WO2020153609A1 - Variable inductance device and control method therefor - Google Patents
Variable inductance device and control method therefor Download PDFInfo
- Publication number
- WO2020153609A1 WO2020153609A1 PCT/KR2019/018054 KR2019018054W WO2020153609A1 WO 2020153609 A1 WO2020153609 A1 WO 2020153609A1 KR 2019018054 W KR2019018054 W KR 2019018054W WO 2020153609 A1 WO2020153609 A1 WO 2020153609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductance
- variable
- coils
- coil
- resistance value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F21/00—Variable inductances or transformers of the signal type
- H01F21/02—Variable inductances or transformers of the signal type continuously variable, e.g. variometers
Definitions
- the present invention relates to a variable inductance device and a control method thereof, and more particularly, to an inductance variable device capable of variable control of inductance by a coupling inductor and a control method thereof.
- an inductor means a coil that induces a voltage in proportion to the amount of change in current.
- the inductance exhibits a property that interferes with the flow of electric current due to a change in the magnetic field generated inside or around the coil.
- Inductors used in power conversion circuits such as DC-DC converters, DC-AC inverters, etc. mainly have functions of current smoothing, current suppression, energy storage, and removal of high-frequency components of voltage and current due to semiconductor switching elements.
- Most inductors used in power conversion circuits have a fixed inductance value. Accordingly, it is not possible to properly respond to the newly required inductance value due to the surrounding environment or circuit changes.
- variable inductors can be used.
- the variable inductor mainly has a structure including a coil and a core.
- Conventional variable inductors change the position of the core or generate additional magnetic force in the core to vary the inductance value using the magnetic saturation of the coil.
- An aspect of the present invention provides an inductance variable device and a control method for varying the inductance by using a characteristic in which a current flow is distributed according to a resistance value in a parallel connection structure.
- the inductance variable device of the present invention for solving the above problems is connected to a coupling inductor formed by winding a plurality of coils on a single core and at least one coil among the plurality of coils, and is connected to the plurality of coils according to a change in resistance value. It includes a variable resistor for dispersing the flowing current to vary the inductance by the coupling inductor.
- the resistance value between the drain electrode and the source electrode may be changed according to the gate voltage of the variable resistor.
- the feedback control method may further include a subtle controller that generates information on the gate voltage for generating a target inductance.
- the coupling inductor, the plurality of coils are formed by winding in the same direction on the single core, the current flowing in the plurality of coils may flow in the same direction with the single core as an axis.
- the coupling inductor may be formed by winding the plurality of coils in different directions on the single core so that current flowing through the plurality of coils flows in different directions with the single core as an axis.
- variable resistor may be connected in series to at least one coil of the plurality of coils.
- the inductance variable device of the present invention is a coupling inductor formed by winding a plurality of coils on a single core, and is connected in series to at least one coil of the plurality of coils, and receives current flowing through the plurality of coils according to a change in resistance value. It includes a variable resistor for dispersing and varying the inductance by the coupling inductor, and a degenerate controller for generating resistance value information of the variable resistor for generating a target inductance in a feedback control method.
- control method of the inductance variable device of the present invention in a control method of an inductance variable device capable of varying the inductance by a coupling inductor formed by winding a plurality of coils on a single core, detecting electrical parameters from the coupling inductor Step, calculating an error between the electrical parameter and a target parameter, and generating resistance value information of a variable resistor connected in series with at least one coil of the plurality of coils using the calculated error to follow the target parameter And changing resistance values of the variable resistors using the resistance value information so that currents flowing through the plurality of coils can be distributed by the variable resistors.
- the present invention it is possible to minimize its own power consumption for variable inductance, and when applied to a power conversion system, it is possible to generate inductance that can optimize the performance of the system, and it is possible to continuously vary inductance.
- FIG. 1 is a view showing a variable inductance device according to an embodiment of the present invention.
- FIG. 2 and 3 are circuit diagrams showing an example in which a variable resistor is connected in series to the first coil shown in FIG. 1.
- FIG. 4 is a flow chart of a control method of a variable inductance device according to an embodiment of the present invention.
- FIG. 1 is a view showing a variable inductance device according to an embodiment of the present invention.
- the inductance variable apparatus 1000 may include a combined inductor 100, a variable resistor 200, and a weak controller 300.
- the inductance variable apparatus 1000 has a fixed inductance by the coupling inductor 100, and it is possible to vary the inductance according to a change in the resistance value of the variable resistor 200.
- the inductance variable apparatus 1000 may generate a desired inductance value within a variable range of the inductance by the feedback controller-based subtle controller 300.
- the inductance variable apparatus 1000 can be used as a variable inductance element that is normally required in a power conversion system, and can generate an inductance that can optimize the performance of the system.
- the inductance variable apparatus 1000 may include a plurality of coils 110 and 120 wound on a single core 101.
- the first coil 110 and the second Two coils of the coil 120 are provided as an example.
- the first coil 110 and the second coil 120 are formed by being wound around the single core 101 in the same direction so that the current flowing through the first coil 110 and the second coil 120 accumulates the single core 101. It can flow in the same direction.
- the first coil 110 and the second coil 120 may be formed by being wound on a single core 101 in different directions.
- the current flowing through the first coil 110 and the second coil 120 is distributed and flows in different directions with the single core 101 as an axis, and thus the magnetic flux is canceled so that the current is very small. It can generate inductance.
- the variable resistance 200 is a variable resistance element capable of adjusting the resistance value.
- variable resistor 200 may be implemented as a transistor in which the resistance value between the drain and the source varies according to the gate voltage.
- the gate voltage of the transistor may be controlled to operate in an ohmic region, and the gate voltage may be controlled according to a signal applied from the subtle controller 300 described later.
- variable resistor 200 may be connected in series with at least one of the first coil 110 and the second coil 120.
- the variable resistor 200 is illustrated as being connected to the first coil 110, but may alternatively be connected to the second coil 120, or, the first coil 110 and the second coil 120 ).
- variable resistor 200 may vary the inductance by the coupling inductor 100 by dispersing the current flowing through the first coil 110 and the second coil 120 by adjusting the resistance value. A detailed description in this regard will be described later with reference to FIG. 2 and below.
- the floating controller 300 is a linear or nonlinear controller, and may generate resistance value information of the variable resistor 200 for generating a target inductance in a feedback control method.
- the poor controller 300 may detect a predetermined electrical parameter corresponding to the element associated with the inductance value from the coupling inductor 100.
- the floating controller 300 may be directly or indirectly connected to the coupling inductor 100 or directly or indirectly connected to the power conversion system to detect various electrical parameters.
- the poor controller 300 may detect electrical parameters including at least one of voltage, current, phase, and magnitude observed at a predetermined portion of the coupling inductor 100 or circuit elements constituting the power conversion system. have.
- the variable controller 300 can receive a target parameter from the outside, calculates an error by comparing the detected electrical parameter with the target parameter, and uses the calculated error to vary the resistance 200 required for tracking the target parameter It is possible to generate the resistance value information.
