WO2020162583A1 - Drone system, drone, mobile unit, control device, drone system control method, and drone system control program - Google Patents
Drone system, drone, mobile unit, control device, drone system control method, and drone system control program Download PDFInfo
- Publication number
- WO2020162583A1 WO2020162583A1 PCT/JP2020/004713 JP2020004713W WO2020162583A1 WO 2020162583 A1 WO2020162583 A1 WO 2020162583A1 JP 2020004713 W JP2020004713 W JP 2020004713W WO 2020162583 A1 WO2020162583 A1 WO 2020162583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drone
- drones
- landing
- moving body
- drone system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 230000033001 locomotion Effects 0.000 claims abstract description 34
- 239000003814 drug Substances 0.000 claims description 82
- 229940079593 drug Drugs 0.000 claims description 49
- 238000001514 detection method Methods 0.000 claims description 13
- 230000005856 abnormality Effects 0.000 claims description 10
- 238000004904 shortening Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 22
- 230000006870 function Effects 0.000 description 16
- 239000002699 waste material Substances 0.000 description 15
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000005192 partition Methods 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000005507 spraying Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- -1 seeds Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000010415 tidying Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M7/00—Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/36—Other airport installations
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/40—UAVs specially adapted for particular uses or applications for agriculture or forestry operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/45—UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/102—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/26—Ducted or shrouded rotors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/37—Charging when not in flight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/39—Battery swapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U80/00—Transport or storage specially adapted for UAVs
- B64U80/80—Transport or storage specially adapted for UAVs by vehicles
- B64U80/86—Land vehicles
Definitions
- the present invention relates to a drone system, a drone, a moving body, a control device, a drone system control method, and a drone system control program.
- Patent Document 3 when two sets of moving bodies are charged alternately, a remote control device that changes the moving bodies of one set without stopping the operation of the moving bodies of the other set while charging the moving bodies of the other set.
- the control unit included in the remote control device when the alternation time detecting means detects that it is the alternation time of the moving body, causes the moving moving body and the moving body being charged to be changed by wireless transmission.
- Patent Document 3 aims to always operate one of the moving bodies, and does not describe performing the work safely without collision of a plurality of moving bodies.
- a drone system includes a plurality of drones that fly in a work area to perform work, and a control device that controls a takeoff sequence for taking off the plurality of drones. , At least.
- the control device may be configured to take off the plurality of drones one by one.
- the control device may be configured to acquire information on the first drone taking off and take off the second drone when the drone satisfies a predetermined condition.
- the control device may be configured to take off the second drone when the distance between the first drone and the second drone exceeds a predetermined distance.
- the control device may be configured to control the landing order of landing on the landing platform.
- the control device when the planned stay time zone of the drone information acquisition unit that acquires the information of the plurality of drones and the landing platform of the plurality of drones overlap, the landing based on the information of the plurality of drones. And a landing order determination unit that determines the order.
- the drone information acquisition unit acquires return information regarding the cause of the drone returning to the departure and arrival platform
- the landing order determination unit may determine the landing order based on the return information.
- the landing sequence determination unit may be configured to land the drone before other drones when the drone returns based on a return instruction from the user.
- the landing order determination unit may be configured to land the drone earlier than the other drones when the drone returns based on at least one of a failure and an abnormality occurring in the drone. Good.
- the drone information acquisition unit may acquire the amount of resources held by the plurality of drones, and the landing order determination unit may determine the landing order based on the amount of resources.
- the landing sequence determination unit may be configured to land the drone having a smaller amount of the resource before the other drones.
- the amount of the resource may be configured to include at least one of the amount of energy that drives the drone and the amount of the drug that the drone sprays.
- the drone that comes later in the landing sequence may be configured to wait until the drone is ready to land on the departure and arrival platform.
- the drone that is later in the landing sequence is configured to hover and wait in the work area until the drone is ready to land on the landing platform. May be.
- the drone may be configured to land first on the landing platform and the other drone to land on a different location from the landing platform. ..
- ⁇ It may be configured to shorten the work planned for at least one of the drones of the plurality of drones having the same scheduled time of stay.
- the control device may be configured to change the scheduled stay time period by changing the flight speed of at least one of the drones in the plurality of drones in which the planned stay time period overlaps. ..
- the plurality of drones having the same scheduled time of stay may be configured to accelerate the flight speed of at least one of the drones.
- the drone's departure/arrival base is capable of accommodating resources for replenishing the drone, and the control device is configured to further include a replenishment control unit for controlling a replenishment plan for replenishing the drones with the resources. May be.
- the replenishment plan is configured to include at least one of information regarding a landing sequence of the drone on the landing platform, a type of the resource to be replenished to a plurality of the drones, an amount of the resource, and a time point at which the replenishment is performed. It may have been done.
- the drone system may be configured to further include a terminal that receives and notifies at least a part of the replenishment plan.
- the replenishment control unit is a replenishment plan acquisition unit that acquires the amount of the resource planned to be replenished to the drone from the departure and arrival base, and a mobile unit that acquires the amount of the resource accommodated in the departure and arrival base.
- Resource acquisition department Further, the terminal may be configured to issue a notification when the planned amount of the resource exceeds the contained amount of the resource.
- the replenishment control unit issues a notification to that effect. May be configured to do so.
- the said platform may be a moving body that can move together with the drone.
- a part of or the whole of the plurality of drones may be further separated from the moving body by a predetermined distance, and the moving control unit may be further provided.
- the movement control unit may be configured to fly the plurality of drones at a predetermined distance behind each other in the traveling direction of the moving body.
- the movement control unit may be configured to fly the plurality of drones at a predetermined distance above the moving body.
- the moving control unit in a state in which the moving body and the plurality of drones are moving, when the moving body moves in the opposite direction to the traveling direction, with the drone at the end in the traveling direction as a head. It may be configured to move.
- the drone includes an obstacle detection unit that detects an obstacle in the vicinity, and the movement control unit is configured to land a plurality of the drones including the drone when the drone detects an obstacle. Good.
- the movement control unit is configured to land the plurality of drones when the movement body moves in a direction opposite to the traveling direction while the movement body and the plurality of drones are moving. Good.
- the mobile control unit When the mobile control unit makes the drone land, it may be configured to issue an alarm.
- a drone system control method is a drone system control method including at least a plurality of drones that fly within a work area to perform a work. Controlling the takeoff order for the drone to take off.
- a drone system control program is a drone system control program including at least a plurality of drones flying in a work area to perform work, A computer is caused to execute an instruction to control a takeoff sequence for taking off the plurality of drones.
- the computer program can be provided by being downloaded through a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
- a drone is a drone that flies within a work area to perform work, and is connected to a control device that controls a takeoff order for takeoff. Take off based on the command from.
- a mobile body includes a plurality of drones that fly in a work area to perform work, and a control device that controls a takeoff sequence for taking off the plurality of drones. And a mobile unit included in a drone system, the mobile unit being capable of accommodating resources for replenishing the drone.
- control device is connected to a plurality of drones that fly in a work area to perform a work, and based on information regarding the plurality of drones, the plurality of drones. Control the take-off order for the drone to take off.
- FIG. 1 is a plan view of a drone included in a drone system according to the present invention. It is a front view of the drone which the drone system has. It is a right view of the said drone. It is a rear view of the said drone. It is a perspective view of the drone. It is an overall conceptual diagram of the drone system. It is a whole conceptual diagram which shows 2nd Embodiment of the said drone system. It is a whole conceptual diagram which shows 3rd Embodiment of the said drone system. It is a conceptual diagram which shows the mode of arrangement
- the drone regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors.
- power means electric power, prime mover, etc.
- control system whether wireless or wired, and whether it is an autonomous flight type or a manual control type
- It refers to all aircraft that have multiple rotors.
- the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
- Each rotor 101 is arranged on four sides of the main body 110 by an arm extending from the main body 110 of the drone 100.
- the rotating blades 101-1a and 101-1b in the left rear in the traveling direction, the rotating blades 101-2a and 101-2b in the left front, the rotating blades 101-3a and 101-3b in the right rear, and the rotating blades 101-in the front right. 4a and 101-4b are arranged respectively.
- the drone 100 has the traveling direction downward in the plane of FIG.
- Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101.
- the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be a motor, etc.), one for each rotor Has been.
- the motor 102 is an example of a propeller.
- the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
- the axes are collinear and rotate in opposite directions. As shown in FIGS.
- the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is for promoting the buckling of the member to the outside of the rotor blade at the time of collision and preventing the member from interfering with the rotor.
- the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines.
- the term “medicine” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
- the drug tank 104 is a tank for storing the drug to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
- the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above-mentioned material and also have a role of supporting the medicine nozzle.
- the pump 106 is a means for discharging the medicine from the nozzle.
- FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention.
- This figure is a schematic diagram and the scale is not accurate.
- the drone 100, the operation device 401, the small portable terminal 401a, the base station 404, and the moving body 406a are connected to the farm cloud 405, respectively.
- wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or a part or all of them may be wired.
- the drone 100 and the mobile unit 406a transmit and receive information to and from each other, and operate in cooperation with each other.
- the moving body 406a is an example of a departure/arrival platform and has a departure/arrival point 406.
- the drone 100 has a flight control unit 21 that controls the flight of the drone 100, and a functional unit that transmits and receives information to and from the moving body 406a.
- the operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operating device (not shown) having a function dedicated to emergency stop may be used. The emergency operation device may be a dedicated device having a large emergency stop button or the like so that an emergency response can be taken quickly.
- a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small portable terminal 401a.
- the small portable terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
- the field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100.
- the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance or the topographic map and the situation at the site are inconsistent.
- the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. Further, there may be an intruder such as a building or an electric wire in the field 403.
- the base station 404 is a device that provides a master device function of Wi-Fi communication and the like, and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). Further, the base station 404 may be capable of communicating with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE. In this embodiment, the base station 404 is loaded on the moving body 406a together with the departure point 406.
- the farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
- the farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
- the small mobile terminal 401a is, for example, a smartphone or the like. On the display unit of the small mobile terminal 401a, information on predicted motions regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure point 406, and the work that the user 402 should perform when returning Information such as contents is displayed as appropriate. Further, the operations of the drone 100 and the moving body 406a may be changed based on the input from the small mobile terminal 401a.
- the small portable terminal 401a can receive information from both the drone 100 and the mobile body 406a. Further, the information from the drone 100 may be transmitted to the small mobile terminal 401a via the mobile body 406a.
- the drone 100 will take off from a departure/arrival point 406 outside the field 403, and will return to the departure/arrival point 406 after spraying a drug on the field 403 or when it becomes necessary to replenish or charge the drug.
- the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
- the drone 100, the operation device 401, the small portable terminal 401a, and the farming cloud 405 are connected to the base station 404, respectively. It may be configured.
- the drug spraying system of the drone 100 according to the present invention is such that the drone 100, the operation unit 401, and the small portable terminal 401a are connected to the base station 404, respectively, and operated. Only the device 401 may be connected to the farm cloud 405.
- the drone 100 flies over the fields 403a and 403b and performs the work in the fields.
- the moving body 406a automatically travels in the automatic operation permission area 90 provided around the farm fields 403a and 403b.
- the automatic driving permission area 90 is, for example, a farm road.
- the fields 403a and 403b and the automatic operation permission area 90 form a work area.
- the moving body 406a is movable, but the movement permitting area 901 where the drone 100 cannot land and the moving body 406a are movable, and the drone 100 can land on the moving body 406a.
- the landing permission area 902 is subdivided.
- the reason why the drone 100 cannot land is that, for example, an obstacle 80 such as a guardrail, a power pole, an electric wire, a warehouse, or a grave is installed between the area and the field 403a.
- a plurality of drones 100a and 100b simultaneously fly to one field 403a (an example of a work area) and perform their respective works. May be.
- the work performed by the first drone 100a is an example of the first work
- the work performed by the second drone 100b is an example of the second work.
- the first work includes an operation of flying the first operation route 51 comprehensively set in the first work area 403c which is a part of the farm field 403a.
- the second work includes an operation of flying the second operation route 52, which is comprehensively set, in the second work area 403d which is a region other than the first work area 403c in the farm field 403a.
- the drones 100a and 100b fly along the first and second driving routes 51 and 52, spray chemicals, and photograph the inside of the field 403a.
- the first driving route 51 includes a start point 51s, a worked route 51a, an unworked route 51b, and an end point 51e.
- the first drone 100a starts flying from the starting point 51s and flies to the ending point 51e.
- the route which the drone 100a has already flown is referred to as a worked route 51a, and the route which is planned to fly from now on is referred to as an unworked route 51b.
- the second driving route 52 includes a start point 52s, a worked route 52a, an unworked route 52b, and an end point 52e.
- the second drone 100b starts flying from the starting point 52s and flies to the ending point 52e.
- the route which the drone 100b has already flown is referred to as a worked route 52a, and the route which is planned to fly from now on is referred to as an unworked route 52b.
- a plurality of moving bodies 406A and 406b (hereinafter, also referred to as first moving body 406A and second moving body 406B) run in the automatic driving permission area 90.
- the plurality of drones 100a and 100b and the plurality of mobile bodies 406A and 406B included in the drone system 500 are connected to each other via a network, and are centrally managed by a control device 40 described later in FIG.
- the number of drones and the number of mobile units are the same, but they do not have to be the same.
- the number of drones and the number of moving bodies are the same, one drone can be installed for each moving body, so all the drones can be loaded on the moving body and the drone can be carried in from outside the work area.
- the drone system 500 includes the same number of drones and mobile units, so that all drones can be replenished at the same time.
- the control device 40 may be an independent device, a plurality of drones 100a, 100b, a plurality of mobile units 406A, 406B or farming cloud 405, etc., is installed in any of the configurations included in the drone system 500. Good.
- the drone 100 takes off from the moving body 406a and performs work in the fields 403a and 403b.
- the drone 100 appropriately interrupts the work during the work in the fields 403a and 403b and returns to the moving body 406a to replenish the battery 502 and the medicine.
- the drone 100 rides on the moving body 406a to move to the vicinity of another field and then takes off from the moving body 406a again to start the work on the different field.
- the movement of the drone 100 in the automatic driving permission area 90 is basically carried on the moving body 406a, and the moving body 406a carries the drone 100 to the vicinity of the field where the work is performed.
- the battery 502 of the drone 100 can be saved.
- the moving body 406a stores the battery 502 and the medicine that can be replenished in the drone 100
- the moving body 406a moves to the vicinity of the field where the drone 100 is working and waits.
- the resource can be replenished to 100 efficiently.
- the area outside the automatic driving permission area 90 is an automatic driving non-permission area 91.
- the automatic driving permission area 90 and the automatic driving non-permission area 91 are partitioned by partition members 407a, 407b, 407c, 407d, 407e.
- the automatic driving permission area 90 and the automatic driving non-permission area 91 are separated by various obstacles and the like, and the road is continuously formed, and the partition members 407a, 407b, 407c, 407d, 407e are concerned. It may be arranged on the road. In other words, the partition members 407a, 407b, 407c, 407d, 407e are arranged at the entrance to the automatic driving permission area 90.
- the partition member 407 is a member for partitioning a work area that is a field around the farm field 403 and its surroundings, and that moves when the moving body 406a and the drone 100 work, and is, for example, a color cone (registered trademark) or a triangular cone. , Corn bars, barricades, field arches, fences, etc.
- the partition member 407 may be physically partitioned or may be partitioned by light rays such as infrared rays.
- the partition member 407 is used mainly for informing an intruder outside the work area that he/she is working and for restricting entry into the work area. Therefore, it is a member that an intruder can see from a distance.
- partition member 407 since the partition member 407 is installed by the user 402 at the start of the work, it is preferable that the partition member 407 is easy to install and remove.
- a plurality of partition members 407 may be included in the drone system 500.
- the partition member 407 may detect that an intruder has entered the work area and may transmit the intrusion information to the moving body 406a, the operation unit 401, the small portable terminal 401a, or the like.
- the intruder includes a person, a car, and other moving bodies.
- FIG. 10 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
- the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, memory, related software, and the like.
- the flight controller 501 based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
- ESC Electronic Speed Control
- the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation.
- the configuration is such that it can be monitored.
- the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
- the software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB.
- encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
- a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
- the flight controller 501 communicates with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401. In this case, the communication may be encrypted to prevent illegal acts such as interception, spoofing, and hijacking of the device.
- the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is of high importance, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
- the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone aircraft in three mutually orthogonal directions, and is also a means for calculating the speed by integrating the acceleration.
- the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
- the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
- the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
- the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
- the sonar 509 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves.
- These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, switch to an alternative sensor. Alternatively, a plurality of sensors may be used simultaneously, and if the measurement results do not match, it may be considered that a failure has occurred.
- the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
- the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
- the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
- the intruder detection camera 513 is a camera for detecting a drone intruder, and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
- the switch 514 is a means for the user 402 of the drone 100 to make various settings.
- the intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has contacted an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
- the intruder contact sensor 515 may be replaced with a 6-axis gyro sensor 505.
- the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
- the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
- a sensor may be provided in the base station 404 outside the drone 100, the operation device 401, or another place, and the read information may be transmitted to the drone.
- a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
- the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
- the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
- the LED107 is a display means for informing the drone operator of the status of the drone.
- Display means such as a liquid crystal display may be used instead of or in addition to the LEDs.
- the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
- the Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for the transfer of software, for example, separately from the operation unit 401.
- other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
- the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other.
- the speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice, synthesized voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
- the warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated/multiplexed.
- the mobile object 406a shown in FIG. 11 and FIG. 12 receives the information that the drone 100 has and notifies the user 402 appropriately, or receives the input from the user 402 and transmits it to the drone 100. It is a device. Further, the moving body 406a can move by carrying the drone 100. The moving body 406a may be driven by the user 402 or may be autonomously movable. Although the moving body 406a in the present embodiment is assumed to be a vehicle such as an automobile, more specifically, a light truck, it may be an appropriate moving body capable of running on land such as a train, a ship or a flight. It may be the body.
- the drive source of the moving body 406a may be any suitable source such as gasoline, electricity, fuel cell, or the like.
- the moving body 406a is a vehicle in which a passenger seat 81 is arranged in the front in the traveling direction and a luggage platform 82 is arranged in the rear. On the bottom surface side of the moving body 406a, four wheels 83, which are an example of moving means, are arranged so that they can be driven. A user 402 can get into the passenger seat 81.
- the passenger seat 81 is provided with a display unit 65 that displays the state of the moving body 406a and the drone 100.
- the display unit 65 may be a device having a screen, or may be realized by a mechanism that projects information on the windshield.
- a rear display unit 65a may be installed on the rear side of the vehicle body 810 that covers the passenger seat 81.
- the rear display unit 65a can change the angle with respect to the vehicle body 810 to the left and right, and the user 402 working behind and on the left and right sides of the cargo bed 82 can obtain information by looking at the screen.
- a base station 404 having a shape in which a disk-shaped member is connected above a round bar extends above the passenger seat 81.
- the shape and position of the base station 404 are arbitrary. According to the configuration in which the base station 404 is on the passenger seat 81 side of the luggage platform 82, the base station 404 is less likely to interfere with the takeoff and landing of the drone 100, as compared to the configuration behind the luggage platform 82.
- the cargo bed 82 has a battery 502 of the drone 100 and a cargo room 821 for storing medicines to be replenished in the medicine tank 104 of the drone 100.
- the luggage compartment 821 is a region surrounded by a vehicle body 810 that covers the passenger seat 81, a rear plate 822, a pair of side plates 823 and 823, and an upper plate 824.
- the rear plate 822 and the side plate 823 are also referred to as “flaws”.
- Rails 825 are provided on both upper ends of the rear plate 822 along the upper ends of the side plates 823 to the vehicle body 810 on the rear side of the passenger seat 81.
- the upper surface plate 824 is a departure/arrival area which is a departure/arrival point 406 where the drone 100 is placed and can be taken off/landed, and is slidable along the rail 825 in the forward/backward direction.
- the rail 825 is a rib that protrudes above the plane of the upper plate 824, and prevents the drone 100 on the upper plate 824 from slipping out from the left and right ends of the moving body 406a.
- a rib 8241 is formed behind the upper surface plate 824 so as to project to the upper surface side to the same extent as the rail 825.
- a warning light 830 that indicates that the drone system 500 is working may be arranged on the upper side of the vehicle body 810 and on the rear side of the rear plate 822 in the traveling direction.
- the warning light 830 may be a display device that distinguishes between working and non-working by coloration or blinking, and may be capable of displaying characters or patterns.
- the warning light 830 on the upper part of the vehicle body 810 may extend to above the vehicle body 810 and can be displayed on both sides. According to this configuration, the warning can be visually recognized from the rear even when the drone 100 is arranged on the loading platform 82. Further, the warning can be visually recognized from the front of the moving body 406a in the traveling direction. Since the warning light 830 can be seen from the front and the rear, part of the labor for installing the partition member 407 can be omitted.
- the top plate 824 may be manually slidable, or may be slid automatically by using a rack and pinion mechanism or the like. By sliding the upper surface plate 824 rearward, articles can be stored in or taken out of the luggage compartment 821 from above the cargo bed 82. Further, in the form in which the upper plate 824 slides rearward, the upper plate 824 and the vehicle body 810 are sufficiently separated from each other, so that the drone 100 can take off and land at the landing point 406.
- the top plate 824 is provided with four foot receiving portions 826 to which the feet 107-1, 107-2, 107-3, 107-4 of the drone 100 can be fixed.
- the foot receiving portion 826 is, for example, a disk-shaped member whose upper surface is recessed in a truncated cone shape, which are installed one by one at positions corresponding to four feet 107-1, 107-2, 107-3, 107-4 of the drone 100. is there.
- the bottom of the frustoconical recess of the foot receiving portion 826 and the tips of the feet 107-1, 107-2, 107-3, 107-4 may be shaped so that they can be fitted to each other.
