[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020155181A1 - 信道传输的方法和设备 - Google Patents

信道传输的方法和设备 Download PDF

Info

Publication number
WO2020155181A1
WO2020155181A1 PCT/CN2019/074707 CN2019074707W WO2020155181A1 WO 2020155181 A1 WO2020155181 A1 WO 2020155181A1 CN 2019074707 W CN2019074707 W CN 2019074707W WO 2020155181 A1 WO2020155181 A1 WO 2020155181A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data channel
symbols
data
time slot
Prior art date
Application number
PCT/CN2019/074707
Other languages
English (en)
French (fr)
Inventor
石聪
吴作敏
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980016768.9A priority Critical patent/CN111801983B/zh
Priority to PCT/CN2019/074707 priority patent/WO2020155181A1/zh
Publication of WO2020155181A1 publication Critical patent/WO2020155181A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for channel transmission.
  • NR-U unlicensed spectrum
  • LBT Listen Before Talk
  • the network equipment usually prepares the physical downlink control channel (PDSCH) to be transmitted before performing the LBT. Due to the uncertainty of obtaining the channel use right on the unlicensed frequency band, the transmission of the PDSCH will be affected. Therefore, how to ensure effective transmission of channels on unlicensed frequency bands has become an urgent problem to be solved.
  • PDSCH physical downlink control channel
  • the embodiments of the present application provide a channel transmission method and device, which can ensure effective channel transmission on an unlicensed frequency band.
  • a method for channel transmission including: a network device generates a data channel according to a preset starting symbol position and a symbol length L for transmitting the data channel in a time slot, where L is a positive integer; The network device determines the symbol length N that can be used to transmit the data channel in the time slot according to the result of listening first and then speaking the LBT, where N is a positive integer, and N ⁇ L; the network device sends all the symbols according to the symbol length N ⁇ Data Channel.
  • a method for channel transmission including: a terminal device detects a control channel according to a preset candidate symbol position for receiving the control channel; the terminal device detects a control channel according to the symbol position of the control channel actually received, Determine the symbol length N that can be used to transmit the data channel in the time slot, where the symbol length N is less than the preset symbol length L for transmitting the data channel, and N and L are positive integers; the terminal device is based on The symbol length is N, and the data channel is received.
  • a terminal device in a third aspect, can execute the foregoing first aspect or any optional implementation method of the first aspect.
  • the terminal device may include a functional module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a network device in a fourth aspect, can execute the foregoing second aspect or any optional implementation of the second aspect.
  • the network device may include a functional module for executing the foregoing second aspect or any possible implementation of the second aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned second aspect or any possible implementation method of the second aspect.
  • a chip for implementing the foregoing first aspect or any possible implementation of the first aspect.
  • the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or any possible implementation of the first aspect.
  • a chip is provided to implement the foregoing second aspect or any possible implementation of the second aspect.
  • the chip includes a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the method in the second aspect or any possible implementation of the second aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the above-mentioned second aspect or any possible implementation of the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or any possible implementation of the first aspect method.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing second aspect or any possible implementation method of the second aspect.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned second aspect or any possible implementation of the second aspect.
  • a communication system including terminal equipment and network equipment, wherein:
  • the network equipment is used to: generate a data channel according to the preset start symbol position and symbol length L for transmitting the data channel in the time slot, L is a positive integer; according to the result of LBT, determine that the time slot can be used
  • the symbol length of the data channel is N, where N is a positive integer, and N ⁇ L; the data channel is sent according to the symbol length N.
  • the terminal equipment is used to: detect the control channel according to the preset candidate symbol positions for receiving the control channel; and determine the symbol length in the time slot that can be used to transmit the data channel according to the symbol position of the control channel actually received N, where the symbol length N is less than the preset symbol length L used for transmitting the data channel, and N and L are positive integers; the data channel is received according to the symbol length N.
  • the network device determines the number of symbols that can be used to transmit the data channel in the time slot according to the result of the LBT, and performs data channel transmission based on the number of symbols.
  • the terminal device determines the number of symbols that can be used to transmit the data channel in the time slot according to the actual position of the control channel detected, and receives the data channel based on the number of symbols. In this way, the data channel transmission between the network equipment and the terminal equipment can match the current channel conditions, ensuring effective transmission of channels on the unlicensed frequency band.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Figure 2 is a schematic diagram of part of the time slot.
  • FIG. 3 is a flow interaction diagram of a channel transmission method according to an embodiment of the present application.
  • Fig. 4 is a flow interaction diagram of a channel transmission method according to an embodiment of the present application.
  • Figures 5(a), 5(b) and 5(c) are schematic diagrams of symbols occupied by control channels and data channels in an embodiment of the present application.
  • Fig. 6(a), Fig. 6(b) and Fig. 6(c) are schematic diagrams of symbols occupied by the control channel and the data channel according to an embodiment of the present application.
  • Fig. 7(a), Fig. 7(b) and Fig. 7(c) are schematic diagrams of symbols occupied by control channels and data channels in an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • WiFi next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiment of the present application may be applied to scenarios such as carrier aggregation (CA), dual connectivity (DC), and standalone (SA) networking.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone networking
  • the wireless communication system 100 may include a network device 110.
  • the network device 110 may be a device that communicates with terminal devices.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the network side device in the NR system, or the wireless controller in the Cloud Radio Access Network (CRAN), or the network device can be a relay station or Entry points, in-vehicle devices, wearable devices, network-side devices in next-generation networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved Node B
  • eNodeB evolved base station
  • the network side device in the NR system
  • the network device can be a relay station or Entry points
  • the wireless communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Device, user agent or user device.
  • User Equipment User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or terminal devices in the future evolved PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • wireless communication Functional handheld devices computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • terminal devices in the future 5G network or terminal devices in the future evolved PLMN etc.
  • D2D direct terminal
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be the network device 110 (for example, a base station)
  • the corresponding cell, the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here may include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The application embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller, a mobility management entity, etc., which is not limited in the embodiment of the present application.
  • unlicensed spectrum In the NR system, data transmission on unlicensed frequency bands (or called unlicensed spectrum) is supported.
  • the unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region.
  • This spectrum is usually considered to be a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for a proprietary spectrum authorization from the government.
  • some countries or regions have stipulated the legal requirements that must be met when using unlicensed spectrum.
  • communication equipment follows the principle of "listen first, then speak", that is, communication equipment needs to perform channel listening before sending signals on channels of unlicensed spectrum, only when the result of channel listening is that the channel is free Only when the communication device can perform signal transmission; if the communication device performs channel sensing on the unlicensed spectrum and the result is that the channel is busy, the communication device cannot perform signal transmission.
  • the data transmission on the unlicensed spectrum has uncertainty.
  • Type A there are two main types of PDSCH resource allocation in the time domain: Type A and Type B.
  • the starting symbol S of the PDSCH with Type A can be ⁇ 0, 1, 2, 3 ⁇ , and the length L of the PDSCH can be the number of symbols ⁇ 3, 4,..., 14 ⁇ .
  • the starting symbol S of the PDSCH using Type B can be ⁇ 0, 1, ..., 12 ⁇ , and the length L of the PDSCH can be the number of symbols ⁇ 2, 4, 7 ⁇ .
  • the scheduling mode of PDSCH using Type A can be understood as a slot-based scheduling mode, because only one PDSCH can be transmitted in a slot.
  • the scheduling mode of PDSCH using Type B can be understood as a scheduling mode based on mini-slots, because multiple PDSCHs can be transmitted in one slot.
  • TDRA Time Domain Resource Allocation
  • DCI Download Control Information
  • the TDRA field is 4 bits.
  • Each resource allocation group may include, for example, the starting position S of the PDSCH, the length L of the PDSCH, and the mapping type (mapping Type) refers to the aforementioned Type A and Type B information.
  • mapping Type mapping Type
  • the terminal device can obtain the PDSCH information configured by Radio Resource Control (RRC) signaling, including the PDSCH and the Physical Downlink Control Channel (Physical Downlink Control Channel, which schedules the PDSCH).
  • RRC Radio Resource Control
  • NR-U due to LBT, uncertainty in the downlink transmission channel may be caused. For example, as shown in Fig. 2, since LBT may be successfully executed on any symbol in a time slot, that is, an idle channel is detected, some time slots may appear. As shown in Figure 2, the terminal equipment obtains the channel use right on symbol 6, and symbol 6 (OS6) to symbol 13 (OS13) are the part of the time slots. For the situation shown in Figure 2, there are the following two problems.
  • the start symbol S of the PDSCH can only start from the first few symbols of a slot. Therefore, the PDSCH scheduling method of Type A is not applicable in the NR-U scenario.
  • PDSCH with Type B can be used. But it will increase the implementation complexity of the base station. Because the base station usually has prepared the data to be transmitted in a certain time slot before performing LBT. Since the base station does not know which symbol in the time slot to obtain the channel use right, that is, the base station does not know how many symbols this part of the time slot includes, so it may be necessary to prepare multiple copies of different data to be suitable for different Possibility. In Figure 2, for the base station, the worst case is to prepare 7 PDSCHs with a length of 2 symbols. But in fact, this method not only increases the complexity of the base station implementation, but also increases the complexity of the blind detection of the control channel by the terminal equipment, which is unacceptable for the overhead of the blind detection of the terminal equipment.
  • the embodiments of the present application provide a channel transmission method, which can ensure effective channel transmission on the unlicensed frequency band.
  • this method does not increase the complexity of the implementation of the network equipment, nor does it increase the overhead of the blind detection of the control channel of the terminal equipment.
  • FIG. 3 is a flow interaction diagram of a channel transmission method according to an embodiment of the present application.
  • the method shown in FIG. 3 may be executed by a terminal device and a network device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1
  • the network device may be, for example, the network device 110 shown in FIG. 1.
  • the method includes:
  • the network device generates a data channel according to the starting symbol position and the symbol length L preset for transmitting the data channel in the time slot.
  • the network device determines the symbol length N that can be used to transmit the data channel in the time slot. For example, the network device determines the symbol length N according to the result of LBT.
  • the network device transmits the data channel according to the symbol length N.
  • the terminal device detects the control channel according to preset candidate symbol positions for receiving the control channel.
  • the terminal equipment determines the symbol length N that can be used to transmit the data channel in the time slot according to the symbol position where the control channel is actually received.
