WO2020166717A1 - Resin filled fiber base material, fiber reinforced composite material and method for producing same - Google Patents
Resin filled fiber base material, fiber reinforced composite material and method for producing same Download PDFInfo
- Publication number
- WO2020166717A1 WO2020166717A1 PCT/JP2020/005887 JP2020005887W WO2020166717A1 WO 2020166717 A1 WO2020166717 A1 WO 2020166717A1 JP 2020005887 W JP2020005887 W JP 2020005887W WO 2020166717 A1 WO2020166717 A1 WO 2020166717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- fiber base
- resin
- fiber
- mass
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 341
- 239000000463 material Substances 0.000 title claims abstract description 336
- 229920005989 resin Polymers 0.000 title claims abstract description 190
- 239000011347 resin Substances 0.000 title claims abstract description 190
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 123
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims abstract description 122
- 239000007787 solid Substances 0.000 claims abstract description 37
- 239000003431 cross linking reagent Substances 0.000 claims description 46
- 239000002245 particle Substances 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 16
- 239000012736 aqueous medium Substances 0.000 claims description 13
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 claims description 11
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 81
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 32
- 239000012783 reinforcing fiber Substances 0.000 abstract description 9
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- -1 melamine compound Chemical class 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 14
- 238000010030 laminating Methods 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 238000004513 sizing Methods 0.000 description 12
- 229920005749 polyurethane resin Polymers 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000012948 isocyanate Substances 0.000 description 8
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- 239000004744 fabric Substances 0.000 description 6
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 5
- 238000004383 yellowing Methods 0.000 description 5
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 150000001718 carbodiimides Chemical class 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000006082 mold release agent Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 3
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- VNMOIBZLSJDQEO-UHFFFAOYSA-N 1,10-diisocyanatodecane Chemical compound O=C=NCCCCCCCCCCN=C=O VNMOIBZLSJDQEO-UHFFFAOYSA-N 0.000 description 1
- NXTLMBKGEDJACS-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)-3-methylbenzene Chemical compound CC1=CC=CC(CN=C=O)=C1CN=C=O NXTLMBKGEDJACS-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- ZIZJPRKHEXCVLL-UHFFFAOYSA-N 1,3-bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione Chemical compound O=C=NCCCCCCN1C(=O)N(CCCCCCN=C=O)C1=O ZIZJPRKHEXCVLL-UHFFFAOYSA-N 0.000 description 1
- XSCLFFBWRKTMTE-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCCC(CN=C=O)C1 XSCLFFBWRKTMTE-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- OUJCKESIGPLCRN-UHFFFAOYSA-N 1,5-diisocyanato-2,2-dimethylpentane Chemical compound O=C=NCC(C)(C)CCCN=C=O OUJCKESIGPLCRN-UHFFFAOYSA-N 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- FGPFIXISGWXSCE-UHFFFAOYSA-N 2,2-bis(oxiran-2-ylmethoxymethyl)propane-1,3-diol Chemical compound C1OC1COCC(CO)(CO)COCC1CO1 FGPFIXISGWXSCE-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- KKKKCPPTESQGQH-UHFFFAOYSA-N 2-(4,5-dihydro-1,3-oxazol-2-yl)-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=NCCO1 KKKKCPPTESQGQH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 1
- UFUAASKHUNQXBP-UHFFFAOYSA-N 2-[2-(4,4-dimethyl-5h-1,3-oxazol-2-yl)ethyl]-4,4-dimethyl-5h-1,3-oxazole Chemical compound CC1(C)COC(CCC=2OCC(C)(C)N=2)=N1 UFUAASKHUNQXBP-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- ZDNUPMSZKVCETJ-UHFFFAOYSA-N 2-[4-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=CC=C(C=2OCCN=2)C=C1 ZDNUPMSZKVCETJ-UHFFFAOYSA-N 0.000 description 1
- PULOARGYCVHSDH-UHFFFAOYSA-N 2-amino-3,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC1=C(CC2OC2)C(N)=C(O)C=C1CC1CO1 PULOARGYCVHSDH-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZKTPGXSTOJXHIG-UHFFFAOYSA-N 2-cyclohexyl-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1CCCCC1 ZKTPGXSTOJXHIG-UHFFFAOYSA-N 0.000 description 1
- UUODQIKUTGWMPT-UHFFFAOYSA-N 2-fluoro-5-(trifluoromethyl)pyridine Chemical compound FC1=CC=C(C(F)(F)F)C=N1 UUODQIKUTGWMPT-UHFFFAOYSA-N 0.000 description 1
- GRWFFFOEIHGUBG-UHFFFAOYSA-N 3,4-Epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclo-hexanecarboxylate Chemical compound C1C2OC2CC(C)C1C(=O)OCC1CC2OC2CC1C GRWFFFOEIHGUBG-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- YTNUOGWCFLMGLF-UHFFFAOYSA-N 5-methylbenzene-1,2,3,4-tetrol Chemical compound CC1=CC(O)=C(O)C(O)=C1O YTNUOGWCFLMGLF-UHFFFAOYSA-N 0.000 description 1
- RBHIUNHSNSQJNG-UHFFFAOYSA-N 6-methyl-3-(2-methyloxiran-2-yl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2(C)OC2CC1C1(C)CO1 RBHIUNHSNSQJNG-UHFFFAOYSA-N 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- JHDONXSUZJAJEY-UHFFFAOYSA-N C=CC(C)(C)N=C=N Chemical compound C=CC(C)(C)N=C=N JHDONXSUZJAJEY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- KTPIWUHKYIJBCR-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohex-4-ene-1,2-dicarboxylate Chemical compound C1C=CCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 KTPIWUHKYIJBCR-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 1
- AMAWVOFJIULRGK-UHFFFAOYSA-N n'-(2,6-dimethylphenyl)-n-[4-[(2,6-dimethylphenyl)iminomethylideneamino]phenyl]methanediimine Chemical compound CC1=CC=CC(C)=C1N=C=NC1=CC=C(N=C=NC=2C(=CC=CC=2C)C)C=C1 AMAWVOFJIULRGK-UHFFFAOYSA-N 0.000 description 1
- MOQZJHKYQDFURQ-UHFFFAOYSA-N n'-tert-butyl-n-[4-(tert-butyliminomethylideneamino)butyl]methanediimine Chemical compound CC(C)(C)N=C=NCCCCN=C=NC(C)(C)C MOQZJHKYQDFURQ-UHFFFAOYSA-N 0.000 description 1
- VAUOPRZOGIRSMI-UHFFFAOYSA-N n-(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CNC1=CC=CC=C1 VAUOPRZOGIRSMI-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/18—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/122—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
- B29B15/125—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/22—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0854—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
- B29K2105/0863—SMC, i.e. sheet moulding compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0872—Prepregs
Definitions
- the present disclosure relates to a resin-filled fiber base material, a fiber-reinforced composite material, and a manufacturing method thereof.
- thermosetting resin such as an epoxy resin has been mainly used as the matrix resin of the fiber-reinforced composite material (see Patent Document 1).
- thermosetting resin when used as the matrix resin, since a chemical reaction (curing reaction) of the thermosetting resin is involved during the molding of the fiber-reinforced composite material, it takes a long time to cure and the time required for molding becomes long, There was a problem that productivity was low. Further, there is a problem that it is not easy to reprocess the intermediate product of the fiber-reinforced composite material using the thermosetting resin as the matrix resin by changing the shape by pressing or the like.
- thermoplastic resin does not involve a chemical reaction (curing reaction) at the time of molding a fiber-reinforced composite material, so that the time required for molding can be shortened. Since it can be processed into an arbitrary shape by laminating and heating under pressure, and it can be easily processed into a molded article of another shape by melting, thermoplastic resin has begun to be used as the matrix resin of the fiber-reinforced composite material. There is.
- thermoplastic resin when used as a matrix resin, the affinity for fibers is low, and the strength of the fiber-reinforced composite material is low. Therefore, a sizing agent for improving the affinity between the thermoplastic resin and the fibers on the fiber surface.
- a technique for treating a sizing agent has been proposed (Patent Documents 2 to 4).
- the reinforcing fiber is cut into about 10 mm or less, mixed with thermoplastic resin pellets as short fibers, extruded using an extruder, and molded in a mold.
- the method is generally used.
- the reinforcing fibers are oriented shorter and randomly in the extruder, so that the strength and elastic modulus of the fibers cannot be efficiently utilized in the fiber-reinforced composite material.
- the amount of voids inside the fiber-reinforced composite material is one of the factors that affect the performance of the fiber-reinforced composite material other than the affinity between the matrix resin and the fiber. Since the physical properties such as tensile strength can be enhanced as the amount of voids decreases, it is desirable to reduce the amount of voids.
- the form of the reinforcing fiber used in the fiber-reinforced composite material is a yarn bundle formed by bundling thousands to tens of thousands of single yarns having a diameter of about 5 to 10 ⁇ m.
- thermoplastic resin since the melt viscosity is higher than the viscosity of the thermosetting resin before curing, it is difficult to impregnate the resin into the gaps between single yarns or yarn bundles, especially as a reinforced fiber. It was difficult to produce a void-free fiber-reinforced composite material when using a woven fabric or a non-woven fabric-like base material of continuous fiber bundles.
- Patent Document 1 is a urethane having a hydroxyl group obtained from an epoxy resin having a viscosity at 50° C. of more than 1,000 poise and not more than 20,000 poise, a polyol having an oxyalkylene unit and a polyisocyanate. It is an invention relating to forming a sizing agent from a compound and treating the carbon fiber with the sizing agent, and discloses a carbon fiber in which the amount of the sizing agent attached is 0.1 to 10% by weight in terms of solid content. ..
- Patent Documents 2, 3 and 4 are techniques for improving the affinity between the thermoplastic resin as the matrix resin and the fiber by adding the modified polyolefin as the sizing agent to the continuous fiber bundle.
- the amount of the sizing agent applied is 1 to 10% by mass with respect to the fiber, and the amount is not such that the gap between the single yarns can be completely filled and filled.
- the modified polyolefin is thermally cured by the drying treatment, it cannot be applied to a fiber base material for a continuous fiber reinforced composite material using a thermoplastic resin as a matrix.
- thermoplastic resins such as ease of molding over thermosetting resins
- fiber-reinforced composite materials using thermoplastic resins as matrix resins as a means for reducing the weight of automobiles and the like. ing.
- the present disclosure aims to prevent the occurrence of voids and enhance mechanical properties such as strength and elastic modulus in a fiber-reinforced composite material in which a thermoplastic resin is used as a matrix resin and molded using reinforcing fibers.
- the purpose is to improve the fixing force between the reinforcing fiber and the matrix resin of the thermoplastic resin and increase the strength of the fiber-reinforced composite material without using a sizing agent or a sizing agent.
- the present disclosure as a means for solving the above problems is constituted by filling a space between fibers of a fiber base material with a thermoplastic polyurethane, and an application amount of the thermoplastic polyurethane to the fiber base material is a solid.
- the resin-filled fiber base material may be 25 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the fiber base material in terms of minutes.
- the amount of the thermoplastic polyurethane applied to the fiber base material is 25 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content. It may be a characteristic resin-filled fiber base material.
- a cross-linking agent may be added to the thermoplastic polyurethane, which may be a resin-filled fiber base material.
- the amount of the crosslinking agent added is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material. It may be a fiber base material.
- the cross-linking agent may be at least one of an oxazoline group-containing compound and a carbodiimide group-containing compound, and may be a resin-filled fiber base material.
- the fiber base material has a sheet shape or a yarn bundle shape, and the resin-filled fiber base material has a sheet shape or a string shape. Good.
- the diameter of the thermoplastic polyurethane particles may be 0.01 ⁇ m or more and 0.2 ⁇ m or less, and the resin-filled fiber base material may be used.
- a fiber-reinforced composite material may be formed by laminating the above resin-filled fiber base material.
- a fiber-reinforced composite material molded article characterized by being molded from the above fiber-reinforced composite material may be used.
- thermoplastic polyurethane particles are dispersed in an aqueous medium
- thermoplastic polyurethane particles are dispersed in an aqueous medium
- the aqueous medium is removed by a drying treatment to form a space between the fibers of the fiber substrate.
- a method for producing a resin-filled fiber base material comprising: filling a thermoplastic polyurethane, and imparting the thermoplastic polyurethane to 25 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the fiber base material and molding. May be.
- a method for producing a resin-filled fiber base material may be characterized in that a crosslinking agent is added to the thermoplastic polyurethane.
- the addition amount of the crosslinking agent is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material.
- a method for producing a resin-filled fiber base material may be used.
- the fiber base material is a sheet shape or a yarn bundle shape
- the resin-filled fiber base material is a sheet shape or a string shape.
- a method of manufacturing the base material may be used.
- the resin-filled fiber base material formed by the method for producing a resin-filled fiber base material described above is laminated, pressed and heated, and integrally formed. Good.
- the fiber-reinforced composite material formed by the above-described method for producing a fiber-reinforced composite material is singly laminated or aligned, heated under pressure and simultaneously formed into a predetermined shape, It may be a method of manufacturing a molded product.
- the space between the fibers of the fiber base material is configured to be filled with the thermoplastic polyurethane, it becomes possible to fill the synthetic resin between the fibers without a gap, and Prevents the occurrence of voids in the fiber-reinforced composite material that uses the thermoplastic resin as a matrix resin for molding, and strengthens the fixation between the matrix resin and the fiber base material, and improves the mechanical properties such as strength and rigidity of the fiber-reinforced composite material. It has become possible to raise it.
- thermoplastic polyurethane since a cross-linking agent is added to the thermoplastic polyurethane, it is possible to firmly hold the synthetic resin filled between the fibers, so that the thermoplastic resin molded using the reinforcing fibers is used as the matrix resin and is reinforced with fibers. Voids can be further prevented in the composite material, the matrix resin and the fiber base material are more firmly fixed, and the mechanical properties such as strength and rigidity of the fiber reinforced composite material can be further enhanced.
- thermoplastic polyurethane filled in the spaces between the fibers of the fiber base material and the thermoplastic polyurethane of the matrix resin laminated on the outer surface of the fiber base material firmly adhere to each other, a sizing agent or a sizing agent is used. Even without it, the fixing force between the reinforcing fiber and the matrix resin of the thermoplastic resin can be improved, and the strength of the fiber-reinforced composite material can be increased.
- this fiber-reinforced composite material uses a thermoplastic resin as a matrix resin, it becomes easy to reheat and re-mold it into a fiber-reinforced composite material having a desired shape.
- thermoplastic resin does not involve a chemical reaction
- the resin can be impregnated between the fibers in a short time, so that the molding cycle of the fiber-reinforced composite material can be shortened and the productivity can be reduced to reduce the cost. ..
- the resin-filled fiber substrate of the present disclosure is configured by filling the spaces between the fibers of the fiber substrate with thermoplastic polyurethane, and the amount of the thermoplastic polyurethane applied to the fiber substrate is 100 parts by mass of the fiber substrate. It is a resin-filled fiber base material of 25 parts by mass or more and 100 parts by mass or less.
- between the fibers means between the single yarns and between the yarn bundles in which the single yarns are bundled.
- the fiber-reinforced composite material of the present disclosure is a fiber-reinforced composite material formed by laminating the resin-filled fiber base material of the present disclosure.
- the fiber-reinforced composite material molded product of the present disclosure is a molded product molded from one or more fiber-reinforced composite materials of the present disclosure into a predetermined shape.
- the fiber base material is a skeleton portion of a fiber reinforced composite material formed by using fibers for reinforcing synthetic resin, and the fibers and the fiber base material are for reinforcing a matrix resin composed of a thermoplastic resin. ..
- the shape of the fiber base material is not particularly limited, but may be a sheet shape or a yarn bundle shape.
- the form of the sheet-shaped fibrous base material is not limited to this, but may be a knitted product obtained by knitting a single yarn or a bundle of plural single yarns in a bundle, a single yarn or a woven fabric of the yarn bundle, and a single yarn. Examples thereof include non-woven bonded or entangled non-woven fabrics, single yarns or yarn bundles aligned in one direction, interdigital products, paper-like products, and the like.
- the form of the fiber base material in the form of a yarn bundle is not limited to this, but a plurality of single yarns are knitted, or a yarn bundle formed into a bundle without knitting, a plurality of yarn bundles are knitted, or knitted. For example, a bundled product may be used.
- the fiber base material In the case of a knitted fabric, a woven fabric, a fiber bundle in a state of being aligned in one direction, or a fiber base material in one direction, it is preferable to use continuous fibers from one end to the other end of the fiber base material. It is preferable to use a fiber having a continuous length or more from one end to the other end. That is, it is preferable to use continuous long fibers in the portion for reinforcing the fiber-reinforced composite material. With such a structure, the strength of the fiber-reinforced composite material can be increased. Further, the thickness of the fiber base material is not particularly limited as long as it is equal to or less than the fiber reinforced composite material.
- the fiber as the reinforcing material of the thermoplastic resin is not particularly limited, but carbon fiber, aramid fiber, glass fiber, vinylon fiber, PBO fiber, etc. can be used. These fibers may be used alone or in combination of two or more.
- the diameter of the fiber is not particularly limited, a fiber having a diameter of 5 to 10 ⁇ m can be used.
- the yarn bundle in which the single yarns are bundled is not particularly limited, but a bundle of about 1,000 to 50,000 single yarns can be used.
- thermoplastic polyurethane The space between the fibers of the fiber base material is filled with thermoplastic polyurethane, and the outer surface of the fiber base material is laminated with thermoplastic polyurethane to form a resin-filled fiber base material.
- thermoplastic polyurethane is for filling the spaces between the fibers of the fiber base material to prevent generation of voids in the fiber reinforced composite material, and for increasing the stress against displacement of the fiber reinforced composite material. Is.
- the reason why the thermoplastic polyurethane is used as the thermoplastic resin that fills the spaces between the fibers of the fiber base material is that it has good film-forming properties that can connect the single yarns in a dry state.
- the thermoplastic resin with which the space between the fibers is filled is preferably as high in heat resistance as possible. Furthermore, since the fiber-reinforced composite material is laminated in one layer or a plurality of layers to be reformed into another shape, it is preferable that it has thermoplasticity even after the thermoplastic resin is dried or cured.
- thermoplastic polyurethane is used as the thermoplastic resin. Is preferable since it is easy to remold a flat fiber-shaped fiber-reinforced composite material into a product having a curved surface or the like, which has sufficient thermoplasticity even after being dried or cured.
- the form of filling the space between the fibers of the fiber base material with the thermoplastic polyurethane is not particularly limited, but in order to surely and uniformly fill the space between the fibers, the particles of the thermoplastic polyurethane are mixed with an aqueous medium. It is preferably in the form of an aqueous resin dispersion dispersed therein.