- the feet 107-1,107-2,107-3,107-4 of the drone 100 slide along the conical surface of the foot rest 826, and the feet 107-1,107-2,107 on the bottom of the truncated cone. -3,107-4 tip is guided.
- the drone 100 can be automatically or manually fixed to the foot receiving portion 826 by an appropriate mechanism, and even when the moving body 406a moves with the drone 100 mounted thereon, the drone 100 does not vibrate excessively or fall, and the drone 100 does not fall. Can be safely transported. Further, the moving body 406a can detect whether or not the drone 100 is fixed to the foot receiving portion 826.
- the circumferential lamp 850 displays a guide for the takeoff/landing position of the drone 100.
- the circumferential lamp 850 is formed of a luminous body group arranged in a substantially circular shape, and the luminous body group can be individually blinked.
- four large light emitters 850a are arranged at intervals of about 90 degrees on the circumference, and two small light emitters 850b are equally spaced between the large light emitters 850a. It is composed of a circular lamp 850.
- the circumferential light 850 displays the flight direction of the drone 100 after takeoff or the direction of flight when landing, by lighting one or more of the light emitter groups 850a and 850b.
- the circumferential lamp 850 may be composed of a single ring-shaped light-emitting body that can be partially blinked.
- the pair of side plates 823 are hinged at the bottom sides to the loading platform 82, and the side plates 823 can be tilted outward.
- FIG. 12 shows that the side plate 823 on the left side in the traveling direction is tilted outward.
- the side plate 823 falls outward, it is possible to store and take out stored items from the side of the moving body 406a.
- the side plate 823 is fixed substantially parallel to the bottom surface of the luggage compartment 821, and the side plate 823 can also be used as a workbench.
- the pair of rails 825 form a form switching mechanism. Further, a hinge that connects the side plate 823 and the loading platform 82 may be included in the form switching mechanism.
- the movable body 406a moves in a form in which the upper surface plate 824 is arranged to cover the upper side of the luggage compartment 821 and the side plate 823 stands up and covers the side surface of the luggage compartment 821. When the moving body 406a is stationary, the upper plate 824 is switched to the rearward sliding form or the side plate 823 is tilted so that the user 402 can approach the inside of the luggage compartment 821.
- the drone 100 can replenish the battery 502 while landing on the departure point 406. Refilling the battery 502 includes charging the built-in battery 502 and replacing the battery 502.
- a battery 502 charging device is stored in the luggage compartment 821, and the battery 502 stored in the luggage compartment 821 can be charged.
- drone 100 may include an ultracapacitor mechanism instead of battery 502, and a charger for ultracapacitor may be stored in luggage compartment 821. In this configuration, when the drone 100 is fixed to the foot receiving portion 826, the battery 502 mounted on the drone 100 can be rapidly charged via the feet of the drone 100.
- the drone 100 can replenish the medicine stored in the medicine tank 104 while landing at the departure point 406.
- the luggage compartment 821 stores a diluting and mixing tank for diluting and mixing the drug, a stirring mechanism, and appropriate components for diluting and mixing such as a pump and a hose that suck up the drug from the diluting and mixing tank and inject it into the drug tank 104. It may have been done. Further, a refilling hose that extends from the luggage compartment 821 above the upper surface plate 824 and can be connected to the inlet of the medicine tank 104 may be provided.
- a waste liquid groove 840 and a waste liquid hole 841 for guiding the medicine discharged from the medicine tank 104 are formed on the upper surface side of the upper surface plate 824. Two waste liquid grooves 840 and two waste liquid holes 841 are arranged, so that the waste liquid groove 840 is positioned below the medicine nozzle 103 regardless of whether the drone 100 is landing facing the left or right of the moving body 406a. ing.
- the waste liquid groove 840 is a groove having a predetermined width, which is formed substantially straight along the position of the medicine nozzle 103 and along the length direction of the moving body 406a, and slightly toward the passenger seat 81 side. It is inclined.
- a waste liquid hole 841 is formed at an end of the waste liquid groove 840 on the passenger seat 81 side to penetrate the upper surface plate 824 and guide the chemical liquid into the inside of the luggage compartment 821.
- the waste liquid hole 841 communicates with a waste liquid tank 842 installed in the luggage compartment 821 and directly below the waste liquid hole 841.
- the drone system 500 includes a first drone 100a, a second drone 100b, a first moving body 406a, and a control device 40.
- the drone 100, the first drone 100a, the second drone 100b, the moving body 406a, and the control device 40 are configured to be connected to each other via a network NW, for example.
- the network NW may be all wireless, or part or all may be wired. Further, the specific connection relationship is not limited to that shown in the figure, and each configuration may be connected directly or indirectly. Since the first and second drones 100a and 100b have the same configuration, only the drone 100 will be described below.
- the number of drones is two and the number of moving bodies is one, but the number may be more than this. Further, the number of drones and the number of moving bodies may be the same or different.
- a plurality of drones can take off and land on any of a plurality of moving bodies 406a, and resources can be replenished. Note that the replenishment of resources is a concept including replenishment of the battery 502 and replenishment of medicines.
- the drone 100 includes a flight control unit 21, an onboard resource acquisition unit 22, and a battery 502, respectively.
- the flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 to control the flight and takeoff/landing of the drone 100.
- the flight control unit 21 is realized by the function of the flight controller 501, for example.
- the installed resource acquisition unit 22 is a functional unit that acquires the amount of resources installed in the drone 100, that is, the amount of electricity stored in the battery 502 and the amount of medicine.
- the onboard resource acquisition unit 22 includes a storage amount acquisition unit 221 and a drug amount acquisition unit 222.
- the storage amount acquisition unit 221 is a functional unit that acquires the storage amount of the battery 502 mounted on the drone 100.
- the amount of electricity stored in the battery 502 refers to the amount of energy that can operate the drone 100 without supplementing resources.
- the battery 502 may be any type of energy supply mechanism such as a primary battery, a secondary battery, or a fuel cell.
- the storage amount acquisition unit 221 may acquire information from another configuration that measures the storage amount of the battery 502, or the storage amount acquisition unit 221 itself may measure the storage amount of the battery 502.
- the drug amount acquisition unit 222 is a functional unit that estimates the current amount of drug stored in the drug tank 104.
- the drug amount acquisition unit 222 may estimate the stored amount from the weight of the drone 100 measured by the weight measurement unit 211a. Further, the medicine amount acquisition unit 222 may have a function of estimating the liquid level height in the medicine tank 104, for example.
- the drug amount acquisition unit 222 may estimate the stored amount by using a liquid level gauge or a water pressure sensor arranged in the drug tank 104. When the drone 100 is working, the drug amount acquisition unit 222 calculates the drug discharge amount by integrating the discharge flow rates from the drug tank 104 measured by the flow rate sensor 510, and determines the drug discharge amount from the initially loaded drug amount.
- the storage amount may be estimated by subtracting.
- the obstacle detection unit 23 is a functional unit that detects obstacles around the drone 100.
- the obstacle detection unit 23 is realized by, for example, an infrared sensor or a multispectral camera.
- the flight control unit 21 causes the drone 100 to land.
- the mobile object 406a includes a luggage compartment 821, a storage resource acquisition unit 31, a landing detection unit 32, and a replenishment unit 33.
- the accommodation resource acquisition unit 31 is a functional unit that measures the amount of resources held by the mobile unit 406a.
- the amount of resources includes the number of charged batteries 502 and the amount of medicine. Further, the amount of resources may be the remaining charging capacity of the facility that charges the battery 502.
- the amount of fuel gas that can be stored in the drone 100 for example, hydrogen gas may be used.
- the amount of resources prepared in the moving body 406a may be manually input by the user 402 or may be automatically acquired.
- a configuration may be adopted in which the weight of a predetermined range of the luggage compartment 821 is measured in order to acquire the drug amount.
- a configuration may be adopted in which the amount of electricity stored in the battery 502 is measured in addition to the weight of the luggage compartment 821 in a predetermined range.
- the landing detection unit 32 is a functional unit that detects whether or not the drone 100 is landing on the moving body 406a.
- the landing detection unit 32 is configured to detect the feet 107-1 to 107-4 of the drone 100, such as a touch switch and a capacitance sensor mounted on the foot receiving unit 826, so that the drone 100 lands on the moving body 406a. It is detected whether or not.
- the landing detection unit 32 identifies which drone 100 is landing by acquiring the unique information of the drone 100 from the feet 107-1 to 107-4. It may be possible. Further, the landing detection unit 32 may identify the drone 100 landing by acquiring the position information of each drone 100 by RTK-GPS or the like.
- the replenishment unit 33 is a functional unit that replenishes the drone 100 landing on the moving body 406a with resources. As described above, the replenishment unit 33 can charge the battery 502 mounted on the drone 100 landing on the moving body 406a. Further, instead of charging the battery 502, a configuration in which high speed charging is performed by an ultracapacitor may be used. Further, the replenishment unit 33 can replenish the medicine stored in the medicine tank 104.
- the control device 40 is a functional unit that determines a work plan for the drone 100 and the moving body 406a.
- the work plan includes the moving paths of the drone 100 and the moving body 406a, and the moving speeds on the moving paths.
- the work plan of the drone 100 includes flight speed, flight acceleration, and landing position coordinates, as well as information on the delivery timing and delivery amount of the drug spray.
- the work plan of the moving body 406a includes moving speed, moving acceleration, and position coordinates of the moving body 406a when the drone 100 lands.
- the work plan is independent for each drone 100 so that if there is one drone 100 in the drone system 500, it will return when the resource amount of the drone 100 satisfies a predetermined condition or when the work is completed. It is set. However, if the number of departure and arrival points 406 is less than the number of drones 100, it is not possible to land at the departure and arrival points 406 at the same time. Therefore, the control device 40 can control the drone 100 so that the time zones in which the drone 100 stays at the departure/arrival point 406 do not overlap.
- control device 40 when replenishing the resources to the drone 100 at the departure point 406 in the work plan, the resources accommodated in the drone 100 and the moving body 406a so that the resources are replenished according to the work plan of each drone 100. Manage the quantity.
- control device 40 controls the takeoff order in which a plurality of drones are taken off.
- the control device 40 may take off a plurality of drones one by one.
- the control device 40 may acquire information on the first drone that is taking off, and may take off the second drone when the drone satisfies a predetermined condition. More specifically, the control device 40 may take off the second drone when the distance between the first drone and the second drone exceeds a predetermined distance.
- the control device 40 includes a drone information acquisition unit 41, a moving body information acquisition unit 42, a landing control unit 43, a supplementary control unit 44, and a movement control unit 45.
- the drone information acquisition unit 41 is a functional unit that acquires information on each of the plurality of drones 100.
- the drone information acquisition unit 41 acquires, for example, the work plan currently planned for the drone 100. Further, the drone information acquisition unit 41 acquires the position and state of the drone 100.
- the position of the drone 100 may include information on whether the drone 100 is inside the field 403 or outside the field 403, in addition to the three-dimensional coordinates.
- the state of the drone 100 includes the operating state of the drone 100, that is, information on whether the drone 100 is moving, hovering, or landing. It also includes information on whether or not the drug is being sprayed while the drone 100 is moving in the field 403. Further, the state of the drone 100 includes information on whether the drone 100 is out of order or abnormal. Abnormality refers to general events that hinder the flight of the drone 100 other than the failure of the drone 100 itself, and includes various events such as strong wind, extremely low and high temperatures, catching obstacles, and bird strike.
- the drone information acquisition unit 41 also acquires information on the destination of the drone 100 when the drone 100 is moving outside the field 403. If the destination of the drone 100 is the departure/arrival point 406 on the moving body 406a, the drone information acquisition unit 41 may acquire information regarding the return cause of the drone 100.
- the cause of the return of the drone 100 is, for example, replenishment of the resources of the drone 100, that is, charging or replenishment of medicine. Further, the cause of the return of the drone 100 may be that the return instruction is transmitted from the operation unit 401 or the small portable terminal 401a. Furthermore, the drone 100 may have a malfunction or abnormality.
- the drone information acquisition unit 41 can also acquire information on the resource amount of the drone 100 as the status of the drone 100.
- the resources that the drone 100 has include the flight energy of the drone 100 for example, the amount of electricity stored in the battery 502.
- the flight energy of the drone 100 may be an amount of electricity stored by an ultracapacitor instead of the battery 502.
- the resources of the drone 100 include the medicine stored in the medicine tank 104 of the drone 100.
- the above-mentioned information acquired by the drone information acquisition unit 41 may be directly or indirectly received from the drone 100 on a regular basis, or the information is received when the state change or the resource amount reaches a predetermined range. It may be configured as follows.
- the mobile unit information acquisition unit 42 is a functional unit that acquires information about the mobile unit 406a, for example, speed, acceleration, position, and state of the mobile unit 406a.
- the position of the moving body 406a may include, in addition to the three-dimensional coordinates, information on whether the moving body 406a is present in the movement permission area 901 or the landing permission area 902.
- the landing control unit 43 is a functional unit that controls the landing timing and landing order of a plurality of drones 100 included in the drone system 500.
- the landing control unit 43 includes a landing schedule acquisition unit 431, a landing order determination unit 432, a standby control unit 4333, and a return control unit 434.
- the landing schedule acquisition unit 431 is a functional unit that acquires information about the landing schedule of the drone 100 based on the information acquired by the drone information acquisition unit 41.
- the landing schedule acquisition unit 431 acquires the scheduled landing time determined based on the position of the drone 100, the amount of resources held, or the like, or the time from a certain reference time to the scheduled landing time.
- the landing schedule acquisition unit 431 may calculate the scheduled landing time etc. or the time until the scheduled landing time by referring to the work plan of the drone 100, or the scheduled landing time etc. or the time until the scheduled landing time from the drone 100. You may get it.
- the landing schedule acquisition unit 431 also acquires the information at the time of takeoff after each drone 100 has landed. Further, the landing schedule acquisition unit 431, information when each drone 100 exits from the exit point of the field 403, reaches the departure point 406, takes off from the departure point 406, and enters the entry point of the field 403. To get The landing schedule acquisition unit 431 can calculate the scheduled stay time zone of each drone 100 at the departure point 406 from the above information.
- the landing sequence determination unit 432 is a functional unit that determines the landing sequence based on the information acquired by the landing schedule acquisition unit 431 when the planned staying time zones at the departure and arrival points 406 of a plurality of drones overlap.
- the landing sequence determination unit 432 determines the landing sequence based on the information on the drone 100 acquired by the drone information acquisition unit 41. For example, the landing order determination unit 432 determines the landing order based on the return information acquired by the drone information acquisition unit 41 regarding the reason for returning. When the drone 100 returns based on the return instruction from the user, the landing order determination unit 432 causes the drone 100 to land before other drones 100.
- the landing sequence determination unit 432 causes the drone 100 to land before other drones. This is because returning due to a failure or abnormality requires immediate landing because the risk of a crash or runaway increases due to the delay in returning. The drone 100 that returns based on a failure or abnormality will land before the drone 100 that returns based on the return command.
- the landing order determination unit 432 may determine the landing order based on the amount of resources each of the plurality of drones 100 holds. Specifically, the landing order determination unit 432 causes the drone 100 having a smaller amount of resources to land before the other drones 100.
- the amount of resources may be the amount of energy that drives the drone 100 or the amount of drugs stored in the drone 100.
- the drone 100 which has a smaller amount of resources, is expected to perform longer work after the resources are replenished, so by performing the replenishment work first and then returning to the work, the drone 100 is performed. The total work can be completed quickly. Further, since the drone 100 having a smaller amount of energy in the battery 502 may not have energy for standby, which will be described later, it is preferable to land the drone first.
- the standby control unit 433 is a functional unit that causes the drone 100, which has a later landing sequence, to wait until it is ready to land at the departure point 406 when the scheduled stay time zones of the plurality of drones 100 overlap. .. Since there is a limit to the number of landing points 406 that can be landed at the same time, it is possible to prevent the collision by waiting the drone 100 and return the drone 100 safely.
- the standby control unit 433 may hover the drone 100 whose landing order is later in the field 403 and make it stand by when the scheduled stay time overlaps. Since there are traffic of people including the user and the moving body 406a outside the farm field 403, there is a risk of collision when the drone 100 is waiting.Therefore, keeping the drone 100 in the farm field 403 is safe. Can be secured. Further, the plurality of drones 100 have a common exit point, a departure/arrival point 406, and a departure/arrival route from the exit point to the departure/arrival point 406. This is because by making the route for flying outside the farm field 403 common, the user can easily understand the flight route of the drone 100 and give the user a sense of security.
- the standby control unit 433 acquires information that the drone 100 can land at the departure/arrival point 406 from the mobile unit information acquisition unit 42, ends the standby of the drone 100, and causes the drone 100 to fly to the departure/arrival point 406. In addition, the standby control unit 433 may cause the waiting drone 100 to fly to the departure/arrival point 406 after determining that there is no other drone 100 at the departure/arrival point 406, the departure/arrival route, and the exit point.
- the standby control unit 433 places the drone 100 in the field 403 based on the fact that the moving body 406a is in the process of replenishment or there is an obstacle such as a user around the moving body 406a. You may wait.
- the return control unit 434 is a functional unit that changes the flight operation of at least one drone 100 when the scheduled stay time of multiple drones 100 overlap.
- the return control unit 434 may cause the drone 100, which comes first in the landing order, to land at the departure point 406 and another drone 100 to land at a location different from the departure point 406.
- another drone 100 may land near the moving body 406a.
- the other drone 100 may land on the rear side of the moving body 406a in the traveling direction with a predetermined distance.
- the return control unit 434 may change the scheduled stay time zone by shortening the work plan scheduled for at least one drone 100 in the plurality of drones 100 having the same scheduled stay time zone. That is, the return control unit 434 causes the work of the drone 100 to be interrupted early and returned to the departure point 406 before the resource of the drone 100 reaches the state where the drone needs to be replenished. According to this configuration, compared to the configuration in which the drone 100 is on standby, the drone that has been interrupted earlier can complete the replenishment earlier and restart the work in the field 403, so that the work can be efficiently performed. ..
- the return control unit 434 may change the scheduled stay time zone by changing the flight speed of at least one drone 100 in the plurality of drones 100 having the same scheduled stay time zone. More specifically, among the plurality of drones 100 with overlapping landing schedules, the flight speed of the drone 100 that is decided to land first is increased. According to this configuration, after flying along the route according to the original work plan, it is possible to return to the departure/arrival point 406 after shifting the scheduled stay time. That is, the work can be performed more efficiently than the configuration in which the drone 100 is on standby and the configuration in which the work of one drone 100 is interrupted early.
- the replenishment control unit 44 is a functional unit that controls a replenishment plan for replenishing resources to a plurality of drones 100.
- the replenishment plan is an information group including at least one of information on the landing order of the drone 100 at the departure/arrival point 406, the types of resources to be replenished to the plurality of drones 100, the amount of resources, and the time at which replenishment is performed. That is, the replenishment plan is information regarding which drone 100 will return to the departure point 406 and which resource will be replenished.
- the replenishment control unit 44 controls the replenishment plan based on the information from the drone information acquisition unit 41.
- the replenishment control unit 44 also controls the amount of resources contained in the moving body 406a having the departure/arrival point 406.
- the replenishment plan includes information on the type and amount of resources contained in the mobile unit 406a.
- the replenishment control unit 44 includes a replenishment plan acquisition unit 441 and a mobile resource acquisition unit 442.
- the replenishment plan acquisition unit 441 is a functional unit that acquires the amount of resources planned to be replenished from the departure point 406 to the drone 100.
- the mobile resource acquisition unit 442 is a functional unit that acquires the amount of resources stored at the departure/arrival point 406.
- the replenishment control unit 44 transmits at least a part of information on the replenishment plan to the operation unit 401 or the small portable terminal 401a.
- the operation unit 401 and the small mobile terminal 401a may sequentially display the replenishment plan, or may be configured to separately issue specific information.
- the small mobile terminal 401a may display only a part of the information displayed on the operation device 401, or may issue a sound or the like by a separate reporting means such as only a part of the information. ..
- the small portable terminal 401a when it is necessary to replenish the resources to the mobile body 406a, when the total work is completed and tidying up, such as information at the time when the user 402 requires intervention, and each It may be configured such that only the information related to the prediction of the time point is displayed on the small mobile terminal 401a. Further, the user 402 may be notified when the mobile body 406a needs to be replenished with resources, when the total work is completed, and when an abnormality occurs.
- the same drone system 500 is used for the work, and is planned in another field that is defined by a farm road or the like. It may be possible to display the replenishment plan.
- Another field is, for example, a region discontinuous with the field 403, in which work is started after the moving body 406a and the plurality of drones 100 have moved outside the field 403 by the movement control described later. According to this configuration, the amount of resources required for the entire work performed by the same drone system 500 can be collectively grasped by the operation unit 401.
- information on the field 403 and another field may be continuously displayed, or the display may be switchable by a predetermined operation.
- the supplement control unit 44 reports that fact. Even when the resource is automatically replenished by the mobile unit 406a, if the resources stored in the mobile unit 406a are insufficient, it is necessary to request the user to replenish the resource to the mobile unit 406a. Because there is. According to this configuration, the user can be urged to replenish resources to the moving body 406a so that the drones 100 returning most recently can be replenished with resources as planned.
- the replenishment control unit 44 when the operation device 401 or the small portable terminal 401a is expected that the replenishment work of the resources from the departure point 406 to the drone 100 is not completed by the scheduled landing time of the drone 100, that effect is notified. You may be notified. With this configuration, when the drone 100 is replenished with resources by the user, it is possible to prompt the user to replenish resources with the notification. Further, even when the drone 100 is automatically replenished with resources, the progress status of the work can be transmitted to the user.
- the replenishment control unit 44 also replenishes resources when the amount of resources planned to be replenished in the drone 100 that is scheduled to land most recently exceeds the amount of resources accommodated in the mobile unit 406a.
- a standby command may be sent to the drone 100 when the work is not completed.