  • the terminal device receives the data channel according to the symbol length N.
  • L and N are positive integers.
  • the network device can send the data channel with the symbol length L according to the preset starting symbol position and the symbol length L for transmitting the data channel.
  • an embodiment of this application proposes that the network device determines that the time slot can actually be used for the data channel according to the result of LBT.
  • the number of symbols N of the data channel is transmitted, and the data channel is transmitted based on the number N of symbols.
  • the terminal device determines the number N of symbols that can actually be used to transmit the data channel in the time slot according to the actual position of the control channel detected, and receives the data channel based on the number N of symbols. In this way, the data channel transmission between the network equipment and the terminal equipment can match the current channel conditions, ensuring effective transmission of channels on the unlicensed frequency band.
  • the symbol may be, for example, Orthogonal Frequency Division Multiplexing (OFDM) symbol (OFDM Symbol, OS).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the "preset" may be configured by the network device, or pre-configured, for example, as agreed in the protocol.
  • the preset symbol length and symbol start position may be semi-statically configured by the network device, dynamically configured, or agreed upon by a protocol.
  • the "can be used for transmission” refers to a capability that can or may not be transmitted after having the capability.
  • the symbol length N that can be used to transmit a data channel in a time slot indicates that these N symbols are symbols that can be used for data channel transmission, but the data channel can be transmitted on the N symbols or in the N symbols. Part of the symbol is transmitted.
  • the network equipment can prepare the data channel to be transmitted in advance according to the fixed symbol start position S and the number of symbols L in the time slot.
  • the start symbol position S and the occupied symbol length L of the data channel can use the symbols in Table 1 above. Start position S and symbol length L. Due to the LBT of the network equipment, the symbol length N that can actually be used to transmit the data channel obtained in this time slot may be less than the symbol length L.
  • the network device can process the data channel according to the symbol N, and send the processed data channel to the terminal device.
  • 330 may include 331 and 332, and 360 may include 361.
  • the network device punctures the data on at least one symbol among the L symbols of the data channel according to the symbol length N.
  • the network device sends the punctured data channel.
  • the terminal device receives the punctured data channel.
  • the network device when N ⁇ L, performs puncturing on the previously prepared data channel with a symbol length of L, so that the data channel can be transmitted on the N symbols in the time slot.
  • the symbol length of the at least one symbol is L-N. That is, the number of symbols punched out is L-N.
  • the network device may send the punctured data channel on the N symbols that can be used to transmit the data channel in the time slot.
  • the terminal device receives the punctured data channel on the N symbols that can be used to transmit the data channel in the time slot.
  • the at least one symbol is, for example, the first L-N symbols of the L symbols of the data channel, or the at least one symbol is, for example, the last L-N symbols of the L symbols of the data channel.
  • DMRS demodulation Reference Signal
  • DMRS is a reference signal used to demodulate PDSCH.
  • CRS Cell Specific Reference Signal
  • the DMRS and the data channel can occupy the same symbol through frequency division multiplexing.
  • DMRS is located on the first 1 or 2 symbols of the data channel resource.
  • the DMRS used to demodulate the data channel may occupy part of the frequency domain resources on the first symbol of the L symbols for transmission.
  • the symbol where the DMRS is located should not be punctured. That is, the first L-N symbols of the L symbols of the data channel should be the first L-N symbols of the L symbols except the DMRS symbol.
  • the data in the symbol where the DMRS is located is not punctured, and both the data in the symbol and the DMRS can be shifted to the first symbol of the N symbols To transfer.
  • the DMRS and the data channel are frequency division multiplexed, and the DMRS occupies the first symbol of the data channel resource as an example, to describe the embodiments of the present application.
  • the network device determines the symbol length N that can be used to transmit the data channel in the time slot according to the result of the LBT, which includes: the network device uses the preset data according to the result of the LBT. Among the candidate symbol positions of the control channel, determine the symbol position of the actual transmission control channel; the network device determines the symbol length N that can be used to transmit the data channel in the time slot according to the actual symbol position of the control channel.
  • the network device Since the data channel is usually located after the control channel for scheduling the data channel, after the network device obtains the channel use right, it will first send the control channel at the preset symbol position in the symbol with the channel use right, and according to the remaining number of symbols Determine the number of symbols N that can be used to transmit the data channel in the time slot.
  • one or more symbol positions used to transmit the control channel may be configured, or it may also be understood as configuring one or more PDCCH search spaces.
  • each PDCCH search space corresponds to a symbol start position and symbol length.
  • the terminal device performs blind detection on the PDCCH in the PDCCH search space.
  • FIG. 5(a), FIG. 5(b), and FIG. 5(c) are taken as examples to describe the situation where the first L-N symbols of the L symbols of the data channel are punctured.
  • the symbol length L of the preset data channel in time slot n is 11 symbols, that is, the network device originally intended to be in time slot n PDSCH is transmitted on Symbol 3 to Symbol 11.
  • symbol 3 not only transmits the PDSCH, but also transmits the DMRS used to demodulate the PDSCH.
  • the symbol length of the PDCCH search space is 3 symbols, and the symbol start positions are symbol 0, symbol 3, and symbol 6, respectively.
  • the number “OS 0-OS13” represents the symbol number in the time slot. Each time slot includes 14 symbols. For example, the symbol OS0 represents the first symbol in the time slot, and OS1 represents the second symbol in the time slot. , And so on.
  • the numbers “#0-#13” indicate the data carried in the data channel prepared by the network device according to the symbol start position S and the symbol length L. For example, data #3 indicates the data prepared by the network device and expected to be sent on symbol 3.
  • Data #4 indicates the data prepared by the network device and expected to be sent on symbol 4
  • data #13 indicates the data prepared by the network device and expected to be sent on symbol 13. However, due to LBT, data #3 to data #13 are actually transmitted on which symbol is uncertain.
  • the control channel is similar to the data channel.
  • the network device has obtained the channel use right on symbol 0 through LBT, that is, LBT is successful. Then the network device can send the PDCCH for scheduling the PDSCH on symbol 0 to symbol 2, send data #3 and DMRS of the PDSCH on symbol 3, and send data #4 of the PDSCH on symbol 4 to symbol 11. To data #11.
  • the terminal device performs blind PDCCH detection according to the preset symbol length and symbol start position of the PDCCH search space. For example, symbol 0 to symbol 2, symbol 3 to symbol 5, and symbol 6 to symbol 8 are three PDCCHs respectively. Search space. If the terminal device detects the PDCCH in one of the PDCCH search spaces, there is no need to perform blind detection of the PDCCH in the other PDCCH search spaces.
  • the terminal device can detect the PDCCH in the symbol 0 to the symbol 2, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 3 to the symbol 13.
  • the terminal device determines that the resource location of the PDSCH indicated by the DCI carried by the PDCCH is also symbol 3 to symbol 13, and then performs rate matching on the PDSCH according to a preset rate matching manner.
  • the terminal device can detect the PDCCH in the symbol 3 to the symbol 5, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 6 to the symbol 13.
  • the terminal device judges that the resource position of the PDSCH indicated by the DCI carried by the PDCCH is symbol 6 to symbol 13, instead of the preset symbol 3 to symbol 13, then the terminal device can know that the data on the three symbols of the PDSCH is punctured. Therefore, rate matching is performed based on the punctured PDSCH.
  • the terminal device can detect the PDCCH in the symbol 6 to the symbol 8, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 9 to the symbol 13.
  • the terminal device judges that the resource position of the PDSCH indicated by the DCI carried by the PDCCH is symbol 9 to symbol 13, instead of the preset symbol 3 to symbol 13, then the terminal device can know that the data on the six symbols of the PDSCH is punctured. Therefore, rate matching is performed based on the punctured PDSCH.
  • a signal common to the cell such as a channel state indication reference signal (Channel State Information-Reference Signal, CSI-RS), a synchronization signal block (Synchronizing Signal/PBCH Block, SSB or SS/PBCH Block)
  • CSI-RS Channel State Information-Reference Signal
  • PRS Positioning Reference Signal
  • TRS Tracking Reference Signal
  • the positions of these signals remain unchanged. For example, if the network device fails to LBT at the pre-configured location for sending CSI-RS, it will not send CSI-RS. If the network device succeeds in LBT at the pre-configured location for sending CSI-RS, it will CSI-RS is transmitted at this position. The CSI-RS will not shift due to the shift of the PDSCH.
  • FIG. 6(a), FIG. 6(b), and FIG. 6(c) are taken as examples to describe the situation where the last L-N symbols of the L symbols of the data channel are punctured.
  • the preset symbol start position S in time slot n is symbol 3 in time slot n
  • the preset symbol length L in time slot n is 11 symbols.
  • PDSCH is transmitted on symbol 11.
  • symbol 3 not only transmits the PDSCH, but also transmits the DMRS used to demodulate the PDSCH.
  • the symbol length of the PDCCH search space is 3 symbols, and the symbol start positions are symbol 0, symbol 3, and symbol 6, respectively.
  • the network device has obtained the channel use right on symbol 0 through LBT, that is, LBT is successful. Then the network device can send the PDCCH for scheduling the PDSCH on symbol 0 to symbol 2, send data #3 and DMRS of the PDSCH on symbol 3, and send data #4 to data of the PDSCH on symbol 4 to symbol 11. #11.
  • the network device After the network device obtains the channel usage rights, it sends PDCCH on symbols 6 to 8, sends data #3 and DMRS of the PDSCH on symbol 9, and sends data #4 of the PDSCH on symbols 10 to 13 respectively. To data #7.
  • the terminal device performs blind PDCCH detection according to the preset symbol length and symbol start position of the PDCCH search space. For example, symbol 0 to symbol 2, symbol 3 to symbol 5, and symbol 6 to symbol 8 are three PDCCHs respectively. Search space. If the terminal device detects the PDCCH in one of the PDCCH search spaces, there is no need to perform blind detection of the PDCCH in the other PDCCH search spaces.
  • the terminal device can detect the PDCCH in the symbol 0 to the symbol 2, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 3 to the symbol 13.
  • the terminal device determines that the resource location of the PDSCH indicated by the DCI carried by the PDCCH is also symbol 3 to symbol 13, and then performs rate matching on the PDSCH according to a preset rate matching manner.
  • the terminal device can detect the PDCCH in the symbol 3 to the symbol 5, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 6 to the symbol 13.
  • the terminal device judges that the resource position of the PDSCH indicated by the DCI carried by the PDCCH is symbol 6 to symbol 13, instead of the preset symbol 3 to symbol 13, then the terminal device can know that the data on the last three symbols of the PDSCH is punctured , Then rate matching is performed based on the punctured PDSCH.
  • the terminal device can detect the PDCCH in the symbol 6 to the symbol 8, and determine that the resources that can be used to transmit the PDSCH in the slot n include the symbol 9 to the symbol 13.
  • the terminal device determines that the PDSCH resource position indicated by the DCI carried by the PDCCH is symbol 9 to symbol 13, instead of the preset symbol 3 to symbol 13, then the terminal device can know that the data on the last six symbols of the PDSCH is punctured , Then rate matching is performed based on the punctured PDSCH.
  • the network device determines the number of symbols N that can actually be used to transmit the data channel in the time slot according to the result of the LBT, and punctures the originally prepared data channel based on the number of symbols N, so that it can Transmission is performed in the N symbols in the time slot.
  • the terminal device determines the number of symbols N according to the actual detected position of the control channel, and receives the data channel based on the number N of symbols. In this way, the data channel transmission between the network equipment and the terminal equipment can match the current channel conditions, ensuring effective transmission of channels on the unlicensed frequency band.
  • the network device transmits the data channel according to the symbol length N, including: the network device transmits within N symbols that can be used to transmit the data channel in the time slot Part of the data of the data channel, and part or all of the remaining data of the data channel is sent on at least one symbol of the next time slot of the time slot.
