WO2020170299A1 - 疲労判定装置、疲労判定方法、および疲労判定プログラム - Google Patents
疲労判定装置、疲労判定方法、および疲労判定プログラム Download PDFInfo
- Publication number
- WO2020170299A1 WO2020170299A1 PCT/JP2019/005804 JP2019005804W WO2020170299A1 WO 2020170299 A1 WO2020170299 A1 WO 2020170299A1 JP 2019005804 W JP2019005804 W JP 2019005804W WO 2020170299 A1 WO2020170299 A1 WO 2020170299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- person
- walking
- information
- fatigue
- skeleton
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/112—Gait analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
- A61B5/1128—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1107—Measuring contraction of parts of the body, e.g. organ, muscle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/757—Matching configurations of points or features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
- G06V40/25—Recognition of walking or running movements, e.g. gait recognition
Definitions
- the present invention relates to a fatigue determination device, a fatigue determination method, and a fatigue determination program.
- a marker is attached to a person without using a depth camera, the marker is detected by a tracker such as an ordinary camera, and the detected marker is processed to digitally record the movement of the person.
- a tracker such as an ordinary camera
- the detected marker is processed to digitally record the movement of the person.
- a scheme is disclosed.
- a method is disclosed in which an infrared sensor is used to measure the distance from the sensor to a person and to detect various movements such as the size and skeleton of the person.
- the purpose of the present invention is to provide a fatigue determination device that can be introduced at low cost, is easy, and can accurately determine fatigue.
- a skeleton extraction unit that extracts skeleton information representing the movement of the skeleton of the person in time series from two-dimensional image data obtained by capturing a walking motion of the person, Walking using the skeleton information to calculate walking analysis data including arm swing information indicating a state of arm swing during walking of the person and foot movement information indicating a state of foot movement during walking of the person
- An analysis section The threshold value for determining the degree of fatigue of the person is compared with the walking analysis data of the person and the determination threshold value including the threshold value of the arm swing information and the threshold value of the footing information, and the comparison result is used.
- a determination unit that determines the degree of fatigue of the person.
- the skeleton extraction unit extracts skeleton information that represents the movement of the skeleton of the person in time series from the two-dimensional image data of the walking motion of the person.
- the gait analysis unit uses the skeletal information to calculate gait analysis data that includes arm swing information that represents the state of arm swing during walking of a person and foot movement information that represents the state of foot movement during walking of the person. To do.
- the determination unit compares the determination threshold including the threshold of arm swing information and the threshold of foot movement information with the walking analysis data of the person, and determines the degree of fatigue of the person using the result of the comparison. Therefore, according to the fatigue determination device of the present invention, it is possible to realize a fatigue determination device which can be introduced at low cost and is easy, and which can accurately determine fatigue.
- FIG. 1 is a configuration diagram of a fatigue determination device according to the first embodiment.
- FIG. 3 is a flowchart showing the operation of the fatigue determination device according to the first embodiment.
- FIG. 3 is a diagram showing a trajectory of time-series skeletal information according to the first embodiment.
- 9 is an example of calculating the amount of change in the foot width and the width of both feet with respect to the traveling direction according to the first embodiment.
- FIG. 1 is a diagram showing an application example of the fatigue determination device 100 according to the present embodiment.
- FIG. 1 is an example when the fatigue determination device 100 according to the present embodiment is installed in the middle of a walkway 202 of a person 201.
- the video camera 101 is installed at a position where the person 201 walking on the walking path 202 can be photographed.
- the video camera 101 acquires a walking image of the person 201 when the person 201 walks on the walking path 202.
- the walking image acquired by the video camera 101 is input to the fatigue determination device 100.
- the fatigue determination device 100 determines the fatigue of the person 201 using the walking image.
- the determination result is notified to a mobile terminal device such as a smartphone or tablet owned by the person 201. Alternatively, it may be notified to an organization such as a health insurance association of the institution to which the person 201 belongs. In this way, the fatigue state of the person 201 determined by the fatigue determination device 100 can be widely used.
- the person 201 does not need to know that the video camera 101 is installed. This means that in the fatigue determination, there is no restriction such as requesting cooperation for the person 201. That is, if there is a camera installation place in everyday life, fatigue judgment can be performed at any time.
- the video camera 101 used for image acquisition can use not a special camera such as a depth camera but a camera such as a surveillance camera already existing in society.
- the video camera 101 can be arranged at any position as long as the person 201 can take a picture.
- the video camera 101 and the fatigue determination device 100 may be connected by wire or wirelessly. If real-time performance is not required, the image captured by the video camera 101 may be stored in a recording medium and input to the fatigue determination device 100 offline. Therefore, the fatigue determination device 100 may be installed in a place far away from the video camera 101.
- the configuration of the fatigue determination device 100 according to the present embodiment will be described with reference to FIG.
- the fatigue determination device 100 is a computer.
- the fatigue determination device 100 includes the processor 910 and other hardware such as the memory 921, the auxiliary storage device 922, the input interface 930, the output interface 940, and the communication device 950.
- the processor 910 is connected to other hardware via a signal line, and controls these other hardware.
- the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150 are realized by software.
- the storage unit 160 is included in the memory 921.
- the processor 910 is a device that executes a fatigue determination program.
- the fatigue determination program is a program that realizes the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150.
- the processor 910 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 910 are a CPU, a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
- the memory 921 is a storage device that temporarily stores data.
- a specific example of the memory 921 is an SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
- the auxiliary storage device 922 is a storage device that stores data.
- a specific example of the auxiliary storage device 922 is an HDD.
- the auxiliary storage device 922 may be a portable storage medium such as an SD (registered trademark) memory card, CF, NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, or DVD.
- SD registered trademark
- SD Secure Digital
- CF CompactFlash
- DVD is an abbreviation for Digital Versatile Disk.
- the input interface 930 is a port connected to an input device such as a mouse, a keyboard, or a touch panel.
- the input interface 930 is specifically a USB (Universal Serial Bus) terminal.
- the input interface 930 may be a port connected to a LAN (Local Area Network).
- the fatigue determination device 100 is connected to the video camera 101 via the input interface 930.
- the output interface 940 is a port to which a cable of an output device such as a display is connected.
- the output interface 940 is specifically a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal.
- the display is specifically an LCD (Liquid Crystal Display).
- the communication device 950 has a receiver and a transmitter.
- the communication device 950 is wirelessly connected to a communication network such as a LAN, the Internet, or a telephone line.
- the communication device 950 is specifically a communication chip or an NIC (Network Interface Card).
- the fatigue determination program is read by the processor 910 and executed by the processor 910.
- the memory 921 stores not only a fatigue determination program but also an OS (Operating System).
- the processor 910 executes the fatigue determination program while executing the OS.
- the fatigue determination program and the OS may be stored in the auxiliary storage device 922.
- the fatigue determination program and the OS stored in the auxiliary storage device 922 are loaded into the memory 921 and executed by the processor 910. A part or all of the fatigue determination program may be incorporated in the OS.
- the fatigue determination device 100 may include a plurality of processors that replace the processor 910.
- the plurality of processors share the execution of the fatigue determination program.
- Each processor is a device that executes a fatigue determination program, like the processor 910.
- the data, information, signal values, and variable values used, processed, or output by the fatigue determination program are stored in the memory 921, the auxiliary storage device 922, or the register or cache memory in the processor 910.
- the “section” of each of the image acquisition section 110, the skeleton extraction section 120, the walking analysis section 130, the threshold generation section 140, and the determination section 150 may be replaced with “processing”, “procedure”, or “process”. Also, replace “processing” of image acquisition processing, skeleton extraction processing, gait analysis processing, threshold generation processing, and determination processing with “program”, “program product”, or “computer-readable recording medium storing the program”. Good.
- the fatigue determination program causes a computer to execute each process, each procedure or each process in which the above-mentioned "part” is read as "process", "procedure” or "process”.
- the fatigue determination method is a method performed by the fatigue determination device 100 executing a fatigue determination program.
