[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020153174A1 - Filter medium and filter using same - Google Patents

Filter medium and filter using same Download PDF

Info

Publication number
WO2020153174A1
WO2020153174A1 PCT/JP2020/000881 JP2020000881W WO2020153174A1 WO 2020153174 A1 WO2020153174 A1 WO 2020153174A1 JP 2020000881 W JP2020000881 W JP 2020000881W WO 2020153174 A1 WO2020153174 A1 WO 2020153174A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter medium
filter
base material
water
fiber layer
Prior art date
Application number
PCT/JP2020/000881
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 平本
陽 梅林
秀実 伊東
Original Assignee
Jnc株式会社
Jncファイバーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jncファイバーズ株式会社 filed Critical Jnc株式会社
Priority to CN202080006611.0A priority Critical patent/CN113164849A/en
Publication of WO2020153174A1 publication Critical patent/WO2020153174A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention relates to a filter medium for collecting dust and a filter using the filter medium.
  • High-performance filters such as High Efficiency Particulate Air (HEPA) filters have high collection efficiency, so they are filters for clean rooms, home appliances filters for vacuum cleaners and air purifiers, filters for building air conditioning, industrial use. It is used for automobile filters, automobile cabin filters, etc.
  • HEPA High Efficiency Particulate Air
  • Patent Document 1 proposes a glass fiber filter medium for achieving low pressure loss of a high performance filter.
  • the filter medium of Patent Document 1 is a filter medium having a composition gradient in the thickness direction by blending ultrafine glass short fibers having an average fiber diameter of 0.2 to 0.6 ⁇ m and synthetic fibers having an average fiber diameter of 3 to 5 ⁇ m and making a paper. Is what you get.
  • Patent Document 2 proposes an electret filter medium for increasing the dust holding amount.
  • the filter medium of Patent Document 2 has a laminated structure in which a polypropylene melt-blown non-woven fabric and a support layer are joined, and the melt-blown non-woven fabric has a fiber diameter of about 5 ⁇ m and a large number of small holes with a pore diameter of 1.0 mm or less.
  • the filter medium of Patent Document 2 is folded and used as a pleated filter.
  • Patent Document 3 proposes a filter medium which is a laminated body having a PTFE microporous membrane on the surface, which can easily remove dust. Since the PTFE microporous membrane is a dense membrane in which very thin fibrils are formed between resin blocks called nodes, the collected dust is easily deposited on the surface of the membrane, and such a filter medium is Dust can be washed off relatively easily.
  • JP 2012-077400 A JP, 2014-226629, A JP, 2016-209870, A
  • the filter medium of Patent Document 3 may be washed with water in order to remove dust adhering to the surface of the filter medium, but the PTFE microporous membrane does not always have sufficient droplet removability, and water containing dust cannot be removed. It may remain partially on the surface, and there was a problem in terms of self-cleaning and quick-drying.
  • the object of the present invention is to solve the above problems, high dust collection efficiency, low pressure loss, and easily remove dust with water without using chemicals, etc.
  • a filter material and a filter using the filter material are provided.
  • the present inventors have conducted intensive research to solve the above problems. As a result, it was confirmed that low pressure loss and high collection efficiency can be achieved at a high level by using an extremely fine fiber obtained by a method such as electrostatic spinning and keeping the average flow pore diameter to be a certain value or less.
  • a method such as electrostatic spinning and keeping the average flow pore diameter to be a certain value or less.
  • water repellency is imparted to such ultrafine fibers, the water repellency of the surface of the filter medium is improved, and the droplets on the surface are easily removed after washing, which improves the quick-drying property, while water permeates into the filter medium. It was found that it becomes difficult to do so and the cleaning property is impaired.
  • the present invention has been completed by finding that a filter medium that has both a dust collection efficiency and a pressure loss, and also has a cleaning property and a quick drying property, can be obtained by controlling the adhesion energy of water on the surface to a certain value or less.
  • the present invention has the following configurations that solve the above problems.
  • a filter medium comprising an ultrafine fiber layer and a base material layer, wherein the filter medium has an average flow pore diameter of 3.0 ⁇ m or less, and water has an adhesion energy of 3.0 mJ on the surface of the ultrafine fiber layer. /M 2 or less, a filter medium.
  • a water repellent is contained in the ultrafine fibers constituting the ultrafine fiber layer.
  • the water repellent contains fluorine.
  • a filter medium having high dust collection efficiency, low pressure loss, easy removal of dust with water without using chemicals, and excellent quick-drying property is provided. It becomes possible to do.
  • filter media suitable for home appliances filters for vacuum cleaners and air cleaners, air filters for building air conditioning, medium/high performance filters for industry, HEPA filters and ULPA filters for clean rooms, air filters for automobiles, etc. Can be provided.
  • FIG. 1 is an optical photograph of the filter medium of Example 1 after the cleaning property was evaluated.
  • FIG. 2 is an optical photograph of the filter medium of Comparative Example 1 after the cleaning property was evaluated.
  • the filter medium of the present invention is a filter medium including an ultrafine fiber layer and a base material layer, the average flow pore size of the filter medium is 3.0 ⁇ m or less, and the adhesion energy of water on the surface of the ultrafine fiber layer is It is characterized by being 3.0 mJ/m 2 or less.
  • the filter medium of the present invention comprises an ultrafine fiber layer.
  • the ultrafine fibers mean fibers having an average fiber diameter of less than 1 ⁇ m.
  • the ultrafine fibers constituting such an ultrafine fiber layer are not particularly limited, but the average fiber diameter is preferably in the range of 10 to 999.9 nm, more preferably 50 to 200 nm, and more preferably 80 to 150 nm. The range is more preferable.
  • the average fiber diameter of the ultrafine fibers is small, the specific surface area is large, and it is easy to obtain high filter characteristics such as high collection efficiency and low pressure loss.
  • the average fiber diameter of the ultrafine fibers is 10 nm or more, it is satisfactory. Yarn strength is obtained.
  • the coefficient of variation of the fiber diameter of the ultrafine fibers is not particularly limited, but is preferably 0.5 or less, more preferably 0.3 or less. If the coefficient of variation of the first fiber is 0.5 or less, it is possible to obtain excellent filter characteristics and easy cleaning.
  • the average fiber diameter can be measured by a known method. For example, using a scanning electron microscope, the ultrafine fibers are observed, and the diameter of 50 ultrafine fibers is measured using image analysis software. Is used as the average fiber diameter.
  • the resin forming the ultrafine fibers is not particularly limited, and includes polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyethylene, polypropylene, polyethylene terephthalate, polylactic acid, polyamide, polyurethane, polystyrene, polysulfone, polyether sulfone, and polyvinylidene fluoride. , Polyacrylonitrile, polymethylmethacrylate, polyglycolic acid, polycaprolactone, polyvinyl acetate, polycarbonate, polyimide, polyetherimide, cellulose, cellulose derivatives, chitin, chitosan, collagen, gelatin and copolymers thereof The material can be illustrated.
  • the resin forming the ultrafine fibers is preferably a hydrophobic resin, for example, a polyolefin resin, more preferably a fluorine resin, more preferably a polyvinylidene fluoride resin. Is more preferable.
  • the polyvinylidene fluoride-based resin is not particularly limited, and examples thereof include a vinylidene fluoride polymer, a vinylidene fluoride-hexafluoropropylene copolymer, and a vinylidene fluoride-trifluoroethylene copolymer.
  • the weight average molecular weight of the resin constituting the ultrafine fibers is not particularly limited, but is preferably in the range of 10,000 to 10,000,000, and more preferably in the range of 50,000 to 5,000,000. More preferably, it is more preferably 100,000 to 1,000,000.
  • the weight average molecular weight is 10,000 or more, it is excellent in the fiber forming property of the ultrafine fibers, and it becomes easy to obtain the ultrafine fibers having a small average fiber diameter, which is preferable. It is preferable because it has excellent plasticity and can be easily processed.
  • the ultrafine fibers constituting the ultrafine fiber layer contain a water repellent.
  • the water repellent is not particularly limited as long as it has an effect of lowering the adhesion energy of water, and is not particularly limited, and silicon-based silane compounds, fluorine-based silane compounds, fluorine-containing cage silsesquioxane, fluorine-modified polyurethane, silicon-modified Polyurethane can be exemplified.
  • a water repellent containing fluorine such as a fluorine-containing cage silsesquioxane or fluorine-modified polyurethane from the viewpoint of water repellency, workability and cost.
  • the content ratio of the water repellent agent is not particularly limited, but is preferably in the range of 0.1 to 20% by weight, and preferably 1 to 15% by weight, based on the ultrafine fibers and the fine particles generated during the spinning by the electrostatic spinning method. Is more preferable.
  • concentration of the water repellent is 0.1% by weight or more, the effect of lowering the adhesion energy of water can be obtained, and when it is 20% by weight or less, the effect commensurate with the amount used can be obtained, which is preferable.
  • the filter medium of the present invention is characterized in that the adhesion energy of water on the surface of the ultrafine fiber layer is 3.0 mJ/m 2 or less, and the adhesion energy of water indicates how easily water slides off the surface. It is an index to represent.
  • the adhesion energy (E) of water is determined by tilting the filter medium in which water is dropped on the ultrafine fiber layer, sliding angle ( ⁇ ) when water begins to slide, contact radius (r) of water at that time, and droplet It is calculated from the following formula (1) using the mass (m). A specific measuring method will be shown in Examples.
  • the water attachment energy in the ultrafine fiber layer depends on the fine uneven structure of the surface formed by the ultrafine fibers, the water repellency of the ultrafine fibers, and other properties.
  • the contact angle value is generally used as an index for evaluating the water repellency of the surface, but the contact angle alone is not enough to evaluate the droplet removal performance on the surface. It is preferable to use.
  • Filter medium of the present invention it is essential that water adhesion energy of the surface of the ultrafine fiber layer is 3.0 mJ / m 2 or less, more preferably not more than 2.0 mJ / m 2 or less.
  • the lower limit is not particularly limited, but can be 0.1 mJ/m 2 or more in consideration of industrial rationality.
  • the basis weight of the ultrafine fiber layer can be appropriately selected depending on the required filter performance, cleaning property, quick drying property and the like, and for example, a range of 0.1 to 20.0 g/m 2 can be exemplified. If a basis weight of 0.1 g / m 2 or more, the fiber matrix ultrafine fibers constituting becomes sufficient dense, it is possible to improve the collection efficiency and cleaning properties, when 20.0 g / m 2 or less, the pressure The loss can be reduced. From such a viewpoint, the basis weight of the ultrafine fiber layer is more preferably in the range of 0.2 to 10.0 g/m 2 , and further preferably in the range of 0.5 to 5.0 g/m 2. preferable.
  • the ultrafine fiber layer may contain components other than the above as long as the effects of the present invention are not significantly impaired.
  • the method for producing the ultrafine fiber layer is not particularly limited, but it is preferably produced by the electrostatic spinning method. By using the electrostatic spinning method, it is possible to uniformly spin the ultrafine fibers and obtain excellent filter characteristics.
  • the electrostatic spinning method is a method in which a spinning solution is discharged and an electric field is applied to make the discharged spinning solution into fibers, and the submicron-order nanofibers are collected in a non-woven fabric on the collector.
  • the electrospinning method is not particularly limited, and is a generally known method, for example, a needle method using one or more needles, productivity per needle by spraying an air stream at the needle tip.
  • Air blow method to improve the performance 1 spinneret porous spinneret method with multiple solution discharge holes, free surface method using a cylindrical or spiral wire-shaped rotating electrode semi-immersed in the solution tank, polymer solution surface by supply air
  • An electro-bubble method in which electrostatically spinning is performed from a bubble generated at the starting point, and the like, can be selected according to the fiber diameter and physical properties of the desired nano fiber.
  • the spinning solution is not particularly limited as long as it has spinnability, but a resin dispersed in a solvent, a resin dissolved in a solvent, a resin melted by heat or laser irradiation, etc. Can be used.
  • a resin dispersed in a solvent a resin dissolved in a solvent, a resin melted by heat or laser irradiation, etc.
  • the solvent for dispersing or dissolving the resin is not particularly limited, and water, methanol, ethanol, propanol, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, Toluene, xylene, pyridine, formic acid, acetic acid, tetrahydrofuran, dichloromethane, chloroform, 1,1,2,2-tetrachloroethane, 1,1,1,3,3,3-hexafluoroisopropanol, trifluoroacetic acid and mixtures thereof.
  • the mixing ratio in the case of mixing and using is not particularly limited, and can be appropriately set in consideration of the required spinnability and dispersibility, and the physical properties of the obtained fiber and filter medium.
  • the ultrafine fiber contains a water repellent
  • it is not particularly limited, but it is preferable to mix the water repellent with the resin in the spinning solution.
  • the mixing method is not particularly limited, and examples thereof include stirring and ultrasonic treatment.
  • the order of mixing is also not particularly limited, and they may be mixed simultaneously or sequentially.
  • the mixing time is not particularly limited as long as the water repellent is uniformly dispersed or dissolved in the spinning solution, and stirring or ultrasonic treatment may be performed for 1 to 24 hours.
  • a surfactant may be further contained in the spinning solution for the purpose of improving the stability of electrostatic spinning and the fiber-forming property.
  • Surfactants include, for example, anionic surfactants such as sodium dodecyl sulfate, cationic surfactants such as tetrabutylammonium bromide, and nonionic surfactants such as polyoxyethylene sorbitamon monolaurate. Can be mentioned.
  • the concentration of the surfactant is preferably in the range of 5% by weight or less based on the spinning solution. When the content is 5% by weight or less, the effect commensurate with the use can be improved, which is preferable.
  • the viscosity of the spinning solution in the range of 10 to 10,000 cP, more preferably 50 to 8,000 cP.
  • the viscosity is 10 cP or more, spinnability for forming fibers is obtained, and when it is 10,000 cP or less, the spinning solution can be easily discharged.
  • the viscosity is in the range of 50 to 8,000 cP, good spinnability can be obtained in a wide range of spinning conditions, which is more preferable.
  • the viscosity of the spinning solution can be adjusted by appropriately changing the molecular weight and concentration of the fiber-forming material, the type of solvent, and the mixing ratio.
  • the spinning solution may be spun at room temperature, or may be heated and cooled before spinning.
  • Examples of the method of discharging the spinning solution include a method of discharging the spinning solution filled in a syringe from a nozzle using a pump.
  • the inner diameter of the nozzle is not particularly limited, but is preferably in the range of 0.1 to 1.5 mm.
  • the discharge amount is not particularly limited, but is preferably 0.1 to 10 mL/hr.
  • the method of applying the electric field is not particularly limited as long as the electric field can be formed in the nozzle and the collector.
  • a high voltage may be applied to the nozzle and the collector may be grounded.
  • the applied voltage is not particularly limited as long as fibers are formed, but it is preferably in the range of 5 to 100 kV.
  • the distance between the nozzle and the collector is not particularly limited as long as fibers are formed, but it is preferably in the range of 5 to 50 cm.
  • the collector may be any as long as it can collect spun fibers, and its material and shape are not particularly limited.