- the drone 100 that receives the standby command hovers in the field 403, for example, and waits until the standby command is released.
- replenishing resources to the moving body 406a there is a high probability that the user is present near the moving body 406a. At that time, if the drone 100 approaches the moving body 406a, the refilling work by the user may be hindered. Therefore, by making the drone 100 stand by in the field 403, work efficiency and safety can be ensured.
- the movement control unit 45 is a functional unit that controls the movement routes of the moving body 406a and the plurality of drones 100 in order to safely move the moving body 406a and the plurality of drones 100 at the same time.
- the movement control unit 45 acquires the position information of the drone 100 and the moving body 406a by the drone information acquisition unit 41 and the moving body information acquisition unit 42, and feeds back the speed and the acceleration and its direction to the position and speed of each component. And control so that the acceleration satisfies a predetermined condition.
- the moving body 406a may move autonomously based on the control of the moving control unit 45, the moving body 406a moves by the driving of the user, and the drone 100 follows the movement of the moving body 406a. Then you may move.
- the first drone 100a moves while landing on the landing point 406 on the moving body 406a.
- the second to fourth drones 100b, 100c, 100d fly at a predetermined distance from the moving body 406a.
- the movement control unit 45 may cause the plurality of drones 100 to fly side by side in series at predetermined distances behind each other in the traveling direction of the moving body 406a. According to this configuration, the drone 100 will fly following the moving body 406a on the route traveled by the moving body 406a, so there is a low possibility that an obstacle exists, and it is possible to fly safely. ..
- the movement control unit 45 may fly a plurality of drones 100 above the moving body by a predetermined distance.
- the route along which the moving body 406a and the drone 100 move is mainly assumed to be a farm road around the farm field 403. Since it is unlikely that there is an obstacle above the moving body 406a on the farm road, it is possible to fly safely. In addition, even if the drone 100 crashes during movement, it will fall onto the moving body 406a, which reduces the possibility of harming people and buildings outside the drone system 500, and is safe. is there.
- the movement control unit 45 may move with the drone at the rear end in the traveling direction as the head. At this time, when the drone 100 detects an obstacle by the obstacle detection unit 23 included in the drone 100, a plurality of drones 100 including the drone 100 are landed.
- the movement control unit 45 may be configured to land a plurality of drones 100 when the moving body 406a moves in the direction opposite to the traveling direction. According to this configuration, even when the drone 100 does not include the obstacle detection unit 23, it is possible to ensure safety when the moving body 406a moves backward.
- the mobile control unit 45 may notify the user of the alarm via the drone 100, the operation unit 401, the small portable terminal 401a or the mobile control unit 45.
- the alarm may be an appropriate notification means such as sound and display.
- control device 40 may perform the steps described below at the start of all the operations, or may perform them periodically during the operations. Further, the control device 40 may perform the following steps when a specific event occurs during the work. For example, the control device 40 may perform the following steps at the time when a certain drone 100 has a failure or abnormality, when a return command is issued, or when a standby time different from the planned time occurs.
- the drone information acquisition unit 41 acquires planned stay time zones for a plurality of drones 100 included in the drone system 500 (S11).
- the landing schedule acquisition unit 431 determines whether there is a drone 100 that has the same scheduled stay time period (S12).
- the landing sequence determination unit 432 ends the process without changing the landing sequence of the drones 100.
- the drone 100 will land at the departure/arrival point 406 sequentially according to the original work plan.
- the landing sequence determination unit 432 determines whether or not there is a drone 100 whose return cause is a malfunction or an abnormality (S13). If there is a malfunctioning or abnormal drone 100, the landing order determination unit 432 determines the landing order of the drone 100 to be 1 (S14).
- the landing sequence determination unit 432 determines whether or not there is a drone 100 to be returned by a return instruction from the user (S15). If there is a drone 100 to be returned by the return instruction, the landing order determination unit 432 determines that the landing order of the drone 100 is to land next (S16). That is, when there is a malfunctioning or abnormal drone 100, the drone 100 is determined second, and when there is no malfunctioning or abnormal drone 100, the drone 100 is determined first.
- the landing sequence determination unit 432 determines that the remaining drones 100 will land in the order of the smallest amount of resources installed, and the process ends (S17).
- control device 40 for controlling the resource amount stored in the moving body 406a
- the timing at which the control device 40 performs the following steps may be the same as in the case of landing control, at the start of all operations, or at regular intervals during operations.
- the landing control process and the replenishment control process may be performed at the same time or at different timings.
- the replenishment plan acquisition unit 441 acquires the time when each of the plurality of drones 100 returns for replenishment, and the type and amount of resources to be replenished (S21).
- the mobile resource acquisition unit 442 acquires the amount of resources contained in the mobile 406a (S22). Note that steps S21 and S22 are in no particular order and may be performed simultaneously.
- the supplementary control unit 44 determines whether or not the storage capacity of the moving body 406a is sufficient (S23). When the accommodation amount of the moving body 406a is not sufficient, a request for resource supplement is issued to the operation unit 401 or the small portable terminal 401a (S24).
- the movement control is performed when the moving body 406a and the plurality of drones 100 move at the same time. Specifically, the movement control is performed when the drone system 500 moves between the fields 403 where the work is performed.
- the plurality of drones 100 and the moving body 406a move at the same time (S31).
- the movement control unit 45 controls the position, speed, acceleration, etc. of each drone 100 and the moving body 406a to move them by a predetermined distance.
- the drone 100 detects an obstacle while moving (S32)
- the drone 100 lands (S33).
- the operation unit 401 or the small portable terminal 401a notifies an alarm to that effect.
- the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to drones for other purposes such as shooting and monitoring. .. In particular, it is applicable to a machine that operates autonomously. Further, the moving body is not limited to the vehicle and may have an appropriate configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Insects & Arthropods (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pest Control & Pesticides (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Catching Or Destruction (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
The present invention provides a drone system for safely and efficiently carrying out a task using a plurality of drones. Specifically provided is a drone system 500 containing at least a plurality of drones 100 which carry out a task by flying in a work area 403, and a control device 40 which controls the takeoff order in which the plurality of drones are caused to takeoff. A landing/takeoff platform 406 can store a resource that is replenished in the drones, and the control device may be additionally equipped with a replenishment control unit 44 which controls a replenishment plan for replenishing the resource in the plurality of drones. A movement control unit 45 may be further provided for causing some or all of the plurality of drones to fly separated a prescribed distance from a mobile unit 406a when the mobile unit and the plurality of drones are moving.
Description
本願発明は、ドローンシステム、ドローン、移動体、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。
The present invention relates to a drone system, a drone, a moving body, a control device, a drone system control method, and a drone system control program.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
The application of small helicopters (multicopters) commonly called drones is progressing. One of its important fields of application is spraying chemicals such as pesticides and liquid fertilizers on farmland (field) (for example, Patent Document 1). In Japan, where farmland is smaller than in Europe and the United States, it is often appropriate to use drones instead of manned airplanes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
With technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System), drones have become able to accurately know their absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation and to efficiently and accurately apply a drug.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was insufficient. Until now, there have been drone safety technologies that are premised on human control (for example, Patent Document 2), but in particular, address the safety issues peculiar to autonomous flying drones for drug spraying for agriculture. There was no technology to do this.
また、複数のドローンが作業を行う場合においては、複数のドローンが衝突することなく、安全かつ効率良く作業を遂行するシステムが必要とされている。
Also, when multiple drones work, there is a need for a system that will perform the work safely and efficiently without the multiple drones colliding.
特許文献3には、二組の移動体を交互に充電する場合に、一方の組の移動体の充電中に他方の組の移動体の動作が停止することなく移動体を交代するリモート制御装置が開示されている。リモート制御装置が有する制御部は、交代時期検出手段により移動体の交代時期であることが検出されると、無線送信により動作中の移動体と充電中の移動体とを交代させる。
In Patent Document 3, when two sets of moving bodies are charged alternately, a remote control device that changes the moving bodies of one set without stopping the operation of the moving bodies of the other set while charging the moving bodies of the other set. Is disclosed. The control unit included in the remote control device, when the alternation time detecting means detects that it is the alternation time of the moving body, causes the moving moving body and the moving body being charged to be changed by wireless transmission.
しかしながら、特許文献3には、いずれかの移動体が常に動作することを目的としており、複数の移動体が衝突することなく安全に作業を遂行することについては記載がない。
However, Patent Document 3 aims to always operate one of the moving bodies, and does not describe performing the work safely without collision of a plurality of moving bodies.
複数のドローンにより安全かつ効率よく作業を遂行するドローンシステムを提供する。
Provide a drone system that performs work safely and efficiently with multiple drones.
上記目的を達成するため、本発明の一の観点に係るドローンシステムは、作業エリア内を飛行して作業を遂行する複数のドローンと、前記複数のドローンを離陸させる離陸順序を管制する管制装置と、を少なくとも含む。
In order to achieve the above object, a drone system according to an aspect of the present invention includes a plurality of drones that fly in a work area to perform work, and a control device that controls a takeoff sequence for taking off the plurality of drones. , At least.
前記管制装置は、前記複数のドローンを1台ずつ離陸させるように構成されていてもよい。
The control device may be configured to take off the plurality of drones one by one.
前記管制装置は、離陸している第1の前記ドローンの情報を取得し、当該ドローンが所定の条件を満たすとき、第2の前記ドローンを離陸させるように構成されていてもよい。
The control device may be configured to acquire information on the first drone taking off and take off the second drone when the drone satisfies a predetermined condition.
前記管制装置は、第1の前記ドローンと第2の前記ドローンとの距離が所定以上となるとき、第2の前記ドローンを離陸させるように構成されていてもよい。
The control device may be configured to take off the second drone when the distance between the first drone and the second drone exceeds a predetermined distance.
前記管制装置は、発着台に着陸させる着陸順序を管制するように構成されていてもよい。
The control device may be configured to control the landing order of landing on the landing platform.
前記管制装置は、前記複数のドローンの情報を取得するドローン情報取得部と、前記複数のドローンの前記発着台における滞在予定時間帯が重複するとき、前記複数のドローンの情報に基づいて、前記着陸順序を決定する着陸順序決定部と、をさらに備えていてもよい。
The control device, when the planned stay time zone of the drone information acquisition unit that acquires the information of the plurality of drones and the landing platform of the plurality of drones overlap, the landing based on the information of the plurality of drones. And a landing order determination unit that determines the order.
前記ドローン情報取得部は、前記ドローンが前記発着台に帰還する原因に関する帰還情報を取得し、
前記着陸順序決定部は、前記帰還情報に基づいて前記着陸順序を決定してもよい。 The drone information acquisition unit acquires return information regarding the cause of the drone returning to the departure and arrival platform,
The landing order determination unit may determine the landing order based on the return information.
前記着陸順序決定部は、前記帰還情報に基づいて前記着陸順序を決定してもよい。 The drone information acquisition unit acquires return information regarding the cause of the drone returning to the departure and arrival platform,
The landing order determination unit may determine the landing order based on the return information.
前記着陸順序決定部は、前記ドローンが使用者からの帰還指令に基づいて帰還する場合、当該ドローンを他の前記ドローンよりも先に着陸させるように構成されていてもよい。
The landing sequence determination unit may be configured to land the drone before other drones when the drone returns based on a return instruction from the user.
前記着陸順序決定部は、前記ドローンが、当該ドローンに発生する故障および異常の少なくとも1個に基づいて帰還する場合、当該ドローンを他の前記ドローンよりも先に着陸させるように構成されていてもよい。
The landing order determination unit may be configured to land the drone earlier than the other drones when the drone returns based on at least one of a failure and an abnormality occurring in the drone. Good.
前記ドローン情報取得部は、前記複数のドローンが保有する資源の量を取得し、前記着陸順序決定部は、前記資源の量に基づいて前記着陸順序を決定してもよい。
The drone information acquisition unit may acquire the amount of resources held by the plurality of drones, and the landing order determination unit may determine the landing order based on the amount of resources.
前記着陸順序決定部は、前記資源の量がより少ない前記ドローンを、他の前記ドローンよりも先に着陸させるように構成されていてもよい。
The landing sequence determination unit may be configured to land the drone having a smaller amount of the resource before the other drones.
前記資源の量は、前記ドローンを駆動するエネルギー量および前記ドローンが散布する薬剤の量の少なくともいずれか1個を含むように構成されていてもよい。
The amount of the resource may be configured to include at least one of the amount of energy that drives the drone and the amount of the drug that the drone sprays.
前記滞在予定時間帯が重複するとき、前記着陸順序が後になる前記ドローンを、当該ドローンが前記発着台に着陸可能な状態となるまで待機させるように構成されていてもよい。
When the scheduled time of stay overlaps, the drone that comes later in the landing sequence may be configured to wait until the drone is ready to land on the departure and arrival platform.
前記滞在予定時間帯が重複するとき、前記着陸順序が後になる前記ドローンを、当該ドローンが前記発着台に着陸可能な状態となるまで、前記作業エリア内でホバリングさせて待機させるように構成されていてもよい。
When the scheduled stay time zones overlap, the drone that is later in the landing sequence is configured to hover and wait in the work area until the drone is ready to land on the landing platform. May be.
前記滞在予定時間帯が重複するとき、前記着陸順序が先になる前記ドローンを前記発着台に着陸させ、他の前記ドローンを前記発着台とは異なる場所に着陸させるように構成されていてもよい。
When the scheduled stay time zones overlap, the drone may be configured to land first on the landing platform and the other drone to land on a different location from the landing platform. ..
前記滞在予定時間帯が重複する複数の前記ドローンの、少なくとも1個の前記ドローンに計画されている作業を短縮するように構成されていてもよい。
▽ It may be configured to shorten the work planned for at least one of the drones of the plurality of drones having the same scheduled time of stay.
前記管制装置は、前記滞在予定時間帯が重複する複数の前記ドローンにおいて、少なくとも1個の前記ドローンの飛行速度を変更することで、前記滞在予定時間帯を変更するように構成されていてもよい。
The control device may be configured to change the scheduled stay time period by changing the flight speed of at least one of the drones in the plurality of drones in which the planned stay time period overlaps. ..
前記滞在予定時間帯が重複する複数の前記ドローンの、少なくとも1個の前記ドローンの飛行速度を速めるように構成されていてもよい。
The plurality of drones having the same scheduled time of stay may be configured to accelerate the flight speed of at least one of the drones.
前記ドローンの発着台は、前記ドローンに補充する資源を収容可能であり、前記管制装置は、前記資源を複数の前記ドローンに補充する補充計画を管制する補充管制部をさらに備えるように構成されていてもよい。
The drone's departure/arrival base is capable of accommodating resources for replenishing the drone, and the control device is configured to further include a replenishment control unit for controlling a replenishment plan for replenishing the drones with the resources. May be.
前記補充計画は、前記ドローンの前記発着台への着陸順序、複数の前記ドローンに補充される前記資源の種類、前記資源の量、および補充を行う時点に関する情報の少なくとも1個を含むように構成されていてもよい。
The replenishment plan is configured to include at least one of information regarding a landing sequence of the drone on the landing platform, a type of the resource to be replenished to a plurality of the drones, an amount of the resource, and a time point at which the replenishment is performed. It may have been done.
前記ドローンシステムは、前記補充計画の少なくとも一部を受信して通知する端末をさらに備えるように構成されていてもよい。
The drone system may be configured to further include a terminal that receives and notifies at least a part of the replenishment plan.
前記補充管制部は、前記発着台から前記ドローンへの補充が計画されている前記資源の量を取得する補充計画取得部と、前記発着台に収容されている前記資源の量を取得する移動体資源取得部と、
をさらに備え、前記端末は、前記計画されている前記資源の量が、前記収容されている前記資源の量を上回るとき、その旨を発報するように構成されていてもよい。 The replenishment control unit is a replenishment plan acquisition unit that acquires the amount of the resource planned to be replenished to the drone from the departure and arrival base, and a mobile unit that acquires the amount of the resource accommodated in the departure and arrival base. Resource acquisition department,
Further, the terminal may be configured to issue a notification when the planned amount of the resource exceeds the contained amount of the resource.
をさらに備え、前記端末は、前記計画されている前記資源の量が、前記収容されている前記資源の量を上回るとき、その旨を発報するように構成されていてもよい。 The replenishment control unit is a replenishment plan acquisition unit that acquires the amount of the resource planned to be replenished to the drone from the departure and arrival base, and a mobile unit that acquires the amount of the resource accommodated in the departure and arrival base. Resource acquisition department,
Further, the terminal may be configured to issue a notification when the planned amount of the resource exceeds the contained amount of the resource.
前記補充管制部は、直近に着陸が予定されている前記ドローンへの補充が計画されている前記資源の量が、前記発着台に収容されている資源の量を上回るとき、その旨を発報するように構成されていてもよい。
When the amount of the resource planned to be replenished for the drone that is scheduled to land most recently exceeds the amount of the resource accommodated in the landing platform, the replenishment control unit issues a notification to that effect. May be configured to do so.
前記発着台は、前記ドローンと共に移動可能な移動体であってもよい。
The said platform may be a moving body that can move together with the drone.
前記移動体および複数の前記ドローンが移動するとき、複数の前記ドローンの一部又は全部を、前記移動体に対して所定距離離間させて飛行させる移動管制部をさらに備えていてもよい。
When the moving body and the plurality of drones move, a part of or the whole of the plurality of drones may be further separated from the moving body by a predetermined distance, and the moving control unit may be further provided.
前記移動管制部は、複数の前記ドローンを前記移動体の進行方向後方において所定距離ずつ離間させて飛行させるように構成されていてもよい。
The movement control unit may be configured to fly the plurality of drones at a predetermined distance behind each other in the traveling direction of the moving body.
前記移動管制部は、複数の前記ドローンを前記移動体の上方において所定距離ずつ離間させて飛行させるように構成されていてもよい。
The movement control unit may be configured to fly the plurality of drones at a predetermined distance above the moving body.
前記移動管制部は、前記移動体および複数の前記ドローンが移動している状態において、前記移動体が前記進行方向とは反対に移動するとき、前記進行方向において最後方の前記ドローンを先頭にして移動するように構成されていてもよい。
The moving control unit, in a state in which the moving body and the plurality of drones are moving, when the moving body moves in the opposite direction to the traveling direction, with the drone at the end in the traveling direction as a head. It may be configured to move.
前記ドローンは周辺の障害物を検知する障害物検知部を備え、前記移動管制部は、前記ドローンが障害物を検知すると、当該ドローンを含めた複数の前記ドローンを着陸させるように構成されていてもよい。
The drone includes an obstacle detection unit that detects an obstacle in the vicinity, and the movement control unit is configured to land a plurality of the drones including the drone when the drone detects an obstacle. Good.
前記移動管制部は、前記移動体および複数の前記ドローンが移動している状態において、前記移動体が前記進行方向とは反対に移動するとき、複数の前記ドローンを着陸させるように構成されていてもよい。
The movement control unit is configured to land the plurality of drones when the movement body moves in a direction opposite to the traveling direction while the movement body and the plurality of drones are moving. Good.
前記移動管制部が前記ドローンを着陸させるとき、警報を発信するように構成されていてもよい。
When the mobile control unit makes the drone land, it may be configured to issue an alarm.
上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御方法は、作業エリア内を飛行して作業を遂行する複数のドローンを少なくとも含むドローンシステムの制御方法であって、前記複数のドローンを離陸させる離陸順序を管制するステップを含む。
In order to achieve the above object, a drone system control method according to an aspect of the present invention is a drone system control method including at least a plurality of drones that fly within a work area to perform a work. Controlling the takeoff order for the drone to take off.
上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御プログラムは、作業エリア内を飛行して作業を遂行する複数のドローンを少なくとも含むドローンシステムの制御プログラムであって、
前記複数のドローンを離陸させる離陸順序を管制する命令をコンピュータに実行させる。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。 In order to achieve the above object, a drone system control program according to an aspect of the present invention is a drone system control program including at least a plurality of drones flying in a work area to perform work,
A computer is caused to execute an instruction to control a takeoff sequence for taking off the plurality of drones.
The computer program can be provided by being downloaded through a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
前記複数のドローンを離陸させる離陸順序を管制する命令をコンピュータに実行させる。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。 In order to achieve the above object, a drone system control program according to an aspect of the present invention is a drone system control program including at least a plurality of drones flying in a work area to perform work,
A computer is caused to execute an instruction to control a takeoff sequence for taking off the plurality of drones.
The computer program can be provided by being downloaded through a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
上記目的を達成するため、本発明の一の観点に係るドローンは、作業エリア内を飛行して作業を遂行するドローンであって、離陸させる離陸順序を管制する管制装置と接続され、前記管制装置からの命令に基づいて離陸する。
In order to achieve the above object, a drone according to one aspect of the present invention is a drone that flies within a work area to perform work, and is connected to a control device that controls a takeoff order for takeoff. Take off based on the command from.
上記目的を達成するため、本発明の一の観点に係る移動体は、作業エリア内を飛行して作業を遂行する複数のドローンと、前記複数のドローンを離陸させる離陸順序を管制する管制装置と、を少なくとも含むドローンシステムに含まれる移動体であって、前記移動体は、前記ドローンに補充する資源を収容可能である。
In order to achieve the above object, a mobile body according to one aspect of the present invention includes a plurality of drones that fly in a work area to perform work, and a control device that controls a takeoff sequence for taking off the plurality of drones. And a mobile unit included in a drone system, the mobile unit being capable of accommodating resources for replenishing the drone.
上記目的を達成するため、本発明の一の観点に係る管制装置は、作業エリア内を飛行して作業を遂行する複数のドローンと接続され、前記複数のドローンに関する情報に基づいて、前記複数のドローンを離陸させる離陸順序を管制する。
In order to achieve the above object, the control device according to one aspect of the present invention is connected to a plurality of drones that fly in a work area to perform a work, and based on information regarding the plurality of drones, the plurality of drones. Control the take-off order for the drone to take off.