  • the terminal device receives the data channel according to the symbol length N, including: the terminal device receives part of the data channel in the N symbols that can be used to transmit the data channel in the time slot , And receive at least part of the remaining data of the data channel on at least one symbol of the next time slot of the time slot.
  • the network device when N ⁇ L, performs translation processing on the previously prepared data channel with a symbol length of L, so that part of the data channel is transmitted through N symbols in the time slot, and another part of the data is transmitted through Transmission is performed in the next time slot.
  • the symbol length of the at least one symbol is L-N. That is, the network device uses the L-N symbols in the next time slot for PDSCH transmission.
  • the network device transmits data on the first N symbols of the L symbols of the data channel on the N symbols, and transmits data on the at least one symbol of the next time slot.
  • the data on the last LN symbols of the L symbols of the data channel is sent upward.
  • the terminal device receives data on the first N symbols of the L symbols of the data channel on the N symbols, and receives the data on the at least one symbol of the next time slot Data on the last LN symbols of the L symbols of the data channel.
  • Figure 7(a), Figure 7(b), and Figure 7(c) are taken as examples to describe how the network device sends data channels on time slot n and time slot n+1.
  • the network device has already obtained the channel use right on symbol 0 through LBT. Then the network equipment can send the PDCCH for scheduling the PDSCH on symbols 0 to symbol 2 of time slot n, and send the PDSCH and DMRS on symbols 3 to 11 of time slot n, without occupying the time slot n+1. Symbol resources.
  • the terminal device performs blind PDCCH detection according to the preset symbol length and symbol start position of the PDCCH search space. For example, symbol 0 to symbol 2, symbol 3 to symbol 5, and symbol 6 to symbol 8 are three PDCCHs respectively. Search space. If the terminal device detects the PDCCH in one of the PDCCH search spaces, there is no need to perform blind detection of the PDCCH in the other PDCCH search spaces.
  • the terminal device can detect the PDCCH in the symbol 0 to the symbol 2 of the time slot n, and determine that the resources that can be used to transmit the PDSCH in the time slot n include the symbol 3 to the symbol 13.
  • the terminal device determines that the resource position of the PDSCH indicated by the DCI carried by the PDCCH is also symbol 3 to symbol 13, and then receives PDSCH and DMRS on symbol 3 to symbol 13 of time slot n.
  • the terminal device can detect the PDCCH in the symbol 3 to the symbol 5 of the time slot n, and determine that the resources that can be used to transmit the PDSCH in the time slot n include the symbol 6 to the symbol 13.
  • the terminal device judges that the resource location of the PDSCH indicated by the DCI carried by the PDCCH is not the preset symbol 3 to symbol 13, then the terminal device receives the PDCCH on the symbol 3 to symbol 5 of time slot n according to the indication of the DCI, PDSCH data #3 to data #10 and DMRS are received on symbol 6 to symbol 13 of n, and PDSCH data #11 to data #13 are received on symbol 0 to symbol 2 of slot n+1.
  • the terminal device can detect the PDCCH in the symbol 6 to the symbol 8 of the time slot n, and determine that the resources that can be used to transmit the PDSCH in the time slot n include the symbol 9 to the symbol 13.
  • the terminal device determines that the resource location of the PDSCH indicated by the DCI carried by the PDCCH is not symbol 3 to symbol 13, then the terminal device receives the PDCCH on the symbol 6 to symbol 8 of time slot n according to the indication of the DCI, Data #3 to Data #7 and DMRS of PDSCH are received on Symbol 9 to Symbol 13, and Data #8 to Data #13 of PDSCH are received on Symbol 0 to Symbol 5 of slot n+1.
  • the network device sends part of the PDSCH data in the time slot n and sends another part of the PDSCH data in the time slot n+1 according to the result of the LBT, thereby ensuring effective channel transmission on the unlicensed frequency band.
  • a data channel with a symbol length of L can be punctured, and the punctured data channel can also be transmitted on the available symbols in two time slots.
  • This embodiment of the application does not limit this, as long as it can be guaranteed
  • the terminal device can obtain information such as the symbol length of the data channel to be received through the same rule to facilitate rate matching.
  • FIG. 8 is a schematic block diagram of a network device 800 according to an embodiment of the present application.
  • the network device 800 includes: a processing unit 810 and a transceiver unit 820. among them:
  • the processing unit 810 is configured to generate a data channel according to the start symbol position and the symbol length L preset for transmitting the data channel in the time slot, where L is a positive integer;
  • the processing unit 810 is further configured to determine the symbol length N that can be used to transmit the data channel in the time slot according to the result of listening first and then speaking LBT, where N is a positive integer, and N ⁇ L;
  • the transceiver unit 820 is configured to send the data channel according to the symbol length N.
  • the network device determines the number of symbols that can be used to transmit the data channel in the time slot according to the result of the LBT, and performs data channel transmission based on the number of symbols.
  • the terminal device determines the number of symbols that can be used to transmit the data channel in the time slot according to the actual position of the control channel detected, and receives the data channel based on the number of symbols. In this way, the data channel transmission between the network equipment and the terminal equipment can match the current channel conditions, ensuring effective transmission of channels on the unlicensed frequency band.
  • the processing unit 810 is further configured to: puncture data on at least one of the L symbols of the data channel according to the symbol length N; the transceiving unit 820 is specifically configured to: send The data channel after puncturing.
  • the symbol length of the at least one symbol is L-N.
  • the at least one symbol is the first L-N symbols or the last L-N symbols among the L symbols of the data channel.
  • the transceiving unit 820 is specifically configured to send the punctured data channel on the N symbols that can be used to transmit the data channel in the time slot.
  • the transceiving unit 820 is specifically configured to: transmit part of the data of the data channel within N symbols that can be used to transmit the data channel in the time slot, and to transmit part of the data of the data channel in the next time of the time slot. On at least one symbol of the slot, part or all of the remaining data of the data channel is sent.
  • the symbol length of the at least one symbol is L-N.
  • the transceiving unit 820 is specifically configured to: send data on the first N symbols among the L symbols of the data channel on the N symbols, and transmit data on the first N symbols of the next time slot. Data on the last LN symbols of the L symbols of the data channel is sent on one symbol.
  • the processing unit 810 is specifically configured to: according to the result of the LBT, determine the symbol position of the actual transmission control channel among the preset candidate symbol positions for transmitting the control channel; , Determine the symbol length N that can be used to transmit the data channel in the time slot.
  • the network device 800 can perform the corresponding operations performed by the network device in the foregoing method 300, which is not repeated here for brevity.
  • FIG. 9 is a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 includes: a processing unit 910 and a transceiver unit 920. among them:
  • the processing unit 910 is configured to detect the control channel according to the preset candidate symbol positions for receiving the control channel
  • the processing unit 910 is further configured to determine the symbol length N that can be used to transmit the data channel in the time slot according to the symbol position of the actually received control channel, wherein the symbol length N is less than the preset symbol length
  • the symbol length L of the transmission data channel, N and L are positive integers
  • the transceiver unit 920 is configured to receive a data channel according to the symbol length N.
  • the network device determines the number of symbols that can be used to transmit the data channel in the time slot according to the result of the LBT, and performs data channel transmission based on the number of symbols.
  • the terminal device determines the number of symbols that can be used to transmit the data channel in the time slot according to the actual position of the control channel detected, and receives the data channel based on the number of symbols. In this way, the data channel transmission between the network equipment and the terminal equipment can match the current channel conditions, ensuring effective transmission of channels on the unlicensed frequency band.
  • the transceiving unit 920 is specifically configured to receive the punctured data channel, wherein the data on at least one of the L symbols of the data channel is punctured.
  • the symbol length of the at least one symbol is L-N.
  • the at least one symbol is the first L-N symbols or the last L-N symbols among the L symbols of the data channel.
  • the transceiving unit 920 is specifically configured to: receive the punctured data channel on the N symbols that can be used to transmit the data channel in the time slot.
  • the transceiving unit 920 is specifically configured to: receive part of the data of the data channel within the N symbols that can be used to transmit the data channel in the time slot, and to receive part of the data of the data channel in the next time of the time slot On at least one symbol of the slot, at least part of the remaining data of the data channel is received.
  • the symbol length of the at least one symbol is L-N.
  • the transceiving unit 920 is specifically configured to: receive data on the first N symbols of the L symbols of the data channel on the N symbols, and perform data on the at least N symbols of the next time slot. Data on the last LN symbols of the L symbols of the data channel is received on one symbol.
  • terminal device 900 can perform the corresponding operations performed by the terminal device in the foregoing method 300, and for the sake of brevity, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a terminal device of an embodiment of the present application, and the communication device 1000 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1000 may specifically be a network device of an embodiment of the present application, and the communication device 1000 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 11 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory to implement the method of the embodiment of the present application.
  • the chip 1100 may further include a memory 1120.
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 1100 may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip 1100 may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip 1100 may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip 1100 may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chips described in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), and synchronous dynamic random access memory (DRAM).
  • Access memory Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory Take memory (Synch Link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication system 1200 includes a network device 1210 and a terminal device 1220.
  • the network device 1210 is used to: generate a data channel according to the start symbol position and the symbol length L preset for transmitting the data channel in the time slot, L is a positive integer; according to the result of LBT, determine that the time slot can be
  • the symbol length used to transmit the data channel is N, where N is a positive integer, and N ⁇ L; the data channel is sent according to the symbol length N.
  • the terminal device 1220 is used to: detect the control channel according to the preset candidate symbol positions for receiving the control channel; and determine the symbols that can be used to transmit the data channel in the time slot according to the symbol positions of the control channel actually received Length N, where the symbol length N is less than the preset symbol length L for transmitting the data channel, and N and L are positive integers; according to the symbol length N, the data channel is received.
  • the network device 1210 can be used to implement the corresponding functions implemented by the network device in the above method 300, and the composition of the network device 1210 can be as shown in the network device 800 in FIG. 8. For the sake of brevity, it is not here. Repeat it again.
  • the terminal device 1220 may be used to implement the corresponding functions implemented by the terminal device in the above method 300, and the composition of the terminal device 1220 may be as shown in the terminal device 900 in FIG. 9. For the sake of brevity, it is not here. Repeat it again.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Repeat.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity ,No longer.
  • system and “network” in the embodiments of the present invention are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiment described above is only illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道传输的方法和设备,能够保证非授权频段上信道的有效传输。该方法包括:网络设备根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;所述网络设备根据先听后说LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;所述网络设备根据所述符号长度N,发送所述数据信道。

