[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020157806A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2020157806A1
WO2020157806A1 PCT/JP2019/002791 JP2019002791W WO2020157806A1 WO 2020157806 A1 WO2020157806 A1 WO 2020157806A1 JP 2019002791 W JP2019002791 W JP 2019002791W WO 2020157806 A1 WO2020157806 A1 WO 2020157806A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
refrigerant
rising pipe
pipe portion
evaporator
Prior art date
Application number
PCT/JP2019/002791
Other languages
French (fr)
Japanese (ja)
Inventor
松田 弘文
雄亮 田代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/002791 priority Critical patent/WO2020157806A1/en
Priority to JP2020568896A priority patent/JP6952916B2/en
Publication of WO2020157806A1 publication Critical patent/WO2020157806A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the present invention relates to a refrigerator.
  • Japanese Patent No. 3485006 discloses a refrigerant circuit including a compressor, a condenser, a throttle device, an evaporator as a cooler, and an oil separator, and an oil return path connected to the refrigerant circuit and including a solenoid valve.
  • a refrigerator comprising is disclosed.
  • the compression part for compressing the refrigerant is generally lubricated with lubricating oil.
  • a part of the lubricating oil is discharged into the refrigerant circuit together with the refrigerant compressed by the compression section.
  • an oil separator is arranged between the compressor and the condenser to separate the lubricating oil from the refrigerant discharged from the compressor.
  • the oil return passage is provided so as to return the lubricating oil separated in the oil separator to the suction port of the compressor, and one end thereof is connected to the oil separator in which the relatively high-pressure refrigerant flows in the refrigerant circuit, The other end is connected between the evaporator and the suction port of the compressor in which a relatively low-pressure refrigerant flows in the refrigerant circuit.
  • the solenoid valve is provided so as to open or close the oil return passage.
  • the lubricating oil separated by the oil separator receives the pressure difference between the one end and the other end of the oil return passage when the oil return passage is opened by the solenoid valve, and receives the other end. Be carried to.
  • the connection portion with the other end of the oil return passage and evaporation are evaporated.
  • An on-off valve such as a check valve or a solenoid valve is arranged between the container and the container.
  • chattering may occur at the open/close valve.
  • chattering occurs, there is a problem that chattering sound is generated.
  • the main object of the present invention is to provide a refrigerator in which the lubricating oil returned from the oil return passage to the refrigerant circuit can be suppressed from flowing into the evaporator and chattering is suppressed.
  • the refrigerator according to the present invention includes a compressor, an oil separator, a condenser, a throttle device, and an evaporator, and is provided with a refrigerant circuit in which a refrigerant circulates through the compressor, the condenser, the throttle device, and the evaporator in order.
  • the compressor has a suction port that sucks the refrigerant evaporated in the evaporator, a compression unit that is lubricated by oil and that compresses the refrigerant that is sucked from the suction port, and a discharge port that discharges the refrigerant that is compressed by the compression unit.
  • the refrigerant circuit has a first refrigerant flow path connecting between the evaporator and the suction port.
  • the oil separator is provided so as to separate the refrigerant and the oil discharged from the discharge port.
  • the refrigerator has a first end connected to the oil separator and the other end connected to the first refrigerant flow path, and removes the oil separated in the oil separator when the compressor is stopped.
  • An oil return passage provided so as to return to the first refrigerant passage is further provided.
  • the first refrigerant flow passage is connected to a connection portion connected to the oil return passage, and at least one first pipe portion arranged between the connection portion and the evaporator and extending in the vertical direction. And a pipe portion arranged between the portion and the suction port.
  • the inner diameter of at least one 1st pipe part is larger than the inner diameter of the piping which comprises an oil return channel.
  • the present invention it is possible to provide a refrigerator in which the lubricating oil returned from the oil return path to the refrigerant circuit can be suppressed from flowing into the evaporator and chattering is suppressed.
  • FIG. 3 It is a figure which shows the refrigerant circuit and oil return path of the refrigerator which concerns on Embodiment 1. It is a figure which shows the example of arrangement
  • the refrigerator 100 includes a refrigerant circuit forming a refrigeration cycle and an oil return passage connected to the refrigerant circuit.
  • the refrigerant circuit includes a compressor 1, a condenser 2, a first expansion device 3, an evaporator 4, and an oil separator 5.
  • the refrigerant circuit is provided so that the refrigerant circulates through the compressor 1, the oil separator 5, the condenser 2, the first expansion device 3, and the evaporator 4 in order.
  • the compressor 1 includes a suction port for sucking the refrigerant, a compression unit for compressing the refrigerant sucked from the suction port, and a discharge port for discharging the high temperature/high pressure vapor-phase refrigerant compressed by the compression unit.
  • the compression section is lubricated with refrigerating machine oil (hereinafter referred to as oil).
  • oil refrigerating machine oil
  • the compressor 1 discharges the refrigerant and the refrigerating machine oil from the discharge port. Further, the compressor 1 sucks the refrigerant and the oil through the suction port.
  • the discharge port of the compressor 1 is connected to the inflow port of the oil separator 5 via the first flow path 11 as the second refrigerant flow path.
  • the suction port of the compressor 1 is connected to the outlet of the evaporator 4 via the fifth flow path 15 and the sixth flow path 16 as the first refrigerant flow path. Further, the suction port of the compressor 1 is connected to the oil return passage 17 via the sixth passage 16.
  • the oil separator 5 includes an inflow port into which the gas-phase refrigerant and oil flow, a first outflow port from which the gas-phase refrigerant flows out, and a second outflow port from which the oil flows out.
  • the oil separator 5 is provided so as to separate the gas-phase refrigerant and the oil that have flowed in from the inflow port into the gas-phase refrigerant and the oil, and to each flow out from the first outflow port or the second outflow port.
  • the first outlet of the oil separator 5 is connected to the inlet of the condenser 2 via the second flow passage 12.
  • the condenser 2 includes an inflow port into which the vapor phase refrigerant flowing out from the first outflow port of the oil separator 5 flows, and an outflow port from which the liquid phase refrigerant flows out.
  • the condenser 2 is provided so that the gas-phase refrigerant flowing from the inflow port exchanges heat with the outside air. Thereby, the vapor phase refrigerant is condensed to become a liquid phase refrigerant.
  • the outlet of the condenser 2 is connected to the inlet of the first expansion device 3 via the third flow path 13.
  • the first expansion device 3 includes an inlet through which the liquid-phase refrigerant condensed in the condenser 2 flows, and an outlet through which the gas-liquid 2 refrigerant flows out.
  • the first expansion device 3 is provided so as to reduce the pressure of the liquid-phase refrigerant flowing from the inflow port. As a result, the liquid-phase refrigerant expands to become a gas-liquid two-phase refrigerant.
  • the first expansion device 3 is provided, for example, as a capillary tube.
  • the evaporator 4 includes an inlet through which the gas-liquid two-phase refrigerant decompressed in the first expansion device 3 flows, and an outlet through which the gas phase refrigerant flows out.
  • the evaporator 4 is provided so that the gas-liquid two-phase refrigerant that has flowed in through the inlet exchanges heat with the air in the storage chamber of the refrigerator 100. As a result, the gas-liquid two-phase refrigerant is evaporated and becomes a gas-phase refrigerant.
  • the outlet of the evaporator 4 is connected to the suction port of the compressor 1 via the fifth flow passage 15 and the sixth flow passage 16. Further, the outlet of the evaporator 4 is connected to the oil return passage 17 via the fifth flow passage 15.
  • the fifth flow path 15 and the sixth flow path 16 connect the outflow port of the evaporator 4 and the suction port of the compressor 1.
  • One end of the fifth flow path 15 in the refrigerant flow direction is connected to the outlet of the evaporator 4.
  • the other end of the fifth flow path 15 in the flow direction is connected to one end of the sixth flow path 16.
  • the other end of the sixth flow path 16 is connected to the suction port of the compressor 1.
  • the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16 are connected to the oil return passage 17.
  • the refrigerator 100 does not include an opening/closing valve that opens/closes the fifth flow path 15.
  • a part of the fifth flow path 15 and the first expansion device 3 constitute, for example, the heat exchanger 8.
  • the heat exchanger 8 is provided so that the refrigerant flowing through the first expansion device 3 and the refrigerant flowing through the fifth flow path 15 exchange heat with each other.
  • the oil return passage 17 is connected to the first end connected to the second outlet of the oil separator 5, the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16. It has two ends. The second end of the oil return passage 17 is connected to a connecting portion 18 between the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16.
  • the oil return path 17 bypasses the condenser 2, the first expansion device 3, and the evaporator 4 in the refrigerant circuit, and connects the second outlet of the oil separator 5 and the inlet of the compressor 1 to each other. There is.
  • the oil return passage 17 is provided to return the oil separated from the refrigerant by the oil separator 5 to the suction port of the compressor 1.
  • the oil return passage 17 includes the opening/closing valve 6 and the second expansion device 7.
  • the on-off valve 6 is provided so as to open and close the oil return passage 17.
  • the second expansion device 7 is provided so as to reduce the pressure of the oil flowing through the oil return passage 17.
  • the open/close valve 6 is, for example, a solenoid valve.
  • the on-off valve 6 is controlled to close the oil return passage 17 when the compressor 1 is driven and open the oil return passage 17 when the compressor 1 is stopped.
  • the second expansion device 7 is, for example, a capillary tube.
  • the refrigerator 100 is a machine in which at least the compressor 1, the oil separator 5, a part of the fifth flow path 15, the sixth flow path 16, and the oil return path 17 are housed.
  • the chamber 21 and the heat insulating portion 22 that houses at least the remaining portion of the evaporator 4 and the fifth flow path 15 are provided.
  • the heat insulating unit 22 is provided so as to surround a storage chamber (not shown) that is cooled by the evaporator 4.
  • the heat insulating portion 22 has a portion arranged above the machine room 21.
  • the refrigerator 100 has a first state in which the compressor 1 is driven and refrigerant is circulating in the refrigerant circuit, and a second state in which the compressor 1 is stopped and refrigerant is not circulating in the refrigerant circuit. It is provided to switch between states.
  • the oil return passage 17 is closed by the opening/closing valve 6 in the first state and opened by the opening/closing valve 6 in the second state.
  • the fifth flow path 15 is open in the first state and the second state.
  • the refrigerant is the compressor 1, the first flow passage 11, the oil separator 5, the second flow passage 12, the condenser 2, the third flow passage 13, the first expansion device 3, the fourth flow passage. 14, the evaporator 4, the fifth flow path 15, and the sixth flow path 16 are sequentially circulated.
  • the refrigerator 100 can cool the air in the storage chamber.
  • the pressure difference between the first flow passage 11 and the sixth flow passage 16 that is, the pressure difference applied between both ends of the oil return passage 17 is the oil separator. Act on the oil separated in 5.
  • the oil separated in the oil separator 5 in the first state flows through the oil return passage 17 due to the pressure difference after the second state is realized, and flows from the connection portion 18 to the fifth passage 15 and the fifth passage 15. 6 is returned to the flow path 16.
  • the gas-phase refrigerant evaporated in the evaporator 4 in the first state is stored in the fifth flow channel 15 and the sixth flow channel 16 in the second state.
  • the pressure difference also acts on the vapor-phase refrigerant and oil in the fifth flow path 15.
  • the vapor-phase refrigerant and the oil in the fifth flow path 15 receive the pressure in the direction from the connecting portion 18 to the outlet of the evaporator 4.
  • the fifth flow path 15 has a first rising pipe portion 31 described later.
  • the first rising pipe portion 31 is provided so that gravity directed in the direction opposite to the pressure acts on the vapor-phase refrigerant and oil flowing through the first rising pipe portion 31 in the second state.
  • FIG. 2 is a diagram for explaining the arrangement of the fifth flow path 15, the sixth flow path 16, and the oil return path 17 of the refrigerator 100 shown in FIG.
  • the refrigerator 100 is arranged such that the Z direction shown in FIG. 2 is along the vertical direction. Note that, in FIG. 2, the illustration of the third flow path 13, the first expansion device 3, and the fourth flow path 14 illustrated in FIG. 1 is omitted.
  • the fifth flow path 15 has a first rising pipe portion 31 extending in the up-down direction.