- the poor controller 300 sets the target parameter as a reference value, and allows the currently measured electrical parameter to follow the reference value. It can calculate mutual error in real time and generate resistance value information to offset the error. .
- the resistance value information may correspond to the gate voltage (or current) of the variable resistor 200 implemented by a transistor.
- the negative controller 300 may apply a signal corresponding to the resistance value information to the variable resistor 200 to control the resistance value to generate a target inductance from the variable resistor 200. That is, the poor controller 300 may control the resistance of the variable resistor 200 by a feedback control method, thereby ultimately controlling the inductance by the coupling inductor 100.
- FIG. 2 and 3 are circuit diagrams showing an example in which a variable resistor is connected in series to the first coil shown in FIG. 1.
- the first coil 110 and the second coil 120 illustrated in FIG. 1 may be wound on a single core 101 in different directions or wound in the same direction to form a coupling inductor 100.
- the first coil 110 and the second coil 120 are wound in different directions on the single core 101 to form the coupling inductor 100 as shown in FIG. 2, the first coil 110 and the second coil ( The current flowing through 120) may flow in different directions with the single core 101 as an axis.
- the current flowing in the single core 101 may flow in the same direction.
- the inductance generated by the coupling inductor 100 in which dots are formed in opposite directions as shown in FIG. 2 may have a smaller value than the inductance generated by the coupling inductor 100 formed in the same direction as in FIG. 3. .
- the dots are in the opposite direction, the magnetic flux in the single core 101 is canceled. That is, when comparing FIG. 2 and FIG. 3, there is a difference in the size of the fixed inductance by the coupling inductor 100, and the fact that the fixed inductance can be varied by the variable resistor 200 is the same.
- Equation 1 the current flowing through the coupling inductor 100
- Equation 2 the voltage across the coupling inductor 100
- Equation 1 I 2 is a current flowing through the second coil 120, I 1 is a current flowing through the first coil 110, and N is a winding ratio between the first coil 110 and the second coil 120. .
- L eq is an inductance generated by the coupling inductor 100, and may be calculated as in Equation 3 below, and R eq means the resistance value of the variable resistor 200.
- Equation 3 L m is the magnetization inductance, N is the winding ratio of the first coil 110 and the second coil 120, and R is the resistance value of the variable resistor 200.
- variable resistor 200 may be connected in series with the first coil 110.
- variable resistance 200 When the variable resistance 200 generates a sufficiently small resistance value, for example, a resistance value close to 0, the current may be distributed and flow toward the first coil 110 and the second coil 120. In this case, the coupling inductor 100 may generate a fixed inductance.
- variable resistance 200 When the variable resistance 200 generates a sufficiently large resistance value, for example, a maximum resistance value within a variable resistance range, current may flow only toward the second coil 120.
- the inductance by the coupling inductor 100 may have a value of a magnetization inductance by the second coil 120.
- variable resistor 200 may vary the resistance value to disperse the current flowing through the first coil 110 and the second coil 120 to vary the inductance by the coupling inductor 100. For example, when the resistance value of the variable resistor 200 increases, the inductance by the coupling inductor 100 may be increased.
- the inductance variable apparatus 1000 uses a characteristic in which a current flow is distributed according to a resistance value in a parallel connection structure, and thus a desired inductance within a variable range of the inductance of the coupling inductor 100. Can generate a value.
- the variable range of the coupling inductor 100 is between the inductance of the plurality of coils 110 and 120 wound on the single core 101 or the magnetization inductance of either coil 110 or 120 wound on the single core 101. It can be a range of.
- the inductance variable device 1000 can minimize its own power consumption for variable inductance, and when applied to a power conversion system, generates an inductance that can optimize the performance of the system And continuous inductance variable.
- FIG. 4 is a flow chart of a control method of a variable inductance device according to an embodiment of the present invention.
- the poor controller 300 may detect electrical parameters from the coupling inductor 100 (S10 ).
- the poor controller 300 may detect a predetermined electrical parameter corresponding to an element associated with an inductance value from the coupling inductor 100.
- the floating controller 300 may be directly or indirectly connected to the coupling inductor 100 or directly or indirectly connected to the power conversion system to detect various electrical parameters.
- the poor controller 300 may detect electrical parameters including at least one of voltage, current, phase, and magnitude observed at a predetermined portion of the coupling inductor 100 or circuit elements constituting the power conversion system. have.
- the poor controller 300 may calculate an error between the detected electrical parameter and the target parameter (S20), and generate resistance value information of the variable resistor 200 using the calculated error (S30).
- the poor controller 300 may receive a target parameter from the outside.
- the target parameter may be a parameter corresponding to an element associated with an inductance value required by the power conversion system.
- the sub-controller 300 sets the target parameter as a reference value, and causes the detected electrical parameter to follow the reference value, and calculates real-time errors and generates resistance value information to offset the errors.
- the resistance value information may correspond to the gate voltage (or current) of the variable resistor 200 implemented by a transistor.
- the poor controller 300 may adjust the resistance value of the variable resistor 200 using the resistance value information (S40).
- the negative controller 300 may apply a signal corresponding to the resistance value information to the variable resistor 200 to control the resistance value to generate a target inductance from the variable resistor 200. That is, the poor controller 300 may control the resistance of the variable resistor 200 by a feedback control method, thereby ultimately controlling the inductance value by the coupling inductor 100.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
- Networks Using Active Elements (AREA)
Abstract
A variable inductance device and a method for controlling the variable inductance device are disclosed. The variable inductance device comprises: a coupled inductor which is formed by a single core and multiple coils wound thereon; and a variable resistor which is connected to at least one coil among the multiple coils and distributes current flowing through the multiple coils according to changes in resistance value to vary inductance produced by the coupled inductor.
Description
본 발명은 인덕턴스 가변 장치 및 이의 제어방법에 관한 것으로서, 더욱 상세하게는 결합인덕터에 의한 인덕턴스의 가변 제어가 가능한 인덕턴스 가변 장치 및 이의 제어방법에 관한 것이다.The present invention relates to a variable inductance device and a control method thereof, and more particularly, to an inductance variable device capable of variable control of inductance by a coupling inductor and a control method thereof.
일반적으로 인덕터는 전류의 변화량에 비례해 전압을 유도하는 코일을 의미한다. 인덕턴스는 코일의 내부나 주위에 발생하는 자기장의 변화로 전류의 흐름을 방해하는 성질을 나타낸다.In general, an inductor means a coil that induces a voltage in proportion to the amount of change in current. The inductance exhibits a property that interferes with the flow of electric current due to a change in the magnetic field generated inside or around the coil.
