[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020152837A1 - Air conditioning system, operation control method, and program - Google Patents

Air conditioning system, operation control method, and program Download PDF

Info

Publication number
WO2020152837A1
WO2020152837A1 PCT/JP2019/002408 JP2019002408W WO2020152837A1 WO 2020152837 A1 WO2020152837 A1 WO 2020152837A1 JP 2019002408 W JP2019002408 W JP 2019002408W WO 2020152837 A1 WO2020152837 A1 WO 2020152837A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
indoor
indoor unit
air conditioning
units
Prior art date
Application number
PCT/JP2019/002408
Other languages
French (fr)
Japanese (ja)
Inventor
金澤 律子
小坂 忠義
孝明 松下
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2019/002408 priority Critical patent/WO2020152837A1/en
Priority to JP2020567325A priority patent/JP7321190B2/en
Publication of WO2020152837A1 publication Critical patent/WO2020152837A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • the present invention relates to an air conditioning system including a plurality of indoor units and one or more outdoor units, an operation control method, and a program for causing a computer to execute the operation control.
  • the present invention provides an air conditioning system including a plurality of indoor units and one or more outdoor units, An acquisition unit that acquires information related to the operation from the indoor unit and the outdoor unit that are operating in response to a driving instruction among a plurality of indoor units and one or more outdoor units; An air conditioning system is provided that includes: a control unit that instructs a driving of at least one indoor unit that has not received a driving instruction in accordance with the acquired information.
  • the time required to reach the set temperature can be shortened and the power consumption can be reduced.
  • FIG. 1 is a diagram showing a configuration example of an air conditioning system.
  • the air conditioning system includes a plurality of indoor units installed in the same space and one or more outdoor units installed outside the space.
  • the air conditioning system also includes a remote controller for a user to operate an air conditioner including a set of an indoor unit and an outdoor unit, and a centralized controller as a control device that controls the air conditioning system.
  • the system illustrated in FIG. 1 includes 16 indoor units 10 installed in a large room in a building, four outdoor units 11 installed outdoors, and each indoor unit 10 for operating. It is composed of 16 remote controllers 12 and a centralized controller 13.
  • the indoor unit 10 is a ceiling-mounted indoor unit and includes a fan that sucks in and blows out the air in the room, a heat exchanger that heats or cools the sucked air, and a control board that controls the fan. Further, the indoor unit 10 includes a temperature sensor that measures a suction temperature (indoor temperature) and a temperature sensor that measures a blowout temperature.
  • the control board of the indoor unit 10 communicates with the remote controller 12 operated by the user, receives an instruction from the remote controller 12, operates or stops the indoor unit 10, and sets or changes the operation mode, temperature, air volume, or the like. To do. Further, the control board of the indoor unit 10 communicates with the centralized controller 13 and provides information related to the operation such as the set temperature, the set air volume, and the measured room temperature.
  • the outdoor unit 11 sucks and blows outside air, a heat exchanger that warms or cools the sucked air, and a compressor that circulates a refrigerant as a heat medium between the indoor unit 10 and the outdoor unit 11.
  • a control board for controlling the fan and the compressor and various sensors are provided.
  • the outdoor unit 11 shown in FIG. 1 is a multi-type outdoor unit to which a plurality of indoor units for sending the refrigerant can be connected.
  • the control board of the outdoor unit 11 receives an instruction from the remote controller 12 via the indoor unit 10, operates or stops the outdoor unit 11 according to the instruction, and controls the fan and the compressor.
  • Various sensors include a temperature sensor that measures the outside air temperature, a sensor that measures the current supplied to the compressor, a sensor that measures the flow rate of the refrigerant, a sensor that measures the pressure of the refrigerant, and the like.
  • the remote controller 12 instructs the indoor unit 10 to operate or stop the indoor unit 10. Further, the remote controller 12 gives an instruction to set or change the operation mode, temperature, air volume, and the like.
  • the centralized controller 13 controls the entire system, communicates with the control boards of the indoor units 10 and the control boards of the outdoor units 11, acquires information necessary for control, and gives necessary instructions.
  • FIG. 2 is a diagram exemplifying a connection state of an indoor unit, an outdoor unit, and a centralized controller.
  • the indoor unit 10 and the outdoor unit 11 are connected by a refrigerant pipe 14.
  • the indoor unit 10, the outdoor unit 11, and the centralized controller 13 are connected by a communication network 15.
  • the air conditioning system is provided with four refrigerant systems including four indoor units 10 and one outdoor unit 11 connected by one refrigerant pipe 14.
  • a communication network 15 connects all the indoor units 10, the outdoor units 11, and the centralized controller 13.
  • the numbers of the refrigerant systems shown in FIG. 2 and the numbers of the indoor units 10 and the outdoor units 11 constituting one refrigerant system are examples, and other numbers may be used.
  • the communication means of the communication network 15 may be any means as long as it can communicate between the devices. Therefore, the communication between the devices may be wired communication using a communication cable or the like, or wireless communication using Wi-Fi or the like.
  • Identification information for identifying a communication partner on the communication network 15 is assigned to each indoor unit 10 and each outdoor unit 11.
  • the identification information is an address, such as an ID number that does not overlap with other devices.
  • the identification information can be manually set by the system administrator.
  • i11 to i44 are assigned as ID numbers to each of the 16 indoor units 10
  • o1 to o4 are assigned to each of the four outdoor units 11 as ID numbers.
  • the refrigerant is adiabatically compressed by the compressor of the outdoor unit 11 to reach a high temperature and discharged.
  • the high temperature refrigerant discharged from the compressor is supplied to the heat exchanger of the indoor unit 10 through the refrigerant pipe 14.
  • the high-temperature refrigerant discharged from the compressor is supplied to the heat exchanger of the outdoor unit 11 and cooled by heat exchange with the outside air. Then, the refrigerant is adiabatically expanded by an expansion valve or the like, and the temperature is further lowered.
  • the refrigerant having a low temperature in this way is supplied to the heat exchanger of the indoor unit 10 through the refrigerant pipe 14.
  • the indoor unit 10 exchanges heat between the supplied refrigerant and the air sucked by the fan in a heat exchanger, and blows warm air or cooled air into the room.
  • the heat-exchanged refrigerant is returned to the outdoor unit 11 through the refrigerant pipe 14.
  • the refrigerant used for heating is adiabatically expanded by the expansion valve or the like of the outdoor unit 11 to lower the temperature, heat-exchanged with the outside air by the heat exchanger, and then supplied to the compressor.
  • the refrigerant used for cooling is supplied to the compressor.
  • the refrigerant circulates between the indoor unit 10 and the outdoor unit 11 thus connected by the refrigerant pipe 14.
  • FIG. 3 is a diagram exemplifying the hardware configuration of the centralized controller.
  • the centralized controller 13 includes a CPU 20, an input/output unit 21, a communication unit 22, a RAM 23, a memory disk 24, and a power supply unit 25.
  • the CPU 20 and the like are connected to the bus 26 and exchange information with each other via the bus 26.
  • the CPU 20 is a one-chip microcomputer that executes operation control of the system.
  • the input/output unit 21 has a display panel and an input button, receives an input for the user to make settings and instructions, and displays the current operating state of the indoor unit 10 and the like.
  • the memory disk 24 stores an OS (Operating System), a program for operation control, driver software, data acquired by data communication, and the like.
  • the RAM 23 provides a work area for the CPU 20. Therefore, the CPU 20 executes the operation control of the system by reading the above program from the memory disk 24, expanding the program in the RAM 23, and executing it.
  • the communication unit 22 performs data communication with each indoor unit 10 and each outdoor unit 11 connected by the communication network 15.
  • the power supply unit 25 receives power supply from an outlet or the like, converts an alternating current into a direct current used by the CPU 20 or the like, and supplies it to the CPU 20 or the like.
  • the input/output unit 21 sets the operation settings for each indoor unit 10 (individually), each room (area) that represents the installation space of a plurality of indoor units 10, and the area is divided into two or more spaces (blocks). Operation settings can also be made. Further, the input/output unit 21 can also perform operation setting for each refrigerant system or each remote controller 12.
  • Operation settings include cooling/heating selection, temperature, air volume, and wind direction settings.
  • the input/output unit 21 includes an Enter button, a Sel button, an Esc button, and a direction button in order to make those operation settings. The user uses these buttons to select and input items necessary for operation setting.
  • FIG. 4 is a diagram showing an example in which a plurality of indoor units are grouped and designated for each group.
  • the centralized controller 13 designates and registers the indoor units included in the area, further divides the area into blocks, designates and registers the indoor units included in each block, and operates in registered area units and block units. It has the function of controlling.
  • the grouping can be set in two stages of area and block, but it is not limited to this.
  • 16 indoor units i11 to i14, i21 to i24, i31 to i34, and i41 to i44 are designated in the area 40.
  • Each outdoor unit is connected to four indoor units by a refrigerant pipe 14.
  • the area 40 is divided into three blocks 41 to 43.
  • eight indoor units i11 to i14 and i21 to i24 are designated.
  • Six indoor units i31 to i34, i41, and i43 are designated in the block 42.
  • Two indoor units i42 and i44 are designated in the block 43.
  • the centralized controller 13 holds the area/block management information in order to manage the indoor unit specified in the area 40 and the indoor units specified in the blocks 41 to 43.
  • FIG. 5 is a diagram showing an example of area/block management information.
  • the area/block management information holds area identification information for identifying an area assigned to each area and block identification information for identifying each block included in the area in association with each other.
  • the area identification information is “area 1 (first office)” with respect to the area 40.
  • the block identification information is “block 1 (north)” for the block 41, “block 2 (east)” for the block 42, and “block 3 (west)” for the block 43.
  • Area/block management information holds an ID number that identifies an indoor unit in association with each block identification information.
  • indoor units i11 to i14 and i21 to i24 are associated with block 1 (north).
  • the centralized controller 13 may have a function of controlling the operation in units of areas and blocks as described above, and a function of proportionally calculating the power consumption charge for each space when installed in a commercial facility or the like.
  • the user when the user goes to work on a holiday or in the early morning, the user operates only some of the indoor units 10 and the outdoor units 11 to perform air conditioning. In this case, it takes a long time for the indoor temperature to reach the set temperature, and the operated indoor unit 10 and outdoor unit 11 are operated with large power consumption regardless of operating efficiency.
  • the centralized controller 13 is configured as follows.
  • FIG. 6 is a block diagram illustrating the functional configuration of the centralized controller 13.
  • the centralized controller 13 realizes various functions as functional means by reading out the program stored in the memory disk 24 into the RAM 23 and executing the program. Therefore, the centralized controller 13 is configured to include an acquisition unit 30, a setting unit 31, a calculation unit 32, a determination unit 33, a control unit 34, and a notification unit 35 as functional units. At this time, the centralized controller 13 uses the RAM 23 and the memory disk 24 as the storage means 36.