  • the lower end of the first rising pipe portion 31 constitutes, for example, the other end of the fifth flow passage 15, and is connected to the one end of the sixth flow passage 16 and the second end of the oil return passage 17. .. That is, the lower end of the first rising tube portion 31 is connected to the connecting portion 18, for example.
  • the upper end of the first rising pipe portion 31 is arranged closer to the outlet of the evaporator 4 than the lower end of the first rising pipe portion 31 in the fifth flow path 15.
  • the upper end of the first rising pipe portion 31 is arranged closer to the connecting portion 18 than the portion of the fifth flow path 15 forming the heat exchanger 8.
  • the sixth channel 16 has, for example, a second rising pipe portion 32 extending along the up-down direction.
  • the upper end of the second rising pipe portion 32 constitutes, for example, the one end of the sixth flow passage 16, and is connected to the lower end of the first rising pipe portion 31 and the second end of the oil return passage 17.
  • the inner diameter of the pipe forming the sixth flow path 16 is equal to the inner diameter of the pipe forming the oil return passage, for example.
  • the first flow path 11 has, for example, a third rising pipe portion 33 extending along the up-down direction.
  • the upper end of the third rising pipe portion 33 is connected to the inlet of the oil separator 5.
  • the lower end of the third rising pipe portion 33 is connected to the discharge port of the compressor 1.
  • the inner diameter of the third rising pipe portion 33 is equal to the inner diameter of the second rising pipe portion 32, for example.
  • the first rising pipe portion 31 is provided only inside the machine room 21, for example.
  • the fifth flow path 15 is surrounded by, for example, the heat insulating portion 22, and further includes a fourth rising pipe portion 34 extending in the up-down direction.
  • the upper end of the first rising tube portion 31 is connected to the lower end of the fourth rising tube portion 34, for example.
  • the inner diameter of the first rising pipe portion 31 (first pipe portion) is larger than the inner diameter of the second rising pipe portion 32 (second pipe portion). That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section expressed by the following relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the second rising pipe section. Faster than zero penetration speed Ug at 32.
  • the zero penetration speed Ug applies the zero penetration speed defined in the upflow of the gas-liquid two-phase refrigerant to the upflow of the mixed fluid of the gas-phase refrigerant and the oil.
  • the inner diameter [unit: m] of the first rising pipe portion 31 or the rising pipe portion of the sixth flow path 16 is substituted for D.
  • g gravitational acceleration 9.8 [unit: m/S 2 ]
  • ⁇ l oil density [unit: kg/m 3 ]
  • ⁇ g refrigerant gas density [unit: kg/m 3 ].
  • Ug' is a constant. The method of calculating Ug' will be described later.
  • the inner diameter of the first rising tube portion 31 is larger than the inner diameter of the third rising tube portion 33. That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section represented by the above relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the third rising pipe section 33. Faster than the zero penetration speed Ug at.
  • the inner diameter of the first rising tube portion 31 is larger than the inner diameter of the fourth rising tube portion 34. That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section represented by the above relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the fourth rising pipe section 34. Faster than that.
  • the zero penetration speed Ug in the rising pipe portion extending along the vertical direction is the minimum flow velocity of the refrigerant required to raise the oil in the rising pipe portion when returning the oil. That is, the zero penetration speed Ug in the first rising pipe portion 31 is faster than the zero penetration speed Ug in the second rising pipe portion 32.
  • FIG. 3 is a graph showing the relationship between the inner diameter D of the rising pipe section expressed by the above relational expression (1) and the zero penetration speed Ug (zero penetration speed).
  • the horizontal axis of FIG. 3 represents the zero penetration speed Ug (zero penetration speed) [unit: m/s], and the vertical axis of FIG. 3 represents the inner diameter D [unit: m].
  • Ug zero penetration speed
  • D the inner diameter D
  • the inner diameter D [unit: m] of the first rising pipe portion 31 is equal to or less than the zero penetration speed Ug [unit: m/s] of the first rising pipe portion 31 calculated based on the above relational expression (1). It is provided so as to be faster than the flow velocity Ux [unit: m/s] calculated based on the relational expression (2).
  • the flow velocity Ux is the flow velocity at the outlet of the evaporator 4 of the refrigerant flowing in the direction from the connecting portion 18 toward the outlet of the evaporator 4 due to the pressure difference when returning the oil.
  • ⁇ P is the pressure difference [unit: MPa] between the first flow passage 11 and the sixth flow passage 16 when the compressor 1 is stopped
  • ⁇ g is the refrigerant gas density [unit. : Kg/m 3 ]
  • h is the vertical distance (height difference) [unit: m] between the outlet of the evaporator 4 and the connecting portion 18.
  • FIG. 4 is a graph showing the relationship between the pressure difference ⁇ P and the flow velocity Ux expressed by the relational expression (2).
  • the horizontal axis of FIG. 4 represents the pressure difference ⁇ P [unit: MPa], and the vertical axis of FIG. 4 represents the flow velocity Ux [unit: m/s].
  • the larger the pressure difference ⁇ P the faster the flow velocity Ux.
  • the refrigerator 100 includes the refrigerant circuit and the oil return passage 17.
  • the refrigerant circuit includes a compressor 1, an oil separator 5, a condenser 2, a first expansion device 3, and an evaporator 4, and the refrigerant is a compressor 1, an oil separator 5, a condenser 2, a first expansion device. 3 and the evaporator 4 are sequentially circulated.
  • the oil return passage 17 has a first end connected to the oil separator 5 and a second end connected between the evaporator 4 and the suction port of the compressor 1. It is provided so that the oil separated in (1) is returned to the suction port of the compressor 1.
  • the refrigerant circuit has a fifth flow path 15 that connects between the evaporator 4 and the compressor 1.
  • the fifth flow path 15 includes a connecting portion 18 connected to the oil return passage 17, and a first rising pipe portion 31 that is disposed closer to the evaporator 4 than the connecting portion 18 and extends in the up-down direction.
  • the inner diameter of the first rising pipe portion 31 is larger than the inner diameter of the pipe forming the oil return passage 17.
  • the gravity acting on the vapor-phase refrigerant and the oil in the first rising pipe portion 31 reduces the gravity. In the 1 state, it is along the direction in which the refrigerant circulates. On the other hand, in the second state, the gravity acts on the pressure difference and acts in the direction opposite to the direction in which the refrigerant and the oil flow. Therefore, in the refrigerator 100, as compared with the conventional refrigerator in which the fifth flow path 15 does not have the first rising pipe portion 31, the refrigerant and the oil are less likely to rise in the first rising pipe portion 31 in the second state. , Oil is hard to reach the evaporator 4.
  • the inner diameter of the first rising pipe portion 31 is larger than the inner diameters of the pipe portions forming the sixth flow path 16 and the oil return passage 17, the zero penetration speed of the first rising pipe portion 31. However, it is faster than the zero penetration speed Ug in the rising pipe portion in the sixth flow passage 16 and the oil return passage 17, for example, in the second rising pipe portion 32. Therefore, in the refrigerator 100, as compared with the refrigerator in which the inner diameter of the first rising pipe portion 31 is equal to the inner diameters of the pipe portions forming the sixth flow path 16 and the oil return passage 17, the evaporator is more likely to be installed than the connection portion 18. The rise of oil is effectively suppressed in the first rising pipe portion 31 arranged near the position 4.
  • the refrigerator 100 includes the first rising pipe portion 31 and thus is returned from the oil return passage 17 to the fifth passage 15. It is possible to prevent the oil from flowing into the evaporator 4. Further, in the refrigerator 100, the on-off valve that opens and closes the fifth flow path 15 is not required, so chattering is suppressed and the manufacturing cost is further reduced as compared with the conventional refrigerator including the on-off valve. There is.
  • the first rising pipe portion 31 is arranged only inside the machine room 21, and the first rising pipe portion 31 is not surrounded by the heat insulating portion 22. Therefore, in the refrigerator 100, like the refrigerator 101 described later, the inner diameter of the fourth rising pipe portion 34 surrounded by the heat insulating portion 22 is smaller than the inner diameters of the pipe portions forming the sixth flow passage 16 and the oil return passage 17. Can be easily manufactured as compared with the case where a large size is provided.
  • the inner diameter of the first rising pipe portion 31 is provided so that the zero penetration speed Ug in the first rising pipe portion 31 becomes faster than the flow velocity Ux.
  • Such a refrigerator 100 can more effectively suppress the oil subjected to the pressure difference from reaching the evaporator 4 via the first rising pipe portion 31.
  • the flow velocity Ux may be a flow velocity of the refrigerant flowing in the direction from the connecting portion 18 toward the outlet of the evaporator 4 due to the pressure difference during the oil return at the upper end of the first rising pipe portion 31. .. That is, h in the relational expression (2) may be a vertical distance (height difference) between the upper end of the first rising tube portion 31 and the connecting portion 18. The height difference between the upper end of the first rising pipe portion 31 and the connection portion 18 is less than the vertical distance (height difference) between the outlet of the evaporator 4 and the connection portion 18.
  • the refrigerator 101 according to the second embodiment has basically the same configuration as the refrigerator 100 according to the first embodiment, but the fifth flow path 15 has a plurality of rising pipe portions 31, 34 to 40, and the inner diameters of the plurality of rising pipes are different from the inner diameters of the pipes forming the sixth flow passage 16 and the oil return passage 17. Note that in FIG. 5, the illustration of the third flow path 13, the first expansion device 3, and the fourth flow path 14 shown in FIG. 1 is omitted.
  • the fifth flow path 15 includes, for example, a first rising pipe portion 31, a fourth rising pipe portion 34, a fifth rising pipe portion 35, a sixth rising pipe portion 36, a seventh rising pipe portion 37, an eighth rising pipe portion 38, It has a ninth rising pipe portion 39 and a tenth rising pipe portion 40.
  • the tenth rising pipe portion 40 is sequentially connected to the outlet of the evaporator 4 from the connecting portion 18 in the fifth flow path 15.
  • Each of the plurality of rising pipe portions 31, 34 to 40 extends in the vertical direction.
  • the fourth rising pipe portion 34, the fifth rising pipe portion 35, the sixth rising pipe portion 36, the seventh rising pipe portion 37, the eighth rising pipe portion 38, the ninth rising pipe portion 39, and the tenth rising pipe portion 40 are It is arranged above the machine room 21 and is surrounded by the heat insulating portion 22. At least a part of the plurality of rising pipe portions 31, 34 to 40 is arranged closer to the evaporator 4 than the portion of the fifth flow path 15 forming the heat exchanger 8.
  • the inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the second rising pipe portion 32.
  • the inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the third rising pipe portion 33.
  • the zero penetration velocities Ug of the plurality of rising pipe portions 31, 34 to 40 are faster than those of the second rising pipe portion 32 and the third rising pipe portion 33.
  • the inner diameter D [unit: m] of each of the plurality of rising pipe portions 31, 34 to 40 is such that each zero penetration velocity Ug [unit: m/s] calculated based on the relational expression (1). It is provided so as to be faster than the flow velocity Ux [unit: m/s] calculated based on the relational expression (2).
  • the inner diameters of the plurality of rising tube portions 31, 34 to 40 are equal to each other, for example.
  • the fifth flow path 15 of the refrigerator 101 further includes, for example, in addition to the plurality of rising pipe portions 31, 34 to 40, a horizontal pipe portion that extends in the horizontal direction.
  • the inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the horizontal pipe portion, for example.
  • the inner diameters of the plurality of rising tube portions 31, 34 to 40 may be equal to the inner diameter of the horizontal tube portion, for example. That is, the entire fifth flow path 15 may be configured by a tube portion whose diameter is larger than that of the second rising tube portion 32.
  • the refrigerator 101 basically has the same configuration as the refrigerator 100, the same effect as the refrigerator 100 can be obtained.
  • the inner diameter of each of the plurality of rising pipe portions 31, 34 to 40 is set to be larger than the inner diameter of the second rising pipe portion 32, so that only the inner diameter of the first rising pipe portion 31 is Compared with the refrigerator 100 in which the inner diameter of the second rising pipe 32 is provided, it is possible to more effectively prevent the oil subjected to the pressure difference from reaching the evaporator 4 via the first rising pipe 31.
  • the fifth flow path 15 may further include another pipe portion that connects the lower end of the first rising pipe portion 31 and the connecting portion 18.
  • the other tube portion may extend in any direction, and may extend in the up-down direction, for example.
  • the inner diameter of the other tube portion may be any length, and may be equal to the inner diameter of the second rising tube portion 32, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressor (AREA)