複数のドローンにより安全かつ効率よく作業を遂行することができる。
You can perform work safely and efficiently with multiple drones.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawings.
まず、本発明にかかるドローンシステムが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
First, the configuration of the drone included in the drone system according to the present invention will be described. In the specification of the present application, the drone, regardless of power means (electric power, prime mover, etc.), control system (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors.
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided. Each rotor 101 is arranged on four sides of the main body 110 by an arm extending from the main body 110 of the drone 100. That is, the rotating blades 101-1a and 101-1b in the left rear in the traveling direction, the rotating blades 101-2a and 101-2b in the left front, the rotating blades 101-3a and 101-3b in the right rear, and the rotating blades 101-in the front right. 4a and 101-4b are arranged respectively. Note that the drone 100 has the traveling direction downward in the plane of FIG. Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotary blade 101.
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be a motor, etc.), one for each rotor Has been. The motor 102 is an example of a propeller. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is for promoting the buckling of the member to the outside of the rotor blade at the time of collision and preventing the member from interfering with the rotor.
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. In the specification of the present application, the term “medicine” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
The drug tank 104 is a tank for storing the drug to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. It may be made of the above-mentioned material and also have a role of supporting the medicine nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a、基地局404および移動体406aは、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。
FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. In the figure, the drone 100, the operation device 401, the small portable terminal 401a, the base station 404, and the moving body 406a are connected to the farm cloud 405, respectively. For these connections, wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or a part or all of them may be wired.
ドローン100および移動体406aは、互いに情報の送受信を行い、協調して動作する。移動体406aは、発着台の例であり、発着地点406を有する。ドローン100は、ドローン100の飛行を制御する飛行制御部21の他、移動体406aと情報を送受信するための機能部を有している。
The drone 100 and the mobile unit 406a transmit and receive information to and from each other, and operate in cooperation with each other. The moving body 406a is an example of a departure/arrival platform and has a departure/arrival point 406. The drone 100 has a flight control unit 21 that controls the flight of the drone 100, and a functional unit that transmits and receives information to and from the moving body 406a.
操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。
The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operating device (not shown) having a function dedicated to emergency stop may be used. The emergency operation device may be a dedicated device having a large emergency stop button or the like so that an emergency response can be taken quickly. Further, in addition to the operation device 401, a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small portable terminal 401a. The small portable terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
The field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. Further, there may be an intruder such as a building or an electric wire in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。基地局404は、本実施の形態においては、発着地点406と共に移動体406aに積載されている。
The base station 404 is a device that provides a master device function of Wi-Fi communication and the like, and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). Further, the base station 404 may be capable of communicating with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE. In this embodiment, the base station 404 is loaded on the moving body 406a together with the departure point 406.
営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
The farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100および移動体406aの動作を変更してもよい。小型携帯端末401aは、ドローン100および移動体406aのいずれからでも情報を受信可能である。また、ドローン100からの情報は、移動体406aを介して小型携帯端末401aに送信されてもよい。
The small mobile terminal 401a is, for example, a smartphone or the like. On the display unit of the small mobile terminal 401a, information on predicted motions regarding the operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure point 406, and the work that the user 402 should perform when returning Information such as contents is displayed as appropriate. Further, the operations of the drone 100 and the moving body 406a may be changed based on the input from the small mobile terminal 401a. The small portable terminal 401a can receive information from both the drone 100 and the mobile body 406a. Further, the information from the drone 100 may be transmitted to the small mobile terminal 401a via the mobile body 406a.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
Normally, the drone 100 will take off from a departure/arrival point 406 outside the field 403, and will return to the departure/arrival point 406 after spraying a drug on the field 403 or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
なお、図7に示す第2実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。
As in the second embodiment shown in FIG. 7, in the drug spraying system of the drone 100 according to the present invention, the drone 100, the operation device 401, the small portable terminal 401a, and the farming cloud 405 are connected to the base station 404, respectively. It may be configured.
また、図8に示す第3実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。
Further, as in the third embodiment shown in FIG. 8, the drug spraying system of the drone 100 according to the present invention is such that the drone 100, the operation unit 401, and the small portable terminal 401a are connected to the base station 404, respectively, and operated. Only the device 401 may be connected to the farm cloud 405.
図9に示すように、ドローン100は、圃場403a、403bの上空を飛行し、圃場内の作業を遂行する。移動体406aは、圃場403a、403bの周辺に設けられている自動運転許可エリア90を自動で走行する。自動運転許可エリア90は、例えば農道である。圃場403a、403bおよび自動運転許可エリア90は、作業エリアを構成する。また、自動運転許可エリア90は、移動体406aは移動可能であるが、ドローン100の着陸はできない移動許可エリア901と、移動体406aが移動可能で、かつ移動体406a上にドローン100が着陸可能な着陸許可エリア902と、に細分化されている。ドローン100の着陸ができない理由として、例えば当該エリアと圃場403aとの間に、ガードレール、電柱、電線、倉庫、墓等の障害物80が設置されていること等が挙げられる。
As shown in FIG. 9, the drone 100 flies over the fields 403a and 403b and performs the work in the fields. The moving body 406a automatically travels in the automatic operation permission area 90 provided around the farm fields 403a and 403b. The automatic driving permission area 90 is, for example, a farm road. The fields 403a and 403b and the automatic operation permission area 90 form a work area. Further, in the autonomous driving permission area 90, the moving body 406a is movable, but the movement permitting area 901 where the drone 100 cannot land and the moving body 406a are movable, and the drone 100 can land on the moving body 406a. The landing permission area 902 is subdivided. The reason why the drone 100 cannot land is that, for example, an obstacle 80 such as a guardrail, a power pole, an electric wire, a warehouse, or a grave is installed between the area and the field 403a.
本実施形態においては、1個の圃場403a(作業エリアの例)に複数のドローン100a、100b(以下、第1ドローン100a、および第2ドローン100bともいう。)が同時に飛行し、それぞれ作業を行ってもよい。第1ドローン100aが行う作業は第1作業の例、第2ドローン100bが行う作業は第2作業の例である。第1作業は、圃場403aの一部である第1作業エリア403cに網羅的に設定される第1運転経路51を飛行する動作を含む。第2作業は、圃場403aのうち第1作業エリア403c以外の領域である第2作業エリア403dに、網羅的に設定される第2運転経路52を飛行する動作を含む。ドローン100a、100bは、第1、第2運転経路51、52に沿って飛行しながら、薬剤を散布したり、圃場403a内を撮影したりする。
In the present embodiment, a plurality of drones 100a and 100b (hereinafter, also referred to as the first drone 100a and the second drone 100b) simultaneously fly to one field 403a (an example of a work area) and perform their respective works. May be. The work performed by the first drone 100a is an example of the first work, and the work performed by the second drone 100b is an example of the second work. The first work includes an operation of flying the first operation route 51 comprehensively set in the first work area 403c which is a part of the farm field 403a. The second work includes an operation of flying the second operation route 52, which is comprehensively set, in the second work area 403d which is a region other than the first work area 403c in the farm field 403a. The drones 100a and 100b fly along the first and second driving routes 51 and 52, spray chemicals, and photograph the inside of the field 403a.
第1運転経路51は、始点51s、作業済経路51a、未作業経路51b、および終点51eを備える。第1ドローン100aは始点51sから飛行を開始し、終点51eまで飛行する。ドローン100aがすでに飛行した経路を作業済経路51a、これから飛行する予定の経路を未作業経路51bとする。同様に、第2運転経路52は始点52s、作業済経路52a、未作業経路52b、および終点52eを備える。第2ドローン100bは始点52sから飛行を開始し、終点52eまで飛行する。ドローン100bがすでに飛行した経路を作業済経路52a、これから飛行する予定の経路を未作業経路52bとする。
The first driving route 51 includes a start point 51s, a worked route 51a, an unworked route 51b, and an end point 51e. The first drone 100a starts flying from the starting point 51s and flies to the ending point 51e. The route which the drone 100a has already flown is referred to as a worked route 51a, and the route which is planned to fly from now on is referred to as an unworked route 51b. Similarly, the second driving route 52 includes a start point 52s, a worked route 52a, an unworked route 52b, and an end point 52e. The second drone 100b starts flying from the starting point 52s and flies to the ending point 52e. The route which the drone 100b has already flown is referred to as a worked route 52a, and the route which is planned to fly from now on is referred to as an unworked route 52b.
複数の移動体406A、406b(以下、第1移動体406A、第2移動体406Bともいう。)が、自動運転許可エリア90内を走行する。ドローンシステム500に含まれる複数のドローン100a、100b、および複数の移動体406A、406Bは、互いにネットワークを介して接続され、図13に後述する管制装置40により集中管理されている。
A plurality of moving bodies 406A and 406b (hereinafter, also referred to as first moving body 406A and second moving body 406B) run in the automatic driving permission area 90. The plurality of drones 100a and 100b and the plurality of mobile bodies 406A and 406B included in the drone system 500 are connected to each other via a network, and are centrally managed by a control device 40 described later in FIG.
本実施形態においては、ドローンおよび移動体の数は同数であるが、同数でなくてもよい。ドローンおよび移動体の数が同数である場合、移動体1台につきドローンが1台搭載可能であるので、移動体にすべてのドローンを積載して、作業エリア外からドローンを搬入することができる。また、移動体は複数のドローンに対して同時に資源を補充することはできないが、ドローンシステム500内にドローンと移動体が同数含まれる構成によれば全てのドローンに同時に資源補充が可能である。
In this embodiment, the number of drones and the number of mobile units are the same, but they do not have to be the same. When the number of drones and the number of moving bodies are the same, one drone can be installed for each moving body, so all the drones can be loaded on the moving body and the drone can be carried in from outside the work area. Further, although a mobile unit cannot replenish resources to a plurality of drones at the same time, the drone system 500 includes the same number of drones and mobile units, so that all drones can be replenished at the same time.
管制装置40は、独立した装置であってもよいし、複数のドローン100a、100b、複数の移動体406A、406B又は営農クラウド405等、ドローンシステム500に含まれる構成のいずれかに搭載されていてもよい。
The control device 40 may be an independent device, a plurality of drones 100a, 100b, a plurality of mobile units 406A, 406B or farming cloud 405, etc., is installed in any of the configurations included in the drone system 500. Good.
ドローン100は、移動体406aから離陸して圃場403a、403b内での作業を遂行する。ドローン100は、圃場403a、403b内での作業中に、適宜作業を中断して移動体406aに帰還し、バッテリ502および薬剤の補充を行う。ドローン100は所定の圃場の作業が完了すると、移動体406aに乗って別の圃場近傍まで移動した上で、移動体406aから再度離陸し、当該別の圃場における作業を開始する。このように、ドローン100の自動運転許可エリア90内の移動は、原則的に、移動体406aに乗って行われ、移動体406aは、作業を行う圃場近傍までドローン100を運搬する。この構成によれば、ドローン100のバッテリ502を節約することができる。また、移動体406aは、ドローン100に補充可能なバッテリ502や薬剤を格納しているため、ドローン100が作業を行っている圃場近傍に移動体406aが移動して待機する構成によれば、ドローン100への資源の補充を効率的に行うことができる。
The drone 100 takes off from the moving body 406a and performs work in the fields 403a and 403b. The drone 100 appropriately interrupts the work during the work in the fields 403a and 403b and returns to the moving body 406a to replenish the battery 502 and the medicine. When the work on the predetermined field is completed, the drone 100 rides on the moving body 406a to move to the vicinity of another field and then takes off from the moving body 406a again to start the work on the different field. As described above, the movement of the drone 100 in the automatic driving permission area 90 is basically carried on the moving body 406a, and the moving body 406a carries the drone 100 to the vicinity of the field where the work is performed. According to this configuration, the battery 502 of the drone 100 can be saved. Further, since the moving body 406a stores the battery 502 and the medicine that can be replenished in the drone 100, the moving body 406a moves to the vicinity of the field where the drone 100 is working and waits. The resource can be replenished to 100 efficiently.
自動運転許可エリア90の外の領域は、自動運転不許可エリア91である。自動運転許可エリア90と自動運転不許可エリア91とは、区画部材407a、407b、407c、407d、407eにより区画されている。自動運転許可エリア90と自動運転不許可エリア91とは、各種障害物等で隔てられている他、道路が連続的に形成されていて、区画部材407a、407b、407c、407d、407eは、当該道路上に配置されていてもよい。言い換えれば、区画部材407a、407b、407c、407d、407eは、自動運転許可エリア90への侵入口に配置されている。
The area outside the automatic driving permission area 90 is an automatic driving non-permission area 91. The automatic driving permission area 90 and the automatic driving non-permission area 91 are partitioned by partition members 407a, 407b, 407c, 407d, 407e. The automatic driving permission area 90 and the automatic driving non-permission area 91 are separated by various obstacles and the like, and the road is continuously formed, and the partition members 407a, 407b, 407c, 407d, 407e are concerned. It may be arranged on the road. In other words, the partition members 407a, 407b, 407c, 407d, 407e are arranged at the entrance to the automatic driving permission area 90.
区画部材407は、圃場403およびその周辺の領域であって、移動体406aやドローン100が作業する際に移動する作業エリアを区画するための部材であり、例えばカラーコーン(登録商標)、三角コーン、コーンバー、バリケード、フィールドアーチ、フェンス等である。区画部材407は、物理的に区画してもよいし、赤外線等の光線により区画されていてもよい。区画部材407は、主に作業エリア外の侵入者に作業中であることを知らせ、作業エリア内への立ち入りを制限するために用いられる。したがって、侵入者が遠方からでも視認できるような部材である。また、区画部材407は、作業の開始時に使用者402により設置されるため、設置および撤去が容易であるとよい。区画部材407は、ドローンシステム500内に複数含まれていてもよい。区画部材407は、侵入者が作業エリア内に侵入したことを検知して、移動体406aや操作器401、小型携帯端末401a等に当該侵入情報を伝達してもよい。なお、侵入者は、人や車、その他の移動体を含む。
The partition member 407 is a member for partitioning a work area that is a field around the farm field 403 and its surroundings, and that moves when the moving body 406a and the drone 100 work, and is, for example, a color cone (registered trademark) or a triangular cone. , Corn bars, barricades, field arches, fences, etc. The partition member 407 may be physically partitioned or may be partitioned by light rays such as infrared rays. The partition member 407 is used mainly for informing an intruder outside the work area that he/she is working and for restricting entry into the work area. Therefore, it is a member that an intruder can see from a distance. Further, since the partition member 407 is installed by the user 402 at the start of the work, it is preferable that the partition member 407 is easy to install and remove. A plurality of partition members 407 may be included in the drone system 500. The partition member 407 may detect that an intruder has entered the work area and may transmit the intrusion information to the moving body 406a, the operation unit 401, the small portable terminal 401a, or the like. The intruder includes a person, a car, and other moving bodies.
図10に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
FIG. 10 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. The configuration is such that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
The software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
The flight controller 501 communicates with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401. In this case, the communication may be encrypted to prevent illegal acts such as interception, spoofing, and hijacking of the device. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is of high importance, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone aircraft in three mutually orthogonal directions, and is also a means for calculating the speed by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, switch to an alternative sensor. Alternatively, a plurality of sensors may be used simultaneously, and if the measurement results do not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。侵入者検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The intruder detection camera 513 is a camera for detecting a drone intruder, and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The intruder contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has contacted an intruder such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The intruder contact sensor 515 may be replaced with a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed. In addition, a sensor may be provided in the base station 404 outside the drone 100, the operation device 401, or another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
LED107 is a display means for informing the drone operator of the status of the drone. Display means such as a liquid crystal display may be used instead of or in addition to the LEDs. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for the transfer of software, for example, separately from the operation unit 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. Further, instead of the Wi-Fi slave device function, the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other. The speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice, synthesized voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated/multiplexed.
●移動体の構成
図11および図12に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。 Configuration of Mobile Object Themobile object 406a shown in FIG. 11 and FIG. 12 receives the information that the drone 100 has and notifies the user 402 appropriately, or receives the input from the user 402 and transmits it to the drone 100. It is a device. Further, the moving body 406a can move by carrying the drone 100. The moving body 406a may be driven by the user 402 or may be autonomously movable. Although the moving body 406a in the present embodiment is assumed to be a vehicle such as an automobile, more specifically, a light truck, it may be an appropriate moving body capable of running on land such as a train, a ship or a flight. It may be the body. The drive source of the moving body 406a may be any suitable source such as gasoline, electricity, fuel cell, or the like.
図11および図12に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。 Configuration of Mobile Object The
移動体406aは、進行方向前方に乗車席81、後方に荷台82が配置されている車両である。移動体406aの底面側には、移動手段の例である4個の車輪83が、駆動可能に配置されている。乗車席81には、使用者402が乗り込むことが可能である。
The moving body 406a is a vehicle in which a passenger seat 81 is arranged in the front in the traveling direction and a luggage platform 82 is arranged in the rear. On the bottom surface side of the moving body 406a, four wheels 83, which are an example of moving means, are arranged so that they can be driven. A user 402 can get into the passenger seat 81.
乗車席81には、移動体406aおよびドローン100の様子を表示する表示部65が配置されている。表示部65は、画面を有する装置であってもよいし、フロントガラスに情報を投影する機構により実現されていてもよい。また、この表示部65に加えて、乗車席81を覆う車体810の背面側にも背面表示部65aが設置されていてもよい。この背面表示部65aは、車体810に対する角度が左右に変更可能であり、荷台82の後方および左右側方で作業している使用者402が画面を見て情報を取得することができる。
The passenger seat 81 is provided with a display unit 65 that displays the state of the moving body 406a and the drone 100. The display unit 65 may be a device having a screen, or may be realized by a mechanism that projects information on the windshield. In addition to the display unit 65, a rear display unit 65a may be installed on the rear side of the vehicle body 810 that covers the passenger seat 81. The rear display unit 65a can change the angle with respect to the vehicle body 810 to the left and right, and the user 402 working behind and on the left and right sides of the cargo bed 82 can obtain information by looking at the screen.
移動体406aの荷台82前部左端には、丸棒の上方に円盤状の部材が連結された形状をしている基地局404が、乗車席81よりも上方に伸び出ている。なお、基地局404の形状および位置は、任意である。基地局404が荷台82の乗車席81側にある構成によれば、荷台82の後方にある構成と比較して、基地局404がドローン100の離着陸の妨げになりづらい。
At the left end of the front of the loading platform 82 of the mobile unit 406a, a base station 404 having a shape in which a disk-shaped member is connected above a round bar extends above the passenger seat 81. The shape and position of the base station 404 are arbitrary. According to the configuration in which the base station 404 is on the passenger seat 81 side of the luggage platform 82, the base station 404 is less likely to interfere with the takeoff and landing of the drone 100, as compared to the configuration behind the luggage platform 82.
荷台82は、ドローン100のバッテリ502や、ドローン100の薬剤タンク104に補充される薬剤を格納する荷室821を有する。荷室821は、乗車席81を覆う車体810と、後方板822と、1対の側方板823、823と、上面板824とに囲まれた領域である。後方板822および側方板823は、「あおり」とも呼ばれる。後方板822の上部両端それぞれには、レール825が、側方板823の上端に沿って乗車席81背面側の車体810まで配設されている。上面板824は、ドローン100が載置され、離着陸することが可能な発着地点406である発着領域となっており、レール825に沿って進行方向前後に摺動可能になっている。レール825は、上面板824の平面より上方に突出するリブとなっていて、上面板824上に乗っているドローン100が移動体406aの左右端から滑り出てしまうことを防いでいる。また、上面板824の後方にも、レール825と同程度上面側に突出するリブ8241が形成されている。
The cargo bed 82 has a battery 502 of the drone 100 and a cargo room 821 for storing medicines to be replenished in the medicine tank 104 of the drone 100. The luggage compartment 821 is a region surrounded by a vehicle body 810 that covers the passenger seat 81, a rear plate 822, a pair of side plates 823 and 823, and an upper plate 824. The rear plate 822 and the side plate 823 are also referred to as “flaws”. Rails 825 are provided on both upper ends of the rear plate 822 along the upper ends of the side plates 823 to the vehicle body 810 on the rear side of the passenger seat 81. The upper surface plate 824 is a departure/arrival area which is a departure/arrival point 406 where the drone 100 is placed and can be taken off/landed, and is slidable along the rail 825 in the forward/backward direction. The rail 825 is a rib that protrudes above the plane of the upper plate 824, and prevents the drone 100 on the upper plate 824 from slipping out from the left and right ends of the moving body 406a. Further, a rib 8241 is formed behind the upper surface plate 824 so as to project to the upper surface side to the same extent as the rail 825.
車体810上部および後方板822の進行方向後ろ側には、ドローンシステム500が作業中である旨を表示する警告灯830が配置されていてもよい。警告灯830は、配色又は明滅等で作業中と作業中以外とを区別する表示器であってもよいし、文字又は絵柄等が表示可能であってもよい。また、車体810上部の警告灯830は、車体810上方まで伸びあがって両面に表示することが可能であってもよい。この構成によれば、荷台82にドローン100が配置されている場合であっても、後方から警告を視認することができる。また、移動体406aの進行方向前方からも、警告を視認することができる。警告灯830が前方および後方から視認できることで、区画部材407を設置する手間を一部省略することができる。
A warning light 830 that indicates that the drone system 500 is working may be arranged on the upper side of the vehicle body 810 and on the rear side of the rear plate 822 in the traveling direction. The warning light 830 may be a display device that distinguishes between working and non-working by coloration or blinking, and may be capable of displaying characters or patterns. Further, the warning light 830 on the upper part of the vehicle body 810 may extend to above the vehicle body 810 and can be displayed on both sides. According to this configuration, the warning can be visually recognized from the rear even when the drone 100 is arranged on the loading platform 82. Further, the warning can be visually recognized from the front of the moving body 406a in the traveling direction. Since the warning light 830 can be seen from the front and the rear, part of the labor for installing the partition member 407 can be omitted.