  • a conductive material such as metal is preferably used.
  • the shape of the collector is not particularly limited, and examples thereof include a flat plate shape, a shaft shape, and a conveyor shape.
  • the fiber assembly When the collector is flat, the fiber assembly can be collected in a sheet shape, and when the collector is in a shaft shape, the fiber assembly can be collected in a tube shape. If it is in the form of a conveyor, the fiber aggregate collected in the form of a sheet can be continuously produced.
  • the filter medium of the present invention includes a base material layer.
  • the base material layer By including the base material layer, mechanical strength, durability, pleating processability, adhesive property and the like can be imparted to the characteristics of the ultrafine fiber layer.
  • the base material layer can be appropriately selected according to the required characteristics and form of the filter medium, and examples thereof include non-woven fabric, woven fabric, net or microporous film.
  • the material constituting the base material layer is not particularly limited, but in the case of a base material layer using a polyolefin-based material such as polypropylene or polyethylene, it is characterized by excellent chemical resistance, and a liquid requiring chemical resistance is used. It can be suitably used for applications such as filters.
  • a base material layer using a polyester-based material such as polyethylene terephthalate, polybutyl terephthalate, polylactic acid, or a copolymer containing these as the main components, it has excellent pleating characteristics, and therefore an air filter that requires pleating. Can be suitably used for
  • the non-woven fabric is not particularly limited, and examples of the non-woven fabric include a through-air non-woven fabric, an air-laid non-woven fabric, a spun lace non-woven fabric, a wet non-woven fabric, a spun bond non-woven fabric, a melt blown non-woven fabric, a flash spun non-woven fabric, and an electrostatic spun non-woven fabric. You can
  • the ultrafine fiber layer and the base material layer are integrated.
  • the method of integration is not particularly limited, but the separately manufactured ultrafine fiber layer and the base material layer may be integrated by an adhesive or heat fusion, or the ultrafine fiber layer may be directly spun on the base material layer. It may be integrated by doing so, and after the ultrafine fiber layer is directly spun on the base material layer, it may be further subjected to an adhesion process by heat.
  • a non-woven fabric made of a heat-fusible composite fiber composed of a low melting point component and a high melting point component as the base material layer.
  • the material constitution, the composite form, and the cross-sectional shape of the heat-fusible conjugate fiber are not particularly limited, and known ones can be used.
  • the material composition includes copolymer polyethylene terephthalate and polyethylene terephthalate, copolymer polyethylene terephthalate and polypropylene, high density polyethylene and polypropylene, high density polyethylene and polyethylene terephthalate, copolymer polypropylene and polypropylene, copolymer polypropylene and polyethylene terephthalate, polypropylene and polyethylene terephthalate. And the like can be exemplified. Further, considering the availability of materials, preferably, any combination of copolymerized polyethylene terephthalate and polyethylene terephthalate, high density polyethylene and polypropylene, and high density polyethylene and polyethylene terephthalate can be exemplified.
  • the composite form of the cross section may be, for example, a sheath-core type, an eccentric sheath-core type, or a parallel type.
  • the cross-sectional shape of the fiber is not particularly limited, and in addition to the general round shape, any cross-sectional shape such as an oval shape, a hollow shape, a triangular shape, a quadrangular shape, and a modified cross-section such as a octagonal shape can be adopted. From the viewpoint of enhancing the adhesion between the fiber layer and the base material layer, it is preferable that the fiber layer has a flat shape substantially parallel to the surface of the ultrafine fiber layer.
  • the substrate layer having fibers having such a cross-sectional shape is formed by, for example, a method in which elliptical, flat, or semicircular fibers are processed into a web shape and then bonded by heat or an adhesive, or a circular fiber. It can be obtained by consolidating a non-woven fabric with a hot roll.
  • the method for producing the non-woven fabric made of the heat-fusible composite fiber is not particularly limited, and known methods such as carding method, papermaking method, airlaid method, meltblown method, and spunbond method can be used.
  • the fiber bonding method when processing into a non-woven fabric is not particularly limited, and examples thereof include thermal fusion bonding by air-through processing, thermocompression bonding by embossing, fiber entanglement by needle punching or spunlacing, and chemical bonding by an adhesive.
  • the thickness of the fibers constituting the base material layer is not particularly limited, but for example, fibers having an average fiber diameter of 1 to 100 ⁇ m can be used, preferably 5 to 50 ⁇ m, and more preferably 10 to 30 ⁇ m. .. If the average fiber diameter is 1 ⁇ m or more, the pressure loss of the base material layer can be suppressed, and if the average fiber diameter is 100 ⁇ m or less, the ultrafine fiber layer can be collected uniformly.
  • the basis weight of the base material layer is not particularly limited and is preferably 15 g/m 2 or more, more preferably 30 g/m 2 or more, and further preferably 60 g/m 2 or more.
  • the specific volume of the base material layer is not particularly limited, and is preferably 5 cm 3 /g or less, more preferably 3 cm 3 /g or less.
  • the thickness of the base material layer is not particularly limited and can be appropriately selected depending on the desired physical properties of the filter and the intended use, but can be, for example, 0.05 to 10 mm, and preferably 0.1 to 5 mm.
  • the base material layer has a thickness of 0.1 to 5 mm since the pleat processing suitability is improved.
  • the air permeability of the base material layer is not particularly limited, but is preferably 10 cc/cm 2 /sec or more, more preferably 100 cc/cm 2 /sec or more, and 200 cc/cm 2 /sec or more. Is more preferable. It is preferable that the air permeability is 10 cc/cm 2 /sec or more because the pressure loss can be reduced.
  • the electric leakage resistance value of the base material layer is 10 10 ⁇ or less. It is more preferably 10 7 ⁇ or less.
  • the electric leakage resistance value is 10 10 ⁇ or less, the ultrafine fiber layer can be stably deposited on the base material layer without being electrically repulsed, and the adhesion can be improved.
  • the average value of the tensile strength in the machine direction and the transverse direction of the base material layer is not particularly limited, but from the viewpoint of imparting strength, rigidity and workability, it is preferably 30 N/50 mm or more, and 60 N/50 mm or more. Is more preferable.
  • the base material layer may be subjected to electret processing, antistatic processing, water repellent processing, antibacterial processing, ultraviolet absorption processing, near infrared absorption processing, antifouling processing, coloring processing, etc., as long as the effect of the present invention is not significantly impaired. Although it may be applied, it is preferably water-repellent from the viewpoint of cleanability.
  • the filter medium of the present invention includes the above-mentioned ultrafine fiber layer and a base material layer, and at least one layer selected from the group consisting of non-woven fabric, woven fabric, net and microporous film on the surface side of the ultrafine fiber layer. May be laminated and integrated. By laminating and integrating the layers, the surface of the ultrafine fiber layer is less likely to be exposed on the surface, and wear resistance, durability, and processing strength can be improved. From the viewpoint of cleanability, it is preferable that the nets are laminated and integrated.
  • thermocompression bonding treatment with a heated flat roll or embossing roll adhesion treatment with a hot melt agent or a chemical adhesive, thermal adhesion treatment with circulating hot air or radiant heat, and the like can be adopted.
  • the filter medium of the present invention is characterized by having an average flow pore diameter of 3.0 ⁇ m or less.
  • the average flow pore size of the filter medium refers to the average flow pore size of the entire filter medium including the ultrafine fiber layer and the base material layer.
  • the average flow pore size is an index of the size of the pores formed between the fibers constituting the filter medium, and can be measured by a known method. For example, it can be measured by a pore size distribution measuring device or the like, and details are shown in Examples.
  • the average flow pore size is 3.0 ⁇ m or less, it is considered that both the collection efficiency and the pressure loss are compatible with each other, the dust hardly enters the inside of the filter medium, and the cleaning property can be improved.
  • the lower limit of the average flow pore size is preferably 0.1 ⁇ m or more from the viewpoint of pressure loss of the filter medium.
  • the average flow pore diameter of the filter medium can be adjusted by appropriately changing the average fiber diameter of the ultrafine fibers, the basis weight, and the like. It is believed that the substrate layer does not contribute significantly to the average flow pore size.
  • the dust collection efficiency of the filter medium of the present invention is not particularly limited, but is preferably 90% or more, more preferably 99% or more, and further preferably 99.97% or more.
  • the pressure loss is not particularly limited, but is preferably 300 Pa or less, more preferably 180 Pa or less, and further preferably 160 Pa or less.
  • particles having a particle diameter of 0.07 ⁇ m (median number diameter) and a particle concentration of 10 to 25 mg/m 3 were passed through the sample at a flow rate of 5.3 cm/sec. It is the measured value when.
  • the dust collection efficiency and the pressure loss can be adjusted by appropriately changing the average fiber diameter and the basis weight of the ultrafine fibers.
  • the filter medium of the present invention is used as a filter in combination with a known structure such as a frame, a reinforcing material and a filter medium other than the present invention.
  • the filter may be in any form such as a pleated filter, a flat filter, a cylindrical filter, etc., but it can be suitably used as a pleated filter.
  • it is preferable to use the ultrafine fiber layer side of the filter medium as the surface side (intake side) of the filter.
  • the use of the filter is not particularly limited, but it is a home appliance filter for vacuum cleaners and air purifiers, an air filter for building air conditioning, a medium/high performance filter for industry, a HEPA filter or ULPA filter for clean rooms, for automobiles. It is preferable that it is a cabin filter or the like.
  • Example 1 Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added at 0.025% by weight based on the total weight of the solution. Fluorooctylsilsesquioxane (manufactured by Nvidinano Technologies) was added as a water repellent at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution.
  • a through-air non-woven fabric (fiber diameter: 10 ⁇ m, thickness: 60 ⁇ m, basis weight: 18 g/m 2 ) composed of a heat-adhesive composite fiber containing copolymerized polyethylene terephthalate and polyethylene terephthalate is used as a base material, and the spinning solution is applied thereon.
  • the spinning conditions of this example were as follows: the single-pore solution supply rate was 1.0 mL/hr, the applied voltage was 30 kV, the spinning distance was 150 mm, the spinning space temperature was 25° C., and the humidity was 30%.
  • Example 2 Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added at 0.025% by weight based on the total weight of the solution. Fluorooctylsilsesquioxane (manufactured by Nvidinano Technologies) was added as a water repellent at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution.
  • Example 2 the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was prepared so that the basis weight of the ultrafine fiber layer would be 1.5 g/m 2 .
  • the spinning conditions of this example were those described in Example 1.
  • Example 3 Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added to 0.025% by weight based on the total weight of the solution.
  • a fluorinated copolymer (Dialom Seika Chemical Co., Ltd., Dialomer FF129D) was added at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution.
  • Example 2 the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was prepared so that the basis weight of the ultrafine fiber layer would be 1.5 g/m 2 .
  • the spinning conditions of this example were those described in Example 1.
  • fluorooctylsilsesquioxane manufactured by Nvidin Nano Technologies
  • Example 1 a spinning solution was prepared. Next, using the through-air non-woven fabric described in Example 1 as a substrate, the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was produced so that the basis weight of the ultrafine fiber layer would be 3.0 g/m 2 .
  • the spinning conditions of this example were those described in Example 1.
  • Example 1 Next, using the through-air non-woven fabric described in Example 1 as a base material, the spinning solution was spun on the needle from the injection needle described in Example 1 and electrostatically spun. It was produced so as to be 1 g/m 2 .
  • the spinning conditions of this comparative example were those described in Example 1.
  • Comparative example 2 Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added in an amount of 0.025% by weight based on the total weight of the solution. The concentration was added to prepare a spinning solution. Next, using the through-air nonwoven fabric described in Example 1 as a base material, the spinning solution was spun on from the injection needle described in Example 1 and electrostatically spun, and the basis weight of the ultrafine fiber layer was 1. It was manufactured so as to be 2 g/m 2 . The spinning conditions of this comparative example were those described in Example 1.
  • ⁇ Evaluation of detergency> 1.0 g of Kanto loam, 8 types of JIS test powder, was uniformly loaded on the filter medium surface (100 cm 2 ), and suctioned for 1 minute at a wind speed of 1 m/sec from the side opposite to the surface on which the powder was loaded.
  • the filter medium loaded with the powder was tilted at an angle of 40°, and 400 mL of pure water was dropped from the height of 5 cm from the surface of the filter medium to wash. Then, it was left to stand in a dryer at 70° C. for 1 hour to be dried. After drying, it was measured according to the method of pressure loss of the filter medium. This operation was repeated 5 times in total.
  • the pressure loss increase rate R was calculated from the following equation (2), where P 0 is the initial pressure loss and P 1 is the pressure loss after the cleaning property evaluation is completed. Detergency was rated as ⁇ when the pressure loss increase rate R was 0% or more and less than 5%, and ⁇ when the pressure loss increase rate R was 5% or more and less than 10%, and was rated as X when 10% or more. The results are shown in Table 1.
  • Comparing Examples 1 to 4 with Comparative Example 1 Examples 1 to 4 having an average flow pore diameter of 3.0 ⁇ m or less showed high cleanability, but Comparative Example 1 having an average flow pore diameter of more than 3.0 ⁇ m. It showed low detergency. In Comparative Example 1, although the adhesion energy was not inferior to that of Examples 1 to 4, the cleaning property was not obtained. It is considered that this is because the filter media of Examples 1 to 4 having an average flow pore size of 3.0 ⁇ m or less made dust less likely to enter the interior of the filter media and improved the cleaning property.
  • Examples 1 to 4 and Comparative Example 2 had a sufficient dust collecting property. However, comparing Examples 1 to 4 and Comparative Example 2, Examples 1 to 4 in which the adhesion energy is 3.0 mJ/m 2 or less have high detergency, but the adhesion energy exceeds 3.0 mJ/m 2 . Comparative Example 2 had low detergency. In Comparative Example 2, the average flow pore size was not inferior to that of Examples 1 to 4, but the cleaning property was not obtained. It is considered that this is because when the adhesion energy was 3.0 mJ/m 2 or less, the droplets containing dust were easily removed from the surface of the filter medium.
  • FIGS. 1 and 2 show optical photographs of the filter media of Example 1 and Comparative Example 1 after the cleaning property evaluation.
  • the filter medium of FIG. 1 Example 1
  • the dust was washed and removed to the extent that it could hardly be visually confirmed.
  • the filter medium of FIG. 2 Comparative Example 1
  • dust remaining on the filter surface was visible.
  • the filter medium of the present invention has high dust collection efficiency, low pressure loss, and can easily remove dust with water without using chemicals, etc. It can be suitably used as an air filter for building air conditioning, a medium/high performance filter for industry, a HEPA filter or ULPA filter for a clean room, a cabin filter for an automobile, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