- the fatigue determination program may be stored in a computer-readable recording medium and provided. Further, the fatigue determination program may be provided as a program product.
- the hardware configuration of the fatigue determination device 100 in FIG. 2 is an example, and may be added, deleted, or replaced depending on the embodiment.
- the input interface 930 does not have to exist.
- the fatigue determination device 100 has a display device that displays the fatigue determination result 165
- the output interface 940 does not have to exist.
- the auxiliary storage device 922 that stores information such as the fatigue determination program and the walking accumulated information 163 may be present outside the fatigue determination device 100 and connected via the input/output interface.
- the fatigue determination device 100 may have an input interface having a plurality of inputs for connecting a plurality of video cameras.
- step S101 the video acquisition unit 110 acquires the video data 161 captured by the video camera 101 via the input interface 930.
- the video camera 101 is installed at a position where the person 201 is photographed.
- the video data 161 is two-dimensional video data obtained by capturing the walking motion of the person 201.
- the video camera 101 may be a camera such as a surveillance camera already installed in the world.
- the image data 161 is specifically a two-dimensional color image.
- the video data 161 is output to the skeleton extracting unit 120.
- step S ⁇ b>102 the skeleton extracting unit 120 extracts skeleton information 162 that represents the skeleton movement of the person 201 in time series from the two-dimensional image data 161 that captures the walking motion of the person 201.
- the skeleton extracting unit 120 extracts three-dimensional skeleton information 162 from the video data 161.
- the skeleton information 162 can be extracted from two-dimensional video data without depth information, along with the evolution of advanced computer vision technology in recent years.
- the skeleton extracting unit 120 extracts the person 201 shown in the video data 161, and extracts the time-series skeleton information 162 of the extracted person by using an advanced computer vision technique.
- FIG. 4 is a diagram showing a trajectory of the time-series skeleton information 162 according to the present embodiment.
- the skeleton extracting unit 120 extracts the skeleton information 162 by using a technique such as OpenPose or DepthPose.
- a technique such as OpenPose or DepthPose is a deep learning algorithm for extracting skeleton information from a video.
- the skeleton extracting unit 120 uses the deep learning algorithm and the model thereof to execute the process on the image of the person included in the image data 161, and obtain the skeleton information 162 as the process result.
- OpenPose and DepthPose are famous as algorithms for extracting skeleton information.
- the walking analysis unit 130 uses the skeleton information 162 to calculate the walking analysis data 31 including the arm swing information 611 and the foot movement information 612.
- the arm swing information 611 represents the state of arm swing when the person 201 walks.
- the footing information 612 represents the footing state of the person 201 when walking.
- the walking analysis unit 130 calculates, as the arm swing information 611, the angle of the arm swing of the person 201 with respect to the traveling direction and the magnitude of the arm swing of the person.
- the angle of arm swing of the person 201 with respect to the traveling direction may be represented as the angle of arm swing in the left-right direction.
- the walking analysis unit 130 analyzes the walking motion of the person 201 based on the skeleton information 162.
- the walking analysis unit 130 outputs the analysis result as the walking analysis data 31.
- the walking analysis data 31 includes information such as skeleton information whose position is corrected using the position information of the waist, arm swing information 611, and foot movement information 612.
- the walking analysis unit 130 receives the time-series skeletal information 162 as an input and analyzes the angle or size in the front-rear direction and the angle or size in the left-right direction of how to swing the arm. Further, the walking analysis unit 130 receives the time-series skeletal information 162 as an input and analyzes a walking motion such as a left/right blurring or a change in the width of both feet with respect to the traveling direction of the foot.
- FIG. 5 is a schematic view of the skeleton information 162 for three walking cycles as viewed from above the head.
- the information of the locus of the hand and the locus of the foot in FIG. 5 can be expressed as the information of the angle and the information of the length with respect to the traveling direction.
- the person's gait becomes unstable due to the occurrence of fatigue, and compared with gait without fatigue, the hand shake spreads to both sides to compensate for the stability of gait, and there is a tendency to shake the hand greatly. Therefore, the arm swing information 611 including the arm swing angle ⁇ with respect to the traveling direction and the arm swing magnitude L is information that directly expresses the fatigue of the person.
- the arm swing size L may be represented by the angle of arm swing in the front-rear direction.
- the angle ⁇ of arm swing with respect to the traveling direction may be represented by the angle of arm swing in the left-right direction.
- FIG. 6 is a schematic diagram of three walking cycles of the skeleton information 162 viewed from the traveling direction side.
- the information about the locus of the foot in FIGS. 5 and 6 can be expressed as the amount of blurring of the position of the foot when moving in the traveling direction and the spread information of both feet.
- the occurrence of fatigue makes a person's gait unstable, making it difficult to walk straight in the direction of travel, and it tends to secure stability by meandering or widening the stride to ensure stability.
- the foot movement information 612 including the foot shake width P with respect to the traveling direction and the variation amount R of the width of both feet when traveling in the traveling direction becomes information that directly expresses the fatigue of the person.
- the walking analysis unit 130 utilizes the characteristics of the walking motion during fatigue described above, and calculates the walking analysis data 31 as information that directly expresses fatigue.
- P L is the variance (P X ) of the blur width of the foot on the left side of the drawing.
- P R is the dispersion (P X ) of the blur width of the foot on the right side of the drawing.
- the change amount R of the width of both feet may be obtained by taking the change amount of the average value of the coordinates of both feet as R.
- the walking analysis unit 130 obtains the information on the angle ⁇ of the arm swing and the size L, and the information on the change amount R of the width of both feet and the size P of the blur with respect to the traveling direction. It is calculated as walking analysis data 31 which is analysis information of walking motion.
- the information about the angle and size of arm swing, and the amount of change in the width of both feet and the amount of blurring with respect to the traveling direction include the size and angle in the front-rear and left-right directions of arm swing, and the foot It includes information such as left/right blurring and the width of both feet with respect to the traveling direction. Note that, in FIGS.
- the walking analysis data 31 is the information on the angle and size of the arm swing, and the information on the amount of change in the width of both feet and the amount of blurring with respect to the traveling direction, but the expression method is changed. It is also possible. For example, a two-dimensional vector can be used instead of the length and the angle. For example, the blur information can be expressed as standard deviation or variance.
- step S104 the walking analysis unit 130 stores the walking analysis data 31 in the storage unit 160 and also stores the walking analysis information 163.
- the threshold generation unit 140 generates the determination threshold 164 for determining fatigue.
- the threshold generation unit 140 uses the walking accumulation information 163 in which the walking analysis data calculated in the past by the walking analysis unit 130 is accumulated, and the determination threshold 164 including the threshold of the arm swing information 611 and the threshold of the footing information 612. To generate.
- the threshold generation unit 140 generates the determination threshold 164 by combining the walking analysis data accumulated in the past and the walking analysis data 31 calculated this time.
- the walking analysis data accumulated in the past and the walking analysis data 31 calculated this time do not necessarily have to belong to the same person.
- the threshold generation unit 140 can also associate the input walking analysis data with a person. This association can be realized by a method of associating with an individual when the video camera 101 captures an image, or a method of identifying the individual in the video acquisition unit 110 using biometrics such as face and gait.
- the determination unit 150 compares the determination threshold value 164 with the walking analysis data 31 of the person 201, and determines the degree of fatigue of the person 201 using the comparison result.
- the determination threshold 164 is used to determine the degree of fatigue of a person.
- the determination threshold 164 includes the threshold of the arm swing information 611 and the threshold of the footing information 612. Specifically, the determination unit 150 determines the information on the angle and size of the arm swing included in the walking analysis data 31 of the person 201, and the information on the change in the width of both legs and the amount of blurring with respect to the traveling direction.
- the threshold value 164 is compared.
- the determination unit 150 determines the degree of fatigue of the person 201 based on the comparison result.
- the determination unit 150 outputs the determination result as a fatigue determination result 165 to an output device such as a display via the output interface 940.