  • the centralized controller 13 is described as having these functional means, but the present invention is not limited to this, and a server device or the like connected via a network to which the air conditioning system is connected has these functional means. May be.
  • the acquisition unit 30 acquires information related to driving from the indoor unit 10 and the outdoor unit 11 that are operating in response to a driving instruction from among the plurality of indoor units 10 and one or more outdoor units 11.
  • the information related to the operation is setting information set for the indoor unit 10 and the outdoor unit 11, output values of various sensors mounted on the indoor unit 10 and the outdoor unit 11, and the like.
  • the setting information includes the temperature, the air volume, the air direction, the operation mode set for the indoor unit 10 by the remote controller 12, the compressor set value set for the outdoor unit 11, and the like.
  • the output values of various sensors are room temperature, blowout temperature, outside air temperature, compressor current value, refrigerant flow rate, refrigerant pressure, and the like.
  • the acquisition unit 30 acquires these pieces of information at a fixed time interval, and stores the information for a fixed period together with the acquisition time in the storage unit 36.
  • the setting means 31 accepts designation of areas and blocks and designation of indoor units forming each block, associates identification information of each area, block, and indoor unit, and stores them in the storage means 36 as area/block management information. Register with.
  • the computing unit 32 calculates the power consumption of the indoor unit 10 and the outdoor unit 11 in operation using the information acquired by the acquisition unit 30 and stored in the storage unit 36, and calculates the operation efficiency from the power consumption.
  • the judging means 33 judges whether the indoor unit 10 and the outdoor unit 11 in operation are inefficient operation based on the operation efficiency calculated by the calculating means 32. Whether or not the operation is inefficient can be determined by whether or not there is an indoor unit and an outdoor unit in which the state where the operation efficiency is less than the threshold value continues for a certain time or longer. When it is determined that the operation is inefficient, it indicates that the operation efficiency is low only with the indoor unit 10 and the outdoor unit 11 that are operating.
  • control unit 34 changes the current operation setting to an operation setting that includes at least one other indoor unit in order to increase the operation efficiency, and the other indoor unit Instruct driving.
  • the other indoor unit instructing the operation is an indoor unit that is not in operation and has not received the operation instruction. In this way, in addition to an arbitrary indoor unit, operating in conjunction with other indoor units is called interlocking operation.
  • the control unit 34 cancels the linked operation when the operation setting is input to an arbitrary indoor unit 10 and the operation setting change is notified from the indoor unit 10. At this time, the control means 34 stops the indoor units 10 operating in conjunction with each other other than the indoor unit 10 that transmitted the notification.
  • the indoor unit 10 When any indoor unit 10 that is operating receives an instruction to stop the operation, the indoor unit 10 notifies the control unit 34 that the instruction to stop the operation is received, and stops its own operation. .. Upon receiving the notification, the control unit 34 instructs the operation stop of the indoor unit 10 that is in the interlocking operation, and cancels the interlocking operation.
  • the notification unit 35 notifies the user when the inefficient operation continues even after a certain period of time elapses after all the indoor units 10 included in the area have been operated.
  • the notification can be made by displaying a message calling attention such as "the room is not cold”, “the room is not warm”, “is the window open”, etc. on the display screen of the input/output unit 21? Done.
  • the notification may be given by voice instead of displaying the message.
  • FIG. 7 is a flowchart showing an example of operation control processing by the centralized controller 13.
  • the centralized controller 13 When the centralized controller 13 is powered on and activated in step S1, it starts communication with all the indoor units 10 and the outdoor units 11 connected to the air conditioning network in step S2, and confirms the connection.
  • the acquisition unit 30 acquires basic information from all the indoor units 10 and the outdoor units 11 in this communication.
  • the basic information is system configuration information such as the number of refrigerant systems existing on the air conditioning network, the configuration of the indoor unit and the outdoor unit of each refrigerant system, the ID number of each device, the capacity, and the model.
  • the acquisition unit 30 stores the acquired basic information in the storage unit 36.
  • the central controller 13 constantly communicates with each indoor unit 10 and each outdoor unit 11, and the acquisition unit 30 acquires information related to the operation of each indoor unit 10 and each outdoor unit 11.
  • the control unit 34 grasps the operation state of each device from the information acquired by the acquisition unit 30, transmits an operation setting command to an arbitrary indoor unit 10, and enters a normal processing state for automatic control. When the normal processing state is entered, it becomes possible to carry out the group registration of the indoor unit for designating the air-conditioned space.
  • the judging means 33 judges in step S3 whether to register or change the air-conditioned space.
  • the determination unit 33 determines whether or not the user has selected the group registration function of the indoor unit 10 using the input/output unit 21. When it is determined that the operation is performed, the process proceeds to step S4, the setting unit 31 accepts the selection, and the indoor unit list or the current area and block registration state is displayed. The indoor unit list is displayed when group registration has not been set, and the current area and block registration states are displayed when group registration has been performed in the past. If it is determined that it will not be performed, the process proceeds to step S6.
  • the storage unit 36 can store an area layout diagram (layout diagram) in advance, and the setting unit 31 superimposes each indoor unit on the layout diagram and displays which indoor unit at which position when the indoor unit list is displayed. It can make it easier to understand whether or not is installed.
  • the setting means 31 registers the input area name and block name in association with the identification information of the indoor unit selected for each block in the storage means 36 in association with each other.
  • the user selects or inputs the linked operation conditions after performing group registration.
  • the interlocking operation condition is a condition set as a priority item regarding the operation of the system. Examples of the interlocking operation conditions include a condition "power consumption priority” in which power consumption is prioritized, and a condition "speed priority” in which priority is given to time to reach a set condition such as a set temperature.
  • the setting unit 31 sets the interlocking operation condition by storing the interlocking operation condition selected by the user in the storage unit 36.
  • step S6 the elapsed time is measured by a timer as a time measuring means, and it is determined whether or not the communication time which is regularly performed has been reached. If it has been reached, the process proceeds to step S7, and if it has not been reached, the process proceeds to step S11.
  • step S7 the acquisition unit 30 acquires information related to operation from each indoor unit 10 and each outdoor unit 11. At this time, the acquisition unit 30 acquires, as the information related to the operation, ON/OFF of the operation, operation mode, set temperature, set air volume, ON/OFF of the compressor, compressor set value, output values of various sensors, and the like. To do.
  • the information related to driving is not limited to the above, and may be other information that can be used for calculation of driving efficiency.
  • the acquisition unit 30 stores the acquired information in the storage unit 36 for a certain period. At that time, the acquisition unit 30 stores the information together with the information on the measured time.
  • step S8 the calculation means 32 uses the stored information to calculate the power consumption of the indoor unit 10 and the outdoor unit 11 in operation, and calculates the operating efficiency from the power consumption.
  • the power consumption W s (kW) is calculated by the following Expression 1.
  • the power factor ⁇ is the ratio of the power actually consumed (active power) and the apparent power represented by the product of the AC voltage and current, including the power not actually consumed (reactive power).
  • Q is the manufacturing heat amount of each of the operating outdoor units 11 (kW)
  • G is the total value G (kg/s) of the refrigerant flow rates of all the compressors in the operating outdoor unit 11 and the outdoor unit.
  • 11 and specific enthalpy H o of the refrigerant outlet (kJ / kg) with the outdoor unit 11 the inlet of the specific enthalpy H i of the refrigerant (kJ / kg), is calculated by the following equation 2.
  • H o is the specific enthalpy which is converted from the liquid pipe temperature and pressure of the outdoor unit 11 outlet
  • H i is been specific enthalpy converted from the outdoor unit 11 inlet gas pipe end and pressure.
  • the current operating efficiency C is calculated by the following expression 3 using W s calculated by the above expression 1 and Q calculated by the above expression 2.
  • the calculation means 32 also approximates the current air conditioning load D (kW).
  • D has a cooling load D c and a heating load D h
  • D c and D h are the output value T i (° C.) of the suction temperature sensor of the indoor unit 10 and the output value of the blowout temperature sensor of the indoor unit 10.
  • Each calculated value is stored in the storage unit 36 together with the acquired information.
  • step S9 the judging means 33 judges whether or not the driving is inefficient based on the driving efficiency calculated by the calculating means 32. Whether or not the inefficient operation is performed is determined by whether or not there is the outdoor unit 11 in which the state where the value of C is less than (or less than) the preset threshold continues for a certain time (X hours) or more. X varies depending on the interlocking operation condition, and can be set to 2 minutes for "speed priority” and 5 minutes for "power consumption priority", for example. Note that these times are examples and are not limited to these values.
  • step S9 If it is determined that the operation is inefficient in step S9, the process proceeds to step S10, and if it is determined that the operation is efficient, the process proceeds to step S11.
  • step S10 the control unit 34 changes the operation setting and selects the indoor unit 10 for which the linked operation is performed. The control unit 34 instructs the selected indoor unit 10 to operate.
  • FIG. 8 is a diagram for explaining the linked operation.
  • the user uses the remote controller 12 to instruct the indoor unit i14 near the user's place to operate. At that time, the user sets a desired temperature.
  • the operation instruction is also sent to the outdoor unit o1 of the same refrigerant system as the indoor unit i14, and the operation of the outdoor unit o1 is started together with the indoor unit i14.
  • the indoor unit i14 and the outdoor unit o1 are operated under high load because the temperature in the large area 40 approaches the set temperature set by the user. Therefore, the determination unit 33 determines that the operation is inefficient. Then, the control unit 34 changes the operation setting and instructs the operation of at least one indoor unit that is stopped.
  • the control unit 34 refers to the layout diagram to instruct the indoor units i11 to i13, i21 to i24 and the outdoor unit o2 to operate, and The wind direction is instructed to blow air toward the indoor unit i14. Thereby, the set temperature set by the user can be quickly reached.
  • the judging means 33 periodically judges whether or not the operation is inefficient. Even if the indoor units i11 to i14, i21 to i24 and the outdoor units o1 and o2 in the block 41 are operated, if it is determined that the operation is still inefficient, the control means 34 changes the operation setting and the block 41 The operation of the stopped indoor unit in the included area 40 is instructed. As a result, all the indoor units and the outdoor units in the area 40 are operated.
  • the control unit 34 selects and selects groups in the order of the number of indoor units in order to reduce power consumption as much as possible. It is possible to instruct a stopped indoor unit in the group to operate. If the refrigerant system is grouped for each refrigerant system, the operation of the indoor unit while the refrigerant system is stopped is instructed, and if it is determined to be inefficient operation, the operation of the stopped indoor unit in the block is instructed. be able to.
  • the control unit 34 quickly brings the room closer to the set temperature, so that the indoor unit in the area 40 that is stopped in order to drive more indoor units. And instruct the operation of the outdoor unit.
  • the control unit 34 can drive all the indoor units and the outdoor units in the area, and can reduce the number of the indoor units and the outdoor units to be driven when the inefficient operation is not performed. Therefore, the control unit 34 can select a group in the order of the number of indoor units, and can instruct the stopped indoor units in the selected group to operate.