Abstract

This refrigerator (100) comprises a refrigerant circuit in which a refrigerant is circulated through a compressor (1), an oil separator (5), a condenser (2), a first throttle device (3), and an evaporator (4) in the stated order. The compressor includes a suction opening, a discharge opening, and a compression part that is lubricated with oil. The oil separator is provided so as to separate oil and refrigerant that are discharged from the discharge opening. The refrigerator (100) furthermore comprises an oil return passage (17) provided so that the oil separated in the oil separator when driving of the compressor is stopped is returned to a fifth flow passage (15) connecting the evaporator and the suction opening. The fifth flow passage has a connection part (18) connected to the oil return passage, a first rising pipe part (31) that is disposed between the connection part and the evaporator and that extends along the vertical direction, and a third rising pipe part (33) that is disposed between the connection part and the suction opening. The inside diameter of the first rising pipe part is greater than the inside diameter of the third rising pipe part.

Description

冷蔵庫refrigerator
 本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
 特許第3485006号には、圧縮機、凝縮器、絞り装置、冷却器としての蒸発器、および油分離器を含む冷媒回路と、該冷媒回路に接続されておりかつ電磁弁を含む返油路とを備える冷蔵庫が開示されている。 Japanese Patent No. 3485006 discloses a refrigerant circuit including a compressor, a condenser, a throttle device, an evaporator as a cooler, and an oil separator, and an oil return path connected to the refrigerant circuit and including a solenoid valve. A refrigerator comprising is disclosed.
 冷蔵庫に用いられる圧縮機では、一般的に冷媒を圧縮するための圧縮部が潤滑油によって潤滑されている。このような圧縮機では、一部の潤滑油が圧縮部によって圧縮された冷媒とともに冷媒回路に吐出される。このような場合、冷媒のみが冷媒回路を流れる場合と比べて、冷媒回路を流れる流体の圧力損失が大きくなり、また当該流体の伝熱性が低下し、冷蔵庫の冷却能力が低下する。 In compressors used in refrigerators, the compression part for compressing the refrigerant is generally lubricated with lubricating oil. In such a compressor, a part of the lubricating oil is discharged into the refrigerant circuit together with the refrigerant compressed by the compression section. In such a case, compared with the case where only the refrigerant flows through the refrigerant circuit, the pressure loss of the fluid flowing through the refrigerant circuit becomes large, the heat transfer property of the fluid decreases, and the cooling capacity of the refrigerator decreases.
 そこで、上記冷蔵庫では、油分離器が、圧縮機と凝縮器との間に配置され、圧縮機から吐出された冷媒から潤滑油を分離するように設けられている。返油路は、油分離器において分離された潤滑油を圧縮機の吸入口に返すように設けられており、その一端が冷媒回路において相対的に高圧な冷媒が流れる油分離器に接続され、その他端が冷媒回路において相対的に低圧な冷媒が流れる蒸発器と圧縮機の吸入口との間に接続されている。電磁弁は、返油路を開放または閉止するように設けられている。 Therefore, in the above refrigerator, an oil separator is arranged between the compressor and the condenser to separate the lubricating oil from the refrigerant discharged from the compressor. The oil return passage is provided so as to return the lubricating oil separated in the oil separator to the suction port of the compressor, and one end thereof is connected to the oil separator in which the relatively high-pressure refrigerant flows in the refrigerant circuit, The other end is connected between the evaporator and the suction port of the compressor in which a relatively low-pressure refrigerant flows in the refrigerant circuit. The solenoid valve is provided so as to open or close the oil return passage.
 これにより、油分離器により分離された潤滑油は、電磁弁によって返油路が開放されているときに、返油路の上記一端と上記他端との間の圧力差を受けて上記他端に運ばれる。 As a result, the lubricating oil separated by the oil separator receives the pressure difference between the one end and the other end of the oil return passage when the oil return passage is opened by the solenoid valve, and receives the other end. Be carried to.
 さらに、上記冷蔵庫では、返油路の上記他端から冷媒回路に返された潤滑油が蒸発器に流入することを防止するため、冷媒回路において返油路の上記他端との接続部と蒸発器との間に例えば逆止弁または電磁弁等の開閉弁が配置されている。 Furthermore, in the above refrigerator, in order to prevent the lubricating oil returned to the refrigerant circuit from the other end of the oil return passage from flowing into the evaporator, in the refrigerant circuit, the connection portion with the other end of the oil return passage and evaporation are evaporated. An on-off valve such as a check valve or a solenoid valve is arranged between the container and the container.
特許第3485006号Patent No. 3485006
 しかしながら、上記冷蔵庫では、上記開閉弁でチャタリングが発生する場合がある。チャタリングが発生すると、チャタリング音が発生するという問題がある。 However, in the above refrigerator, chattering may occur at the open/close valve. When chattering occurs, there is a problem that chattering sound is generated.
 本発明の主たる目的は、返油路から冷媒回路に返された潤滑油が蒸発器に流入することを抑制でき、かつチャタリングが抑制された冷蔵庫を提供することにある。 The main object of the present invention is to provide a refrigerator in which the lubricating oil returned from the oil return passage to the refrigerant circuit can be suppressed from flowing into the evaporator and chattering is suppressed.
 本発明に係る冷蔵庫は、圧縮機、油分離器、凝縮器、絞り装置、および蒸発器を含み、冷媒が圧縮機、凝縮器、絞り装置、および蒸発器を順に循環する冷媒回路を備える。上記圧縮機は、蒸発器において蒸発した冷媒を吸入する吸入口と、油によって潤滑されており、吸入口から吸入された冷媒を圧縮する圧縮部と、圧縮部で圧縮した冷媒を吐出する吐出口とを含む。上記冷媒回路は、蒸発器と吸入口との間を接続する第1冷媒流路を有している。上記油分離器は、吐出口から吐出された冷媒と油とを分離するように設けられている。上記冷蔵庫は、油分離器に接続された第1端と第1冷媒流路に接続された他端とを有し、圧縮機が駆動停止されたときに油分離器において分離された油を第1冷媒流路に返すように設けられた返油路をさらに備える。上記第1冷媒流路は、返油路に接続されている接続部と、接続部と蒸発器との間に配置されておりかつ上下方向に沿って延びる少なくとも1つの第1管部と、接続部と吸入口との間に配置されている管部とを有している。少なくとも1つの第1管部の内径が、返油路を構成する配管の内径よりも大きい。 The refrigerator according to the present invention includes a compressor, an oil separator, a condenser, a throttle device, and an evaporator, and is provided with a refrigerant circuit in which a refrigerant circulates through the compressor, the condenser, the throttle device, and the evaporator in order. The compressor has a suction port that sucks the refrigerant evaporated in the evaporator, a compression unit that is lubricated by oil and that compresses the refrigerant that is sucked from the suction port, and a discharge port that discharges the refrigerant that is compressed by the compression unit. Including and The refrigerant circuit has a first refrigerant flow path connecting between the evaporator and the suction port. The oil separator is provided so as to separate the refrigerant and the oil discharged from the discharge port. The refrigerator has a first end connected to the oil separator and the other end connected to the first refrigerant flow path, and removes the oil separated in the oil separator when the compressor is stopped. An oil return passage provided so as to return to the first refrigerant passage is further provided. The first refrigerant flow passage is connected to a connection portion connected to the oil return passage, and at least one first pipe portion arranged between the connection portion and the evaporator and extending in the vertical direction. And a pipe portion arranged between the portion and the suction port. The inner diameter of at least one 1st pipe part is larger than the inner diameter of the piping which comprises an oil return channel.
 本発明によれば、返油路から冷媒回路に返された潤滑油が蒸発器に流入することを抑制でき、かつチャタリングが抑制された冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator in which the lubricating oil returned from the oil return path to the refrigerant circuit can be suppressed from flowing into the evaporator and chattering is suppressed.
実施の形態1に係る冷蔵庫の冷媒回路および返油路を示す図である。It is a figure which shows the refrigerant circuit and oil return path of the refrigerator which concerns on Embodiment 1. 図1に示される冷蔵庫の冷媒回路において立ち上がり管部の配置例を示す図である。It is a figure which shows the example of arrangement|positioning of the rising pipe part in the refrigerant circuit of the refrigerator shown in FIG. 図2に示される立ち上がり管部におけるゼロペネトレーション速度と該立ち上がり管部の内径との関係を示すグラフである。3 is a graph showing the relationship between the zero penetration speed in the rising tube section shown in FIG. 2 and the inner diameter of the rising tube section. 返油時に返油路の両端間に印加される圧力差と図2に示される立ち上がり管部の流速との関係を示すグラフである。It is a graph which shows the relationship between the pressure difference applied between both ends of an oil return passage at the time of oil return, and the flow velocity of the rising pipe part shown in FIG. 実施の形態2に係る冷蔵庫の冷媒回路において立ち上がり管部の配置例を示す図である。It is a figure which shows the example of arrangement|positioning of the rising pipe part in the refrigerant circuit of the refrigerator which concerns on Embodiment 2.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 An embodiment of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts will be denoted by the same reference numerals and description thereof will not be repeated.
 実施の形態1.
<冷蔵庫の構成>
 図1に示されるように、実施の形態1に係る冷蔵庫100は、冷凍サイクルを構成している冷媒回路と、冷媒回路に接続されている返油路とを備える。
Embodiment 1.
<Structure of refrigerator>
As shown in FIG. 1, the refrigerator 100 according to the first embodiment includes a refrigerant circuit forming a refrigeration cycle and an oil return passage connected to the refrigerant circuit.
 冷媒回路は、圧縮機1、凝縮器2、第1絞り装置3、蒸発器4、および油分離器5を含む。冷媒回路は、冷媒が、圧縮機1、油分離器5、凝縮器2、第1絞り装置3、および蒸発器4を順に循環するように設けられている。 The refrigerant circuit includes a compressor 1, a condenser 2, a first expansion device 3, an evaporator 4, and an oil separator 5. The refrigerant circuit is provided so that the refrigerant circulates through the compressor 1, the oil separator 5, the condenser 2, the first expansion device 3, and the evaporator 4 in order.
 圧縮機1は、冷媒を吸入する吸入口と、上記吸入口から吸入された冷媒を圧縮する圧縮部と、該圧縮部で圧縮した高温・高圧の気相冷媒を吐出する吐出口とを含む。上記圧縮部は、冷凍機油(以下、油)によって潤滑されている。圧縮機1は、冷媒および上記冷凍機油を吐出口から吐出する。さらに圧縮機1は、冷媒および上記油を吸入口から吸入する。圧縮機1の吐出口は、第2冷媒流路としての第1流路11を介して油分離器5の流入口に接続されている。圧縮機1の吸入口は、第1冷媒流路としての第5流路15および第6流路16を介して蒸発器4の流出口に接続されている。さらに、圧縮機1の吸入口は、第6流路16を介して返油路17に接続されている。 The compressor 1 includes a suction port for sucking the refrigerant, a compression unit for compressing the refrigerant sucked from the suction port, and a discharge port for discharging the high temperature/high pressure vapor-phase refrigerant compressed by the compression unit. The compression section is lubricated with refrigerating machine oil (hereinafter referred to as oil). The compressor 1 discharges the refrigerant and the refrigerating machine oil from the discharge port. Further, the compressor 1 sucks the refrigerant and the oil through the suction port. The discharge port of the compressor 1 is connected to the inflow port of the oil separator 5 via the first flow path 11 as the second refrigerant flow path. The suction port of the compressor 1 is connected to the outlet of the evaporator 4 via the fifth flow path 15 and the sixth flow path 16 as the first refrigerant flow path. Further, the suction port of the compressor 1 is connected to the oil return passage 17 via the sixth passage 16.
 油分離器5は、気相冷媒および油が流入する流入口と、気相冷媒が流出する第1流出口と、油が流出する第2流出口とを含む。油分離器5は、流入口から流入した気相冷媒および油を気相冷媒と油とに分離し、それぞれを第1流出口または第2流出口から流出するように設けられている。油分離器5の第1流出口は、第2流路12を介して凝縮器2の流入口に接続されている。油分離器5の第2流出口は、返油路17に接続されている。油分離器5が冷媒と油とを分離する方式としては、例えば遠心力を利用するサイクロン方式、または細かいメッシュを利用して油を濾すデミタス方式が挙げられるが、これらに限られるものではない。 The oil separator 5 includes an inflow port into which the gas-phase refrigerant and oil flow, a first outflow port from which the gas-phase refrigerant flows out, and a second outflow port from which the oil flows out. The oil separator 5 is provided so as to separate the gas-phase refrigerant and the oil that have flowed in from the inflow port into the gas-phase refrigerant and the oil, and to each flow out from the first outflow port or the second outflow port. The first outlet of the oil separator 5 is connected to the inlet of the condenser 2 via the second flow passage 12. The second outlet of the oil separator 5 is connected to the oil return passage 17. Examples of the method for the oil separator 5 to separate the refrigerant and the oil include, but are not limited to, a cyclone method that uses centrifugal force and a demittas method that filters oil using a fine mesh.