DC-DC 컨버터, DC-AC 인버터 등과 같은 전력 변환 회로에 사용되는 인덕터의 경우 주로 전류 평활, 전류 억제, 에너지 저장, 반도체 스위칭 소자로 인한 전압과 전류의 고주파 성분 제거의 기능을 가진다. 전력 변환 회로에 이용되는 대부분의 인덕터는 고정된 인덕턴스 값을 가진다. 이에 따라 주변 환경이나 회로 변화로 인하여 새로이 요구되는 인덕턴스 값에 적절히 대응하지 못한다.Inductors used in power conversion circuits such as DC-DC converters, DC-AC inverters, etc. mainly have functions of current smoothing, current suppression, energy storage, and removal of high-frequency components of voltage and current due to semiconductor switching elements. Most inductors used in power conversion circuits have a fixed inductance value. Accordingly, it is not possible to properly respond to the newly required inductance value due to the surrounding environment or circuit changes.
그에 대한 대안으로 가변 인덕터를 사용할 수 있다. 가변 인덕터는 주로 코일과 코어를 포함한 구조를 가진다. 기존의 가변 인덕터는 코어의 위치를 변경하거나 코어에 부가적인 자기력을 생성하여 코일의 자기포화를 이용하여 인덕턴스 값을 가변시킨다.Alternatively, variable inductors can be used. The variable inductor mainly has a structure including a coil and a core. Conventional variable inductors change the position of the core or generate additional magnetic force in the core to vary the inductance value using the magnetic saturation of the coil.
하지만, 코어를 이동시키는 방식의 경우 코어의 무게가 무겁기 때문에 코어의 이동에 필요한 구동 액츄에이터의 전력 소모가 크다는 단점이 있으며, 부가적인 자기력을 이용하는 방식의 경우 자기 포화에 의한 에너지 손실이 유발되는 문제점이 있다.However, in the case of the method of moving the core, there is a disadvantage in that the power consumption of the driving actuator required for the movement of the core is large because the weight of the core is heavy, and in the case of the method using an additional magnetic force, energy loss due to magnetic saturation is caused. have.
본 발명의 일측면은 병렬 연결 구조에 있어서 저항값에 따라 전류의 흐름이 분산되는 특성을 이용하여 인덕턴스를 가변시키는 인덕턴스 가변 장치 및 이의 제어방법을 제공한다.An aspect of the present invention provides an inductance variable device and a control method for varying the inductance by using a characteristic in which a current flow is distributed according to a resistance value in a parallel connection structure.
상기 과제를 해결하기 위한 본 발명의 인덕턴스 가변 장치는 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터 및 상기 복수의 코일 중 적어도 하나의 코일과 연결되며, 저항값의 변화에 따라 상기 복수의 코일에 흐르는 전류를 분산시켜 상기 결합인덕터에 의한 인덕턴스를 가변시키는 가변저항을 포함한다.The inductance variable device of the present invention for solving the above problems is connected to a coupling inductor formed by winding a plurality of coils on a single core and at least one coil among the plurality of coils, and is connected to the plurality of coils according to a change in resistance value. It includes a variable resistor for dispersing the flowing current to vary the inductance by the coupling inductor.
한편, 상기 가변저항은, 게이트 전압에 따라 드레인 전극 및 소스 전극 간의 저항값이 변할 수 있다.Meanwhile, the resistance value between the drain electrode and the source electrode may be changed according to the gate voltage of the variable resistor.
또한, 피드백 제어 방식으로 목표로 하는 인덕턴스를 발생시키기 위한 상기 게이트 전압의 정보를 생성하는 부궤한 제어기를 더 포함할 수 있다.In addition, the feedback control method may further include a subtle controller that generates information on the gate voltage for generating a target inductance.
또한, 상기 결합인덕터는, 상기 복수의 코일이 상기 단일 코어에 동일한 방향으로 감겨져 형성되어 상기 복수의 코일에 흐르는 전류가 상기 단일 코어를 축으로 하여 동일한 방향으로 흐를 수 있다.In addition, the coupling inductor, the plurality of coils are formed by winding in the same direction on the single core, the current flowing in the plurality of coils may flow in the same direction with the single core as an axis.
또한, 상기 결합인덕터는, 상기 복수의 코일이 상기 단일 코어에 서로 다른 방향으로 감겨져 형성되어 상기 복수의 코일에 흐르는 전류가 상기 단일 코어를 축으로 하여 서로 다른 방향으로 흐를 수 있다.In addition, the coupling inductor may be formed by winding the plurality of coils in different directions on the single core so that current flowing through the plurality of coils flows in different directions with the single core as an axis.
또한, 상기 가변저항은, 상기 복수의 코일 중 적어도 하나의 코일에 직렬 연결될 수 있다.Further, the variable resistor may be connected in series to at least one coil of the plurality of coils.
한편, 본 발명의 인덕턴스 가변 장치는 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터, 상기 복수의 코일 중 적어도 하나의 코일에 직렬 연결되며, 저항값의 변화에 따라 상기 복수의 코일에 흐르는 전류를 분산시켜 상기 결합인덕터에 의한 인덕턴스를 가변시키는 가변저항 및 피드백 제어 방식으로 목표로 하는 인덕턴스를 발생시키기 위한 상기 가변저항의 저항값 정보를 생성하는 부궤한 제어기를 포함한다.On the other hand, the inductance variable device of the present invention is a coupling inductor formed by winding a plurality of coils on a single core, and is connected in series to at least one coil of the plurality of coils, and receives current flowing through the plurality of coils according to a change in resistance value. It includes a variable resistor for dispersing and varying the inductance by the coupling inductor, and a degenerate controller for generating resistance value information of the variable resistor for generating a target inductance in a feedback control method.
한편, 본 발명의 인덕턴스 가변 장치의 제어방법은, 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터에 의한 인덕턴스의 가변이 가능한 인덕턴스 가변 장치의 제어방법에 있어서, 상기 결합인덕터로부터 전기적 파라미터를 검출하는 단계, 상기 전기적 파라미터와 목표 파라미터 간의 오차를 산출하는 단계, 상기 목표 파라미터를 추종할 수 있도록 산출한 오차를 이용하여 상기 복수의 코일 중 적어도 하나의 코일과 직렬 연결되는 가변저항의 저항값 정보를 생성하는 단계 및 상기 가변저항에 의해 상기 복수의 코일에 흐르는 전류가 분산될 수 있도록 상기 저항값 정보를 이용하여 상기 가변저항의 저항값을 변화시키는 단계를 포함한다.On the other hand, the control method of the inductance variable device of the present invention, in a control method of an inductance variable device capable of varying the inductance by a coupling inductor formed by winding a plurality of coils on a single core, detecting electrical parameters from the coupling inductor Step, calculating an error between the electrical parameter and a target parameter, and generating resistance value information of a variable resistor connected in series with at least one coil of the plurality of coils using the calculated error to follow the target parameter And changing resistance values of the variable resistors using the resistance value information so that currents flowing through the plurality of coils can be distributed by the variable resistors.