- the average particle size of the thermoplastic polyurethane particles is not particularly limited, but may be set to about 0.01 to 1 ⁇ m in order to uniformly fill the spaces between the fibers, but the space between the fibers of the fiber base material may be shortened in a short time. In order to fill and evenly fill, 1/10 or less of the fiber diameter is preferable. Specifically, since the diameter of the fiber is usually 5 to 10 ⁇ m, it is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less, still more preferably 0.03 ⁇ m or less.
- the average particle diameter of the thermoplastic polyurethane particles is preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less.
- the average particle diameter of the thermoplastic polyurethane particles means the 50% particle diameter (D50) measured by the laser diffraction light scattering method.
- the concentration of non-volatile components in the water-based resin dispersion in which thermoplastic polyurethane particles are dispersed in water is not particularly limited, but the thermoplastic resin easily spreads into the space between single yarns and completely fills the space between single yarns. Therefore, the viscosity is preferably low, while the concentration is preferably high. Therefore, the mass ratio of the particles of the thermoplastic resin in the aqueous resin dispersion is preferably 20 to 40% by mass, more preferably 25 to 36% by mass. % Is preferred.
- the polyol is not particularly limited, and a polyether type, a polyester type, a polycarbonate type, or the like is used.
- the polyether type is used. preferable.
- the amount of the thermoplastic polyurethane applied to the fiber base material is preferably an amount capable of filling the spaces between the fibers of the fiber base material more, and more preferably, the amount more than completely filling the spaces between the fibers of the fiber base material. preferable.
- thermoplastic polyurethane can completely fill the space between the fibers of the fiber base material by giving a volume of 10.2% to the volume of the fiber base material, that is, the fiber base material. Therefore, the amount of the thermoplastic polyurethane filled in the space between the fibers applied to the fiber base material is 10% or more in volume conversion with respect to the volume of the fiber base material, depending on the material of the fiber base material. You can
- the amount of thermoplastic polyurethane applied to the fiber base material is a synthetic resin having a volume not less than that required to fill the space between the single yarns. Is preferably applied to the fiber base material.
- the applied amount of the thermoplastic polyurethane to the fiber base material is more preferably 11% to 30%, and even more preferably 11% to 20%, based on the volume of the fiber base material.
- the method of filling the space between the fibers of the thermoplastic polyurethane is not particularly limited, using a water-based resin dispersion prepared by dispersing particles of the thermoplastic polyurethane in an aqueous medium, a known spray method, It is possible to use a method such as a dipping method or a roller impregnation method that can uniformly apply a required amount.
- a drying treatment is performed to remove components other than the aqueous medium and the thermoplastic polyurethane in the aqueous resin dispersion.
- a drying method a method of contacting with hot air or a drying roller, a commonly used drying method such as infrared heating, sunlight, or other heating can be adopted.
- thermoplastic polyurethane By impregnating the fiber base material with the water-based resin dispersion in which the particles of the thermoplastic polyurethane are dispersed in the water-based medium, the thermoplastic polyurethane easily spreads between the single yarns and between the yarn bundles, and between the fibers.
- the space can be completely filled with the thermoplastic polyurethane, the generation of voids can be prevented, and a fiber-reinforced composite material with higher mechanical properties can be realized.
- thermoplastic polyurethane is a base material of the fiber reinforced composite material
- thermoplastic resin used as the matrix resin is the same thermoplastic polyurethane as the thermoplastic resin filled in the spaces between the fibers.
- the thermoplastic polyurethane as the matrix resin is laminated on the entire outer surface of the fiber base material, but may be laminated on only a part of the outer surface of the fiber base material.
- thermoplastic polyurethane laminated on the outer surface of the fiber base material is, for example, when the fiber base material is in the form of a sheet, both the upper and lower surfaces of the sheet-like fiber base material and the entire surface or a part of one of the upper and lower surfaces. It is also possible to have a structure in which only one layer is laminated. Then, the matrix resin has a three-layer structure in which it is arranged on both upper and lower surfaces of one resin-filled fiber base material, and a two-layer structure in which one of the upper surface and the lower surface of one resin-filled fiber base material is arranged. And so on. When the fiber base material is in the form of a yarn bundle, the fiber base material in the form of a yarn bundle may be laminated on the entire side surface or only a part thereof.
- thermoplastic polyurethane is used as the matrix resin because it has good film-forming properties that can connect yarn bundles or fiber substrates in a dry state. Further, the higher the heat resistance of the matrix resin is, the more preferable, and the thermoplastic polyurethane having excellent heat resistance is preferable. Furthermore, since the fiber reinforced composite material is laminated in one layer or a plurality of layers to be reformed into another shape, it is preferable that it has thermoplasticity, and has sufficient thermoplasticity even after being dried or cured to have a flat plate shape or the like. This is because it is easy to remold the fiber-reinforced composite material of (1) into a product having a curved surface, which is preferable.
- an aqueous resin in which particles of the thermoplastic polyurethane are dispersed in an aqueous medium is used. It is preferably in the form of a dispersion.
- the diameter of the particles of thermoplastic polyurethane as the matrix resin, the concentration of non-volatile components of the water-based resin dispersion prepared by dispersing the particles of thermoplastic polyurethane in water, and the polyol are not particularly limited, but the spaces between the fibers are filled. It can be the same as the thermoplastic polyurethane.
- the method for laminating thermoplastic polyurethane on the fiber base material as a matrix resin is not particularly limited, and filling of spaces between fibers of thermoplastic polyurethane and It is preferable to carry out at the same time. By carrying out at the same time, the production of the fiber-reinforced composite material can be facilitated. When it is carried out simultaneously, it can be carried out by a method of filling the space between the fibers of the fiber base material with the above-mentioned thermoplastic polyurethane.
- the step of laminating the thermoplastic polyurethane as a matrix resin on the fiber base material is performed separately from the step of filling the space between the fibers of the fiber base material of the thermoplastic polyurethane, and the thermoplastic polyurethane is laminated on the fiber base material independently.
- a film-shaped thermoplastic polyurethane serving as a matrix resin is laminated on a fiber substrate filled with thermoplastic polyurethane, and the matrix resin is heated under pressure to melt the matrix resin, It can be manufactured by bonding a fiber base material and a matrix resin.
- the fiber-reinforced composite material is formed by laminating a plurality of fiber base materials in which spaces between the fibers are filled with thermoplastic polyurethane and a matrix resin, in other words, by laminating a resin-filled fiber base material to form a fiber base material. Is sandwiched between or covered with a matrix resin.
- the form of lamination is not particularly limited, and when the resin-filled fiber base material is in the form of a sheet, a resin-filled fiber base material having a three-layer structure in which a matrix resin is arranged on both upper and lower surfaces of one fiber base material is laminated. It is possible to adopt a structured structure, a structure in which a plurality of fiber base materials and a matrix resin are alternately laminated, or the like.
- a matrix resin is arranged on the outer surface of one fiber base material, and a two-layer structure in which the fiber base material and the matrix resin are laminated, and one fiber base material
- One or more resin-filled fiber base materials may be arranged on the outer side surface of the material on the outer side of the matrix resin, and the matrix resin may be arranged on the outer side surface of the resin-filled fiber base material to form a laminated structure.
- laminating the fiber base material and the matrix resin also includes covering the fiber base material with the matrix resin, and laminating the string-shaped resin-filled fiber base material includes two or more string-shaped resins. Bundling the filled fiber substrates is also included.
- the amount of thermoplastic polyurethane applied to the fiber base material is preferably 25 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content.
- the amount of the thermoplastic polyurethane applied to the fiber base material is preferably 25 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content.
- the amount of the thermoplastic polyurethane applied to the fiber base material is more preferably 40 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content.
- the content of the fiber in the fiber-reinforced composite material and the content of the thermoplastic polyurethane are not particularly limited, and may be selected depending on the type of fiber, the form of the fiber base material, etc. in order to produce a predetermined fiber-reinforced composite material. I can.
- a crosslinking agent may be added to the thermoplastic polyurethane.
- the cross-linking agent cross-links the thermoplastic polyurethane molecules filled in the spaces between the fibers, the thermoplastic polyurethane molecules as the matrix, and the thermoplastic polyurethane molecules filled in the spaces between the fibers and the thermoplastic polyurethane molecules as the matrix.
- the purpose of this is to prevent the thermoplastic polyurethane from flowing out from the space between the fibers and to securely fix the matrix resin to the fiber base material. Therefore, the cross-linking agent is for increasing the stress against the displacement of the fiber-reinforced composite material.
- a cross-linking agent having a self-crosslinking property and a compound having a plurality of functional groups that react with a carboxy group in the molecule can be used.
- Specific examples include an oxazoline group-containing compound, a carbodiimide group-containing compound, an isocyanate group-containing compound, an epoxy group-containing compound, a melamine compound, a urea compound, a zirconium salt compound, a silane coupling agent, and the like. You may mix and use thing.
- oxazoline group-containing compounds, carbodiimide group-containing compounds, isocyanate group-containing compounds and epoxy group-containing compounds are preferable, and oxazoline group-containing compounds and carbodiimide group-containing compounds are more preferable. That is, it is preferable that the crosslinking agent contains at least one of an oxazoline group-containing compound and a carbodiimide group-containing compound.
- the oxazoline group-containing compound is not particularly limited as long as it has at least two or more oxazoline groups in the molecule.
- 2,2'-bis(2-oxazoline), 2,2'-ethylene-bis(4,4'-dimethyl-2-oxazoline), 2,2'-p-phenylene-bis(2-oxazoline) examples thereof include compounds having an oxazoline group such as bis(2-oxazolinylcyclohexane)sulfide, and polymers containing an oxazoline group. These compounds may be used alone or in combination of two or more. Among these, a compound having an oxazoline group is preferable from the viewpoint of easy handling.
- the carbodiimide group-containing compound is not particularly limited as long as it has at least two carbodiimide groups in the molecule.
- Compounds having a carbodiimide group such as p-phenylene-bis(2,6-xylylcarbodiimide), tetramethylene-bis(t-butylcarbodiimide), cyclohexane-1,4-bis(methylene-t-butylcarbodiimide)
- polycarbodiimide which is a polymer having a carbodiimide group. These may be used alone or in combination of two or more. Among these, polycarbodiimide is preferable because it is easy to handle.
- Examples of commercially available products of polycarbodiimide include carbodilite series manufactured by Nisshinbo. Specific products include, for example, water-soluble type “SV-02”, “V-02”, “V-02-L2", “V-04”, emulsion type “E-01”, “E”. -02”, organic solution type “V-01”, “V-03”, “V-07”, “V09”, solventless type “V-05” and the like.
- the isocyanate group-containing compound is not particularly limited as long as it has at least two isocyanate groups in the molecule.
- the modified product is obtained by modifying the diisocyanate of the polyfunctional isocyanate compound by a known method, for example, allophanate group, buret group, carbodiimide group, uretonimine group, uretdione group, Examples thereof include polyfunctional isocyanate compounds having an isocyanurate group and the like, and further adduct type polyfunctional isocyanate compounds modified with a polyfunctional alcohol such as trimethylolpropane.
- the isocyanate group-containing compound may contain monoisocyanate in the range of 20% by mass or less. In addition, these compounds may be used alone or in combination of two or more.
- the isocyanate group-containing compound can be usually obtained by reacting a polyfunctional isocyanate compound with a monovalent or polyvalent nonionic polyalkylene ether alcohol.
- a polyfunctional isocyanate compound examples include Bayhydur 3100, Bayhydur VPLS2150/1, SBU isocyanate L801, Desmodur N3400, Desmodur VPLS2102, and Desmodur VPLS2025 manufactured by Sumitomo Bayer Urethane Co., Ltd.
- the epoxy group-containing compound is not particularly limited as long as it has at least two epoxy groups in the molecule.
- bisphenol A diglycidyl ether bisphenol A ⁇ -dimethylglycidyl ether, bisphenol F diglycidyl ether, tetrahydroxyphenylmethane tetraglycidyl ether, resorcinol diglycidyl ether, brominated bisphenol A diglycidyl ether, chlorinated bisphenol A diglycidyl ether, Hydrogenated bisphenol A diglycidyl ether, bisphenol A alkylene oxide adduct diglycidyl ether, novolac glycidyl ether, polyalkylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol diglycidyl ether, glycidyl ether type such as epoxy urethane resin, Glycidyl ether/ester types such as p
- Examples of commercially available epoxy compounds include water-based ones suitable for the present disclosure, for example, Denacol series (EM-150, EM-101, etc.) manufactured by Nagase Chemtex, and Adeka Resin series manufactured by Adeka. ..
- the cross-linking agent When the cross-linking agent is added to the thermoplastic polyurethane filled in the spaces between the fibers of the fiber base material and/or the thermoplastic polyurethane as the matrix resin, the form of the spaces between the fibers and the thermoplastic polyurethane molecules are In order to reliably and uniformly fill the space, it is preferable that the resin is dispersed in an aqueous solution or an organic solution.
- the composition containing the thermoplastic polyurethane and the cross-linking agent may be filled in the space between the fibers of the fiber base material and laminated on the outer surface of the fiber base material.
- thermoplastic polyurethane when the thermoplastic polyurethane is in the form of an aqueous resin dispersion, a fiber base material as a composition in which a crosslinking agent is dispersed in the aqueous medium by the method as described above. It is also possible to fill the space between the fibers with the thermoplastic polyurethane and the crosslinking agent, and laminate the thermoplastic polyurethane and the crosslinking agent on the outer surface of the fiber base material.
- the addition amount of the cross-linking agent is not limited to this, because the processability and recyclability of the resin laminated base material and mechanical properties such as strength and elastic modulus are compatible with each other, but the solid content relative to 100 parts by mass of the fiber base material. It is preferably 0.5 to 10 parts by mass in terms of conversion.
- the addition amount of the crosslinking agent is more preferably 1 part by mass or more and 8 parts by mass or less, and further preferably 1.5 parts by mass or more and 5 parts by mass or less, in terms of solid content, based on 100 parts by mass of the fiber base material.
- the addition amount of the crosslinking agent is not limited to this, but is preferably 1 part by mass to 15 parts by mass in terms of solid content with respect to 100 parts by mass of the thermoplastic polyurethane.
- the addition amount of the cross-linking agent is more preferably 2 parts by mass or more and 12 parts by mass or less, and further preferably 3 parts by mass or more and 8 parts by mass or less in terms of solid content with respect to 100 parts by mass of the thermoplastic polyurethane.
- the fiber-reinforced composite material molded product is a molded product molded into a predetermined shape by using one or more fiber-reinforced composite materials of the present disclosure, and a product manufactured using the fiber-reinforced composite material or a part thereof. It will be.
- the resin-filled fiber base material and the fiber-reinforced composite material will be described.
- the case where a crosslinking agent is added will be described, but when the crosslinking agent is not added, the step of adding the crosslinking agent in the following method may be omitted.
- a water-based resin dispersion as a composition in which particles of a thermoplastic polyurethane and a cross-linking agent are dispersed in an aqueous medium
- the fiber base material and the water-based resin dispersion are contacted by a known spray method or roller impregnation method.
- the spaces between the fibers of the fiber base material are filled with particles of the thermoplastic polyurethane, and the particles of the thermoplastic polyurethane are adhered to the outer surface of the fiber base material to be laminated, and at the same time, a cross-linking agent is applied between the fibers of the fiber base material. And is added between the thermoplastic polyurethane molecules attached to the outer space of the fiber and the outer surface of the fiber.
- a drying treatment such as heat drying is performed to form a resin-filled fiber base material.
- aqueous resin dispersion prepared by dispersing thermoplastic polyurethane particles in an aqueous medium the spaces between the fibers of the fiber base material are filled with the thermoplastic polyurethane particles, and heat is applied to the outer surface of the fiber base material.
- a cross-linking agent dispersed in an aqueous solution or an organic solution is used to contact the particles of the thermoplastic polyurethane adhered to the fiber substrate by a known spray method or roller impregnation method.
- the cross-linking agent may be attached in the spaces between the fibers of the fiber base material and between the thermoplastic polyurethane molecules attached to the outer surfaces of the fibers.
- thermoplastic polyurethane are applied to the spaces between the fibers of the fiber base material and the outer surface, and the cross-linking agent is added to the fiber base material. It may be added in the spaces between the fibers and between the thermoplastic polyurethane molecules attached to the outer surfaces of the fibers.
- a space between the fibers is filled with thermoplastic polyurethane and a crosslinking agent, and a matrix resin is laminated on both upper and lower surfaces, that is, one resin-filled fiber.
- a plurality of sheet-shaped resin-filled fiber base materials having a structure in which the matrix resin is arranged on the upper and lower surfaces of the base material are laminated, and the matrix resin is heated under pressure to melt the matrix resin. Then, the matrix resins of the resin-filled fiber base material are adhered to each other to produce a sheet-shaped fiber-reinforced composite material.
- the resin-filled fiber base material is made into a plurality of layers with the surface on which the matrix resin is laminated and the surface not laminated facing each other. Layering, heating the matrix resin under pressure, melting the matrix resin, and adhering the fiber base material of one resin-filled fiber base material and the matrix resin of the other resin-filled fiber base material facing each other To manufacture.
- a resin-filled fiber base material is formed by using a yarn bundle-shaped fiber bundle as the fiber base material.
- a fiber bundle-like fiber base material in which a space between fibers is filled with thermoplastic polyurethane and a cross-linking agent and a matrix resin is laminated on the surface of the fiber base material, that is, a matrix is provided on the outer surface of one resin-filled fiber base material.
- a two-layer structure string-shaped resin-filled fiber base material in which a resin is arranged is manufactured, and a plurality of the two-layer structure resin-filled fiber base materials are bundled and laminated, and the matrix resin is heated under pressure. , Melt the matrix resin. Then, the matrix resins of the resin-filled fiber base material are adhered to each other to manufacture a string-shaped fiber-reinforced composite material.
- laminating the fiber base material and the matrix resin also includes covering the fiber base material with the matrix resin.
- a plurality of thread-bundle-shaped resin-filled fiber base materials may be bundled, heated under pressure to melt the matrix resin, and the matrix resins are adhered to each other to produce the fiber-reinforced composite material.
- the matrix resin may be attached to the fiber base material in a separate step, instead of being attached to the fiber base material at the same time as the thermoplastic polyurethane filling the space between the fibers.
- a film-like thermoplastic polyurethane is used, a fiber base material in which spaces between fibers are filled with the thermoplastic polyurethane and a film-like matrix resin are laminated, and heated under pressure to melt the matrix resin,
- the resin-filled fiber base material or the fiber-reinforced composite material may be manufactured by adhering the fiber base material filled with the thermoplastic polyurethane with each other.