- each of the arm swing angle ⁇ with respect to the traveling direction, the arm swing size L, the swing width P of the foot movement, and the variation amount R of the width of both feet is compared with each determination threshold value 164.
- the fatigue level of the person 201 is determined to be 0 to 2. If the data of the judgment threshold value 164 or more is 1 or 2, it is judged that the fatigue level of the person 201 is 3 to 5. If the data of the judgment threshold value 164 or more is 3, it is judged that the fatigue level of the person 201 is 6 to 8.
- each data may be weighted. For example, when the movement of the foot is large, it is considered that the user is more tired. Therefore, the degree of fatigue may be determined by weighting the width P of the foot movement.
- the determination unit 150 determines the fatigue level of the person 201, it may simply determine whether or not the person 201 is fatigued. Further, the determination unit 150 may compare the angle of arm swing in the front-rear direction and the angle of arm swing in the left-right direction and determine the presence or absence of fatigue based on the comparison result. For example, it may be determined that the person 201 is tired when the angle of arm swing in the left-right direction is larger than the angle of arm swing in the front-rear direction.
- the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150 are realized by software.
- the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150 may be realized by hardware.
- the fatigue determination device 100 includes an electronic circuit instead of the processor 910.
- the electronic circuit is a dedicated electronic circuit that realizes the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150.
- the electronic circuit is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
- GA is an abbreviation for Gate Array.
- ASIC is an abbreviation for Application Specific Integrated Circuit.
- FPGA is an abbreviation for Field-Programmable Gate Array.
- the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold value generation unit 140, and the determination unit 150 may be realized by one electronic circuit, or may be realized by being distributed to a plurality of electronic circuits. May be. As another modification, some functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150 are realized by an electronic circuit, and the remaining functions are realized by software. May be.
- Each of the processor and electronic circuit is also called the processing circuitry. That is, in the fatigue determination device 100, the functions of the image acquisition unit 110, the skeleton extraction unit 120, the walking analysis unit 130, the threshold generation unit 140, and the determination unit 150 are realized by the processing circuitry.
- the walking motion is analyzed using the two-dimensional image data, so that the fatigue determination can be performed at any time in the ordinary life if the camera is installed.
- the camera not a special camera such as a depth camera but a surveillance camera already existing in society can be used. Therefore, according to the fatigue determination device 100 according to the present embodiment, it is possible to realize a fatigue determination device that is inexpensive and easy to introduce.
- the skeleton extraction unit extracts three-dimensional time-series skeletal information from the two-dimensional video data.
- the gait analysis unit uses the three-dimensional time-series skeletal information to more accurately grasp the body motion. Therefore, according to the fatigue determination device 100 according to the present embodiment, more accurate and highly accurate fatigue determination can be performed.
- each part of the fatigue determination device has been described as an independent functional block.
- the configuration of the fatigue determination device does not have to be the configuration of the above-described embodiment.
- the functional block of the fatigue determination device may have any configuration as long as it can realize the functions described in the above embodiments.
- the fatigue determination device may be a system including a plurality of devices instead of one device.
- a plurality of parts may be combined and implemented.
- one part of this embodiment may be implemented.
- this embodiment may be implemented in whole or in part in any combination. That is, in the first embodiment, it is possible to freely combine some of the embodiments, modify any of the constituent elements of the embodiment, or omit any of the constituent elements of the embodiment.
- gait analysis data 100 fatigue determination device, 101 video camera, 110 video acquisition unit, 120 skeleton extraction unit, 130 gait analysis unit, 140 threshold generation unit, 150 determination unit, 160 storage unit, 161, video data, 162 skeleton information, 163 walking accumulated information, 164 judgment threshold, 165 fatigue judgment result, 201 person, 202 walking path, 611 arm swing information, 612 foot walking information, 910 processor, 921 memory, 922 auxiliary storage device, 930 input interface, 940 output interface, 950 communication device.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Physiology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Human Computer Interaction (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
骨格抽出部(120)が、人物の歩行動作を撮像した2次元の映像データ(161)から、人物の骨格の動きを時系列に表した骨格情報(162)を抽出する。歩行解析部(130)は、映像データ(161)を用いて、人物の歩行時の腕振りの状態を表す腕振り情報と、人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データ(31)を算出する。判定部(150)は、人物の疲労度を判定するための判定閾値(164)と、人物の歩行解析データ(31)とを比較し、比較した結果を用いて人物の疲労度を判定する。判定閾値(164)には、腕振り情報の閾値と足運び情報の閾値とが含まれる。
Description
本発明は、疲労判定装置、疲労判定方法、および疲労判定プログラムに関する。
従来技術として、ユーザの体調あるいは疲労を検出する疲労判定装置がある。
特許文献1の体調検出装置では、ユーザの歩行解析結果を記録しておく。特許文献1の体調検出装置は、各画素の深度が計測可能な深度カメラにより検知対象のユーザを撮影し、各画素の深度に基づきユーザの歩行解析を行い、記録された歩行解析結果と比較する。そして、特許文献1の体調検出装置は、条件を満たす変化の発生を判定することでユーザの体調を特定する。
特許文献1の体調検出装置では、ユーザの歩行解析結果を記録しておく。特許文献1の体調検出装置は、各画素の深度が計測可能な深度カメラにより検知対象のユーザを撮影し、各画素の深度に基づきユーザの歩行解析を行い、記録された歩行解析結果と比較する。そして、特許文献1の体調検出装置は、条件を満たす変化の発生を判定することでユーザの体調を特定する。
また、特許文献2には、深度カメラを使わずに、人物にマーカを装着し、通常のカメラといったトラッカーによりマーカを検出し、検出したマーカを処理することにより人物の動きをデジタル的に記録する方式が開示されている。あるいは、赤外線センサを用いて、センサから人物までの距離を計測し、人物の大きさおよび骨格といった様々な動きを検出する方法が開示されている。
従来では、歩行解析あるいは人の動きを検出するために、深度カメラあるいは人物に装着されるマーカといった高コストで特殊な機材が必要であるという課題があった。また、従来、疲労判定の条件として、歩幅の左右比および腕振り角度といった特徴情報が列挙されているのみである。具体的にどのような変化が疲労判定に有効かは示されておらず、検出の実効性が低いという課題があった。
この発明は、導入が低コストであるとともに容易であり、かつ、的確に疲労の判定が可能となる疲労判定装置を提供することを目的とする。
本発明に係る疲労判定装置は、
人物の歩行動作を撮像した2次元の映像データから、前記人物の骨格の動きを時系列に表した骨格情報を抽出する骨格抽出部と、
前記骨格情報を用いて、前記人物の歩行時の腕振りの状態を表す腕振り情報と、前記人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出する歩行解析部と、
前記人物の疲労度を判定するための判定閾値であって前記腕振り情報の閾値と前記足運び情報の閾値とを含む判定閾値と前記人物の歩行解析データとを比較し、比較した結果を用いて前記人物の疲労度を判定する判定部とを備えた。
人物の歩行動作を撮像した2次元の映像データから、前記人物の骨格の動きを時系列に表した骨格情報を抽出する骨格抽出部と、
前記骨格情報を用いて、前記人物の歩行時の腕振りの状態を表す腕振り情報と、前記人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出する歩行解析部と、
前記人物の疲労度を判定するための判定閾値であって前記腕振り情報の閾値と前記足運び情報の閾値とを含む判定閾値と前記人物の歩行解析データとを比較し、比較した結果を用いて前記人物の疲労度を判定する判定部とを備えた。
本発明に係る疲労判定装置では、骨格抽出部が、人物の歩行動作を撮像した2次元の映像データから人物の骨格の動きを時系列に表した骨格情報を抽出する。歩行解析部が、骨格情報を用いて、人物の歩行時の腕振りの状態を表す腕振り情報と、人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出する。そして、判定部が、腕振り情報の閾値と足運び情報の閾値とを含む判定閾値と人物の歩行解析データとを比較し、比較した結果を用いて人物の疲労度を判定する。よって、本発明に係る疲労判定装置によれば、導入が低コストであるとともに容易であり、かつ、的確に疲労の判定が可能となる疲労判定装置を実現できる。
以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、実施の形態の説明において、上、下、左、右、前、後、表、裏といった向きあるいは位置が示されている場合がある。これらの表記は、説明の便宜上の記載であり、装置、器具、あるいは部品等の配置、方向および向きを限定するものではない。
実施の形態1.