  • the determination unit 33 determines whether the cause of the inefficient operation is a waste operation or an insufficient capacity based on the load D of the indoor unit 10 that is currently operating. To judge. This is because, in the case of a waste operation, even if the indoor unit 10 is additionally operated, the time required to reach the set temperature is not shortened and extra power is consumed.
  • FIG. 9 is a diagram showing an example in which some of the indoor units that are in operation are judged to be ineffective and are stopped.
  • the judging means 33 judges whether the load D of a part of the indoor units in operation, which is calculated by the calculating means 32, continues for more than X hours and not more than 0, whether it is a waste operation or an insufficient capacity. ..
  • the load D of the indoor unit continues to be equal to or more than X hours and equal to or less than 0, it does not contribute to the air conditioning of the block at all, and thus it can be determined that the operation is a waste operation.
  • the compressor of the outdoor unit o4 is frequently stopped.
  • the thermostat is turned off, and the indoor units i41 and i43 connected to the outdoor unit o4 also have almost no load.
  • the determination unit 33 When the determination unit 33 detects that the load on the indoor units i41, i43 is substantially 0 for X hours (operation stop state), the determination unit 33 determines that the indoor units i41, i43 and the outdoor unit o4 are wasteful operations. In response to this, the control means 34 gives an instruction to stop the operation of the indoor units i41, i43 and the outdoor unit o4 which are in a waste operation. The indoor units i41, i43 and the outdoor unit o4 stop their operations in response to an instruction from the control means 34.
  • the control means 34 executes the following control.
  • the control unit 34 confirms whether or not the stopped indoor unit of the same refrigerant system as the indoor unit exists in the block to which the operating indoor unit belongs. To do. When it exists, the control unit 34 sets the set temperature of the stopped indoor unit to the average set temperature of the operating indoor unit, and instructs the stopped indoor unit to operate.
  • the control means 34 confirms whether or not there is an indoor unit in which another refrigerant system is stopped in the same block only when there is no indoor unit in which the same refrigerant system is stopped in the same block. When it exists, the control means 34 sets the set temperature of the indoor unit in the stop of another refrigerant system to the average set temperature of the operating indoor unit, and instructs the stopped indoor unit to perform the operation.
  • control means 34 instructs the operation of the stopped indoor units in the area to which the block belongs. Also in this case, the control means 34 sets the set temperature of the stopped indoor unit to the average set temperature of the operating indoor unit. As a result, all the indoor units in the area are operated.
  • the control means 34 confirms whether or not there is a stopped indoor unit in the area. If it exists, the control unit 34 instructs the indoor units in the area that are stopped to operate. As a result, all the indoor units in the area are operated.
  • control unit 34 operates the indoor unit and the outdoor unit that belong to blocks other than the block to which the indoor unit that received the operation instruction has a smaller number of indoor units than the area. Instruct to stop. This reduces the number of indoor units to be operated.
  • the control unit 34 When the determining unit 33 determines that the indoor unit belonging to the block is not the inefficient operation even if the indoor unit belonging to the block is operated, the control unit 34 operates only the indoor unit that receives the operation instruction and stops the operation of the other indoor units. Instruct. At this time, when there is an outdoor unit in operation other than the outdoor unit connected to the indoor unit that received the operation instruction, the control unit 34 also instructs the stop of the operation of the outdoor unit in operation.
  • the linked operation condition is "power consumption priority"
  • it may be increased one by one instead of being greatly increased from one indoor unit activated by the user to all indoor units of the same refrigerant system.
  • ⁇ Judgment of inefficient operation is performed every X hours, and even when the inefficient operation is "power consumption priority", when the inefficient operation ceases, it is possible to reduce the number of indoor units operating in conjunction.
  • the control to decrease the number of indoor units operating in conjunction is the opposite control to the control to increase the number of indoor units described above.All the indoor units in the area, all the indoor units in the block, and the indoors activated by the user in the block All the indoor units of the same refrigerant system as the machine, and the indoor units activated by the user are reduced in this order.
  • the centralized controller 13 can hold information on the layout diagram of the area, and can display each indoor unit by superimposing it on the layout diagram.
  • the control unit 34 knows the installation position of each indoor unit, the set temperature of the indoor unit in the stopped state during the interlocking operation is not the average set temperature of the operating indoor unit but the closest operating temperature. It can be set to the set temperature of the indoor unit.
  • the fixed time in this case may be a time interval longer than the time interval for determining whether or not the operation is inefficient, such as 5 ⁇ X hours. Note that 5 ⁇ X hours is an example, and is not limited to this.
  • step S11 the determination means 33 determines whether or not the user has operated the remote controller 12 during the interlocked operation.
  • the judging means 33 can judge the presence/absence of the operation based on the presence/absence of the notification from the indoor unit that has received the operation. If there is no operation, the process returns to step S3, and a determination such as whether or not the operation is inefficient is made again.
  • step S12 the determination unit 33 determines whether the operated indoor unit is an indoor unit performing a linked operation.
  • step S3 If it is not the indoor unit that is in the interlocking operation, return to step S3 and judge again whether it is inefficient operation or not. If the indoor unit is in the interlocking operation, the process proceeds to step S13. Whether or not the indoor unit is performing the interlocked operation can be determined by whether or not the operated indoor unit belongs to any of the area, the block, and the refrigerant system in the interlocked operation.
  • step S13 the control unit 34 changes the operation settings and the like according to the content of the received operation, and cancels all related interlocking controls. Specifically, the control unit 34 instructs all the indoor units that have been instructed to perform the interlocked operation, except the operated indoor units, to stop the operation. When the user's operation is to stop the indoor unit, all the indoor units that have been instructed to perform the interlocking operation, including the operated indoor unit, are instructed to be stopped.
  • control unit 34 When the indoor unit that has been determined to be a waste operation and is stopped by the user is operated by the operation of the user, the control unit 34 similarly stops the operation if it is determined to be a waste operation. Do not control.
  • step S13 After releasing the linked operation in step S13, it is possible to return to step S3 again, determine whether or not the operation is inefficient, and perform the linked operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a system, a method, and a program which enable reduction of power consumption by shortening time necessary for reaching a set temperature. This system is provided with a plurality of indoor units and one or more outdoor units, and includes an acquisition means (30) for acquiring information relating to operations from an outdoor unit and an indoor unit operating in response to an instruction to operate, among the plurality of indoor units and the one or more outdoor units, and a control means (34) for, in accordance with the acquired information, giving the instruction to operate to at least one indoor unit which has not received the instruction to operate.

Description

空気調和システム、運転制御方法およびプログラムAir conditioning system, operation control method and program
 本発明は、複数の室内機と1以上の室外機とを備えた空気調和システム、運転制御方法およびその運転制御をコンピュータに実行させるためのプログラムに関する。 The present invention relates to an air conditioning system including a plurality of indoor units and one or more outdoor units, an operation control method, and a program for causing a computer to execute the operation control.
 オフィス等の1つの空間(空調制御エリア)が広い場合、複数の室内機を備えた空気調和システムが導入される例が多い。このようなシステムでは、各室内機単位で運転指令を受け付け、各室内機単位で運転を行っている。 When one space (air-conditioning control area) such as office is large, there are many cases where an air conditioning system equipped with multiple indoor units is installed. In such a system, an operation command is accepted for each indoor unit and operation is performed for each indoor unit.
 各室内機単位で運転するシステムでは、ユーザが指定した位置に影響を与える室内機が他に存在するにもかかわらず、その室内機を選択することができないため、ユーザが意図した空調を実現することができない。 In a system that operates in units of each indoor unit, even if there are other indoor units that affect the position specified by the user, the indoor unit cannot be selected, so that the air conditioning intended by the user is realized. I can't.
 そこで、ユーザが意図した空調を実現する目的で、複数の室内機のうちから、空調制御エリアにおける指定位置の空調環境(温度、湿度等)に影響を与える室内機を選択することができるように構成した装置が提案されている(例えば、特許文献1参照)。 Therefore, for the purpose of realizing the air conditioning intended by the user, it is possible to select, from a plurality of indoor units, an indoor unit that affects the air conditioning environment (temperature, humidity, etc.) of the specified position in the air conditioning control area. A configured device has been proposed (for example, see Patent Document 1).
特許第5787998号公報Japanese Patent No. 5787998
 上記特許文献1に記載の装置では、指定位置の空調環境に影響を与える室内機しか選択されない。例えば1台しか選択されない場合、設定温度に到達するまでに長時間を要し、選択された室内機が大きな電力で運転するため、消費電力が大きくなるという問題があった。 With the device described in Patent Document 1, only indoor units that affect the air conditioning environment at the specified position are selected. For example, when only one unit is selected, it takes a long time to reach the set temperature, and the selected indoor unit operates with a large amount of electric power, resulting in a large power consumption.
 本発明は、上記課題に鑑み、複数の室内機と1以上の室外機とを備えた空気調和システムであって、
 複数の室内機と1以上の室外機のうち運転指示を受けて運転している室内機および室外機から運転に関連する情報を取得する取得手段と、
 取得された情報に応じて、運転指示を受けていない少なくとも1つの室内機に対して運転を指示する制御手段と
を含む、空気調和システムが提供される。
In view of the above problems, the present invention provides an air conditioning system including a plurality of indoor units and one or more outdoor units,
An acquisition unit that acquires information related to the operation from the indoor unit and the outdoor unit that are operating in response to a driving instruction among a plurality of indoor units and one or more outdoor units;
An air conditioning system is provided that includes: a control unit that instructs a driving of at least one indoor unit that has not received a driving instruction in accordance with the acquired information.
 本発明によれば、設定温度に到達するまでに要する時間を短縮し、消費電力を低減することができる。 According to the present invention, the time required to reach the set temperature can be shortened and the power consumption can be reduced.
空気調和システムの構成例を示した図。The figure which showed the structural example of an air conditioning system. 室内機と室外機と集中コントローラとの接続状態を例示した図。The figure which illustrated the connection state of the indoor unit, the outdoor unit, and the centralized controller. 集中コントローラのハードウェア構成を例示した図。The figure which illustrated the hardware constitutions of a centralized controller. 複数の室内機を各グループに指定した例を示した図。The figure showing the example which specified a plurality of indoor units to each group. 集中コントローラが管理するグループ情報を例示した図。The figure which illustrated the group information which the centralized controller manages. 集中コントローラの機能構成を例示したブロック図。The block diagram which illustrated the functional composition of a centralized controller. 集中コントローラによる運転制御の流れの一例を示したフローチャート。The flowchart which showed an example of the flow of the operation control by a centralized controller. 室内機の連携運転について説明する図。The figure explaining the cooperation operation of an indoor unit. 運転効率に応じて一部の室内機の連携運転を解除する例を示した図。The figure showing the example which cancels cooperation operation of some indoor units according to operation efficiency.