- the cross-linking agent can be added to both the thermoplastic polyurethane filled in the spaces between the fibers and the thermoplastic polyurethane as the matrix resin, but can be added to only one of them. ..
- the matrix resin may be installed on the entire surface of the fiber substrate filled with thermoplastic polyurethane, but it may be installed on only one of the upper and lower surfaces of the sheet-shaped fiber substrate, or
- the yarn bundle may be manufactured without being installed on both end surfaces in the length direction and the matrix resin may be installed only on a part of the surface of the resin-filled fiber base material.
- the resin-filled fiber base material is obtained by injecting molten matrix resin into a mold or the like, and applying the matrix resin to the fiber base material filled with thermoplastic polyurethane in the space between the fibers, which is placed in the mold.
- the fiber base material and the matrix resin may be adhered and solidified and laminated to manufacture.
- a plurality of fiber-reinforced composite materials molded as described above may be laminated and heated under pressure to melt and bond the matrix resins to each other. ..
- the fiber-reinforced composite material alone is put into a mold, heated under pressure, and simultaneously molded into a predetermined shape to manufacture a fiber-reinforced composite material molded product. Further, a plurality of fiber-reinforced composite materials are laminated, bundled or aligned, put in a mold, heated under pressure, and simultaneously molded into a predetermined shape to manufacture a fiber-reinforced composite material molded product.
- a unidirectional non-crimp fabric (made by Sakai Sangyo Co., Ltd.) having a width of 250 mm and using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. was used.
- Each of these 250 mm ⁇ 125 mm fibrous base materials has a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
- thermoplastic polyurethane (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 ⁇ m , Solid content 35 wt%) in an amount of 25 parts by mass or more and 70 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material, and after drying in the sun, dried in a vacuum dryer at 100° C. for 1 hour.
- the dry film of Superflex 130 has a glass transition temperature of 101°C, a softening temperature of 174°C, and a heat melting temperature of 216°C.
- a unidirectional non-crimp fabric made by Sakai Sangyo Co., Ltd. having a width of 250 mm and using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. was used.
- Each of these 250 mm ⁇ 125 mm fibrous base materials has a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as a thermoplastic polyurethane (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 ⁇ m).
- the fiber base material a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm ⁇ 125 mm was used.
- a thermoplastic polyurethane a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (Superflex 210 (SF-210), non-yellowing, ester-based, average particle size 0.04 ⁇ m, solid content 35 wt%) was used as a fiber base material.
- the fiber base material used in Examples 1 and 2 was used, a frame mold was placed in a flat plate mold at room temperature, and a silicone mold release agent was applied to the inside of the frame mold.
- a polypropylene (PP) film having a basis weight of 136 g/m 2 is placed on the upper and lower surfaces, melted at 200° C. for 5 minutes, and pressed at a pressure of about 7 MPa while maintaining 200° C. to integrate to obtain a fiber-reinforced composite material. (Comparative example 1).
- the fiber base material a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm ⁇ 125 mm was used.
- a thermoplastic polyurethane a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (Superflex 130 (SF-130), non-yellowing, ether-based, average particle diameter 0.03 ⁇ m, solid content 35 wt%) was used as a fiber base material.
- the fiber base material a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm ⁇ 125 mm was used.
- a thermoplastic polyurethane a water-based polyurethane resin (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 ⁇ m, solid content 35 wt%) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was used as a fiber base material.
- Example 1 The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.
- the numerical values of water-based polyurethane resin SF-130 (Superflex 130), water-based polyurethane resin SF-210 (Superflex 210), and PP (polypropylene) in Table 1 are parts by mass with respect to 100 parts by mass of the fiber base material. ..
- the physical adhesion amount and the solid content conversion adhesion amount are described.
- Table 2 shows the results of Examples 5 to 10.
- the numerical values of the water-based polyurethane resin SF-130 (Superflex 130), the carbodiimide-based cross-linking agent and the oxazolidine-based cross-linking agent in Table 2 are parts by mass based on 100 parts by mass of the fiber base material.
- the water-based polyurethane resin SF-130, the carbodiimide-based cross-linking agent, and the oxazolidine-based cross-linking agent are described in terms of the physical adhesion amount and the solid content conversion adhesion amount, respectively.
- thermoplastic polyurethane is applied to 25 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the fiber base material, and the space between the fibers of the fiber base material is filled with the thermoplastic polyurethane.
- the bending strength is increased by laminating the thermoplastic polyurethane as the matrix resin on the outer surface of the fiber base material.
- the bending strength is further increased by adding the crosslinking agent to the thermoplastic polyurethane in the range of 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content with respect to 100 parts by mass of the fiber base material. ..
- a fiber-based material is impregnated with an aqueous resin dispersion in which thermoplastic polyurethane particles are dispersed in an aqueous medium to fill the spaces between the fibers of the fiber-based material with the thermoplastic polyurethane, and at the same time, the thermoplastic polyurethane matrix resin is used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
The purpose of the present invention is to prevent the occurrence of voids and to improve fixation force between reinforcing fibers and a matrix resin that is composed of a thermoplastic resin, thereby enhancing mechanical characteristics such as strength and elastic modulus with respect to a fiber reinforced composite material which is molded with use of a fiber base material, while using a thermoplastic resin as the matrix resin. A resin filled fiber base material, which is obtained by filling the spaces among fibers of a fiber base material with a thermoplastic polyurethane, and which is configured such that the amount of the thermoplastic polyurethane applied to the fiber base material is from 25 parts by mass to 100 parts by mass (inclusive) relative to 100 parts by mass of the fiber base material in terms of solid content.
Description
本出願は、2019年2月15日に出願された日本出願番号2019-025614号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese application No. 2019-025614 filed on February 15, 2019, the content of which is incorporated herein by reference.
本開示は、樹脂充填繊維基材、繊維強化複合材料及びその製造方法に関する。
The present disclosure relates to a resin-filled fiber base material, a fiber-reinforced composite material, and a manufacturing method thereof.
従来から合成樹脂に炭素繊維やガラス繊維を添加して合成樹脂製品の引張強度等の物性を高める繊維強化複合材料が使用されている。そして、繊維強化複合材料のマトリックス樹脂としてはエポキシ樹脂等の熱硬化性樹脂が主に使用されていた(特許文献1参照)。
Conventionally, fiber-reinforced composite materials have been used that add physical properties such as tensile strength of synthetic resin products by adding carbon fibers and glass fibers to synthetic resins. A thermosetting resin such as an epoxy resin has been mainly used as the matrix resin of the fiber-reinforced composite material (see Patent Document 1).
しかし、マトリックス樹脂として熱硬化性樹脂を使用した場合、繊維強化複合材料の成形時に熱硬化性樹脂の化学反応(硬化反応)を伴うので、硬化に時間がかかり、成形に要する時間が長くなり、生産性が低いという問題点があった。又、熱硬化性樹脂をマトリックス樹脂として使用した繊維強化複合材料の中間生産品をプレス等により形状変更する再加工が容易ではないという問題点があった。
However, when a thermosetting resin is used as the matrix resin, since a chemical reaction (curing reaction) of the thermosetting resin is involved during the molding of the fiber-reinforced composite material, it takes a long time to cure and the time required for molding becomes long, There was a problem that productivity was low. Further, there is a problem that it is not easy to reprocess the intermediate product of the fiber-reinforced composite material using the thermosetting resin as the matrix resin by changing the shape by pressing or the like.
一方、熱可塑性樹脂は熱硬化性樹脂と異なり、繊維強化複合材料の成形時に化学反応(硬化反応)を伴わないので、成形に要する時間を短縮することが出来ること、又、成形中間加工品を積層して加圧加熱することにより任意の形状に加工できること、更に、溶融することにより容易に別の形状の成形品に加工できるので、繊維強化複合材料のマトリックス樹脂として熱可塑性樹脂が使用され始めている。
On the other hand, unlike a thermosetting resin, a thermoplastic resin does not involve a chemical reaction (curing reaction) at the time of molding a fiber-reinforced composite material, so that the time required for molding can be shortened. Since it can be processed into an arbitrary shape by laminating and heating under pressure, and it can be easily processed into a molded article of another shape by melting, thermoplastic resin has begun to be used as the matrix resin of the fiber-reinforced composite material. There is.
又、熱可塑性樹脂をマトリックス樹脂として使用した場合に繊維との親和性が低く、繊維強化複合材料の強度が低いということから、繊維表面に熱可塑性樹脂と繊維との親和性を向上させる集束剤、サイジング剤を処理する技術が提案されている(特許文献2~4)。
Further, when a thermoplastic resin is used as a matrix resin, the affinity for fibers is low, and the strength of the fiber-reinforced composite material is low. Therefore, a sizing agent for improving the affinity between the thermoplastic resin and the fibers on the fiber surface. A technique for treating a sizing agent has been proposed (Patent Documents 2 to 4).
従来、熱可塑性樹脂を用いた繊維強化複合材料の成形では、補強繊維を10mm以下程度に切断して、短繊維として、熱可塑性樹脂ペレットと混合してエクストルーダーを用いて押し出して金型で成形する方法が一般的である。しかし、このような材料・方法によると、補強繊維がエクストルーダー内でさらに短く且つランダムに配向するので、繊維の強度や弾性率を効率的に繊維強化複合材料に活用することは出来なかった。補強繊維の性能を有効に活用するためには、連続した長繊維を補強材として、連続繊維からなる基材に樹脂を付与して繊維強化複合材料を製造することが望ましい。
Conventionally, in molding a fiber-reinforced composite material using a thermoplastic resin, the reinforcing fiber is cut into about 10 mm or less, mixed with thermoplastic resin pellets as short fibers, extruded using an extruder, and molded in a mold. The method is generally used. However, according to such a material and method, the reinforcing fibers are oriented shorter and randomly in the extruder, so that the strength and elastic modulus of the fibers cannot be efficiently utilized in the fiber-reinforced composite material. In order to effectively utilize the performance of the reinforcing fiber, it is desirable to produce a fiber-reinforced composite material by using a continuous long fiber as a reinforcing material and adding a resin to a base material made of continuous fiber.
マトリックス樹脂と繊維との親和性以外に繊維強化複合材料の性能に影響するものの1つとして、繊維強化複合材料の内部の空隙(ボイド)の量が挙げられる。そして、ボイドの量が少ないほど引張強度等の物性を高めることが出来るので、ボイドの量を少なくすることが望ましい。しかし、繊維強化複合材料に使用される補強繊維の形態は、直径が5~10μm程度の単糸を数千本~数万本束ねて構成する糸束であるので、成形に使用される樹脂の粘度が高いと、糸束内の単糸間や糸束間の隙間に樹脂を侵入させて埋め込むことが困難であり、ボイドが多く形成されて、力学特性の優れた繊維強化複合材料を成形することが困難となる。
The amount of voids inside the fiber-reinforced composite material is one of the factors that affect the performance of the fiber-reinforced composite material other than the affinity between the matrix resin and the fiber. Since the physical properties such as tensile strength can be enhanced as the amount of voids decreases, it is desirable to reduce the amount of voids. However, the form of the reinforcing fiber used in the fiber-reinforced composite material is a yarn bundle formed by bundling thousands to tens of thousands of single yarns having a diameter of about 5 to 10 μm. When the viscosity is high, it is difficult to infiltrate and embed the resin in the spaces between the single yarns in the yarn bundle or between the yarn bundles, and many voids are formed to form a fiber-reinforced composite material with excellent mechanical properties. Becomes difficult.
そして、熱可塑性樹脂の場合、熱硬化性樹脂の硬化前の粘度と比較して溶融粘度が高いので、単糸間や糸束間の隙間への樹脂の含浸が困難であり、特に強化繊維として連続した長繊維を用いた、繊維束の織物や不織布状の基材を用いた場合、ボイドのない繊維強化複合材料を生産することが困難であった。
And, in the case of a thermoplastic resin, since the melt viscosity is higher than the viscosity of the thermosetting resin before curing, it is difficult to impregnate the resin into the gaps between single yarns or yarn bundles, especially as a reinforced fiber. It was difficult to produce a void-free fiber-reinforced composite material when using a woven fabric or a non-woven fabric-like base material of continuous fiber bundles.
尚、特許文献1に記載の発明は、50℃における粘度が1,000ポイズを超え、20,000ポイズ以下のエポキシ樹脂と、オキシアルキレン単位を有するポリオールとポリイソシアネートとから得られる水酸基を有するウレタン化合物とからサイジング剤を形成し、該サイジング剤で炭素繊維を処理することに関する発明であり、サイジング剤の付着量が固形分換算で0.1~10重量%である炭素繊維が開示されている。しかし、サイジング剤のこの程度の付着量では、連続繊維で構成する糸束の単糸間や糸束間の空隙を完全に埋め得る量ではなく、ボイドのない繊維強化複合材料を成形することが困難であった。
The invention described in Patent Document 1 is a urethane having a hydroxyl group obtained from an epoxy resin having a viscosity at 50° C. of more than 1,000 poise and not more than 20,000 poise, a polyol having an oxyalkylene unit and a polyisocyanate. It is an invention relating to forming a sizing agent from a compound and treating the carbon fiber with the sizing agent, and discloses a carbon fiber in which the amount of the sizing agent attached is 0.1 to 10% by weight in terms of solid content. .. However, with such an amount of the sizing agent attached, it is not an amount that can completely fill the voids between the single yarns of the yarn bundle composed of continuous fibers and between the yarn bundles, and it is possible to form a fiber-reinforced composite material without voids. It was difficult.
又、特許文献2、3及び4に記載の発明は、連続繊維束に変成ポリオレフィンを集束剤として付与し、マトリックス樹脂としての熱可塑性樹脂と繊維との親和性を向上させる技術である。
Further, the inventions described in Patent Documents 2, 3 and 4 are techniques for improving the affinity between the thermoplastic resin as the matrix resin and the fiber by adding the modified polyolefin as the sizing agent to the continuous fiber bundle.
そして、特許文献2~4に記載された技術は、集束剤の付与量が繊維に対して1~10質量%であり、単糸間の隙間を完全に埋めて充填することが出来る量ではなく、単糸同士を点接触で連結させるものにすぎず、ボイドのない繊維強化複合材料を成形することが困難であった。又、乾燥処理をすると変成ポリオレフィンが熱硬化するので、熱可塑性樹脂をマトリックスとした連続繊維強化複合材料用の繊維基材に適用することは出来なかった。
In addition, in the techniques described in Patent Documents 2 to 4, the amount of the sizing agent applied is 1 to 10% by mass with respect to the fiber, and the amount is not such that the gap between the single yarns can be completely filled and filled. However, it is only to connect single yarns by point contact, and it is difficult to form a fiber-reinforced composite material without voids. Further, since the modified polyolefin is thermally cured by the drying treatment, it cannot be applied to a fiber base material for a continuous fiber reinforced composite material using a thermoplastic resin as a matrix.
しかし、熱硬化性樹脂に比べ、成形容易等の熱可塑性樹脂の優位性から、熱可塑性樹脂をマトリックス樹脂として用いた繊維強化複合材料を自動車等の軽量化の手段として適用することが強く要望されている。
However, due to the superiority of thermoplastic resins such as ease of molding over thermosetting resins, there is a strong demand for application of fiber-reinforced composite materials using thermoplastic resins as matrix resins as a means for reducing the weight of automobiles and the like. ing.
そこで、本開示は、強化繊維を用いて成形する、熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材料においてボイドの発生を防止し、強度及び弾性率等の力学特性を高めることを目的とする。
Therefore, the present disclosure aims to prevent the occurrence of voids and enhance mechanical properties such as strength and elastic modulus in a fiber-reinforced composite material in which a thermoplastic resin is used as a matrix resin and molded using reinforcing fibers.
又、集束剤やサイジング剤等を使用しなくても、強化繊維と熱可塑性樹脂のマトリックス樹脂との固定力を向上させ、繊維強化複合材料の強度を高めることを目的とする。
Also, the purpose is to improve the fixing force between the reinforcing fiber and the matrix resin of the thermoplastic resin and increase the strength of the fiber-reinforced composite material without using a sizing agent or a sizing agent.
上記の課題を解決するための手段としての本開示は、繊維基材の繊維間の空間に熱可塑性ポリウレタンが充填されて構成され、前記熱可塑性ポリウレタンの前記繊維基材への付与量は、固形分換算で前記繊維基材100質量部に対し25質量部以上100質量部以下であることを特徴とする樹脂充填繊維基材であってもよい。
The present disclosure as a means for solving the above problems is constituted by filling a space between fibers of a fiber base material with a thermoplastic polyurethane, and an application amount of the thermoplastic polyurethane to the fiber base material is a solid. The resin-filled fiber base material may be 25 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the fiber base material in terms of minutes.
又、上記樹脂充填繊維基材において、前記熱可塑性ポリウレタンの前記繊維基材への付与量は、固形分換算で前記繊維基材100質量部に対し25質量部以上70質量部以下であることを特徴とする樹脂充填繊維基材としてもよい。
In the resin-filled fiber base material, the amount of the thermoplastic polyurethane applied to the fiber base material is 25 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content. It may be a characteristic resin-filled fiber base material.
又、上記樹脂充填繊維基材において、前記熱可塑性ポリウレタンに架橋剤が添加されていることを特徴とする樹脂充填繊維基材としてもよい。
Further, in the resin-filled fiber base material, a cross-linking agent may be added to the thermoplastic polyurethane, which may be a resin-filled fiber base material.
又、上記樹脂充填繊維基材において、前記架橋剤の添加量は、前記繊維基材100質量部に対し固形分換算で0.5質量部以上10質量部以下であることを特徴とする樹脂充填繊維基材としてもよい。
In the resin-filled fiber base material, the amount of the crosslinking agent added is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material. It may be a fiber base material.
又、上記樹脂充填繊維基材において、前記架橋剤は、オキサゾリン基含有化合物とカルボジイミド基含有化合物とのうちの少なくとも一方を含むことを特徴とする樹脂充填繊維基材としてもよい。
In the resin-filled fiber base material, the cross-linking agent may be at least one of an oxazoline group-containing compound and a carbodiimide group-containing compound, and may be a resin-filled fiber base material.
又、上記樹脂充填繊維基材において、前記繊維基材は、シート状又は糸束状であり、前記樹脂充填繊維基材はシート状又は紐状であることを特徴とする樹脂充填繊維基材としてもよい。
Further, in the above resin-filled fiber base material, the fiber base material has a sheet shape or a yarn bundle shape, and the resin-filled fiber base material has a sheet shape or a string shape. Good.