Provided are: a filter medium that has a high dust trapping efficiency and less pressure loss, is capable of easily removing dust by using water without having to use chemicals, etc., and that exhibits excellent fast-dry properties; and a filter formed by using said filter medium. This filter medium includes an ultrafine fiber layer and a base material layer and has a mean flow pore size of at most 3.0 µm, wherein the adhesion energy of water on the surface of the ultrafine fiber layer is at most 3.0 mJ/m2.

Description

フィルター濾材およびこれを用いたフィルターFilter medium and filter using the same
 本発明は、ダストを捕集するためのフィルター濾材、およびこれを用いたフィルターに関する。 The present invention relates to a filter medium for collecting dust and a filter using the filter medium.
 High Efficiency Particulate Air(HEPA)フィルターをはじめとする高性能フィルターは高い捕集効率を有することから、クリーンルーム用のフィルター、掃除機や空気清浄機用などの家電フィルター、ビル空調用のフィルター、産業用のフィルター、自動車のキャビンフィルターなどに使われている。高性能フィルターの使用において、ダストの目詰まりによって圧力損失が既定値まで達した場合には新品に交換するが、省資源化やランニングコスト抑制のために、洗浄して再使用できる高性能フィルターが望まれている。 High-performance filters such as High Efficiency Particulate Air (HEPA) filters have high collection efficiency, so they are filters for clean rooms, home appliances filters for vacuum cleaners and air purifiers, filters for building air conditioning, industrial use. It is used for automobile filters, automobile cabin filters, etc. When using a high-performance filter, replace it with a new one when the pressure loss reaches a specified value due to clogging of dust, but a high-performance filter that can be washed and reused is used to save resources and reduce running costs. Is desired.
 このようなフィルターの例として、特許文献1には、高性能フィルターの低圧損化を図るためのガラス繊維濾材が提案されている。特許文献1の濾材は、平均繊維径0.2~0.6μmの極細ガラス短繊維と平均繊維径3~5μmの合繊とを配合し、抄造することによって、厚み方向に組成の勾配を有する濾材を得るものである。また、特許文献2には、粉塵保持量の増加を図るためのエレクトレット濾材が提案されている。特許文献2の濾材は、ポリプロピレンのメルトブロー不織布と支持層とが接合された積層構造で、メルトブロー不織布は繊維径が5μm程度であり、孔径が1.0mm以下の小孔が多数形成されている。特許文献2の濾材は、折り畳まれてプリーツフィルターとして用いられる。 As an example of such a filter, Patent Document 1 proposes a glass fiber filter medium for achieving low pressure loss of a high performance filter. The filter medium of Patent Document 1 is a filter medium having a composition gradient in the thickness direction by blending ultrafine glass short fibers having an average fiber diameter of 0.2 to 0.6 μm and synthetic fibers having an average fiber diameter of 3 to 5 μm and making a paper. Is what you get. Further, Patent Document 2 proposes an electret filter medium for increasing the dust holding amount. The filter medium of Patent Document 2 has a laminated structure in which a polypropylene melt-blown non-woven fabric and a support layer are joined, and the melt-blown non-woven fabric has a fiber diameter of about 5 μm and a large number of small holes with a pore diameter of 1.0 mm or less. The filter medium of Patent Document 2 is folded and used as a pleated filter.
 一方、特許文献3には、ダストを容易に除去できるPTFE微多孔膜を表面に配置した積層体であるフィルター濾材が提案されている。PTFE微多孔膜は、ノードと呼ばれる樹脂塊の間に非常に細いフィブリルが形成された緻密膜であるため、捕集されたダストは膜の表面に堆積され易くなり、このようなフィルター濾材からは比較的容易にダストを洗い流すことができる。 On the other hand, Patent Document 3 proposes a filter medium which is a laminated body having a PTFE microporous membrane on the surface, which can easily remove dust. Since the PTFE microporous membrane is a dense membrane in which very thin fibrils are formed between resin blocks called nodes, the collected dust is easily deposited on the surface of the membrane, and such a filter medium is Dust can be washed off relatively easily.
特開2012-077400号公報JP 2012-077400 A 特開2014-226629号公報JP, 2014-226629, A 特開2016-209870号公報JP, 2016-209870, A
 しかしながら、特許文献1,2のようなガラス繊維濾材やエレクトレット濾材は、濾材を構成する繊維の間に形成される孔の大きさ(平均流量孔径)が比較的大きく、捕集されたダストが濾材の内部まで入り込む。このため、捕集されたダストを容易に取り除くことができず、場合によっては化学薬品などを用いて洗浄する必要があるため、環境面やコスト面に問題があった。 However, in the glass fiber filter media and the electret filter media as disclosed in Patent Documents 1 and 2, the size of the pores formed between the fibers constituting the filter media (average flow rate pore diameter) is relatively large, and the collected dust is the filter media. It goes inside. For this reason, the collected dust cannot be easily removed, and in some cases it is necessary to wash with a chemical or the like, which causes a problem in terms of environment and cost.
 一方、特許文献3のフィルター濾材では、濾材の表面に付着したダストを除去するために水洗いする場合があるが、PTFE微多孔膜は液滴除去性が必ずしも十分ではなく、ダストを含んだ水が表面上に一部残ることがあり、自浄性や速乾性の点で課題があった。 On the other hand, the filter medium of Patent Document 3 may be washed with water in order to remove dust adhering to the surface of the filter medium, but the PTFE microporous membrane does not always have sufficient droplet removability, and water containing dust cannot be removed. It may remain partially on the surface, and there was a problem in terms of self-cleaning and quick-drying.
 本発明の課題は、上記の問題を解決し、ダストの捕集効率が高く、圧力損失が低く、かつ、化学薬品等を使用せずに水で容易にダストを除去でき、速乾性に優れるフィルター濾材、および当該フィルター濾材を用いてなるフィルターを提供することである。 The object of the present invention is to solve the above problems, high dust collection efficiency, low pressure loss, and easily remove dust with water without using chemicals, etc. A filter material and a filter using the filter material.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた。その結果、静電紡糸等の方法で得られる極めて細い繊維を用いて、平均流量細孔径を一定以下とすることによって、低い圧力損失と高い捕集効率とを高いレベルで両立できることを確認した。また、このような極細繊維に撥水性を付与すると、濾材表面の撥水性が向上し、洗浄後に表面の液滴が除去しやすくなるため速乾性が向上する一方で、濾材の中に水が浸入しにくくなり洗浄性が損なわれることを見出した。そこで発明者らは速乾性と洗浄性を両立するためにさらに検討を重ね、濾材表面の水の付着エネルギーをパラメータとすることで、速乾性と洗浄性とを表すことが可能で、さらに、濾材表面の水の付着エネルギーを一定値以下とすることによって、ダストの捕集効率、圧力損失に加えて、洗浄性および速乾性を両立する濾材を得られることを見出し、本発明を完成した。 The present inventors have conducted intensive research to solve the above problems. As a result, it was confirmed that low pressure loss and high collection efficiency can be achieved at a high level by using an extremely fine fiber obtained by a method such as electrostatic spinning and keeping the average flow pore diameter to be a certain value or less. When water repellency is imparted to such ultrafine fibers, the water repellency of the surface of the filter medium is improved, and the droplets on the surface are easily removed after washing, which improves the quick-drying property, while water permeates into the filter medium. It was found that it becomes difficult to do so and the cleaning property is impaired. Therefore, the inventors have further studied in order to achieve both quick-drying property and detergency, and by using the adhesion energy of water on the surface of the filtering material as a parameter, it is possible to express the rapid-drying property and detergency. The present invention has been completed by finding that a filter medium that has both a dust collection efficiency and a pressure loss, and also has a cleaning property and a quick drying property, can be obtained by controlling the adhesion energy of water on the surface to a certain value or less.
 すなわち本発明は、上記の課題を解決する以下の構成を有する。 That is, the present invention has the following configurations that solve the above problems.
[1]極細繊維層と基材層とを含むフィルター濾材であって、前記フィルター濾材の平均流量孔径が3.0μm以下であり、かつ前記極細繊維層の表面における水の付着エネルギーが3.0mJ/m以下である、フィルター濾材。
[2]前記極細繊維層を構成する極細繊維に、撥水剤が含有される、前記[1]に記載のフィルター濾材。
[3]前記撥水剤にフッ素が含有される、前記[2]に記載のフィルター濾材。
[4]前記極細繊維層の目付けが、0.1~20.0g/mである、[1]~[3]のいずれか1項に記載のフィルター濾材。
[5]前記基材層が、平均繊維径が1~30μmである不織布で構成される、[1]~[4]のいずれか1項に記載のフィルター濾材。
[6]前記[1]~[5]のいずれか1項に記載のフィルター濾材を含む、フィルター。
[1] A filter medium comprising an ultrafine fiber layer and a base material layer, wherein the filter medium has an average flow pore diameter of 3.0 μm or less, and water has an adhesion energy of 3.0 mJ on the surface of the ultrafine fiber layer. /M 2 or less, a filter medium.
[2] The filter medium according to the above [1], wherein a water repellent is contained in the ultrafine fibers constituting the ultrafine fiber layer.
[3] The filter medium according to the above [2], wherein the water repellent contains fluorine.
[4] The filter medium according to any one of [1] to [3], wherein the basis weight of the ultrafine fiber layer is 0.1 to 20.0 g/m 2 .
[5] The filter medium according to any one of [1] to [4], wherein the base material layer is made of a nonwoven fabric having an average fiber diameter of 1 to 30 μm.
[6] A filter comprising the filter medium according to any one of [1] to [5] above.
 以上の構成を有する本発明によれば、ダストの捕集効率が高く、圧力損失が低く、化学薬品等を使用せずに水で容易にダストを除去でき、速乾性にも優れるフィルター濾材を提供することが可能となる。特に、掃除機や空気清浄機用などの家電フィルター、ビル空調用のエアフィルター、産業用の中・高性能フィルター、クリーンルーム用のHEPAフィルターやULPAフィルター、自動車用のエアフィルター等に好適なフィルター濾材を提供することが可能となる。 According to the present invention having the above structure, a filter medium having high dust collection efficiency, low pressure loss, easy removal of dust with water without using chemicals, and excellent quick-drying property is provided. It becomes possible to do. In particular, filter media suitable for home appliances filters for vacuum cleaners and air cleaners, air filters for building air conditioning, medium/high performance filters for industry, HEPA filters and ULPA filters for clean rooms, air filters for automobiles, etc. Can be provided.
図1は実施例1のフィルター濾材の洗浄性評価後の光学写真である。FIG. 1 is an optical photograph of the filter medium of Example 1 after the cleaning property was evaluated. 図2は比較例1のフィルター濾材の洗浄性評価後の光学写真である。FIG. 2 is an optical photograph of the filter medium of Comparative Example 1 after the cleaning property was evaluated.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明のフィルター濾材は、極細繊維層と基材層とを含むフィルター濾材であって、フィルター濾材の平均流量孔径が3.0μm以下であり、また、極細繊維層の表面における水の付着エネルギーが3.0mJ/m以下であることを特徴とする。このような特徴を有することで、ダストの捕集効率が高く、圧力損失が低く、化学薬品等を使用せずに水で容易にダストを除去でき、速乾性に優れるフィルター濾材を提供することが可能となる。 The filter medium of the present invention is a filter medium including an ultrafine fiber layer and a base material layer, the average flow pore size of the filter medium is 3.0 μm or less, and the adhesion energy of water on the surface of the ultrafine fiber layer is It is characterized by being 3.0 mJ/m 2 or less. By having such characteristics, the dust collection efficiency is high, the pressure loss is low, the dust can be easily removed with water without using chemicals, etc., and it is possible to provide a filter medium having excellent quick drying property. It will be possible.
<極細繊維層>
 本発明のフィルター濾材は極細繊維層を含む。なお、本明細書において、極細繊維とは、平均繊維径が1μm未満である繊維を意味する。このような極細繊維層を構成する極細繊維としては、特に限定されないが、平均繊維径が10~999.9nmの範囲であることが好ましく、50~200nmであることがより好ましく、80~150nmの範囲であることがさらに好ましい。極細繊維の平均繊維径が小さくなると、比表面積が大きくなるため、高捕集効率かつ低圧力損失といった高いフィルター特性が得られやすくなる。また、濾材を構成する繊維間に形成される孔径が小さくなるため、濾材の表面でダストが捕集されやすくなり、洗浄が容易になる。一方、繊維径の減少とともに繊維1本当たりの力学強度が低下し、フィルター加工時や使用時において繊維破断を引き起こす可能性があるが、極細繊維の平均繊維径が10nm以上であれば満足できる単糸強度が得られる。極細繊維の繊維径の変動係数は、特に限定されないが、0.5以下であることが好ましく、0.3以下であればさらに好ましい。第一の繊維の変動係数が0.5以下であれば優れたフィルター特性と易洗浄性を得ることが可能である。平均繊維径は公知の方法で測定することができ、例えば、走査型電子顕微鏡を使用して、極細繊維を観察し、画像解析ソフトを用いて極細繊維50本の直径を測定し、その平均値を平均繊維径とすることなどが挙げられる。
<Ultra fine fiber layer>
The filter medium of the present invention comprises an ultrafine fiber layer. In addition, in this specification, the ultrafine fibers mean fibers having an average fiber diameter of less than 1 μm. The ultrafine fibers constituting such an ultrafine fiber layer are not particularly limited, but the average fiber diameter is preferably in the range of 10 to 999.9 nm, more preferably 50 to 200 nm, and more preferably 80 to 150 nm. The range is more preferable. When the average fiber diameter of the ultrafine fibers is small, the specific surface area is large, and it is easy to obtain high filter characteristics such as high collection efficiency and low pressure loss. In addition, since the pore size formed between the fibers constituting the filter medium becomes small, dust is easily collected on the surface of the filter medium, and cleaning is facilitated. On the other hand, as the fiber diameter decreases, the mechanical strength per fiber decreases, which may cause fiber breakage during filter processing and during use. However, if the average fiber diameter of the ultrafine fibers is 10 nm or more, it is satisfactory. Yarn strength is obtained. The coefficient of variation of the fiber diameter of the ultrafine fibers is not particularly limited, but is preferably 0.5 or less, more preferably 0.3 or less. If the coefficient of variation of the first fiber is 0.5 or less, it is possible to obtain excellent filter characteristics and easy cleaning. The average fiber diameter can be measured by a known method. For example, using a scanning electron microscope, the ultrafine fibers are observed, and the diameter of 50 ultrafine fibers is measured using image analysis software. Is used as the average fiber diameter.
 極細繊維を構成する樹脂は、特に限定されず、ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ乳酸、ポリアミド、ポリウレタン、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリグリコール酸、ポリカプロラクトン、ポリ酢酸ビニル、ポリカーボネート、ポリイミド、ポリエーテルイミド、セルロース、セルロース誘導体、キチン、キトサン、コラーゲン、ゼラチン及びこれらの共重合体などの高分子材料を例示できる。水の付着エネルギーの低減という観点から、極細繊維を構成する樹脂は、疎水性樹脂であることが好ましく、例えば、ポリオレフィン系樹脂、フッ素系樹脂であることがより好ましく、ポリフッ化ビニリデン系樹脂であることがさらに好ましい。ポリフッ化ビニリデン系樹脂としては、特に限定されないが、フッ化ビニリデン重合体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、フッ化ビニリデンとトリフルオロエチレンとの共重合体などを例示できる。極細繊維を構成する樹脂の重量平均分子量としては、特に限定されないが、10,000~10,000,000の範囲であることが好ましく、50,000~5,000,000の範囲であることがより好ましく、100,000~1,000,000であることがさらに好ましい。重量平均分子量が10,000以上であれば、極細繊維の繊維形成性に優れ、平均繊維径の小さい極細繊維が得られ易くなるため好ましく、10,000,000以下であれば、溶解性や熱可塑性に優れ、加工が容易になるため好ましい。 The resin forming the ultrafine fibers is not particularly limited, and includes polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyethylene, polypropylene, polyethylene terephthalate, polylactic acid, polyamide, polyurethane, polystyrene, polysulfone, polyether sulfone, and polyvinylidene fluoride. , Polyacrylonitrile, polymethylmethacrylate, polyglycolic acid, polycaprolactone, polyvinyl acetate, polycarbonate, polyimide, polyetherimide, cellulose, cellulose derivatives, chitin, chitosan, collagen, gelatin and copolymers thereof The material can be illustrated. From the viewpoint of reducing the attachment energy of water, the resin forming the ultrafine fibers is preferably a hydrophobic resin, for example, a polyolefin resin, more preferably a fluorine resin, more preferably a polyvinylidene fluoride resin. Is more preferable. The polyvinylidene fluoride-based resin is not particularly limited, and examples thereof include a vinylidene fluoride polymer, a vinylidene fluoride-hexafluoropropylene copolymer, and a vinylidene fluoride-trifluoroethylene copolymer. The weight average molecular weight of the resin constituting the ultrafine fibers is not particularly limited, but is preferably in the range of 10,000 to 10,000,000, and more preferably in the range of 50,000 to 5,000,000. More preferably, it is more preferably 100,000 to 1,000,000. When the weight average molecular weight is 10,000 or more, it is excellent in the fiber forming property of the ultrafine fibers, and it becomes easy to obtain the ultrafine fibers having a small average fiber diameter, which is preferable. It is preferable because it has excellent plasticity and can be easily processed.