Description

信道传输的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及信道传输的方法和设备。
背景技术
在5G系统或称新无线(New Radio,NR)系统中,支持非授权频段(unlicensed spectrum)上的数据传输。通信设备进行非授权频段上的NR通信(NR-based access to unlicensed spectrum,NR-U)时,需要基于先听后说(Listen Before Talk,LBT)的原则。即,在非授权频段上进行信号发送之前,需要先进行信道侦听,只有当侦听结果为信道空闲时,才能进行信号发送;如果在非授权频段上进行信道侦听的结果为信道占用,则不能进行信号发送。
网络设备通常在执行LBT之前就会准备好待传输的物理下行控制信道(Physical Downlink Control Channel,PDSCH),由于非授权频段上获得信道使用权的不确定性,该PDSCH的传输会受到影响。因此,如何保证非授权频段上信道的有效传输成为亟待解决的问题。
发明内容
本申请实施例提供了一种信道传输的方法和设备,能够保证非授权频段上信道的有效传输。
第一方面,提供了一种信道传输的方法,包括:网络设备根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;所述网络设备根据先听后说LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;所述网络设备根据所述符号长度N,发送所述数据信道。
第二方面,提供了一种信道传输的方法,包括:终端设备根据预设的用于接收控制信道的候选符号位置,检测控制信道;所述终端设备根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;所述终端设备根据所述符号长度N,接收数据信道。
第三方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可选的实现方式中的方法。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使 得安装有该芯片的设备执行如上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十五方面,提供了一种通信系统,包括终端设备和网络设备,其中:
该网络设备用于:根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;根据LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;根据所述符号长度N,发送所述数据信道。
该终端设备用于:根据预设的用于接收控制信道的候选符号位置,检测控制信道;根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;根据所述符号长度N,接收数据信道。
基于上述技术方案,网络设备根据LBT的结果,确定时隙内能够用于传输数据信道的符号数量,并基于该符号数量进行数据信道的传输。相应地,终端设备根据实际检测到控制信道的位置,确定该时隙内能够用于传输数据信道的符号数量,并基于该符号数量接收该数据信道。这样,网络设备与终端设备之间的数据信道传输能够匹配当前的信道情况,保证了非授权频段上信道的有效传输。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是部分时隙的示意图。
图3是本申请实施例的信道传输的方法的流程交互图。
图4是本申请实施例的信道传输的方法的流程交互图。
图5(a)、图5(b)和图5(c)是本申请实施例的控制信道和数据信道占用的符号的示意图。
图6(a)、图6(b)和图6(c)是本申请实施例的控制信道和数据信道占用的符号的示意图。
图7(a)、图7(b)和图7(c)是本申请实施例的控制信道和数据信道占用的符号的示意图。
图8是本申请实施例的终端设备的示意性框图。
图9是本申请实施例的网络设备的示意性框图。
图10是本申请实施例的通信设备的示意性结构图。
图11是本申请实施例的芯片的示意性结构图。
图12是本申请实施例的通信系统的示意性框图。
具体实施方式
下面结合本申请实施例的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)、双连接(Dual Connectivity,DC)、独立(Standalone,SA)组网等场景中。
示例性的,本申请实施例应用的通信系统100如图1所示。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是NR系统中的网络侧设备,或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、下一代网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或者固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。此外,该无线通信系统100例如还可以包括网络控制器、 移动管理实体等其他网络实体,本申请实施例对此不作限定。
在NR系统中,支持非授权频段(或称为非授权频谱)上的数据传输。免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲等地区,通信设备遵循“先听后说”原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听的结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,该通信设备不能进行信号发送。
相对于授权频谱上的数据传输,非授权频谱上的数据传输具有不确定性。
在NR系统中,PDSCH的在时域上的资源分配主要有两种类型:类型(Type)A和Type B。如表一所示,对于正常循环前缀(Normal Cyclic Prefix,Normal CP),采用Type A的PDSCH的起始符号S可以为{0,1,2,3},该PDSCH的长度L可以为符号数量{3,4,……,14}。采用Type B的PDSCH的起始符号S可以为{0,1,……,12},PDSCH的长度L可以为符号数量{2,4,7}。可以把采用Type A的PDSCH的调度方式理解为基于时隙(slot-based)的调度方式,因为一个slot中只能传输一个PDSCH。可以把采用Type B的PDSCH的调度方式理解为基于迷你时隙(mini-slot)的调度方式,因为一个slot中可以传输多个PDSCH。
表一
Figure PCTCN2019074707-appb-000001
网络设备在调度终端设备的下行数据传输时,会在下行控制信息(Download Control Information,DCI)中携带一个时域资源分配(Time Domain Resource Allocation,TDRA)域,该TDRA域为4比特(bit),可以指示资源分配表中的16个不同的行,其中每行对应一个资源分配组,每个资源分配组中例如可以包括PDSCH的起始位置S、PDSCH的长度L、采用的映射类型(mapping Type)即上述Type A和Type B等信息。对于不同目的的下行数据传输,该资源分配表也不一样。
终端设备根据DCI中的TDRA域的指示,能够获得无线资源控制(Radio Resource Control,RRC)信令配置的PDSCH的信息,其中包括该PDSCH与调度该PDSCH的物理下行控制信道(Physical Downlink Control Channel,PDCCH)之间间隔的时隙K0、映射类型以及PDSCH的起始位置S和长度L。
在NR-U中,由于LBT,可能导致下行传输信道的不确定性。例如图2所示,由于可能在一个时隙中的任何一个符号上执行LBT成功,即侦听到空闲信道,那么可能导致出现部分时隙。如图2所示,终端设备在符号6上获得信道使用权,符号6(OS6)至符号13(OS13)即为该部分时隙。对于图2所示的情况,存在以下两个问题。
首先,对于采用Type A的PDSCH,该PDSCH的起始符号S只能开始于一个时隙的前面几个符号。因此Type A调度PDSCH的方式在NR-U场景中并不适用。
其次,采用Type B的PDSCH可以使用。但是会增加基站的实现复杂度。因为基站在执行LBT之前,通常已经准备好某个时隙中待传输的数据了。由于基站并不知道在该时隙中的那个符号上获得信道使用权,也就是说,基站并不知道该部分时隙包括几个符号,因此可能需要准备多份不同的数据,以适用于不同的可能性。在图2中,对于基站,最差的情况是要准备7份长度为2个符号的PDSCH。但事实上,这种方式不仅增加了基站实现的复杂度,也增加了终端设备对控制信道的盲检复杂度,对于终端设备的盲检开 销是不可接受的。
因此,本申请实施例提供了一种信道传输的方法,能够保证非授权频段上信道的有效传输。并且,该方法不会增加网络设备的实现复杂度,也不会增加终端设备的控制信道盲检的开销。
图3是本申请实施例的信道传输的方法的流程交互图。图3所示的方法可以由终端设备和网络设备执行,该终端设备例如可以为图1中所示的终端设备120,该网络设备例如可以为图1中所示的网络设备110。如图3所示,该方法包括:
在310中,网络设备根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道。
在320中,网络设备确定所述时隙内能够用于传输数据信道的符号长度N。例如,网络设备根据LBT的结果,确定该符号长度N。
在330中,网络设备根据所述符号长度N,发送所述数据信道。
在340中,终端设备根据预设的用于接收控制信道的候选符号位置,检测控制信道。
在350中,终端设备根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N。
在360中,终端设备根据所述符号长度N,接收数据信道。
其中,L和N为正整数。
当N≥L时,网络设备可以根据预设的用于传输数据信道的起始符号位置和符号长度L,发送符号长度为L的该数据信道。
但是,当N<L时,由于可用的符号长度N不足够用于传输符号长度为L的数据信道,因此,本申请实施例提出,网络设备根据LBT的结果,确定时隙内实际能够用于传输数据信道的符号数量N,并基于该符号数量N进行数据信道的传输。相应地,终端设备根据实际检测到控制信道的位置,确定该时隙内实际能够用于传输数据信道的符号数量N,并基于该符号数量N接收该数据信道。这样,网络设备与终端设备之间的数据信道传输能够匹配当前的信道情况,保证了非授权频段上信道的有效传输。
本申请实施例中,所述的“符号”例如可以是正交频分多路复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号(symbol)(OFDM Symbol,OS)。
另外,所述的“预设的”,可以是网络设备配置的,或者是预配置的例如协议中约定的。例如,预设的符号长度和符号起始位置,可以是网络设备半静态配置的、动态配置的、或者协议约定的。
并且,所述的“能够用于传输”表示一种能力,具有该能力后可以进行传输也可以不进行传输。例如,时隙内能够用于传输数据信道的符号长度N,表示这N个符号为数据信道传输可以使用的符号,但是数据信道可以在该N个符号上传输,也可以在该N个符号中的部分符号上传输。
网络设备可以事先按照时隙内固定的符号起始位置S和符号数量L准备待传输的数据信道,该数据信道的起始符号位置S和占用的符号长度L可以采用上述表一中的符号起始位置S和符号长度L。网络设备由于LBT的原因,在该时隙内获得的实际能够用于传输数据信道的符号长度N可能会小于符号长度L。这时,网络设备可以根据符号N对数据信道进行处理,并向终端设备发送处理后的数据信道。
在一种实现方式中,如图4所示,330可以包括331和332,360可以包括361。
在331中,网络设备根据所述符号长度N,对所述数据信道的L个符号中至少一个符号上的数据进行打孔。
在332中,网络设备发送打孔后的所述数据信道。
在361中,终端设备接收打孔后的所述数据信道。
也就是说,N<L时,网络设备对之前准备的符号长度为L的数据信道进行打孔处理,使得该数据信道能够在该时隙内的该N个符号上进行传输。
可选地,所述至少一个符号的符号长度为L-N。即,被打孔掉的符号数量为L-N。
这时,在332中,网络设备可以在所述时隙内能够用于传输数据信道的N个符号上,发送打孔后的所述数据信道。