 図1は、空気調和システムの構成例を示した図である。空気調和システムは、同一空間内に設けられる複数の室内機と、その空間の外部に設置される1以上の室外機とを含む。また、空気調和システムは、室内機と室外機の組からなる空調機をユーザが操作するためのリモートコントローラと、空気調和システムを制御する制御装置としての集中コントローラとを含む。 FIG. 1 is a diagram showing a configuration example of an air conditioning system. The air conditioning system includes a plurality of indoor units installed in the same space and one or more outdoor units installed outside the space. The air conditioning system also includes a remote controller for a user to operate an air conditioner including a set of an indoor unit and an outdoor unit, and a centralized controller as a control device that controls the air conditioning system.
 図1に例示したシステムは、建屋内のあるフロアの大きい室内に設置された16台の室内機10と、室外に設置された4台の室外機11と、各室内機10を運転するための16個のリモートコントローラ12と、集中コントローラ13とから構成されている。 The system illustrated in FIG. 1 includes 16 indoor units 10 installed in a large room in a building, four outdoor units 11 installed outdoors, and each indoor unit 10 for operating. It is composed of 16 remote controllers 12 and a centralized controller 13.
 室内機10は、天井設置型の室内機で、室内の空気を吸い込み、吹き出すファンと、吸い込んだ空気を温め、または冷却する熱交換器と、ファンを制御する制御基板とを備えている。また、室内機10は、吸い込み温度(室内温度)を計測する温度センサと、吹き出し温度を計測する温度センサとを備えている。 The indoor unit 10 is a ceiling-mounted indoor unit and includes a fan that sucks in and blows out the air in the room, a heat exchanger that heats or cools the sucked air, and a control board that controls the fan. Further, the indoor unit 10 includes a temperature sensor that measures a suction temperature (indoor temperature) and a temperature sensor that measures a blowout temperature.
 室内機10の制御基板は、ユーザが操作するリモートコントローラ12と通信を行い、リモートコントローラ12から指示を受けて、室内機10を運転または停止し、運転モード、温度、風量等の設定や変更を行う。また、室内機10の制御基板は、集中コントローラ13と通信を行い、設定温度や設定風量、計測した室内温度等の運転に関連する情報を提供する。 The control board of the indoor unit 10 communicates with the remote controller 12 operated by the user, receives an instruction from the remote controller 12, operates or stops the indoor unit 10, and sets or changes the operation mode, temperature, air volume, or the like. To do. Further, the control board of the indoor unit 10 communicates with the centralized controller 13 and provides information related to the operation such as the set temperature, the set air volume, and the measured room temperature.
 室外機11は、外気を吸い込み、吹き出すファンと、吸い込んだ空気を温め、または冷却する熱交換器と、室内機10と室外機11との間で熱媒体としての冷媒を循環する圧縮機と、ファンおよび圧縮機を制御する制御基板と、各種のセンサとを備えている。図1に示す室外機11は、冷媒を送る室内機を複数台接続することができるマルチ型の室外機である。 The outdoor unit 11 sucks and blows outside air, a heat exchanger that warms or cools the sucked air, and a compressor that circulates a refrigerant as a heat medium between the indoor unit 10 and the outdoor unit 11. A control board for controlling the fan and the compressor and various sensors are provided. The outdoor unit 11 shown in FIG. 1 is a multi-type outdoor unit to which a plurality of indoor units for sending the refrigerant can be connected.
 室外機11の制御基板は、リモートコントローラ12から指示を、室内機10を介して受け付け、その指示により室外機11を運転または停止し、ファンおよび圧縮機を制御する。各種のセンサは、外気温を計測する温度センサ、圧縮機に供給する電流を計測するセンサ、冷媒の流量を計測するセンサ、冷媒の圧力を計測するセンサ等を含む。 The control board of the outdoor unit 11 receives an instruction from the remote controller 12 via the indoor unit 10, operates or stops the outdoor unit 11 according to the instruction, and controls the fan and the compressor. Various sensors include a temperature sensor that measures the outside air temperature, a sensor that measures the current supplied to the compressor, a sensor that measures the flow rate of the refrigerant, a sensor that measures the pressure of the refrigerant, and the like.
 リモートコントローラ12は、室内機10に対して、室内機10の運転または停止を指示する。また、リモートコントローラ12は、運転モード、温度、風量等の設定や変更を指示する。 The remote controller 12 instructs the indoor unit 10 to operate or stop the indoor unit 10. Further, the remote controller 12 gives an instruction to set or change the operation mode, temperature, air volume, and the like.
 集中コントローラ13は、システム全体を制御し、各室内機10の制御基板および各室外機11の制御基板と通信を行い、制御に必要な情報を取得し、必要な指示を与える。 The centralized controller 13 controls the entire system, communicates with the control boards of the indoor units 10 and the control boards of the outdoor units 11, acquires information necessary for control, and gives necessary instructions.
 図2は、室内機と室外機と集中コントローラとの接続状態を例示した図である。室内機10と室外機11とは、冷媒配管14により接続される。室内機10および室外機11と集中コントローラ13とは、通信網15で結ばれる。 FIG. 2 is a diagram exemplifying a connection state of an indoor unit, an outdoor unit, and a centralized controller. The indoor unit 10 and the outdoor unit 11 are connected by a refrigerant pipe 14. The indoor unit 10, the outdoor unit 11, and the centralized controller 13 are connected by a communication network 15.
 図2では、空気調和システムは、1本の冷媒配管14で繋がっている4台の室内機10と1台の室外機11とから構成される冷媒系統を4つ備えている。全ての室内機10と室外機11と集中コントローラ13は、通信網15で繋がっている。 In FIG. 2, the air conditioning system is provided with four refrigerant systems including four indoor units 10 and one outdoor unit 11 connected by one refrigerant pipe 14. A communication network 15 connects all the indoor units 10, the outdoor units 11, and the centralized controller 13.
 図2に示した冷媒系統の数、1つの冷媒系統を構成する室内機10や室外機11の数は一例であり、これら以外の数であってもよい。また、通信網15の通信手段は、各機器間で通信を行うことができればいかなる手段であってもよい。したがって、各機器間の通信は、通信ケーブル等を使用した有線通信であってもよいし、Wi-Fi等を使用した無線通信であってもよい。 The numbers of the refrigerant systems shown in FIG. 2 and the numbers of the indoor units 10 and the outdoor units 11 constituting one refrigerant system are examples, and other numbers may be used. Further, the communication means of the communication network 15 may be any means as long as it can communicate between the devices. Therefore, the communication between the devices may be wired communication using a communication cable or the like, or wireless communication using Wi-Fi or the like.
 各室内機10および各室外機11は、通信網15上で通信相手を識別するための識別情報が割り当てられる。識別情報は、アドレスであって、他の機器と重ならないID番号等である。識別情報は、システムの管理者が手動で設定することができる。図2では、16台の室内機10の各々に対し、ID番号としてi11~i44が割り当てられ、4台の室外機11の各々に対し、ID番号としてo1~o4が割り当てられている。 Identification information for identifying a communication partner on the communication network 15 is assigned to each indoor unit 10 and each outdoor unit 11. The identification information is an address, such as an ID number that does not overlap with other devices. The identification information can be manually set by the system administrator. In FIG. 2, i11 to i44 are assigned as ID numbers to each of the 16 indoor units 10, and o1 to o4 are assigned to each of the four outdoor units 11 as ID numbers.
 冷媒は、室外機11の圧縮機により断熱圧縮されて高温になり、吐出される。暖房として使用する場合、圧縮機から出る高温の冷媒が、冷媒配管14を通して室内機10の熱交換器へ供給される。冷房として使用する場合、圧縮機から出る高温の冷媒は、室外機11の熱交換器へ供給され、外気との熱交換により冷却される。その後、冷媒は、膨張弁等により断熱膨張され、温度がさらに下げられる。このようにして低温となった冷媒が、冷媒配管14を通して室内機10の熱交換器へ供給される。 The refrigerant is adiabatically compressed by the compressor of the outdoor unit 11 to reach a high temperature and discharged. When used for heating, the high temperature refrigerant discharged from the compressor is supplied to the heat exchanger of the indoor unit 10 through the refrigerant pipe 14. When used as cooling, the high-temperature refrigerant discharged from the compressor is supplied to the heat exchanger of the outdoor unit 11 and cooled by heat exchange with the outside air. Then, the refrigerant is adiabatically expanded by an expansion valve or the like, and the temperature is further lowered. The refrigerant having a low temperature in this way is supplied to the heat exchanger of the indoor unit 10 through the refrigerant pipe 14.
 室内機10は、供給された冷媒とファンにより吸い込まれた空気とを熱交換器で熱交換を行い、温かい空気または冷却した空気を室内に吹き出す。熱交換された冷媒は、冷媒配管14を通して再び室外機11へ戻される。暖房に使用された冷媒は、室外機11の膨張弁等で断熱膨張されて温度が下げられ、熱交換器で外気と熱交換された後、圧縮機へ供給される。冷房に使用された冷媒は、圧縮機へ供給される。冷媒は、このように冷媒配管14で結ばれた室内機10と室外機11との間を循環する。 The indoor unit 10 exchanges heat between the supplied refrigerant and the air sucked by the fan in a heat exchanger, and blows warm air or cooled air into the room. The heat-exchanged refrigerant is returned to the outdoor unit 11 through the refrigerant pipe 14. The refrigerant used for heating is adiabatically expanded by the expansion valve or the like of the outdoor unit 11 to lower the temperature, heat-exchanged with the outside air by the heat exchanger, and then supplied to the compressor. The refrigerant used for cooling is supplied to the compressor. The refrigerant circulates between the indoor unit 10 and the outdoor unit 11 thus connected by the refrigerant pipe 14.
 図3は、集中コントローラのハードウェア構成を例示した図である。集中コントローラ13は、CPU20と、入出力部21と、通信部22と、RAM23と、メモリディスク24と、電源部25とを含んで構成される。CPU20等は、バス26に接続され、バス26を介して互いに情報のやりとりを行う。 FIG. 3 is a diagram exemplifying the hardware configuration of the centralized controller. The centralized controller 13 includes a CPU 20, an input/output unit 21, a communication unit 22, a RAM 23, a memory disk 24, and a power supply unit 25. The CPU 20 and the like are connected to the bus 26 and exchange information with each other via the bus 26.
 CPU20は、ワンチップマイコンで、システムの運転制御を実行する。入出力部21は、表示パネルと入力ボタンとを有し、ユーザが設定や指示を行うための入力を受け付け、現在の室内機10の運転状態等を表示する。 The CPU 20 is a one-chip microcomputer that executes operation control of the system. The input/output unit 21 has a display panel and an input button, receives an input for the user to make settings and instructions, and displays the current operating state of the indoor unit 10 and the like.