 極細繊維層を構成する極細繊維には、撥水剤が含有されることが好ましい。撥水剤を含有することで、フィルター濾材表面の水の付着エネルギーを下げ、洗浄性、速乾性を向上させることが可能となる。撥水剤としては、水の付着エネルギーを下げる効果を奏するものであれば、特に限定されず、シリコン系シラン化合物、フッ素系シラン化合物、フッ素含有かご型シルセスキオキサン、フッ素変性ポリウレタン、シリコン変性ポリウレタンを例示できる。中でも、フッ素含有かご型シルセスキオキサンまたはフッ素変性ポリウレタン等のフッ素を含む撥水剤を用いることが、撥水性、作業性、価格の観点から好ましい。撥水剤の含有割合は特に限定されないが、極細繊維及び静電紡糸法による紡糸の際に生じる微粒子に対して、0.1~20重量%の範囲であることが好ましく、1~15重量%であることがより好ましい。撥水剤の濃度が0.1重量%以上であれば、水の付着エネルギーを下げる効果が得ることができ、20重量%以下であれば、使用量に見合う効果の向上が得られるため好ましい。 It is preferable that the ultrafine fibers constituting the ultrafine fiber layer contain a water repellent. By containing the water repellent, it becomes possible to reduce the attachment energy of water on the surface of the filter medium, and improve the cleaning property and the quick drying property. The water repellent is not particularly limited as long as it has an effect of lowering the adhesion energy of water, and is not particularly limited, and silicon-based silane compounds, fluorine-based silane compounds, fluorine-containing cage silsesquioxane, fluorine-modified polyurethane, silicon-modified Polyurethane can be exemplified. Above all, it is preferable to use a water repellent containing fluorine such as a fluorine-containing cage silsesquioxane or fluorine-modified polyurethane from the viewpoint of water repellency, workability and cost. The content ratio of the water repellent agent is not particularly limited, but is preferably in the range of 0.1 to 20% by weight, and preferably 1 to 15% by weight, based on the ultrafine fibers and the fine particles generated during the spinning by the electrostatic spinning method. Is more preferable. When the concentration of the water repellent is 0.1% by weight or more, the effect of lowering the adhesion energy of water can be obtained, and when it is 20% by weight or less, the effect commensurate with the amount used can be obtained, which is preferable.
 本発明のフィルター濾材は、極細繊維層の表面における水の付着エネルギーが3.0mJ/m以下であることを特徴とするところ、水の付着エネルギーは、表面からの水の滑落しやすさを表す指標である。水の付着エネルギー(E)は、極細繊維層上に水を滴下したフィルター濾材を傾け、水が滑落し始める時の滑落角(α)、その時点の水の接触半径(r)と液滴の質量(m)を用いて、以下の式(1)より算出される。具体的な測定方法は実施例に示される。
Figure JPOXMLDOC01-appb-I000001
The filter medium of the present invention is characterized in that the adhesion energy of water on the surface of the ultrafine fiber layer is 3.0 mJ/m 2 or less, and the adhesion energy of water indicates how easily water slides off the surface. It is an index to represent. The adhesion energy (E) of water is determined by tilting the filter medium in which water is dropped on the ultrafine fiber layer, sliding angle (α) when water begins to slide, contact radius (r) of water at that time, and droplet It is calculated from the following formula (1) using the mass (m). A specific measuring method will be shown in Examples.
Figure JPOXMLDOC01-appb-I000001
 特に理論に拘束されるものではないが、極細繊維層における水の付着エネルギーは、極細繊維によって形成される表面の微細な凹凸構造、極細繊維の撥水性、その他の性質によって左右されるものと考えられている。表面の撥水性の評価指標としては、接触角の値を用いることが一般的であるが、表面の液滴除去性能を評価するには接触角だけでは不十分で、水の付着エネルギーの値を用いることが好ましい。本発明のフィルター濾材は、極細繊維層の表面の水の付着エネルギーが3.0mJ/m以下であることが肝要であり、2.0mJ/m以下であればより好ましい。下限は特に制限されるものではないが、工業的な合理性を考慮すると0.1mJ/m以上とすることができる。水の付着エネルギーが3.0mJ/m以下であれば、洗浄中に水が極細繊維層を滑落しやすくなり、フィルターを水洗いした後の水切れが良く、速乾性が得られる。 Although not particularly bound by theory, it is considered that the water attachment energy in the ultrafine fiber layer depends on the fine uneven structure of the surface formed by the ultrafine fibers, the water repellency of the ultrafine fibers, and other properties. Has been. The contact angle value is generally used as an index for evaluating the water repellency of the surface, but the contact angle alone is not enough to evaluate the droplet removal performance on the surface. It is preferable to use. Filter medium of the present invention, it is essential that water adhesion energy of the surface of the ultrafine fiber layer is 3.0 mJ / m 2 or less, more preferably not more than 2.0 mJ / m 2 or less. The lower limit is not particularly limited, but can be 0.1 mJ/m 2 or more in consideration of industrial rationality. When the attachment energy of water is 3.0 mJ/m 2 or less, water easily slips off the ultrafine fiber layer during washing, drains water well after washing the filter, and provides quick drying.
 極細繊維層の目付は、求められるフィルター性能、洗浄性、速乾性などによって適宜選択可能であるが、例えば、0.1~20.0g/mの範囲を例示できる。目付が0.1g/m以上であれば、極細繊維が構成する繊維マトリクスが十分緻密となり、捕集効率や洗浄性を向上させることができ、20.0g/m以下であれば、圧力損失を低くすることができる。このような観点から、極細繊維層の目付けとしては、0.2~10.0g/mの範囲であることがより好ましく、0.5~5.0g/mの範囲であることがさらに好ましい。 The basis weight of the ultrafine fiber layer can be appropriately selected depending on the required filter performance, cleaning property, quick drying property and the like, and for example, a range of 0.1 to 20.0 g/m 2 can be exemplified. If a basis weight of 0.1 g / m 2 or more, the fiber matrix ultrafine fibers constituting becomes sufficient dense, it is possible to improve the collection efficiency and cleaning properties, when 20.0 g / m 2 or less, the pressure The loss can be reduced. From such a viewpoint, the basis weight of the ultrafine fiber layer is more preferably in the range of 0.2 to 10.0 g/m 2 , and further preferably in the range of 0.5 to 5.0 g/m 2. preferable.
 極細繊維層は、本発明の効果を著しく損なわない範囲であれば、上記以外の成分を含んでいてもよい。 The ultrafine fiber layer may contain components other than the above as long as the effects of the present invention are not significantly impaired.
 極細繊維層の製造方法としては、特に限定されないが、静電紡糸法で製造されることが好ましい。静電紡糸法を用いることで、極細繊維を均一に紡糸することが可能であり、優れたフィルター特性を得ることができる。 The method for producing the ultrafine fiber layer is not particularly limited, but it is preferably produced by the electrostatic spinning method. By using the electrostatic spinning method, it is possible to uniformly spin the ultrafine fibers and obtain excellent filter characteristics.
 静電紡糸法とは、紡糸溶液を吐出させるとともに、電界を作用させて、吐出された紡溶液を繊維化し、コレクター上にサブミクロンオーダーのナノ繊維を不織布状に捕集する方法である。静電紡糸の方式は特に限定されず、一般的に知られている方式、例えば、1本もしくは複数のニードルを使用するニードル方式、ニードル先端に気流を噴き付けることでニードル1本あたりの生産性を向上させるエアブロー方式、1つのスピナレットに複数の溶液吐出孔を設けた多孔スピナレット方式、溶液槽に半浸漬させた円柱状や螺旋ワイヤ状の回転電極を用いるフリーサーフェス方式、供給エアによってポリマー溶液表面に発生したバブルを起点に静電紡糸するエレクトロバブル方式などが挙げられ、求めるナノ繊維の繊維径や物性に応じて選択することができる。 The electrostatic spinning method is a method in which a spinning solution is discharged and an electric field is applied to make the discharged spinning solution into fibers, and the submicron-order nanofibers are collected in a non-woven fabric on the collector. The electrospinning method is not particularly limited, and is a generally known method, for example, a needle method using one or more needles, productivity per needle by spraying an air stream at the needle tip. Air blow method to improve the performance, 1 spinneret porous spinneret method with multiple solution discharge holes, free surface method using a cylindrical or spiral wire-shaped rotating electrode semi-immersed in the solution tank, polymer solution surface by supply air An electro-bubble method in which electrostatically spinning is performed from a bubble generated at the starting point, and the like, can be selected according to the fiber diameter and physical properties of the desired nano fiber.
 紡糸溶液としては、曳糸性を有するものであれば特に限定されないが、樹脂を溶媒に分散させたもの、樹脂を溶媒に溶解させたもの、樹脂を熱やレーザー照射によって溶融させたものなどを用いることができる。本発明においては、非常に細く均一な繊維を得るために、樹脂を溶媒に溶解させたものを紡糸溶液として用いることが好ましい。 The spinning solution is not particularly limited as long as it has spinnability, but a resin dispersed in a solvent, a resin dissolved in a solvent, a resin melted by heat or laser irradiation, etc. Can be used. In the present invention, in order to obtain very fine and uniform fibers, it is preferable to use a solution prepared by dissolving a resin in a solvent as a spinning solution.
 樹脂を分散または溶解させる溶媒としては、特に限定されず、水、メタノール、エタノール、プロパノール、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、トルエン、キシレン、ピリジン、蟻酸、酢酸、テトラヒドロフラン、ジクロロメタン、クロロホルム、1,1,2,2-テトラクロロエタン、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、トリフルオロ酢酸及びこれらの混合物などを例示できる。混合して使用する場合の混合率は、特に限定されるものではなく、求める曳糸性や分散性、得られる繊維やフィルター濾材の物性を鑑みて、適宜設定することができる。 The solvent for dispersing or dissolving the resin is not particularly limited, and water, methanol, ethanol, propanol, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, Toluene, xylene, pyridine, formic acid, acetic acid, tetrahydrofuran, dichloromethane, chloroform, 1,1,2,2-tetrachloroethane, 1,1,1,3,3,3-hexafluoroisopropanol, trifluoroacetic acid and mixtures thereof. Can be exemplified. The mixing ratio in the case of mixing and using is not particularly limited, and can be appropriately set in consideration of the required spinnability and dispersibility, and the physical properties of the obtained fiber and filter medium.
 極細繊維が撥水剤を含有する場合、特に限定されないが、紡糸溶液に樹脂とともに撥水剤を混合させることが好ましい。混合方法は特に限定されず、攪拌や超音波処理などの方法を例示できる。また、混合順序も特に限定されず、同時に混合しても、逐次に混合してもよい。混合時間は、撥水剤が紡糸溶液中に均一に分散または溶解していれば特に限定されず、1~24時間、攪拌や超音波処理をしてもよい。 When the ultrafine fiber contains a water repellent, it is not particularly limited, but it is preferable to mix the water repellent with the resin in the spinning solution. The mixing method is not particularly limited, and examples thereof include stirring and ultrasonic treatment. The order of mixing is also not particularly limited, and they may be mixed simultaneously or sequentially. The mixing time is not particularly limited as long as the water repellent is uniformly dispersed or dissolved in the spinning solution, and stirring or ultrasonic treatment may be performed for 1 to 24 hours.
 静電紡糸の安定性や繊維形成性を向上させる目的で、紡糸溶液中にさらに界面活性剤を含有させてもよい。界面活性剤は、例えば、ドデシル硫酸ナトリウムなどの陰イオン性界面活性剤、臭化テトラブチルアンモニウムなどの陽イオン界面活性剤、ポリオキシエチレンソルビタモンモノラウレートなどの非イオン性界面活性剤などを挙げることができる。界面活性剤の濃度は、紡糸溶液に対して5重量%以下の範囲であることが好ましい。5重量%以下であれば、使用に見合う効果の向上が得られるため好ましい。 A surfactant may be further contained in the spinning solution for the purpose of improving the stability of electrostatic spinning and the fiber-forming property. Surfactants include, for example, anionic surfactants such as sodium dodecyl sulfate, cationic surfactants such as tetrabutylammonium bromide, and nonionic surfactants such as polyoxyethylene sorbitamon monolaurate. Can be mentioned. The concentration of the surfactant is preferably in the range of 5% by weight or less based on the spinning solution. When the content is 5% by weight or less, the effect commensurate with the use can be improved, which is preferable.
 本発明の効果を著しく損なわない範囲であれば、上記以外の成分も紡糸溶液の成分として含んでもよい。 Other components than the above may be included as components of the spinning solution as long as the effects of the present invention are not significantly impaired.
 静電紡糸により極細繊維を得るためには、紡糸溶液の粘度を、10~10,000cPの範囲に調製することが好ましく、50~8,000cPの範囲であることがより好ましい。粘度が10cP以上であると、繊維を形成するための曳糸性が得られ、10,000cP以下であると、紡糸溶液を吐出させるのが容易となる。粘度が50~8,000cPの範囲であれば、広い紡糸条件範囲で良好な曳糸性が得られるのでより好ましい。紡糸溶液の粘度は、繊維形成性材料の分子量、濃度や溶媒の種類や混合率を適宜変更することで、調整することができる。 In order to obtain ultrafine fibers by electrostatic spinning, it is preferable to adjust the viscosity of the spinning solution in the range of 10 to 10,000 cP, more preferably 50 to 8,000 cP. When the viscosity is 10 cP or more, spinnability for forming fibers is obtained, and when it is 10,000 cP or less, the spinning solution can be easily discharged. When the viscosity is in the range of 50 to 8,000 cP, good spinnability can be obtained in a wide range of spinning conditions, which is more preferable. The viscosity of the spinning solution can be adjusted by appropriately changing the molecular weight and concentration of the fiber-forming material, the type of solvent, and the mixing ratio.
 紡糸溶液の温度は、常温で紡糸することもできるし、加熱・冷却して紡糸してもよい。紡糸溶液を吐出させる方法としては、例えば、ポンプを用いてシリンジに充填した紡糸溶液をノズルから吐出させる方法などが挙げられる。ノズルの内径としては、特に限定されないが、0.1~1.5mmの範囲であるのが好ましい。また吐出量としては、特に限定されないが、0.1~10mL/hrであるのが好ましい。 The spinning solution may be spun at room temperature, or may be heated and cooled before spinning. Examples of the method of discharging the spinning solution include a method of discharging the spinning solution filled in a syringe from a nozzle using a pump. The inner diameter of the nozzle is not particularly limited, but is preferably in the range of 0.1 to 1.5 mm. The discharge amount is not particularly limited, but is preferably 0.1 to 10 mL/hr.
 電界を作用させる方法としては、ノズルとコレクターに電界を形成させることができれば特に限定されるものではなく、例えば、ノズルに高電圧を印加し、コレクターを接地してもよい。印加する電圧は、繊維が形成されれば特に限定されないが、5~100kVの範囲であるのが好ましい。また、ノズルとコレクターとの距離は、繊維が形成されれば特に限定されないが、5~50cmの範囲であるのが好ましい。コレクターは、紡糸された繊維を捕集できるものであればよく、その素材や形状などは特に限定させるものではない。コレクターの素材としては、金属等の導電性材料が好適に用いられる。コレクターの形状としては、特に限定されないが、例えば、平板状、シャフト状、コンベア状などを挙げることができる。コレクターが平板状であると、シート状に繊維集合体を捕集することができ、シャフト状であると、チューブ状に繊維集合体を捕集することができる。コンベア状であれば、シート状に捕集された繊維集合体を連続的に製造することができる。本発明では、コレクター上に基材層を載置してその上に紡糸することによって、基材層の上に直接、極細繊維層を形成させることが好ましい。 The method of applying the electric field is not particularly limited as long as the electric field can be formed in the nozzle and the collector. For example, a high voltage may be applied to the nozzle and the collector may be grounded. The applied voltage is not particularly limited as long as fibers are formed, but it is preferably in the range of 5 to 100 kV. The distance between the nozzle and the collector is not particularly limited as long as fibers are formed, but it is preferably in the range of 5 to 50 cm. The collector may be any as long as it can collect spun fibers, and its material and shape are not particularly limited. As a material for the collector, a conductive material such as metal is preferably used. The shape of the collector is not particularly limited, and examples thereof include a flat plate shape, a shaft shape, and a conveyor shape. When the collector is flat, the fiber assembly can be collected in a sheet shape, and when the collector is in a shaft shape, the fiber assembly can be collected in a tube shape. If it is in the form of a conveyor, the fiber aggregate collected in the form of a sheet can be continuously produced. In the present invention, it is preferable to form the ultrafine fiber layer directly on the base material layer by placing the base material layer on the collector and spinning the base material layer on the collector.
<基材層>
 本発明のフィルター濾材は基材層を含む。基材層を含むことで、極細繊維層の特性に、力学強度、耐久性、プリーツ加工性、接着特性などを付与することができる。基材層としては、フィルター濾材の要求特性や形態に応じて、適宜選択することができ、例えば、不織布、織布、ネットまたは微多孔フィルムなどを例示できる。
<Base material layer>