相应地,在361中,所述终端设备在所述时隙内能够用于传输数据信道的N个符号上,接收打孔后的所述数据信道。
其中,所述至少一个符号例如为所述数据信道的L个符号中的前L-N个符号,或者,所述至少一个符号例如为所述数据信道的L个符号中的后L-N个符号。
在对数据信道进行打孔时,应当考虑该数据信道对应的解调参考信号(Demodulation Reference Signal,DMRS)。DMRS为用于解调PDSCH的参考信号。在LTE中,可以使用小区特定参考信号(Cell Specific Reference Signal,CRS)进行PDSCH的解码。但是在NR中没有CRS,因此,需要使用DMRS专门用来解调PDSCH。
其中,DMRS和数据信道可以通过频分复用的方式占用相同的符号。通常,DMRS位于数据信道资源的前1个或前2个符号上。例如,对于在L个符号上传输的数据信道,用于解调该数据信道的DMRS可以占用这L个符号中的第一个符号上的部分频域资源进行传输。
这时,在对所述数据信道的L个符号中的前L-N个符号进行打孔时,不应对DMRS所在的符号进行打孔。即,所述数据信道的L个符号中的前L-N个符号应是该L个符号中除DMRS符号之外的前L-N个符号。在对数据信道的L个符号内的数据进行打孔时,DMRS所在的符号内的数据不被打孔,该符号内的数据和DMRS均可以平移至该N个符号中的第一个符号上进行传输。后面结合图5(a)、图5(b)和图5(c)再进行详细描述。
以下,均以DMRS与数据信道频分复用,且DMRS占用数据信道资源的第一个符号为例,对本申请各实施例进行描述。
可选地,在320中,所述网络设备根据LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,包括:所述网络设备根据LBT的结果,在预设的用于发送控制信道的候选符号位置中,确定实际发送控制信道的符号位置;所述网络设备根据实际发送控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N。
由于数据信道通常位于调度该数据信道的控制信道之后,因此,网络设备获得信道使用权后,会先在具有信道使用权的符号中的预设符号位置上发送控制信道,并根据剩余的符号数量确定时隙内能够用于传输数据信道的符号数量N。
本申请实施例中,可以配置一个或者多个用于传输控制信道的符号位置,或者也可以理解为配置一个或者多个PDCCH搜索空间(search space)。其中,每个PDCCH搜索空间对应一个符号起始位置和符号长度。终端设备是在PDCCH搜索空间中对PDCCH进行盲检的。
下面分别以图5(a)、图5(b)和图5(c)为例描述所述数据信道的L个符号中的前L-N个符号被打孔的情况。
假设时隙n内预设的符号起始位置S为时隙n内的符号3,时隙n内预设的数据信道的符号长度L为11个符号,即网络设备原本打算在时隙n的符号3至符号11上传输PDSCH。其中,符号3上不仅传输PDSCH,还传输用于解调该PDSCH的DMRS。
并且,假设PDCCH搜索空间的符号长度为3个符号,符号起始位置分别为符号0、符号3、符号6。
网络设备可以先按照S=3,L=11来准备PDSCH,并准备在符号0至符号2上发送的用于调度该PDSCH的PDCCH。
以下附图中,“×”标识LBT失败,即没有获得信道使用权。数字“OS 0-OS13”表示时隙内的符号编号,每个时隙包括14个符号,例如,符号OS0表示该时隙内的第一个符号,OS1表示该时隙内的第二个符号,以此类推。数字“#0-#13”表示网络设备根据 符号起始位置S和符号长度L准备的数据信道中承载的数据,例如,数据#3表示网络设备准备的期望在符号3上发送的数据,数据#4表示网络设备准备的期望在符号4上发送的数据,数据#13表示网络设备准备的期望在符号13上发送的数据。但是数据#3至数据#13由于LBT的原因,实际在哪个符号上传输是不确定的。控制信道与数据信道类似。
如图5(a)所示,网络设备通过LBT在符号0上就已经获得信道使用权,即LBT成功。则网络设备可以在符号0至符号2上发送用于调度该PDSCH的PDCCH,在符号3上发送该PDSCH的数据#3以及DMRS,并在符号4至符号11上分别发送该PDSCH的数据#4至数据#11。
如图5(b)所示,网络设备通过LBT在符号3上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟(平移)至符号3至符号5上进行发送。那么能够用于传输PDSCH的符号数量N=8。由于N=8,L=11,N<L,因此网络设备可以对PDSCH的L个符号中的前L-N=3个符号上的数据进行打孔,但是由于符号3上还包括DMRS,那么符号3上的数据#3不被打孔,而是符号4至符号6上的数据被打孔。这样,网络设备获得信道使用权后,在符号3至符号5上发送PDCCH,在符号6上发送PDSCH的数据#3以及DMRS,并在符号7至符号13上分别发送该PDSCH的数据#7至数据#13。
如图5(c)所示,网络设备通过LBT在符号6上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟(平移)至符号6至符号8上进行发送。那么能够用于传输PDSCH的符号数量N=5。由于N=5,L=11,N<L,因此网络设备可以对PDSCH的L个符号中的前L-N=6个符号上的数据进行打孔,由于符号3上还包括DMRS,那么符号3上的数据#3不被打孔,而是符号4至符号9上的数据被打孔。这样,网络设备获得信道使用权后,在符号6至符号8上发送PDCCH,在符号9上发送PDSCH的数据#3以及DMRS,并在符号10至符号13上分别发送该PDSCH的数据#10至数据#13。
相应地,终端设备按照预设的PDCCH搜索空间的符号长度和符号起始位置,进行PDCCH的盲检,例如符号0至符号2、符号3至符号5、符号6至符号8分别为三个PDCCH搜索空间。如果终端设备在其中一个PDCCH搜索空间内检测到PDCCH,则其他PDCCH搜索空间内不用再做PDCCH的盲检。
对于图5(a),终端设备可以在符号0至符号2内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号3至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置也为符号3至符号13,则按照预设的速率匹配方式对PDSCH进行速率匹配。
对于图(b),终端设备可以在符号3至符号5内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号6至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置为符号6至符号13,而并非预设的符号3至符号13,那么终端设备可以知道PDSCH的三个符号上的数据被打孔了,于是基于打孔后的PDSCH进行速率匹配。
对于图5(c),终端设备可以在符号6至符号8内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号9至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置为符号9至符号13,而并非预设的符号3至符号13,那么终端设备可以知道PDSCH的六个符号上的数据被打孔了,于是基于打孔后的PDSCH进行速率匹配。
可选地,本申请实施例中,小区公共的信号例如信道状态指示参考信号(Channel State Information-Reference Signal,CSI-RS)、同步信号块(Synchronizing Signal/PBCH Block,SSB或SS/PBCH Block)、定位参考信号(Positioning Reference Signal,PRS)、跟踪参考信号(Tracking Reference Signal,TRS)等信号的位置是固定的,当数据信道或者控制 信道平移时,这些信号的位置保持不变。例如,网络设备在预配置的用于发送CSI-RS的位置上LBT失败,则不发送CSI-RS,网络设备在预配置的用于发送CSI-RS的位置上LBT成功,则在预配置的该位置上发送CSI-RS。该CSI-RS不会因为PDSCH的平移而平移。
下面分别以图6(a)、图6(b)和图6(c)为例描述所述数据信道的L个符号中的后L-N个符号被打孔的情况。
假设时隙n内预设的符号起始位置S为时隙n内的符号3,时隙n内预设的符号长度L为11个符号,即网络设备原本打算在时隙n的符号3至符号11上传输PDSCH。其中,符号3上不仅传输PDSCH,还传输用于解调该PDSCH的DMRS。
并且,假设PDCCH搜索空间的符号长度为3个符号,符号起始位置分别为符号0、符号3、符号6。
网络设备可以先按照S=3,L=11来准备PDSCH,并在符号0至符号2上发送调度该PDSCH的PDCCH。
如图6(a)所示,网络设备通过LBT在符号0上就已经获得信道使用权,即LBT成功。则网络设备可以在符号0至符号2上发送调度该PDSCH的PDCCH,在符号3上发送该PDSCH的数据#3以及DMRS,并在符号4至符号11上分别发送该PDSCH的数据#4至数据#11。
如图6(b)所示,网络设备通过LBT在符号3上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟(平移)至符号3至符号5上进行发送。那么能够用于传输PDSCH的符号数量N=8。由于N=8,L=11,N<L,因此网络设备可以对PDSCH的L个符号中的后L-N=3个符号上的数据进行打孔,即不传输PDSCH的数据#11至数据#13,并对数据#3至数据#10连同DMRS一起进行推迟(平移)。这样,网络设备获得信道使用权后,在符号3至符号5上发送PDCCH,在符号6上发送该PDSCH的数据#3以及DMRS,并在符号7至符号13上分别发送该PDSCH的数据#4至数据#10。
如图6(c)所示,网络设备通过LBT在符号6上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟(平移)至符号6至符号8上进行发送。那么能够用于传输PDSCH的符号数量N=5。由于N=5,L=11,N<L,因此网络设备可以对PDSCH的L个符号中的后L-N=6个符号上的数据进行打孔,即不传输PDSCH的数据#8至数据#13,并对数据#3至数据#7连同DMRS一起进行推迟(平移)。这样,网络设备获得信道使用权后,在符号6至符号8上发送PDCCH,在符号9上发送该PDSCH的数据#3以及DMRS,并在符号10至符号13上分别发送该PDSCH的数据#4至数据#7。
相应地,终端设备按照预设的PDCCH搜索空间的符号长度和符号起始位置,进行PDCCH的盲检,例如符号0至符号2、符号3至符号5、符号6至符号8分别为三个PDCCH搜索空间。如果终端设备在其中一个PDCCH搜索空间内检测到PDCCH,则其他PDCCH搜索空间内不用再做PDCCH的盲检。
对于图6(a),终端设备可以在符号0至符号2内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号3至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置也为符号3至符号13,则按照预设的速率匹配方式对PDSCH进行速率匹配。
对于图6(b),终端设备可以在符号3至符号5内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号6至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置为符号6至符号13,而并非预设的符号3至符号13,那么终端设备可以知道PDSCH的后三个符号上的数据被打孔了,于是基于打孔后的PDSCH进行速率匹配。
对于图6(c),终端设备可以在符号6至符号8内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号9至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置为符号9至符号13,而并非预设的符号3至符号13,那么终端设备可以知道PDSCH的后六个符号上的数据被打孔了,于是基于打孔后的PDSCH进行速率匹配。
该实施例中,网络设备根据LBT的结果,确定时隙内实际能够用于传输数据信道的符号数量N,并基于该符号数量N对原本准备好的数据信道进行打孔,使其能够在该时隙内的该N个符号内进行传输。相应地,终端设备根据实际检测到控制信道的位置,确定该符号数量N,并基于该符号数量N接收该数据信道。这样,网络设备与终端设备之间的数据信道传输能够匹配当前的信道情况,保证了非授权频段上信道的有效传输。