***構成の説明***
図1は、本実施の形態に係る疲労判定装置100の適用例を示した図である。
図1は、本実施の形態に係る疲労判定装置100を人物201の歩行路202の途中に設置した際の一例である。
映像カメラ101は、歩行路202を歩行する人物201を撮影することが可能な位置に設置されている。映像カメラ101は、人物201が歩行路202を歩行した際に人物201の歩行映像を取得する。映像カメラ101により取得された歩行映像は、疲労判定装置100に入力される。
疲労判定装置100は、歩行映像を用いて人物201の疲労判定を行う。判定結果は人物201の所有するスマートフォンあるいはタブレットといった携帯端末装置に通知される。あるいは、人物201の所属機関の健康保険組合といった組織に通知してもよい。このように、疲労判定装置100により判定された人物201の疲労状態は、幅広く活用可能である。
***構成の説明***
図1は、本実施の形態に係る疲労判定装置100の適用例を示した図である。
図1は、本実施の形態に係る疲労判定装置100を人物201の歩行路202の途中に設置した際の一例である。
映像カメラ101は、歩行路202を歩行する人物201を撮影することが可能な位置に設置されている。映像カメラ101は、人物201が歩行路202を歩行した際に人物201の歩行映像を取得する。映像カメラ101により取得された歩行映像は、疲労判定装置100に入力される。
疲労判定装置100は、歩行映像を用いて人物201の疲労判定を行う。判定結果は人物201の所有するスマートフォンあるいはタブレットといった携帯端末装置に通知される。あるいは、人物201の所属機関の健康保険組合といった組織に通知してもよい。このように、疲労判定装置100により判定された人物201の疲労状態は、幅広く活用可能である。
なお、映像カメラ101が設置されていることは人物201が知っている必要はない。これは、疲労判定において、人物201に対する協力要請といった制限が一切ないことを意味している。つまり、普段の生活の中でカメラ設置箇所があれば、いつでも疲労判定を実施できる。さらに、映像取得に使用する映像カメラ101は深度カメラのような特殊なカメラではなく、既に社会に存在する監視カメラといったカメラを利用できる。
なお、映像カメラ101は、人物201が撮影できれば任意の位置に配置が可能である。また、映像カメラ101と疲労判定装置100は有線で接続されていても無線で接続されていても良い。リアルタイム性を求めないのであれば映像カメラ101で取得された映像を記録メディアに蓄積し、オフラインで疲労判定装置100に入力してもよい。したがって、疲労判定装置100は映像カメラ101から遠く離れた場所に設置されていてもよい。
なお、映像カメラ101は、人物201が撮影できれば任意の位置に配置が可能である。また、映像カメラ101と疲労判定装置100は有線で接続されていても無線で接続されていても良い。リアルタイム性を求めないのであれば映像カメラ101で取得された映像を記録メディアに蓄積し、オフラインで疲労判定装置100に入力してもよい。したがって、疲労判定装置100は映像カメラ101から遠く離れた場所に設置されていてもよい。
図2を用いて、本実施の形態に係る疲労判定装置100の構成を説明する。
疲労判定装置100は、コンピュータである。疲労判定装置100は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
疲労判定装置100は、コンピュータである。疲労判定装置100は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
疲労判定装置100は、機能要素として、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、判定部150、および記憶部160を備える。記憶部160には、映像データ161、骨格情報162、歩行解析データ31、歩行蓄積情報163、判定閾値164、および疲労判定結果165が記憶されている。
映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能は、ソフトウェアにより実現される。記憶部160は、メモリ921に備えられる。
プロセッサ910は、疲労判定プログラムを実行する装置である。疲労判定プログラムは、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能を実現するプログラムである。
プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
メモリ921は、データを一時的に記憶する記憶装置である。メモリ921の具体例は、SRAM(Static Random Access Memory)、あるいはDRAM(Dynamic Random Access Memory)である。
補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬の記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬の記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
入力インタフェース930は、マウス、キーボード、あるいはタッチパネルといった入力装置と接続されるポートである。入力インタフェース930は、具体的には、USB(Universal Serial Bus)端子である。なお、入力インタフェース930は、LAN(Local Area Network)と接続されるポートであってもよい。疲労判定装置100は、入力インタフェース930を介して、映像カメラ101と接続される。
出力インタフェース940は、ディスプレイといった出力機器のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)(High Definition Multimedia Interface)端子である。ディスプレイは、具体的には、LCD(Liquid Crystal Display)である。
通信装置950は、レシーバとトランスミッタを有する。通信装置950は、無線で、LAN、インターネット、あるいは電話回線といった通信網に接続している。通信装置950は、具体的には、通信チップまたはNIC(Network Interface Card)である。
疲労判定プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、疲労判定プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、疲労判定プログラムを実行する。疲労判定プログラムおよびOSは、補助記憶装置922に記憶されていてもよい。補助記憶装置922に記憶されている疲労判定プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、疲労判定プログラムの一部または全部がOSに組み込まれていてもよい。
疲労判定装置100は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、疲労判定プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、疲労判定プログラムを実行する装置である。
疲労判定プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ921、補助記憶装置922、または、プロセッサ910内のレジスタあるいはキャッシュメモリに記憶される。
映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えてもよい。また、映像取得処理、骨格抽出処理、歩行解析処理、閾値生成処理、および判定処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。
疲労判定プログラムは、上記の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、疲労判定方法は、疲労判定装置100が疲労判定プログラムを実行することにより行われる方法である。
疲労判定プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、疲労判定プログラムは、プログラムプロダクトとして提供されてもよい。
疲労判定プログラムは、上記の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、疲労判定方法は、疲労判定装置100が疲労判定プログラムを実行することにより行われる方法である。
疲労判定プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、疲労判定プログラムは、プログラムプロダクトとして提供されてもよい。
なお、図2の疲労判定装置100のハードウェア構成は、一例であり、実施の形態によっては追加、削除、あるいは置換されることがある。例えば、映像カメラ101が疲労判定装置100に内蔵される場合、入力インタフェース930が存在しなくても良い。例えば、疲労判定結果165を表示する表示器を疲労判定装置100内に持つ場合、出力インタフェース940が存在しなくても良い。例えば、疲労判定プログラムおよび歩行蓄積情報163といった情報を記憶する補助記憶装置922が疲労判定装置100の外に存在し、入出力インタフェース経由で接続されていても良い。例えば、疲労判定装置100に複数の映像カメラを繋げるための複数入力をもつ入力インタフェースを有していても良い。
***動作の説明***
図3を用いて、本実施の形態に係る疲労判定装置100の動作について説明する。
図3を用いて、本実施の形態に係る疲労判定装置100の動作について説明する。
<画像取得処理>
ステップS101において、映像取得部110は、入力インタフェース930を介して、映像カメラ101により撮像された映像データ161を取得する。映像カメラ101は、人物201を撮影する位置に設置されている。映像データ161は、人物201の歩行動作を撮像した2次元の映像データである。映像カメラ101は、具体的には、すでに世の中に多く設置されている監視カメラといったカメラで良い。また、映像データ161は、具体的には、2次元のカラー映像である。映像データ161は、骨格抽出部120に出力される。