The filter medium of the present invention includes a base material layer. By including the base material layer, mechanical strength, durability, pleating processability, adhesive property and the like can be imparted to the characteristics of the ultrafine fiber layer. The base material layer can be appropriately selected according to the required characteristics and form of the filter medium, and examples thereof include non-woven fabric, woven fabric, net or microporous film.
 基材層を構成する素材は、特に限定されないが、ポリプロピレンやポリエチレンなどのポリオレフィン系素材を用いた基材層の場合には、耐薬品性に優れるという特徴があり、耐薬品性が必要な液体フィルターなどの用途で好適に使用できる。ポリエチレンテレフタレート、ポリブチテレフタレート、ポリ乳酸、またはこれらを主成分とする共重合体などのポリエステル系素材を用いた基材層の場合には、プリーツ特性に優れるので、プリーツ加工が必要なエアフィルターなどの用途で好適に使用できる。 The material constituting the base material layer is not particularly limited, but in the case of a base material layer using a polyolefin-based material such as polypropylene or polyethylene, it is characterized by excellent chemical resistance, and a liquid requiring chemical resistance is used. It can be suitably used for applications such as filters. In the case of a base material layer using a polyester-based material such as polyethylene terephthalate, polybutyl terephthalate, polylactic acid, or a copolymer containing these as the main components, it has excellent pleating characteristics, and therefore an air filter that requires pleating. Can be suitably used for
 フィルター濾材の加工性や通気性の観点から、基材層として不織布を用いることが好ましい。不織布としては、特に限定されず、不織布としては、スルーエアー不織布、エアレイド不織布、スパンレース不織布、湿式不織布、スパンボンド不織布、メルトブローン不織布、ケミカルボンド不織布、フラッシュ紡糸不織布、静電紡糸不織布等を挙げることができる。 From the viewpoint of processability and air permeability of the filter medium, it is preferable to use a non-woven fabric as the base material layer. The non-woven fabric is not particularly limited, and examples of the non-woven fabric include a through-air non-woven fabric, an air-laid non-woven fabric, a spun lace non-woven fabric, a wet non-woven fabric, a spun bond non-woven fabric, a melt blown non-woven fabric, a flash spun non-woven fabric, and an electrostatic spun non-woven fabric. You can
 本発明のフィルター濾材は、極細繊維層と基材層とが一体化していることが好ましい。一体化する方法としては、特に限定されないが、別々製造された極細繊維層と基材層とを接着剤や熱融着により一体化しても良いし、基材層上に極細繊維層を直接紡糸することにより一体化してもよく、基材層上に極細繊維層を直接紡糸した後、さらに熱による接着加工を施してもよい。 In the filter medium of the present invention, it is preferable that the ultrafine fiber layer and the base material layer are integrated. The method of integration is not particularly limited, but the separately manufactured ultrafine fiber layer and the base material layer may be integrated by an adhesive or heat fusion, or the ultrafine fiber layer may be directly spun on the base material layer. It may be integrated by doing so, and after the ultrafine fiber layer is directly spun on the base material layer, it may be further subjected to an adhesion process by heat.
 熱による接着加工を実施する場合には、特に限定されないが、低融点成分と高融点成分で構成される熱融着性複合繊維からなる不織布を基材層として使用することが好ましい。熱融着性複合繊維の素材構成、複合形態、断面形状は特に限定されず、公知のものを使用できる。素材構成としては、共重合ポリエチレンテレフタレートとポリエチレンテレフタレート、共重合ポリエチレンテレフタレートとポリプロピレン、高密度ポリエチレンとポリプロピレン、高密度ポリエチレンとポリエチレンテレフタレート、共重合ポリプロピレンとポリプロピレン、共重合ポリプロピレンとポリエチレンテレフタレート、ポリプロピレンとポリエチレンテレフタレートなどの組み合わせが例示できる。さらに素材の入手容易性などを考慮すると、好ましくは、共重合ポリエチレンテレフタレートとポリエチレンテレフタレート、高密度ポリエチレンとポリプロピレン、高密度ポリエチレンとポリエチレンテレフタレートのいずれかの組み合わせが例示できる。 When performing the bonding process by heat, although not particularly limited, it is preferable to use a non-woven fabric made of a heat-fusible composite fiber composed of a low melting point component and a high melting point component as the base material layer. The material constitution, the composite form, and the cross-sectional shape of the heat-fusible conjugate fiber are not particularly limited, and known ones can be used. The material composition includes copolymer polyethylene terephthalate and polyethylene terephthalate, copolymer polyethylene terephthalate and polypropylene, high density polyethylene and polypropylene, high density polyethylene and polyethylene terephthalate, copolymer polypropylene and polypropylene, copolymer polypropylene and polyethylene terephthalate, polypropylene and polyethylene terephthalate. And the like can be exemplified. Further, considering the availability of materials, preferably, any combination of copolymerized polyethylene terephthalate and polyethylene terephthalate, high density polyethylene and polypropylene, and high density polyethylene and polyethylene terephthalate can be exemplified.
 断面の複合形態としては、例えば、鞘芯型、偏心鞘芯型、または並列型などが例示できる。繊維の断面形状も特に限定されず、一般的な丸形の他に、楕円形、中空形、三角形、四角形、八用形などの異型断面など、あらゆる断面形状を採用することができるが、極細繊維層と基材層との密着性を高めるという観点から、極細繊維層表面に対して略平行な扁平形状を有していることが好ましい。このような断面形状の繊維を有する基材層は、例えば、楕円形、扁平形、半円形の繊維をウェブ状に加工した後、熱や接着剤により接着する方法や、円形の繊維から構成される不織布を熱ロールによって圧密加工することによって得ることができる。 The composite form of the cross section may be, for example, a sheath-core type, an eccentric sheath-core type, or a parallel type. The cross-sectional shape of the fiber is not particularly limited, and in addition to the general round shape, any cross-sectional shape such as an oval shape, a hollow shape, a triangular shape, a quadrangular shape, and a modified cross-section such as a octagonal shape can be adopted. From the viewpoint of enhancing the adhesion between the fiber layer and the base material layer, it is preferable that the fiber layer has a flat shape substantially parallel to the surface of the ultrafine fiber layer. The substrate layer having fibers having such a cross-sectional shape is formed by, for example, a method in which elliptical, flat, or semicircular fibers are processed into a web shape and then bonded by heat or an adhesive, or a circular fiber. It can be obtained by consolidating a non-woven fabric with a hot roll.
 上記熱融着性複合繊維からなる不織布を製造する方法は、特に限定されず、カーディング法、抄紙法、エアレイド法、メルトブローン法、またはスパンボンド法などの公知の製造方法が使用できる。不織布に加工する際の繊維接着方法についても、特に限定されず、例えば、エアスルー加工による熱融着やエンボス加工による熱圧着、ニードルパンチやスパンレース加工による繊維交絡、接着剤によるケミカルボンドなどが挙げられる。 The method for producing the non-woven fabric made of the heat-fusible composite fiber is not particularly limited, and known methods such as carding method, papermaking method, airlaid method, meltblown method, and spunbond method can be used. The fiber bonding method when processing into a non-woven fabric is not particularly limited, and examples thereof include thermal fusion bonding by air-through processing, thermocompression bonding by embossing, fiber entanglement by needle punching or spunlacing, and chemical bonding by an adhesive. To be
 基材層を構成する繊維の太さは、特に制限されないが、例えば、平均繊維径が1~100μmのものを用いることができ、5~50μmであれば好ましく、10~30μmであればより好ましい。平均繊維径が1μm以上であれば基材層の圧力損失を抑制することができ、平均繊維径が100μm以下であれば極細繊維層を均一に捕集することができる。 The thickness of the fibers constituting the base material layer is not particularly limited, but for example, fibers having an average fiber diameter of 1 to 100 μm can be used, preferably 5 to 50 μm, and more preferably 10 to 30 μm. .. If the average fiber diameter is 1 μm or more, the pressure loss of the base material layer can be suppressed, and if the average fiber diameter is 100 μm or less, the ultrafine fiber layer can be collected uniformly.
 基材層の目付としては、特に限定されず、15g/m以上であることが好ましく、30g/m以上であることがより好ましく、60g/m以上であることがさらに好ましい。基材層の目付が15g/m以上であれば、極細繊維層の収縮、皺入り、カール等を抑制し、加工強度を付与することが可能となる。基材層の比容積は特に限定されず、5cm/g以下であることが好ましく、3cm/g以下であることがさらに好ましい。基材層の比容積が5cm/g以下であれば、極細繊維層の剥離強度、耐摩耗性が向上し、繰り返し洗浄した際の捕集効率の低下が小さくなるため好ましい。基材層の厚みは、特に制限されず、所望のフィルター物性や用途に応じて適宜選択できるが、例えば、0.05~10mmとすることができ、0.1~5mmであれば好ましい。例えば、プリーツフィルターとして用いる場合、基材層を0.1~5mmとすることでプリーツ加工適性が向上するため好ましい。 The basis weight of the base material layer is not particularly limited and is preferably 15 g/m 2 or more, more preferably 30 g/m 2 or more, and further preferably 60 g/m 2 or more. When the basis weight of the base material layer is 15 g/m 2 or more, shrinkage, wrinkling, curling and the like of the ultrafine fiber layer can be suppressed and processing strength can be imparted. The specific volume of the base material layer is not particularly limited, and is preferably 5 cm 3 /g or less, more preferably 3 cm 3 /g or less. When the specific volume of the base material layer is 5 cm 3 /g or less, the peeling strength and abrasion resistance of the ultrafine fiber layer are improved, and the decrease in collection efficiency after repeated washing is reduced, which is preferable. The thickness of the base material layer is not particularly limited and can be appropriately selected depending on the desired physical properties of the filter and the intended use, but can be, for example, 0.05 to 10 mm, and preferably 0.1 to 5 mm. For example, when it is used as a pleat filter, it is preferable that the base material layer has a thickness of 0.1 to 5 mm since the pleat processing suitability is improved.
 基材層の通気度としては、特に限定されないが、10cc/cm/秒以上であることが好ましく、100cc/cm/秒以上であることがより好ましく、200cc/cm/秒以上であることがさらに好ましい。通気度が、10cc/cm/秒以上であれば、圧力損失を低くすることができるため好ましい。 The air permeability of the base material layer is not particularly limited, but is preferably 10 cc/cm 2 /sec or more, more preferably 100 cc/cm 2 /sec or more, and 200 cc/cm 2 /sec or more. Is more preferable. It is preferable that the air permeability is 10 cc/cm 2 /sec or more because the pressure loss can be reduced.
 極細繊維層を静電紡糸法により、基材層に直接紡糸することでフィルター濾材を製造する場合、基材層の電気漏洩抵抗値としては、電気漏洩抵抗値が1010Ω以下であることが好ましく、10Ω以下であることがより好ましい。電気漏洩抵抗値が1010Ω以下であれば、極細繊維層が基材層上に電気的に反発することをなく安定に堆積させることが可能となり、密着性を高めることができる。基材層の縦方向と横方向の引張強度の平均値は、特に限定されないが、強度や剛性、加工性付与の観点から、30N/50mm以上であることが好ましく、60N/50mm以上であることがより好ましい。 When a filter medium is manufactured by directly spinning an ultrafine fiber layer on a base material layer by an electrostatic spinning method, the electric leakage resistance value of the base material layer is 10 10 Ω or less. It is more preferably 10 7 Ω or less. When the electric leakage resistance value is 10 10 Ω or less, the ultrafine fiber layer can be stably deposited on the base material layer without being electrically repulsed, and the adhesion can be improved. The average value of the tensile strength in the machine direction and the transverse direction of the base material layer is not particularly limited, but from the viewpoint of imparting strength, rigidity and workability, it is preferably 30 N/50 mm or more, and 60 N/50 mm or more. Is more preferable.
 基材層は、本発明の効果を著しく損なわない範囲であれば、エレクトレット加工、制電加工、撥水加工、抗菌加工、紫外線吸収加工、近赤外吸収加工、防汚加工、着色加工などを施されていてもよいが、洗浄性の観点から、撥水加工が施されていることが好ましい。 The base material layer may be subjected to electret processing, antistatic processing, water repellent processing, antibacterial processing, ultraviolet absorption processing, near infrared absorption processing, antifouling processing, coloring processing, etc., as long as the effect of the present invention is not significantly impaired. Although it may be applied, it is preferably water-repellent from the viewpoint of cleanability.
<フィルター濾材>
 本発明のフィルター濾材は、前述の極細繊維層および基材層を含むが、その極細繊維層の表面側にさらに、不織布、織布、ネットおよび微多孔フィルムからなる群から選ばれる少なくとも1つの層を、積層一体化してもよい。積層一体化することで、極細繊維層面が表面に露出しにくくなり、耐摩耗性、耐久性、加工強度を向上させることができる。洗浄性の観点から、ネットが積層一体化されていることが好ましい。一体化方法としては、特に限定されず、加熱したフラットロールやエンボスロールによる熱圧着処理、ホットメルト剤や化学接着剤による接着処理、循環熱風もしくは輻射熱による熱接着処理などを採用することができる。
<Filter media>
The filter medium of the present invention includes the above-mentioned ultrafine fiber layer and a base material layer, and at least one layer selected from the group consisting of non-woven fabric, woven fabric, net and microporous film on the surface side of the ultrafine fiber layer. May be laminated and integrated. By laminating and integrating the layers, the surface of the ultrafine fiber layer is less likely to be exposed on the surface, and wear resistance, durability, and processing strength can be improved. From the viewpoint of cleanability, it is preferable that the nets are laminated and integrated. The integration method is not particularly limited, and thermocompression bonding treatment with a heated flat roll or embossing roll, adhesion treatment with a hot melt agent or a chemical adhesive, thermal adhesion treatment with circulating hot air or radiant heat, and the like can be adopted.
 本発明のフィルター濾材は、平均流量孔径が3.0μm以下であることを特徴とする。本明細書において、フィルター濾材の平均流量孔径とは、極細繊維層と基材層とを含むフィルター濾材全体の平均流量孔径をいう。平均流量孔径は、濾材を構成する繊維の間に形成される孔の大きさの指標であり、公知の方法で測定することができる。例えば、細孔径分布測定器等によって測定でき、詳細は実施例に示される。平均流量孔径が3.0μm以下であれば、捕集効率と圧力損失を両立させ、かつ、ダストが濾材内部に進入しにくくなり、洗浄性を向上させることができると考えられている。平均流量孔径の下限は、フィルター濾材の圧力損失の観点からは0.1μm以上であることが好ましい。フィルター濾材の平均流量孔径は、極細繊維の平均繊維径、目付などを適宜変更することで調整可能である。基材層は、平均流量孔径には大きく寄与しないと考えられている。 The filter medium of the present invention is characterized by having an average flow pore diameter of 3.0 μm or less. In the present specification, the average flow pore size of the filter medium refers to the average flow pore size of the entire filter medium including the ultrafine fiber layer and the base material layer. The average flow pore size is an index of the size of the pores formed between the fibers constituting the filter medium, and can be measured by a known method. For example, it can be measured by a pore size distribution measuring device or the like, and details are shown in Examples. When the average flow pore size is 3.0 μm or less, it is considered that both the collection efficiency and the pressure loss are compatible with each other, the dust hardly enters the inside of the filter medium, and the cleaning property can be improved. The lower limit of the average flow pore size is preferably 0.1 μm or more from the viewpoint of pressure loss of the filter medium. The average flow pore diameter of the filter medium can be adjusted by appropriately changing the average fiber diameter of the ultrafine fibers, the basis weight, and the like. It is believed that the substrate layer does not contribute significantly to the average flow pore size.
 本発明のフィルター濾材におけるダストの捕集効率は、特に限定されないが、90%以上であることが好ましく、99%以上であることがより好ましく、99.97%以上であることがさらに好ましい。また、圧力損失は、特に限定されないが、300Pa以下であることが好ましく、180Pa以下であることがより好ましく、160Pa以下であることがさらに好ましい。ここで、ダストの捕集効率および圧力損失は、粒子径:0.07μm(個数中央径)、粒子濃度:10~25mg/mの粒子を、流速5.3cm/秒でサンプルを通過させたときの測定値である。ダストの捕集効率と圧力損失は、極細繊維の平均繊維径や目付を適宜変更して調整することが可能である。 The dust collection efficiency of the filter medium of the present invention is not particularly limited, but is preferably 90% or more, more preferably 99% or more, and further preferably 99.97% or more. The pressure loss is not particularly limited, but is preferably 300 Pa or less, more preferably 180 Pa or less, and further preferably 160 Pa or less. Here, for the dust collection efficiency and pressure loss, particles having a particle diameter of 0.07 μm (median number diameter) and a particle concentration of 10 to 25 mg/m 3 were passed through the sample at a flow rate of 5.3 cm/sec. It is the measured value when. The dust collection efficiency and the pressure loss can be adjusted by appropriately changing the average fiber diameter and the basis weight of the ultrafine fibers.