上面板824は、手動で摺動可能であってもよいし、ラックアンドピニオン機構などを利用して自動で摺動してもよい。上面板824を後方に摺動させると、荷台82の上方から荷室821に物品を格納したり、物品を取り出したりすることができる。また、上面板824が後方に摺動している形態においては、上面板824と車体810とが十分離間するため、ドローン100が発着地点406に離着陸可能である。
The top plate 824 may be manually slidable, or may be slid automatically by using a rack and pinion mechanism or the like. By sliding the upper surface plate 824 rearward, articles can be stored in or taken out of the luggage compartment 821 from above the cargo bed 82. Further, in the form in which the upper plate 824 slides rearward, the upper plate 824 and the vehicle body 810 are sufficiently separated from each other, so that the drone 100 can take off and land at the landing point 406.
上面板824には、ドローン100の足107-1,107-2,107-3,107-4が固定可能な足受部826が4個配設されている。足受部826は、例えばドローン100の4本の足107-1,107-2,107-3,107-4に対応する位置に1個ずつ設置されている、上面が円錐台状に凹んでいる円盤状の部材である。なお、足受部826の円錐台状の凹みの底と、足107-1,107-2,107-3,107-4の先端とは、互いに嵌合可能な形状になっていてもよい。足受部826上に着陸しているとき、ドローン100の足107-1,107-2,107-3,107-4は、足受部826の円錐面に沿って滑り、円錐台の底部に足107-1,107-2,107-3,107-4の先端が誘導される。ドローン100は適宜の機構により足受部826に自動又は手動で固定可能であり、移動体406aがドローン100を載せて移動する際にも、ドローン100が過度に振動したり落下することなくドローン100を安全に輸送することができる。また、移動体406aは、ドローン100が足受部826に固定されているか否かを検知可能である。
The top plate 824 is provided with four foot receiving portions 826 to which the feet 107-1, 107-2, 107-3, 107-4 of the drone 100 can be fixed. The foot receiving portion 826 is, for example, a disk-shaped member whose upper surface is recessed in a truncated cone shape, which are installed one by one at positions corresponding to four feet 107-1, 107-2, 107-3, 107-4 of the drone 100. is there. The bottom of the frustoconical recess of the foot receiving portion 826 and the tips of the feet 107-1, 107-2, 107-3, 107-4 may be shaped so that they can be fitted to each other. When landing on the foot rest 826, the feet 107-1,107-2,107-3,107-4 of the drone 100 slide along the conical surface of the foot rest 826, and the feet 107-1,107-2,107 on the bottom of the truncated cone. -3,107-4 tip is guided. The drone 100 can be automatically or manually fixed to the foot receiving portion 826 by an appropriate mechanism, and even when the moving body 406a moves with the drone 100 mounted thereon, the drone 100 does not vibrate excessively or fall, and the drone 100 does not fall. Can be safely transported. Further, the moving body 406a can detect whether or not the drone 100 is fixed to the foot receiving portion 826.
上面板824の、略中央部には、ドローン100の離着陸の位置の目安を表示する円周灯850が配置されている。円周灯850は、略円状に配設される発光体群により形成されていて、発光体群は個別に明滅可能である。本実施形態では、円周上に約90度ごとに配置される4個の大きな発光体850aと、大きな発光体850aの間に2個ずつ等間隔に配置される小さな発光体850bとで、1の円周灯850を構成している。円周灯850は、発光体群850a、850bのうち1又は複数が点灯することで、ドローン100の離陸後の飛行方向、又は着陸する際に飛来する方向を表示する。なお、円周灯850は、部分的に明滅可能な1個の円環状の発光体により構成されていてもよい。
Around the center of the top plate 824, there is a circumferential light 850 that displays a guide for the takeoff/landing position of the drone 100. The circumferential lamp 850 is formed of a luminous body group arranged in a substantially circular shape, and the luminous body group can be individually blinked. In the present embodiment, four large light emitters 850a are arranged at intervals of about 90 degrees on the circumference, and two small light emitters 850b are equally spaced between the large light emitters 850a. It is composed of a circular lamp 850. The circumferential light 850 displays the flight direction of the drone 100 after takeoff or the direction of flight when landing, by lighting one or more of the light emitter groups 850a and 850b. The circumferential lamp 850 may be composed of a single ring-shaped light-emitting body that can be partially blinked.
1対の側方板823は、底部の辺が荷台82にヒンジで連結されていて、側方板823を外側に倒すことが可能である。図12では、進行方向左側の側方板823が外側に倒れている様子を示している。側方板823が外側に倒れると、移動体406aの側方から格納物を格納および取り出しが可能になる。側方板823は荷室821の底面と略平行に固定され、側方板823を作業台としても使用することができる。
The pair of side plates 823 are hinged at the bottom sides to the loading platform 82, and the side plates 823 can be tilted outward. FIG. 12 shows that the side plate 823 on the left side in the traveling direction is tilted outward. When the side plate 823 falls outward, it is possible to store and take out stored items from the side of the moving body 406a. The side plate 823 is fixed substantially parallel to the bottom surface of the luggage compartment 821, and the side plate 823 can also be used as a workbench.
1対のレール825は、形態切替機構を構成する。また、側方板823と荷台82を連結するヒンジも、形態切替機構に含まれていてもよい。上面板824が荷室821の上方を覆って配置され、側方板823が起立して荷室821の側面を覆っている形態において、移動体406aは移動する。移動体406aが静止しているとき、上面板824が後方に摺動している形態、又は側方板823が倒れている形態に切り替えられ、使用者402は荷室821の内部にアプローチできる。
The pair of rails 825 form a form switching mechanism. Further, a hinge that connects the side plate 823 and the loading platform 82 may be included in the form switching mechanism. The movable body 406a moves in a form in which the upper surface plate 824 is arranged to cover the upper side of the luggage compartment 821 and the side plate 823 stands up and covers the side surface of the luggage compartment 821. When the moving body 406a is stationary, the upper plate 824 is switched to the rearward sliding form or the side plate 823 is tilted so that the user 402 can approach the inside of the luggage compartment 821.
ドローン100は、発着地点406に着陸している状態において、バッテリ502の補充を行うことができる。バッテリ502の補充とは、内蔵されているバッテリ502の充電、およびバッテリ502の交換を含む。荷室821にはバッテリ502の充電装置が格納されていて、荷室821に格納されているバッテリ502の充電が可能である。また、ドローン100は、バッテリ502に代えてウルトラキャパシタの機構を備え、荷室821内にはウルトラキャパシタ用の充電器が格納されていてもよい。この構成においては、ドローン100が足受部826に固定されている際に、ドローン100の足を介して、ドローン100に搭載されているバッテリ502を急速充電することができる。
The drone 100 can replenish the battery 502 while landing on the departure point 406. Refilling the battery 502 includes charging the built-in battery 502 and replacing the battery 502. A battery 502 charging device is stored in the luggage compartment 821, and the battery 502 stored in the luggage compartment 821 can be charged. Further, drone 100 may include an ultracapacitor mechanism instead of battery 502, and a charger for ultracapacitor may be stored in luggage compartment 821. In this configuration, when the drone 100 is fixed to the foot receiving portion 826, the battery 502 mounted on the drone 100 can be rapidly charged via the feet of the drone 100.
ドローン100は、発着地点406に着陸している状態において、薬剤タンク104に貯留される薬剤の補充を行うことができる。荷室821には、薬剤を希釈混合するための希釈混合タンク、撹拌機構、ならびに希釈混合タンクから薬剤を吸い上げて薬剤タンク104に注入せしめるポンプおよびホース等の希釈混合を行う適宜の構成要素が格納されていてもよい。また、荷室821から上面板824の上方へ伸び出て、薬剤タンク104の注入口に接続可能な補充用ホースが配管されていてもよい。
The drone 100 can replenish the medicine stored in the medicine tank 104 while landing at the departure point 406. The luggage compartment 821 stores a diluting and mixing tank for diluting and mixing the drug, a stirring mechanism, and appropriate components for diluting and mixing such as a pump and a hose that suck up the drug from the diluting and mixing tank and inject it into the drug tank 104. It may have been done. Further, a refilling hose that extends from the luggage compartment 821 above the upper surface plate 824 and can be connected to the inlet of the medicine tank 104 may be provided.
上面板824の上面側には、薬剤タンク104から排出される薬剤を誘導する廃液溝840および廃液孔841が形成されている。廃液溝840および廃液孔841は、それぞれ2個ずつ配置されていて、ドローン100が移動体406aの左右どちらを向いて着陸しても、薬剤ノズル103の下方に廃液溝840が位置するようになっている。廃液溝840は、薬剤ノズル103の位置に沿って、移動体406aの長さ方向に沿って略真っ直ぐに形成されている、所定の幅を有する溝であり、乗車席81側に向かってわずかに傾斜している。廃液溝840の乗車席81側の端部には、それぞれ上面板824を貫通して荷室821の内部に薬液を誘導する廃液孔841が形成されている。廃液孔841は、荷室821内であって廃液孔841の略真下に設置されている廃液タンク842に連通している。
A waste liquid groove 840 and a waste liquid hole 841 for guiding the medicine discharged from the medicine tank 104 are formed on the upper surface side of the upper surface plate 824. Two waste liquid grooves 840 and two waste liquid holes 841 are arranged, so that the waste liquid groove 840 is positioned below the medicine nozzle 103 regardless of whether the drone 100 is landing facing the left or right of the moving body 406a. ing. The waste liquid groove 840 is a groove having a predetermined width, which is formed substantially straight along the position of the medicine nozzle 103 and along the length direction of the moving body 406a, and slightly toward the passenger seat 81 side. It is inclined. A waste liquid hole 841 is formed at an end of the waste liquid groove 840 on the passenger seat 81 side to penetrate the upper surface plate 824 and guide the chemical liquid into the inside of the luggage compartment 821. The waste liquid hole 841 communicates with a waste liquid tank 842 installed in the luggage compartment 821 and directly below the waste liquid hole 841.
薬剤タンク104に薬剤を注入する際、薬剤タンク104内に充満する気体、主に空気を外部に排出するエア抜き動作を行う。このとき、薬剤タンク104の排出口から薬剤が排出する動作が必要になる。また、ドローン100が作業終了後に、薬剤タンク104から薬剤を排出する動作が必要になる。上面板824に廃液溝840および廃液孔841が形成されている構成によれば、ドローン100を上面板824に配置した状態で、薬剤タンク104への薬剤注入および排出を行う際、廃液を廃液タンク842に誘導することができ、安全に薬剤注入および排出を行うことができる。
When the medicine is injected into the medicine tank 104, an air venting operation is performed to discharge the gas filling the medicine tank 104, mainly air, to the outside. At this time, an operation of discharging the medicine from the discharge port of the medicine tank 104 is required. Further, it is necessary for the drone 100 to perform an operation of discharging the medicine from the medicine tank 104 after the work is completed. According to the configuration in which the waste liquid groove 840 and the waste liquid hole 841 are formed in the upper surface plate 824, when the drug is injected into and discharged from the drug tank 104 with the drone 100 placed on the upper surface plate 824, the waste liquid is stored in the waste liquid tank. It can be guided to 842, and drug infusion and excretion can be performed safely.
●ドローンシステムが有するドローン、移動体、および管制装置の構成
図13に示すように、ドローンシステム500は、第1ドローン100a、第2ドローン100b、第1移動体406a、および管制装置40を含む。ドローン100、第1ドローン100a、第2ドローン100b、移動体406a、および管制装置40は、例えば互いにネットワークNWを介して接続されて構成されている。なお、ネットワークNWは、すべて無線であってもよいし、一部又は全部が有線であってもよい。また、具体的な接続関係は同図に限られるものではなく、各構成が直接又は間接的に接続されていればよい。第1および第2ドローン100a、100bは互いに同等の構成であるので、以降の説明では単にドローン100として説明する。 Configuration of Drone, Moving Body, and Control Device of Drone System As shown in FIG. 13, thedrone system 500 includes a first drone 100a, a second drone 100b, a first moving body 406a, and a control device 40. The drone 100, the first drone 100a, the second drone 100b, the moving body 406a, and the control device 40 are configured to be connected to each other via a network NW, for example. The network NW may be all wireless, or part or all may be wired. Further, the specific connection relationship is not limited to that shown in the figure, and each configuration may be connected directly or indirectly. Since the first and second drones 100a and 100b have the same configuration, only the drone 100 will be described below.
図13に示すように、ドローンシステム500は、第1ドローン100a、第2ドローン100b、第1移動体406a、および管制装置40を含む。ドローン100、第1ドローン100a、第2ドローン100b、移動体406a、および管制装置40は、例えば互いにネットワークNWを介して接続されて構成されている。なお、ネットワークNWは、すべて無線であってもよいし、一部又は全部が有線であってもよい。また、具体的な接続関係は同図に限られるものではなく、各構成が直接又は間接的に接続されていればよい。第1および第2ドローン100a、100bは互いに同等の構成であるので、以降の説明では単にドローン100として説明する。 Configuration of Drone, Moving Body, and Control Device of Drone System As shown in FIG. 13, the
本実施形態では、ドローンは2個、移動体は1個であるが、それぞれこれ以上であってもよい。また、ドローンと移動体の数は同数であってもよいし、個数が異なっていてもよい。複数のドローンは、複数の移動体406aのいずれにも離着陸可能であり、資源の補充が可能である。なお、資源の補充とは、バッテリ502の補充および薬剤の補充を含む概念である。
In the present embodiment, the number of drones is two and the number of moving bodies is one, but the number may be more than this. Further, the number of drones and the number of moving bodies may be the same or different. A plurality of drones can take off and land on any of a plurality of moving bodies 406a, and resources can be replenished. Note that the replenishment of resources is a concept including replenishment of the battery 502 and replenishment of medicines.
●ドローン
ドローン100は、それぞれ飛行制御部21、搭載資源取得部22、およびバッテリ502を備える。 ● Drone Thedrone 100 includes a flight control unit 21, an onboard resource acquisition unit 22, and a battery 502, respectively.
ドローン100は、それぞれ飛行制御部21、搭載資源取得部22、およびバッテリ502を備える。 ● Drone The
飛行制御部21は、ドローン100が有するモータ102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラ501の機能によって実現される。
The flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 to control the flight and takeoff/landing of the drone 100. The flight control unit 21 is realized by the function of the flight controller 501, for example.
搭載資源取得部22は、ドローン100に搭載されている資源の量、すなわちバッテリ502の蓄電量および薬剤量を取得する機能部である。搭載資源取得部22は、蓄電量取得部221および薬剤量取得部222を備える。
The installed resource acquisition unit 22 is a functional unit that acquires the amount of resources installed in the drone 100, that is, the amount of electricity stored in the battery 502 and the amount of medicine. The onboard resource acquisition unit 22 includes a storage amount acquisition unit 221 and a drug amount acquisition unit 222.
蓄電量取得部221は、ドローン100に搭載されているバッテリ502の蓄電量を取得する機能部である。バッテリ502の蓄電量は、資源の補充なしにドローン100を動作可能なエネルギー量を指すものとする。バッテリ502は、一次電池、二次電池、又は燃料電池等どのような形式のエネルギー供給機構であってもよい。
The storage amount acquisition unit 221 is a functional unit that acquires the storage amount of the battery 502 mounted on the drone 100. The amount of electricity stored in the battery 502 refers to the amount of energy that can operate the drone 100 without supplementing resources. The battery 502 may be any type of energy supply mechanism such as a primary battery, a secondary battery, or a fuel cell.
蓄電量取得部221はバッテリ502の蓄電量を計測する別の構成から情報を取得してもよいし、蓄電量取得部221自身がバッテリ502の蓄電量を計測してもよい。
The storage amount acquisition unit 221 may acquire information from another configuration that measures the storage amount of the battery 502, or the storage amount acquisition unit 221 itself may measure the storage amount of the battery 502.
薬剤量取得部222は、薬剤タンク104における薬剤の現在の貯留量を推定する機能部である。薬剤量取得部222は、重量測定部211aにより測定されるドローン100の重量から貯留量を推定してもよい。また、薬剤量取得部222は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。薬剤量取得部222は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて貯留量を推定してもよい。ドローン100が作業中の場合は、薬剤量取得部222は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、貯留量を推定してもよい。
The drug amount acquisition unit 222 is a functional unit that estimates the current amount of drug stored in the drug tank 104. The drug amount acquisition unit 222 may estimate the stored amount from the weight of the drone 100 measured by the weight measurement unit 211a. Further, the medicine amount acquisition unit 222 may have a function of estimating the liquid level height in the medicine tank 104, for example. The drug amount acquisition unit 222 may estimate the stored amount by using a liquid level gauge or a water pressure sensor arranged in the drug tank 104. When the drone 100 is working, the drug amount acquisition unit 222 calculates the drug discharge amount by integrating the discharge flow rates from the drug tank 104 measured by the flow rate sensor 510, and determines the drug discharge amount from the initially loaded drug amount. The storage amount may be estimated by subtracting.
障害物検知部23は、ドローン100の周辺の障害物を検知する機能部である。障害物検知部23は、例えば赤外線センサやマルチスペクトルカメラにより実現される。障害物検知部23により障害物がドローン100周辺の所定範囲にあることが検知されると、飛行制御部21によりドローン100を着陸させる。
The obstacle detection unit 23 is a functional unit that detects obstacles around the drone 100. The obstacle detection unit 23 is realized by, for example, an infrared sensor or a multispectral camera. When the obstacle detection unit 23 detects that the obstacle is within the predetermined range around the drone 100, the flight control unit 21 causes the drone 100 to land.
●移動体
移動体406aは、荷室821、収容資源取得部31、着陸検知部32および補充部33を備える。 -Mobile Object Themobile object 406a includes a luggage compartment 821, a storage resource acquisition unit 31, a landing detection unit 32, and a replenishment unit 33.
移動体406aは、荷室821、収容資源取得部31、着陸検知部32および補充部33を備える。 -Mobile Object The
収容資源取得部31は、移動体406aが保有する資源の量を計量する機能部である。資源の量は、充電済みのバッテリ502の個数や薬剤量を含む。また、資源の量は、バッテリ502を充電する設備の充電余力であってもよい。ドローン100が燃料電池で駆動する構成の場合は、ドローン100に貯留可能な燃料ガス、例えば水素ガスの量であってもよい。移動体406aに準備されている資源の量は、使用者402による手入力によって取得されてもよいし、自動で取得する構成であってもよい。自動で取得する構成の例としては、薬剤量を取得するために荷室821の所定範囲の重量を計測する構成を有していてもよい。また、充電済みのバッテリ502の個数を取得するために、荷室821の所定範囲の重量に加えて、バッテリ502の蓄電量を測定する構成を有していてもよい。
The accommodation resource acquisition unit 31 is a functional unit that measures the amount of resources held by the mobile unit 406a. The amount of resources includes the number of charged batteries 502 and the amount of medicine. Further, the amount of resources may be the remaining charging capacity of the facility that charges the battery 502. When the drone 100 is configured to be driven by a fuel cell, the amount of fuel gas that can be stored in the drone 100, for example, hydrogen gas may be used. The amount of resources prepared in the moving body 406a may be manually input by the user 402 or may be automatically acquired. As an example of the configuration that is automatically acquired, a configuration may be adopted in which the weight of a predetermined range of the luggage compartment 821 is measured in order to acquire the drug amount. In addition, in order to obtain the number of charged batteries 502, a configuration may be adopted in which the amount of electricity stored in the battery 502 is measured in addition to the weight of the luggage compartment 821 in a predetermined range.
着陸検知部32は、移動体406aにドローン100が着陸しているか否かを検知する機能部である。着陸検知部32は、例えば足受部826に搭載されているタッチスイッチや静電容量センサ等、ドローン100の足107-1乃至107-4を検出する構成により、ドローン100が移動体406aに着陸しているか否かを検知する。着陸検知部32は、ドローンシステム500内にドローン100が複数ある場合は、足107-1乃至107-4からドローン100の固有情報を取得することで、いずれのドローン100が着陸しているかを識別可能であってもよい。また、着陸検知部32は、RTK-GPS等により各ドローン100の位置情報を取得することで、着陸しているドローン100を識別してもよい。
The landing detection unit 32 is a functional unit that detects whether or not the drone 100 is landing on the moving body 406a. The landing detection unit 32 is configured to detect the feet 107-1 to 107-4 of the drone 100, such as a touch switch and a capacitance sensor mounted on the foot receiving unit 826, so that the drone 100 lands on the moving body 406a. It is detected whether or not. When there are multiple drones 100 in the drone system 500, the landing detection unit 32 identifies which drone 100 is landing by acquiring the unique information of the drone 100 from the feet 107-1 to 107-4. It may be possible. Further, the landing detection unit 32 may identify the drone 100 landing by acquiring the position information of each drone 100 by RTK-GPS or the like.
補充部33は、移動体406aに着陸しているドローン100に資源を補充する機能部である。補充部33は、前述したように、移動体406aに着陸しているドローン100に搭載されているバッテリ502に充電することができる。また、バッテリ502に充電することに代えて、ウルトラキャパシタにより高速充電する構成であってもよい。さらに、補充部33は、薬剤タンク104に貯留される薬剤の補充を行うことができる。
The replenishment unit 33 is a functional unit that replenishes the drone 100 landing on the moving body 406a with resources. As described above, the replenishment unit 33 can charge the battery 502 mounted on the drone 100 landing on the moving body 406a. Further, instead of charging the battery 502, a configuration in which high speed charging is performed by an ultracapacitor may be used. Further, the replenishment unit 33 can replenish the medicine stored in the medicine tank 104.