ステップS101において、映像取得部110は、入力インタフェース930を介して、映像カメラ101により撮像された映像データ161を取得する。映像カメラ101は、人物201を撮影する位置に設置されている。映像データ161は、人物201の歩行動作を撮像した2次元の映像データである。映像カメラ101は、具体的には、すでに世の中に多く設置されている監視カメラといったカメラで良い。また、映像データ161は、具体的には、2次元のカラー映像である。映像データ161は、骨格抽出部120に出力される。
<骨格抽出処理>
ステップS102において、骨格抽出部120は、人物201の歩行動作を撮像した2次元の映像データ161から、人物201の骨格の動きを時系列に表した骨格情報162を抽出する。骨格抽出部120は、映像データ161から3次元の骨格情報162を抽出する。骨格情報162は、近年の高度なコンピュータビジョン技術の進化に伴い、奥行き情報が無い2次元の映像データからの抽出が可能である。骨格抽出部120は、映像データ161に映る人物201を抽出し、高度なコンピュータビジョン技術により、抽出した人物の時系列の骨格情報162を抽出する。
ステップS102において、骨格抽出部120は、人物201の歩行動作を撮像した2次元の映像データ161から、人物201の骨格の動きを時系列に表した骨格情報162を抽出する。骨格抽出部120は、映像データ161から3次元の骨格情報162を抽出する。骨格情報162は、近年の高度なコンピュータビジョン技術の進化に伴い、奥行き情報が無い2次元の映像データからの抽出が可能である。骨格抽出部120は、映像データ161に映る人物201を抽出し、高度なコンピュータビジョン技術により、抽出した人物の時系列の骨格情報162を抽出する。
図4は、本実施の形態に係る時系列の骨格情報162の軌跡を示した図である。
具体的には、骨格抽出部120は、OpenPoseあるいはDepthPoseといった技術を用いて、骨格情報162を抽出する。OpenPoseあるいはDepthPoseといった技術は、映像から骨格情報を抽出する深層学習アルゴリズムである。骨格抽出部120は、このような深層学習アルゴリズムとそのモデルを用いて、映像データ161に含まれる人物の映像に対する処理を実行し、処理結果として骨格情報162を得る。現状では、骨格情報を抽出するアルゴリズムはOpenPoseおよびDepthPoseが有名である。しかし、骨格抽出部120は、今後開発される新たな骨格抽出アルゴリズムを導入することも可能である。
骨格情報162は必ずしも3次元情報である必要はなく、3次元の骨格情報を平面に投影した2次元の骨格情報であっても良い。骨格情報162は歩行解析部130に出力される。
具体的には、骨格抽出部120は、OpenPoseあるいはDepthPoseといった技術を用いて、骨格情報162を抽出する。OpenPoseあるいはDepthPoseといった技術は、映像から骨格情報を抽出する深層学習アルゴリズムである。骨格抽出部120は、このような深層学習アルゴリズムとそのモデルを用いて、映像データ161に含まれる人物の映像に対する処理を実行し、処理結果として骨格情報162を得る。現状では、骨格情報を抽出するアルゴリズムはOpenPoseおよびDepthPoseが有名である。しかし、骨格抽出部120は、今後開発される新たな骨格抽出アルゴリズムを導入することも可能である。
骨格情報162は必ずしも3次元情報である必要はなく、3次元の骨格情報を平面に投影した2次元の骨格情報であっても良い。骨格情報162は歩行解析部130に出力される。
<歩行解析処理>
ここで、歩行解析部130の動作の概要について説明する。
歩行解析部130は、骨格情報162を用いて、腕振り情報611と足運び情報612とを含む歩行解析データ31を算出する。腕振り情報611は、人物201の歩行時の腕振りの状態を表す。足運び情報612は、人物201の歩行時の足の運びの状態を表す。
歩行解析部130は、腕振り情報611として、進行方向に対する人物201の腕振りの角度と人物の腕振りの大きさとを算出する。なお、進行方向に対する人物201の腕振りの角度は、左右方向の腕振りの角度として表してもよい。また、人物201の腕振りの大きさは、前後方向の腕振りの角度として表してもよい。
また、歩行解析部130は、足運び情報612として、進行方向に対する人物の足のブレの大きさと人物の両足の幅の変化量とを算出する。
ここで、歩行解析部130の動作の概要について説明する。
歩行解析部130は、骨格情報162を用いて、腕振り情報611と足運び情報612とを含む歩行解析データ31を算出する。腕振り情報611は、人物201の歩行時の腕振りの状態を表す。足運び情報612は、人物201の歩行時の足の運びの状態を表す。
歩行解析部130は、腕振り情報611として、進行方向に対する人物201の腕振りの角度と人物の腕振りの大きさとを算出する。なお、進行方向に対する人物201の腕振りの角度は、左右方向の腕振りの角度として表してもよい。また、人物201の腕振りの大きさは、前後方向の腕振りの角度として表してもよい。
また、歩行解析部130は、足運び情報612として、進行方向に対する人物の足のブレの大きさと人物の両足の幅の変化量とを算出する。
ステップS103において、歩行解析部130は、骨格情報162に基づき人物201の歩行動作を解析する。歩行解析部130は、解析した結果を、歩行解析データ31として出力する。歩行解析データ31には、具体的には、腰の位置情報を用いて位置補正を行った骨格情報、腕振り情報611、および足運び情報612といった情報が含まれる。
図5および図6は、本実施の形態に係る歩行解析部130の処理の例を示す図である。
歩行解析部130は、時系列の骨格情報162を入力として、腕の振り方の前後方向の角度あるいは大きさ、および、左右方向の角度あるいは大きさを解析する。また、歩行解析部130は、時系列の骨格情報162を入力として、足の運び方の進行方向に対する左右のブレあるいは両足の幅の変化といった歩行動作を解析する。
歩行解析部130は、時系列の骨格情報162を入力として、腕の振り方の前後方向の角度あるいは大きさ、および、左右方向の角度あるいは大きさを解析する。また、歩行解析部130は、時系列の骨格情報162を入力として、足の運び方の進行方向に対する左右のブレあるいは両足の幅の変化といった歩行動作を解析する。
図5は、骨格情報162の3歩行周期分を頭の上から見た模式図である。ここで、図5の手の軌跡および足の軌跡の情報は、進行方向に対し、角度の情報と長さの情報として表現できる。疲労発生により人物の歩行は不安定となり、疲労なしの歩行と比べ、歩行の安定性を補うため手の振れが両側に広がり、また大きく手を振る傾向が見られる。よって、進行方向に対する腕振りの角度θと腕振りの大きさLを含む腕振り情報611は、人物の疲労をより直接的に表現する情報となる。なお、腕振りの大きさLは、前後方向の腕振りの角度で表してもよい。進行方向に対する腕振りの角度θは、左右方向の腕振りの角度で表してもよい。
図6は、骨格情報162の3歩行周期分を進行方向側から見た模式図である。ここで、図5および図6の足の軌跡の情報は、進行方向に進む際の足の位置のブレの大きさと、両足の広がり情報として表現できる。疲労発生は人物の歩行を不安定にさせ、進行方向に対してまっすぐ歩くことが困難になり、蛇行したり、安定性を確保するために足歩幅を広げることで安定性を確保する傾向が見られる。よって、進行方向に進む際の、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rを含む足運び情報612は、人物の疲労をより直接的に表現する情報となる。
歩行解析部130は、上述した疲労時の歩行動作の特性を活用し、疲労をより直接的に表現する情報として歩行解析データ31を算出する。
歩行解析部130は、上述した疲労時の歩行動作の特性を活用し、疲労をより直接的に表現する情報として歩行解析データ31を算出する。
図7を用いて、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rの算出例について説明する。
図7では、図4の前から見た図の足部分の情報を用いて、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rを算出する例について説明する。
進行方向に対する足のブレ幅Pは、P=√(PL 2+PR 2)のようにL2ノルムで求めてもよい。ここで、PLは、図に向かって左側の足のブレ幅の分散(PX)である。また、PRは、図に向かって右側の足のブレ幅の分散(PX)である。
また、両足の幅の変化量Rは、両足の各々の座標の平均値の変化量をRとして求めてもよい。
図7では、図4の前から見た図の足部分の情報を用いて、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rを算出する例について説明する。
進行方向に対する足のブレ幅Pは、P=√(PL 2+PR 2)のようにL2ノルムで求めてもよい。ここで、PLは、図に向かって左側の足のブレ幅の分散(PX)である。また、PRは、図に向かって右側の足のブレ幅の分散(PX)である。
また、両足の幅の変化量Rは、両足の各々の座標の平均値の変化量をRとして求めてもよい。
なお、PX分散とPの算出式(L2ノルム)は一例である。Pxは最大最小の差、あるいは、発生確率といった他の手法で求めてもよい。また、Pの算出式はL1ノルム(絶対値和)としてもよい。
また、変化量Rを求めるための座標値平均についても一例である。変化量Rの算出に使う座標値平均は、中央値を使いてもよい。
このように、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rを適切に表すことができれば、P,Rをどのような算出手法で算出してもよい。
また、変化量Rを求めるための座標値平均についても一例である。変化量Rの算出に使う座標値平均は、中央値を使いてもよい。
このように、進行方向に対する足のブレ幅P、および、両足の幅の変化量Rを適切に表すことができれば、P,Rをどのような算出手法で算出してもよい。