 メモリディスク24は、OS(Operating System)、運転制御を行うためのプログラム、ドライバソフトウェア、データ通信により取得したデータ等を格納する。RAM23は、CPU20に対して作業領域を提供する。このため、CPU20は、上記のプログラムをメモリディスク24から読み出してRAM23に展開し、それを実行することにより、システムの運転制御を実行する。 The memory disk 24 stores an OS (Operating System), a program for operation control, driver software, data acquired by data communication, and the like. The RAM 23 provides a work area for the CPU 20. Therefore, the CPU 20 executes the operation control of the system by reading the above program from the memory disk 24, expanding the program in the RAM 23, and executing it.
 通信部22は、通信網15で繋がれた各室内機10や各室外機11とデータ通信を行う。電源部25は、コンセント等から電源の供給を受け、交流電流をCPU20等で使用する直流電流に変換し、CPU20等へ供給する。 The communication unit 22 performs data communication with each indoor unit 10 and each outdoor unit 11 connected by the communication network 15. The power supply unit 25 receives power supply from an outlet or the like, converts an alternating current into a direct current used by the CPU 20 or the like, and supplies it to the CPU 20 or the like.
 入出力部21は、室内機10(個別)毎の運転設定のほか、複数の室内機10の設置空間を表す室内(エリア)毎や、エリアを2以上の空間(ブロック)に分け、ブロック毎の運転設定も行うことができる。また、入出力部21は、冷媒系統毎やリモートコントローラ12毎の運転設定を行うこともできる。 The input/output unit 21 sets the operation settings for each indoor unit 10 (individually), each room (area) that represents the installation space of a plurality of indoor units 10, and the area is divided into two or more spaces (blocks). Operation settings can also be made. Further, the input/output unit 21 can also perform operation setting for each refrigerant system or each remote controller 12.
 運転設定には、冷房/暖房の選択、温度、風量、風向の設定等が含まれる。入出力部21は、それらの運転設定を行うために、Enterボタン、Selボタン、Escボタン、方向ボタンを含む。ユーザは、これらのボタンを使用し、運転設定に必要な項目の選択や入力等を行う。 ⑦ Operation settings include cooling/heating selection, temperature, air volume, and wind direction settings. The input/output unit 21 includes an Enter button, a Sel button, an Esc button, and a direction button in order to make those operation settings. The user uses these buttons to select and input items necessary for operation setting.
 図4は、複数の室内機をグループ化し、各グループに指定した例を示した図である。集中コントローラ13は、エリアに含まれる室内機を指定して登録し、エリアをさらに各ブロックに分け、各ブロックに含まれる室内機を指定して登録し、登録されたエリア単位およびブロック単位で運転を制御する機能を有する。この例では、エリアとブロックの2段階でグループ化を設定することができるが、これに限られるものではない。 FIG. 4 is a diagram showing an example in which a plurality of indoor units are grouped and designated for each group. The centralized controller 13 designates and registers the indoor units included in the area, further divides the area into blocks, designates and registers the indoor units included in each block, and operates in registered area units and block units. It has the function of controlling. In this example, the grouping can be set in two stages of area and block, but it is not limited to this.
 図4に示す例では、エリア40に、16台の室内機i11~i14、i21~i24、i31~i34、i41~i44が指定されている。各室外機は、4台の室内機と冷媒配管14で接続されている。 In the example shown in FIG. 4, 16 indoor units i11 to i14, i21 to i24, i31 to i34, and i41 to i44 are designated in the area 40. Each outdoor unit is connected to four indoor units by a refrigerant pipe 14.
 図4に示す例では、エリア40が3つのブロック41~43に分けられている。ブロック41には、室内機i11~i14、i21~i24の8台が指定されている。ブロック42には、室内機i31~i34、i41、i43の6台が指定されている。ブロック43には、室内機i42、i44の2台が指定されている。 In the example shown in FIG. 4, the area 40 is divided into three blocks 41 to 43. In the block 41, eight indoor units i11 to i14 and i21 to i24 are designated. Six indoor units i31 to i34, i41, and i43 are designated in the block 42. Two indoor units i42 and i44 are designated in the block 43.
 集中コントローラ13は、エリア40に指定された室内機や、各ブロック41~43に指定された室内機を管理するため、エリア・ブロック管理情報を保持する。図5は、エリア・ブロック管理情報の一例を示した図である。エリア・ブロック管理情報は、エリア毎に割り当てられたエリアを識別するエリア識別情報と、エリアに含まれる各ブロックを識別するブロック識別情報とを対応付けて保持する。図5では、エリア識別情報が、エリア40に対して「エリア1(第1オフィス)」とされている。また、ブロック識別情報が、ブロック41に対して「ブロック1(北)」、ブロック42に対して「ブロック2(東)」、ブロック43に対して「ブロック3(西)」とされている。 The centralized controller 13 holds the area/block management information in order to manage the indoor unit specified in the area 40 and the indoor units specified in the blocks 41 to 43. FIG. 5 is a diagram showing an example of area/block management information. The area/block management information holds area identification information for identifying an area assigned to each area and block identification information for identifying each block included in the area in association with each other. In FIG. 5, the area identification information is “area 1 (first office)” with respect to the area 40. Further, the block identification information is “block 1 (north)” for the block 41, “block 2 (east)” for the block 42, and “block 3 (west)” for the block 43.
 エリア・ブロック管理情報は、各ブロック識別情報に対応付けて室内機を識別するID番号を保持する。図5に示す例では、ブロック1(北)に、室内機i11~i14、i21~i24が対応付けられている。 Area/block management information holds an ID number that identifies an indoor unit in association with each block identification information. In the example shown in FIG. 5, indoor units i11 to i14 and i21 to i24 are associated with block 1 (north).
 集中コントローラ13は、このようなエリア・ブロック単位で運転を制御する機能のほか、商業施設等に設置される場合、空間毎に消費電力料金を按分計算する機能を有してもよい。 The centralized controller 13 may have a function of controlling the operation in units of areas and blocks as described above, and a function of proportionally calculating the power consumption charge for each space when installed in a commercial facility or the like.
 ところで、ユーザは、休日出勤や早朝出勤した場合、一部の室内機10および室外機11のみを運転させ、空調を行う。これでは、室内の温度が設定温度に到達するまでには長時間を要し、運転した室内機10および室外機11は、運転効率に関係なく、大きな消費電力で運転される。 By the way, when the user goes to work on a holiday or in the early morning, the user operates only some of the indoor units 10 and the outdoor units 11 to perform air conditioning. In this case, it takes a long time for the indoor temperature to reach the set temperature, and the operated indoor unit 10 and outdoor unit 11 are operated with large power consumption regardless of operating efficiency.
 そこで、設定温度に到達するまでに要する時間を短縮し、消費電力を低減するべく、集中コントローラ13を次のように構成する。 Therefore, in order to reduce the time required to reach the set temperature and reduce the power consumption, the centralized controller 13 is configured as follows.
 図6は、集中コントローラ13の機能構成を例示したブロック図である。集中コントローラ13は、メモリディスク24に格納されたプログラムをRAM23に読み出し実行することで、各種の機能を機能手段として実現する。このため、集中コントローラ13は、機能手段として、取得手段30と、設定手段31と、演算手段32と、判断手段33と、制御手段34と、通知手段35とを含んで構成される。このとき、集中コントローラ13は、RAM23やメモリディスク24を記憶手段36として使用する。 FIG. 6 is a block diagram illustrating the functional configuration of the centralized controller 13. The centralized controller 13 realizes various functions as functional means by reading out the program stored in the memory disk 24 into the RAM 23 and executing the program. Therefore, the centralized controller 13 is configured to include an acquisition unit 30, a setting unit 31, a calculation unit 32, a determination unit 33, a control unit 34, and a notification unit 35 as functional units. At this time, the centralized controller 13 uses the RAM 23 and the memory disk 24 as the storage means 36.
 ここでは、集中コントローラ13がこれらの機能手段を備えるものとして説明するが、これに限られるものではなく、空気調和システムが繋がるネットワークを介して接続されたサーバ装置等がこれらの機能手段を備えていてもよい。 Here, the centralized controller 13 is described as having these functional means, but the present invention is not limited to this, and a server device or the like connected via a network to which the air conditioning system is connected has these functional means. May be.
 取得手段30は、複数の室内機10と1以上の室外機11のうち運転指示を受けて運転している室内機10および室外機11から運転に関連する情報を取得する。運転に関連する情報は、室内機10および室外機11に対して設定された設定情報や、室内機10および室外機11に搭載された各種センサの出力値等である。 The acquisition unit 30 acquires information related to driving from the indoor unit 10 and the outdoor unit 11 that are operating in response to a driving instruction from among the plurality of indoor units 10 and one or more outdoor units 11. The information related to the operation is setting information set for the indoor unit 10 and the outdoor unit 11, output values of various sensors mounted on the indoor unit 10 and the outdoor unit 11, and the like.
 設定情報は、リモートコントローラ12により室内機10に対して設定された温度、風量、風向、運転モードや、室外機11に対して設定された圧縮機設定値等である。各種センサの出力値は、室温、吹き出し温度、外気温、圧縮機電流値、冷媒流量、冷媒圧力等である。 The setting information includes the temperature, the air volume, the air direction, the operation mode set for the indoor unit 10 by the remote controller 12, the compressor set value set for the outdoor unit 11, and the like. The output values of various sensors are room temperature, blowout temperature, outside air temperature, compressor current value, refrigerant flow rate, refrigerant pressure, and the like.
 取得手段30は、一定の時間間隔でこれらの情報を取得し、記憶手段36に一定期間分の情報を取得時刻とともに格納する。 The acquisition unit 30 acquires these pieces of information at a fixed time interval, and stores the information for a fixed period together with the acquisition time in the storage unit 36.
 設定手段31は、エリアやブロックの指定、各ブロックを構成する室内機の指定を受け付け、エリアとブロックと室内機の各識別情報を対応付け、エリア・ブロック管理情報として記憶手段36に格納することで登録する。 The setting means 31 accepts designation of areas and blocks and designation of indoor units forming each block, associates identification information of each area, block, and indoor unit, and stores them in the storage means 36 as area/block management information. Register with.
 演算手段32は、取得手段30により取得され、記憶手段36に格納された情報を用いて、運転中の室内機10および室外機11の消費電力を計算し、消費電力から運転効率を計算する。 The computing unit 32 calculates the power consumption of the indoor unit 10 and the outdoor unit 11 in operation using the information acquired by the acquisition unit 30 and stored in the storage unit 36, and calculates the operation efficiency from the power consumption.
 判断手段33は、演算手段32により計算された運転効率に基づき、運転中の室内機10および室外機11が非効率運転か否かを判断する。非効率運転か否かは、運転効率が閾値未満である状態が一定時間以上継続している室内機および室外機が存在するか否かにより判断することができる。非効率運転と判断された場合、運転中の室内機10および室外機11のみでは運転効率が低いことを示している。 The judging means 33 judges whether the indoor unit 10 and the outdoor unit 11 in operation are inefficient operation based on the operation efficiency calculated by the calculating means 32. Whether or not the operation is inefficient can be determined by whether or not there is an indoor unit and an outdoor unit in which the state where the operation efficiency is less than the threshold value continues for a certain time or longer. When it is determined that the operation is inefficient, it indicates that the operation efficiency is low only with the indoor unit 10 and the outdoor unit 11 that are operating.