●管制装置
管制装置40は、ドローン100および移動体406aの作業計画を決定する機能部である。作業計画とは、ドローン100および移動体406aそれぞれの移動経路や、当該移動経路上における移動速度を含む。ドローン100の作業計画は、飛行速度、飛行加速度および着陸位置座標の他、薬剤散布の吐出タイミングおよび吐出量の情報も含む。移動体406aの作業計画は、移動速度、移動加速度およびドローン100が着陸する際の移動体406aの位置座標を含む。 Control Device The control device 40 is a functional unit that determines a work plan for thedrone 100 and the moving body 406a. The work plan includes the moving paths of the drone 100 and the moving body 406a, and the moving speeds on the moving paths. The work plan of the drone 100 includes flight speed, flight acceleration, and landing position coordinates, as well as information on the delivery timing and delivery amount of the drug spray. The work plan of the moving body 406a includes moving speed, moving acceleration, and position coordinates of the moving body 406a when the drone 100 lands.
管制装置40は、ドローン100および移動体406aの作業計画を決定する機能部である。作業計画とは、ドローン100および移動体406aそれぞれの移動経路や、当該移動経路上における移動速度を含む。ドローン100の作業計画は、飛行速度、飛行加速度および着陸位置座標の他、薬剤散布の吐出タイミングおよび吐出量の情報も含む。移動体406aの作業計画は、移動速度、移動加速度およびドローン100が着陸する際の移動体406aの位置座標を含む。 Control Device The control device 40 is a functional unit that determines a work plan for the
作業計画は、ドローンシステム500内のドローン100が1個であれば、ドローン100の資源量が所定の条件を満たすときや、作業を完了したときに帰還するように、各ドローン100に独立して設定されている。しかし、発着地点406の個数がドローン100の個数よりも少ない場合は、発着地点406に同時に着陸することができない。そこで、管制装置40により、ドローン100が発着地点406に滞在する時間帯が重複しないように管制を行うことができる。また、管制装置40は、作業計画において発着地点406でドローン100に資源を補充するにあたり、資源が各ドローン100の作業計画通りに補充されるように、ドローン100および移動体406aに収容される資源量の管理を行う。また、管制装置40は、複数のドローンを離陸させる離陸順序を管制する。管制装置40は、複数のドローンを1台ずつ離陸させるものとしてもよい。管制装置40は、離陸している第1のドローンの情報を取得し、当該ドローンが所定の条件を満たすとき、第2のドローンを離陸させるものとしてもよい。より具体的には、管制装置40は、第1のドローンと第2のドローンとの距離が所定以上となるとき、第2のドローンを離陸させるものとしてもよい。
The work plan is independent for each drone 100 so that if there is one drone 100 in the drone system 500, it will return when the resource amount of the drone 100 satisfies a predetermined condition or when the work is completed. It is set. However, if the number of departure and arrival points 406 is less than the number of drones 100, it is not possible to land at the departure and arrival points 406 at the same time. Therefore, the control device 40 can control the drone 100 so that the time zones in which the drone 100 stays at the departure/arrival point 406 do not overlap. Further, the control device 40, when replenishing the resources to the drone 100 at the departure point 406 in the work plan, the resources accommodated in the drone 100 and the moving body 406a so that the resources are replenished according to the work plan of each drone 100. Manage the quantity. In addition, the control device 40 controls the takeoff order in which a plurality of drones are taken off. The control device 40 may take off a plurality of drones one by one. The control device 40 may acquire information on the first drone that is taking off, and may take off the second drone when the drone satisfies a predetermined condition. More specifically, the control device 40 may take off the second drone when the distance between the first drone and the second drone exceeds a predetermined distance.
管制装置40は、ドローン情報取得部41、移動体情報取得部42、着陸管制部43、補充管制部44、および移動管制部45を備える。
The control device 40 includes a drone information acquisition unit 41, a moving body information acquisition unit 42, a landing control unit 43, a supplementary control unit 44, and a movement control unit 45.
ドローン情報取得部41は、複数のドローン100それぞれの情報を取得する機能部である。ドローン情報取得部41は、例えば、ドローン100に現在計画されている作業計画を取得する。また、ドローン情報取得部41は、ドローン100の位置および状態を取得する。ドローン100の位置は、3次元座標に加えて、ドローン100が圃場403内にいるか、圃場403外にいるかの情報も含んでいてもよい。ドローン100の状態とは、ドローン100の動作状態、すなわち、ドローン100が移動中、ホバリング中、着陸中のいずれであるかの情報を含む。また、ドローン100が圃場403内の移動中において、薬剤を散布しているか否かの情報を含む。また、ドローン100の状態には、ドローン100に故障又は異常が発生しているか否かの情報を含む。異常とは、ドローン100自体の故障以外にドローン100の飛行の妨げとなる事象全般を指し、強風や、極度の低温および高温、障害物の引っ掛かり、バードストライク等、種々の事象を含む。
The drone information acquisition unit 41 is a functional unit that acquires information on each of the plurality of drones 100. The drone information acquisition unit 41 acquires, for example, the work plan currently planned for the drone 100. Further, the drone information acquisition unit 41 acquires the position and state of the drone 100. The position of the drone 100 may include information on whether the drone 100 is inside the field 403 or outside the field 403, in addition to the three-dimensional coordinates. The state of the drone 100 includes the operating state of the drone 100, that is, information on whether the drone 100 is moving, hovering, or landing. It also includes information on whether or not the drug is being sprayed while the drone 100 is moving in the field 403. Further, the state of the drone 100 includes information on whether the drone 100 is out of order or abnormal. Abnormality refers to general events that hinder the flight of the drone 100 other than the failure of the drone 100 itself, and includes various events such as strong wind, extremely low and high temperatures, catching obstacles, and bird strike.
ドローン情報取得部41は、ドローン100が圃場403外を移動中である場合には、ドローン100の目的地の情報も取得する。ドローン情報取得部41は、ドローン100の目的地が移動体406a上の発着地点406である場合、ドローン100の帰還原因に関する情報を取得してもよい。ドローン100の帰還原因は、例えば、ドローン100の資源の補充、すなわち充電又は薬剤の補充がある。また、ドローン100の帰還原因は、操作器401又は小型携帯端末401aから帰還指令が送信されている場合がある。さらに、ドローン100に故障又は異常が発生している場合がある。
The drone information acquisition unit 41 also acquires information on the destination of the drone 100 when the drone 100 is moving outside the field 403. If the destination of the drone 100 is the departure/arrival point 406 on the moving body 406a, the drone information acquisition unit 41 may acquire information regarding the return cause of the drone 100. The cause of the return of the drone 100 is, for example, replenishment of the resources of the drone 100, that is, charging or replenishment of medicine. Further, the cause of the return of the drone 100 may be that the return instruction is transmitted from the operation unit 401 or the small portable terminal 401a. Furthermore, the drone 100 may have a malfunction or abnormality.
ドローン情報取得部41は、ドローン100の状態として、ドローン100が有する資源量の情報も取得可能である。ドローン100が有する資源とは、ドローン100の飛行エネルギー、例えばバッテリ502の蓄電量を含む。ドローン100の飛行エネルギーは、バッテリ502に代えて、ウルトラキャパシタにより蓄電される蓄電量であってもよい。また、ドローン100が有する資源とは、ドローン100の薬剤タンク104に貯留される薬剤を含む。
The drone information acquisition unit 41 can also acquire information on the resource amount of the drone 100 as the status of the drone 100. The resources that the drone 100 has include the flight energy of the drone 100, for example, the amount of electricity stored in the battery 502. The flight energy of the drone 100 may be an amount of electricity stored by an ultracapacitor instead of the battery 502. Further, the resources of the drone 100 include the medicine stored in the medicine tank 104 of the drone 100.
ドローン情報取得部41が取得する上述の情報は、定期的にドローン100から直接又は間接的に受信してもよいし、状態変化又は資源量が所定範囲になったことを契機に情報を受信するように構成されていてもよい。
The above-mentioned information acquired by the drone information acquisition unit 41 may be directly or indirectly received from the drone 100 on a regular basis, or the information is received when the state change or the resource amount reaches a predetermined range. It may be configured as follows.
移動体情報取得部42は、移動体406aの情報、例えば移動体406aの速度、加速度、位置および状態を取得する機能部である。移動体406aの位置は、3次元座標に加えて、移動体406aが移動許可エリア901および着陸許可エリア902のいずれに存在しているかの情報を含んでいてもよい。
The mobile unit information acquisition unit 42 is a functional unit that acquires information about the mobile unit 406a, for example, speed, acceleration, position, and state of the mobile unit 406a. The position of the moving body 406a may include, in addition to the three-dimensional coordinates, information on whether the moving body 406a is present in the movement permission area 901 or the landing permission area 902.
●着陸管制に関する構成
着陸管制部43は、ドローンシステム500に含まれる複数のドローン100が着陸するタイミングおよび着陸順序を管制する機能部である。着陸管制部43は、着陸予定取得部431、着陸順序決定部432、待機制御部4333、および帰還制御部434を備える。 ● Configuration related to landing control The landing control unit 43 is a functional unit that controls the landing timing and landing order of a plurality ofdrones 100 included in the drone system 500. The landing control unit 43 includes a landing schedule acquisition unit 431, a landing order determination unit 432, a standby control unit 4333, and a return control unit 434.
着陸管制部43は、ドローンシステム500に含まれる複数のドローン100が着陸するタイミングおよび着陸順序を管制する機能部である。着陸管制部43は、着陸予定取得部431、着陸順序決定部432、待機制御部4333、および帰還制御部434を備える。 ● Configuration related to landing control The landing control unit 43 is a functional unit that controls the landing timing and landing order of a plurality of
着陸予定取得部431は、ドローン情報取得部41により取得される情報に基づいて、ドローン100の着陸予定に関する情報を取得する機能部である。着陸予定取得部431は、ドローン100の位置や資源の保持量等に基づいて決定される着陸予定時刻、又はある基準時点から着陸予定時刻までの時間を取得する。着陸予定取得部431は、ドローン100の作業計画を参照して着陸予定時刻等又は着陸予定時刻までの時間を計算してもよいし、着陸予定時刻等又は着陸予定時刻までの時間をドローン100から取得してもよい。
The landing schedule acquisition unit 431 is a functional unit that acquires information about the landing schedule of the drone 100 based on the information acquired by the drone information acquisition unit 41. The landing schedule acquisition unit 431 acquires the scheduled landing time determined based on the position of the drone 100, the amount of resources held, or the like, or the time from a certain reference time to the scheduled landing time. The landing schedule acquisition unit 431 may calculate the scheduled landing time etc. or the time until the scheduled landing time by referring to the work plan of the drone 100, or the scheduled landing time etc. or the time until the scheduled landing time from the drone 100. You may get it.
また、着陸予定取得部431は、各ドローン100が着陸した後、離陸する時点の情報を合わせて取得する。さらに、着陸予定取得部431は、各ドローン100が圃場403の退出点から退出する時点、発着地点406に到達する時点、発着地点406から離陸する時点、圃場403の進入点から進入する時点の情報を取得する。着陸予定取得部431は、上述の情報から、発着地点406における各ドローン100の滞在予定時間帯を算出可能である。
Also, the landing schedule acquisition unit 431 also acquires the information at the time of takeoff after each drone 100 has landed. Further, the landing schedule acquisition unit 431, information when each drone 100 exits from the exit point of the field 403, reaches the departure point 406, takes off from the departure point 406, and enters the entry point of the field 403. To get The landing schedule acquisition unit 431 can calculate the scheduled stay time zone of each drone 100 at the departure point 406 from the above information.
着陸順序決定部432は、着陸予定取得部431により取得される情報に基づいて、複数のドローンの発着地点406における滞在予定時間帯が重複するとき、着陸順序を決定する機能部である。
The landing sequence determination unit 432 is a functional unit that determines the landing sequence based on the information acquired by the landing schedule acquisition unit 431 when the planned staying time zones at the departure and arrival points 406 of a plurality of drones overlap.
着陸順序決定部432は、ドローン情報取得部41により取得されるドローン100の情報に基づいて着陸順序を決定する。例えば、着陸順序決定部432は、ドローン情報取得部41により取得される、帰還する原因に関する帰還情報に基づいて着陸順序を決定する。着陸順序決定部432は、ドローン100が使用者からの帰還指令に基づいて帰還する場合、当該ドローン100を他のドローン100よりも先に着陸させる。
The landing sequence determination unit 432 determines the landing sequence based on the information on the drone 100 acquired by the drone information acquisition unit 41. For example, the landing order determination unit 432 determines the landing order based on the return information acquired by the drone information acquisition unit 41 regarding the reason for returning. When the drone 100 returns based on the return instruction from the user, the landing order determination unit 432 causes the drone 100 to land before other drones 100.
また、着陸順序決定部432は、ドローン100が、当該ドローン100に発生する故障又は異常に基づいて帰還する場合、当該ドローン100を他のドローンよりも先に着陸させる。故障又は異常に基づく帰還は、帰還が遅れることで墜落や暴走の危険性が増大するので、早急に着陸させる必要があるためである。故障又は異常に基づいて帰還するドローン100は、帰還指令に基づいて帰還するドローン100よりも先に着陸させる。
Further, when the drone 100 returns due to a failure or abnormality that occurs in the drone 100, the landing sequence determination unit 432 causes the drone 100 to land before other drones. This is because returning due to a failure or abnormality requires immediate landing because the risk of a crash or runaway increases due to the delay in returning. The drone 100 that returns based on a failure or abnormality will land before the drone 100 that returns based on the return command.
着陸順序決定部432は、複数のドローン100がそれぞれ保有する資源の量に基づいて前記着陸順序を決定してもよい。具体的には、着陸順序決定部432は、資源の量がより少ないドローン100を、他のドローン100よりも先に着陸させる。資源の量は、ドローン100を駆動するエネルギー量であってもよいし、ドローン100に貯留されている薬剤の量であってもよい。資源の量がより少ないドローン100は、資源の補充後に、より長時間の作業を行うことが予想されるため、先に補充作業を行って作業に復帰させることにより、複数のドローン100により遂行される総作業を早く完了させることができる。また、バッテリ502のエネルギー量がより少ないドローン100は、後述する待機のためのエネルギーを保有しない可能性があるので、先に着陸させるとよい。
The landing order determination unit 432 may determine the landing order based on the amount of resources each of the plurality of drones 100 holds. Specifically, the landing order determination unit 432 causes the drone 100 having a smaller amount of resources to land before the other drones 100. The amount of resources may be the amount of energy that drives the drone 100 or the amount of drugs stored in the drone 100. The drone 100, which has a smaller amount of resources, is expected to perform longer work after the resources are replenished, so by performing the replenishment work first and then returning to the work, the drone 100 is performed. The total work can be completed quickly. Further, since the drone 100 having a smaller amount of energy in the battery 502 may not have energy for standby, which will be described later, it is preferable to land the drone first.
待機制御部433は、複数のドローン100の発着地点406における滞在予定時間帯が重複するとき、着陸順序が後になるドローン100を、発着地点406に着陸可能な状態となるまで待機させる機能部である。発着地点406には、同時に着陸可能な台数に限りがあるため、ドローン100を待機させることで衝突を防止し、ドローン100を安全に帰還させることができる。
The standby control unit 433 is a functional unit that causes the drone 100, which has a later landing sequence, to wait until it is ready to land at the departure point 406 when the scheduled stay time zones of the plurality of drones 100 overlap. .. Since there is a limit to the number of landing points 406 that can be landed at the same time, it is possible to prevent the collision by waiting the drone 100 and return the drone 100 safely.
待機制御部433は、滞在予定時間帯が重複するとき、着陸順序が後になるドローン100を、圃場403内でホバリングさせて待機させてもよい。圃場403外には、使用者を含む人や移動体406aの往来があるため、ドローン100が待機していると衝突の危険があるため、ドローン100を圃場403内に待機させることで安全性を担保することができる。さらに、複数のドローン100は、退出点、発着地点406、および退出点から発着地点406までの発着経路が共通である。圃場403外を飛行する経路を共通化することで、使用者が、ドローン100の飛行経路を把握しやすくなり、使用者に安心感を与えられるためである。一方で、発着経路上に複数のドローン100が存在していると、互いに衝突する恐れがある。したがって、ドローン100を圃場403内で待機させることで、発着地点406から圃場403に進入してくるドローン100との衝突を回避することができる。
The standby control unit 433 may hover the drone 100 whose landing order is later in the field 403 and make it stand by when the scheduled stay time overlaps. Since there are traffic of people including the user and the moving body 406a outside the farm field 403, there is a risk of collision when the drone 100 is waiting.Therefore, keeping the drone 100 in the farm field 403 is safe. Can be secured. Further, the plurality of drones 100 have a common exit point, a departure/arrival point 406, and a departure/arrival route from the exit point to the departure/arrival point 406. This is because by making the route for flying outside the farm field 403 common, the user can easily understand the flight route of the drone 100 and give the user a sense of security. On the other hand, if there are multiple drones 100 on the departure/arrival route, they may collide with each other. Therefore, by making the drone 100 stand by in the field 403, it is possible to avoid a collision with the drone 100 entering the field 403 from the landing point 406.
待機制御部433は、移動体情報取得部42から、発着地点406にドローン100が着陸可能である旨の情報を取得して、ドローン100の待機を終了させ、発着地点406へ飛行させる。また、待機制御部433は、発着地点406、発着経路、および退出点に他のドローン100が存在しないことを判定した上で、待機しているドローン100を発着地点406へ飛行させてもよい。
The standby control unit 433 acquires information that the drone 100 can land at the departure/arrival point 406 from the mobile unit information acquisition unit 42, ends the standby of the drone 100, and causes the drone 100 to fly to the departure/arrival point 406. In addition, the standby control unit 433 may cause the waiting drone 100 to fly to the departure/arrival point 406 after determining that there is no other drone 100 at the departure/arrival point 406, the departure/arrival route, and the exit point.
なお、待機制御部433は、上述に加え、移動体406aにおいて補充作業中であること、又は移動体406aの周辺に使用者等の障害物があることに基づいて、ドローン100を圃場403内に待機させてもよい。
In addition to the above, the standby control unit 433 places the drone 100 in the field 403 based on the fact that the moving body 406a is in the process of replenishment or there is an obstacle such as a user around the moving body 406a. You may wait.
帰還制御部434は、複数のドローン100の滞在予定時間帯が重複するとき、少なくとも1個のドローン100の飛行動作を変更する機能部である。帰還制御部434は、着陸順序が先になるドローン100を発着地点406に着陸させ、他のドローン100を発着地点406とは異なる場所に着陸させてもよい。例えば、他のドローン100は、移動体406aの近傍に着陸してもよい。また、他のドローン100は、移動体406aの進行方向後方側に、所定距離を空けて着陸してもよい。複数のドローン100および移動体406aが同時に移動する際、ドローン100は、例えば移動体406aの後方に連なって移動するため、あらかじめ当該位置に着陸しておくことで、ドローン100および移動体406aの移動をスムーズに開始することができる。
The return control unit 434 is a functional unit that changes the flight operation of at least one drone 100 when the scheduled stay time of multiple drones 100 overlap. The return control unit 434 may cause the drone 100, which comes first in the landing order, to land at the departure point 406 and another drone 100 to land at a location different from the departure point 406. For example, another drone 100 may land near the moving body 406a. The other drone 100 may land on the rear side of the moving body 406a in the traveling direction with a predetermined distance. When a plurality of drones 100 and the moving body 406a move at the same time, since the drone 100 moves continuously behind the moving body 406a, for example, the drone 100 and the moving body 406a move by landing at the position in advance. Can be started smoothly.
帰還制御部434は、滞在予定時間帯が重複する複数のドローン100において、少なくとも1個のドローン100に予定されている作業計画を短縮することで、滞在予定時間帯を変更してもよい。すなわち、帰還制御部434は、1個のドローン100の資源が、まだ補充を要する状態に達する前に、作業を早く中断させて発着地点406に帰還させる。この構成によれば、ドローン100を待機させる構成に比べて、早く中断したドローンは早期に補充を完了し、圃場403での作業を再開することができるので、効率よく作業を遂行することができる。
The return control unit 434 may change the scheduled stay time zone by shortening the work plan scheduled for at least one drone 100 in the plurality of drones 100 having the same scheduled stay time zone. That is, the return control unit 434 causes the work of the drone 100 to be interrupted early and returned to the departure point 406 before the resource of the drone 100 reaches the state where the drone needs to be replenished. According to this configuration, compared to the configuration in which the drone 100 is on standby, the drone that has been interrupted earlier can complete the replenishment earlier and restart the work in the field 403, so that the work can be efficiently performed. ..
帰還制御部434は、滞在予定時間帯が重複する複数のドローン100において、少なくとも1個のドローン100の飛行速度を変更することで、滞在予定時間帯を変更してもよい。より具体的には、着陸予定が重複する複数のドローン100のうち、先に着陸することが決定されるドローン100の飛行速度を速める。この構成によれば、当初の作業計画の通りの経路を飛行した上で、滞在予定時間帯をずらして発着地点406に帰還することができる。すなわち、ドローン100を待機させる構成、および1個のドローン100の作業を早期に中断させる構成に比べて、より効率よく作業を遂行することができる。
The return control unit 434 may change the scheduled stay time zone by changing the flight speed of at least one drone 100 in the plurality of drones 100 having the same scheduled stay time zone. More specifically, among the plurality of drones 100 with overlapping landing schedules, the flight speed of the drone 100 that is decided to land first is increased. According to this configuration, after flying along the route according to the original work plan, it is possible to return to the departure/arrival point 406 after shifting the scheduled stay time. That is, the work can be performed more efficiently than the configuration in which the drone 100 is on standby and the configuration in which the work of one drone 100 is interrupted early.
●補充管制に関する構成
補充管制部44は、資源を複数のドローン100に補充する補充計画を管制する機能部である。 ● Configuration Regarding Replenishment Control The replenishment control unit 44 is a functional unit that controls a replenishment plan for replenishing resources to a plurality ofdrones 100.
