第1同グループ異常判断信号生成部と、第1同グループ異常判断部と、第1異グループ信号比較部と、第1異グループ異常判断部と、第1マイコン間通信部と、第1指令信号生成部と、を含み、
前記第1同グループ異常判断信号生成部は、前記第1主センサ信号と前記第1副センサ信号とから、異常状態を判断する異常判断信号を生成し、
前記第1同グループ異常判断部は、前記第1同グループ異常判断信号生成部からの異常判断信号に基づき、前記第1センサグループの異常の有無を判断し、
前記第1マイコン間通信部は、第2マイクロプロセッサの第2マイコン間通信部から前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号を入手し、
前記第1異グループ信号比較部は、前記第1同グループ異常判断部で前記第1センサグループのセンサに異常が有ると判断されたとき、前記第1センサグループの前記第1主センサ信号及び前記第1副センサ信号と前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号とを比較し、
前記第1異グループ異常判断部は、前記第1センサグループの前記第1主センサ信号及び前記第1副センサ信号と前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号との比較結果に基づき、前記第1センサグループの何れのセンサが正常に動作しているかを判断し、
前記第1指令信号生成部は、前記第1異グループ異常判断部において、前記第1センサグループの前記センサで正常に動作していると判断された前記センサのセンサ信号に基づき、前記アクチュエータを駆動制御する第1指令信号を生成する、前記第1マイクロプロセッサと、
第2マイクロプロセッサであって、第2同グループ異常判断信号生成部と、第2同グループ異常判断部と、第2異グループ信号比較部と、第2異グループ異常判断部と、第2マイコン間通信部と、第2指令信号生成部と、を含み、
前記第2同グループ異常判断信号生成部は、前記第2主センサ信号と前記第2副センサ信号とから、異常状態を判断する異常判断信号を生成し、
前記第2同グループ異常判断部は、前記第2同グループ異常判断信号生成部からの異常判断信号に基づき、前記第2センサグループの異常の有無を判断し、
前記第2マイコン間通信部は、前記第1マイクロプロセッサの前記第1マイコン間通信部から前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号を入手し、
前記第2異グループ信号比較部は、前記第2同グループ異常判断部で前記第2センサグループのセンサに異常が有ると判断されたとき、前記第2センサグループの前記第2主センサ信号及び前記第2副センサ信号と前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号とを比較し、
前記第2異グループ異常判断部は、前記第2センサグループの前記第2主センサ信号及び前記第2副センサ信号と前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号との比較結果に基づき、前記第2センサグループの何れのセンサが正常に動作しているかを判断し、
前記第2指令信号生成部は、前記第2異グループ異常判断部において、前記第2センサグループの前記センサで正常に動作していると判断された前記センサのセンサ信号に基づき、前記アクチュエータを駆動制御する第2指令信号を生成する、前記第2マイクロプロセッサと、
を有する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1マイコン間通信部は、前記第1同グループ異常判断部が、前記第1センサグループに異常があると判断したとき、前記第2マイクロプロセッサに対し、前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号の送信を要求する第1センサ信号要求指令を送信し、
前記第2マイコン間通信部は、前記第2同グループ異常判断部が、前記第2センサグループに異常があると判断したとき、前記第1マイクロプロセッサに対し、前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号の送信を要求する第2センサ信号要求指令を送信する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1異グループ信号比較部は、前記第1マイコン間通信部を介して取得する前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号の第1取得タイミングに基づき求められた、前記第2センサグループの第2検出タイミングと時刻的に近い第1検出タイミングで検出された前記第1センサグループの前記第1主センサ信号及び前記第1副センサ信号と、前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号とを比較し、
前記第2異グループ信号比較部は、前記第2マイコン間通信部を介して取得する前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号の第2取得タイミングに基づき求められた、前記第1センサグループの第1検出タイミングと時刻的に近い第2検出タイミングで検出された前記第2センサグループの前記第2主センサ信号及び前記第2副センサ信号と、前記第1センサグループの前記第1主センサ信号或いは前記第1副センサ信号とを比較する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1主センサ、前記第1副センサ、前記第2主センサ、及び前記第2副センサが検出する前記車両の運転状態を表す前記物理量としての検出物理量は、互いに同じ前記物理量である車両搭載機器の制御装置。 - 請求項4に記載の車両搭載機器の制御装置であって、
前記第1主センサ、前記第1副センサ、前記第2主センサ、及び前記第2副センサは、互いに同じ検出方式によって前記車両の運転状態を表す前記物理量を検出する車両搭載機器の制御装置。 - 請求項4に記載の車両搭載機器の制御装置であって、
前記第1主センサと前記第1副センサとは、互いに同じ検出方式によって前記車両の運転状態を表す前記物理量を検出し、
前記第2主センサと前記第2副センサとは、互いに同じ検出方式によって前記車両の運転状態を表す前記物理量を検出し、