 本発明のフィルター濾材は、枠、補強材、本発明以外のフィルター濾材等の公知の構成と組み合わされて、フィルターとして利用される。フィルターは、プリーツフィルター、平板状フィルター、円筒状フィルター、等のいずれの形態であってもよいが、プリーツフィルターとして好適に用いることができる。フィルターとして利用する際、フィルター濾材の極細繊維層側を、フィルターの表面側(吸気側)として用いることが好ましい。フィルターの用途としては、特に制限されないが、掃除機や空気清浄機用などの家電フィルター、ビル空調用のエアフィルター、産業用の中・高性能フィルター、クリーンルーム用のHEPAフィルターやULPAフィルター、自動車用のキャビンフィルターなどであることが好ましい。 The filter medium of the present invention is used as a filter in combination with a known structure such as a frame, a reinforcing material and a filter medium other than the present invention. The filter may be in any form such as a pleated filter, a flat filter, a cylindrical filter, etc., but it can be suitably used as a pleated filter. When used as a filter, it is preferable to use the ultrafine fiber layer side of the filter medium as the surface side (intake side) of the filter. The use of the filter is not particularly limited, but it is a home appliance filter for vacuum cleaners and air purifiers, an air filter for building air conditioning, a medium/high performance filter for industry, a HEPA filter or ULPA filter for clean rooms, for automobiles. It is preferable that it is a cabin filter or the like.
 下記の実施例は、例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。 The examples below are for illustration purposes only. The scope of the invention is not limited to this example.
[実施例1]
 ポリフッ化ビニリデンホモポリマー(重量平均分子量:30万)をN,N-ジメチルアセトアミドに18重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%、撥水剤としてフルオロオクチルシルセスキオキサン(エヌビーディナノテクノロジーズ社製)をポリフッ化ビニリデンの重量に対して10重量%の濃度で添加し、紡糸溶液を調製した。次に、共重合ポリエチレンテレフタレートとポリエチレンテレフタレートを含む熱接着性複合繊維からなるスルーエアー不織布(繊維径:10μm、厚み:60μm、目付:18g/m)を基材として、この上に前記紡糸溶液を注射針(テルモ社製、ゲージ:27G、針長:19mm)から紡出して静電紡糸をし、極細繊維層の目付が0.5g/mとなるように作製した。本実施例の紡糸条件は、単孔溶液供給量は1.0mL/hr、印加電圧は30kV、紡糸距離は150mm、紡糸空間は気温25度および湿度30%であった。
[Example 1]
Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added at 0.025% by weight based on the total weight of the solution. Fluorooctylsilsesquioxane (manufactured by Nvidinano Technologies) was added as a water repellent at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution. Next, a through-air non-woven fabric (fiber diameter: 10 μm, thickness: 60 μm, basis weight: 18 g/m 2 ) composed of a heat-adhesive composite fiber containing copolymerized polyethylene terephthalate and polyethylene terephthalate is used as a base material, and the spinning solution is applied thereon. Was spun from an injection needle (Terumo, gauge: 27 G, needle length: 19 mm) and electrostatically spun to prepare an ultrafine fiber layer having a basis weight of 0.5 g/m 2 . The spinning conditions of this example were as follows: the single-pore solution supply rate was 1.0 mL/hr, the applied voltage was 30 kV, the spinning distance was 150 mm, the spinning space temperature was 25° C., and the humidity was 30%.
[実施例2]
 ポリフッ化ビニリデンホモポリマー(重量平均分子量:30万)をN,N-ジメチルアセトアミドに18重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%、撥水剤としてフルオロオクチルシルセスキオキサン(エヌビーディナノテクノロジーズ社製)をポリフッ化ビニリデンの重量に対して10重量%の濃度で添加し、紡糸溶液を調製した。次に、実施例1に記載のスルーエアー不織布を基材として、この上に前記紡糸溶液を注射針(テルモ社製、ゲージ:27G、針長:19mm)から紡出して静電紡糸をし、極細繊維層の目付が1.5g/mとなるように作製した。本実施例の紡糸条件は、実施例1に記載の条件であった。
[Example 2]
Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added at 0.025% by weight based on the total weight of the solution. Fluorooctylsilsesquioxane (manufactured by Nvidinano Technologies) was added as a water repellent at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution. Next, using the through-air non-woven fabric described in Example 1 as a substrate, the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was prepared so that the basis weight of the ultrafine fiber layer would be 1.5 g/m 2 . The spinning conditions of this example were those described in Example 1.
[実施例3]
 ポリフッ化ビニリデンホモポリマー(重量平均分子量:30万)をN,N-ジメチルアセトアミドに18重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%、撥水剤としてフッ素系共重合体(大日精化社製、ダイアロマーFF129D)をポリフッ化ビニリデンの重量に対して10重量%の濃度で添加し、紡糸溶液を調製した。次に、実施例1に記載のスルーエアー不織布を基材として、この上に前記紡糸溶液を注射針(テルモ社製、ゲージ:27G、針長:19mm)から紡出して静電紡糸をし、極細繊維層の目付が1.5g/mとなるように作製した。本実施例の紡糸条件は、実施例1に記載の条件であった。
[Example 3]
Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added to 0.025% by weight based on the total weight of the solution. As a water repellent, a fluorinated copolymer (Dialom Seika Chemical Co., Ltd., Dialomer FF129D) was added at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution. Next, using the through-air non-woven fabric described in Example 1 as a substrate, the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was prepared so that the basis weight of the ultrafine fiber layer would be 1.5 g/m 2 . The spinning conditions of this example were those described in Example 1.
[実施例4]
 熱可塑性ポリウレタンエラストマー(ディーアイシーコベストロポリマー社製、T1190)を混合溶媒(N,N-ジメチルホルムアミド:テトラヒドロフラン=60重量%:40重量%)に12重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%、撥水剤としてフルオロオクチルシルセスキオキサン(エヌビーディナノテクノロジーズ社製)を熱可塑性ポリウレタンエラストマーの重量に対して10重量%の濃度で添加し、紡糸溶液を調製した。次に、実施例1に記載のスルーエアー不織布を基材として、この上に前記紡糸溶液を注射針(テルモ社製、ゲージ:27G、針長:19mm)から紡出して静電紡糸をし、極細繊維層の目付が3.0g/mとなるように作製した。本実施例の紡糸条件は、実施例1に記載の条件であった。
[Example 4]
A thermoplastic polyurethane elastomer (T1190, manufactured by DIC Covestropolymer Co., Ltd.) was dissolved in a mixed solvent (N,N-dimethylformamide:tetrahydrofuran=60% by weight:40% by weight) at a concentration of 12% by weight to prepare a conductive auxiliary agent. Sodium lauryl sulphate was used in a concentration of 0.025% by weight based on the total weight of the solution, and fluorooctylsilsesquioxane (manufactured by Nvidin Nano Technologies) as a water repellent at a concentration of 10% by weight based on the weight of the thermoplastic polyurethane elastomer. And a spinning solution was prepared. Next, using the through-air non-woven fabric described in Example 1 as a substrate, the spinning solution was spun on the needle from an injection needle (Terumo, gauge: 27G, needle length: 19 mm) to perform electrostatic spinning. It was produced so that the basis weight of the ultrafine fiber layer would be 3.0 g/m 2 . The spinning conditions of this example were those described in Example 1.
[比較例1]
 ポリフッ化ビニリデンホモポリマー(重量平均分子量:30万)をN,N-ジメチルアセトアミドに18重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%、撥水剤としてフルオロオクチルシルセスキオキサン(エヌビーディナノテクノロジーズ社製)をポリフッ化ビニリデンの重量に対して10重量%の濃度で添加し、紡糸溶液を調製した。次に、実施例1に記載のスルーエアー不織布を基材として、この上に前記紡糸溶液を実施例1に記載の注射針から紡出して静電紡糸をし、極細繊維層の目付が0.1g/mとなるように作製した。本比較例の紡糸条件は、実施例1に記載の条件であった。
[Comparative Example 1]
Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added at 0.025% by weight based on the total weight of the solution. Fluorooctylsilsesquioxane (manufactured by Nvidinano Technologies) was added as a water repellent at a concentration of 10% by weight based on the weight of polyvinylidene fluoride to prepare a spinning solution. Next, using the through-air non-woven fabric described in Example 1 as a base material, the spinning solution was spun on the needle from the injection needle described in Example 1 and electrostatically spun. It was produced so as to be 1 g/m 2 . The spinning conditions of this comparative example were those described in Example 1.
[比較例2]
 ポリフッ化ビニリデンホモポリマー(重量平均分子量:30万)をN,N-ジメチルアセトアミドに18重量%の濃度で溶解し、導電助剤としてラウリル硫酸ナトリウムを全溶液重量に対して0.025重量%の濃度で添加し、紡糸溶液を調製した。次に、実施例1に記載のスルーエアー不織布を基材として、この上に前記紡糸溶液を実施例1に記載の注射針から紡出して静電紡糸をし、極細繊維層の目付が1.2g/mとなるように作製した。本比較例の紡糸条件は、実施例1に記載の条件であった。
[Comparative example 2]
Polyvinylidene fluoride homopolymer (weight average molecular weight: 300,000) was dissolved in N,N-dimethylacetamide at a concentration of 18% by weight, and sodium lauryl sulfate as a conductive additive was added in an amount of 0.025% by weight based on the total weight of the solution. The concentration was added to prepare a spinning solution. Next, using the through-air nonwoven fabric described in Example 1 as a base material, the spinning solution was spun on from the injection needle described in Example 1 and electrostatically spun, and the basis weight of the ultrafine fiber layer was 1. It was manufactured so as to be 2 g/m 2 . The spinning conditions of this comparative example were those described in Example 1.
 実施例中に示した物性値の測定方法と定義を以下に示す。 The measurement methods and definitions of the physical properties shown in the examples are shown below.
<平均流量孔径>
 Porous Materials社製のAutometed Perm Porometerを用いて、浸液にPorous Materials社製のガルウィック(表面張力=15.6dynes/cm)を用い、JIS K3832(バブルポイント法)に準拠して測定した。結果を表1に示す。
<Average flow pore size>
Using an Automated Perm Porometer manufactured by Porous Materials Co., a Gullwick manufactured by Porous Materials Co., Ltd. (surface tension=15.6 dynes/cm) was used for the immersion liquid, and the measurement was performed according to JIS K3832 (bubble point method). The results are shown in Table 1.
<フィルター濾材の圧力損失>
 TSI社製のフィルター効率自動検出装置(Model8130)を使用して、流速5.3cm/秒に設定して圧力損失を測定した。結果を表1に示す。
<Pressure loss of filter media>
Using a filter efficiency automatic detection device (Model 8130) manufactured by TSI, pressure loss was measured at a flow rate of 5.3 cm/sec. The results are shown in Table 1.
<フィルター濾材の極細繊維面における水の付着エネルギー>
 協和界面科学株式会社製の接触角測定装置DM-500を用いて、平坦なガラス基板上にフィルター濾材を静止させた。ガラス基板の傾きを0度の状態で4.0μLの水の液滴をフィルター濾材表面上に滴下し、液滴が静止した3秒後に静的接触角を測定した。その後、ガラス基板を0.5度/秒の速さで傾斜させ、液滴の端点が静止位置から離れたときの液滴の滑落角をα、着液半径をr、液滴質量をm、重力加速度をgとし、下記の式(1)から付着エネルギーE(mJ/m)を求めた。結果を表1に示す。
<Adhesion energy of water on the ultrafine fiber surface of the filter medium>
Using a contact angle measuring device DM-500 manufactured by Kyowa Interface Science Co., Ltd., the filter medium was made to stand still on a flat glass substrate. A drop of 4.0 μL of water was dropped on the surface of the filter medium with the glass substrate tilted at 0 degrees, and the static contact angle was measured 3 seconds after the drop of the drop was stopped. After that, the glass substrate is tilted at a rate of 0.5 degree/second, the sliding angle of the droplet when the end point of the droplet is separated from the rest position is α, the landing radius is r, the droplet mass is m, Adhesion energy E (mJ/m 2 ) was calculated from the following equation (1), where gravitational acceleration is g. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
<洗浄性の評価>
 JIS試験用粉体8種関東ローム1.0gをフィルター濾材面(100cm)に均一に負荷し、粉体を負荷した面と反対側から1m/秒の風速で1分間吸引した。粉体を負荷したフィルター濾材を40°の角度に傾け、濾材面から5cmの高さから、400mLの純水を落下させて洗浄した。その後、乾燥機内に70℃で1時間静置して乾燥させた。乾燥後、前記フィルター濾材の圧力損失の方法に則して測定した。この操作を計5回繰り返した。初期圧力損失をP、洗浄性の評価終了後の圧力損失をPとし、下記の式(2)から圧力損失上昇率Rを算出した。洗浄性は、圧力損失上昇率Rが0%以上5%未満の場合は◎、5%以上10%未満の場合は〇、10%以上の場合は×とした。結果を表1に示す。
<Evaluation of detergency>
1.0 g of Kanto loam, 8 types of JIS test powder, was uniformly loaded on the filter medium surface (100 cm 2 ), and suctioned for 1 minute at a wind speed of 1 m/sec from the side opposite to the surface on which the powder was loaded. The filter medium loaded with the powder was tilted at an angle of 40°, and 400 mL of pure water was dropped from the height of 5 cm from the surface of the filter medium to wash. Then, it was left to stand in a dryer at 70° C. for 1 hour to be dried. After drying, it was measured according to the method of pressure loss of the filter medium. This operation was repeated 5 times in total. The pressure loss increase rate R was calculated from the following equation (2), where P 0 is the initial pressure loss and P 1 is the pressure loss after the cleaning property evaluation is completed. Detergency was rated as ⊚ when the pressure loss increase rate R was 0% or more and less than 5%, and ◯ when the pressure loss increase rate R was 5% or more and less than 10%, and was rated as X when 10% or more. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
  表1
Figure JPOXMLDOC01-appb-I000004
Table 1
Figure JPOXMLDOC01-appb-I000004
 実施例1~4と比較例1を比較すると、平均流量孔径が3.0μm以下である実施例1~4は高い洗浄性を示したが、平均流量孔径が3.0μmを越える比較例1は低い洗浄性を示した。比較例1は、付着エネルギーについては、実施例1~4より劣るものではないにも関わらず、洗浄性が得られなかった。これは、平均流量孔径が3.0μm以下である実施例1~4のフィルター濾材では、ダストが濾材内部に進入しにくくなり、洗浄性が向上したためであると考えられた。 Comparing Examples 1 to 4 with Comparative Example 1, Examples 1 to 4 having an average flow pore diameter of 3.0 μm or less showed high cleanability, but Comparative Example 1 having an average flow pore diameter of more than 3.0 μm. It showed low detergency. In Comparative Example 1, although the adhesion energy was not inferior to that of Examples 1 to 4, the cleaning property was not obtained. It is considered that this is because the filter media of Examples 1 to 4 having an average flow pore size of 3.0 μm or less made dust less likely to enter the interior of the filter media and improved the cleaning property.
 実施例1~4と比較例2は充分なダスト捕集性を備えていた。しかし、実施例1~4と比較例2を比較すると、付着エネルギーが3.0mJ/m以下である実施例1~4は洗浄性が高いが、付着エネルギーが3.0mJ/mを超える比較例2は、洗浄性が低かった。比較例2は、平均流量孔径については、実施例1~4より劣るものではないにも関わらず、洗浄性が得られなかった。これは、付着エネルギーが3.0mJ/m以下であると、ダストを含んだ液滴が濾材表面から除去されやすくなったためであると考えられた。 Examples 1 to 4 and Comparative Example 2 had a sufficient dust collecting property. However, comparing Examples 1 to 4 and Comparative Example 2, Examples 1 to 4 in which the adhesion energy is 3.0 mJ/m 2 or less have high detergency, but the adhesion energy exceeds 3.0 mJ/m 2 . Comparative Example 2 had low detergency. In Comparative Example 2, the average flow pore size was not inferior to that of Examples 1 to 4, but the cleaning property was not obtained. It is considered that this is because when the adhesion energy was 3.0 mJ/m 2 or less, the droplets containing dust were easily removed from the surface of the filter medium.
 図1、2に、洗浄性評価後の実施例1及び比較例1のフィルター濾材の光学写真を示す。図1(実施例1)のフィルター濾材は、視覚的にほぼ確認できない程度までダストが洗浄除去された。一方、図2(比較例1)のフィルター濾材は、フィルター表面に残存するダストが視認できた。 FIGS. 1 and 2 show optical photographs of the filter media of Example 1 and Comparative Example 1 after the cleaning property evaluation. In the filter medium of FIG. 1 (Example 1), the dust was washed and removed to the extent that it could hardly be visually confirmed. On the other hand, in the filter medium of FIG. 2 (Comparative Example 1), dust remaining on the filter surface was visible.
 本発明のフィルター濾材は、ダストの捕集効率が高く、圧力損失が低く、化学薬品等を使用せずに水で容易にダストを除去できるため、掃除機や空気清浄機用などの家電フィルター、ビル空調用のエアフィルター、産業用の中・高性能フィルター、クリーンルーム用のHEPAフィルターやULPAフィルター、自動車用のキャビンフィルターなどに好適に用いることが可能である。 The filter medium of the present invention has high dust collection efficiency, low pressure loss, and can easily remove dust with water without using chemicals, etc. It can be suitably used as an air filter for building air conditioning, a medium/high performance filter for industry, a HEPA filter or ULPA filter for a clean room, a cabin filter for an automobile, and the like.