 凝縮器2は、油分離器5の第1流出口から流出した気相冷媒が流入する流入口と、液相冷媒が流出する流出口とを含む。凝縮器2は、流入口から流入した気相冷媒が外気と熱交換するように設けられている。これにより、気相冷媒は凝縮されて液相冷媒となる。凝縮器2の流出口は、第3流路13を介して第1絞り装置3の流入口に接続されている。 The condenser 2 includes an inflow port into which the vapor phase refrigerant flowing out from the first outflow port of the oil separator 5 flows, and an outflow port from which the liquid phase refrigerant flows out. The condenser 2 is provided so that the gas-phase refrigerant flowing from the inflow port exchanges heat with the outside air. Thereby, the vapor phase refrigerant is condensed to become a liquid phase refrigerant. The outlet of the condenser 2 is connected to the inlet of the first expansion device 3 via the third flow path 13.
 第1絞り装置3は、凝縮器2において凝縮された液相冷媒が流入する流入口と、気液2冷媒が流出する流出口とを含む。第1絞り装置3は、流入口から流入した液相冷媒を減圧するように設けられている。これにより、液相冷媒は膨張して気液2相冷媒となる。第1絞り装置3は、例えばキャピラリーチューブとして設けられている。 The first expansion device 3 includes an inlet through which the liquid-phase refrigerant condensed in the condenser 2 flows, and an outlet through which the gas-liquid 2 refrigerant flows out. The first expansion device 3 is provided so as to reduce the pressure of the liquid-phase refrigerant flowing from the inflow port. As a result, the liquid-phase refrigerant expands to become a gas-liquid two-phase refrigerant. The first expansion device 3 is provided, for example, as a capillary tube.
 蒸発器4は、第1絞り装置3において減圧された気液2相冷媒が流入する流入口と、気相冷媒が流出する流出口とを含む。蒸発器4は、流入口から流入した気液2相冷媒が冷蔵庫100の貯蔵室内の空気と熱交換するように設けられている。これにより、気液2相冷媒は蒸発して気相冷媒となる。蒸発器4の流出口は、第5流路15および第6流路16を介して圧縮機1の吸入口に接続されている。さらに、蒸発器4の流出口は、第5流路15を介して返油路17に接続されている。 The evaporator 4 includes an inlet through which the gas-liquid two-phase refrigerant decompressed in the first expansion device 3 flows, and an outlet through which the gas phase refrigerant flows out. The evaporator 4 is provided so that the gas-liquid two-phase refrigerant that has flowed in through the inlet exchanges heat with the air in the storage chamber of the refrigerator 100. As a result, the gas-liquid two-phase refrigerant is evaporated and becomes a gas-phase refrigerant. The outlet of the evaporator 4 is connected to the suction port of the compressor 1 via the fifth flow passage 15 and the sixth flow passage 16. Further, the outlet of the evaporator 4 is connected to the oil return passage 17 via the fifth flow passage 15.
 第5流路15および第6流路16は、蒸発器4の流出口と圧縮機1の吸入口とを接続している。冷媒の流通方向における第5流路15の一端は、蒸発器4の流出口に接続されている。上記流通方向における第5流路15の他端は、第6流路16の一端に接続されている。第6流路16の他端は、圧縮機1の吸入口に接続されている。さらに、第5流路15の上記他端および第6流路16の上記一端は、返油路17に接続されている。冷蔵庫100は、第5流路15を開閉する開閉弁を備えていない。第5流路15の一部と、第1絞り装置3とは、例えば熱交換器8を構成している。熱交換器8は、第1絞り装置3を流れる冷媒と第5流路15を流れる冷媒とが熱交換するように設けられている。 The fifth flow path 15 and the sixth flow path 16 connect the outflow port of the evaporator 4 and the suction port of the compressor 1. One end of the fifth flow path 15 in the refrigerant flow direction is connected to the outlet of the evaporator 4. The other end of the fifth flow path 15 in the flow direction is connected to one end of the sixth flow path 16. The other end of the sixth flow path 16 is connected to the suction port of the compressor 1. Further, the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16 are connected to the oil return passage 17. The refrigerator 100 does not include an opening/closing valve that opens/closes the fifth flow path 15. A part of the fifth flow path 15 and the first expansion device 3 constitute, for example, the heat exchanger 8. The heat exchanger 8 is provided so that the refrigerant flowing through the first expansion device 3 and the refrigerant flowing through the fifth flow path 15 exchange heat with each other.
 返油路17は、油分離器5の上記第2流出口に接続されている第1端と、第5流路15の上記他端および第6流路16の上記一端に接続されている第2端とを有している。返油路17の上記第2端は、第5流路15の上記他端と第6流路16の上記一端との接続部18に接続されている。返油路17は、上記冷媒回路における凝縮器2、第1絞り装置3、および蒸発器4をバイパスして、油分離器5の第2流出口と圧縮機1の吸入口とを接続している。返油路17は、油分離器5によって冷媒から分離された油を圧縮機1の吸入口に返すように設けられている。 The oil return passage 17 is connected to the first end connected to the second outlet of the oil separator 5, the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16. It has two ends. The second end of the oil return passage 17 is connected to a connecting portion 18 between the other end of the fifth flow passage 15 and the one end of the sixth flow passage 16. The oil return path 17 bypasses the condenser 2, the first expansion device 3, and the evaporator 4 in the refrigerant circuit, and connects the second outlet of the oil separator 5 and the inlet of the compressor 1 to each other. There is. The oil return passage 17 is provided to return the oil separated from the refrigerant by the oil separator 5 to the suction port of the compressor 1.
 返油路17は、開閉弁6と、第2絞り装置7とを含む。開閉弁6は、返油路17を開閉するように設けられている。第2絞り装置7は、返油路17を流れる油を減圧するように設けられている。開閉弁6は、例えば電磁弁である。開閉弁6は、圧縮機1が駆動されているときに返油路17を閉止し、圧縮機1が駆動停止されているときに返油路17を開放するように制御される。第2絞り装置7は、例えばキャピラリーチューブである。 The oil return passage 17 includes the opening/closing valve 6 and the second expansion device 7. The on-off valve 6 is provided so as to open and close the oil return passage 17. The second expansion device 7 is provided so as to reduce the pressure of the oil flowing through the oil return passage 17. The open/close valve 6 is, for example, a solenoid valve. The on-off valve 6 is controlled to close the oil return passage 17 when the compressor 1 is driven and open the oil return passage 17 when the compressor 1 is stopped. The second expansion device 7 is, for example, a capillary tube.
 図2に示されるように、冷蔵庫100は、少なくとも圧縮機1、油分離器5、第5流路15の一部、第6流路16、および返油路17を内部に収容している機械室21と、少なくとも蒸発器4および第5流路15の残部を内部に収容している断熱部22とを備えている。断熱部22は、蒸発器4により冷却される図示しない貯蔵室を囲むように設けられている。断熱部22は、機械室21よりも上方に配置された部分を有している。 As shown in FIG. 2, the refrigerator 100 is a machine in which at least the compressor 1, the oil separator 5, a part of the fifth flow path 15, the sixth flow path 16, and the oil return path 17 are housed. The chamber 21 and the heat insulating portion 22 that houses at least the remaining portion of the evaporator 4 and the fifth flow path 15 are provided. The heat insulating unit 22 is provided so as to surround a storage chamber (not shown) that is cooled by the evaporator 4. The heat insulating portion 22 has a portion arranged above the machine room 21.
 <冷蔵庫の動作>
 冷蔵庫100は、圧縮機1が駆動されており、冷媒が上記冷媒回路を循環している第1状態と、圧縮機1が駆動停止されており、冷媒が上記冷媒回路を循環していない第2状態とを切り替えるように設けられている。返油路17は、第1状態において開閉弁6によって閉止され、第2状態において開閉弁6によって開放される。第5流路15は、第1状態および第2状態において、開放されている。
<Fridge operation>
The refrigerator 100 has a first state in which the compressor 1 is driven and refrigerant is circulating in the refrigerant circuit, and a second state in which the compressor 1 is stopped and refrigerant is not circulating in the refrigerant circuit. It is provided to switch between states. The oil return passage 17 is closed by the opening/closing valve 6 in the first state and opened by the opening/closing valve 6 in the second state. The fifth flow path 15 is open in the first state and the second state.
 上記第1状態において、冷媒は、圧縮機1、第1流路11、油分離器5、第2流路12、凝縮器2、第3流路13、第1絞り装置3、第4流路14、蒸発器4、第5流路15、および第6流路16を順に循環する。これにより、冷蔵庫100は、貯蔵室内の空気を冷却できる。 In the first state, the refrigerant is the compressor 1, the first flow passage 11, the oil separator 5, the second flow passage 12, the condenser 2, the third flow passage 13, the first expansion device 3, the fourth flow passage. 14, the evaporator 4, the fifth flow path 15, and the sixth flow path 16 are sequentially circulated. Thereby, the refrigerator 100 can cool the air in the storage chamber.
 上記第1状態から上記第2状態に切り替える時に、第1流路11と第6流路16との間の圧力差、すなわち返油路17の両端間に印加される圧力差は、油分離器5において分離された油に作用する。上記第1状態において油分離器5において分離されていた油は、上記第2状態が実現された後、上記圧力差によって返油路17を流通して接続部18から第5流路15および第6流路16に返される。 When switching from the first state to the second state, the pressure difference between the first flow passage 11 and the sixth flow passage 16, that is, the pressure difference applied between both ends of the oil return passage 17 is the oil separator. Act on the oil separated in 5. The oil separated in the oil separator 5 in the first state flows through the oil return passage 17 due to the pressure difference after the second state is realized, and flows from the connection portion 18 to the fifth passage 15 and the fifth passage 15. 6 is returned to the flow path 16.
 上記第2状態における第5流路15および第6流路16には、上記第1状態において蒸発器4において蒸発した気相冷媒が貯留されている。上記圧力差は第5流路15の気相冷媒および油にも作用する。上記第2状態において、第5流路15の気相冷媒および油は、接続部18から蒸発器4の上記流出口に向かう方向の圧力を受ける。これに対し、第5流路15は、後述する第1立ち上がり管部31を有している。第1立ち上がり管部31は、上記第2状態において第1立ち上がり管部31を流れる気相冷媒および油に、上記圧力と反対方向に向いた重力が作用するように設けられている。
<第1立ち上がり管部の具体的構成>
 図2は、図1に示される冷蔵庫100の第5流路15、第6流路16、および返油路17の配置を説明するための図である。冷蔵庫100は、図2に示されるZ方向が上下方向に沿うように、配置される。なお、図2では、図1に示される第3流路13、第1絞り装置3、および第4流路14の図示が省略されている。
The gas-phase refrigerant evaporated in the evaporator 4 in the first state is stored in the fifth flow channel 15 and the sixth flow channel 16 in the second state. The pressure difference also acts on the vapor-phase refrigerant and oil in the fifth flow path 15. In the second state, the vapor-phase refrigerant and the oil in the fifth flow path 15 receive the pressure in the direction from the connecting portion 18 to the outlet of the evaporator 4. On the other hand, the fifth flow path 15 has a first rising pipe portion 31 described later. The first rising pipe portion 31 is provided so that gravity directed in the direction opposite to the pressure acts on the vapor-phase refrigerant and oil flowing through the first rising pipe portion 31 in the second state.
<Specific configuration of the first rising tube section>
FIG. 2 is a diagram for explaining the arrangement of the fifth flow path 15, the sixth flow path 16, and the oil return path 17 of the refrigerator 100 shown in FIG. The refrigerator 100 is arranged such that the Z direction shown in FIG. 2 is along the vertical direction. Note that, in FIG. 2, the illustration of the third flow path 13, the first expansion device 3, and the fourth flow path 14 illustrated in FIG. 1 is omitted.
 図2に示されるように、冷蔵庫100では、蒸発器4が圧縮機1および油分離器5よりも上方に配置されている。第5流路15は、上下方向に沿って伸びる第1立ち上がり管部31を有している。第1立ち上がり管部31の下方端は、例えば第5流路15の上記他端を構成しており、第6流路16の上記一端および返油路17の上記第2端と接続されている。つまり、第1立ち上がり管部31の下方端は、例えば接続部18に接続されている。第1立ち上がり管部31の上方端は、上記第5流路15において第1立ち上がり管部31の上記下方端よりも蒸発器4の流出口の近くに配置されている。第1立ち上がり管部31の上方端は、第5流路15において熱交換器8を構成している部分よりも接続部18の近くに配置されている。 As shown in FIG. 2, in the refrigerator 100, the evaporator 4 is arranged above the compressor 1 and the oil separator 5. The fifth flow path 15 has a first rising pipe portion 31 extending in the up-down direction. The lower end of the first rising pipe portion 31 constitutes, for example, the other end of the fifth flow passage 15, and is connected to the one end of the sixth flow passage 16 and the second end of the oil return passage 17. .. That is, the lower end of the first rising tube portion 31 is connected to the connecting portion 18, for example. The upper end of the first rising pipe portion 31 is arranged closer to the outlet of the evaporator 4 than the lower end of the first rising pipe portion 31 in the fifth flow path 15. The upper end of the first rising pipe portion 31 is arranged closer to the connecting portion 18 than the portion of the fifth flow path 15 forming the heat exchanger 8.