본 발명에 따르면, 인덕턴스 가변을 위한 자체 전력 소모를 최소화할 수 있으며, 전력변환시스템에 적용되는 경우, 시스템의 성능을 최적화 할 수 있는 인덕턴스를 발생시킬 수 있고, 연속적인 인덕턴스 가변이 가능하다.According to the present invention, it is possible to minimize its own power consumption for variable inductance, and when applied to a power conversion system, it is possible to generate inductance that can optimize the performance of the system, and it is possible to continuously vary inductance.
도 1은 본 발명의 일 실시예에 따른 인덕턴스 가변 장치를 보여주는 도면이다.1 is a view showing a variable inductance device according to an embodiment of the present invention.
도 2 및 도 3은 도 1에 도시된 제1 코일에 가변저항이 직렬 연결된 것을 예로 들어 도시한 회로도이다.2 and 3 are circuit diagrams showing an example in which a variable resistor is connected in series to the first coil shown in FIG. 1.
도 4는 본 발명의 일 실시예에 다른 인덕턴스 가변 장치의 제어방법의 순서도이다.4 is a flow chart of a control method of a variable inductance device according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.For a detailed description of the present invention, which will be described later, reference is made to the accompanying drawings that illustrate, by way of example, specific embodiments in which the invention may be practiced. These examples are described in detail enough to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the invention are different, but need not be mutually exclusive. For example, certain shapes, structures, and properties described herein may be implemented in other embodiments without departing from the spirit and scope of the invention in connection with one embodiment. In addition, it should be understood that the location or placement of individual components within each disclosed embodiment can be changed without departing from the spirit and scope of the invention. Therefore, the following detailed description is not intended to be taken in a limiting sense, and the scope of the present invention, if appropriately described, is limited only by the appended claims, along with all ranges equivalent to those claimed. In the drawings, similar reference numerals refer to the same or similar functions across various aspects.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 인덕턴스 가변 장치를 보여주는 도면이다.1 is a view showing a variable inductance device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 결합인덕터(100), 가변저항(200) 및 부궤한 제어기(300)를 포함할 수 있다.Referring to FIG. 1, the inductance variable apparatus 1000 according to an embodiment of the present invention may include a combined inductor 100, a variable resistor 200, and a weak controller 300.
본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 결합인덕터(100)에 의한 고정 인덕턴스를 가지며, 가변저항(200)의 저항값 변화에 따라 인덕턴스의 가변이 가능하다.The inductance variable apparatus 1000 according to an embodiment of the present invention has a fixed inductance by the coupling inductor 100, and it is possible to vary the inductance according to a change in the resistance value of the variable resistor 200.
본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 피드백 제어 방식의 부궤한 제어기(300)에 의해 인덕턴스의 가변 범위 내에서 원하는 인덕턴스 값을 발생시킬 수 있다. The inductance variable apparatus 1000 according to an embodiment of the present invention may generate a desired inductance value within a variable range of the inductance by the feedback controller-based subtle controller 300.
이러한 본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 전력변환시스템에서 통상적으로 필요로 하는 가변 인덕턴스 소자로 사용될 수 잇으며, 시스템의 성능을 최적화 할 수 있는 인덕턴스를 발생시킬 수 있다.The inductance variable apparatus 1000 according to an embodiment of the present invention can be used as a variable inductance element that is normally required in a power conversion system, and can generate an inductance that can optimize the performance of the system.
본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 단일 코어(101)에 감겨진 복수의 코일(110, 120)을 포함할 수 있는데, 이하의 설명에서는 제1 코일(110) 및 제2 코일(120)의 두 개의 코일이 마련된 것을 예로 들어 설명한다.The inductance variable apparatus 1000 according to an embodiment of the present invention may include a plurality of coils 110 and 120 wound on a single core 101. In the following description, the first coil 110 and the second Two coils of the coil 120 are provided as an example.
제1 코일(110) 및 제2 코일(120)은 단일 코어(101)에 동일한 방향으로 감겨져 형성되어 제1 코일(110) 및 제2 코일(120)에 흐르는 전류가 단일 코어(101)를 축으로 하여 동일한 방향으로 흐를 수 있다.The first coil 110 and the second coil 120 are formed by being wound around the single core 101 in the same direction so that the current flowing through the first coil 110 and the second coil 120 accumulates the single core 101. It can flow in the same direction.
또는 제1 코일(110) 및 제2 코일(120)은 단일 코어(101)에 서로 다른 방향으로 감겨져 형성될 수도 있다. 이와 같은 경우, 제1 코일(110) 및 제2 코일(120)에 흐르는 전류는 단일 코어(101)를 축으로 하여 서로 다른 방향으로 분배되어 흐르게 되며, 이에 자속(magnetic flux)이 상쇄되어 매우 작은 인덕턴스를 발생시킬 수 있다.Alternatively, the first coil 110 and the second coil 120 may be formed by being wound on a single core 101 in different directions. In this case, the current flowing through the first coil 110 and the second coil 120 is distributed and flows in different directions with the single core 101 as an axis, and thus the magnetic flux is canceled so that the current is very small. It can generate inductance.
가변저항(200)은 저항값의 조절이 가능한 가변 저항 소자이다.The variable resistance 200 is a variable resistance element capable of adjusting the resistance value.
예를 들면, 가변저항(200)은 게이트 전압에 따라 드레인-소스 간의 저항값이 변하는 트랜지스터로 구현될 수 있다. 이때, 트랜지스터는 오믹(ohmic) 영역에서 동작할 수 있도록 게이트 전압이 제어될 수 있으며, 이러한 게이트 전압은 후술하는 부궤한 제어기(300)로부터 인가되는 신호에 따라 제어될 수 있다.For example, the variable resistor 200 may be implemented as a transistor in which the resistance value between the drain and the source varies according to the gate voltage. At this time, the gate voltage of the transistor may be controlled to operate in an ohmic region, and the gate voltage may be controlled according to a signal applied from the subtle controller 300 described later.
가변저항(200)은 제1 코일(110) 및 제2 코일(120) 중 적어도 하나와 직렬 연결될 수 있다. 도 1에서는 가변저항(200)이 제1 코일(110)과 연결된 것을 예로 들어 도시하였으나, 이와 달리 제2 코일(120)과 연결될 수도 있고, 또는, 제1 코일(110) 및 제2 코일(120)에 각각 연결될 수도 있다.The variable resistor 200 may be connected in series with at least one of the first coil 110 and the second coil 120. In FIG. 1, the variable resistor 200 is illustrated as being connected to the first coil 110, but may alternatively be connected to the second coil 120, or, the first coil 110 and the second coil 120 ).
가변저항(200)은 저항값을 조절하여 제1 코일(110) 및 제2 코일(120)에 흐르는 전류를 분산시켜 결합인덕터(100)에 의한 인덕턴스를 가변시킬 수 있다. 이와 관련하여 구체적인 설명은 도 2 이하를 참조하여 후술한다.The variable resistor 200 may vary the inductance by the coupling inductor 100 by dispersing the current flowing through the first coil 110 and the second coil 120 by adjusting the resistance value. A detailed description in this regard will be described later with reference to FIG. 2 and below.