前記第1センサグループの前記第1主センサおよび前記第1副センサと、前記第2センサグループの前記第2主センサおよび前記第2副センサとは、互いに異なる検出方式によって前記車両の運転状態を表す前記物理量を検出する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1異グループ異常判断部は、前記第1センサグループの前記第1主センサ信号及び前記第1副センサ信号の値と、前記第2センサグループの前記第2主センサ信号或いは前記第2副センサ信号の値とを比較し、3つのセンサ信号のうちセンサ信号の値が一致する2つのセンサ信号から、前記第1センサグループの異常なセンサを特定し、
前記第2異グループ異常判断部は、前記第2センサグループの前記第2主センサ信号及び前記第2副センサ信号の値と、前記第1センサグループの前記第1主センサ信号、或いは前記第1副センサ信号の値とを比較し、3つのセンサ信号のうちセンサ信号の値が一致する2つのセンサ信号から、前記第2センサグループの異常なセンサを特定する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1同グループ異常判断信号生成部は、前記第1主センサ信号と前記第1副センサ信号とを比較して求められた第1偏差を前記異常判断信号として生成し、
前記第1同グループ異常判断部は、前記第1偏差が所定以上である場合に、前記第1センサグループの何れかの前記センサが異常であると判断し、
前記第2同グループ異常判断信号生成部は、前記第2主センサ信号と前記第2副センサ信号とを比較して求められた第2偏差を前記異常判断信号として生成し、
前記第2同グループ異常判断部は、前記第2偏差が所定以上である場合に、前記第2センサグループの何れかの前記センサが異常であると判断する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1マイクロプロセッサは、第1同グループ入力状態信号生成部と、第1同グループ入力状態異常判断部と、を有し、
前記第1同グループ入力状態信号生成部は、前記第1主センサ信号と前記第1副センサ信号との入力状態情報を入力状態信号として生成し、
前記第1同グループ入力状態異常判断部は、前記第1主センサと前記第1副センサとのうち、入力がないセンサを異常と判断し、
前記第2マイクロプロセッサは、第2同グループ入力状態信号生成部と、第2同グループ入力状態異常判断部と、を有し、
前記第2同グループ入力状態信号生成部は、前記第2主センサ信号と前記第2副センサ信号との入力状態情報を入力状態信号として生成し、
前記第2同グループ入力状態異常判断部は、前記第2主センサと前記第2副センサとのうち、入力がないセンサを異常と判断する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1マイクロプロセッサは、第1同グループ自己診断信号生成部と、第1同グループ自己診断異常判断部と、を有し、
前記第1同グループ自己診断信号生成部は、前記第1主センサ信号と前記第1副センサ信号との自己診断情報を基に自己診断信号を生成し、
前記第1同グループ自己診断異常判断部は、前記第1主センサと前記第1副センサとのうち、自己診断信号があるセンサを異常と判断し、
前記第2マイクロプロセッサは、第2同グループ自己診断信号生成部と、第2同グループ自己診断異常判断部と、を有し、
前記第2同グループ自己診断信号生成部は、前記第2主センサ信号と前記第2副センサ信号との自己診断情報を基に自己診断信号を生成し、
前記第2同グループ自己診断異常判断部は、前記第2主センサと前記第2副センサとのうち、自己診断信号があるセンサを異常と判断する車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記アクチュエータは、前記車両の操舵輪を操舵する操舵アクチュエータである車両搭載機器の制御装置。 - 請求項11に記載の車両搭載機器の制御装置であって、
前記操舵アクチュエータは、電動モータであって、
前記電動モータは、ステータ巻線、モータロータ、前記モータロータの回転位置を検出するモータ回転角センサ、及びステータ巻線に流れる電流を検出する電流センサを含み、
前記第1主センサ、前記第1副センサ、前記第2主センサ、及び前記第2副センサは、前記モータ回転角センサ及び電流センサのどちらか或いは両方である車両搭載機器の制御装置。 - 請求項11に記載の車両搭載機器の制御装置であって、
前記車両の搭載機器は、ステアリングホイールの操舵操作を前記操舵輪に伝達するステアリングシャフトを含み、
前記第1主センサ、前記第1副センサ、前記第2主センサ、及び前記第2副センサは、前記ステアリングシャフトに生じる操舵トルクを検出する操舵トルクセンサ、または前記操舵輪の操舵角を検出する操舵角センサである車両搭載機器の制御装置。 - 請求項1に記載の車両搭載機器の制御装置であって、
前記第1マイクロプロセッサは、更に第1補助マイコン間通信部を備え、
前記第2マイクロプロセッサは、更に第2補助マイコン間通信部を備え、
前記第1補助マイコン間通信部は、前記第2補助マイコン間通信部から前記第2センサグループのセンサ信号を入手し、
前記第2補助マイコン間通信部は、前記第1補助マイコン間通信部から前記第1センサグループのセンサ信号を入手する車両搭載機器の制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-026459 | 2019-02-18 | ||
JP2019026459A JP2020131860A (ja) | 2019-02-18 | 2019-02-18 | 車両搭載機器の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170654A1 true WO2020170654A1 (ja) | 2020-08-27 |
Family
ID=72143564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/000847 WO2020170654A1 (ja) | 2019-02-18 | 2020-01-14 | 車両搭載機器の制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020131860A (ja) |