 第6流路16は、例えば上下方向に沿って伸びる第2立ち上がり管部32を有している。第2立ち上がり管部32の上方端は、例えば第6流路16の上記一端を構成しており、第1立ち上がり管部31の上記下方端および返油路17の上記第2端と接続されている。第6流路16を構成する配管の内径は、例えば返油路を構成する配管の内径に等しい。 The sixth channel 16 has, for example, a second rising pipe portion 32 extending along the up-down direction. The upper end of the second rising pipe portion 32 constitutes, for example, the one end of the sixth flow passage 16, and is connected to the lower end of the first rising pipe portion 31 and the second end of the oil return passage 17. There is. The inner diameter of the pipe forming the sixth flow path 16 is equal to the inner diameter of the pipe forming the oil return passage, for example.
 第1流路11は、例えば上下方向に沿って伸びる第3立ち上がり管部33を有している。第3立ち上がり管部33の上方端は、油分離器5の流入口に接続されている。第3立ち上がり管部33の下方端は、圧縮機1の吐出口に接続されている。第3立ち上がり管部33の内径は、例えば第2立ち上がり管部32の内径に等しい。 The first flow path 11 has, for example, a third rising pipe portion 33 extending along the up-down direction. The upper end of the third rising pipe portion 33 is connected to the inlet of the oil separator 5. The lower end of the third rising pipe portion 33 is connected to the discharge port of the compressor 1. The inner diameter of the third rising pipe portion 33 is equal to the inner diameter of the second rising pipe portion 32, for example.
 図2に示されるように、第1立ち上がり管部31は、例えば機械室21の内部にのみ設けられている。第5流路15は、例えば断熱部22に囲まれており、かつ上下方向に沿って伸びる第4立ち上がり管部34をさらに有している。第1立ち上がり管部31の上端部は、例えば第4立ち上がり管部34の下端部に接続されている。 As shown in FIG. 2, the first rising pipe portion 31 is provided only inside the machine room 21, for example. The fifth flow path 15 is surrounded by, for example, the heat insulating portion 22, and further includes a fourth rising pipe portion 34 extending in the up-down direction. The upper end of the first rising tube portion 31 is connected to the lower end of the fourth rising tube portion 34, for example.
 第1立ち上がり管部31(第1管部)の内径は、第2立ち上がり管部32(第2管部)の内径よりも大きい。つまり、以下の関係式(1)で表される立ち上がり管部でのゼロペネトレーション速度Ug[単位:m/s]に関し、第1立ち上がり管部31でのゼロペネトレーション速度Ugは、第2立ち上がり管部32でのゼロペネトレーション速度Ugよりも速い。 The inner diameter of the first rising pipe portion 31 (first pipe portion) is larger than the inner diameter of the second rising pipe portion 32 (second pipe portion). That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section expressed by the following relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the second rising pipe section. Faster than zero penetration speed Ug at 32.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、気相冷媒と油との混合流体が上昇する様相は気液2相冷媒のそれと同様とみなすことができる。そのため、ゼロペネトレーション速度Ugは、気液2相冷媒の上昇流において定義されるゼロペネトレーション速度を気相冷媒と油との混合流体の上昇流に適用したものである。関係式(1)において、Dには第1立ち上がり管部31または第6流路16の立ち上がり管部の内径[単位:m]が代入される。また、関係式(1)において、gは重力加速度9.8[単位:m/S2]、ρlは油密度[単位:kg/m3]、ρgは冷媒ガス密度[単位:kg/m3]であり、Ug'は定数である。なお、Ug'の算出方法は後述する。 The manner in which the mixed fluid of the gas-phase refrigerant and oil rises can be regarded as the same as that of the gas-liquid two-phase refrigerant. Therefore, the zero penetration speed Ug applies the zero penetration speed defined in the upflow of the gas-liquid two-phase refrigerant to the upflow of the mixed fluid of the gas-phase refrigerant and the oil. In the relational expression (1), the inner diameter [unit: m] of the first rising pipe portion 31 or the rising pipe portion of the sixth flow path 16 is substituted for D. In the relational expression (1), g is gravitational acceleration 9.8 [unit: m/S 2 ], ρl is oil density [unit: kg/m 3 ], and ρg is refrigerant gas density [unit: kg/m 3 ]. ], and Ug' is a constant. The method of calculating Ug' will be described later.
 第1立ち上がり管部31の内径は、第3立ち上がり管部33の内径よりも大きい。つまり、上記関係式(1)で表される立ち上がり管部でのゼロペネトレーション速度Ug[単位:m/s]に関し、第1立ち上がり管部31でのゼロペネトレーション速度Ugは、第3立ち上がり管部33でのゼロペネトレーション速度Ugよりも速い。 The inner diameter of the first rising tube portion 31 is larger than the inner diameter of the third rising tube portion 33. That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section represented by the above relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the third rising pipe section 33. Faster than the zero penetration speed Ug at.
 第1立ち上がり管部31の内径は、第4立ち上がり管部34の内径よりも大きい。つまり、上記関係式(1)で表される立ち上がり管部でのゼロペネトレーション速度Ug[単位:m/s]に関し、第1立ち上がり管部31でのゼロペネトレーション速度Ugは、第4立ち上がり管部34のそれよりも速い。 The inner diameter of the first rising tube portion 31 is larger than the inner diameter of the fourth rising tube portion 34. That is, regarding the zero penetration speed Ug [unit: m/s] in the rising pipe section represented by the above relational expression (1), the zero penetration speed Ug in the first rising pipe section 31 is equal to the fourth rising pipe section 34. Faster than that.
 上下方向に沿って延びる立ち上がり管部でのゼロペネトレーション速度Ugは、上記返油時に、当該立ち上がり管部において油を上昇させるために必要とされる冷媒の最小流速である。つまり、第1立ち上がり管部31でのゼロペネトレーション速度Ugは、第2立ち上がり管部32でのゼロペネトレーション速度Ugよりも速い。 The zero penetration speed Ug in the rising pipe portion extending along the vertical direction is the minimum flow velocity of the refrigerant required to raise the oil in the rising pipe portion when returning the oil. That is, the zero penetration speed Ug in the first rising pipe portion 31 is faster than the zero penetration speed Ug in the second rising pipe portion 32.
 図3は、上記関係式(1)によって表される立ち上がり管部の内径Dとゼロペネトレーション速度Ug(ゼロペネ速度)との関係を示すグラフである。図3の横軸はゼロペネトレーション速度Ug(ゼロペネ速度)[単位:m/s]を示し、図3の縦軸は内径D[単位:m]を示す。図3に示されるように、立ち上がり管部の内径Dが大きいほど、そこでのゼロペネトレーション速度が速くなる。 FIG. 3 is a graph showing the relationship between the inner diameter D of the rising pipe section expressed by the above relational expression (1) and the zero penetration speed Ug (zero penetration speed). The horizontal axis of FIG. 3 represents the zero penetration speed Ug (zero penetration speed) [unit: m/s], and the vertical axis of FIG. 3 represents the inner diameter D [unit: m]. As shown in FIG. 3, the larger the inner diameter D of the rising tube portion, the faster the zero penetration speed there.
 好ましくは、第1立ち上がり管部31の内径D[単位:m]は、上記関係式(1)に基づき算出される第1立ち上がり管部31のゼロペネトレーション速度Ug[単位:m/s]が以下の関係式(2)に基づき算出される流速Ux[単位:m/s]よりも速くなるように設けられている。流速Uxは、上記返油時に上記圧力差によって接続部18から蒸発器4の上記流出口に向かう方向に流れる冷媒の、蒸発器4の上記流出口での流速である。 Preferably, the inner diameter D [unit: m] of the first rising pipe portion 31 is equal to or less than the zero penetration speed Ug [unit: m/s] of the first rising pipe portion 31 calculated based on the above relational expression (1). It is provided so as to be faster than the flow velocity Ux [unit: m/s] calculated based on the relational expression (2). The flow velocity Ux is the flow velocity at the outlet of the evaporator 4 of the refrigerant flowing in the direction from the connecting portion 18 toward the outlet of the evaporator 4 due to the pressure difference when returning the oil.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 関係式(2)において、ΔPは圧縮機1が駆動停止されているときの第1流路11と第6流路16との間の圧力差[単位:MPa]、ρgは冷媒ガス密度[単位:kg/m3]、hは蒸発器4の上記流出口と接続部18との間の上下方向の距離(高低差)[単位:m]である。 In the relational expression (2), ΔP is the pressure difference [unit: MPa] between the first flow passage 11 and the sixth flow passage 16 when the compressor 1 is stopped, and ρg is the refrigerant gas density [unit. : Kg/m 3 ], h is the vertical distance (height difference) [unit: m] between the outlet of the evaporator 4 and the connecting portion 18.
 図4は、上記関係式(2)によって表される上記圧力差ΔPと上記流速Uxとの関係を示すグラフである。図4の横軸は上記圧力差ΔP[単位:MPa]を示し、図4の縦軸は流速Ux[単位:m/s]を示す。図4に示されるように、圧力差ΔPが大きいほど、流速Uxが速くなる。 FIG. 4 is a graph showing the relationship between the pressure difference ΔP and the flow velocity Ux expressed by the relational expression (2). The horizontal axis of FIG. 4 represents the pressure difference ΔP [unit: MPa], and the vertical axis of FIG. 4 represents the flow velocity Ux [unit: m/s]. As shown in FIG. 4, the larger the pressure difference ΔP, the faster the flow velocity Ux.
 <作用効果>
 冷蔵庫100は、上記冷媒回路と、上記返油路17とを備える。上記冷媒回路は、圧縮機1、油分離器5、凝縮器2、第1絞り装置3、および蒸発器4を含み、冷媒が圧縮機1、油分離器5、凝縮器2、第1絞り装置3、および蒸発器4を順に循環する。返油路17は、油分離器5に接続されている第1端と、蒸発器4と圧縮機1の吸入口との間に接続されている第2端とを有し、油分離器5において分離された油を圧縮機1の吸入口に返すように設けられている。冷媒回路は、蒸発器4と圧縮機1との間を接続する第5流路15を有している。第5流路15は、返油路17に接続されている接続部18と、接続部18よりも蒸発器4の近くに配置されておりかつ上下方向に沿って延びる第1立ち上がり管部31を有している。第1立ち上がり管部31の内径が、返油路17を構成する配管の内径よりも大きい。
<Effect>
The refrigerator 100 includes the refrigerant circuit and the oil return passage 17. The refrigerant circuit includes a compressor 1, an oil separator 5, a condenser 2, a first expansion device 3, and an evaporator 4, and the refrigerant is a compressor 1, an oil separator 5, a condenser 2, a first expansion device. 3 and the evaporator 4 are sequentially circulated. The oil return passage 17 has a first end connected to the oil separator 5 and a second end connected between the evaporator 4 and the suction port of the compressor 1. It is provided so that the oil separated in (1) is returned to the suction port of the compressor 1. The refrigerant circuit has a fifth flow path 15 that connects between the evaporator 4 and the compressor 1. The fifth flow path 15 includes a connecting portion 18 connected to the oil return passage 17, and a first rising pipe portion 31 that is disposed closer to the evaporator 4 than the connecting portion 18 and extends in the up-down direction. Have The inner diameter of the first rising pipe portion 31 is larger than the inner diameter of the pipe forming the oil return passage 17.
 上記冷蔵庫100では、上記冷媒回路の第5流路15が第1立ち上がり管部31を有していることにより、第1立ち上がり管部31内の気相冷媒および油に作用する重力が、上記第1状態では冷媒が循環する方向に沿っている。一方、該重力は、上記第2状態では上記圧力差を受けて冷媒および油が流通する方向とは反対方向に作用する。そのため、冷蔵庫100では、第5流路15が第1立ち上がり管部31を有していない従来の冷蔵庫と比べて、上記第2状態において冷媒および油が第1立ち上がり管部31内を上昇しにくく、油が蒸発器4に到達しにくい。 In the refrigerator 100, since the fifth flow path 15 of the refrigerant circuit has the first rising pipe portion 31, the gravity acting on the vapor-phase refrigerant and the oil in the first rising pipe portion 31 reduces the gravity. In the 1 state, it is along the direction in which the refrigerant circulates. On the other hand, in the second state, the gravity acts on the pressure difference and acts in the direction opposite to the direction in which the refrigerant and the oil flow. Therefore, in the refrigerator 100, as compared with the conventional refrigerator in which the fifth flow path 15 does not have the first rising pipe portion 31, the refrigerant and the oil are less likely to rise in the first rising pipe portion 31 in the second state. , Oil is hard to reach the evaporator 4.
 さらに、上記冷蔵庫100では、第1立ち上がり管部31の内径が、第6流路16および返油路17を構成する管部の内径よりも大きいことにより、第1立ち上がり管部31のゼロペネトレーション速度が、第6流路16および返油路17における立ち上がり管部、例えば第2立ち上がり管部32、でのゼロペネトレーション速度Ugよりも速い。そのため、冷蔵庫100では、第1立ち上がり管部31の内径が第6流路16および返油路17を構成する管部の内径と同等とされている冷蔵庫と比べて、接続部18よりも蒸発器4の近くに配置されている第1立ち上がり管部31において油の上昇が効果的に抑制されている。 Further, in the refrigerator 100, since the inner diameter of the first rising pipe portion 31 is larger than the inner diameters of the pipe portions forming the sixth flow path 16 and the oil return passage 17, the zero penetration speed of the first rising pipe portion 31. However, it is faster than the zero penetration speed Ug in the rising pipe portion in the sixth flow passage 16 and the oil return passage 17, for example, in the second rising pipe portion 32. Therefore, in the refrigerator 100, as compared with the refrigerator in which the inner diameter of the first rising pipe portion 31 is equal to the inner diameters of the pipe portions forming the sixth flow path 16 and the oil return passage 17, the evaporator is more likely to be installed than the connection portion 18. The rise of oil is effectively suppressed in the first rising pipe portion 31 arranged near the position 4.