Claims (6)

  1. 極細繊維層と基材層とを含むフィルター濾材であって、前記フィルター濾材の平均流量孔径が3.0μm以下であり、かつ前記極細繊維層の表面における水の付着エネルギーが3.0mJ/m以下である、フィルター濾材。 A filter medium comprising an ultrafine fiber layer and a base material layer, wherein the filter medium has an average flow pore diameter of 3.0 μm or less, and water has an adhesion energy of 3.0 mJ/m 2 on the surface of the ultrafine fiber layer. The following is a filter medium.
  2. 前記極細繊維層を構成する極細繊維に、撥水剤が含有される、請求項1に記載のフィルター濾材。 The filter medium according to claim 1, wherein the ultrafine fibers forming the ultrafine fiber layer contain a water repellent.
  3. 前記撥水剤にフッ素が含有される、請求項2に記載のフィルター濾材。 The filter medium according to claim 2, wherein the water repellent contains fluorine.
  4. 前記極細繊維層の目付けが、0.1~20.0g/mである、請求項1~3のいずれか1項に記載のフィルター濾材。 The filter medium according to any one of claims 1 to 3, wherein the basis weight of the ultrafine fiber layer is 0.1 to 20.0 g/m 2 .
  5. 前記基材層が、平均繊維径が1~30μmである不織布で構成される、請求項1~4のいずれか1項に記載のフィルター濾材。 The filter medium according to any one of claims 1 to 4, wherein the base material layer is composed of a nonwoven fabric having an average fiber diameter of 1 to 30 µm.
  6. 請求項1~5のいずれか1項に記載のフィルター濾材を含む、フィルター。 A filter comprising the filter medium according to any one of claims 1 to 5.
PCT/JP2020/000881 2019-01-21 2020-01-14 Filter medium and filter using same WO2020153174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080006611.0A CN113164849A (en) 2019-01-21 2020-01-14 Filter medium and filter using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007782 2019-01-21
JP2019007782A JP7216322B2 (en) 2019-01-21 2019-01-21 Filter medium and filter using the same