又、上記樹脂充填繊維基材において、前記熱可塑性ポリウレタンの粒子の直径は、0.01μm以上0.2μm以下であることを特徴とする樹脂充填繊維基材としてもよい。
In the resin-filled fiber base material, the diameter of the thermoplastic polyurethane particles may be 0.01 μm or more and 0.2 μm or less, and the resin-filled fiber base material may be used.
又、上記の樹脂充填繊維基材が積層されて構成されていることを特徴とする繊維強化複合材料としてもよい。
Alternatively, a fiber-reinforced composite material may be formed by laminating the above resin-filled fiber base material.
又、上記繊維強化複合材料で成形されていることを特徴とする繊維強化複合材料成形品としてもよい。
Also, a fiber-reinforced composite material molded article characterized by being molded from the above fiber-reinforced composite material may be used.
更に、繊維基材に、熱可塑性ポリウレタンの粒子を水系媒体中に分散させた水系樹脂分散体を付与し、乾燥処理をして水系媒体を除去して、前記繊維基材の繊維間の空間に、熱可塑性ポリウレタンを充填し、前記熱可塑性ポリウレタンを前記繊維基材100質量部に対し25質量部以上100質量部以下付与して成形することを特徴とする樹脂充填繊維基材の製造方法であってもよい。
Further, to the fiber substrate, an aqueous resin dispersion in which thermoplastic polyurethane particles are dispersed in an aqueous medium is applied, and the aqueous medium is removed by a drying treatment to form a space between the fibers of the fiber substrate. A method for producing a resin-filled fiber base material, the method comprising: filling a thermoplastic polyurethane, and imparting the thermoplastic polyurethane to 25 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the fiber base material and molding. May be.
又、上記樹脂充填繊維基材の製造方法において、前記熱可塑性ポリウレタンに架橋剤を添加することを特徴とする樹脂充填繊維基材の製造方法としてもよい。
Further, in the above method for producing a resin-filled fiber base material, a method for producing a resin-filled fiber base material may be characterized in that a crosslinking agent is added to the thermoplastic polyurethane.
又、上記樹脂充填繊維基材の製造方法において、前記架橋剤の添加量は、前記繊維基材100質量部に対し固形分換算で0.5質量部以上10質量部以下であることを特徴とする樹脂充填繊維基材の製造方法としてもよい。
Further, in the method for producing a resin-filled fiber base material, the addition amount of the crosslinking agent is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material. A method for producing a resin-filled fiber base material may be used.
又、上記樹脂充填繊維基材の製造方法において、前記繊維基材は、シート状又は糸束状であり、前記樹脂充填繊維基材はシート状又は紐状であることを特徴とする樹脂充填繊維基材の製造方法としてもよい。
Further, in the method for producing a resin-filled fiber base material, the fiber base material is a sheet shape or a yarn bundle shape, and the resin-filled fiber base material is a sheet shape or a string shape. A method of manufacturing the base material may be used.
又、上記の樹脂充填繊維基材の製造方法で成形された樹脂充填繊維基材を積層し、加圧すると共に加熱して、一体化して成形することを特徴とする繊維強化複合材料の製造方法としてもよい。
Further, as a method for producing a fiber-reinforced composite material, the resin-filled fiber base material formed by the method for producing a resin-filled fiber base material described above is laminated, pressed and heated, and integrally formed. Good.
又、上記の繊維強化複合材料の製造方法で成形された繊維強化複合材料を単独で、積層し又は引き揃え、加圧下で加熱すると同時に所定の形状に成形することを特徴とする繊維強化複合材料成形品の製造方法としてもよい。
Further, the fiber-reinforced composite material formed by the above-described method for producing a fiber-reinforced composite material is singly laminated or aligned, heated under pressure and simultaneously formed into a predetermined shape, It may be a method of manufacturing a molded product.
以上のような本開示によれば、繊維基材の繊維間の空間に熱可塑性ポリウレタンが充填されて構成されているので、繊維間に合成樹脂を隙間なく充填させることが可能となり、強化繊維を用いて成形する熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材料においてボイドの発生を防止し、マトリックス樹脂と繊維基材との固定が強固となり、繊維強化複合材料の強度や剛性などの力学特性を高めることが可能となった。
According to the present disclosure as described above, since the space between the fibers of the fiber base material is configured to be filled with the thermoplastic polyurethane, it becomes possible to fill the synthetic resin between the fibers without a gap, and Prevents the occurrence of voids in the fiber-reinforced composite material that uses the thermoplastic resin as a matrix resin for molding, and strengthens the fixation between the matrix resin and the fiber base material, and improves the mechanical properties such as strength and rigidity of the fiber-reinforced composite material. It has become possible to raise it.
更に、熱可塑性ポリウレタンに架橋剤が付与されているので、繊維間に充填させた合成樹脂を強固に保持することが出来るので、強化繊維を用いて成形する熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材料においてボイドの発生をより防止可能となり、マトリックス樹脂と繊維基材との固定がより強固となり、繊維強化複合材料の強度や剛性などの力学特性をより高めることが可能となった。
Furthermore, since a cross-linking agent is added to the thermoplastic polyurethane, it is possible to firmly hold the synthetic resin filled between the fibers, so that the thermoplastic resin molded using the reinforcing fibers is used as the matrix resin and is reinforced with fibers. Voids can be further prevented in the composite material, the matrix resin and the fiber base material are more firmly fixed, and the mechanical properties such as strength and rigidity of the fiber reinforced composite material can be further enhanced.
又、繊維基材の繊維間の空間に充填される熱可塑性ポリウレタンと繊維基材の外表面に積層されるマトリックス樹脂の熱可塑性ポリウレタンが強固に接着するので、集束剤やサイジング剤等を使用しなくても、強化繊維と熱可塑性樹脂のマトリックス樹脂との固定力を向上させることが出来、繊維強化複合材料の強度を高めることが可能となった。
Further, since the thermoplastic polyurethane filled in the spaces between the fibers of the fiber base material and the thermoplastic polyurethane of the matrix resin laminated on the outer surface of the fiber base material firmly adhere to each other, a sizing agent or a sizing agent is used. Even without it, the fixing force between the reinforcing fiber and the matrix resin of the thermoplastic resin can be improved, and the strength of the fiber-reinforced composite material can be increased.
又、成形が容易で、形体自由度の高い繊維強化複合材料を実現することが出来た。又、この繊維強化複合材料は熱可塑性樹脂をマトリックス樹脂として用いているので、再加熱して所望の形状の繊維強化複合材料に再成形することが容易となった。そして、これらの繊維強化複合材料の特性を生かして、自動車の躯体等に適用することにより、自動車の軽量化が出来、燃費を向上させることが出来た。
Also, it was possible to realize a fiber-reinforced composite material that is easy to mold and has a high degree of freedom in shape. Further, since this fiber-reinforced composite material uses a thermoplastic resin as a matrix resin, it becomes easy to reheat and re-mold it into a fiber-reinforced composite material having a desired shape. By applying the characteristics of these fiber-reinforced composite materials to the body of an automobile and the like, the weight of the automobile can be reduced and the fuel consumption can be improved.
又、熱可塑性樹脂は化学反応を伴わないので、繊維間に樹脂を短時間で含浸させることが出来るので、繊維強化複合材料の成形サイクルを短縮出来、生産性向上によりコストダウンが可能となった。
Further, since the thermoplastic resin does not involve a chemical reaction, the resin can be impregnated between the fibers in a short time, so that the molding cycle of the fiber-reinforced composite material can be shortened and the productivity can be reduced to reduce the cost. ..
以下本開示の実施の一形態を説明する。本開示の樹脂充填繊維基材は、繊維基材の繊維間の空間に熱可塑性ポリウレタンが充填されて構成され、熱可塑性ポリウレタンの繊維基材への付与量は、繊維基材100質量部に対し25質量部以上100質量部以下である樹脂充填繊維基材である。ここで、繊維間とは単糸間及び単糸を束ねた糸束間を意味する。又、本開示の繊維強化複合材料は、本開示の樹脂充填繊維基材が積層されて構成されている繊維強化複合材料である。又、本開示の繊維強化複合材料成形品は、1個又は2個以上の本開示の繊維強化複合材料で所定の形状に成形された成形品である。
An embodiment of the present disclosure will be described below. The resin-filled fiber substrate of the present disclosure is configured by filling the spaces between the fibers of the fiber substrate with thermoplastic polyurethane, and the amount of the thermoplastic polyurethane applied to the fiber substrate is 100 parts by mass of the fiber substrate. It is a resin-filled fiber base material of 25 parts by mass or more and 100 parts by mass or less. Here, between the fibers means between the single yarns and between the yarn bundles in which the single yarns are bundled. Further, the fiber-reinforced composite material of the present disclosure is a fiber-reinforced composite material formed by laminating the resin-filled fiber base material of the present disclosure. Further, the fiber-reinforced composite material molded product of the present disclosure is a molded product molded from one or more fiber-reinforced composite materials of the present disclosure into a predetermined shape.
繊維基材は、合成樹脂の強化用の繊維を用いて構成する繊維強化複合材料の骨格部分であり、繊維及び繊維基材は熱可塑性樹脂で構成されるマトリックス樹脂を補強するためのものである。繊維基材の形状は特に限定されないが、シート状又は糸束状とすることが出来る。
The fiber base material is a skeleton portion of a fiber reinforced composite material formed by using fibers for reinforcing synthetic resin, and the fibers and the fiber base material are for reinforcing a matrix resin composed of a thermoplastic resin. .. The shape of the fiber base material is not particularly limited, but may be a sheet shape or a yarn bundle shape.
シート状の繊維基材の形態としては、これに限定されないが、単糸又は複数本の単糸を束状にした糸束を編んだ編物、単糸又は糸束を織った織物、単糸を織らずに接着又は絡み合わせた不織布又は単糸又は糸束を一方向に引き揃えた状態の物、すだれ状物、紙状物等が挙げられる。糸束状の繊維基材の形態としては、これに限定されないが、複数本の単糸を編んで、或いは編まないで束状にした糸束、複数本の糸束を編んで、或いは編まないで束状にした物等が挙げられる。
The form of the sheet-shaped fibrous base material is not limited to this, but may be a knitted product obtained by knitting a single yarn or a bundle of plural single yarns in a bundle, a single yarn or a woven fabric of the yarn bundle, and a single yarn. Examples thereof include non-woven bonded or entangled non-woven fabrics, single yarns or yarn bundles aligned in one direction, interdigital products, paper-like products, and the like. The form of the fiber base material in the form of a yarn bundle is not limited to this, but a plurality of single yarns are knitted, or a yarn bundle formed into a bundle without knitting, a plurality of yarn bundles are knitted, or knitted. For example, a bundled product may be used.
編物、織物、糸束状及び一方向に引き揃えた状態の繊維基材の場合、繊維は繊維基材の一端から他端まで連続した繊維を用いることが好ましく、不織布の場合にも繊維基材の一端から他端まで連続する長さ以上の繊維を用いることが好ましい。即ち、繊維強化複合材料の補強を行う部分には連続した長繊維を用いることが好ましい。このような構成とすることで、繊維強化複合材料の強度を高めることが可能となる。又、繊維基材の厚さは、繊維強化複合材料以下の厚さであれば特に限定されない。
In the case of a knitted fabric, a woven fabric, a fiber bundle in a state of being aligned in one direction, or a fiber base material in one direction, it is preferable to use continuous fibers from one end to the other end of the fiber base material. It is preferable to use a fiber having a continuous length or more from one end to the other end. That is, it is preferable to use continuous long fibers in the portion for reinforcing the fiber-reinforced composite material. With such a structure, the strength of the fiber-reinforced composite material can be increased. Further, the thickness of the fiber base material is not particularly limited as long as it is equal to or less than the fiber reinforced composite material.
熱可塑性樹脂の補強材としての繊維は、特に限定されないが、炭素繊維、アラミド繊維、ガラス繊維、ビニロン繊維、PBO繊維等を使用することが出来る。又、これらの繊維は1種のみの使用でもよいが、2種以上を併用してもよい。繊維の直径は特に限定されないが、5~10μmのものを使用することが出来る。尚、単糸を束状にした糸束は、特に限定されないが、単糸を1,000~50,000本程度を束ねたものを使用することが出来る。
The fiber as the reinforcing material of the thermoplastic resin is not particularly limited, but carbon fiber, aramid fiber, glass fiber, vinylon fiber, PBO fiber, etc. can be used. These fibers may be used alone or in combination of two or more. Although the diameter of the fiber is not particularly limited, a fiber having a diameter of 5 to 10 μm can be used. The yarn bundle in which the single yarns are bundled is not particularly limited, but a bundle of about 1,000 to 50,000 single yarns can be used.
繊維基材の繊維間の空間には熱可塑性ポリウレタンが充填されると共に、繊維基材の外表面には熱可塑性ポリウレタンが積層されて、樹脂充填繊維基材が構成されている。
・The space between the fibers of the fiber base material is filled with thermoplastic polyurethane, and the outer surface of the fiber base material is laminated with thermoplastic polyurethane to form a resin-filled fiber base material.
熱可塑性ポリウレタンは、繊維基材の繊維間の空間を埋めて繊維強化複合材料のボイドの発生を防止するためのものであり、又、繊維強化複合材料の変位に対して応力を高めるためのものである。繊維基材の繊維間の空間に充填する熱可塑性樹脂として熱可塑性ポリウレタンを用いるのは、乾燥状態で単糸間をつなぐことのできる製膜性が良いからである。又、繊維間の空間に充填される熱可塑性樹脂は、耐熱性が高いほど好ましい。更に、繊維強化複合材料は1層或いは複数層に積層して他の形状に再形成するので、熱可塑性樹脂が乾燥又は硬化した後にも熱可塑性を有することが好ましく、熱可塑性樹脂として熱可塑性ポリウレタンは、乾燥又は硬化した後にも充分な熱可塑性を有して平板状等の繊維強化複合材料を、曲面を有する製品等に再成形することが容易であるので好ましいからである。
The thermoplastic polyurethane is for filling the spaces between the fibers of the fiber base material to prevent generation of voids in the fiber reinforced composite material, and for increasing the stress against displacement of the fiber reinforced composite material. Is. The reason why the thermoplastic polyurethane is used as the thermoplastic resin that fills the spaces between the fibers of the fiber base material is that it has good film-forming properties that can connect the single yarns in a dry state. The thermoplastic resin with which the space between the fibers is filled is preferably as high in heat resistance as possible. Furthermore, since the fiber-reinforced composite material is laminated in one layer or a plurality of layers to be reformed into another shape, it is preferable that it has thermoplasticity even after the thermoplastic resin is dried or cured. As the thermoplastic resin, thermoplastic polyurethane is used. Is preferable since it is easy to remold a flat fiber-shaped fiber-reinforced composite material into a product having a curved surface or the like, which has sufficient thermoplasticity even after being dried or cured.
又、熱可塑性ポリウレタンを繊維基材の繊維間の空間に充填する際の形態としては、特に限定されないが、繊維間の空間に確実且つ均一に充填するために、熱可塑性ポリウレタンの粒子を水媒体中に分散させた水系樹脂分散体の形態とすることが好ましい。
Further, the form of filling the space between the fibers of the fiber base material with the thermoplastic polyurethane is not particularly limited, but in order to surely and uniformly fill the space between the fibers, the particles of the thermoplastic polyurethane are mixed with an aqueous medium. It is preferably in the form of an aqueous resin dispersion dispersed therein.
熱可塑性ポリウレタンの粒子の平均粒径は特に限定されないが、繊維間に均一に充填するために、0.01~1μm程度とすることが出来るが、繊維基材の繊維間の空間に短時間で充填するために、又、均一に充填させるため、繊維直径の1/10以下が好ましい。具体的には、繊維の直径は通常5~10μmであるので0.5μm以下が好ましく、より好ましくは0.1μm以下、更により好ましくは0.03μm以下である。熱可塑性ポリウレタンの粒子の平均粒径は、0.01μm以上0.2μm以下であることが好ましい。なお、熱可塑性ポリウレタンの粒子の平均粒径とは、レーザー回析光散乱法により測定された50%粒子径(D50)を意味している。
The average particle size of the thermoplastic polyurethane particles is not particularly limited, but may be set to about 0.01 to 1 μm in order to uniformly fill the spaces between the fibers, but the space between the fibers of the fiber base material may be shortened in a short time. In order to fill and evenly fill, 1/10 or less of the fiber diameter is preferable. Specifically, since the diameter of the fiber is usually 5 to 10 μm, it is preferably 0.5 μm or less, more preferably 0.1 μm or less, still more preferably 0.03 μm or less. The average particle diameter of the thermoplastic polyurethane particles is preferably 0.01 μm or more and 0.2 μm or less. The average particle diameter of the thermoplastic polyurethane particles means the 50% particle diameter (D50) measured by the laser diffraction light scattering method.
熱可塑性ポリウレタンの粒子を水に分散させた水系樹脂分散体の不揮発分の濃度は特に限定されないが、単糸間の空間に熱可塑性樹脂が行き渡り易くし、且つ単糸間の空間を完全に埋めるために、粘度が低いことが好ましい一方、濃度が濃いことが好ましいので、水系樹脂分散体中の熱可塑性樹脂の粒子の質量割合は、20~40質量%が好ましく、更に好ましくは25~36質量%が好ましい。
The concentration of non-volatile components in the water-based resin dispersion in which thermoplastic polyurethane particles are dispersed in water is not particularly limited, but the thermoplastic resin easily spreads into the space between single yarns and completely fills the space between single yarns. Therefore, the viscosity is preferably low, while the concentration is preferably high. Therefore, the mass ratio of the particles of the thermoplastic resin in the aqueous resin dispersion is preferably 20 to 40% by mass, more preferably 25 to 36% by mass. % Is preferred.
熱可塑性ポリウレタンは、ポリオールは特に限定されず、ポリエーテル系、ポリエステル系又はポリカーボネート系等が使用されるが、特に、耐熱性に優れた高硬度の被膜を形成可能であるので、ポリエーテル系が好ましい。
For the thermoplastic polyurethane, the polyol is not particularly limited, and a polyether type, a polyester type, a polycarbonate type, or the like is used. In particular, since a high hardness coating excellent in heat resistance can be formed, the polyether type is used. preferable.
熱可塑性ポリウレタンの繊維基材への付与量は、繊維基材の繊維間の空間をより多く埋め得る量が好ましく、更には、完全に繊維基材の繊維間の空間を埋める以上の量がより好ましい。ここで、繊維束を構成する単糸の断面を円とし、繊維束中の単糸が細密充填状態にあるとすると、単糸間の空間の体積は次の式1で計算される。
(式1)100×(31/2-π/2)/(π/2)=10.2 The amount of the thermoplastic polyurethane applied to the fiber base material is preferably an amount capable of filling the spaces between the fibers of the fiber base material more, and more preferably, the amount more than completely filling the spaces between the fibers of the fiber base material. preferable. Here, assuming that the cross section of the single yarn constituting the fiber bundle is a circle and the single yarn in the fiber bundle is in a close packing state, the volume of the space between the single yarns is calculated by the following formula 1.