以上のように、歩行解析部130は、具体的には、腕振りの角度θと大きさLの情報、および、両足の幅の変化量Rと進行方向に対するブレの大きさPの情報を、歩行動作の解析情報である歩行解析データ31として算出する。腕振りの角度と大きさの情報、および、両足の幅の変化量と進行方向に対するブレの大きさの情報には、腕の振り方の前後方向と左右方向の大きさと角度、および、足の運び方の進行方向に対する左右のブレと両足の幅といった情報が含まれる。
なお、図5および図6では、腕振りの角度と大きさの情報、および、両足の幅の変化量と進行方向に対するブレの大きさの情報を歩行解析データ31としたが、表現方法を変えることも可能である。例えば、長さと角度の代わりに2次元ベクトルで表現することも可能である。例えば、ブレの情報を標準偏差あるいは分散として表現することも可能である。
なお、図5および図6では、腕振りの角度と大きさの情報、および、両足の幅の変化量と進行方向に対するブレの大きさの情報を歩行解析データ31としたが、表現方法を変えることも可能である。例えば、長さと角度の代わりに2次元ベクトルで表現することも可能である。例えば、ブレの情報を標準偏差あるいは分散として表現することも可能である。
ステップS104において、歩行解析部130は、歩行解析データ31を記憶部160に記憶するとともに、歩行蓄積情報163に蓄積する。
<閾値生成処理>
ステップS105において、閾値生成部140は、疲労を判定するための判定閾値164を生成する。閾値生成部140は、歩行解析部130により過去に算出された歩行解析データが蓄積された歩行蓄積情報163を用いて、腕振り情報611の閾値と足運び情報612の閾値とを含む判定閾値164を生成する。閾値生成部140は、過去に蓄積された歩行解析データと今回算出された歩行解析データ31とを併せて判定閾値164を生成する。ここで、過去に蓄積された歩行解析データと今回算出された歩行解析データ31は必ずしも同一人物のものでなくても良い。一方で、過去の歩行解析データと今回の歩行解析データ31で同一人物であることが予め判明していればより精度の高い判定閾値164の生成が可能になる。このように、閾値生成部140は、入力する歩行解析データと人物との関連付けをすることも可能である。この関連付けは、映像カメラ101で撮像時に個人との関連付けを行う方法、あるいは、映像取得部110において、例えば顔および歩容といったバイオメトリクスを用いて個人特定を行う方法により実現できる。
ステップS105において、閾値生成部140は、疲労を判定するための判定閾値164を生成する。閾値生成部140は、歩行解析部130により過去に算出された歩行解析データが蓄積された歩行蓄積情報163を用いて、腕振り情報611の閾値と足運び情報612の閾値とを含む判定閾値164を生成する。閾値生成部140は、過去に蓄積された歩行解析データと今回算出された歩行解析データ31とを併せて判定閾値164を生成する。ここで、過去に蓄積された歩行解析データと今回算出された歩行解析データ31は必ずしも同一人物のものでなくても良い。一方で、過去の歩行解析データと今回の歩行解析データ31で同一人物であることが予め判明していればより精度の高い判定閾値164の生成が可能になる。このように、閾値生成部140は、入力する歩行解析データと人物との関連付けをすることも可能である。この関連付けは、映像カメラ101で撮像時に個人との関連付けを行う方法、あるいは、映像取得部110において、例えば顔および歩容といったバイオメトリクスを用いて個人特定を行う方法により実現できる。
閾値生成部140は、これまでに算出された歩行解析データを用いて疲労有無のクラスタリングを実施することにより、判定閾値164を生成する。判定閾値164には、例えば、腕振りの角度と大きさの情報の閾値、および、両足の幅の変化と進行方向に対するブレの大きさの情報の閾値が含まれる。すなわち、判定閾値164には、腕振り情報611の閾値と足運び情報612の閾値とが含まれる。閾値生成部140は、歩行解析部130により歩行解析データ31が算出される度に、判定閾値164を生成する。
なお、判定閾値164を生成するためのクラスタリング処理に十分な数の歩行解析データが存在する場合、判定閾値164の生成処理を省略することも可能である。閾値生成部140は、定期的あるいは不定期に判定閾値164を生成し、記憶部160に記憶してもよい。そして、判定部150は、記憶部160に記憶された判定閾値164を用いて、判定処理を行ってもよい。
<判定処理>
ステップS106において、判定部150は、判定閾値164と人物201の歩行解析データ31とを比較し、比較した結果を用いて人物201の疲労度を判定する。判定閾値164は、人物の疲労度を判定するために用いられる。判定閾値164は、腕振り情報611の閾値と足運び情報612の閾値とを含む。具体的には、判定部150は、人物201の歩行解析データ31に含まれる腕振りの角度と大きさの情報、および、両足の幅の変化と進行方向に対するブレの大きさの情報と、判定閾値164とを比較する。判定部150は、比較結果により、人物201の疲労度を判定する。判定部150は、判定の結果を疲労判定結果165として、出力インタフェース940を介してディスプレイといった出力機器に出力する。
ステップS106において、判定部150は、判定閾値164と人物201の歩行解析データ31とを比較し、比較した結果を用いて人物201の疲労度を判定する。判定閾値164は、人物の疲労度を判定するために用いられる。判定閾値164は、腕振り情報611の閾値と足運び情報612の閾値とを含む。具体的には、判定部150は、人物201の歩行解析データ31に含まれる腕振りの角度と大きさの情報、および、両足の幅の変化と進行方向に対するブレの大きさの情報と、判定閾値164とを比較する。判定部150は、比較結果により、人物201の疲労度を判定する。判定部150は、判定の結果を疲労判定結果165として、出力インタフェース940を介してディスプレイといった出力機器に出力する。
歩行解析データ31のうちの進行方向に対する腕振りの角度θ、腕振りの大きさL、足運びのブレ幅P、および両足の幅の変化量Rの各々を、各々の判定閾値164と比較する場合を想定する。全てのデータが判定閾値164未満であれば、人物201の疲労度は0~2と判定する。判定閾値164以上のデータが1または2であれば、人物201の疲労度は3~5と判定する。判定閾値164以上のデータが3であれば、人物201の疲労度は6~8と判定する。判定閾値164以上のデータが4、すなわち全てのデータが判定閾値164以上であれば、人物201の疲労度は9~10と判定する。あるいは、データ毎に重み付けをしてもよい。例えば、足運びのブレが大きい場合は、より疲労している思われるため、足運びのブレ幅Pに重み付けをして疲労度を判定してもよい。
以上の説明では、腕振りの角度、腕振りの大きさ、足運びのブレ幅、両足の幅の変化量の各々に対して個別の判定閾値を用意している。しかし、例えば、腕振りの角度、腕振りの大きさ、足運びのブレ幅、両足の幅の変化量の情報を個別の重みで統合し、その結果を一つあるいは複数の閾値で判定してもよい。このような判定方法はニューラルネットワークで用いられる方法である。
また、判定部150は、人物201の疲労度を判定するとしたが、単に、人物201について疲労の有無を判定するだけでもよい。
また、判定部150は、前後方向の腕振りの角度と左右方向の腕振りの角度とを比較し、比較結果により疲労の有無を判定してもよい。例えば、前後方向の腕振りの角度より左右方向の腕振りの角度が大きくなった場合に、人物201が疲労していると判定してもよい。
また、判定部150は、前後方向の腕振りの角度と左右方向の腕振りの角度とを比較し、比較結果により疲労の有無を判定してもよい。例えば、前後方向の腕振りの角度より左右方向の腕振りの角度が大きくなった場合に、人物201が疲労していると判定してもよい。
なお、以上説明してきた疲労判定に関する処理手順は一例であり、各処理は出力される疲労判定結果165が得られる範囲で処理手順の省略、入れ替え、あるいは追加が可能である。
***他の構成***
<変形例1>
本実施の形態では、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能がソフトウェアで実現される。変形例として、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能がハードウェアで実現されてもよい。
疲労判定装置100は、プロセッサ910に替えて、電子回路を備える。
<変形例1>
本実施の形態では、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能がソフトウェアで実現される。変形例として、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能がハードウェアで実現されてもよい。
疲労判定装置100は、プロセッサ910に替えて、電子回路を備える。
電子回路は、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能を実現する専用の電子回路である。
電子回路は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
別の変形例として、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
電子回路は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
別の変形例として、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、疲労判定装置100において、映像取得部110、骨格抽出部120、歩行解析部130、閾値生成部140、および判定部150の機能は、プロセッシングサーキットリにより実現される。
***本実施の形態の効果の説明***
本実施の形態に係る疲労判定装置100では、2次元の映像データを用いて、歩行動作を解析するので、普段の生活の中でカメラ設置箇所があれば、いつでも疲労判定を実施できる。また、カメラは、深度カメラのような特殊なカメラではなく、既に社会に存在する監視カメラを利用できる。よって、本実施の形態に係る疲労判定装置100によれば、導入が低コストかつ容易な疲労判定装置を実現できる。
本実施の形態に係る疲労判定装置100では、2次元の映像データを用いて、歩行動作を解析するので、普段の生活の中でカメラ設置箇所があれば、いつでも疲労判定を実施できる。また、カメラは、深度カメラのような特殊なカメラではなく、既に社会に存在する監視カメラを利用できる。よって、本実施の形態に係る疲労判定装置100によれば、導入が低コストかつ容易な疲労判定装置を実現できる。