Publications (1)

Publication Number Publication Date
WO2020153174A1 true WO2020153174A1 (en) 2020-07-30

Family

ID=71736149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000881 WO2020153174A1 (en) 2019-01-21 2020-01-14 Filter medium and filter using same

Country Status (3)

Country Link
JP (1) JP7216322B2 (en)
CN (1) CN113164849A (en)
WO (1) WO2020153174A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102497942B1 (en) * 2021-11-12 2023-02-09 주식회사 제이케이상사 eco-friendly biodegradability manufacturing methods of non-woven filter
JP7667951B1 (en) * 2023-08-25 2025-04-24 日本エクスラン工業株式会社 Water-repellent and moisture-wicking fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221073A (en) * 2007-03-09 2008-09-25 Toyobo Co Ltd Superfine fiber filter medium and its manufacturing method
JP2010058328A (en) * 2008-09-02 2010-03-18 Teijin Techno Products Ltd Laminate structure and filtering medium made of the same
JP2012122922A (en) * 2010-12-10 2012-06-28 Kochi Prefecture Foreign object collecting filter for automatic air pollution measuring apparatus
JP2014159033A (en) * 2014-05-26 2014-09-04 Asahi Kasei Fibers Corp Liquid filter with high separability

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776986B2 (en) * 2005-06-10 2011-09-21 日本バイリーン株式会社 Sterilized filter media and sterile filter
JP5080041B2 (en) * 2006-08-30 2012-11-21 日本バイリーン株式会社 Air filter medium, streamer filter using the same, and method for producing air filter medium
JP2011036763A (en) 2009-08-07 2011-02-24 Tomoegawa Paper Co Ltd Air filter medium and method for manufacturing the same
KR101064959B1 (en) 2010-03-12 2011-09-16 한국에너지기술연구원 Deep filtration air filter media for gas turbine and compressor inlet air purification and deep filtration air filter cartridge using the same
JP6593170B2 (en) * 2013-09-30 2019-10-23 Jnc株式会社 Fiber laminate including ultrafine fibers and filter comprising the same
JP6101231B2 (en) 2014-03-31 2017-03-22 東洋紡Stc株式会社 Knitted fabric for clothing
CN204952465U (en) 2015-08-31 2016-01-13 江苏鼎盛滤袋有限公司 Refuse grease proofing easy deashing filter bag of water
CN205832783U (en) 2016-07-27 2016-12-28 江苏森源环保材料有限公司 A kind of grease proofing filter felt of water repellent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221073A (en) * 2007-03-09 2008-09-25 Toyobo Co Ltd Superfine fiber filter medium and its manufacturing method
JP2010058328A (en) * 2008-09-02 2010-03-18 Teijin Techno Products Ltd Laminate structure and filtering medium made of the same
JP2012122922A (en) * 2010-12-10 2012-06-28 Kochi Prefecture Foreign object collecting filter for automatic air pollution measuring apparatus
JP2014159033A (en) * 2014-05-26 2014-09-04 Asahi Kasei Fibers Corp Liquid filter with high separability

Also Published As

Publication number Publication date
CN113164849A (en) 2021-07-23
JP7216322B2 (en) 2023-02-01
JP2020116487A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7077575B2 (en) Mixed non-woven fabrics, laminates, filter media for filters, and methods for manufacturing these
JP5619723B2 (en) Air filtration media with improved dust accumulation capacity and improved resistance to high humidity environments
JP5696919B2 (en) Durable laminate of nanoweb and scrim
JP5875180B2 (en) Improved filter media with nanoweb layers
US9186608B2 (en) Process for forming a high efficiency nanofiber filter
JP5727488B2 (en) Air filtration media with improved dust accumulation capacity and improved resistance to high humidity environments
JP6269922B2 (en) Fiber sheet and fiber product using the same
WO2018003807A1 (en) Filter medium and manufacturing method therefor
BRPI0517573B1 (en) composite fabric and process for forming a composite fabric
JP7177394B2 (en) COMPOSITE STRUCTURE, MANUFACTURING METHOD THEREOF, AND FILTER MEDIUM CONTAINING THE COMPOSITE STRUCTURE
JP2022530806A (en) Filtration medium containing a polyamide nanofiber layer
WO2020153174A1 (en) Filter medium and filter using same
WO2010055668A1 (en) Sheet-like assembly of fibers having small diameters, method for producing same, and apparatus for producing same
KR20080039278A (en) Air purification filter media, Air purification filter manufactured using the same and manufacturing method thereof
JPWO2018221063A1 (en) Non woven filter
KR102157444B1 (en) Multy-Layer Structure Filter Medium For High-Performance Air Cleaning Filter
JP4737039B2 (en) Filter nonwoven fabric for air intake
CN103706182A (en) Spherical and linear combined compound fiber air filtering material and preparation method thereof
JP2022085147A (en) Laminated body and method for manufacturing the same
KR102563110B1 (en) Nanofiber filter and preparation method thereof
JP2023142116A (en) Fiber sheet and manufacturing method thereof
KR102621800B1 (en) Nanofiber filter and preparation method thereof
JP2022095310A (en) Base material for filter
JP2025029341A (en) Fiber sheet and method for producing same
KR20200093314A (en) Air purification material enhanced static electricity durability and the manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745710

Country of ref document: EP

Kind code of ref document: A1