(Equation 1) 100×(3 1/2 −π/2)/(π/2)=10.2
(式1)100×(31/2-π/2)/(π/2)=10.2 The amount of the thermoplastic polyurethane applied to the fiber base material is preferably an amount capable of filling the spaces between the fibers of the fiber base material more, and more preferably, the amount more than completely filling the spaces between the fibers of the fiber base material. preferable. Here, assuming that the cross section of the single yarn constituting the fiber bundle is a circle and the single yarn in the fiber bundle is in a close packing state, the volume of the space between the single yarns is calculated by the following formula 1.
(Equation 1) 100×(3 1/2 −π/2)/(π/2)=10.2
従って、熱可塑性ポリウレタンは、繊維束、即ち繊維基材の体積に対して10.2%の体積の量を付与することにより完全に繊維基材の繊維間の空間を埋めることが可能となる。そこで、繊維間の空間に充填される熱可塑性ポリウレタンの繊維基材への付与量は、繊維基材の体積に対して体積換算で、繊維基材の材質にもよるが、10%以上とすることが出来る。
Therefore, the thermoplastic polyurethane can completely fill the space between the fibers of the fiber base material by giving a volume of 10.2% to the volume of the fiber base material, that is, the fiber base material. Therefore, the amount of the thermoplastic polyurethane filled in the space between the fibers applied to the fiber base material is 10% or more in volume conversion with respect to the volume of the fiber base material, depending on the material of the fiber base material. You can
しかし、実際には単糸間の単糸表面を熱可塑性ポリウレタンで覆うことが好ましいと共に繊維束の外表面即ち繊維基材の外表面への適度な積層を行ってマトリックス樹脂との接着性を向上させるために、又、ボイドのない熱可塑性樹脂複合材料を得るためには、熱可塑性ポリウレタンの繊維基材への付与量は、単糸間の空間を埋めるために必要とする体積以上の合成樹脂を繊維基材に付与することが好ましい。熱可塑性ポリウレタンの繊維基材への付与量は、繊維基材の体積に対して、体積換算で11%~30%の付与量がより好ましく、11%~20%の付与量がさらに好ましい。
However, in practice, it is preferable to cover the surface of the single yarn between the single yarns with thermoplastic polyurethane, and to improve the adhesion with the matrix resin by appropriately laminating the outer surface of the fiber bundle, that is, the outer surface of the fiber base material. In order to obtain a void-free thermoplastic resin composite material, the amount of thermoplastic polyurethane applied to the fiber base material is a synthetic resin having a volume not less than that required to fill the space between the single yarns. Is preferably applied to the fiber base material. The applied amount of the thermoplastic polyurethane to the fiber base material is more preferably 11% to 30%, and even more preferably 11% to 20%, based on the volume of the fiber base material.
熱可塑性ポリウレタンを繊維基材の繊維間の空間に充填させる方法としては、特に限定されないが、熱可塑性ポリウレタンの粒子を水系媒体中に分散させた水系樹脂分散体を用いて、公知のスプレー法、浸漬法、ローラー含浸法等の均一に必要量を付与することができる方法を用いることが出来る。又、熱可塑性ポリウレタンを繊維基材の繊維間に付与後、水系樹脂分散体中の水性媒体及び熱可塑性ポリウレタン以外の成分を除去するために乾燥処理を施す。乾燥方法としては、熱風、乾燥ローラーに接触させる方法、赤外線加熱、天日、その他の加熱等の通常用いられる乾燥方法を採用することが出来る。
The method of filling the space between the fibers of the thermoplastic polyurethane is not particularly limited, using a water-based resin dispersion prepared by dispersing particles of the thermoplastic polyurethane in an aqueous medium, a known spray method, It is possible to use a method such as a dipping method or a roller impregnation method that can uniformly apply a required amount. Moreover, after applying the thermoplastic polyurethane between the fibers of the fiber base material, a drying treatment is performed to remove components other than the aqueous medium and the thermoplastic polyurethane in the aqueous resin dispersion. As a drying method, a method of contacting with hot air or a drying roller, a commonly used drying method such as infrared heating, sunlight, or other heating can be adopted.
このように、熱可塑性ポリウレタンの粒子を水系媒体中に分散させた水系樹脂分散体を繊維基材に含浸させることにより、単糸間及び糸束間に熱可塑性ポリウレタンが行き渡り易くなり、繊維間の空間を熱可塑性ポリウレタンで完全に充填することが出来、ボイドの発生を防止することが出来、より力学特性の高い繊維強化複合材料を実現することが出来る。
Thus, by impregnating the fiber base material with the water-based resin dispersion in which the particles of the thermoplastic polyurethane are dispersed in the water-based medium, the thermoplastic polyurethane easily spreads between the single yarns and between the yarn bundles, and between the fibers. The space can be completely filled with the thermoplastic polyurethane, the generation of voids can be prevented, and a fiber-reinforced composite material with higher mechanical properties can be realized.
又、熱可塑性ポリウレタンは、繊維強化複合材料の母材となるものであり、マトリックス樹脂として用いられる熱可塑性樹脂は、繊維間の空間に充填される熱可塑性樹脂と同じ熱可塑性ポリウレタンである。マトリックス樹脂としての熱可塑性ポリウレタンは繊維基材の外表面の全面に積層されて構成されているが、繊維基材の外表面の一部にのみ積層されて構成されてもよい。
Further, the thermoplastic polyurethane is a base material of the fiber reinforced composite material, and the thermoplastic resin used as the matrix resin is the same thermoplastic polyurethane as the thermoplastic resin filled in the spaces between the fibers. The thermoplastic polyurethane as the matrix resin is laminated on the entire outer surface of the fiber base material, but may be laminated on only a part of the outer surface of the fiber base material.
繊維基材の外表面に積層される熱可塑性ポリウレタンは、例えば、繊維基材がシート状の場合、シート状の繊維基材の上下面両方、上下面の内いずれか一方の面の全面又は一部分にのみ積層される構成でもよい。そして、マトリックス樹脂が、1枚の樹脂充填繊維基材の上下両面に配置された3層構造や、1枚の樹脂充填繊維基材の上面又は下面の何れかの面に配置された2層構造等とすることが出来る。又、繊維基材が糸束状の場合、糸束状の繊維基材の側面の全面又は一部分にのみ積層された構成でもよい。
The thermoplastic polyurethane laminated on the outer surface of the fiber base material is, for example, when the fiber base material is in the form of a sheet, both the upper and lower surfaces of the sheet-like fiber base material and the entire surface or a part of one of the upper and lower surfaces. It is also possible to have a structure in which only one layer is laminated. Then, the matrix resin has a three-layer structure in which it is arranged on both upper and lower surfaces of one resin-filled fiber base material, and a two-layer structure in which one of the upper surface and the lower surface of one resin-filled fiber base material is arranged. And so on. When the fiber base material is in the form of a yarn bundle, the fiber base material in the form of a yarn bundle may be laminated on the entire side surface or only a part thereof.
マトリックス樹脂として熱可塑性ポリウレタンを用いるのは、乾燥状態で、糸束同士や繊維基材同士をつなぐことのできる製膜性が良いからである。又、マトリックス樹脂は、耐熱性が高いほど好ましく、耐熱性に優れた熱可塑性ポリウレタンは好ましいからである。更に、繊維強化複合材料は1層或いは複数層に積層して他の形状に再形成するので、熱可塑性を有することが好ましく、乾燥又は硬化した後にも充分な熱可塑性を有して平板状等の繊維強化複合材料を、曲面を有する製品等に再成形することが容易であるので好ましいからである。
The reason why thermoplastic polyurethane is used as the matrix resin is that it has good film-forming properties that can connect yarn bundles or fiber substrates in a dry state. Further, the higher the heat resistance of the matrix resin is, the more preferable, and the thermoplastic polyurethane having excellent heat resistance is preferable. Furthermore, since the fiber reinforced composite material is laminated in one layer or a plurality of layers to be reformed into another shape, it is preferable that it has thermoplasticity, and has sufficient thermoplasticity even after being dried or cured to have a flat plate shape or the like. This is because it is easy to remold the fiber-reinforced composite material of (1) into a product having a curved surface, which is preferable.
又、マトリックス樹脂の熱可塑性ポリウレタンを繊維基材に積層する際の形態としては、繊維基材に確実且つ均一に積層するためには、熱可塑性ポリウレタンの粒子を水媒体中に分散させた水系樹脂分散体の形態とすることが好ましい。尚、マトリックス樹脂としての熱可塑性ポリウレタンの粒子の直径、熱可塑性ポリウレタンの粒子を水に分散させた水系樹脂分散体の不揮発分の濃度及びポリオールは特に限定されないが、繊維間の空間に充填される熱可塑性ポリウレタンと同じとすることが出来る。
In addition, as a form of laminating the thermoplastic polyurethane of the matrix resin on the fiber base material, in order to surely and evenly laminate on the fiber base material, an aqueous resin in which particles of the thermoplastic polyurethane are dispersed in an aqueous medium is used. It is preferably in the form of a dispersion. Incidentally, the diameter of the particles of thermoplastic polyurethane as the matrix resin, the concentration of non-volatile components of the water-based resin dispersion prepared by dispersing the particles of thermoplastic polyurethane in water, and the polyol are not particularly limited, but the spaces between the fibers are filled. It can be the same as the thermoplastic polyurethane.
樹脂充填繊維基材又は繊維強化複合材料の製造の際に、熱可塑性ポリウレタンをマトリックス樹脂として繊維基材に積層させる方法としては、特に限定されないが、熱可塑性ポリウレタンの繊維間の空間への充填と同時に行うことが好ましい。同時に行うことで、繊維強化複合材料の製造を容易とすることが出来る。同時に行う場合には、上述の熱可塑性ポリウレタンを繊維基材の繊維間の空間に充填させる方法で行うことが出来る。尚、熱可塑性ポリウレタンをマトリックス樹脂として繊維基材に積層させる工程を、熱可塑性ポリウレタンの繊維基材の繊維間の空間への充填の工程と別工程で行い、単独で繊維基材に積層することとしてもよい。この場合、例えばこれに限定されないが、マトリックス樹脂となるフィルム状の熱可塑性ポリウレタンを熱可塑性ポリウレタンが充填された繊維基材に積層し、加圧下でマトリックス樹脂を加熱し、マトリックス樹脂を溶融させ、繊維基材とマトリックス樹脂を接着させて製造することが出来る。
At the time of producing a resin-filled fiber base material or a fiber-reinforced composite material, the method for laminating thermoplastic polyurethane on the fiber base material as a matrix resin is not particularly limited, and filling of spaces between fibers of thermoplastic polyurethane and It is preferable to carry out at the same time. By carrying out at the same time, the production of the fiber-reinforced composite material can be facilitated. When it is carried out simultaneously, it can be carried out by a method of filling the space between the fibers of the fiber base material with the above-mentioned thermoplastic polyurethane. It should be noted that the step of laminating the thermoplastic polyurethane as a matrix resin on the fiber base material is performed separately from the step of filling the space between the fibers of the fiber base material of the thermoplastic polyurethane, and the thermoplastic polyurethane is laminated on the fiber base material independently. May be In this case, for example, but not limited thereto, a film-shaped thermoplastic polyurethane serving as a matrix resin is laminated on a fiber substrate filled with thermoplastic polyurethane, and the matrix resin is heated under pressure to melt the matrix resin, It can be manufactured by bonding a fiber base material and a matrix resin.
そして、繊維強化複合材料は、繊維間の空間に熱可塑性ポリウレタンが充填された複数の繊維基材とマトリックス樹脂とが積層されて、言い換えれば、樹脂充填繊維基材が積層されて、繊維基材がマトリックス樹脂に挟まれた或いは被覆された構造とする。そして、その積層の形態は特に限定されず、樹脂充填繊維基材がシート状の場合、1枚の繊維基材の上下両面にマトリックス樹脂が配置された3層構造の樹脂充填繊維基材が積層された構造、複数の繊維基材とマトリックス樹脂が交互に積層された構造等とすることが出来る。又、樹脂充填繊維基材が紐状の場合、1本の繊維基材の外側面にマトリックス樹脂が配置され、繊維基材とマトリックス樹脂が積層された2層構造、更に、1本の繊維基材の外側面のマトッリクス樹脂の外側に1本以上の樹脂充填繊維基材が配置されると共に樹脂充填繊維基材の外側面にマトリックス樹脂が配置され、積層された構造等とすることが出来る。
The fiber-reinforced composite material is formed by laminating a plurality of fiber base materials in which spaces between the fibers are filled with thermoplastic polyurethane and a matrix resin, in other words, by laminating a resin-filled fiber base material to form a fiber base material. Is sandwiched between or covered with a matrix resin. The form of lamination is not particularly limited, and when the resin-filled fiber base material is in the form of a sheet, a resin-filled fiber base material having a three-layer structure in which a matrix resin is arranged on both upper and lower surfaces of one fiber base material is laminated. It is possible to adopt a structured structure, a structure in which a plurality of fiber base materials and a matrix resin are alternately laminated, or the like. When the resin-filled fiber base material is in the form of a string, a matrix resin is arranged on the outer surface of one fiber base material, and a two-layer structure in which the fiber base material and the matrix resin are laminated, and one fiber base material One or more resin-filled fiber base materials may be arranged on the outer side surface of the material on the outer side of the matrix resin, and the matrix resin may be arranged on the outer side surface of the resin-filled fiber base material to form a laminated structure.
ここで、繊維基材とマトリックス樹脂とを積層するとは、マトリックス樹脂で繊維基材を被覆することも含まれ、紐状の樹脂充填繊維基材を積層するとは、2本以上の紐状の樹脂充填繊維基材を束ねることも含まれる。
Here, laminating the fiber base material and the matrix resin also includes covering the fiber base material with the matrix resin, and laminating the string-shaped resin-filled fiber base material includes two or more string-shaped resins. Bundling the filled fiber substrates is also included.
熱可塑性ポリウレタンの繊維基材への付与量は、固形分換算で繊維基材100質量部に対し25質量部以上100質量部以下であることが好ましい。熱可塑性ポリウレタンの繊維基材への付与量は、固形分換算で繊維基材100質量部に対し25質量部以上70質量部以下であることが好ましい。また、熱可塑性ポリウレタンの繊維基材への付与量は、固形分換算で繊維基材100質量部に対し40質量部以上70質量部以下であることがより好ましい。
The amount of thermoplastic polyurethane applied to the fiber base material is preferably 25 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content. The amount of the thermoplastic polyurethane applied to the fiber base material is preferably 25 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content. Further, the amount of the thermoplastic polyurethane applied to the fiber base material is more preferably 40 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content.
繊維強化複合材料中の繊維の含有量、熱可塑性ポリウレタンの含有量は特に限定されず、所定の繊維強化複合材料を製造するために、繊維の種類、繊維基材の形態等により選択することが出来る。
The content of the fiber in the fiber-reinforced composite material and the content of the thermoplastic polyurethane are not particularly limited, and may be selected depending on the type of fiber, the form of the fiber base material, etc. in order to produce a predetermined fiber-reinforced composite material. I can.
熱可塑性ポリウレタンには架橋剤を添加することとしてもよい。架橋剤は、繊維間の空間に充填された熱可塑性ポリウレタン分子同士、マトリックスとしての熱可塑性ポリウレタン分子同士及び繊維間の空間に充填された熱可塑性ポリウレタン分子とマトリックスとしての熱可塑性ポリウレタン分子を架橋して、繊維間の空間からの熱可塑性ポリウレタンの流出を防止すると共にマトリックス樹脂を繊維基材に確実に固定するためのものである。従って、架橋剤は、繊維強化複合材料の変位に対して応力を高めるためのものである。
A crosslinking agent may be added to the thermoplastic polyurethane. The cross-linking agent cross-links the thermoplastic polyurethane molecules filled in the spaces between the fibers, the thermoplastic polyurethane molecules as the matrix, and the thermoplastic polyurethane molecules filled in the spaces between the fibers and the thermoplastic polyurethane molecules as the matrix. The purpose of this is to prevent the thermoplastic polyurethane from flowing out from the space between the fibers and to securely fix the matrix resin to the fiber base material. Therefore, the cross-linking agent is for increasing the stress against the displacement of the fiber-reinforced composite material.
本開示における架橋剤としては、自己架橋性を有する架橋剤、カルボキシ基と反応する官能基を分子内に複数個有する化合物を用いることが出来る。具体的には、オキサゾリン基含有化合物、カルボジイミド基含有化合物、イソシアネート基含有化合物、エポキシ基含有化合物、メラミン化合物、尿素化合物、ジルコニウム塩化合物、シランカップリング剤等が挙げられ、必要に応じて複数のものを混合使用してもよい。中でも、取り扱い易さの観点から、オキサゾリン基含有化合物、カルボジイミド基含有化合物、イソシアネート基含有化合物、エポキシ基含有化合物が好ましく、オキサゾリン基含有化合物、カルボジイミド基含有化合物を使用することがより好ましい。すなわち、架橋剤として、オキサゾリン基含有化合物とカルボジイミド基含有化合物とのうちの少なくとも一方を含むことが好ましい。
As the cross-linking agent in the present disclosure, a cross-linking agent having a self-crosslinking property and a compound having a plurality of functional groups that react with a carboxy group in the molecule can be used. Specific examples include an oxazoline group-containing compound, a carbodiimide group-containing compound, an isocyanate group-containing compound, an epoxy group-containing compound, a melamine compound, a urea compound, a zirconium salt compound, a silane coupling agent, and the like. You may mix and use thing. Among them, from the viewpoint of easy handling, oxazoline group-containing compounds, carbodiimide group-containing compounds, isocyanate group-containing compounds and epoxy group-containing compounds are preferable, and oxazoline group-containing compounds and carbodiimide group-containing compounds are more preferable. That is, it is preferable that the crosslinking agent contains at least one of an oxazoline group-containing compound and a carbodiimide group-containing compound.