 つまり、冷蔵庫100は、第5流路15を開閉する開閉弁を備えていなくても、上記第1立ち上がり管部31を備えていることにより、返油路17から第5流路15に返された油が蒸発器4に流入することを抑制できる。さらに、冷蔵庫100では、第5流路15を開閉する開閉弁が不要とされているため、当該開閉弁を備える従来の冷蔵庫と比べて、チャタリングが抑制されており、さらに製造コストが低減されている。 That is, even if the refrigerator 100 does not include an opening/closing valve that opens and closes the fifth flow passage 15, the refrigerator 100 includes the first rising pipe portion 31 and thus is returned from the oil return passage 17 to the fifth passage 15. It is possible to prevent the oil from flowing into the evaporator 4. Further, in the refrigerator 100, the on-off valve that opens and closes the fifth flow path 15 is not required, so chattering is suppressed and the manufacturing cost is further reduced as compared with the conventional refrigerator including the on-off valve. There is.
 また、上記冷蔵庫100では、第1立ち上がり管部31が機械室21の内部にのみ配置されており、第1立ち上がり管部31が断熱部22に囲まれていない。そのため、上記冷蔵庫100は、後述する冷蔵庫101のように、断熱部22に囲まれている第4立ち上がり管部34の内径が第6流路16および返油路17を構成する管部の内径よりも大きく設けられている場合と比べて、容易に製造され得る。 Further, in the refrigerator 100, the first rising pipe portion 31 is arranged only inside the machine room 21, and the first rising pipe portion 31 is not surrounded by the heat insulating portion 22. Therefore, in the refrigerator 100, like the refrigerator 101 described later, the inner diameter of the fourth rising pipe portion 34 surrounded by the heat insulating portion 22 is smaller than the inner diameters of the pipe portions forming the sixth flow passage 16 and the oil return passage 17. Can be easily manufactured as compared with the case where a large size is provided.
 好ましくは、第1立ち上がり管部31でのゼロペネトレーション速度Ugが上記流速Uxよりも速くなるように、第1立ち上がり管部31の内径が設けられている。このような冷蔵庫100は、上記圧力差を受けた油が第1立ち上がり管部31を経て蒸発器4に達することをより効果的に抑制できる。 Preferably, the inner diameter of the first rising pipe portion 31 is provided so that the zero penetration speed Ug in the first rising pipe portion 31 becomes faster than the flow velocity Ux. Such a refrigerator 100 can more effectively suppress the oil subjected to the pressure difference from reaching the evaporator 4 via the first rising pipe portion 31.
 なお、上記流速Uxは、上記返油時に上記圧力差によって接続部18から蒸発器4の上記流出口に向かう方向に流れる冷媒の、第1立ち上がり管部31の上記上方端での流速としてもよい。つまり、上記関係式(2)中のhは、第1立ち上がり管部31の上記上方端と接続部18との間の上下方向の距離(高低差)であってもよい。第1立ち上がり管部31の上記上方端と接続部18との高低差は、蒸発器4の上記流出口と接続部18との間の上下方向の距離(高低差)未満である。そのため、上記関係式(2)に基づいて、上記返油時に上記圧力差によって接続部18から蒸発器4の上記流出口に向かう方向に流れる冷媒の第1立ち上がり管部31の上記上方端での流速は、該冷媒の蒸発器4の上記流出口での流速よりも速くなる。第1立ち上がり管部31のゼロペネトレーション速度が上記冷媒の第1立ち上がり管部31の上記上方端での流速よりも速くなるように設けられていれば、油が蒸発器4にさらに到達しにくくなる。 The flow velocity Ux may be a flow velocity of the refrigerant flowing in the direction from the connecting portion 18 toward the outlet of the evaporator 4 due to the pressure difference during the oil return at the upper end of the first rising pipe portion 31. .. That is, h in the relational expression (2) may be a vertical distance (height difference) between the upper end of the first rising tube portion 31 and the connecting portion 18. The height difference between the upper end of the first rising pipe portion 31 and the connection portion 18 is less than the vertical distance (height difference) between the outlet of the evaporator 4 and the connection portion 18. Therefore, based on the relational expression (2), at the upper end of the first rising pipe portion 31 of the refrigerant flowing in the direction from the connection portion 18 toward the outlet of the evaporator 4 due to the pressure difference at the time of the oil return. The flow velocity becomes faster than the flow velocity of the refrigerant at the outlet of the evaporator 4. If the zero penetration speed of the first rising pipe portion 31 is set to be higher than the flow velocity of the refrigerant at the upper end of the first rising pipe portion 31, the oil becomes more difficult to reach the evaporator 4. ..
 実施の形態2.
 図5に示されるように、実施の形態2に係る冷蔵庫101は、実施の形態1に係る冷蔵庫100と基本的に同様の構成を備えるが、第5流路15が複数の立ち上がり管部31,34~40を含み、上記複数の立ち上がり管部の各内径が、第6流路16および返油路17を構成する管部の内径よりも大きく設けられている点で異なる。なお、図5では、図1に示される第3流路13、第1絞り装置3、および第4流路14の図示が省略されている。
Embodiment 2.
As shown in FIG. 5, the refrigerator 101 according to the second embodiment has basically the same configuration as the refrigerator 100 according to the first embodiment, but the fifth flow path 15 has a plurality of rising pipe portions 31, 34 to 40, and the inner diameters of the plurality of rising pipes are different from the inner diameters of the pipes forming the sixth flow passage 16 and the oil return passage 17. Note that in FIG. 5, the illustration of the third flow path 13, the first expansion device 3, and the fourth flow path 14 shown in FIG. 1 is omitted.
 第5流路15は、例えば第1立ち上がり管部31、第4立ち上がり管部34、第5立ち上がり管部35、第6立ち上がり管部36、第7立ち上がり管部37、第8立ち上がり管部38、第9立ち上がり管部39、および第10立ち上がり管部40を有している。第1立ち上がり管部31、第4立ち上がり管部34、第5立ち上がり管部35、第6立ち上がり管部36、第7立ち上がり管部37、第8立ち上がり管部38、第9立ち上がり管部39、および第10立ち上がり管部40は、第5流路15において接続部18から蒸発器4の流出口に向かい方向に順に接続されている。 The fifth flow path 15 includes, for example, a first rising pipe portion 31, a fourth rising pipe portion 34, a fifth rising pipe portion 35, a sixth rising pipe portion 36, a seventh rising pipe portion 37, an eighth rising pipe portion 38, It has a ninth rising pipe portion 39 and a tenth rising pipe portion 40. The first rising pipe portion 31, the fourth rising pipe portion 34, the fifth rising pipe portion 35, the sixth rising pipe portion 36, the seventh rising pipe portion 37, the eighth rising pipe portion 38, the ninth rising pipe portion 39, and The tenth rising pipe portion 40 is sequentially connected to the outlet of the evaporator 4 from the connecting portion 18 in the fifth flow path 15.
 上記複数の立ち上がり管部31,34~40の各々は、上下方向に沿って伸びている。第4立ち上がり管部34、第5立ち上がり管部35、第6立ち上がり管部36、第7立ち上がり管部37、第8立ち上がり管部38、第9立ち上がり管部39、および第10立ち上がり管部40は、機械室21の上方に配置されて、断熱部22に囲まれている。複数の立ち上がり管部31,34~40のうちの少なくとも一部は、第5流路15において熱交換器8を構成している部分よりも蒸発器4の近くに配置されている。 Each of the plurality of rising pipe portions 31, 34 to 40 extends in the vertical direction. The fourth rising pipe portion 34, the fifth rising pipe portion 35, the sixth rising pipe portion 36, the seventh rising pipe portion 37, the eighth rising pipe portion 38, the ninth rising pipe portion 39, and the tenth rising pipe portion 40 are It is arranged above the machine room 21 and is surrounded by the heat insulating portion 22. At least a part of the plurality of rising pipe portions 31, 34 to 40 is arranged closer to the evaporator 4 than the portion of the fifth flow path 15 forming the heat exchanger 8.
 上記複数の立ち上がり管部31,34~40の各内径は、第2立ち上がり管部32の内径よりも大きい。上記複数の立ち上がり管部31,34~40の各内径は、第3立ち上がり管部33の内径よりも大きい。上記複数の立ち上がり管部31,34~40での各ゼロペネトレーション速度Ugは、第2立ち上がり管部32および第3立ち上がり管部33のそれらよりも速い。 The inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the second rising pipe portion 32. The inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the third rising pipe portion 33. The zero penetration velocities Ug of the plurality of rising pipe portions 31, 34 to 40 are faster than those of the second rising pipe portion 32 and the third rising pipe portion 33.
 好ましくは、上記複数の立ち上がり管部31,34~40の各々の内径D[単位:m]は、上記関係式(1)に基づき算出される各ゼロペネトレーション速度Ug[単位:m/s]が上記関係式(2)に基づき算出される流速Ux[単位:m/s]よりも速くなるように設けられている。上記複数の立ち上がり管部31,34~40の各内径は、例えば互いに等しい。 Preferably, the inner diameter D [unit: m] of each of the plurality of rising pipe portions 31, 34 to 40 is such that each zero penetration velocity Ug [unit: m/s] calculated based on the relational expression (1). It is provided so as to be faster than the flow velocity Ux [unit: m/s] calculated based on the relational expression (2). The inner diameters of the plurality of rising tube portions 31, 34 to 40 are equal to each other, for example.
 冷蔵庫101の第5流路15は、例えば上記複数の立ち上がり管部31,34~40の他に、水平方向に延びる水平管部をさらに有している。上記複数の立ち上がり管部31,34~40の各内径は、例えば上記水平管部の内径よりも大きい。なお、上記複数の立ち上がり管部31,34~40の各内径は、例えば上記水平管部の内径に等しくてもよい。すなわち、第5流路15の全体が、第2立ち上がり管部32と比べて拡径された管部により構成されていてもよい。 The fifth flow path 15 of the refrigerator 101 further includes, for example, in addition to the plurality of rising pipe portions 31, 34 to 40, a horizontal pipe portion that extends in the horizontal direction. The inner diameters of the plurality of rising pipe portions 31, 34 to 40 are larger than the inner diameter of the horizontal pipe portion, for example. The inner diameters of the plurality of rising tube portions 31, 34 to 40 may be equal to the inner diameter of the horizontal tube portion, for example. That is, the entire fifth flow path 15 may be configured by a tube portion whose diameter is larger than that of the second rising tube portion 32.
 冷蔵庫101は、冷蔵庫100と基本的に同様の構成を備えているため、冷蔵庫100と同様の効果を奏することができる。 Since the refrigerator 101 basically has the same configuration as the refrigerator 100, the same effect as the refrigerator 100 can be obtained.
 さらに、冷蔵庫101では、上記複数の立ち上がり管部31,34~40の各々の内径が第2立ち上がり管部32の内径よりも大きく設けられているため、第1立ち上がり管部31の内径のみが第2立ち上がり管部32の内径よりも大きく設けられている冷蔵庫100と比べて、上記圧力差を受けた油が第1立ち上がり管部31を経て蒸発器4に達することをより効果的に抑制できる。 Further, in the refrigerator 101, the inner diameter of each of the plurality of rising pipe portions 31, 34 to 40 is set to be larger than the inner diameter of the second rising pipe portion 32, so that only the inner diameter of the first rising pipe portion 31 is Compared with the refrigerator 100 in which the inner diameter of the second rising pipe 32 is provided, it is possible to more effectively prevent the oil subjected to the pressure difference from reaching the evaporator 4 via the first rising pipe 31.
 なお、冷蔵庫100,101において、第1立ち上がり管部31の上記下方端は接続部18に接続されているが、これに限られるものではない。第5流路15は、第1立ち上がり管部31の下方端と接続部18との間を接続する他の管部をさらに有していてもよい。この場合、当該他の管部は、任意の方向に沿って延びていればよく、例えば上下方向に沿って延びていてもよい。当該他の管部の内径は、任意の長さであればよく、例えば第2立ち上がり管部32の内径と等しくてもよい。 In the refrigerators 100 and 101, the lower end of the first rising tube portion 31 is connected to the connecting portion 18, but the present invention is not limited to this. The fifth flow path 15 may further include another pipe portion that connects the lower end of the first rising pipe portion 31 and the connecting portion 18. In this case, the other tube portion may extend in any direction, and may extend in the up-down direction, for example. The inner diameter of the other tube portion may be any length, and may be equal to the inner diameter of the second rising tube portion 32, for example.
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 The embodiments of the present invention have been described above, but the above-described embodiments can be modified in various ways. Further, the scope of the present invention is not limited to the above embodiment. The scope of the present invention is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 圧縮機、2 凝縮器、3 第1絞り装置、4 蒸発器、5 油分離器、6 開閉弁、7 第2絞り装置、11 第1流路、12 第2流路、13 第3流路、14 第4流路、15 第5流路、16 第6流路、17 返油路、18 接続部、21 機械室、22 断熱部、31 第1立ち上がり管部、32 第2立ち上がり管部、33 第3立ち上がり管部、34 第4立ち上がり管部、35 第5立ち上がり管部、36 第6立ち上がり管部、37 第7立ち上がり管部、38 第8立ち上がり管部、39 第9立ち上がり管部、100,101 冷蔵庫。 1 compressor, 2 condenser, 3 first throttle device, 4 evaporator, 5 oil separator, 6 on-off valve, 7 second throttle device, 11 first flow passage, 12 second flow passage, 13 third flow passage , 14, 4th flow passage, 15 5th flow passage, 16 6th flow passage, 17 oil return passage, 18 connection portion, 21 machine room, 22 heat insulation portion, 31 1st rising pipe portion, 32 2nd rising pipe portion, 33 3rd rising pipe part, 34 4th rising pipe part, 35 5th rising pipe part, 36 6th rising pipe part, 37 7th rising pipe part, 38 8th rising pipe part, 39 9th rising pipe part, 100 , 101 Refrigerator.