부궤한 제어기(300)는 선형 또는 비선형 제어기로, 피드백 제어 방식으로 목표로 하는 인덕턴스를 발생시키기 위한 가변저항(200)의 저항값 정보를 생성할 수 있다.The floating controller 300 is a linear or nonlinear controller, and may generate resistance value information of the variable resistor 200 for generating a target inductance in a feedback control method.
이를 위해, 부궤한 제어기(300)는 결합인덕터(100)로부터 인덕턴스 값과 연관된 요소에 해당하는 소정의 전기적 파라미터를 검출할 수 있다. 부궤한 제어기(300)는 결합인덕터(100)와 직접 또는 간접적으로 연결되거나, 전력변환시스템과 직접 또는 간접적으로 연결되어 다양한 전기적 파라미터를 검출할 수 있다.To this end, the poor controller 300 may detect a predetermined electrical parameter corresponding to the element associated with the inductance value from the coupling inductor 100. The floating controller 300 may be directly or indirectly connected to the coupling inductor 100 or directly or indirectly connected to the power conversion system to detect various electrical parameters.
예를 들면, 부궤한 제어기(300)는 결합인덕터(100) 또는 전력변환시스템을 구성하는 회로 요소의 소정 부위에서 관측되는 전압, 전류, 위상 및 크기 중 적어도 하나를 포함하는 전기적 파라미터를 검출할 수 있다.For example, the poor controller 300 may detect electrical parameters including at least one of voltage, current, phase, and magnitude observed at a predetermined portion of the coupling inductor 100 or circuit elements constituting the power conversion system. have.
부궤한 제어기(300)는 외부로부터 목표 파라미터를 입력받을 수 있으며, 검출한 전기적 파라미터와 목표 파라미터를 비교하여 오차를 연산하고, 연산된 오차를 이용하여 목표 파라미터의 추종에 요구되는 가변저항(200)의 저항값 정보를 생성할 수 있다. The variable controller 300 can receive a target parameter from the outside, calculates an error by comparing the detected electrical parameter with the target parameter, and uses the calculated error to vary the resistance 200 required for tracking the target parameter It is possible to generate the resistance value information.
즉, 부궤한 제어기(300)는 목표 파라미터를 레퍼런스 값으로 두고, 현재 측정되는 전기적 파라미터가 레퍼런스 값을 추종하도록 하는데, 상호 간의 오차를 실시간 연산하고 오차를 상쇄하기 위한 저항값 정보를 생성할 수 있다.That is, the poor controller 300 sets the target parameter as a reference value, and allows the currently measured electrical parameter to follow the reference value. It can calculate mutual error in real time and generate resistance value information to offset the error. .
예를 들면, 저항값 정보는 트랜지스터로 구현되는 가변저항(200)의 게이트 전압(또는 전류)에 해당할 수 있다.For example, the resistance value information may correspond to the gate voltage (or current) of the variable resistor 200 implemented by a transistor.
부궤한 제어기(300)는 가변저항(200)으로 저항값 정보에 해당하는 신호를 인가하여, 가변저항(200)으로부터 목표로 하는 인덕턴스를 발생시키기 위한 저항값이 발생하도록 제어할 수 있다. 즉, 부궤한 제어기(300)는 피드백 제어 방식으로 가변저항(200)의 저항을 제어함으로써, 궁극적으로는 결합인덕터(100)에 의한 인덕턴스를 제어할 수 있다.The negative controller 300 may apply a signal corresponding to the resistance value information to the variable resistor 200 to control the resistance value to generate a target inductance from the variable resistor 200. That is, the poor controller 300 may control the resistance of the variable resistor 200 by a feedback control method, thereby ultimately controlling the inductance by the coupling inductor 100.
도 2 및 도 3은 도 1에 도시된 제1 코일에 가변저항이 직렬 연결된 것을 예로 들어 도시한 회로도이다.2 and 3 are circuit diagrams showing an example in which a variable resistor is connected in series to the first coil shown in FIG. 1.
도 1에 도시된 제1 코일(110) 및 제2 코일(120)는 단일 코어(101)에 서로 다른 방향으로 감겨지거나, 동일한 방향으로 감겨져 결합인덕터(100)를 형성할 수 있다.The first coil 110 and the second coil 120 illustrated in FIG. 1 may be wound on a single core 101 in different directions or wound in the same direction to form a coupling inductor 100.
도 2 및 도 3을 비교하면, 제1 코일(110) 및 제2 코일(120)가 단일 코어(101)에 감긴 방향에 따라 도트가 달라짐을 확인할 수 있다. Comparing FIGS. 2 and 3, it can be seen that the dots differ depending on the direction in which the first coil 110 and the second coil 120 are wound around the single core 101.
도 2와 같이 제1 코일(110) 및 제2 코일(120)이 단일 코어(101)에 서로 다른 방향으로 감겨져 결합인덕터(100)를 형성하는 경우, 제1 코일(110) 및 제2 코일(120)에 흐르는 전류가 단일 코어(101)를 축으로 하여 서로 다른 방향으로 흐를 수 있다. When the first coil 110 and the second coil 120 are wound in different directions on the single core 101 to form the coupling inductor 100 as shown in FIG. 2, the first coil 110 and the second coil ( The current flowing through 120) may flow in different directions with the single core 101 as an axis.
도 3과 같이 제1 코일(110) 및 제2 코일(120)이 단일 코어(101)에 동일한 방향으로 감겨져 결합인덕터(100)를 형성하는 경우, 제1 코일(110) 및 제2 코일(120)에 흐르는 전류가 단일 코어(101)를 축으로 하여 동일한 방향으로 흐를 수 있다.When the first coil 110 and the second coil 120 are wound on the single core 101 in the same direction as shown in FIG. 3 to form the coupling inductor 100, the first coil 110 and the second coil 120 ), the current flowing in the single core 101 may flow in the same direction.
이때 도 2와 같이 도트가 서로 반대 방향에 형성된 결합인덕터(100)에 의해 발생하는 인덕턴스는 도 3과 같이 도트가 동일한 방향에 형성된 결합인덕터(100)에 의해 발생하는 인덕턴스보다 작은 값을 가질 수 있다. 도트가 반대 방향인 경우, 단일 코어(101) 내의 자속(magnetic flux)이 상쇄되기 때문이다. 즉, 도 2와 도 3을 비교하였을 때 결합인덕터(100)에 의한 고정 인덕턴스의 크기에 차이가 있을 뿐, 가변저항(200)에 의해 고정 인덕턴스가 가변될 수 있다는 점은 동일하다.At this time, the inductance generated by the coupling inductor 100 in which dots are formed in opposite directions as shown in FIG. 2 may have a smaller value than the inductance generated by the coupling inductor 100 formed in the same direction as in FIG. 3. . This is because when the dots are in the opposite direction, the magnetic flux in the single core 101 is canceled. That is, when comparing FIG. 2 and FIG. 3, there is a difference in the size of the fixed inductance by the coupling inductor 100, and the fact that the fixed inductance can be varied by the variable resistor 200 is the same.