本実施の形態に係る疲労判定装置100では、過去の歩行解析データを蓄積した歩行蓄積情報を用いて、歩行解析データを解析する度に判定閾値を生成する。よって、本実施の形態に係る疲労判定装置100によれば、より的確で高精度な疲労判定をすることができる。
本実施の形態に係る疲労判定装置100では、骨格抽出部は、2次元の映像データから3次元の時系列の骨格情報を抽出する。また、歩行解析部は、3次元の時系列の骨格情報を用いて、身体動作をより正確に把握する。よって、本実施の形態に係る疲労判定装置100によれば、より的確で高精度な疲労判定をすることができる。
以上の実施の形態1では、疲労判定装置の各部を独立した機能ブロックとして説明した。しかし、疲労判定装置の構成は、上述した実施の形態のような構成でなくてもよい。疲労判定装置の機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、疲労判定装置は、1つの装置でなく、複数の装置から構成されたシステムでもよい。
また、実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、この実施の形態のうち、1つの部分を実施しても構わない。その他、この実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1では、実施の形態の一部分の自由な組み合わせ、あるいは実施の形態の任意の構成要素の変形、もしくは実施の形態において任意の構成要素の省略が可能である。
また、実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、この実施の形態のうち、1つの部分を実施しても構わない。その他、この実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1では、実施の形態の一部分の自由な組み合わせ、あるいは実施の形態の任意の構成要素の変形、もしくは実施の形態において任意の構成要素の省略が可能である。
なお、上述した実施の形態は、本質的に好ましい例示であって、本発明の範囲、本発明の適用物の範囲、および本発明の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
31 歩行解析データ、100 疲労判定装置、101 映像カメラ、110 映像取得部、120 骨格抽出部、130 歩行解析部、140 閾値生成部、150 判定部、160 記憶部、161 映像データ、162 骨格情報、163 歩行蓄積情報、164 判定閾値、165 疲労判定結果、201 人物、202 歩行路、611 腕振り情報、612 足運び情報、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置。
Claims (8)
- 人物の歩行動作を撮像した2次元の映像データから、前記人物の骨格の動きを時系列に表した骨格情報を抽出する骨格抽出部と、
前記骨格情報を用いて、前記人物の歩行時の腕振りの状態を表す腕振り情報と、前記人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出する歩行解析部と、
前記人物の疲労度を判定するための判定閾値であって前記腕振り情報の閾値と前記足運び情報の閾値とを含む判定閾値と前記人物の歩行解析データとを比較し、比較した結果を用いて前記人物の疲労度を判定する判定部と
を備えた疲労判定装置。 - 前記歩行解析部は、
前記腕振り情報として、進行方向に対する前記人物の腕振りの角度と前記人物の腕振りの大きさとを算出する請求項1に記載の疲労判定装置。 - 前記歩行解析部は、
前記足運び情報として、進行方向に対する前記人物の足のブレの大きさと前記人物の両足の幅の変化量とを算出する請求項1または請求項2に記載の疲労判定装置。 - 前記疲労判定装置は、
前記歩行解析部により過去に算出された歩行解析データが蓄積された歩行蓄積情報を用いて、前記腕振り情報の閾値と前記足運び情報の閾値とを含む前記判定閾値を生成する閾値生成部を備えた請求項1から請求項3のいずれか1項に記載の疲労判定装置。 - 前記閾値生成部は、
前記歩行解析部により歩行解析データが算出される度に前記判定閾値を生成する請求項1から請求項4のいずれか1項に記載の疲労判定装置。 - 前記骨格抽出部は、前記映像データから3次元の前記骨格情報を抽出する請求項1から請求項5のいずれか1項に記載の疲労判定装置。
- 骨格抽出部と歩行解析部と判定部とを備えた疲労判定装置の疲労判定方法において、
前記骨格抽出部が、人物の歩行動作を撮像した2次元の映像データから、前記人物の骨格の動きを時系列に表した骨格情報を抽出し、
前記歩行解析部が、前記骨格情報を用いて、前記人物の歩行時の腕振りの状態を表す腕振り情報と、前記人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出し、
判定部が、前記人物の疲労度を判定するための判定閾値であって前記腕振り情報の閾値と前記足運び情報の閾値とを含む判定閾値と前記人物の歩行解析データとを比較し、比較した結果を用いて前記人物の疲労度を判定する疲労判定方法。 - 人物の歩行動作を撮像した2次元の映像データから、前記人物の骨格の動きを時系列に表した骨格情報を抽出する骨格抽出処理と、
前記骨格情報を用いて、前記人物の歩行時の腕振りの状態を表す腕振り情報と、前記人物の歩行時の足の運びの状態を表す足運び情報とを含む歩行解析データを算出する歩行解析処理と、
前記人物の疲労度を判定するための判定閾値であって前記腕振り情報の閾値と前記足運び情報の閾値とを含む判定閾値と前記人物の歩行解析データとを比較し、比較した結果を用いて前記人物の疲労度を判定する判定処理と
をコンピュータに実行させる疲労判定プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2110628.1A GB2597378B (en) | 2019-02-18 | 2019-02-18 | Fatigue determination device, fatigue determination method, and fatigue determination program |
PCT/JP2019/005804 WO2020170299A1 (ja) | 2019-02-18 | 2019-02-18 | 疲労判定装置、疲労判定方法、および疲労判定プログラム |
JP2020571735A JP6873344B2 (ja) | 2019-02-18 | 2019-02-18 | 疲労判定装置、疲労判定方法、および疲労判定プログラム |
US17/372,840 US20210338109A1 (en) | 2019-02-18 | 2021-07-12 | Fatigue determination device and fatigue determination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/005804 WO2020170299A1 (ja) | 2019-02-18 | 2019-02-18 | 疲労判定装置、疲労判定方法、および疲労判定プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/372,840 Continuation US20210338109A1 (en) | 2019-02-18 | 2021-07-12 | Fatigue determination device and fatigue determination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170299A1 true WO2020170299A1 (ja) | 2020-08-27 |
Family
ID=72143495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005804 WO2020170299A1 (ja) | 2019-02-18 | 2019-02-18 | 疲労判定装置、疲労判定方法、および疲労判定プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210338109A1 (ja) |
JP (1) | JP6873344B2 (ja) |
GB (1) | GB2597378B (ja) |
WO (1) | WO2020170299A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111931748A (zh) * | 2020-10-12 | 2020-11-13 | 天能电池集团股份有限公司 | 一种适用于蓄电池生产车间的工人疲劳度检测方法 |
WO2023022072A1 (ja) * | 2021-08-16 | 2023-02-23 | 花王株式会社 | 動画像判定方法 |
JP2023027012A (ja) * | 2021-08-16 | 2023-03-01 | 花王株式会社 | 動画像判定方法 |
WO2024009532A1 (ja) * | 2022-07-06 | 2024-01-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 行動認識装置、行動認識方法、及び行動認識プログラム |
WO2024009533A1 (ja) * | 2022-07-07 | 2024-01-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 行動認識装置、行動認識方法、及び行動認識プログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230343150A1 (en) * | 2022-04-25 | 2023-10-26 | Ford Global Technologies, Llc | Systems and methods for fleet based incremental job assignment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012024449A (ja) * | 2010-07-27 | 2012-02-09 | Omron Healthcare Co Ltd | 歩行変化判定装置 |