Claims (6)

  1.  圧縮機、油分離器、凝縮器、絞り装置、および蒸発器を含み、冷媒が前記圧縮機、前記油分離器、前記凝縮器、前記絞り装置、および前記蒸発器を順に循環する冷媒回路を備え、
     前記圧縮機は、吸入口および吐出口とを含み、冷凍機油によって潤滑されており、
     前記冷媒回路は、前記蒸発器と前記吸入口との間を接続する第1冷媒流路を有し、
     前記油分離器は、前記吐出口から吐出された冷媒と冷凍機油とを分離するように設けられており、
     前記油分離器に接続された第1端と前記第1冷媒流路に接続された第2端とを有し、前記圧縮機が駆動を停止したときに前記油分離器において分離された冷凍機油を前記第1冷媒流路に返すように設けられた返油路をさらに備え、
     前記第1冷媒流路は、前記返油路の前記第2端に接続されている接続部と、前記接続部と前記蒸発器との間に配置されておりかつ上下方向に沿って延びる少なくとも1つの第1管部と、前記接続部と前記吸入口との間に配置されている第2管部とを有し、
     前記少なくとも1つの第1管部の内径は、前記第2管部の内径よりも大きい、冷蔵庫。
    A refrigerant circuit including a compressor, an oil separator, a condenser, a throttle device, and an evaporator, and a refrigerant circuit in which a refrigerant circulates sequentially through the compressor, the oil separator, the condenser, the throttle device, and the evaporator. ,
    The compressor includes a suction port and a discharge port, and is lubricated with refrigerating machine oil,
    The refrigerant circuit has a first refrigerant flow path connecting between the evaporator and the suction port,
    The oil separator is provided to separate the refrigerant discharged from the discharge port and the refrigerating machine oil,
    Refrigerating machine oil having a first end connected to the oil separator and a second end connected to the first refrigerant flow path, and separated in the oil separator when the compressor stops driving. Further comprising an oil return passage provided to return the oil to the first refrigerant passage,
    The first refrigerant flow passage is disposed between the connection portion connected to the second end of the oil return passage and the connection portion and the evaporator, and extends at least 1 in the vertical direction. A first pipe part and a second pipe part arranged between the connection part and the suction port,
    The refrigerator in which the inner diameter of the at least one first pipe portion is larger than the inner diameter of the second pipe portion.
  2.  前記少なくとも1つの第1管部の下方端は、前記接続部に接続されている、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a lower end of the at least one first pipe part is connected to the connection part.
  3.  少なくとも前記圧縮機、前記油分離器、および前記返油路を内部に収容する機械室をさらに備え、
     前記少なくとも1つの第1管部は、前記機械室の内部にのみ配置されている、請求項1または2に記載の冷蔵庫。
    At least the compressor, the oil separator, and a machine room for accommodating the oil return passage, further comprising:
    The refrigerator according to claim 1 or 2, wherein the at least one first pipe part is arranged only inside the machine room.
  4.  前記少なくとも1つの第1管部は、複数の第1管部を有し、
     前記複数の第1管部の各内径は、前記第2管部の内径よりも大きい、請求項1または2に記載の冷蔵庫。
    The at least one first tube portion has a plurality of first tube portions,
    The refrigerator according to claim 1 or 2, wherein each inner diameter of the plurality of first pipe portions is larger than the inner diameter of the second pipe portion.
  5.  前記冷媒回路は、前記吐出口と前記油分離器との間を接続する第2冷媒流路を有し、
     前記第2冷媒流路は、前記上下方向に沿って延びる第3管部を有し、
     前記少なくとも1つの第1管部の内径は、前記第3管部の内径よりも大きい、請求項1~4のいずれか1項に記載の冷蔵庫。
    The refrigerant circuit has a second refrigerant flow path connecting the discharge port and the oil separator,
    The second refrigerant flow path has a third tube portion extending along the vertical direction,
    The refrigerator according to any one of claims 1 to 4, wherein an inner diameter of the at least one first pipe portion is larger than an inner diameter of the third pipe portion.
  6.  前記返油路は、開閉弁を含み、
     前記開閉弁は、前記圧縮機が駆動しているときに前記返油路を閉止し、前記圧縮機が駆動停止されたときに前記返油路を開放するように設けられており、
     前記蒸発器は、前記接続部よりも上方に配置されており、
     前記少なくとも1つの第1管部の前記内径をD、重力加速度をg、前記冷媒の密度をρg、前記冷凍機油の密度をρl、定数Ug'、前記返油路が開放されている状態において前記返油路の前記第1端と前記第2端との間に作用する圧力差をΔP、前記蒸発器と前記接続部との間の前記上下方向の距離をh、としたときに、
     以下の関係式(1)に基づいて算出される前記少なくとも1つの第1管部でのゼロペネトレーション速度Ugが以下の関係式(2)に基づいて算出される流速Uxよりも速くなるように、前記少なくとも1つの第1管部の前記内径Dが設けられている、請求項1~5のいずれか1項に記載の冷蔵庫。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    The oil return passage includes an on-off valve,
    The on-off valve is provided so as to close the oil return passage when the compressor is driven and open the oil return passage when the compressor is stopped.
    The evaporator is arranged above the connecting portion,
    The inner diameter of the at least one first pipe portion is D, the gravitational acceleration is g, the density of the refrigerant is ρg, the density of the refrigerating machine oil is ρl, a constant Ug′, and the return passage is open. When the pressure difference acting between the first end and the second end of the oil return passage is ΔP, and the vertical distance between the evaporator and the connecting portion is h,
    In order that the zero penetration speed Ug in the at least one first pipe portion calculated based on the following relational expression (1) becomes faster than the flow velocity Ux calculated based on the following relational expression (2), The refrigerator according to any one of claims 1 to 5, wherein the inner diameter D of the at least one first pipe portion is provided.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2019/002791 2019-01-28 2019-01-28 Refrigerator WO2020157806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/002791 WO2020157806A1 (en) 2019-01-28 2019-01-28 Refrigerator
JP2020568896A JP6952916B2 (en) 2019-01-28 2019-01-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002791 WO2020157806A1 (en) 2019-01-28 2019-01-28 Refrigerator