在另一种实现方式中,在330中,网络设备根据所述符号长度N,发送所述数据信道,包括:网络设备在所述时隙内能够用于传输数据信道的N个符号内,发送所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,发送所述数据信道的剩余数据中的部分或全部。
相应地,在360中,终端设备根据所述符号长度N,接收数据信道,包括:终端设备在所述时隙内能够用于传输数据信道的N个符号内,接收所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,接收所述数据信道的剩余数据中的至少部分数据。
也就是说,N<L时,网络设备对之前准备的符号长度为L的数据信道进行平移处理,使得该数据信道的一部分数据通过该时隙内的N个符号进行传输,而另一部分数据通过下一个时隙进行传输。
可选地,所述至少一个符号的符号长度为L-N。即,网络设备使用下一个时隙内的L-N个符号进行PDSCH的传输。
这时,在330中,所述网络设备在所述N个符号上发送所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上发送所述数据信道的L个符号中后L-N个符号上的数据。
相应地,所述终端设备在所述N个符号上接收所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上接收所述数据信道的L个符号中后L-N个符号上的数据。
下面分别以图7(a)、图7(b)和图7(c)为例描述网络设备如何在时隙n和时隙n+1上发送数据信道。
对于图7(a),网络设备通过LBT在符号0上就已经获得信道使用权。则网络设备可以在时隙n的符号0至符号2上发送调度该PDSCH的PDCCH,并在时隙n的符号3至符号11上发送该PDSCH以及DMRS,而不用占用时隙n+1内的符号资源。
对于图7(b),网络设备通过LBT在符号3上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟至符号3至符号5上进行发送。那么能够用于传输PDSCH的符号数量N=8。由于N=8,L=11,N<L,因此网络设备可以在时隙n的符号3至符号5上发送PDCCH,在时隙n的符号6至符号13上发送PDSCH的数据#3至数据#10以及DMRS,并在时隙n+1的符号0至符号2上发送PDSCH的数据#11至数据#13。
对于图7(c),网络设备通过LBT在符号6上才获得信道使用权。则网络设备原本准备在符号0至符号2上发送的PDCCH,需要推迟至符号6至符号8上进行发送。那么能够用于传输PDSCH的符号数量N=5。由于N=5,L=11,N<L,因此网络设备可以在时隙n的符号6至符号8上发送PDCCH,在时隙n的符号9至符号13上发送PDSCH的数据#3至数据#7以及DMRS,并在时隙n+1的符号0至符号5上发送PDSCH的数据#8至数据#13。
相应地,终端设备按照预设的PDCCH搜索空间的符号长度和符号起始位置,进行PDCCH的盲检,例如符号0至符号2、符号3至符号5、符号6至符号8分别为三个PDCCH搜索空间。如果终端设备在其中一个PDCCH搜索空间内检测到PDCCH,则其他PDCCH搜索空间内不用再做PDCCH的盲检。
对于图7(a),终端设备可以在时隙n的符号0至符号2内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号3至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置也为符号3至符号13,则在时隙n的符号3至符号13上接收PDSCH以及DMRS。
对于图7(b),终端设备可以在时隙n的符号3至符号5内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号6至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置并非预设的符号3至符号13,那么终端设备根据该DCI的指示,在时隙n的符号3至符号5上接收PDCCH,在时隙n的符号6至符号13上接收PDSCH的数据#3至数据#10以及DMRS,并在时隙n+1的符号0至符号2上接收PDSCH的数据#11至数据#13。
对于图7(c),终端设备可以在时隙n的符号6至符号8内检测到PDCCH,并确定时隙n内能够用于传输PDSCH的资源包括符号9至符号13。终端设备判断该PDCCH携带的DCI指示的PDSCH的资源位置并非符号3至符号13,那么终端设备根据该DCI的指示,在时隙n的符号6至符号8上接收PDCCH,在时隙n的符号9至符号13上接收PDSCH的数据#3至数据#7以及DMRS,并在时隙n+1的符号0至符号5上接收PDSCH的数据#8至数据#13。
该实施例中,网络设备根据LBT的结果,在时隙n内发送PDSCH的一部分数据,并在时隙n+1内发送PDSCH的另一部分数据,从而保证了非授权频段上信道的有效传输。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。例如,可以既对符号长度为L的数据信道即进行打孔,并且打孔后的数据信道也可以在两个时隙内可用符号上传输,本申请实施例对此不做限定,只要能够保证终端设备通过相同的规则可以获取待接收的该数据信道的符号长度等信息以便于速率匹配即可。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图8至图12,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图8是根据本申请实施例的网络设备800的示意性框图。如图8所示,该网络设备800包括:处理单元810和收发单元820。其中:
处理单元810,用于根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;
所述处理单元810还用于,根据先听后说LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;
收发单元820,用于根据所述符号长度N,发送所述数据信道。
因此,网络设备根据LBT的结果,确定时隙内能够用于传输数据信道的符号数量,并基于该符号数量进行数据信道的传输。相应地,终端设备根据实际检测到控制信道的位置,确定该时隙内能够用于传输数据信道的符号数量,并基于该符号数量接收该数据信道。这样,网络设备与终端设备之间的数据信道传输能够匹配当前的信道情况,保证了非授权频段上信道的有效传输。
可选地,所述处理单元810还用于:根据所述符号长度N,对所述数据信道的L个 符号中至少一个符号上的数据进行打孔;所述收发单元820具体用于:发送打孔后的所述数据信道。
可选地,所述至少一个符号的符号长度为L-N。
可选地,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
可选地,所述收发单元820具体用于:在所述时隙内能够用于传输数据信道的N个符号上,发送打孔后的所述数据信道。
可选地,所述收发单元820具体用于:在所述时隙内能够用于传输数据信道的N个符号内,发送所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,发送所述数据信道的剩余数据中的部分或全部。
可选地,所述至少一个符号的符号长度为L-N。
可选地,所述收发单元820具体用于:在所述N个符号上发送所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上发送所述数据信道的L个符号中后L-N个符号上的数据。
可选地,所述处理单元810具体用于:根据LBT的结果,在预设的用于发送控制信道的候选符号位置中,确定实际发送控制信道的符号位置;根据实际发送控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N。
应理解,该网络设备800可以执行上述方法300中由网络设备执行的相应操作,为了简洁,在此不再赘述。
图9是根据本申请实施例的终端设备900的示意性框图。如图9所示,该终端设备900包括:处理单元910和收发单元920。其中:
处理单元910,用于根据预设的用于接收控制信道的候选符号位置,检测控制信道;
所述处理单元910还用于,根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;
收发单元920,用于根据所述符号长度N,接收数据信道。
因此,网络设备根据LBT的结果,确定时隙内能够用于传输数据信道的符号数量,并基于该符号数量进行数据信道的传输。相应地,终端设备根据实际检测到控制信道的位置,确定该时隙内能够用于传输数据信道的符号数量,并基于该符号数量接收该数据信道。这样,网络设备与终端设备之间的数据信道传输能够匹配当前的信道情况,保证了非授权频段上信道的有效传输。
可选地,所述收发单元920具体用于:接收打孔后的所述数据信道,其中,所述数据信道的L个符号中至少一个符号上的数据被打孔。
可选地,所述至少一个符号的符号长度为L-N。
可选地,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
可选地,所述收发单元920具体用于:在所述时隙内能够用于传输数据信道的N个符号上,接收打孔后的所述数据信道。
可选地,所述收发单元920具体用于:在所述时隙内能够用于传输数据信道的N个符号内,接收所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,接收所述数据信道的剩余数据中的至少部分。
可选地,所述至少一个符号的符号长度为L-N。
可选地,所述收发单元920具体用于:在所述N个符号上接收所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上接收所述数据信道的L个符号中后L-N个符号上的数据。
应理解,该终端设备900可以执行上述方法300中由终端设备执行的相应操作,为 了简洁,在此不再赘述。
图10是本申请实施例提供的一种通信设备1000示意性结构图。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,芯片1100可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,芯片1100可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中所述的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例中的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存 储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是根据本申请实施例的通信系统1200的示意性框图。如图12所示,该通信系统1200包括网络设备1210和终端设备1220。
该网络设备1210用于:根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;根据LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;根据所述符号长度N,发送所述数据信道。
该终端设备1220用于:根据预设的用于接收控制信道的候选符号位置,检测控制信道;根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;根据所述符号长度N,接收数据信道。
可选地,该网络设备1210可以用于实现上述方法300中由网络设备实现的相应的功能,以及该网络设备1210的组成可以如图8中的网络设备800所示,为了简洁,在此不再赘述。
可选地,该终端设备1220可以用于实现上述方法300中由终端设备实现的相应的功能,以及该终端设备1220的组成可以如图9中的终端设备900所示,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。 可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本发明实施例中的术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (45)