예를 들면, 도 3에서 결합인덕터(100)에 흐르는 전류는 아래 수학식 1과 같이 나타낼 수 있으며, 결합인덕터(100)에 걸리는 전압은 아래 수학식 2와 같이 나타낼 수 있다.For example, in FIG. 3, the current flowing through the coupling inductor 100 may be represented by Equation 1 below, and the voltage across the coupling inductor 100 may be represented by Equation 2 below.
[수학식 1][Equation 1]
수학식 1에서 I2는 제2 코일(120)에 흐르는 전류, I1은 제1 코일(110)에 흐르는 전류 및 N은 제1 코일(110)과 제2 코일(120)의 권선비를 의미한다.In Equation 1, I 2 is a current flowing through the second coil 120, I 1 is a current flowing through the first coil 110, and N is a winding ratio between the first coil 110 and the second coil 120. .
[수학식 2][Equation 2]
수학식 2에서 Leq는 결합인덕터(100)에 의해 발생하는 인덕턴스로 아래 수학식 3과 같이 계산될 수 있으며, Req는 가변저항(200)의 저항값을 의미한다.In Equation 2, L eq is an inductance generated by the coupling inductor 100, and may be calculated as in Equation 3 below, and R eq means the resistance value of the variable resistor 200.
[수학식 3][Equation 3]
수학식 3에서 Lm은 자화인덕턴스, N은 제1 코일(110)과 제2 코일(120)의 권선비 및 R은 가변저항(200)의 저항값을 의미한다.In Equation 3, L m is the magnetization inductance, N is the winding ratio of the first coil 110 and the second coil 120, and R is the resistance value of the variable resistor 200.
도 2 및 도 3을 참조하면, 가변저항(200)은 제1 코일(110)과 직렬 연결될 수 있다. 2 and 3, the variable resistor 200 may be connected in series with the first coil 110.
가변저항(200)이 충분히 작은 저항값, 일예로, 0에 가까운 저항값을 발생시키는 경우, 전류는 제1 코일(110) 및 제2 코일(120) 측으로 분산되어 흐를 수 있다. 이와 같은 경우, 결합인덕터(100)는 고정 인덕턴스를 발생시킬 수 있다.When the variable resistance 200 generates a sufficiently small resistance value, for example, a resistance value close to 0, the current may be distributed and flow toward the first coil 110 and the second coil 120. In this case, the coupling inductor 100 may generate a fixed inductance.
가변저항(200)이 충분히 큰 저항값, 일예로, 저항 가변 범위 내에서의 최대 저항값을 발생시키는 경우, 전류는 제2 코일(120) 측으로만 흐를 수 있다. 이와 같은 경우, 결합인덕터(100)에 의한 인덕턴스는 실질적으로는 제2 코일(120)에 의한 자화 인덕턴스 값을 가질 수 있다.When the variable resistance 200 generates a sufficiently large resistance value, for example, a maximum resistance value within a variable resistance range, current may flow only toward the second coil 120. In this case, the inductance by the coupling inductor 100 may have a value of a magnetization inductance by the second coil 120.
이처럼 가변저항(200)은 저항값을 변화시켜 제1 코일(110) 및 제2 코일(120)에 흐르는 전류를 분산시킴으로써 결합인덕터(100)에 의한 인덕턴스를 가변시킬 수 있다. 예를 들면, 가변저항(200)의 저항값이 증가하는 경우, 결합인덕터(100)에 의한 인덕턴스를 증가시킬 수 있을 것이다.In this way, the variable resistor 200 may vary the resistance value to disperse the current flowing through the first coil 110 and the second coil 120 to vary the inductance by the coupling inductor 100. For example, when the resistance value of the variable resistor 200 increases, the inductance by the coupling inductor 100 may be increased.
이와 같은, 본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 병렬 연결 구조에 있어서 저항값에 따라 전류의 흐름이 분산되는 특성을 이용하여 결합인덕터(100)의 인덕턴스 가변 범위 내에서 원하는 인덕턴스 값을 발생시킬 수 있다. 여기서 결합인덕터(100)의 가변 범위는 단일 코어(101)에 감긴 복수의 코일(110, 120)에 의한 인덕턴스 또는 단일 코어(101)에 감긴 어느 하나의 코일(110, 120)에 의한 자화 인덕턴스 사이의 범위일 수 있다.As described above, the inductance variable apparatus 1000 according to an embodiment of the present invention uses a characteristic in which a current flow is distributed according to a resistance value in a parallel connection structure, and thus a desired inductance within a variable range of the inductance of the coupling inductor 100. Can generate a value. Here, the variable range of the coupling inductor 100 is between the inductance of the plurality of coils 110 and 120 wound on the single core 101 or the magnetization inductance of either coil 110 or 120 wound on the single core 101. It can be a range of.
이에 따라, 본 발명의 일 실시예에 따른 인덕턴스 가변 장치(1000)는 인덕턴스 가변을 위한 자체 전력 소모를 최소화할 수 있으며, 전력변환시스템에 적용되는 경우, 시스템의 성능을 최적화 할 수 있는 인덕턴스를 발생시킬 수 있고, 연속적인 인덕턴스 가변이 가능하다.Accordingly, the inductance variable device 1000 according to an embodiment of the present invention can minimize its own power consumption for variable inductance, and when applied to a power conversion system, generates an inductance that can optimize the performance of the system And continuous inductance variable.
이하, 도 4를 참조하여, 본 발명의 인덕턴스 가변 장치(1000)의 제어방법에 대하여 설명한다.Hereinafter, a control method of the inductance variable apparatus 1000 of the present invention will be described with reference to FIG. 4.
도 4는 본 발명의 일 실시예에 다른 인덕턴스 가변 장치의 제어방법의 순서도이다.4 is a flow chart of a control method of a variable inductance device according to an embodiment of the present invention.
도 4를 참조하면, 부궤한 제어기(300)는 결합인덕터(100)로부터 전기적 파라미터를 검출할 수 있다(S10).Referring to FIG. 4, the poor controller 300 may detect electrical parameters from the coupling inductor 100 (S10 ).
부궤한 제어기(300)는 결합인덕터(100)로부터 인덕턴스 값과 연관된 요소에 해당하는 소정의 전기적 파라미터를 검출할 수 있다. 부궤한 제어기(300)는 결합인덕터(100)와 직접 또는 간접적으로 연결되거나, 전력변환시스템과 직접 또는 간접적으로 연결되어 다양한 전기적 파라미터를 검출할 수 있다.The poor controller 300 may detect a predetermined electrical parameter corresponding to an element associated with an inductance value from the coupling inductor 100. The floating controller 300 may be directly or indirectly connected to the coupling inductor 100 or directly or indirectly connected to the power conversion system to detect various electrical parameters.