JP2013017614A (ja) * | 2011-07-11 | 2013-01-31 | Omron Healthcare Co Ltd | 疲労判定装置 |
JP2013143996A (ja) * | 2012-01-13 | 2013-07-25 | Microstone Corp | 運動計測装置 |
WO2016031313A1 (ja) * | 2014-08-25 | 2016-03-03 | Nkワークス株式会社 | 体調検出装置、体調検出方法及び体調検出プログラム |
US20160097787A1 (en) * | 2014-10-02 | 2016-04-07 | Zikto | Smart band, motion state determining method of the smart band and computer-readable recording medium comprising program for performing the same |
US20170287146A1 (en) * | 2016-03-29 | 2017-10-05 | Verily Life Sciences Llc | Disease and fall risk assessment using depth mapping systems |
-
2019
- 2019-02-18 WO PCT/JP2019/005804 patent/WO2020170299A1/ja active Application Filing
- 2019-02-18 GB GB2110628.1A patent/GB2597378B/en active Active
- 2019-02-18 JP JP2020571735A patent/JP6873344B2/ja active Active
-
2021
- 2021-07-12 US US17/372,840 patent/US20210338109A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012024449A (ja) * | 2010-07-27 | 2012-02-09 | Omron Healthcare Co Ltd | 歩行変化判定装置 |
JP2013017614A (ja) * | 2011-07-11 | 2013-01-31 | Omron Healthcare Co Ltd | 疲労判定装置 |
JP2013143996A (ja) * | 2012-01-13 | 2013-07-25 | Microstone Corp | 運動計測装置 |
WO2016031313A1 (ja) * | 2014-08-25 | 2016-03-03 | Nkワークス株式会社 | 体調検出装置、体調検出方法及び体調検出プログラム |
US20160097787A1 (en) * | 2014-10-02 | 2016-04-07 | Zikto | Smart band, motion state determining method of the smart band and computer-readable recording medium comprising program for performing the same |
US20170287146A1 (en) * | 2016-03-29 | 2017-10-05 | Verily Life Sciences Llc | Disease and fall risk assessment using depth mapping systems |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111931748A (zh) * | 2020-10-12 | 2020-11-13 | 天能电池集团股份有限公司 | 一种适用于蓄电池生产车间的工人疲劳度检测方法 |
CN111931748B (zh) * | 2020-10-12 | 2021-01-26 | 天能电池集团股份有限公司 | 一种适用于蓄电池生产车间的工人疲劳度检测方法 |
WO2023022072A1 (ja) * | 2021-08-16 | 2023-02-23 | 花王株式会社 | 動画像判定方法 |
JP2023027012A (ja) * | 2021-08-16 | 2023-03-01 | 花王株式会社 | 動画像判定方法 |
JP7353438B2 (ja) | 2021-08-16 | 2023-09-29 | 花王株式会社 | 動画像判定方法 |
WO2024009532A1 (ja) * | 2022-07-06 | 2024-01-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 行動認識装置、行動認識方法、及び行動認識プログラム |
WO2024009533A1 (ja) * | 2022-07-07 | 2024-01-11 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 行動認識装置、行動認識方法、及び行動認識プログラム |
Also Published As
Publication number | Publication date |
---|---|
GB2597378A (en) | 2022-01-26 |
GB2597378B (en) | 2023-03-01 |
GB202110628D0 (en) | 2021-09-08 |
JPWO2020170299A1 (ja) | 2021-04-08 |
JP6873344B2 (ja) | 2021-05-19 |
US20210338109A1 (en) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020170299A1 (ja) | 疲労判定装置、疲労判定方法、および疲労判定プログラム | |
JP7250709B2 (ja) | 畳み込み画像変換を使用して同時位置特定およびマッピングを実施する方法およびシステム | |
US10394318B2 (en) | Scene analysis for improved eye tracking | |
WO2019205865A1 (zh) | 相机姿态追踪过程的重定位方法、装置、设备及存储介质 | |
CN110998659B (zh) | 图像处理系统、图像处理方法、及程序 | |
US10572072B2 (en) | Depth-based touch detection | |
US10830584B2 (en) | Body posture tracking | |
US8988341B2 (en) | Camera-assisted motion estimation for application control | |
US10600189B1 (en) | Optical flow techniques for event cameras | |
JP5836095B2 (ja) | 画像処理装置、画像処理方法 | |
KR102057531B1 (ko) | 제스처를 이용하여 데이터를 송수신하는 모바일 기기들 | |
KR101956275B1 (ko) | 영상으로부터 신체 골격 및 신체 부위 정보 검출 방법 및 장치 | |
Zhu et al. | A computer vision-based system for stride length estimation using a mobile phone camera | |
KR20140019950A (ko) | 단말기의 모노 카메라에 입력된 손가락 영상을 이용한 3차원 좌표 생성 방법 및 모노 카메라에 입력된 손가락 영상을 이용하여 3차원 좌표를 생성하는 이동 단말기 | |
KR102041191B1 (ko) | 손 동작 인식 방법 및 장치 | |
Parashar et al. | Advancements in artificial intelligence for biometrics: a deep dive into model-based gait recognition techniques | |
JP6244886B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
KR20150077184A (ko) | 의료 영상의 병변 유사도 판단 장치 및 방법 | |
CN115862124A (zh) | 视线估计方法、装置、可读存储介质及电子设备 | |
JP5478520B2 (ja) | 人数計測装置、人数計測方法、プログラム | |
US10671881B2 (en) | Image processing system with discriminative control | |
Jain et al. | Innovative algorithms in computer vision | |
Chen et al. | An integrated sensor network method for safety management of construction workers | |
Kim et al. | Real-time head pose estimation framework for mobile devices | |
CN115393427A (zh) | 一种相机位姿的确定方法、装置、计算机设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19915796 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020571735 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19915796 Country of ref document: EP Kind code of ref document: A1 |