補充管制部44は、資源を複数のドローン100に補充する補充計画を管制する機能部である。 ● Configuration Regarding Replenishment Control The replenishment control unit 44 is a functional unit that controls a replenishment plan for replenishing resources to a plurality of
補充計画は、ドローン100の発着地点406への着陸順序、複数のドローン100に補充される資源の種類、資源の量、および補充を行う時点に関する情報の少なくとも1個を含む情報群である。すなわち、補充計画は、いずれのドローン100が、いつ発着地点406に帰還し、いずれの資源をどれだけ補充するかの情報である。補充管制部44は、ドローン情報取得部41からの情報に基づいて、補充計画を管制する。
The replenishment plan is an information group including at least one of information on the landing order of the drone 100 at the departure/arrival point 406, the types of resources to be replenished to the plurality of drones 100, the amount of resources, and the time at which replenishment is performed. That is, the replenishment plan is information regarding which drone 100 will return to the departure point 406 and which resource will be replenished. The replenishment control unit 44 controls the replenishment plan based on the information from the drone information acquisition unit 41.
また、補充管制部44は、発着地点406を有する移動体406aに収容されている資源量を管制する。補充計画には、移動体406aに収容されている資源の種類および量の情報を含む。
The replenishment control unit 44 also controls the amount of resources contained in the moving body 406a having the departure/arrival point 406. The replenishment plan includes information on the type and amount of resources contained in the mobile unit 406a.
補充管制部44は、補充計画取得部441と、移動体資源取得部442と、を備える。
The replenishment control unit 44 includes a replenishment plan acquisition unit 441 and a mobile resource acquisition unit 442.
補充計画取得部441は、発着地点406からドローン100への補充が計画されている資源量を取得する機能部である。
The replenishment plan acquisition unit 441 is a functional unit that acquires the amount of resources planned to be replenished from the departure point 406 to the drone 100.
移動体資源取得部442は、発着地点406に収容されている資源の量を取得する機能部である。
The mobile resource acquisition unit 442 is a functional unit that acquires the amount of resources stored at the departure/arrival point 406.
補充管制部44は、補充計画の少なくとも一部の情報を操作器401又は小型携帯端末401aに伝達する。操作器401及び小型携帯端末401aは、当該補充計画を逐次表示させてもよいし、特定の情報に対しては別途発報する構成になっていてもよい。
The replenishment control unit 44 transmits at least a part of information on the replenishment plan to the operation unit 401 or the small portable terminal 401a. The operation unit 401 and the small mobile terminal 401a may sequentially display the replenishment plan, or may be configured to separately issue specific information.
小型携帯端末401aは、操作器401に表示される情報のうち一部の情報のみを表示してもよいし、さらに一部の情報についてのみ音等別途の発報手段により発報してもよい。例えば、小型携帯端末401aには、移動体406aへの資源の補充が必要な場合や、総作業が完了して片付けが必要な場合など、使用者402の介入が必要な時点の情報、および各時点の予測に関する情報のみ小型携帯端末401aに表示がなされるように構成されていてもよい。また、移動体406aへの資源の補充が必要な時点、総作業が完了した時点、および異常が発生した時点において、使用者402に発報してもよい。
The small mobile terminal 401a may display only a part of the information displayed on the operation device 401, or may issue a sound or the like by a separate reporting means such as only a part of the information. .. For example, the small portable terminal 401a, when it is necessary to replenish the resources to the mobile body 406a, when the total work is completed and tidying up, such as information at the time when the user 402 requires intervention, and each It may be configured such that only the information related to the prediction of the time point is displayed on the small mobile terminal 401a. Further, the user 402 may be notified when the mobile body 406a needs to be replenished with resources, when the total work is completed, and when an abnormality occurs.
操作器401には、直近に作業を行う圃場403および作業中の圃場403の情報に加えて、同一のドローンシステム500により作業が行われる、農道等で画されている別の圃場に計画されている補充計画を表示可能になっていてもよい。別の圃場は、例えば、後述する移動管制により、移動体406aおよび複数のドローン100が圃場403外を移動した上で作業が開始される、圃場403とは不連続な領域である。この構成によれば、同一のドローンシステム500により行われる作業全体に必要な資源の量を、操作器401により一元的に把握することができる。当該表示においては、当該圃場403および別の圃場に関する情報を連続的に表示されてもよいし、所定の操作により表示を切り替え可能になっていてもよい。
In the operation unit 401, in addition to the information of the field 403 to be most recently worked and the field 403 being worked, the same drone system 500 is used for the work, and is planned in another field that is defined by a farm road or the like. It may be possible to display the replenishment plan. Another field is, for example, a region discontinuous with the field 403, in which work is started after the moving body 406a and the plurality of drones 100 have moved outside the field 403 by the movement control described later. According to this configuration, the amount of resources required for the entire work performed by the same drone system 500 can be collectively grasped by the operation unit 401. In the display, information on the field 403 and another field may be continuously displayed, or the display may be switchable by a predetermined operation.
補充管制部44は、直近に着陸が予定されているドローン100に補充が計画されている資源の量が、移動体406aに収容されている資源の量を上回るとき、その旨を発報する。資源の補充が移動体406aにより自動で行われる場合であっても、移動体406aに貯留されている資源が不足している場合は、使用者に移動体406aへの資源の補充を要請する必要があるためである。この構成によれば、特に直近に帰還するドローン100に対する資源の補充を計画通りに行えるよう、使用者に移動体406aへの資源の補充を促すことができる。
When the amount of resources planned to be replenished for the drone 100 that is scheduled to land most recently exceeds the amount of resources accommodated in the mobile unit 406a, the supplement control unit 44 reports that fact. Even when the resource is automatically replenished by the mobile unit 406a, if the resources stored in the mobile unit 406a are insufficient, it is necessary to request the user to replenish the resource to the mobile unit 406a. Because there is. According to this configuration, the user can be urged to replenish resources to the moving body 406a so that the drones 100 returning most recently can be replenished with resources as planned.
補充管制部44は、操作器401又は小型携帯端末401aは、発着地点406からドローン100への資源の補充作業が、ドローン100の着陸予定時点までに完了しないことが予想されるとき、その旨を発報してもよい。この構成によれば、ドローン100への資源の補充が使用者により行われる場合に、当該発報により使用者に資源の補充を急がせることができる。また、ドローン100への資源の補充が自動で行われる場合でも、作業の進捗状況を使用者に伝達することができる。
The replenishment control unit 44, when the operation device 401 or the small portable terminal 401a is expected that the replenishment work of the resources from the departure point 406 to the drone 100 is not completed by the scheduled landing time of the drone 100, that effect is notified. You may be notified. With this configuration, when the drone 100 is replenished with resources by the user, it is possible to prompt the user to replenish resources with the notification. Further, even when the drone 100 is automatically replenished with resources, the progress status of the work can be transmitted to the user.
また、補充管制部44は、直近に着陸が予定されているドローン100に補充が計画されている資源の量が、移動体406aに収容されている資源の量を上回るとき、または、資源の補充作業が完了しないとき、ドローン100に待機命令を送信してもよい。待機命令が受信されるドローン100は、例えば圃場403内でホバリングをして、待機命令が解除されるまで待機する。移動体406aに資源を補充する場合、使用者が移動体406a近傍に存在している蓋然性が高い。その際にドローン100が移動体406aに近づくと、使用者による補充作業を妨げる恐れがあるため、ドローン100は圃場403内に待機させることで、作業効率および安全性を担保することができる。
The replenishment control unit 44 also replenishes resources when the amount of resources planned to be replenished in the drone 100 that is scheduled to land most recently exceeds the amount of resources accommodated in the mobile unit 406a. A standby command may be sent to the drone 100 when the work is not completed. The drone 100 that receives the standby command hovers in the field 403, for example, and waits until the standby command is released. When replenishing resources to the moving body 406a, there is a high probability that the user is present near the moving body 406a. At that time, if the drone 100 approaches the moving body 406a, the refilling work by the user may be hindered. Therefore, by making the drone 100 stand by in the field 403, work efficiency and safety can be ensured.
●ドローンの移動管制に関する構成
移動管制部45は、移動体406aおよび複数のドローン100を同時に安全に移動するため、移動体406aおよび複数のドローン100の移動経路を管制する機能部である。移動管制部45は、ドローン情報取得部41および移動体情報取得部42によりドローン100および移動体406aの位置情報を取得し、速度および加速度やその向きにフィードバックすることにより、各構成の位置、速度および加速度が所定の条件を満たすように管制する。なお、移動体406aは、移動管制部45の管制に基づいて自律的に移動してもよいし、移動体406aは使用者の運転により移動し、ドローン100は移動体406aの動作に基づいて追従して移動してもよい。 ● Configuration related to drone movement control The movement control unit 45 is a functional unit that controls the movement routes of the movingbody 406a and the plurality of drones 100 in order to safely move the moving body 406a and the plurality of drones 100 at the same time. The movement control unit 45 acquires the position information of the drone 100 and the moving body 406a by the drone information acquisition unit 41 and the moving body information acquisition unit 42, and feeds back the speed and the acceleration and its direction to the position and speed of each component. And control so that the acceleration satisfies a predetermined condition. The moving body 406a may move autonomously based on the control of the moving control unit 45, the moving body 406a moves by the driving of the user, and the drone 100 follows the movement of the moving body 406a. Then you may move.
移動管制部45は、移動体406aおよび複数のドローン100を同時に安全に移動するため、移動体406aおよび複数のドローン100の移動経路を管制する機能部である。移動管制部45は、ドローン情報取得部41および移動体情報取得部42によりドローン100および移動体406aの位置情報を取得し、速度および加速度やその向きにフィードバックすることにより、各構成の位置、速度および加速度が所定の条件を満たすように管制する。なお、移動体406aは、移動管制部45の管制に基づいて自律的に移動してもよいし、移動体406aは使用者の運転により移動し、ドローン100は移動体406aの動作に基づいて追従して移動してもよい。 ● Configuration related to drone movement control The movement control unit 45 is a functional unit that controls the movement routes of the moving
図14(a)に示すように、例えば、ドローンシステム500内にドローン100が複数個存在している場合、第1のドローン100aは移動体406a上の発着地点406に着陸した状態で移動する。第2乃至第4のドローン100b、100c、100dは、移動体406aに対して所定距離ずつ離間して飛行する。移動管制部45は、複数のドローン100を移動体406aの進行方向後方において所定距離ずつ離間させて直列に並んで飛行させてもよい。この構成によれば、ドローン100は、移動体406aが通行した経路上を移動体406aの後に続いて飛行することになるため、障害物が存在する可能性が低く、安全に飛行することができる。
As shown in FIG. 14(a), for example, when there are a plurality of drones 100 in the drone system 500, the first drone 100a moves while landing on the landing point 406 on the moving body 406a. The second to fourth drones 100b, 100c, 100d fly at a predetermined distance from the moving body 406a. The movement control unit 45 may cause the plurality of drones 100 to fly side by side in series at predetermined distances behind each other in the traveling direction of the moving body 406a. According to this configuration, the drone 100 will fly following the moving body 406a on the route traveled by the moving body 406a, so there is a low possibility that an obstacle exists, and it is possible to fly safely. ..
図14(b)に示すように、移動管制部45は、複数のドローン100を移動体の上方において所定距離ずつ離間させて飛行させてもよい。移動体406aおよびドローン100が移動する経路は、主に圃場403周辺の農道が想定されている。農道において、移動体406aより上方に障害物が存在する可能性は低いので、安全に飛行することができる。また、ドローン100が移動中に墜落した場合であっても、移動体406a上に落下することになるため、人や建物等ドローンシステム500外の構成に危害を加える可能性が低くなり、安全である。
As shown in FIG. 14( b ), the movement control unit 45 may fly a plurality of drones 100 above the moving body by a predetermined distance. The route along which the moving body 406a and the drone 100 move is mainly assumed to be a farm road around the farm field 403. Since it is unlikely that there is an obstacle above the moving body 406a on the farm road, it is possible to fly safely. In addition, even if the drone 100 crashes during movement, it will fall onto the moving body 406a, which reduces the possibility of harming people and buildings outside the drone system 500, and is safe. is there.
移動管制部45は、移動体406aが進行方向とは反対に移動するとき、進行方向において最後方の前記ドローンを先頭にして移動してもよい。このとき、ドローン100が有する障害物検知部23により、ドローン100が障害物を検知すると、ドローン100を含めた複数のドローン100を着陸させる。
When the moving body 406a moves in the direction opposite to the traveling direction, the movement control unit 45 may move with the drone at the rear end in the traveling direction as the head. At this time, when the drone 100 detects an obstacle by the obstacle detection unit 23 included in the drone 100, a plurality of drones 100 including the drone 100 are landed.
移動管制部45は、移動体406aが進行方向とは反対に移動するとき、複数のドローン100を着陸させるように構成されていてもよい。この構成によれば、ドローン100に障害物検知部23が備わっていない場合であっても、移動体406aが後進する際の安全を担保することができる。
The movement control unit 45 may be configured to land a plurality of drones 100 when the moving body 406a moves in the direction opposite to the traveling direction. According to this configuration, even when the drone 100 does not include the obstacle detection unit 23, it is possible to ensure safety when the moving body 406a moves backward.
移動管制部45は、ドローン100を着陸させるとき、ドローン100、操作器401、小型携帯端末401a又は移動管制部45を介して、使用者にその旨の警報を通知してもよい。警報は、音および表示など、適宜の通知手段であってよい。使用者がドローン100に注意を向けることで、例えば移動体406aと着陸しているドローン100とが衝突するのを防ぐことができ、安全である。
When the drone 100 is landed, the mobile control unit 45 may notify the user of the alarm via the drone 100, the operation unit 401, the small portable terminal 401a or the mobile control unit 45. The alarm may be an appropriate notification means such as sound and display. By paying attention to the drone 100 by the user, it is possible to prevent a collision between the moving body 406a and the landing drone 100, for example, which is safe.
●着陸管制に関するフローチャート
図15を用いて、発着地点406への滞在予定時間帯が重複しているときの管制装置40の動作の一例を説明する。なお、管制装置40は、以下に説明する工程を全作業の開始時に行っても良いし、作業中に定期的に行っても良い。また、管制装置40は、作業中に特定の事象が生じた時点で、以下の工程を行ってもよい。例えば、管制装置40は、以下の工程を、あるドローン100に故障又は異常が発生した時点、帰還命令が発せられた時点、もしくは計画とは異なる待機時間が生じた時点に行ってもよい。 Flowchart regarding landing control With reference to FIG. 15, an example of the operation of the control device 40 when the scheduled time zones at thedeparture point 406 overlap will be described. It should be noted that the control device 40 may perform the steps described below at the start of all the operations, or may perform them periodically during the operations. Further, the control device 40 may perform the following steps when a specific event occurs during the work. For example, the control device 40 may perform the following steps at the time when a certain drone 100 has a failure or abnormality, when a return command is issued, or when a standby time different from the planned time occurs.
図15を用いて、発着地点406への滞在予定時間帯が重複しているときの管制装置40の動作の一例を説明する。なお、管制装置40は、以下に説明する工程を全作業の開始時に行っても良いし、作業中に定期的に行っても良い。また、管制装置40は、作業中に特定の事象が生じた時点で、以下の工程を行ってもよい。例えば、管制装置40は、以下の工程を、あるドローン100に故障又は異常が発生した時点、帰還命令が発せられた時点、もしくは計画とは異なる待機時間が生じた時点に行ってもよい。 Flowchart regarding landing control With reference to FIG. 15, an example of the operation of the control device 40 when the scheduled time zones at the
まず、ドローン情報取得部41は、ドローンシステム500に含まれる複数のドローン100に計画されている滞在予定時間帯を取得する(S11)。
First, the drone information acquisition unit 41 acquires planned stay time zones for a plurality of drones 100 included in the drone system 500 (S11).
次いで、着陸予定取得部431は、滞在予定時間帯が重複するドローン100があるか判定する(S12)。
Next, the landing schedule acquisition unit 431 determines whether there is a drone 100 that has the same scheduled stay time period (S12).
滞在予定時間帯が重複するドローン100がない場合、着陸順序決定部432は、ドローン100の着陸順序を変更せず、処理を終了する。ドローン100は、当初の作業計画通りに、発着地点406に順次着陸する。
If there are no drones 100 with the same scheduled time of stay, the landing sequence determination unit 432 ends the process without changing the landing sequence of the drones 100. The drone 100 will land at the departure/arrival point 406 sequentially according to the original work plan.
滞在予定時間帯が重複するドローン100がある場合、着陸順序決定部432は、帰還原因が故障又は異常のドローン100があるかを判定する(S13)。故障又は異常のドローン100がある場合、着陸順序決定部432は、当該ドローン100の着陸順位を1番に決定する(S14)。
If there are drones 100 that have the same scheduled time of stay, the landing sequence determination unit 432 determines whether or not there is a drone 100 whose return cause is a malfunction or an abnormality (S13). If there is a malfunctioning or abnormal drone 100, the landing order determination unit 432 determines the landing order of the drone 100 to be 1 (S14).
次いで、着陸順序決定部432は、使用者からの帰還命令により帰還するドローン100があるか判定する(S15)。帰還命令により帰還するドローン100がある場合、着陸順序決定部432は、当該ドローン100の着陸順位を次に着陸するように決定する(S16)。すなわち、故障又は異常のドローン100がある場合は、当該ドローン100を二番に決定し、故障又は異常のドローン100がない場合は、当該ドローン100を一番に決定する。
Next, the landing sequence determination unit 432 determines whether or not there is a drone 100 to be returned by a return instruction from the user (S15). If there is a drone 100 to be returned by the return instruction, the landing order determination unit 432 determines that the landing order of the drone 100 is to land next (S16). That is, when there is a malfunctioning or abnormal drone 100, the drone 100 is determined second, and when there is no malfunctioning or abnormal drone 100, the drone 100 is determined first.
次いで、着陸順序決定部432は、残りのドローン100に関し、搭載している資源量が少ない順に着陸するように決定し、処理を終了する(S17)。
Next, the landing sequence determination unit 432 determines that the remaining drones 100 will land in the order of the smallest amount of resources installed, and the process ends (S17).
●補充管制に関するフローチャート
図16を用いて、移動体406aに収容されている資源量を管制する管制装置40の動作の一例を説明する。なお、管制装置40が以下の工程を行うタイミングは、着陸管制と同様、全作業の開始時に行っても良いし、作業中に定期的に行っても良い。着陸管制の工程と、補充管制の工程は、同時に行われてもよいし、別のタイミングで行われてもよい。 Flowchart Regarding Replenishment Control With reference to FIG. 16, an example of the operation of the control device 40 for controlling the resource amount stored in the movingbody 406a will be described. The timing at which the control device 40 performs the following steps may be the same as in the case of landing control, at the start of all operations, or at regular intervals during operations. The landing control process and the replenishment control process may be performed at the same time or at different timings.
図16を用いて、移動体406aに収容されている資源量を管制する管制装置40の動作の一例を説明する。なお、管制装置40が以下の工程を行うタイミングは、着陸管制と同様、全作業の開始時に行っても良いし、作業中に定期的に行っても良い。着陸管制の工程と、補充管制の工程は、同時に行われてもよいし、別のタイミングで行われてもよい。 Flowchart Regarding Replenishment Control With reference to FIG. 16, an example of the operation of the control device 40 for controlling the resource amount stored in the moving
まず、補充計画取得部441は、複数のドローン100それぞれが補充のために帰還する時点、ならびに補充される資源の種類および量を取得する(S21)。
First, the replenishment plan acquisition unit 441 acquires the time when each of the plurality of drones 100 returns for replenishment, and the type and amount of resources to be replenished (S21).
移動体資源取得部442は、移動体406aに収容されている資源の量を取得する(S22)。なお、ステップS21およびS22は順不同であり、同時に行われてもよい。
The mobile resource acquisition unit 442 acquires the amount of resources contained in the mobile 406a (S22). Note that steps S21 and S22 are in no particular order and may be performed simultaneously.
補充管制部44は、移動体406aの収容量が十分か否か判定する(S23)。移動体406aの収容量が十分ではない場合、資源の補充の要請を操作器401又は小型携帯端末401aに発報する(S24)。
The supplementary control unit 44 determines whether or not the storage capacity of the moving body 406a is sufficient (S23). When the accommodation amount of the moving body 406a is not sufficient, a request for resource supplement is issued to the operation unit 401 or the small portable terminal 401a (S24).
●移動管制に関するフローチャート
図17を用いて、移動体406aおよびドローン100を移動させるために行われる管制装置40の動作の一例を説明する。移動管制は、移動体406aおよび複数のドローン100が同時に移動する際に行われる。具体的には、移動管制は、ドローンシステム500が作業を行う圃場403間を移動する際に行われる。 -Flowchart regarding movement control With reference to FIG. 17, an example of the operation of the control device 40 performed to move the movingbody 406a and the drone 100 will be described. The movement control is performed when the moving body 406a and the plurality of drones 100 move at the same time. Specifically, the movement control is performed when the drone system 500 moves between the fields 403 where the work is performed.
図17を用いて、移動体406aおよびドローン100を移動させるために行われる管制装置40の動作の一例を説明する。移動管制は、移動体406aおよび複数のドローン100が同時に移動する際に行われる。具体的には、移動管制は、ドローンシステム500が作業を行う圃場403間を移動する際に行われる。 -Flowchart regarding movement control With reference to FIG. 17, an example of the operation of the control device 40 performed to move the moving
まず、複数のドローン100および移動体406aは、同時に移動を行う(S31)。このとき、移動管制部45は、各ドローン100および移動体406aの位置、速度、および加速度等を制御し、所定距離ずつ離間させて移動させる。移動中において、ドローン100が障害物を検知するとき(S32)、ドローン100は着陸する(S33)。また、操作器401又は小型携帯端末401aは、その旨の警報を通知する。
First, the plurality of drones 100 and the moving body 406a move at the same time (S31). At this time, the movement control unit 45 controls the position, speed, acceleration, etc. of each drone 100 and the moving body 406a to move them by a predetermined distance. When the drone 100 detects an obstacle while moving (S32), the drone 100 lands (S33). In addition, the operation unit 401 or the small portable terminal 401a notifies an alarm to that effect.
なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。また、移動体は、車両に限らず適宜の構成であってもよい。
In the present description, the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to drones for other purposes such as shooting and monitoring. .. In particular, it is applicable to a machine that operates autonomously. Further, the moving body is not limited to the vehicle and may have an appropriate configuration.
(本願発明による技術的に顕著な効果)
本発明にかかるドローンシステムにおいては、ドローンに移動体から資源を補充するシステムにおいて、ドローンおよび移動体に収容されている資源が作業中に不足する場合にも、ドローンおよび移動体に効率よく資源を補充することができる。
(Technically remarkable effect of the present invention)
In a drone system according to the present invention, in a system for replenishing resources from a moving body to a drone, even if the resources accommodated in the drone and the moving body are insufficient during work, the drone and the moving body can be efficiently provided with resources. Can be replenished.
本発明にかかるドローンシステムにおいては、ドローンに移動体から資源を補充するシステムにおいて、ドローンおよび移動体に収容されている資源が作業中に不足する場合にも、ドローンおよび移動体に効率よく資源を補充することができる。
(Technically remarkable effect of the present invention)
In a drone system according to the present invention, in a system for replenishing resources from a moving body to a drone, even if the resources accommodated in the drone and the moving body are insufficient during work, the drone and the moving body can be efficiently provided with resources. Can be replenished.
Claims (36)
- 作業エリア内を飛行して作業を遂行する複数のドローンと、
前記複数のドローンを離陸させる離陸順序を管制する管制装置と、
を少なくとも含むドローンシステム。
Multiple drones that fly within the work area to carry out work,
A control device for controlling the takeoff order for taking off the plurality of drones,
Drone system including at least.
- 前記管制装置は、前記複数のドローンを1台ずつ離陸させる、
請求項1記載のドローンシステム。
The control device causes the plurality of drones to take off one by one,
The drone system according to claim 1.
- 前記管制装置は、離陸している第1の前記ドローンの情報を取得し、当該ドローンが所定の条件を満たすとき、第2の前記ドローンを離陸させる、
請求項1又は2記載のドローンシステム。
The control device obtains information on the first drone taking off, and when the drone satisfies a predetermined condition, takes off the second drone.
The drone system according to claim 1 or 2.
- 前記管制装置は、第1の前記ドローンと第2の前記ドローンとの距離が所定以上となるとき、第2の前記ドローンを離陸させる、
請求項3記載のドローンシステム。
The control device takes off the second drone when the distance between the first drone and the second drone becomes a predetermined distance or more,
The drone system according to claim 3.
- 前記管制装置は、発着台に着陸させる着陸順序を管制する、
請求項1乃至4のいずれかに記載のドローンシステム。
The control device controls the landing sequence for landing on the landing platform.
The drone system according to any one of claims 1 to 4.
- 前記管制装置は、
前記複数のドローンの情報を取得するドローン情報取得部と、
前記複数のドローンの前記発着台における滞在予定時間帯が重複するとき、前記複数のドローンの情報に基づいて、前記着陸順序を決定する着陸順序決定部と、
をさらに備える、
請求項5記載のドローンシステム。
The control device,
A drone information acquisition unit that acquires information on the plurality of drones,
When the scheduled stay time zones at the departure and arrival bases of the plurality of drones overlap, based on information of the plurality of drones, a landing order determination unit that determines the landing order,
Further comprising,
The drone system according to claim 5.
- 前記ドローン情報取得部は、前記ドローンが前記発着台に帰還する原因に関する帰還情報を取得し、
前記着陸順序決定部は、前記帰還情報に基づいて前記着陸順序を決定する、
請求項6記載のドローンシステム。
The drone information acquisition unit acquires return information regarding the cause of the drone returning to the departure and arrival platform,
The landing order determination unit determines the landing order based on the return information,
The drone system according to claim 6.
- 前記着陸順序決定部は、前記ドローンが使用者からの帰還指令に基づいて帰還する場合、当該ドローンを他の前記ドローンよりも先に着陸させる、
請求項7記載のドローンシステム。
The landing order determination unit, when the drone returns based on a return command from the user, land the drone before other drones,
The drone system according to claim 7.
- 前記着陸順序決定部は、前記ドローンが、当該ドローンに発生する故障および異常の少なくとも1個に基づいて帰還する場合、当該ドローンを他の前記ドローンよりも先に着陸させる、
請求項7又は8記載のドローンシステム。
The landing order determination unit causes the drone to land before the other drones when the drone returns based on at least one of a failure and an abnormality occurring in the drone,
The drone system according to claim 7 or 8.
- 前記ドローン情報取得部は、前記複数のドローンが保有する資源の量を取得し、
前記着陸順序決定部は、前記資源の量に基づいて前記着陸順序を決定する、
請求項6乃至9のいずれかに記載のドローンシステム。
The drone information acquisition unit acquires the amount of resources held by the plurality of drones,
The landing order determination unit determines the landing order based on the amount of the resources,
The drone system according to any one of claims 6 to 9.
- 前記着陸順序決定部は、前記資源の量がより少ない前記ドローンを、他の前記ドローンよりも先に着陸させる、
請求項10記載のドローンシステム。
The landing order determination unit causes the drone having a smaller amount of the resource to land before the other drones,
The drone system according to claim 10.
- 前記資源の量は、前記ドローンを駆動するエネルギー量および前記ドローンが散布する薬剤の量の少なくともいずれか1個を含む、
請求項10又は11記載のドローンシステム。
The amount of resources includes at least one of the amount of energy that drives the drone and the amount of drug that the drone disperses,
The drone system according to claim 10 or 11.
- 前記滞在予定時間帯が重複するとき、前記着陸順序が後になる前記ドローンを、当該ドローンが前記発着台に着陸可能な状態となるまで待機させる、
請求項6乃至12のいずれかに記載のドローンシステム。
When the scheduled staying time zones overlap, the drone in which the landing order comes later is made to stand by until the drone becomes ready to land on the departure platform.
The drone system according to any one of claims 6 to 12.
- 前記滞在予定時間帯が重複するとき、前記着陸順序が後になる前記ドローンを、当該ドローンが前記発着台に着陸可能な状態となるまで、前記作業エリア内でホバリングさせて待機させる、
請求項13記載のドローンシステム。
When the planned staying time zones overlap, the drone in which the landing order comes later is made to hover in the work area and waits until the drone is ready to land on the departure and arrival platform,
The drone system according to claim 13.
- 前記滞在予定時間帯が重複するとき、前記着陸順序が先になる前記ドローンを前記発着台に着陸させ、他の前記ドローンを前記発着台とは異なる場所に着陸させる、
請求項13又は14記載のドローンシステム。
When the scheduled stay time zones overlap, land the drone in the landing order first on the landing platform, and land the other drone on a different location from the landing platform.
The drone system according to claim 13 or 14.
- 前記滞在予定時間帯が重複する複数の前記ドローンの、少なくとも1個の前記ドローンに計画されている作業を短縮する、
請求項6乃至15のいずれかに記載のドローンシステム。
Shortening the work planned for at least one of the drones of the plurality of drones having the same scheduled stay time period,
The drone system according to any one of claims 6 to 15.
- 前記管制装置は、前記滞在予定時間帯が重複する複数の前記ドローンにおいて、少なくとも1個の前記ドローンの飛行速度を変更することで、前記滞在予定時間帯を変更する、
請求項6乃至16のいずれかに記載のドローンシステム。
The control device changes the scheduled time of stay by changing the flight speed of at least one of the drones in the plurality of drones in which the scheduled time of stay overlaps,
The drone system according to any one of claims 6 to 16.
- 前記滞在予定時間帯が重複する複数の前記ドローンの、少なくとも1個の前記ドローンの飛行速度を速める、
請求項17記載のドローンシステム。
Accelerating the flight speed of at least one of the drones of the plurality of drones having the same scheduled stay time period,
The drone system according to claim 17.
- 前記ドローンの発着台は、前記ドローンに補充する資源を収容可能であり、
前記管制装置は、前記資源を複数の前記ドローンに補充する補充計画を管制する補充管制部をさらに備える、
請求項1乃至18のいずれかに記載のドローンシステム。
The drone platform can accommodate resources to replenish the drone,
The control device further comprises a replenishment control unit that controls a replenishment plan for replenishing the drones with the resources.
The drone system according to any one of claims 1 to 18.
- 前記補充計画は、前記ドローンの前記発着台への着陸順序、複数の前記ドローンに補充される前記資源の種類、前記資源の量、および補充を行う時点に関する情報の少なくとも1個を含む、
請求項19記載のドローンシステム。
The replenishment plan includes at least one of information regarding a landing sequence of the drone on the landing platform, a type of the resource to be replenished to the plurality of drones, an amount of the resource, and a time point at which the replenishment is performed,
The drone system according to claim 19.
- 前記補充計画の少なくとも一部を受信して通知する端末をさらに備える、
請求項19又は20記載のドローンシステム。
Further comprising a terminal for receiving and notifying at least a part of the replenishment plan,
The drone system according to claim 19 or 20.
- 前記補充管制部は、
前記発着台から前記ドローンへの補充が計画されている前記資源の量を取得する補充計画取得部と、
前記発着台に収容されている前記資源の量を取得する移動体資源取得部と、
をさらに備え、
前記端末は、前記計画されている前記資源の量が、前記収容されている前記資源の量を上回るとき、その旨を発報する、
請求項21のいずれかに記載のドローンシステム。
The replenishment control unit,
A replenishment plan acquisition unit that acquires the amount of the resource that is planned to be replenished to the drone from the departure and arrival table,
A mobile resource acquisition unit that acquires the amount of the resources stored in the landing table;
Further equipped with,
When the planned amount of the resource exceeds the stored amount of the resource, the terminal notifies that fact,
The drone system according to claim 21.
- 前記補充管制部は、直近に着陸が予定されている前記ドローンへの補充が計画されている前記資源の量が、前記発着台に収容されている資源の量を上回るとき、その旨を発報する、
請求項22記載のドローンシステム。
When the amount of the resource planned to be replenished to the drone that is scheduled to land most recently exceeds the amount of the resource accommodated in the departure and arrival platform, the replenishment control unit notifies that fact. To do
The drone system according to claim 22.
- 前記発着台は、前記ドローンと共に移動可能な移動体である、
請求項19乃至23のいずれかに記載のドローンシステム。
The landing table is a moving body that can move together with the drone,
The drone system according to any one of claims 19 to 23.
- 前記移動体および複数の前記ドローンが移動するとき、複数の前記ドローンの一部又は全部を、前記移動体に対して所定距離離間させて飛行させる移動管制部をさらに備える、
請求項24記載のドローンシステム。
When the moving body and the plurality of drones move, a part or all of the plurality of drones, further comprising a movement control unit for flying a predetermined distance away from the moving body,
The drone system according to claim 24.
- 前記移動管制部は、複数の前記ドローンを前記移動体の進行方向後方において所定距離ずつ離間させて飛行させる、
請求項25記載のドローンシステム。
The movement control unit causes the plurality of drones to fly at predetermined distances behind each other in the traveling direction of the moving body,
The drone system according to claim 25.
- 前記移動管制部は、複数の前記ドローンを前記移動体の上方において所定距離ずつ離間させて飛行させる、
請求項25又は26記載のドローンシステム。
The movement control unit causes the plurality of drones to fly over the moving body at predetermined distances apart from each other,
The drone system according to claim 25 or 26.
- 前記移動管制部は、前記移動体および複数の前記ドローンが移動している状態において、前記移動体が前記進行方向とは反対に移動するとき、前記進行方向において最後方の前記ドローンを先頭にして移動する、
請求項26記載のドローンシステム。
The moving control unit, in a state in which the moving body and the plurality of drones are moving, when the moving body moves in the opposite direction to the traveling direction, with the drone at the end in the traveling direction as a head. Moving,
The drone system according to claim 26.
- 前記ドローンは周辺の障害物を検知する障害物検知部を備え、前記移動管制部は、前記ドローンが障害物を検知すると、当該ドローンを含めた複数の前記ドローンを着陸させる、
請求項27又は28記載のドローンシステム。
The drone includes an obstacle detection unit that detects an obstacle in the vicinity, the movement control unit, when the drone detects an obstacle, land a plurality of the drones including the drone,
The drone system according to claim 27 or 28.
- 前記移動管制部は、前記移動体および複数の前記ドローンが移動している状態において、前記移動体が進行方向とは反対に移動するとき、複数の前記ドローンを着陸させる、
請求項29記載のドローンシステム。
The movement control unit, while the moving body and the plurality of drones are moving, when the moving body moves in a direction opposite to the traveling direction, landing the plurality of drones,
The drone system according to claim 29.
- 前記移動管制部が前記ドローンを着陸させるとき、警報を発信する、
請求項29又は30記載のドローンシステム。
When the mobile control unit lands the drone, an alarm is issued.
The drone system according to claim 29 or 30.
- 作業エリア内を飛行して作業を遂行する複数のドローンを少なくとも含むドローンシステムの制御方法であって、
前記複数のドローンを離陸させる離陸順序を管制するステップを含む、
ドローンシステムの制御方法。
A method of controlling a drone system including at least a plurality of drones that fly within a work area to perform work,
Controlling the takeoff sequence for taking off the plurality of drones,
Drone system control method.
- 作業エリア内を飛行して作業を遂行する複数のドローンを少なくとも含むドローンシステムの制御プログラムであって、
前記複数のドローンを離陸させる離陸順序を管制する命令をコンピュータに実行させる、
ドローンシステムの制御プログラム。
A control program for a drone system including at least a plurality of drones that fly within a work area to perform work,
Causing a computer to execute instructions for controlling a takeoff sequence for taking off the plurality of drones,
Drone system control program.
- 作業エリア内を飛行して作業を遂行するドローンであって、
離陸させる離陸順序を管制する管制装置と接続され、
前記管制装置からの命令に基づいて離陸する、ドローン。
A drone that flies within a work area to carry out work,
It is connected to a control device that controls the takeoff order to take off,
A drone that takes off based on commands from the control device.
- 作業エリア内を飛行して作業を遂行する複数のドローンと、
前記複数のドローンを離陸させる離陸順序を管制する管制装置と、
を少なくとも含むドローンシステムに含まれる移動体であって、
前記移動体は、前記ドローンに補充する資源を収容可能である、
移動体。
Multiple drones that fly within the work area to carry out work,
A control device for controlling the takeoff order for taking off the plurality of drones,
A mobile object included in a drone system including at least
The mobile is capable of accommodating resources to replenish the drone,
Mobile.
- 作業エリア内を飛行して作業を遂行する複数のドローンと接続され、
前記複数のドローンに関する情報に基づいて、前記複数のドローンを離陸させる離陸順序を管制する管制装置。
Connected with multiple drones that fly within the work area to perform work,
A control device for controlling a takeoff order for taking off the plurality of drones based on information about the plurality of drones.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020571281A JP7242077B2 (en) | 2019-02-08 | 2020-02-07 | Drone system, drone system control method, drone system control program, and control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-021408 | 2019-02-08 | ||
JP2019021408 | 2019-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162583A1 true WO2020162583A1 (en) | 2020-08-13 |
Family
ID=71948326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004713 WO2020162583A1 (en) | 2019-02-08 | 2020-02-07 | Drone system, drone, mobile unit, control device, drone system control method, and drone system control program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7242077B2 (en) |
WO (1) | WO2020162583A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114180090A (en) * | 2021-12-11 | 2022-03-15 | 浙江极客桥智能装备股份有限公司 | Intelligent storage management method and system for unmanned aerial vehicle |
JP2022523231A (en) * | 2019-03-18 | 2022-04-21 | 北京京東乾石科技有限公司 | Drone cluster system, takeoff control method, equipment, system and readable medium |
WO2023175810A1 (en) * | 2022-03-17 | 2023-09-21 | 日本電気株式会社 | Unmanned aerial vehicle information acquisition system and unmanned aerial vehicle information acquisition method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170086288A (en) * | 2016-01-18 | 2017-07-26 | (주)한국전기차서비스 | Apparatus and Method for controlling unmanned air vehicle capable of wireless charging |
JP2017144811A (en) * | 2016-02-16 | 2017-08-24 | 株式会社ナイルワークス | Chemical spraying method and program by unmanned flight body |
US20170316701A1 (en) * | 2016-04-29 | 2017-11-02 | United Parcel Service Of America, Inc. | Methods for landing an unmanned aerial vehicle |
JP2017207815A (en) * | 2016-05-16 | 2017-11-24 | 井関農機株式会社 | Control system of work vehicle |
JP2018165931A (en) * | 2017-03-28 | 2018-10-25 | 株式会社ゼンリンデータコム | Control device for drone, control method for drone and control program for drone |
JP2018169995A (en) * | 2017-03-30 | 2018-11-01 | 株式会社スカイマティクス | System and method for supporting work through use of drone |
JP2019016030A (en) * | 2017-07-04 | 2019-01-31 | 株式会社Nttファシリティーズ | Charging support system and charging support method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11168930A (en) * | 1997-12-15 | 1999-06-29 | Yanmar Agricult Equip Co Ltd | Agrochemical spreading system |
JP3913623B2 (en) | 2002-07-05 | 2007-05-09 | 株式会社エヌ・ティ・ティ・データ | Air traffic control device |
JP5250290B2 (en) | 2008-04-02 | 2013-07-31 | 富士重工業株式会社 | 4D optimal route guidance system for aircraft |
CN103914076B (en) | 2014-03-28 | 2017-02-15 | 浙江吉利控股集团有限公司 | Cargo transferring system and method based on unmanned aerial vehicle |
JP6772100B2 (en) | 2017-03-28 | 2020-10-21 | 株式会社ゼンリンデータコム | Dynamic management device for drones, dynamic management method for drones, and dynamic management program for drones |
-
2020
- 2020-02-07 WO PCT/JP2020/004713 patent/WO2020162583A1/en active Application Filing
- 2020-02-07 JP JP2020571281A patent/JP7242077B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170086288A (en) * | 2016-01-18 | 2017-07-26 | (주)한국전기차서비스 | Apparatus and Method for controlling unmanned air vehicle capable of wireless charging |
JP2017144811A (en) * | 2016-02-16 | 2017-08-24 | 株式会社ナイルワークス | Chemical spraying method and program by unmanned flight body |
US20170316701A1 (en) * | 2016-04-29 | 2017-11-02 | United Parcel Service Of America, Inc. | Methods for landing an unmanned aerial vehicle |
JP2017207815A (en) * | 2016-05-16 | 2017-11-24 | 井関農機株式会社 | Control system of work vehicle |
JP2018165931A (en) * | 2017-03-28 | 2018-10-25 | 株式会社ゼンリンデータコム | Control device for drone, control method for drone and control program for drone |
JP2018169995A (en) * | 2017-03-30 | 2018-11-01 | 株式会社スカイマティクス | System and method for supporting work through use of drone |
JP2019016030A (en) * | 2017-07-04 | 2019-01-31 | 株式会社Nttファシリティーズ | Charging support system and charging support method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022523231A (en) * | 2019-03-18 | 2022-04-21 | 北京京東乾石科技有限公司 | Drone cluster system, takeoff control method, equipment, system and readable medium |
JP7270758B2 (en) | 2019-03-18 | 2023-05-10 | 北京京東乾石科技有限公司 | Drone cluster system, takeoff control method, device, system and readable medium |
CN114180090A (en) * | 2021-12-11 | 2022-03-15 | 浙江极客桥智能装备股份有限公司 | Intelligent storage management method and system for unmanned aerial vehicle |
CN114180090B (en) * | 2021-12-11 | 2024-02-02 | 浙江极客桥智能装备股份有限公司 | Unmanned aerial vehicle intelligent storage management method and system |
WO2023175810A1 (en) * | 2022-03-17 | 2023-09-21 | 日本電気株式会社 | Unmanned aerial vehicle information acquisition system and unmanned aerial vehicle information acquisition method |
Also Published As
Publication number | Publication date |
---|---|
JP7242077B2 (en) | 2023-03-20 |
JPWO2020162583A1 (en) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113226025B (en) | Unmanned aerial vehicle system | |
CN113168187B (en) | Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and computer-readable recording medium | |
WO2020116442A1 (en) | Moving body | |
CN113226024B (en) | Unmanned aerial vehicle system, unmanned aerial vehicle, control method for unmanned aerial vehicle system, and computer-readable recording medium | |
CN113165753B (en) | Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and computer-readable storage medium | |
WO2020153372A1 (en) | Drone system and drone system control method | |
WO2020162583A1 (en) | Drone system, drone, mobile unit, control device, drone system control method, and drone system control program | |
WO2020162584A1 (en) | Drone system, drone, control device, and drone system control method | |
JP7195652B2 (en) | DRONE SYSTEM, DRONE SYSTEM CONTROL METHOD, AND OPERATION DETERMINATION DEVICE | |
JP7169009B2 (en) | Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program | |
JP6813161B2 (en) | Drone system, drone system control method | |
WO2020153369A1 (en) | Drone system, drone system control method, and operation determination device | |
WO2020116443A1 (en) | Movable body | |
JP2020191059A (en) | Drone system | |
WO2020116495A1 (en) | Drone system | |
WO2020116494A1 (en) | Drone system | |
WO2020116496A1 (en) | Drone system | |
JP7169010B2 (en) | Drone system, drone, control device, and control method for drone system | |
WO2020116341A1 (en) | Drone system | |
WO2020116444A1 (en) | Drone system | |
JP7184385B2 (en) | Drone system, drone, control device, and control method for drone system | |
JP7093126B2 (en) | Drone system | |
WO2020153368A1 (en) | Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program | |
WO2020116493A1 (en) | Moving body | |
WO2020116396A1 (en) | Drone system and drone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20752029 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020571281 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20752029 Country of ref document: EP Kind code of ref document: A1 |