 制御手段34は、非効率運転と判断された場合、運転効率を上げるために、現在の運転設定を少なくとも1つの他の室内機を含めた運転設定に変更し、当該他の室内機に対して運転を指示する。運転を指示する他の室内機は、運転指示を受けていない運転停止中の室内機である。このように、任意の室内機に加えて、他の室内機を連動させて運転することを連動運転と呼ぶ。 When it is determined that the operation is inefficient, the control unit 34 changes the current operation setting to an operation setting that includes at least one other indoor unit in order to increase the operation efficiency, and the other indoor unit Instruct driving. The other indoor unit instructing the operation is an indoor unit that is not in operation and has not received the operation instruction. In this way, in addition to an arbitrary indoor unit, operating in conjunction with other indoor units is called interlocking operation.
 制御手段34は、任意の室内機10に対して運転設定が入力され、その室内機10から運転設定変更の通知を受けた場合、連動運転を解除する。このとき、制御手段34は、通知を送信した室内機10以外の連動運転する室内機10を停止する。 The control unit 34 cancels the linked operation when the operation setting is input to an arbitrary indoor unit 10 and the operation setting change is notified from the indoor unit 10. At this time, the control means 34 stops the indoor units 10 operating in conjunction with each other other than the indoor unit 10 that transmitted the notification.
 また、運転中の任意の室内機10が運転停止の指示を受け付けた場合、その室内機10は、制御手段34に対して運転停止の指示を受けた旨を通知し、自身の運転を停止する。制御手段34は、その通知を受けて、連動運転している室内機10の運転停止を指示し、連動運転を解除する。 When any indoor unit 10 that is operating receives an instruction to stop the operation, the indoor unit 10 notifies the control unit 34 that the instruction to stop the operation is received, and stops its own operation. .. Upon receiving the notification, the control unit 34 instructs the operation stop of the indoor unit 10 that is in the interlocking operation, and cancels the interlocking operation.
 通知手段35は、エリアに含まれる室内機10の全てが運転された後、一定時間が経過しても非効率運転が続く場合、ユーザに対して通知する。通知は、例えば入出力部21の表示画面に、「部屋が冷えません」、「部屋が暖まりません」、「窓が開いていませんか」等の注意を喚起するメッセージを表示させることにより行われる。なお、通知は、メッセージの表示のほか、音声により行ってもよい。 The notification unit 35 notifies the user when the inefficient operation continues even after a certain period of time elapses after all the indoor units 10 included in the area have been operated. The notification can be made by displaying a message calling attention such as "the room is not cold", "the room is not warm", "is the window open", etc. on the display screen of the input/output unit 21? Done. The notification may be given by voice instead of displaying the message.
 図7は、集中コントローラ13による運転制御の処理の一例を示したフローチャートである。集中コントローラ13は、ステップS1で電源が投入され、起動すると、ステップS2で空調ネットワークに接続する全ての室内機10および室外機11と通信を開始し、接続を確認する。取得手段30は、この通信において、全ての室内機10および室外機11から基本情報を取得する。基本情報は、空調ネットワーク上に存在する冷媒系統の数、各冷媒系統の室内機と室外機の構成、各機器のID番号、容量、型式等のシステム構成情報である。取得手段30は、取得した基本情報を記憶手段36格納する。 FIG. 7 is a flowchart showing an example of operation control processing by the centralized controller 13. When the centralized controller 13 is powered on and activated in step S1, it starts communication with all the indoor units 10 and the outdoor units 11 connected to the air conditioning network in step S2, and confirms the connection. The acquisition unit 30 acquires basic information from all the indoor units 10 and the outdoor units 11 in this communication. The basic information is system configuration information such as the number of refrigerant systems existing on the air conditioning network, the configuration of the indoor unit and the outdoor unit of each refrigerant system, the ID number of each device, the capacity, and the model. The acquisition unit 30 stores the acquired basic information in the storage unit 36.
 集中コントローラ13は、各室内機10および各室外機11と常時通信し、取得手段30は、各室内機10および各室外機11の運転に関連する情報を取得する。制御手段34は、取得手段30により取得された情報から各機器の運転状態を把握し、任意の室内機10へ運転設定指令を送信して、自動制御する通常処理状態に入る。通常処理状態に入ると、空調空間を指定するための室内機のグループ登録が実施可能となる。 The central controller 13 constantly communicates with each indoor unit 10 and each outdoor unit 11, and the acquisition unit 30 acquires information related to the operation of each indoor unit 10 and each outdoor unit 11. The control unit 34 grasps the operation state of each device from the information acquired by the acquisition unit 30, transmits an operation setting command to an arbitrary indoor unit 10, and enters a normal processing state for automatic control. When the normal processing state is entered, it becomes possible to carry out the group registration of the indoor unit for designating the air-conditioned space.
 判断手段33は、ステップS3で、空調空間の登録または変更を実施するかを判断する。判断手段33は、ユーザが入出力部21を使用して室内機10のグループ登録の機能を選択したか否かにより判断する。実施すると判断した場合、ステップS4へ進み、設定手段31がその選択を受け付け、室内機一覧または現在のエリアとブロックの登録状態を表示する。室内機一覧は、グループ登録が未設定の場合に表示され、現在のエリアとブロックの登録状態は、グループ登録が過去に実施された場合に表示される。実施しないと判断した場合、ステップS6へ進む。 The judging means 33 judges in step S3 whether to register or change the air-conditioned space. The determination unit 33 determines whether or not the user has selected the group registration function of the indoor unit 10 using the input/output unit 21. When it is determined that the operation is performed, the process proceeds to step S4, the setting unit 31 accepts the selection, and the indoor unit list or the current area and block registration state is displayed. The indoor unit list is displayed when group registration has not been set, and the current area and block registration states are displayed when group registration has been performed in the past. If it is determined that it will not be performed, the process proceeds to step S6.
 新規にグループ登録を行う場合、ユーザは、ブロック名を入力し、表示された室内機一覧からそのブロックを構成する室内機を選択する。次に、ユーザは、エリア名を入力し、エリアを構成するブロックを選択する。記憶手段36は、予めエリアの配置図(レイアウト図)を格納することができ、設定手段31は、室内機一覧の表示の際、各室内機をレイアウト図に重畳させ、どの位置にどの室内機が設置されているかを把握しやすくすることができる。 When newly registering a group, the user inputs the block name and selects the indoor unit that constitutes the block from the displayed indoor unit list. Next, the user inputs the area name and selects the blocks forming the area. The storage unit 36 can store an area layout diagram (layout diagram) in advance, and the setting unit 31 superimposes each indoor unit on the layout diagram and displays which indoor unit at which position when the indoor unit list is displayed. It can make it easier to understand whether or not is installed.
 現在のエリアとブロックの登録状態を変更する場合、ユーザは、既存のグループ登録を削除し、再度登録する。設定手段31は、入力されたエリア名やブロック名、各ブロックにつき選択された室内機の識別情報を対応付けて記憶手段36に格納することにより登録する。 When changing the registration status of the current area and block, the user deletes the existing group registration and registers again. The setting means 31 registers the input area name and block name in association with the identification information of the indoor unit selected for each block in the storage means 36 in association with each other.
 ユーザは、グループ登録を行った後、連動運転条件を選択または入力する。連動運転条件は、システムの運転に関して優先すべき事項として設定された条件である。連動運転条件としては、消費電力を優先した条件「消費電力優先」や、設定温度等の設定条件に到達するまでの時間を優先した条件「速さ優先」等が挙げられる。ステップS5では、設定手段31が、ユーザにより選択された連動運転条件を記憶手段36に格納することで連動運転条件を設定する。 The user selects or inputs the linked operation conditions after performing group registration. The interlocking operation condition is a condition set as a priority item regarding the operation of the system. Examples of the interlocking operation conditions include a condition "power consumption priority" in which power consumption is prioritized, and a condition "speed priority" in which priority is given to time to reach a set condition such as a set temperature. In step S5, the setting unit 31 sets the interlocking operation condition by storing the interlocking operation condition selected by the user in the storage unit 36.
 ステップS6では、時間計測手段としてのタイマにより経過時間を計測し、定期的に行う通信時刻に達したかどうかを判断する。達した場合、ステップS7へ進み、達していない場合、ステップS11へ進む。ステップS7では、取得手段30が、各室内機10および各室外機11から運転に関連する情報を取得する。このとき、取得手段30は、運転に関連する情報として、運転のON/OFF、運転モード、設定温度、設定風量、圧縮機のON/OFF、圧縮機設定値、各種センサの出力値等を取得する。なお、運転に関連する情報は、上記に限定されず、運転効率の計算に利用可能な他の情報であってもよい。取得手段30は、取得したこれらの情報を記憶手段36に一定期間分保存する。その際、取得手段30は、計測した時刻の情報とともに保存する。 In step S6, the elapsed time is measured by a timer as a time measuring means, and it is determined whether or not the communication time which is regularly performed has been reached. If it has been reached, the process proceeds to step S7, and if it has not been reached, the process proceeds to step S11. In step S7, the acquisition unit 30 acquires information related to operation from each indoor unit 10 and each outdoor unit 11. At this time, the acquisition unit 30 acquires, as the information related to the operation, ON/OFF of the operation, operation mode, set temperature, set air volume, ON/OFF of the compressor, compressor set value, output values of various sensors, and the like. To do. The information related to driving is not limited to the above, and may be other information that can be used for calculation of driving efficiency. The acquisition unit 30 stores the acquired information in the storage unit 36 for a certain period. At that time, the acquisition unit 30 stores the information together with the information on the measured time.