  1. 一种信道传输的方法,其特征在于,所述方法包括:
    网络设备根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;
    所述网络设备根据先听后说LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;
    所述网络设备根据所述符号长度N,发送所述数据信道。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据所述符号长度N,发送所述数据信道,包括:
    所述网络设备根据所述符号长度N,对所述数据信道的L个符号中至少一个符号上的数据进行打孔;
    所述网络设备发送打孔后的所述数据信道。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个符号的符号长度为L-N。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备发送打孔后的所述数据信道,包括:
    所述网络设备在所述时隙内能够用于传输数据信道的N个符号上,发送打孔后的所述数据信道。
  6. 根据权利要求1所述的方法,其特征在于,所述网络设备根据所述符号长度N,发送所述数据信道,包括:
    所述网络设备在所述时隙内能够用于传输数据信道的N个符号内,发送所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,发送所述数据信道的剩余数据中的部分或全部。
  7. 根据权利要求6所述的方法,其特征在于,所述至少一个符号的符号长度为L-N。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备在所述时隙内能够用于传输数据信道的N个符号内,发送所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,发送所述数据信道的剩余数据中的部分或全部,包括:
    所述网络设备在所述N个符号上发送所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上发送所述数据信道的L个符号中后L-N个符号上的数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述网络设备根据LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,包括:
    所述网络设备根据LBT的结果,在预设的用于发送控制信道的候选符号位置中,确定实际发送控制信道的符号位置;
    所述网络设备根据实际发送控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N。
  10. 一种信道传输的方法,其特征在于,所述方法包括:
    终端设备根据预设的用于接收控制信道的候选符号位置,检测控制信道;
    所述终端设备根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;
    所述终端设备根据所述符号长度N,接收数据信道。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述符号长度N,接收数据信道,包括:
    所述终端设备接收打孔后的所述数据信道,其中,所述数据信道的L个符号中至少 一个符号上的数据被打孔。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个符号的符号长度为L-N。
  13. 根据权利要求12所述的方法,其特征在于,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备接收打孔后的所述数据信道,包括:
    所述终端设备在所述时隙内能够用于传输数据信道的N个符号上,接收打孔后的所述数据信道。
  15. 根据权利要求10所述的方法,其特征在于,所述终端设备根据所述符号长度N,接收数据信道,包括:
    所述终端设备在所述时隙内能够用于传输数据信道的N个符号内,接收所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,接收所述数据信道的剩余数据中的至少部分。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一个符号的符号长度为L-N。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备在所述时隙内能够用于传输数据信道的N个符号内,接收所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,接收所述数据信道的剩余数据中的至少部分,包括:
    所述终端设备在所述N个符号上接收所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上接收所述数据信道的L个符号中后L-N个符号上的数据。
  18. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于根据时隙内预设的用于传输数据信道的起始符号位置和符号长度L,生成数据信道,L为正整数;
    所述处理单元还用于,根据先听后说LBT的结果,确定所述时隙内能够用于传输数据信道的符号长度N,N为正整数,N<L;
    收发单元,用于根据所述符号长度N,发送所述数据信道。
  19. 根据权利要求18所述的网络设备,其特征在于,所述处理单元还用于:
    根据所述符号长度N,对所述数据信道的L个符号中至少一个符号上的数据进行打孔;
    所述收发单元具体用于:发送打孔后的所述数据信道。
  20. 根据权利要求19所述的网络设备,其特征在于,所述至少一个符号的符号长度为L-N。
  21. 根据权利要求20所述的网络设备,其特征在于,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
  22. 根据权利要求21所述的网络设备,其特征在于,所述收发单元具体用于:
    在所述时隙内能够用于传输数据信道的N个符号上,发送打孔后的所述数据信道。
  23. 根据权利要求18所述的网络设备,其特征在于,所述收发单元具体用于:
    在所述时隙内能够用于传输数据信道的N个符号内,发送所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,发送所述数据信道的剩余数据中的部分或全部。
  24. 根据权利要求23所述的网络设备,其特征在于,所述至少一个符号的符号长度为L-N。
  25. 根据权利要求24所述的网络设备,其特征在于,所述收发单元具体用于:
    在所述N个符号上发送所述数据信道的L个符号中前N个符号上的数据,并在所述 下一个时隙的所述至少一个符号上发送所述数据信道的L个符号中后L-N个符号上的数据。
  26. 根据权利要求18至25中任一项所述的网络设备,其特征在于,所述处理单元具体用于:
    根据LBT的结果,在预设的用于发送控制信道的候选符号位置中,确定实际发送控制信道的符号位置;
    根据实际发送控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N。
  27. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于根据预设的用于接收控制信道的候选符号位置,检测控制信道;
    所述处理单元还用于,根据实际接收所述控制信道的符号位置,确定所述时隙内能够用于传输数据信道的符号长度N,其中,所述符号长度N小于预设的用于传输数据信道的符号长度L,N和L为正整数;
    收发单元,用于根据所述符号长度N,接收数据信道。
  28. 根据权利要求27所述的终端设备,其特征在于,所述收发单元具体用于:
    接收打孔后的所述数据信道,其中,所述数据信道的L个符号中至少一个符号上的数据被打孔。
  29. 根据权利要求28所述的终端设备,其特征在于,所述至少一个符号的符号长度为L-N。
  30. 根据权利要求29所述的终端设备,其特征在于,所述至少一个符号为所述数据信道的L个符号中前L-N个符号或后L-N个符号。
  31. 根据权利要求30所述的终端设备,其特征在于,所述收发单元具体用于:
    在所述时隙内能够用于传输数据信道的N个符号上,接收打孔后的所述数据信道。
  32. 根据权利要求27所述的终端设备,其特征在于,所述收发单元具体用于:
    在所述时隙内能够用于传输数据信道的N个符号内,接收所述数据信道的部分数据,并在所述时隙的下一个时隙的至少一个符号上,接收所述数据信道的剩余数据中的至少部分。
  33. 根据权利要求32所述的终端设备,其特征在于,所述至少一个符号的符号长度为L-N。
  34. 根据权利要求33所述的终端设备,其特征在于,所述收发单元具体用于:
    在所述N个符号上接收所述数据信道的L个符号中前N个符号上的数据,并在所述下一个时隙的所述至少一个符号上接收所述数据信道的L个符号中后L-N个符号上的数据。
  35. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至9中任一项所述的方法。
  36. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求10至17中任一项所述的方法。
  37. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1至9中任一项所述的方法。
  38. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求10至17中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序 使得计算机执行权利要求1至9中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求10至17中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至9中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求10至17中任一项所述的方法。
  43. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至9中任一项所述的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求10至17中任一项所述的方法。
  45. 一种通信系统,其特征在于,包括:如权利要求18至26任意一项所述的网络设备;以及,如权利要求27至34中任意一项所述的终端设备。
PCT/CN2019/074707 2019-02-03 2019-02-03 信道传输的方法和设备 WO2020155181A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980016768.9A CN111801983B (zh) 2019-02-03 2019-02-03 信道传输的方法和设备
PCT/CN2019/074707 WO2020155181A1 (zh) 2019-02-03 2019-02-03 信道传输的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074707 WO2020155181A1 (zh) 2019-02-03 2019-02-03 信道传输的方法和设备