オキサゾリン基含有化合物は、分子中に少なくとも2つ以上のオキサゾリン基を有しているものであれば特に限定されない。例えば、2,2′-ビス(2-オキサゾリン)、2,2′-エチレン-ビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-p-フェニレン-ビス(2-オキサゾリン)、ビス(2-オキサゾリニルシクロヘキサン)スルフィド等のオキサゾリン基を有する化合物や、オキサゾリン基含有ポリマー等が挙げられる。これらの化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用することも出来る。これらの中でも、取り扱い易さの観点から、オキサゾリン基を有する化合物が好ましい。
The oxazoline group-containing compound is not particularly limited as long as it has at least two or more oxazoline groups in the molecule. For example, 2,2'-bis(2-oxazoline), 2,2'-ethylene-bis(4,4'-dimethyl-2-oxazoline), 2,2'-p-phenylene-bis(2-oxazoline) Examples thereof include compounds having an oxazoline group such as bis(2-oxazolinylcyclohexane)sulfide, and polymers containing an oxazoline group. These compounds may be used alone or in combination of two or more. Among these, a compound having an oxazoline group is preferable from the viewpoint of easy handling.
カルボジイミド基含有化合物は、分子中に少なくとも2つ以上のカルボジイミド基を有しているものであれば特に限定されない。例えば、p-フェニレン-ビス(2,6-キシリルカルボジイミド)、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサン-1,4-ビス(メチレン-t-ブチルカルボジイミド)等のカルボジイミド基を有する化合物や、カルボジイミド基を有する重合体であるポリカルボジイミドが挙げられる。これらは、1種を単独で使用してもよく、2種以上を組み合わせて使用することも出来る。これらの中でも、取り扱い易さから、ポリカルボジイミドが好ましい。ポリカルボジイミドの市販品としては、日清紡社製のカルボジライトシリーズが挙げられる。具体的な商品としては、例えば、水溶性タイプの「SV-02」、「V-02」、「V-02-L2」、「V-04」、エマルションタイプの「E-01」、「E-02」、有機溶液タイプの「V-01」、「V-03」、「V-07」、「V-09」、無溶剤タイプの「V-05」等が挙げられる。
The carbodiimide group-containing compound is not particularly limited as long as it has at least two carbodiimide groups in the molecule. Compounds having a carbodiimide group such as p-phenylene-bis(2,6-xylylcarbodiimide), tetramethylene-bis(t-butylcarbodiimide), cyclohexane-1,4-bis(methylene-t-butylcarbodiimide) And polycarbodiimide, which is a polymer having a carbodiimide group. These may be used alone or in combination of two or more. Among these, polycarbodiimide is preferable because it is easy to handle. Examples of commercially available products of polycarbodiimide include carbodilite series manufactured by Nisshinbo. Specific products include, for example, water-soluble type "SV-02", "V-02", "V-02-L2", "V-04", emulsion type "E-01", "E". -02”, organic solution type “V-01”, “V-03”, “V-07”, “V09”, solventless type “V-05” and the like.
イソシアネート基含有化合物は、分子中に少なくとも2つ以上のイソシアネート基を有しているものであれば特に限定されない。例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン2,4′-又は4,4′-ジイソシアネート、ポリメチレンポリフェニルジイソシアネート、トリジンジイソシアネート、1,4-ジイソシアナトブタン、ヘキサメチレンジイソシアネート、1,5-ジイソシアナト-2,2-ジメチルペンタン、2,2,4-又は2,4,4-トリメチル-1,6-ジイソシアナトヘキサン、1,10-ジイソシアナトデカン、1,3-又は1,4-ジイソシアナトシクロヘキサン、1-イソシアナト-3、3,5-トリメチル-5-イソシアナトメチル-シクロヘキサン、4,4′-ジイソシアナトジシクロヘキシルメタン、ヘキサヒドロトルエン2,4-又は2,6-ジイソシアネート、ぺルヒドロ-2,4′-又は4,4′-ジフェニルメタンジイソシアネート、ナフタレン1,5-ジイソシアネート、キシリレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、テトラメチルキシリレンジイソシアネート等の多官能イソシアネート化合物、或いはそれらの改変生成物が挙げられる。ここで、改変生成物とは、多官能イソシアネート化合物の内のジイソシアネートを公知の方法で変性することによって得られるものであり、例えば、アロファネート基、ビューレット基、カルボジイミド基、ウレトンイミン基、ウレトジオン基、イソシアヌレート基等を有する多官能イソシアネート化合物、更にはトリメチロールプロパン等の多官能アルコールで変性したアダクト型の多官能イソシアネート化合物を挙げることが出来る。尚、上記イソシアネート基含有化合物には、20質量%以下の範囲でモノイソシアネートが含有されていてもよい。又、これらの化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用することも出来る。
The isocyanate group-containing compound is not particularly limited as long as it has at least two isocyanate groups in the molecule. For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane 2,4'- or 4,4'-diisocyanate, polymethylene polyphenyl diisocyanate, tolidine diisocyanate, 1,4-diisocyanatobutane, Hexamethylene diisocyanate, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- or 1,4-diisocyanatocyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane, 4,4′-diisocyanatodicyclohexylmethane, hexahydrotoluene 2, 4- or 2,6-diisocyanate, perhydro-2,4'- or 4,4'-diphenylmethane diisocyanate, naphthalene 1,5-diisocyanate, xylylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, tetra Examples thereof include polyfunctional isocyanate compounds such as methylxylylene diisocyanate, and modified products thereof. Here, the modified product is obtained by modifying the diisocyanate of the polyfunctional isocyanate compound by a known method, for example, allophanate group, buret group, carbodiimide group, uretonimine group, uretdione group, Examples thereof include polyfunctional isocyanate compounds having an isocyanurate group and the like, and further adduct type polyfunctional isocyanate compounds modified with a polyfunctional alcohol such as trimethylolpropane. The isocyanate group-containing compound may contain monoisocyanate in the range of 20% by mass or less. In addition, these compounds may be used alone or in combination of two or more.
イソシアネート基含有化合物は、通常、多官能イソシアネート化合物と一価又は多価のノニオン性ポリアルキレンエーテルアルコールと反応させて得ることが出来る。そのような水性の多官能イソシアネート化合物の市販品としては、住友バイエルウレタン社製のバイヒジュール(Bayhydur)3100、バイヒジュールVPLS2150/1、SBUイソシアネートL801、デスモジュール(Desmodur)N3400、デスモジュールVPLS2102、デスモジュールVPLS2025/1、SBUイソシアネート0772、デスモジュールDN、三井化学社製のタケネートWD720、タケネートWD725、タケネートWD730、旭化成社製のデュラネートWB40-100、デュラネートWB40-80D、デュラネートWX-1741、BASF社製のバソナート(Basonat)HW-100、バソナートLR-9056等が挙げられる。
The isocyanate group-containing compound can be usually obtained by reacting a polyfunctional isocyanate compound with a monovalent or polyvalent nonionic polyalkylene ether alcohol. Examples of commercially available products of such an aqueous polyfunctional isocyanate compound include Bayhydur 3100, Bayhydur VPLS2150/1, SBU isocyanate L801, Desmodur N3400, Desmodur VPLS2102, and Desmodur VPLS2025 manufactured by Sumitomo Bayer Urethane Co., Ltd. /1, SBU isocyanate 0772, Desmodur DN, Mitsui Chemicals Takenate WD720, Takenate WD725, Takenate WD730, Asahi Kasei Duranate WB40-100, Duranate WB40-80D, Duranate WX-1741, BASF Bathonate ( Basonat) HW-100, Bathonate LR-9056 and the like.
エポキシ基含有化合物は、分子中に少なくとも2つ以上のエポキシ基を有しているものであれば特に限定されない。例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールAβ-ジメチルグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラヒドロキシフェニルメタンテトラグリシジルエーテル、レゾルシノールジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、クロル化ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル、ビスフェノールAアルキレンオキサイド付加物のジグリシジルエーテル、ノボラックグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、エポキシウレタン樹脂等のグリシジルエーテル型、p-オキシ安息香酸グリシジルエーテル・エステル等のグリシジルエーテル・エステル型、フタル酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、アクリル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等のグリシジルエステル型、グリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、トリグリシジルアミノフェノール等のグリシジルアミン型、エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ樹脂、3,4-エポキシ-6メチルシクロヘキシルメチル-3,4-エポキシ-6メチルシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、ビス(3,4-エポキシ-6メチルシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキサイド、ジシクロペンタジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテル、リモネンジオキサイド等の脂環族エポキシ樹脂などが挙げられる。これらの化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用することも出来る。
The epoxy group-containing compound is not particularly limited as long as it has at least two epoxy groups in the molecule. For example, bisphenol A diglycidyl ether, bisphenol A β-dimethylglycidyl ether, bisphenol F diglycidyl ether, tetrahydroxyphenylmethane tetraglycidyl ether, resorcinol diglycidyl ether, brominated bisphenol A diglycidyl ether, chlorinated bisphenol A diglycidyl ether, Hydrogenated bisphenol A diglycidyl ether, bisphenol A alkylene oxide adduct diglycidyl ether, novolac glycidyl ether, polyalkylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol diglycidyl ether, glycidyl ether type such as epoxy urethane resin, Glycidyl ether/ester types such as p-oxybenzoic acid glycidyl ether/ester, phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, acrylic acid diglycidyl ester, dimer acid diglycidyl ester Glycidyl ester type such as glycidyl aniline, tetraglycidyl diaminodiphenylmethane, triglycidyl isocyanurate, glycidyl amine type such as triglycidyl aminophenol, epoxidized polybutadiene, linear aliphatic epoxy resin such as epoxidized soybean oil, 3,4- Epoxy-6 methylcyclohexylmethyl-3,4-epoxy-6 methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane)carboxylate, bis(3,4-epoxy-6 methylcyclohexylmethyl) Examples thereof include alicyclic epoxy resins such as adipate, vinylcyclohexene diepoxide, dicyclopentadiene oxide, bis(2,3-epoxycyclopentyl) ether, and limonenedioxide. These compounds may be used alone or in combination of two or more.
市販のエポキシ化合物としては、本開示に適した水系のものとして、例えば、ナガセケムテックス社製のデナコールシリーズ(EM-150、EM-101等)、アデカ社製のアデカレジンシリーズ等が挙げられる。
Examples of commercially available epoxy compounds include water-based ones suitable for the present disclosure, for example, Denacol series (EM-150, EM-101, etc.) manufactured by Nagase Chemtex, and Adeka Resin series manufactured by Adeka. ..
又、架橋剤を、繊維基材の繊維間の空間に充填された熱可塑性ポリウレタン及び/又はマトリックス樹脂としての熱可塑性ポリウレタンに添加する際の形態としては、繊維間の空間及び熱可塑性ポリウレタン分子同士間に確実且つ均一に充填するために、水溶液や、有機溶液等に分散させた形態とすることが好ましい。熱可塑性ポリウレタン及び架橋剤を含有する組成物として繊維基材の繊維間の空間に充填し、繊維基材の外表面に積層することとしてもよい。例えばこれに限定されないが、熱可塑性ポリウレタンが水系樹脂分散体の形態である場合には、上述のような方法により、その水媒体中に架橋剤を分散させた形態の組成物として、繊維基材の繊維間の空間に熱可塑性ポリウレタン及び架橋剤を充填し、繊維基材の外表面に熱可塑性ポリウレタン及び架橋剤を積層することも出来る。
When the cross-linking agent is added to the thermoplastic polyurethane filled in the spaces between the fibers of the fiber base material and/or the thermoplastic polyurethane as the matrix resin, the form of the spaces between the fibers and the thermoplastic polyurethane molecules are In order to reliably and uniformly fill the space, it is preferable that the resin is dispersed in an aqueous solution or an organic solution. The composition containing the thermoplastic polyurethane and the cross-linking agent may be filled in the space between the fibers of the fiber base material and laminated on the outer surface of the fiber base material. For example, but not limited to, when the thermoplastic polyurethane is in the form of an aqueous resin dispersion, a fiber base material as a composition in which a crosslinking agent is dispersed in the aqueous medium by the method as described above. It is also possible to fill the space between the fibers with the thermoplastic polyurethane and the crosslinking agent, and laminate the thermoplastic polyurethane and the crosslinking agent on the outer surface of the fiber base material.
架橋剤の添加量は、樹脂積層基材の加工性及びリサイクル性と強度及び弾性率等の力学特性の両立することから、これに限定されないが、繊維基材100質量部に対して、固形分換算で0.5質量部~10質量部が好ましい。架橋剤の添加量は、繊維基材100質量部に対して、固形分換算で1質量部以上8質量部以下がより好ましく、1.5質量部以上5質量部以下がさらに好ましい。又、架橋剤の添加量は、これに限定されないが、熱可塑性ポリウレタン100質量部に対して、固形分換算で1質量部~15質量部が好ましい。架橋剤の添加量は、熱可塑性ポリウレタン100質量部に対して、固形分換算で2質量部以上12質量部以下がより好ましく、3質量部以上8質量部以下がさらに好ましい。
The addition amount of the cross-linking agent is not limited to this, because the processability and recyclability of the resin laminated base material and mechanical properties such as strength and elastic modulus are compatible with each other, but the solid content relative to 100 parts by mass of the fiber base material. It is preferably 0.5 to 10 parts by mass in terms of conversion. The addition amount of the crosslinking agent is more preferably 1 part by mass or more and 8 parts by mass or less, and further preferably 1.5 parts by mass or more and 5 parts by mass or less, in terms of solid content, based on 100 parts by mass of the fiber base material. The addition amount of the crosslinking agent is not limited to this, but is preferably 1 part by mass to 15 parts by mass in terms of solid content with respect to 100 parts by mass of the thermoplastic polyurethane. The addition amount of the cross-linking agent is more preferably 2 parts by mass or more and 12 parts by mass or less, and further preferably 3 parts by mass or more and 8 parts by mass or less in terms of solid content with respect to 100 parts by mass of the thermoplastic polyurethane.
繊維強化複合材料成形品は、1個又は2個以上の本開示の繊維強化複合材料を用いて所定の形状に成形された成形品であり、繊維強化複合材料を用いて製造する製品やその部品となるものである。
The fiber-reinforced composite material molded product is a molded product molded into a predetermined shape by using one or more fiber-reinforced composite materials of the present disclosure, and a product manufactured using the fiber-reinforced composite material or a part thereof. It will be.
次に、樹脂充填繊維基材及び繊維強化複合材料の製造方法について説明する。尚、以下の説明では、架橋剤を添加する場合について説明するが、架橋剤を添加しない場合には、以下の方法における架橋剤の添加工程を省いて行えばよい。熱可塑性ポリウレタンの粒子及び架橋剤を水媒体中に分散させた組成物としての水系樹脂分散体を用いて、公知のスプレー法やローラー含浸法等により、繊維基材と水系樹脂分散体とを接触させる。そして、繊維基材の繊維間の空間に熱可塑性ポリウレタンの粒子を充填させると共に、繊維基材の外表面へ熱可塑性ポリウレタンの粒子を付着させて積層し、同時に架橋剤を繊維基材の繊維間の空間内及び繊維の外表面に付着した熱可塑性ポリウレタン分子間に付着させて添加する。次に、水系樹脂分散体中の水媒体を除去するために、加熱乾燥等の乾燥処理を行い、樹脂充填繊維基材を形成する。
Next, a method of manufacturing the resin-filled fiber base material and the fiber-reinforced composite material will be described. In the following description, the case where a crosslinking agent is added will be described, but when the crosslinking agent is not added, the step of adding the crosslinking agent in the following method may be omitted. Using a water-based resin dispersion as a composition in which particles of a thermoplastic polyurethane and a cross-linking agent are dispersed in an aqueous medium, the fiber base material and the water-based resin dispersion are contacted by a known spray method or roller impregnation method. Let Then, the spaces between the fibers of the fiber base material are filled with particles of the thermoplastic polyurethane, and the particles of the thermoplastic polyurethane are adhered to the outer surface of the fiber base material to be laminated, and at the same time, a cross-linking agent is applied between the fibers of the fiber base material. And is added between the thermoplastic polyurethane molecules attached to the outer space of the fiber and the outer surface of the fiber. Next, in order to remove the aqueous medium in the aqueous resin dispersion, a drying treatment such as heat drying is performed to form a resin-filled fiber base material.
尚、熱可塑性ポリウレタンの粒子を水媒体中に分散させた水系樹脂分散体を用いて、繊維基材の繊維間の空間に熱可塑性ポリウレタンの粒子を充填させると共に、繊維基材の外表面へ熱可塑性ポリウレタンの粒子を付着させて積層した後、水溶液や有機溶液に分散させた架橋剤を用いて、公知のスプレー法やローラー含浸法等により、繊維基材に付着した熱可塑性ポリウレタンの粒子と接触させ、架橋剤を繊維基材の繊維間の空間内及び繊維の外表面に付着した熱可塑性ポリウレタン分子間に付着させることとしてもよい。又、繊維基材の繊維間の空間及び外表面に架橋剤を付与した後、熱可塑性ポリウレタンの粒子を繊維基材の繊維間の空間及び外表面に付与し、架橋剤を、繊維基材の繊維間の空間内及び繊維の外表面に付着した熱可塑性ポリウレタン分子間に添加させることとしてもよい。
It should be noted that, using an aqueous resin dispersion prepared by dispersing thermoplastic polyurethane particles in an aqueous medium, the spaces between the fibers of the fiber base material are filled with the thermoplastic polyurethane particles, and heat is applied to the outer surface of the fiber base material. After the particles of the plastic polyurethane are adhered and laminated, a cross-linking agent dispersed in an aqueous solution or an organic solution is used to contact the particles of the thermoplastic polyurethane adhered to the fiber substrate by a known spray method or roller impregnation method. Alternatively, the cross-linking agent may be attached in the spaces between the fibers of the fiber base material and between the thermoplastic polyurethane molecules attached to the outer surfaces of the fibers. Further, after applying a cross-linking agent to the spaces between the fibers of the fiber base material and the outer surface, particles of thermoplastic polyurethane are applied to the spaces between the fibers of the fiber base material and the outer surface, and the cross-linking agent is added to the fiber base material. It may be added in the spaces between the fibers and between the thermoplastic polyurethane molecules attached to the outer surfaces of the fibers.
そして、シート状の繊維基材の場合、繊維間の空間に熱可塑性ポリウレタン及び架橋剤が充填されると共に上下両面にマトリックス樹脂が積層されたシート状の繊維基材、即ち1枚の樹脂充填繊維基材の上下両面にマトリックス樹脂が配置された構造のシート状の樹脂充填繊維基材を複数積層し、加圧下でマトリックス樹脂を加熱し、マトリックス樹脂を溶融させる。そして、樹脂充填繊維基材のマトリックス樹脂同士を接着させてシート状の繊維強化複合材料を製造する。
In the case of a sheet-shaped fiber base material, a space between the fibers is filled with thermoplastic polyurethane and a crosslinking agent, and a matrix resin is laminated on both upper and lower surfaces, that is, one resin-filled fiber. A plurality of sheet-shaped resin-filled fiber base materials having a structure in which the matrix resin is arranged on the upper and lower surfaces of the base material are laminated, and the matrix resin is heated under pressure to melt the matrix resin. Then, the matrix resins of the resin-filled fiber base material are adhered to each other to produce a sheet-shaped fiber-reinforced composite material.