 ステップS8では、演算手段32が、保存された情報を用いて、運転中の室内機10および室外機11の消費電力を計算し、消費電力から運転効率を計算する。演算手段32は、保存された情報のうち、運転中の室外機11内の全圧縮機の電流合計値A(A)と、電源電圧V(V)と、力率φとを使用し、次の式1により消費電力W(kW)を計算する。力率φは、実際に消費される電力(有効電力)と、実際に消費されない電力(無効電力)を含めた、交流の電圧と電流の積で表される皮相電力との比である。 In step S8, the calculation means 32 uses the stored information to calculate the power consumption of the indoor unit 10 and the outdoor unit 11 in operation, and calculates the operating efficiency from the power consumption. Computing means 32, of the stored information, using the total compressor current total value A s in the outdoor unit 11 in operation (A), the power supply voltage V (V), and a power factor phi, The power consumption W s (kW) is calculated by the following Expression 1. The power factor φ is the ratio of the power actually consumed (active power) and the apparent power represented by the product of the AC voltage and current, including the power not actually consumed (reactive power).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、運転中の各室外機11の製造熱量をQ(kW)とすると、Qは、運転中の室外機11内の全圧縮機の冷媒流量の合計値G(kg/s)と、室外機11出口の冷媒の比エンタルピーH(kJ/kg)と、室外機11入口の冷媒の比エンタルピーH(kJ/kg)とを用いて、次の式2により計算される。 Further, when the manufacturing heat amount of each of the operating outdoor units 11 is Q (kW), Q is the total value G (kg/s) of the refrigerant flow rates of all the compressors in the operating outdoor unit 11 and the outdoor unit. 11 and specific enthalpy H o of the refrigerant outlet (kJ / kg), with the outdoor unit 11 the inlet of the specific enthalpy H i of the refrigerant (kJ / kg), is calculated by the following equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式2中、Hは、室外機11出口の液管温度と圧力から換算された比エンタルピーで、Hは、室外機11入口のガス管エンドと圧力から換算された比エンタルピーである。現在の運転効率Cは、上記式1により計算されたWと、上記式2により計算されたQとを用い、次の式3により計算される。 Among the above equation 2, H o is the specific enthalpy which is converted from the liquid pipe temperature and pressure of the outdoor unit 11 outlet, H i is been specific enthalpy converted from the outdoor unit 11 inlet gas pipe end and pressure. The current operating efficiency C is calculated by the following expression 3 using W s calculated by the above expression 1 and Q calculated by the above expression 2.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、演算手段32は、現在の空調負荷D(kW)も近似計算する。Dは、冷房負荷Dと暖房負荷Dとがあり、DとDは、室内機10の吸い込み温度センサの出力値T(℃)と、室内機10の吹き出し温度センサの出力値T(℃)と、室内機10の風量B(kg/s)とし、空気の比熱を1(kJ/kg℃)とすると、次の式4により計算される。 The calculation means 32 also approximates the current air conditioning load D (kW). D has a cooling load D c and a heating load D h , and D c and D h are the output value T i (° C.) of the suction temperature sensor of the indoor unit 10 and the output value of the blowout temperature sensor of the indoor unit 10. When T b (° C.) and the air flow rate B (kg/s) of the indoor unit 10 and the specific heat of air is 1 (kJ/kg° C.), the following formula 4 is used for calculation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 計算された各値は、記憶手段36に、取得された情報とともに保存される。 Each calculated value is stored in the storage unit 36 together with the acquired information.
 ステップS9では、判断手段33が、演算手段32により計算された運転効率に基づき、非効率運転か否かを判断する。非効率運転か否かは、Cの値が予め設定した閾値未満(あるいは閾値以下)である状態が一定時間(X時間)以上続いている室外機11が存在するか否かにより判断する。Xは、連動運転条件により相違し、例えば「速さ優先」では2分、「消費電力優先」では5分とすることができる。なお、これらの時間は一例であり、これらの値に限定されるものではない。 In step S9, the judging means 33 judges whether or not the driving is inefficient based on the driving efficiency calculated by the calculating means 32. Whether or not the inefficient operation is performed is determined by whether or not there is the outdoor unit 11 in which the state where the value of C is less than (or less than) the preset threshold continues for a certain time (X hours) or more. X varies depending on the interlocking operation condition, and can be set to 2 minutes for "speed priority" and 5 minutes for "power consumption priority", for example. Note that these times are examples and are not limited to these values.
 ステップS9で非効率運転と判断された場合、ステップS10へ進み、効率的な運転と判断された場合、ステップS11へ進む。ステップS10では、制御手段34が運転設定を変更し、連動運転を実施する室内機10を選択する。制御手段34は、選択した室内機10に対して運転を指示する。 If it is determined that the operation is inefficient in step S9, the process proceeds to step S10, and if it is determined that the operation is efficient, the process proceeds to step S11. In step S10, the control unit 34 changes the operation setting and selects the indoor unit 10 for which the linked operation is performed. The control unit 34 instructs the selected indoor unit 10 to operate.
 図8は、連動運転について説明する図である。ユーザは、自分がいる場所に近い室内機i14に対し、リモートコントローラ12により運転を指示する。その際、ユーザは、所望の温度を設定する。運転指示は、室内機i14と同じ冷媒系統の室外機o1へも送られ室内機i14とともに室外機o1の運転が開始される。 FIG. 8 is a diagram for explaining the linked operation. The user uses the remote controller 12 to instruct the indoor unit i14 near the user's place to operate. At that time, the user sets a desired temperature. The operation instruction is also sent to the outdoor unit o1 of the same refrigerant system as the indoor unit i14, and the operation of the outdoor unit o1 is started together with the indoor unit i14.
 室内機i14および室外機o1は、広いエリア40内の温度をユーザが設定した設定温度に近づけるため、高負荷で運転される。このため、判断手段33は、非効率運転と判断する。そして、制御手段34は、運転設定を変更して、少なくとも1台の停止中の室内機の運転を指示する。 The indoor unit i14 and the outdoor unit o1 are operated under high load because the temperature in the large area 40 approaches the set temperature set by the user. Therefore, the determination unit 33 determines that the operation is inefficient. Then, the control unit 34 changes the operation setting and instructs the operation of at least one indoor unit that is stopped.
 制御手段34は、記憶手段36にレイアウト図が保存されている場合、レイアウト図を参照して、室内機i11~i13、i21~i24および室外機o2に対して運転を指示する際、運転中の室内機i14に向けて送風するように風向を指示する。これにより、ユーザが設定した設定温度に早く到達させることができる。 When the layout diagram is stored in the storage unit 36, the control unit 34 refers to the layout diagram to instruct the indoor units i11 to i13, i21 to i24 and the outdoor unit o2 to operate, and The wind direction is instructed to blow air toward the indoor unit i14. Thereby, the set temperature set by the user can be quickly reached.
 判断手段33は、定期的に非効率運転か否かを判断する。ブロック41内の室内機i11~i14、i21~i24および室外機o1、o2を運転しても、まだ非効率運転と判断された場合、制御手段34は、運転設定を変更して、ブロック41が含まれるエリア40内の停止中の室内機の運転を指示する。これにより、エリア40内の全ての室内機および室外機が運転される。 The judging means 33 periodically judges whether or not the operation is inefficient. Even if the indoor units i11 to i14, i21 to i24 and the outdoor units o1 and o2 in the block 41 are operated, if it is determined that the operation is still inefficient, the control means 34 changes the operation setting and the block 41 The operation of the stopped indoor unit in the included area 40 is instructed. As a result, all the indoor units and the outdoor units in the area 40 are operated.
 このように、設定された連動運転条件が「消費電力優先」の場合、制御手段34は、消費電力を出来るだけ少なくするために、室内機の数が少なくグループの順にグループを選択し、選択したグループ内の停止中の室内機に対して運転を指示することができる。なお、冷媒系統毎にグループ化されていれば、冷媒系統の停止中の室内機の運転を指示し、それでも非効率運転と判断された場合、ブロック内の停止中の室内機の運転を指示することができる。 In this way, when the set interlocking operation condition is “power consumption priority”, the control unit 34 selects and selects groups in the order of the number of indoor units in order to reduce power consumption as much as possible. It is possible to instruct a stopped indoor unit in the group to operate. If the refrigerant system is grouped for each refrigerant system, the operation of the indoor unit while the refrigerant system is stopped is instructed, and if it is determined to be inefficient operation, the operation of the stopped indoor unit in the block is instructed. be able to.
 一方、設定された連動運転条件が「速さ優先」の場合、制御手段34は、室内を速く設定温度に近づけるため、より多くの室内機を運転するべく、エリア40内の停止中の室内機および室外機の運転を指示する。制御手段34は、エリア内の全ての室内機および室外機を運転し、非効率運転でない場合、運転する室内機および室外機を減らすことができる。したがって、制御手段34は、室内機の数が多いグループの順にグループを選択し、選択したグループ内の停止中の室内機に対して運転を指示することができる。 On the other hand, when the set interlocking operation condition is "speed priority", the control unit 34 quickly brings the room closer to the set temperature, so that the indoor unit in the area 40 that is stopped in order to drive more indoor units. And instruct the operation of the outdoor unit. The control unit 34 can drive all the indoor units and the outdoor units in the area, and can reduce the number of the indoor units and the outdoor units to be driven when the inefficient operation is not performed. Therefore, the control unit 34 can select a group in the order of the number of indoor units, and can instruct the stopped indoor units in the selected group to operate.
 判断手段33は、制御手段34が連動運転を実施する室内機10を選択する前に、現在運転中の室内機10の負荷Dから、非効率運転の原因が無駄運転なのか、能力不足なのかを判断する。無駄運転の場合、室内機10を追加して運転しても、設定温度に到達するまでの時間が短縮されず、余分な電力を消費するからである。 Before the control unit 34 selects the indoor unit 10 that performs the interlocking operation, the determination unit 33 determines whether the cause of the inefficient operation is a waste operation or an insufficient capacity based on the load D of the indoor unit 10 that is currently operating. To judge. This is because, in the case of a waste operation, even if the indoor unit 10 is additionally operated, the time required to reach the set temperature is not shortened and extra power is consumed.
 図9は、運転中の一部の室内機を無駄運転と判断し、その一部の室内機を停止した例を示した図である。判断手段33は、演算手段32により計算された、運転中の一部の室内機の負荷Dが、X時間以上0以下の状態が続いているか否かにより、無駄運転か能力不足かを判断する。室内機の負荷DがX時間以上0以下の状態が続いている場合、そのブロックの空調に全く寄与していないため、無駄運転と判断することができる。 FIG. 9 is a diagram showing an example in which some of the indoor units that are in operation are judged to be ineffective and are stopped. The judging means 33 judges whether the load D of a part of the indoor units in operation, which is calculated by the calculating means 32, continues for more than X hours and not more than 0, whether it is a waste operation or an insufficient capacity. .. When the load D of the indoor unit continues to be equal to or more than X hours and equal to or less than 0, it does not contribute to the air conditioning of the block at all, and thus it can be determined that the operation is a waste operation.
 ブロック42内の全ての室内機i31~i34、i41、i43および室外機o3、o4を運転している場合に、室温が設定温度に達すると、例えば室外機o4の圧縮機が頻繁に運転停止するサーモオフ状態になり、室外機o4に繋がる室内機i41、i43もほぼ負荷が0となる。 When the room temperature reaches the set temperature while operating all the indoor units i31 to i34, i41, i43 and the outdoor units o3, o4 in the block 42, for example, the compressor of the outdoor unit o4 is frequently stopped. The thermostat is turned off, and the indoor units i41 and i43 connected to the outdoor unit o4 also have almost no load.
 判断手段33は、室内機i41、i43の負荷がほぼ0の状態がX時間続いていること(運転停止状態)を検知すると、室内機i41、i43および室外機o4が無駄運転と判断する。これを受けて、制御手段34は、無駄運転している室内機i41、i43および室外機o4の運転停止を指示する。室内機i41、i43および室外機o4は、制御手段34からの指示を受けて、運転を停止する。 When the determination unit 33 detects that the load on the indoor units i41, i43 is substantially 0 for X hours (operation stop state), the determination unit 33 determines that the indoor units i41, i43 and the outdoor unit o4 are wasteful operations. In response to this, the control means 34 gives an instruction to stop the operation of the indoor units i41, i43 and the outdoor unit o4 which are in a waste operation. The indoor units i41, i43 and the outdoor unit o4 stop their operations in response to an instruction from the control means 34.