Publications (1)

Publication Number Publication Date
WO2020155181A1 true WO2020155181A1 (zh) 2020-08-06

Family

ID=71840669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074707 WO2020155181A1 (zh) 2019-02-03 2019-02-03 信道传输的方法和设备

Country Status (2)

Country Link
CN (1) CN111801983B (zh)
WO (1) WO2020155181A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2023008018A (es) * 2021-01-06 2023-07-13 Huawei Tech Co Ltd Metodo y aparato de comunicacion inalambrica.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886805A (zh) * 2016-04-15 2018-11-23 英特尔Ip公司 实现多子帧调度的优化上行链路授权传输的系统、方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209330B (zh) * 2015-05-08 2019-06-28 电信科学技术研究院 一种下行数据重复传输方法及设备
CN106992847B (zh) * 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
JP6719749B2 (ja) * 2016-02-04 2020-07-08 華為技術有限公司Huawei Technologies Co.,Ltd. 上りデータ伝送方法および関連装置
DK3595397T3 (da) * 2016-06-11 2022-01-03 Beijing Xiaomi Mobile Software Co Ltd Listen-before-talk-procedure i en trådløs indretning og trådløs indretning
CN107888349A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种时隙时分复用方法及装置、信息传输方法及装置
CN109150475A (zh) * 2017-06-27 2019-01-04 深圳市金立通信设备有限公司 一种信息传输方法、基站及终端

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886805A (zh) * 2016-04-15 2018-11-23 英特尔Ip公司 实现多子帧调度的优化上行链路授权传输的系统、方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "TxOP Frame Structure for NR Unlicensed", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811249, 29 September 2018 (2018-09-29), XP051518652 *
QUALCOMM INCORPORATED: "TxOP Frame Structure for NR Unlicensed", 3GPP TSG RAN WG1 MEETING #95 R1-1813410, 3 November 2018 (2018-11-03), XP051479732 *

Also Published As

Publication number Publication date
CN111801983B (zh) 2022-01-04
CN111801983A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2018028570A1 (zh) 参考信号发送方法和参考信号发送装置
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
US11632207B2 (en) Method and apparatus for transmitting uplink signal
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
WO2020107488A1 (zh) 同步信号块ssb传输方式的确定方法和设备
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
WO2018082678A1 (zh) 通信方法和通信装置
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
WO2020150877A1 (zh) 用于非授权频谱的通信方法和设备
WO2020155182A1 (zh) 信道传输的方法和设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2020001183A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
WO2019213951A1 (zh) 下行信道的接收方法和终端设备
WO2021098570A1 (en) Method for determining prach occasion and terminal device, network device
WO2019071498A1 (zh) 无线通信方法、网络设备和终端设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020155181A1 (zh) 信道传输的方法和设备
WO2020155168A1 (zh) 用于非授权频谱的无线通信方法、网络设备和终端设备
WO2021062665A1 (zh) 系统信息的传输方法和通信装置
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
US12075434B2 (en) Method for information feedback, terminal device and network device
WO2024094089A1 (zh) 通信方法、装置、芯片及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913015

Country of ref document: EP

Kind code of ref document: A1