尚、繊維基材の上下の片面にのみマトリックス樹脂が積層された繊維基材の場合には、樹脂充填繊維基材をマトリックス樹脂が積層された面と積層されていない面とを対向させて複数積層し、加圧下でマトリックス樹脂を加熱し、マトリックス樹脂を溶融させ、対向する一方の樹脂充填繊維基材の繊維基材と他方の樹脂充填繊維基材のマトリックス樹脂を接着させて繊維強化複合材料を製造する。
In the case of a fiber base material in which the matrix resin is laminated only on one side of the upper and lower sides of the fiber base material, the resin-filled fiber base material is made into a plurality of layers with the surface on which the matrix resin is laminated and the surface not laminated facing each other. Layering, heating the matrix resin under pressure, melting the matrix resin, and adhering the fiber base material of one resin-filled fiber base material and the matrix resin of the other resin-filled fiber base material facing each other To manufacture.
又、糸束状の繊維基材の場合、繊維基材として糸束状の繊維束を使用して樹脂充填繊維基材を形成する。繊維間の空間に熱可塑性ポリウレタン及び架橋剤が充填されると共に繊維基材の表面にマトリックス樹脂が積層された糸束状の繊維基材、即ち1本の樹脂充填繊維基材の外表面にマトリックス樹脂が配置された2層構造の紐状の樹脂充填繊維基材を製造し、更にその2層構造の樹脂充填繊維基材を複数本束ねて、複数積層し、加圧下でマトリックス樹脂を加熱し、マトリックス樹脂を溶融させる。そして、樹脂充填繊維基材のマトリックス樹脂同士を接着させて紐状の繊維強化複合材料を製造する。尚、繊維基材とマトリックス樹脂とを積層するとは、マトリックス樹脂で繊維基材を被覆することも含まれる。
Also, in the case of a yarn bundle-shaped fiber base material, a resin-filled fiber base material is formed by using a yarn bundle-shaped fiber bundle as the fiber base material. A fiber bundle-like fiber base material in which a space between fibers is filled with thermoplastic polyurethane and a cross-linking agent and a matrix resin is laminated on the surface of the fiber base material, that is, a matrix is provided on the outer surface of one resin-filled fiber base material. A two-layer structure string-shaped resin-filled fiber base material in which a resin is arranged is manufactured, and a plurality of the two-layer structure resin-filled fiber base materials are bundled and laminated, and the matrix resin is heated under pressure. , Melt the matrix resin. Then, the matrix resins of the resin-filled fiber base material are adhered to each other to manufacture a string-shaped fiber-reinforced composite material. In addition, laminating the fiber base material and the matrix resin also includes covering the fiber base material with the matrix resin.
又、複数の糸束状の樹脂充填繊維基材を束ねて、加圧下で加熱し、マトリックス樹脂を溶融させ、マトリックス樹脂同士を接着させて繊維強化複合材料を製造することとしてもよい。
Alternatively, a plurality of thread-bundle-shaped resin-filled fiber base materials may be bundled, heated under pressure to melt the matrix resin, and the matrix resins are adhered to each other to produce the fiber-reinforced composite material.
又、マトリックス樹脂は上述の様に、繊維間の空間に充填される熱可塑性ポリウレタンと同時に繊維基材に付着させるのではなく、別工程で繊維基材に付着させてもよい。例えば、フィルム状の熱可塑性ポリウレタンを用い、繊維間の空間に熱可塑性ポリウレタンが充填された繊維基材とフィルム状のマトリックス樹脂を積層し、加圧下で加熱し、マトリックス樹脂を溶融させ、マトリックス樹脂と熱可塑性ポリウレタンが充填された繊維基材を接着させて樹脂充填繊維基材又は繊維強化複合材料を製造することとしてもよい。このような製造方法の場合、架橋剤を繊維間の空間に充填される熱可塑性ポリウレタンとマトリックス樹脂としての熱可塑性ポリウレタンの双方に添加することも出来るが、いずれか一方のみに添加することも出来る。
Also, as described above, the matrix resin may be attached to the fiber base material in a separate step, instead of being attached to the fiber base material at the same time as the thermoplastic polyurethane filling the space between the fibers. For example, a film-like thermoplastic polyurethane is used, a fiber base material in which spaces between fibers are filled with the thermoplastic polyurethane and a film-like matrix resin are laminated, and heated under pressure to melt the matrix resin, The resin-filled fiber base material or the fiber-reinforced composite material may be manufactured by adhering the fiber base material filled with the thermoplastic polyurethane with each other. In the case of such a production method, the cross-linking agent can be added to both the thermoplastic polyurethane filled in the spaces between the fibers and the thermoplastic polyurethane as the matrix resin, but can be added to only one of them. ..
フィルム状のマトリックス樹脂を用いる場合、マトリックス樹脂を熱可塑性ポリウレタンが充填された繊維基材の全表面に設置してもよいが、シート状の繊維基材の上下面の一方のみに設置し、或いは糸束の長さ方向の両端面等には設置しないで製造し、樹脂充填繊維基材の一部表面にのみマトリックス樹脂を設置する構成としてもよい。
When a film-shaped matrix resin is used, the matrix resin may be installed on the entire surface of the fiber substrate filled with thermoplastic polyurethane, but it may be installed on only one of the upper and lower surfaces of the sheet-shaped fiber substrate, or The yarn bundle may be manufactured without being installed on both end surfaces in the length direction and the matrix resin may be installed only on a part of the surface of the resin-filled fiber base material.
又、樹脂充填繊維基材は、溶融したマトリックス樹脂を金型等に注入して、金型内に配置された、繊維間の空間へ熱可塑性ポリウレタンが充填された繊維基材にマトリックス樹脂を付与し、繊維基材とマトリックス樹脂を接着固化させて積層して製造することも出来る。
In addition, the resin-filled fiber base material is obtained by injecting molten matrix resin into a mold or the like, and applying the matrix resin to the fiber base material filled with thermoplastic polyurethane in the space between the fibers, which is placed in the mold. Alternatively, the fiber base material and the matrix resin may be adhered and solidified and laminated to manufacture.
又、繊維強化複合材料を製造する場合、上述のようにして成形した繊維強化複合材料を複数積層して、加圧下で加熱し、マトリックス樹脂同士を溶融させ、接着させて製造することとしてもよい。
When manufacturing a fiber-reinforced composite material, a plurality of fiber-reinforced composite materials molded as described above may be laminated and heated under pressure to melt and bond the matrix resins to each other. ..
次に、繊維強化複合材料成形品の製造方法について説明する。繊維強化複合材料を単独で、金型に入れて、加圧下で加熱すると同時に所定の形状に成形して繊維強化複合材料成形品を製造する。又、複数の繊維強化複合材料を積層し、束ね又は引き揃え、型に入れて、加圧下で加熱すると同時に所定の形状に成形して繊維強化複合材料成形品を製造する。
Next, a method for manufacturing a fiber-reinforced composite material molded product will be described. The fiber-reinforced composite material alone is put into a mold, heated under pressure, and simultaneously molded into a predetermined shape to manufacture a fiber-reinforced composite material molded product. Further, a plurality of fiber-reinforced composite materials are laminated, bundled or aligned, put in a mold, heated under pressure, and simultaneously molded into a predetermined shape to manufacture a fiber-reinforced composite material molded product.
以下、本発明を実施例によりさらに詳細に説明する。繊維基材として、東レ株式会社製炭素ロービングT300-12Kを84本使用した幅250mmの一方向ノンクリンプファブリック(サカイ産業株式会社製)を用いた。250mm×125mmのこれらの繊維基材の夫々に、熱可塑性ポリウレタンとして第一工業製薬株式会社製水系ポリウレタン樹脂(スーパーフレックス130(SF-130)、無黄変、エーテル系、平均粒径0.03μm、固形分35wt%)を、繊維基材100質量部に対し固形分換算で25質量部以上70質量部以下の範囲で付与し、天日乾燥後、100℃の真空乾燥機にて1時間乾燥して樹脂充填繊維基材を形成した。尚、スーパーフレックス130の乾燥膜のガラス転移転温度は101℃、軟化温度は174℃、熱溶融温度は216℃である。
Hereinafter, the present invention will be described in more detail with reference to examples. As the fiber substrate, a unidirectional non-crimp fabric (made by Sakai Sangyo Co., Ltd.) having a width of 250 mm and using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. was used. Each of these 250 mm×125 mm fibrous base materials has a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as a thermoplastic polyurethane (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 μm , Solid content 35 wt%) in an amount of 25 parts by mass or more and 70 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber base material, and after drying in the sun, dried in a vacuum dryer at 100° C. for 1 hour. To form a resin-filled fiber base material. The dry film of Superflex 130 has a glass transition temperature of 101°C, a softening temperature of 174°C, and a heat melting temperature of 216°C.
そして、常温の平板金型にシリコン離型剤を塗布した後に、平板金型上に上述のようにして形成した樹脂充填繊維基材を4枚重ねて配置し、240℃で5分間溶融し、240℃を維持したまま3MPaの圧力で加圧して一体化して、厚さが約1mmの繊維強化複合材料を得た(実施例1~実施例2)。
Then, after applying a silicon mold release agent to a flat plate mold at room temperature, four resin-filled fiber base materials formed as described above are placed on the flat plate mold and melted at 240° C. for 5 minutes, While maintaining the temperature at 240° C., the fiber-reinforced composite material having a thickness of about 1 mm was obtained by pressurizing with a pressure of 3 MPa to integrate the materials (Examples 1 and 2).
又、繊維基材として、東レ株式会社製炭素ロービングT300-12Kを84本使用した幅250mmの一方向ノンクリンプファブリック(サカイ産業株式会社製)を用いた。250mm×125mmのこれらの繊維基材の夫々に、熱可塑性ポリウレタンとして第一工業製薬株式会社製水系ポリウレタン樹脂(スーパーフレックス130(SF-130)、無黄変、エーテル系、平均粒径0.03μm、固形分35wt%)を、繊維基材100質量部に対し固形分換算で70質量部以上で付与し、天日乾燥後、100℃の真空乾燥機にて1時間乾燥して樹脂充填繊維基材を形成した。
Further, as the fiber base material, a unidirectional non-crimp fabric (made by Sakai Sangyo Co., Ltd.) having a width of 250 mm and using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. was used. Each of these 250 mm×125 mm fibrous base materials has a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. as a thermoplastic polyurethane (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 μm). , Solid content 35 wt%) in an amount of 70 parts by mass or more in terms of solid content based on 100 parts by mass of the fiber base material, dried in the sun, and then dried in a vacuum dryer at 100° C. for 1 hour to obtain a resin-filled fiber base. The material was formed.
そして、常温の真空金型にシリコン離型剤を塗布した後に、真空金型上に上述のようにして形成した樹脂充填繊維基材を8枚重ねて配置し、240℃で10分間溶融し、240℃を維持したまま6.8MPaの圧力で加圧して一体化して、厚さが約2mmの繊維強化複合材料を得た(実施例3)。
Then, after applying a silicone release agent to a vacuum mold at room temperature, eight resin-filled fiber base materials formed as described above are placed on the vacuum mold in a stacked manner and melted at 240° C. for 10 minutes, While maintaining the temperature at 240° C., the fiber-reinforced composite material having a thickness of about 2 mm was obtained by pressurizing at a pressure of 6.8 MPa to integrate the materials (Example 3).
又、繊維基材として、東レ株式会社製炭素ロービングT300-12Kを84本使用した幅250mmの一方向ノンクリンプファブリック(サカイ産業株式会社製)を用い、250mm×125mmのこれらの繊維基材の夫々に、熱可塑性ポリウレタンとして第一工業製薬株式会社製水系ポリウレタン樹脂(スーパーフレックス210(SF-210)、無黄変、エステル系、平均粒径0.04μm、固形分35wt%)を、繊維基材100質量部に対し固形分換算で25質量部以上100質量部以下の範囲で付与し、天日乾燥後、100℃の真空乾燥機にて1時間乾燥して樹脂充填繊維基材を形成した。
Further, as the fiber base material, a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm×125 mm was used. In addition, as a thermoplastic polyurethane, a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (Superflex 210 (SF-210), non-yellowing, ester-based, average particle size 0.04 μm, solid content 35 wt%) was used as a fiber base material. It was applied in an amount of 25 parts by mass or more and 100 parts by mass or less in terms of solid content with respect to 100 parts by mass, dried in the sun and then dried in a vacuum dryer at 100° C. for 1 hour to form a resin-filled fiber base material.
そして、常温の平板金型にシリコン離型剤を塗布した後に、平板金型上に上述のようにして形成した樹脂充填繊維基材を4枚重ねて配置し、240℃で5分間溶融し、240℃を維持したまま3MPaの圧力で加圧して一体化して、厚さが約1mmの繊維強化複合材料を得た(実施例4)。
Then, after applying a silicon mold release agent to a flat plate mold at room temperature, four resin-filled fiber base materials formed as described above are placed on the flat plate mold and melted at 240° C. for 5 minutes, While maintaining the temperature of 240° C., the fiber-reinforced composite material having a thickness of about 1 mm was obtained by pressurizing with a pressure of 3 MPa and integrating (Example 4).
比較例として、実施例1~実施例2で使用した繊維基材を用い、常温の平板金型にフレーム型を置き、内部にシリコン離型剤を塗布した後に、金型内に繊維基材の上下面に目付が136g/m2のポリプロピレン(PP)フィルムを配置し、200℃で5分間溶融し、200℃を維持したまま約7MPaの圧力で加圧して一体化して繊維強化複合材料を得た(比較例1)。
As a comparative example, the fiber base material used in Examples 1 and 2 was used, a frame mold was placed in a flat plate mold at room temperature, and a silicone mold release agent was applied to the inside of the frame mold. A polypropylene (PP) film having a basis weight of 136 g/m 2 is placed on the upper and lower surfaces, melted at 200° C. for 5 minutes, and pressed at a pressure of about 7 MPa while maintaining 200° C. to integrate to obtain a fiber-reinforced composite material. (Comparative example 1).
又、繊維基材として、東レ株式会社製炭素ロービングT300-12Kを84本使用した幅250mmの一方向ノンクリンプファブリック(サカイ産業株式会社製)を用い、250mm×125mmのこれらの繊維基材の夫々に、熱可塑性ポリウレタンとして第一工業製薬株式会社製水系ポリウレタン樹脂(スーパーフレックス130(SF-130)、無黄変、エーテル系、平均粒径0.03μm、固形分35wt%)を、繊維基材100質量部に対し固形分換算で25質量部以上100質量部以下の範囲で付与すると共に、カルボジイミド系架橋剤として日清紡ケミカル社製「カルボジライトV-02-L2」(固形分40wt%)、又はオキサゾリジン系架橋剤として日本触媒社製「エポクロスWS-700」(固形分25wt%)を繊維基材100質量部に対して、固形分換算で0.5質量部以上10質量部以下の範囲で付与し、天日乾燥後、100℃の真空乾燥機にて1時間乾燥して樹脂充填繊維基材を形成した。
Further, as the fiber base material, a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm×125 mm was used. As a thermoplastic polyurethane, a water-based polyurethane resin manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (Superflex 130 (SF-130), non-yellowing, ether-based, average particle diameter 0.03 μm, solid content 35 wt%) was used as a fiber base material. It is added in an amount of 25 parts by mass or more and 100 parts by mass or less in terms of solid content with respect to 100 parts by mass, and "Carbodilite V-02-L2" (solid content 40 wt%) manufactured by Nisshinbo Chemical Co., Ltd. is used as a carbodiimide crosslinking agent, or oxazolidine. "Epocros WS-700" (solid content 25 wt%) manufactured by Nippon Shokubai Co., Ltd. as a system cross-linking agent was applied to 100 parts by mass of the fiber base material in the range of 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content. After drying in the sun, it was dried in a vacuum dryer at 100° C. for 1 hour to form a resin-filled fiber base material.
そして、常温の平板金型にシリコン離型剤を塗布した後に、平板金型上に上述のようにして形成した樹脂充填繊維基材を4枚重ねて配置し、240℃で5分間溶融し、240℃を維持したまま3MPaの圧力で加圧して一体化して、厚さが約1mmの繊維強化複合材料を得た(実施例5~実施例8、実施例10)。
Then, after applying a silicon mold release agent to a flat plate mold at room temperature, four resin-filled fiber base materials formed as described above are placed on the flat plate mold and melted at 240° C. for 5 minutes, While maintaining 240° C., pressure was applied at a pressure of 3 MPa for integration to obtain a fiber-reinforced composite material having a thickness of about 1 mm (Examples 5 to 8, Example 10).
又、繊維基材として、東レ株式会社製炭素ロービングT300-12Kを84本使用した幅250mmの一方向ノンクリンプファブリック(サカイ産業株式会社製)を用い、250mm×125mmのこれらの繊維基材の夫々に、熱可塑性ポリウレタンとして第一工業製薬株式会社製水系ポリウレタン樹脂(スーパーフレックス130(SF-130)、無黄変、エーテル系、平均粒径0.03μm、固形分35wt%)を、繊維基材100質量部に対し固形分換算で70質量部以上で付与すると共に、カルボジイミド系架橋剤として日清紡ケミカル社製「カルボジライトV-02-L2」(固形分40wt%)を繊維基材100質量部に対して、固形分換算で0.5質量部以上10質量部以下の範囲で付与し、天日乾燥後、100℃の真空乾燥機にて1時間乾燥して樹脂充填繊維基材を形成した。
Further, as the fiber base material, a unidirectional non-crimp fabric of width 250 mm using 84 carbon roving T300-12K manufactured by Toray Industries, Inc. (manufactured by Sakai Sangyo Co., Ltd.) was used, and each of these fiber base materials of 250 mm×125 mm was used. In addition, as a thermoplastic polyurethane, a water-based polyurethane resin (Superflex 130 (SF-130), non-yellowing, ether-based, average particle size 0.03 μm, solid content 35 wt%) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was used as a fiber base material. 70 parts by mass or more in terms of solid content is added to 100 parts by mass, and "Carbodilite V-02-L2" (solid content 40 wt%) manufactured by Nisshinbo Chemical Co., Ltd. (solid content 40 wt%) is added to 100 parts by mass of the fiber substrate as a carbodiimide crosslinking agent. Then, it was applied in the range of 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content, dried in the sun, and then dried in a vacuum dryer at 100° C. for 1 hour to form a resin-filled fiber base material.