예를 들면, 부궤한 제어기(300)는 결합인덕터(100) 또는 전력변환시스템을 구성하는 회로 요소의 소정 부위에서 관측되는 전압, 전류, 위상 및 크기 중 적어도 하나를 포함하는 전기적 파라미터를 검출할 수 있다.For example, the poor controller 300 may detect electrical parameters including at least one of voltage, current, phase, and magnitude observed at a predetermined portion of the coupling inductor 100 or circuit elements constituting the power conversion system. have.
부궤한 제어기(300)는 검출한 전기적 파라미터와 목표 파라미터 간의 오차를 산출하고(S20), 산출한 오차를 이용하여 가변저항(200)의 저항값 정보를 생성할 수 있다(S30).The poor controller 300 may calculate an error between the detected electrical parameter and the target parameter (S20), and generate resistance value information of the variable resistor 200 using the calculated error (S30).
부궤한 제어기(300)는 외부로부터 목표 파라미터를 입력 받을 수 있다. 예를 들면, 목표 파라미터는 전력변환시스템에서 필요로 하는 인덕턴스 값과 연관된 요소에 해당하는 파라미터일 수 있다.The poor controller 300 may receive a target parameter from the outside. For example, the target parameter may be a parameter corresponding to an element associated with an inductance value required by the power conversion system.
부궤한 제어기(300)는 목표 파라미터를 레퍼런스 값으로 두고, 검출한 전기적 파라미터가 레퍼런스 값을 추종하도록 하는데, 상호 간의 오차를 실시간 연산하고 오차를 상쇄하기 위한 저항값 정보를 생성할 수 있다.The sub-controller 300 sets the target parameter as a reference value, and causes the detected electrical parameter to follow the reference value, and calculates real-time errors and generates resistance value information to offset the errors.
예를 들면, 저항값 정보는 트랜지스터로 구현되는 가변저항(200)의 게이트 전압(또는 전류)에 해당할 수 있다.For example, the resistance value information may correspond to the gate voltage (or current) of the variable resistor 200 implemented by a transistor.
부궤한 제어기(300)는 저항값 정보를 이용하여 가변저항(200)의 저항값을 조절할 수 있다(S40).The poor controller 300 may adjust the resistance value of the variable resistor 200 using the resistance value information (S40).
부궤한 제어기(300)는 가변저항(200)으로 저항값 정보에 해당하는 신호를 인가하여, 가변저항(200)으로부터 목표로 하는 인덕턴스를 발생시키기 위한 저항값이 발생하도록 제어할 수 있다. 즉, 부궤한 제어기(300)는 피드백 제어 방식으로 가변저항(200)의 저항을 제어함으로써, 궁극적으로는 결합인덕터(100)에 의한 인덕턴스 값을 제어할 수 있다.The negative controller 300 may apply a signal corresponding to the resistance value information to the variable resistor 200 to control the resistance value to generate a target inductance from the variable resistor 200. That is, the poor controller 300 may control the resistance of the variable resistor 200 by a feedback control method, thereby ultimately controlling the inductance value by the coupling inductor 100.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to embodiments, those skilled in the art understand that various modifications and changes can be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. Will be able to.
[부호의 설명][Description of codes]
1000: 인덕턴스 가변 장치1000: variable inductance
100: 결합인덕터100: coupling inductor
101: 단일 코어101: single core
110: 제1 코일110: first coil
120: 제2 코일120: second coil
200: 가변저항200: variable resistance
300: 부궤한 제어기300: poor controller
Claims (8)
- 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터; 및A coupling inductor formed by winding a plurality of coils on a single core; And상기 복수의 코일 중 적어도 하나의 코일과 연결되며, 저항값의 변화에 따라 상기 복수의 코일에 흐르는 전류를 분산시켜 상기 결합인덕터에 의한 인덕턴스를 가변시키는 가변저항을 포함하는 인덕턴스 가변 장치.The inductance variable device including a variable resistor connected to at least one coil among the plurality of coils and dispersing a current flowing through the plurality of coils according to a change in a resistance value to change an inductance by the coupling inductor.
- 제1항에 있어서,According to claim 1,상기 가변저항은,The variable resistance,게이트 전압에 따라 드레인 전극 및 소스 전극 간의 저항값이 변하는 트랜지스터로 구현되는 인덕턴스 가변 장치.A variable inductance device implemented as a transistor in which a resistance value between a drain electrode and a source electrode changes according to a gate voltage.
- 제2항에 있어서,According to claim 2,피드백 제어 방식으로 목표로 하는 인덕턴스를 발생시키기 위한 상기 게이트 전압의 정보를 생성하는 부궤한 제어기를 더 포함하는 인덕턴스 가변 장치.And a variable controller for generating information of the gate voltage for generating a target inductance by a feedback control method.
- 제1항에 있어서,According to claim 1,상기 결합인덕터는, The coupling inductor,상기 복수의 코일이 상기 단일 코어에 동일한 방향으로 감겨져 형성되어 상기 복수의 코일에 흐르는 전류가 상기 단일 코어를 축으로 하여 동일한 방향으로 흐르는 인덕턴스 가변 장치.The inductance variable device in which the plurality of coils are wound around the single core in the same direction, and the current flowing in the plurality of coils flows in the same direction with the single core as an axis.
- 제1항에 있어서,According to claim 1,상기 결합인덕터는,The coupling inductor,상기 복수의 코일이 상기 단일 코어에 서로 다른 방향으로 감겨져 형성되어 상기 복수의 코일에 흐르는 전류가 상기 단일 코어를 축으로 하여 서로 다른 방향으로 흐르는 인덕턴스 가변 장치.The inductance variable device in which the plurality of coils are formed by being wound on the single core in different directions, and the current flowing through the plurality of coils flows in different directions with the single core as an axis.
- 제1항에 있어서,According to claim 1,상기 가변저항은,The variable resistance,상기 복수의 코일 중 적어도 하나의 코일에 직렬 연결되는 인덕턴스 가변 장치.Variable inductance device connected in series to at least one coil of the plurality of coils.
- 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터; A coupling inductor formed by winding a plurality of coils on a single core;상기 복수의 코일 중 적어도 하나의 코일에 직렬 연결되며, 저항값의 변화에 따라 상기 복수의 코일에 흐르는 전류를 분산시켜 상기 결합인덕터에 의한 인덕턴스를 가변시키는 가변저항; 및A variable resistor connected in series to at least one coil of the plurality of coils and dispersing a current flowing through the plurality of coils according to a change in resistance value to vary an inductance by the coupling inductor; And피드백 제어 방식으로 목표로 하는 인덕턴스를 발생시키기 위한 상기 가변저항의 저항값 정보를 생성하는 부궤한 제어기를 포함하는 인덕턴스 가변 장치.A variable inductance device comprising a subtle controller that generates resistance value information of the variable resistor for generating a target inductance in a feedback control method.