WO (1) | WO2020170654A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11427246B2 (en) * | 2018-12-21 | 2022-08-30 | Jtekt Corporation | Steering system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125617A1 (ja) * | 2014-02-24 | 2015-08-27 | 日立オートモティブシステムズステアリング株式会社 | 車両搭載機器の制御装置およびパワーステアリング装置 |
WO2018051550A1 (ja) * | 2016-09-15 | 2018-03-22 | 日立オートモティブシステムズ株式会社 | 車両搭載機器のアクチュエータ及びパワーステアリング装置 |
WO2018055802A1 (ja) * | 2016-09-20 | 2018-03-29 | 日立オートモティブシステムズ株式会社 | センサ装置 |
JP2018184021A (ja) * | 2017-04-24 | 2018-11-22 | 日立オートモティブシステムズ株式会社 | 車両の電子制御装置 |
-
2019
- 2019-02-18 JP JP2019026459A patent/JP2020131860A/ja active Pending
-
2020
- 2020-01-14 WO PCT/JP2020/000847 patent/WO2020170654A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125617A1 (ja) * | 2014-02-24 | 2015-08-27 | 日立オートモティブシステムズステアリング株式会社 | 車両搭載機器の制御装置およびパワーステアリング装置 |
WO2018051550A1 (ja) * | 2016-09-15 | 2018-03-22 | 日立オートモティブシステムズ株式会社 | 車両搭載機器のアクチュエータ及びパワーステアリング装置 |
WO2018055802A1 (ja) * | 2016-09-20 | 2018-03-29 | 日立オートモティブシステムズ株式会社 | センサ装置 |
JP2018184021A (ja) * | 2017-04-24 | 2018-11-22 | 日立オートモティブシステムズ株式会社 | 車両の電子制御装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11427246B2 (en) * | 2018-12-21 | 2022-08-30 | Jtekt Corporation | Steering system |
Also Published As
Publication number | Publication date |
---|---|
JP2020131860A (ja) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6709326B2 (ja) | 車両制御装置 | |
CN110871836B (zh) | 转向装置 | |
US12005975B2 (en) | Method for providing steering assistance for an electromechanical steering system of a motor vehicle comprising a redundantly designed control device | |
EP2280477B1 (en) | Electric power steering system | |
CN112351933B (zh) | 具有冗余配置的控制单元的机动车辆转向系统 | |
JP6078444B2 (ja) | パワーステアリング装置および車両搭載機器の制御装置 | |
US20190039643A1 (en) | Sensor device and electric power steering device using same | |
WO2014041726A1 (ja) | 車載電子制御装置 | |
EP2476590B1 (en) | Power supply status diagnostic method and device | |
JP2000043749A (ja) | 操舵制御装置および操舵装置 | |
WO2021085228A1 (ja) | モータ駆動システム | |
US11465683B2 (en) | Steering angle detection device | |
WO2019049731A1 (ja) | パワーステアリング装置の制御装置 | |
US11820444B2 (en) | Control device for vehicle-mounted equipment | |
WO2020170654A1 (ja) | 車両搭載機器の制御装置 | |
JP5092509B2 (ja) | 電動パワーステアリング装置 | |
JP4636125B2 (ja) | Vgrs用電子制御ユニット | |
JP5397273B2 (ja) | 電動パワーステアリング装置 | |
JP5045585B2 (ja) | 電動パワーステアリング装置 | |
JP2019207203A (ja) | 回転検出装置、および、これを用いた電動パワーステアリング装置 | |
JP2012153355A (ja) | 電動パワーステアリング装置 | |
JP2005132126A (ja) | 電動パワーステアリング装置 | |
KR101195725B1 (ko) | 모터 제어용 전자제어장치 | |
KR20200074589A (ko) | Sbw 시스템의 고장 대응방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20758773 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20758773 Country of ref document: EP Kind code of ref document: A1 |