そして、常温の真空金型にシリコン離型剤を塗布した後に、真空金型上に上述のようにして形成した樹脂充填繊維基材を8枚重ねて配置し、240℃で10分間溶融し、240℃を維持したまま6.8MPaの圧力で加圧して一体化して、厚さが約2mmの繊維強化複合材料を得た(実施例9)。
Then, after applying a silicone release agent to a vacuum mold at room temperature, eight resin-filled fiber base materials formed as described above are placed on the vacuum mold in a stacked manner and melted at 240° C. for 10 minutes, While maintaining the temperature at 240° C., the fiber-reinforced composite material having a thickness of about 2 mm was obtained by pressurizing with a pressure of 6.8 MPa to integrate (Example 9).
ダイヤモンドカッターを用いて、これらの繊維強化複合材料を幅15mm、長さ100mmに切り出して試験片を作成し、JIS K7074に準拠して曲げ試験を以下の測定条件で実施し、曲げ強度を測定した。
クロスヘッド速度:5mm/min
スパン間距離:80mm Using a diamond cutter, these fiber reinforced composite materials were cut into a piece having a width of 15 mm and a length of 100 mm to prepare a test piece, and a bending test was carried out under the following measurement conditions according to JIS K7074 to measure the bending strength. ..
Crosshead speed: 5mm/min
Distance between spans: 80 mm
クロスヘッド速度:5mm/min
スパン間距離:80mm Using a diamond cutter, these fiber reinforced composite materials were cut into a piece having a width of 15 mm and a length of 100 mm to prepare a test piece, and a bending test was carried out under the following measurement conditions according to JIS K7074 to measure the bending strength. ..
Crosshead speed: 5mm/min
Distance between spans: 80 mm
実施例1~実施例4及び比較例1の結果を表1に示す。尚、表1中の水系ポリウレタン樹脂SF-130(スーパーフレックス130)、水系ポリウレタン樹脂SF-210(スーパーフレックス210)、及びPP(ポリプロピレン)の数値は、繊維基材100質量部に対する質量部である。尚、水系ポリウレタン樹脂SF-130、SF-210は、有姿付着量と固形分換算付着量を記載した。
The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1. The numerical values of water-based polyurethane resin SF-130 (Superflex 130), water-based polyurethane resin SF-210 (Superflex 210), and PP (polypropylene) in Table 1 are parts by mass with respect to 100 parts by mass of the fiber base material. .. For the water-based polyurethane resins SF-130 and SF-210, the physical adhesion amount and the solid content conversion adhesion amount are described.
又、実施例5~実施例10の結果を表2に示す。尚、表2中の水系ポリウレタン樹脂SF-130(スーパーフレックス130)、カルボジイミド系架橋剤及びオキサゾリジン系架橋剤の数値は、繊維基材100質量部に対する質量部である。尚、水系ポリウレタン樹脂SF-130、カルボジイミド系架橋剤及びオキサゾリジン系架橋剤は、夫々有姿付着量と固形分換算付着量を記載した。
Table 2 shows the results of Examples 5 to 10. The numerical values of the water-based polyurethane resin SF-130 (Superflex 130), the carbodiimide-based cross-linking agent and the oxazolidine-based cross-linking agent in Table 2 are parts by mass based on 100 parts by mass of the fiber base material. The water-based polyurethane resin SF-130, the carbodiimide-based cross-linking agent, and the oxazolidine-based cross-linking agent are described in terms of the physical adhesion amount and the solid content conversion adhesion amount, respectively.
表1及び表2より明らかなように、熱可塑性ポリウレタンを繊維基材100質量部に対し25質量部以上100質量部以下付与して、繊維基材の繊維間の空間に熱可塑性ポリウレタンが充填されると共に、繊維基材の外表面にマトリックス樹脂としての熱可塑性ポリウレタンが積層することにより、曲げ強度が高くなることが分かる。更に、架橋剤を繊維基材100質量部に対して、固形分換算で0.5質量部以上10質量部以下の範囲で熱可塑性ポリウレタンに添加することにより、曲げ強度がさらに高くなることが分かる。
As is clear from Table 1 and Table 2, the thermoplastic polyurethane is applied to 25 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the fiber base material, and the space between the fibers of the fiber base material is filled with the thermoplastic polyurethane. In addition, it is understood that the bending strength is increased by laminating the thermoplastic polyurethane as the matrix resin on the outer surface of the fiber base material. Further, it is found that the bending strength is further increased by adding the crosslinking agent to the thermoplastic polyurethane in the range of 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content with respect to 100 parts by mass of the fiber base material. ..
熱可塑性ポリウレタンの粒子を水系媒体中に分散させた水系樹脂分散体を繊維基材に含浸させて、繊維基材の繊維間の空間に熱可塑性ポリウレタンを充填させると共に、熱可塑性ポリウレタンのマトリックス樹脂で繊維基材を挟み込んで繊維強化複合材料を製造することにより、ボイドのない繊維強化熱可塑性樹脂複合材料を容易に製造することが出来、且つ製造時間の短縮を図ることが出来る。従って、力学特性の優れた繊維強化複合材料を確実に供給することが出来、例えば自動車等の様々な製品の軽量化や強度の向上に寄与することが出来、様々な製品の材料として使用することが出来る。
A fiber-based material is impregnated with an aqueous resin dispersion in which thermoplastic polyurethane particles are dispersed in an aqueous medium to fill the spaces between the fibers of the fiber-based material with the thermoplastic polyurethane, and at the same time, the thermoplastic polyurethane matrix resin is used. By producing a fiber reinforced composite material by sandwiching a fiber base material, a void-free fiber reinforced thermoplastic resin composite material can be easily produced and the production time can be shortened. Therefore, it is possible to reliably supply a fiber-reinforced composite material having excellent mechanical properties, which can contribute to weight reduction and strength improvement of various products such as automobiles, and can be used as a material for various products. Can be done.
Claims (15)
- 繊維基材の繊維間の空間に熱可塑性ポリウレタンが充填されて構成され、前記熱可塑性ポリウレタンの前記繊維基材への付与量は、固形分換算で前記繊維基材100質量部に対し25質量部以上100質量部以下であることを特徴とする樹脂充填繊維基材。 The space between the fibers of the fiber base material is filled with thermoplastic polyurethane, and the amount of the thermoplastic polyurethane applied to the fiber base material is 25 parts by mass based on 100 parts by mass of the fiber base material in terms of solid content. A resin-filled fiber base material, characterized in that the content is not less than 100 parts by mass.
- 前記熱可塑性ポリウレタンの前記繊維基材への付与量は、固形分換算で前記繊維基材100質量部に対し25質量部以上70質量部以下であることを特徴とする請求項1に記載の樹脂充填繊維基材。 The amount of the thermoplastic polyurethane applied to the fiber base material is 25 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of the fiber base material in terms of solid content. Filled fiber base material.
- 前記熱可塑性ポリウレタンに架橋剤が添加されていることを特徴とする請求項1または請求項2に記載の樹脂充填繊維基材。 The resin-filled fiber base material according to claim 1 or 2, wherein a cross-linking agent is added to the thermoplastic polyurethane.
- 前記架橋剤の添加量は、前記繊維基材100質量部に対し固形分換算で0.5質量部以上10質量部以下であることを特徴とする請求項3に記載の樹脂充填繊維基材。 The resin-filled fiber base material according to claim 3, wherein the amount of the crosslinking agent added is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content with respect to 100 parts by mass of the fiber base material.
- 前記架橋剤は、オキサゾリン基含有化合物とカルボジイミド基含有化合物とのうちの少なくとも一方を含むことを特徴とする請求項3または請求項4に記載の樹脂充填繊維基材。 The resin-filled fiber base material according to claim 3 or 4, wherein the crosslinking agent contains at least one of an oxazoline group-containing compound and a carbodiimide group-containing compound.
- 前記繊維基材は、シート状又は糸束状であり、前記樹脂充填繊維基材はシート状又は紐状であることを特徴とする請求項1から5のうちいずれか1項に記載の樹脂充填繊維基材。 The resin filling according to any one of claims 1 to 5, wherein the fiber base material has a sheet shape or a yarn bundle shape, and the resin-filled fiber base material has a sheet shape or a string shape. Fiber substrate.
- 前記熱可塑性ポリウレタンの粒子の平均粒径は、0.01μm以上0.2μm以下であることを特徴とする請求項1から6のうちいずれか1項に記載の樹脂充填繊維基材。 The resin-filled fiber base material according to any one of claims 1 to 6, wherein the thermoplastic polyurethane particles have an average particle size of 0.01 µm or more and 0.2 µm or less.
- 請求項1から7のうちいずれか1項に記載の前記樹脂充填繊維基材が積層されて構成されていることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material, characterized in that the resin-filled fiber base material according to any one of claims 1 to 7 is laminated.
- 請求項8に記載の繊維強化複合材料で成形されていることを特徴とする繊維強化複合材料成形品。 A fiber-reinforced composite material molded product, which is molded with the fiber-reinforced composite material according to claim 8.
- 繊維基材に、熱可塑性ポリウレタンの粒子を水系媒体中に分散させた水系樹脂分散体を付与し、乾燥処理をして水系媒体を除去して、前記繊維基材の繊維間の空間に、熱可塑性ポリウレタンを充填し、前記熱可塑性ポリウレタンを固形分換算で前記繊維基材100質量部に対し25質量部以上100質量部以下付与して成形することを特徴とする樹脂充填繊維基材の製造方法。 To the fiber base material, an aqueous resin dispersion in which thermoplastic polyurethane particles are dispersed in an aqueous medium is applied, and the aqueous medium is removed by a drying treatment, and the space between the fibers of the fiber base material is heated. A method for producing a resin-filled fiber base material, which comprises filling a thermoplastic polyurethane and applying the thermoplastic polyurethane in an amount of 25 parts by mass or more and 100 parts by mass or less to 100 parts by mass of the fiber base material in terms of solid content and molding. ..
- 前記熱可塑性ポリウレタンに架橋剤を添加することを特徴とする請求項10に記載の樹脂充填繊維基材の製造方法。 The method for producing a resin-filled fiber base material according to claim 10, wherein a crosslinking agent is added to the thermoplastic polyurethane.
- 前記架橋剤の添加量は、前記繊維基材100質量部に対し固形分換算で0.5質量部以上10質量部以下であることを特徴とする請求項11に記載の樹脂充填繊維基材の製造方法。 The amount of the cross-linking agent added is 0.5 parts by mass or more and 10 parts by mass or less in terms of solid content based on 100 parts by mass of the fiber substrate, and the resin-filled fiber substrate according to claim 11. Production method.
- 前記繊維基材は、シート状又は糸束状であり、前記樹脂充填繊維基材はシート状又は紐状であることを特徴とする請求項10から12のうちいずれか1項に記載の樹脂充填繊維基材の製造方法。 The resin filling according to any one of claims 10 to 12, wherein the fiber base material has a sheet shape or a yarn bundle shape, and the resin-filled fiber base material has a sheet shape or a string shape. A method for manufacturing a fiber base material.
- 請求項10から13のうちいずれか1項に記載の樹脂充填繊維基材の製造方法で成形された樹脂充填繊維基材を積層し、加圧すると共に加熱して、一体化して成形することを特徴とする繊維強化複合材料の製造方法。 A resin-filled fiber base material formed by the method for producing a resin-filled fiber base material according to any one of claims 10 to 13, is laminated, pressed and heated, and integrally formed. A method for producing a fiber-reinforced composite material.
- 請求項14に記載の繊維強化複合材料の製造方法で成形された繊維強化複合材料を単独で、積層し又は引き揃え、加圧下で加熱すると同時に所定の形状に成形することを特徴とする繊維強化複合材料成形品の製造方法。 The fiber-reinforced composite material formed by the method for producing a fiber-reinforced composite material according to claim 14, wherein the fiber-reinforced composite material is singly laminated or aligned, heated under pressure, and simultaneously formed into a predetermined shape. Manufacturing method of composite molded article.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080013615.1A CN113412189A (en) | 2019-02-15 | 2020-02-14 | Resin-filled fiber base material, fiber-reinforced composite material, and method for producing same |
JP2020572351A JPWO2020166717A1 (en) | 2019-02-15 | 2020-02-14 | Resin-filled fiber base material, fiber-reinforced composite material and its manufacturing method |
KR1020217024490A KR20210126574A (en) | 2019-02-15 | 2020-02-14 | Resin-filled fiber base material, fiber-reinforced composite material, and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019025614 | 2019-02-15 | ||
JP2019-025614 | 2019-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166717A1 true WO2020166717A1 (en) | 2020-08-20 |
Family
ID=72044058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005887 WO2020166717A1 (en) | 2019-02-15 | 2020-02-14 | Resin filled fiber base material, fiber reinforced composite material and method for producing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2020166717A1 (en) |
KR (1) | KR20210126574A (en) |
CN (1) | CN113412189A (en) |
WO (1) | WO2020166717A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0267327A (en) * | 1988-07-05 | 1990-03-07 | Ppg Ind Inc | Chemical treatment composition |
JPH02240170A (en) * | 1989-02-03 | 1990-09-25 | Ppg Ind Inc | Polymer-containing composition having high oxidation stability |
JPH03236909A (en) * | 1990-02-13 | 1991-10-22 | Kuraray Co Ltd | Stamping molding sheet |
JPH06510570A (en) * | 1991-08-07 | 1994-11-24 | ピーピージー インダストリーズ インコーポレーテッド | Bundle of impregnated fibers with independently crosslinkable polyurethane |
JP2003025456A (en) * | 2001-07-17 | 2003-01-29 | Daicel Chem Ind Ltd | Window frame or door frame made of long fiber- reinforced thermoplastic resin |
JP2003201349A (en) * | 2002-01-09 | 2003-07-18 | Daicel Chem Ind Ltd | Fiber-reinforced polyurethane resin composition, molding method and molded article |
JP2012031535A (en) * | 2010-07-29 | 2012-02-16 | Seiren Co Ltd | Base fabric for air-bag |
WO2016067711A1 (en) * | 2014-10-29 | 2016-05-06 | 風間均 | Fiber-reinforced composite material and method for manufacturing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3106261B2 (en) | 1991-02-25 | 2000-11-06 | 東レ株式会社 | Sizing agent for carbon fiber and carbon fiber treated with the sizing agent |
JP4616617B2 (en) | 2004-10-26 | 2011-01-19 | 帝人テクノプロダクツ株式会社 | Method for producing carbon fiber strand for thermoplastic resin reinforcement |
JP5222243B2 (en) | 2009-07-13 | 2013-06-26 | 松本油脂製薬株式会社 | Reinforcing fiber sizing agents, synthetic fiber strands and fiber reinforced composites |
JP5538032B2 (en) | 2010-03-31 | 2014-07-02 | 三洋化成工業株式会社 | Fiber sizing agent |
-
2020
- 2020-02-14 WO PCT/JP2020/005887 patent/WO2020166717A1/en active Application Filing
- 2020-02-14 JP JP2020572351A patent/JPWO2020166717A1/en active Pending
- 2020-02-14 CN CN202080013615.1A patent/CN113412189A/en not_active Withdrawn
- 2020-02-14 KR KR1020217024490A patent/KR20210126574A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0267327A (en) * | 1988-07-05 | 1990-03-07 | Ppg Ind Inc | Chemical treatment composition |
JPH02240170A (en) * | 1989-02-03 | 1990-09-25 | Ppg Ind Inc | Polymer-containing composition having high oxidation stability |
JPH03236909A (en) * | 1990-02-13 | 1991-10-22 | Kuraray Co Ltd | Stamping molding sheet |
JPH06510570A (en) * | 1991-08-07 | 1994-11-24 | ピーピージー インダストリーズ インコーポレーテッド | Bundle of impregnated fibers with independently crosslinkable polyurethane |
JP2003025456A (en) * | 2001-07-17 | 2003-01-29 | Daicel Chem Ind Ltd | Window frame or door frame made of long fiber- reinforced thermoplastic resin |
JP2003201349A (en) * | 2002-01-09 | 2003-07-18 | Daicel Chem Ind Ltd | Fiber-reinforced polyurethane resin composition, molding method and molded article |
JP2012031535A (en) * | 2010-07-29 | 2012-02-16 | Seiren Co Ltd | Base fabric for air-bag |
WO2016067711A1 (en) * | 2014-10-29 | 2016-05-06 | 風間均 | Fiber-reinforced composite material and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020166717A1 (en) | 2021-09-13 |
CN113412189A (en) | 2021-09-17 |
KR20210126574A (en) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2540078C2 (en) | Prepregs and articles moulded therefrom | |
RU2545066C9 (en) | Prepregs and moulded products, obtained from them at lower temperature | |
KR101574833B1 (en) | Functional film for well-impregnated composites and method of manufacturing composites using the same | |
JP5955376B2 (en) | Storage-stable polyurethane prepreg from polyurethane composition having liquid resin component and molded product produced therefrom | |
US20210129488A1 (en) | Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet | |
JP2013544899A (en) | Prepreg having a fixed sheet based on a storage-stable reactive or highly reactive polyurethane composition, and a composite member made from the prepreg | |
JP6000497B1 (en) | Fiber-reinforced composite material and method for producing the same | |
EP3613585B1 (en) | Fiber-reinforced composite material molded article and method for producing same | |
JP6934119B2 (en) | Resin-filled fiber base material, fiber-reinforced composite material and its manufacturing method | |
KR101744205B1 (en) | Thermoplastic composite having thermoplastic polyurethane coating layer and its manufacturing method | |
WO2020166717A1 (en) | Resin filled fiber base material, fiber reinforced composite material and method for producing same | |
EP1072634A1 (en) | Reactive resin sheet materials | |
KR20170069747A (en) | Thermoplastic composite containing thermoplastic polyurethane coating layer and its manufacturing method | |
EP3854836A1 (en) | Reinforcing fiber bundle, reinforcing fiber open fabric, and fiber-reinforced composite, and method for manufacturing same | |
KR20190061662A (en) | Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect | |
KR101746026B1 (en) | Multilayer hybrid prepreg and its manufacturing method | |
JP7526948B2 (en) | Heat insulating sheet and circuit board using same | |
JP6520043B2 (en) | Molding material, method for producing the same, and molded article | |
KR20240104382A (en) | Wood composition having a laminated state of continuous lyocell fibers impregnated with a biodegradable thermoplastic resin | |
KR20170069745A (en) | Thermoplastic composite and its manufacturing method | |
EP3546504B1 (en) | Polymer nanoparticles for improved distortion capability in composites | |
KR20240104381A (en) | Biodegradable prepreg using lyocell and manufacturing method thereof | |
EP4317266A1 (en) | Flat semi-finished product comprising a plastic matrix and a thermoplastic film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20755818 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020572351 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20755818 Country of ref document: EP Kind code of ref document: A1 |