- 단일 코어에 복수의 코일이 감겨져 형성되는 결합인덕터에 의한 인덕턴스의 가변이 가능한 인덕턴스 가변 장치의 제어방법에 있어서,In the control method of the inductance variable device capable of varying the inductance by a coupling inductor formed by winding a plurality of coils on a single core,상기 결합인덕터로부터 전기적 파라미터를 검출하는 단계;Detecting an electrical parameter from the coupling inductor;상기 전기적 파라미터와 목표 파라미터 간의 오차를 산출하는 단계;Calculating an error between the electrical parameter and a target parameter;상기 목표 파라미터를 추종할 수 있도록 산출한 오차를 이용하여 상기 복수의 코일 중 적어도 하나의 코일과 직렬 연결되는 가변저항의 저항값 정보를 생성하는 단계; 및Generating resistance value information of a variable resistor connected in series with at least one coil of the plurality of coils by using an error calculated to follow the target parameter; And상기 가변저항에 의해 상기 복수의 코일에 흐르는 전류가 분산될 수 있도록 상기 저항값 정보를 이용하여 상기 가변저항의 저항값을 변화시키는 단계를 포함하는 인덕턴스 가변 장치의 제어방법.And changing the resistance value of the variable resistance by using the resistance value information so that currents flowing through the plurality of coils can be distributed by the variable resistance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0008739 | 2019-01-23 | ||
KR1020190008739A KR102185658B1 (en) | 2019-01-23 | 2019-01-23 | Apparatus of generating an adjustable inductance and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020153609A1 true WO2020153609A1 (en) | 2020-07-30 |
Family
ID=71735829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/018054 WO2020153609A1 (en) | 2019-01-23 | 2019-12-19 | Variable inductance device and control method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102185658B1 (en) |
WO (1) | WO2020153609A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072624A (en) * | 2020-09-15 | 2020-12-11 | 国网山东省电力公司济南市历城区供电公司 | Fault current limiter based on iron core type split reactor |
CN114242407A (en) * | 2021-12-07 | 2022-03-25 | 北京铁路信号有限公司 | Multi-coil magnetic bar inductor and parameter calibration method thereof, antenna and communication equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140165A (en) * | 2002-10-17 | 2004-05-13 | Matsushita Electric Ind Co Ltd | Variable inductor |
JP2006245455A (en) * | 2005-03-07 | 2006-09-14 | Ricoh Co Ltd | Variable inductor |
KR20080011019A (en) * | 2006-07-28 | 2008-01-31 | 삼성전자주식회사 | Coil block and electronic device with the filtering coil block |
JP2016031963A (en) * | 2014-07-28 | 2016-03-07 | Tdk株式会社 | Coil component, coil component composite and transformer, and power supply device |
KR20180044616A (en) * | 2016-10-24 | 2018-05-03 | 숭실대학교산학협력단 | Variable inductor apparatus used for power conversion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001167944A (en) * | 1999-12-07 | 2001-06-22 | Tohoku Electric Power Co Inc | Series reactor control type voltage stabilizing device and method of stabilizing voltage |
JP3959371B2 (en) * | 2002-05-31 | 2007-08-15 | 株式会社東芝 | Variable inductor |
JP3957206B2 (en) * | 2003-06-26 | 2007-08-15 | イーエムシー株式会社 | Noise filter for safety ground wire and electronic device equipped with the same |
-
2019
- 2019-01-23 KR KR1020190008739A patent/KR102185658B1/en active IP Right Grant
- 2019-12-19 WO PCT/KR2019/018054 patent/WO2020153609A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140165A (en) * | 2002-10-17 | 2004-05-13 | Matsushita Electric Ind Co Ltd | Variable inductor |
JP2006245455A (en) * | 2005-03-07 | 2006-09-14 | Ricoh Co Ltd | Variable inductor |
KR20080011019A (en) * | 2006-07-28 | 2008-01-31 | 삼성전자주식회사 | Coil block and electronic device with the filtering coil block |
JP2016031963A (en) * | 2014-07-28 | 2016-03-07 | Tdk株式会社 | Coil component, coil component composite and transformer, and power supply device |
KR20180044616A (en) * | 2016-10-24 | 2018-05-03 | 숭실대학교산학협력단 | Variable inductor apparatus used for power conversion |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072624A (en) * | 2020-09-15 | 2020-12-11 | 国网山东省电力公司济南市历城区供电公司 | Fault current limiter based on iron core type split reactor |
CN114242407A (en) * | 2021-12-07 | 2022-03-25 | 北京铁路信号有限公司 | Multi-coil magnetic bar inductor and parameter calibration method thereof, antenna and communication equipment |
CN114242407B (en) * | 2021-12-07 | 2023-11-17 | 北京铁路信号有限公司 | Multi-coil magnetic rod inductor, parameter calibration method thereof, antenna and communication equipment |
Also Published As
Publication number | Publication date |
---|---|
KR20200091666A (en) | 2020-07-31 |
KR102185658B1 (en) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016148481A1 (en) | Wireless power receiver | |
WO2020153609A1 (en) | Variable inductance device and control method therefor | |
WO2012115323A1 (en) | Current regulation apparatus | |
KR101214172B1 (en) | Synchronous rectifier circuit and multiple output power supply device using the synchronous rectifier circuit | |
WO2018048057A1 (en) | Dc-dc converter and two-stage power converter comprising same | |
WO2019156401A1 (en) | Power conversion apparatus and ac-dc conversion apparatus | |
WO2015133704A1 (en) | Unit current transformer unit and electromagnetic induction type power supply device for linearly adjusting output power using same | |
WO2021040184A1 (en) | Coil driving device | |
EP3300234B1 (en) | Power conversion device | |
WO2017160098A1 (en) | Method and apparatus for reducing noise generated by rectification diode located at primary side of switching power supply | |
WO2019146878A1 (en) | Motor simulator | |
WO2023149773A1 (en) | Multi-phase feeding device for wireless power transmission and method of controlling same | |
WO2018074861A1 (en) | Magnetic induction power supply device | |
CN110739859A (en) | symmetrical half-bridge resonant open-loop DC proportional converter | |
WO2018159963A1 (en) | Induction heating cooker | |
EP3858107A1 (en) | Induction heating apparatus | |
WO2020101310A1 (en) | Reactance varying device using variable resistor, and method for controlling same | |
WO2022055292A1 (en) | Bridgeless power factor-improving converter | |
WO2020130357A1 (en) | Magnetic field energy harvesting connection method and device considering voltage drop in power line | |
CN109672322B (en) | Detection circuit and control circuit of switch converter | |
WO2021210850A1 (en) | Zero voltage switching circuit and converter comprising same | |
WO2014014248A1 (en) | Power supply circuit | |
WO2020122599A1 (en) | Induction heating apparatus | |
WO2018079967A1 (en) | Variable inductor device for power conversion | |
WO2013111954A1 (en) | Power saving current measuring apparatus and power converter using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19911660 Country of ref document: EP Kind code of ref document: A1 |