Publications (1)

Publication Number Publication Date
WO2020157806A1 true WO2020157806A1 (en) 2020-08-06

Family

ID=71842131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002791 WO2020157806A1 (en) 2019-01-28 2019-01-28 Refrigerator

Country Status (2)

Country Link
JP (1) JP6952916B2 (en)
WO (1) WO2020157806A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274560U (en) * 1975-12-01 1977-06-03
JPS52114463U (en) * 1976-02-27 1977-08-31
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008765B2 (en) * 1993-09-30 2000-02-14 三菱電機株式会社 Refrigeration cycle
JPH11294873A (en) * 1998-04-16 1999-10-29 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP4294764B2 (en) * 1998-09-10 2009-07-15 三菱電機株式会社 Refrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274560U (en) * 1975-12-01 1977-06-03
JPS52114463U (en) * 1976-02-27 1977-08-31
JP2000186863A (en) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp Freezing air conditioning apparatus using combustible refrigerant
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner

Also Published As

Publication number Publication date
JPWO2020157806A1 (en) 2021-09-09
JP6952916B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
CN102232167B (en) Liquid vapor separation in transcritical refrigerant cycle
JP5617860B2 (en) Refrigeration equipment
EP1862749A2 (en) Vapor Compression Refrigeration Cycle
JP2008202830A (en) Evaporator unit
EP1860390A2 (en) Vapor compression refrigerating cycle
JPH1194380A (en) Refrigeration cycle
JP3484866B2 (en) Refrigeration equipment
JP6351875B1 (en) Heat exchanger and refrigeration cycle apparatus
CN105579787A (en) Refrigeration cycle device
JP3617083B2 (en) Receiver integrated refrigerant condenser
KR100846567B1 (en) Refrigerating apparatus
JP2000055488A (en) Refrigerating device
JP4899641B2 (en) Mixed fluid separator
EP3517859B1 (en) Refrigeration cycle apparatus
WO2020157806A1 (en) Refrigerator
CN100383479C (en) Cooling device and refrigerator using the same
JP4897464B2 (en) Vapor compression refrigeration cycle
JPH08128741A (en) Refrigeration system
CN105674633B (en) Regenerator with gas-liquid separating function and the refrigerated air-conditioning system using the regenerator
JP2022054729A (en) Oil separator and air conditioner
JPH10267435A (en) Freezing cycle
JP2000074527A (en) Liquid receiver integrated refrigerant condenser
JP4238434B2 (en) Refrigeration cycle equipment
WO2020235053A1 (en) Refrigerator
KR20200022323A (en) Device for storing refrigerant of a refrigerant circuit system, and method for operating the device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913116

Country of ref document: EP

Kind code of ref document: A1