 運転中の一部の室内機の負荷Dが閾値以上の状態がX時間以上続いている場合、負荷が大きすぎ、非効率運転であるため、判断手段33は、能力不足と判断することができる。 判断手段33により能力不足と判断された場合、制御手段34は、以下の制御を実行する。 When the load D of some indoor units in operation continues to be equal to or greater than the threshold value for X hours or more, the load is too large and the operation is inefficient. .. When the determination means 33 determines that the capacity is insufficient, the control means 34 executes the following control.
 制御手段34は、連動運転条件が「消費電力優先」である場合、運転中の室内機が属するブロック内に、その室内機と同じ冷媒系統の停止中の室内機が存在するか否かを確認する。存在する場合、制御手段34は、その停止中の室内機の設定温度を運転中の室内機の平均設定温度に設定し、その停止中の室内機に対して運転を指示する。 When the interlocking operation condition is “power consumption priority”, the control unit 34 confirms whether or not the stopped indoor unit of the same refrigerant system as the indoor unit exists in the block to which the operating indoor unit belongs. To do. When it exists, the control unit 34 sets the set temperature of the stopped indoor unit to the average set temperature of the operating indoor unit, and instructs the stopped indoor unit to operate.
 制御手段34は、同じブロック内で同じ冷媒系統の停止中の室内機が存在しないときにのみ、同じブロック内で別の冷媒系統の停止中の室内機が存在するか否かを確認する。存在する場合、制御手段34は、別の冷媒系統の停止中の室内機の設定温度を運転中の室内機の平均設定温度に設定し、その停止中の室内機に対して運転を指示する。 The control means 34 confirms whether or not there is an indoor unit in which another refrigerant system is stopped in the same block only when there is no indoor unit in which the same refrigerant system is stopped in the same block. When it exists, the control means 34 sets the set temperature of the indoor unit in the stop of another refrigerant system to the average set temperature of the operating indoor unit, and instructs the stopped indoor unit to perform the operation.
 ブロック内の全ての室内機を運転しても、まだ能力不足と判断される場合、制御手段34は、そのブロックが属するエリア内の停止中の室内機の運転を指示する。この場合も、制御手段34は、その停止中の室内機の設定温度を運転中の室内機の平均設定温度に設定する。これにより、エリア内の全ての室内機が運転される。 If all the indoor units in the block are operated and it is determined that the capacity is still insufficient, the control means 34 instructs the operation of the stopped indoor units in the area to which the block belongs. Also in this case, the control means 34 sets the set temperature of the stopped indoor unit to the average set temperature of the operating indoor unit. As a result, all the indoor units in the area are operated.
 制御手段34は、連動運転条件が「速さ優先」である場合、エリア内の停止中の室内機が存在するか否かを確認する。存在する場合、制御手段34は、エリア内の停止中の室内機に対して運転を指示する。これにより、エリア内の全ての室内機が運転される。 When the interlocking operation condition is "speed priority", the control means 34 confirms whether or not there is a stopped indoor unit in the area. If it exists, the control unit 34 instructs the indoor units in the area that are stopped to operate. As a result, all the indoor units in the area are operated.
 制御手段34は、判断手段33が非効率運転ではないと判断した場合、エリアより室内機の数が少ない、運転指示を受けた室内機が属するブロック以外のブロックに属する室内機および室外機の運転停止を指示する。これにより、運転する室内機の数を減らす。 When the determination unit 33 determines that the operation is not inefficient operation, the control unit 34 operates the indoor unit and the outdoor unit that belong to blocks other than the block to which the indoor unit that received the operation instruction has a smaller number of indoor units than the area. Instruct to stop. This reduces the number of indoor units to be operated.
 制御手段34は、ブロックに属する室内機を運転しても、判断手段33が非効率運転ではないと判断した場合、運転指示を受けた室内機のみの運転とし、それ以外の室内機の運転停止を指示する。このとき、運転指示を受けた室内機と接続する室外機以外に運転中の室外機が存在する場合、制御手段34は、その運転中の室外機の運転停止も指示する。 When the determining unit 33 determines that the indoor unit belonging to the block is not the inefficient operation even if the indoor unit belonging to the block is operated, the control unit 34 operates only the indoor unit that receives the operation instruction and stops the operation of the other indoor units. Instruct. At this time, when there is an outdoor unit in operation other than the outdoor unit connected to the indoor unit that received the operation instruction, the control unit 34 also instructs the stop of the operation of the outdoor unit in operation.
 連動運転条件が「消費電力優先」の場合、ユーザが起動した1台の室内機から同じ冷媒系統の全ての室内機へ大きく増加させるのではなく、1台ずつ増加させてもよい。ブロック内の全ての室内機やエリア内の全ての室内機へ増加させる際も同様で、同じブロック内の別の冷媒系統の室内機を1台ずつ、エリア内の別のブロック内の室内機を1台ずつ増加させてもよい。 When the linked operation condition is "power consumption priority", it may be increased one by one instead of being greatly increased from one indoor unit activated by the user to all indoor units of the same refrigerant system. The same applies when increasing all the indoor units in the block or all the indoor units in the area, one indoor unit of another refrigerant system in the same block and one indoor unit of another block in the area. You may increase one by one.
 非効率運転か否かの判断は、X時間毎に実施され、連動運転条件が「消費電力優先」の場合でも非効率運転でなくなったとき、連動運転する室内機を減少させることができる。連動運転する室内機を減少させる制御は、上記の室内機を増加させる制御とは逆の制御となり、エリア内の全ての室内機、ブロック内の全ての室内機、ブロック内のユーザが起動した室内機と同じ冷媒系統の全ての室内機、ユーザが起動した室内機の順に減少させる。  Judgment of inefficient operation is performed every X hours, and even when the inefficient operation is "power consumption priority", when the inefficient operation ceases, it is possible to reduce the number of indoor units operating in conjunction. The control to decrease the number of indoor units operating in conjunction is the opposite control to the control to increase the number of indoor units described above.All the indoor units in the area, all the indoor units in the block, and the indoors activated by the user in the block All the indoor units of the same refrigerant system as the machine, and the indoor units activated by the user are reduced in this order.
 集中コントローラ13は、エリアのレイアウト図の情報を保持することができ、レイアウト図に重ねて各室内機を表示させることができる。この場合、制御手段34は、各室内機の設置位置が分かるので、連動運転する際の停止中の室内機の設定温度を、運転中の室内機の平均設定温度ではなく、最も近い運転中の室内機の設定温度に設定することができる。 The centralized controller 13 can hold information on the layout diagram of the area, and can display each indoor unit by superimposing it on the layout diagram. In this case, since the control unit 34 knows the installation position of each indoor unit, the set temperature of the indoor unit in the stopped state during the interlocking operation is not the average set temperature of the operating indoor unit but the closest operating temperature. It can be set to the set temperature of the indoor unit.
 エリア内の全ての室内機を運転した後、一定時間が経過しても能力不足による非効率運転の状態が続く場合、通知手段35が、ユーザに対して注意を喚起する通知を行う。この場合の一定時間は、例えば5×X時間等の非効率運転か否かの判断を行う時間間隔より長い時間間隔とすることができる。なお、5×X時間は一例であるので、これに限られるものではない。 After the operation of all the indoor units in the area, if the state of inefficient operation due to insufficient capacity continues even after a certain period of time has passed, the notification means 35 notifies the user of a caution. The fixed time in this case may be a time interval longer than the time interval for determining whether or not the operation is inefficient, such as 5×X hours. Note that 5×X hours is an example, and is not limited to this.
 再び図7を参照して、ステップS11では、判断手段33が、連動運転を実施中にユーザによるリモートコントローラ12の操作があったか否かを判断する。判断手段33は、操作を受けた室内機からの操作を受けた旨の通知の有無により、操作の有無を判断することができる。操作がない場合、ステップS3へ戻り、再び非効率運転か否かの判断等を実施する。操作があった場合、ステップS12で、判断手段33が、操作を受けた室内機が連動運転を実施している室内機かどうかを判断する。 Referring again to FIG. 7, in step S11, the determination means 33 determines whether or not the user has operated the remote controller 12 during the interlocked operation. The judging means 33 can judge the presence/absence of the operation based on the presence/absence of the notification from the indoor unit that has received the operation. If there is no operation, the process returns to step S3, and a determination such as whether or not the operation is inefficient is made again. When there is an operation, in step S12, the determination unit 33 determines whether the operated indoor unit is an indoor unit performing a linked operation.
 連動運転実施中の室内機ではない場合、ステップS3へ戻り、再び非効率運転か否かの判断等を実施する。連動運転実施中の室内機である場合、ステップS13へ進む。連動運転実施中の室内機か否かは、操作を受けた室内機が、連動運転実施中のエリア、ブロック、冷媒系統のいずれかに属する室内機か否かにより判断することができる。 If it is not the indoor unit that is in the interlocking operation, return to step S3 and judge again whether it is inefficient operation or not. If the indoor unit is in the interlocking operation, the process proceeds to step S13. Whether or not the indoor unit is performing the interlocked operation can be determined by whether or not the operated indoor unit belongs to any of the area, the block, and the refrigerant system in the interlocked operation.
 ステップS13では、制御手段34が、受け付けた操作の内容に従って運転設定の変更等を行い、関連する全ての連動制御を解除する。具体的には、制御手段34は、操作を受けた室内機を除く、連動運転のために運転を指示した全ての室内機に対し、運転の停止を指示する。ユーザの操作が室内機の停止である場合、操作を受けた室内機を含め、連動運転のために運転を指示した全ての室内機の運転の停止を指示する。 In step S13, the control unit 34 changes the operation settings and the like according to the content of the received operation, and cancels all related interlocking controls. Specifically, the control unit 34 instructs all the indoor units that have been instructed to perform the interlocked operation, except the operated indoor units, to stop the operation. When the user's operation is to stop the indoor unit, all the indoor units that have been instructed to perform the interlocking operation, including the operated indoor unit, are instructed to be stopped.
 制御手段34は、無駄運転と判断され、運転を停止した室内機が、ユーザの操作により運転された場合、同じように無駄運転と判断されれば運転が停止されるので、この段階では何も制御しない。 When the indoor unit that has been determined to be a waste operation and is stopped by the user is operated by the operation of the user, the control unit 34 similarly stops the operation if it is determined to be a waste operation. Do not control.
 ステップS13で連動運転を解除した後は、再びステップS3へ戻り、非効率運転か否かを判断し、連動運転を実施することができる。 After releasing the linked operation in step S13, it is possible to return to step S3 again, determine whether or not the operation is inefficient, and perform the linked operation.
 以上のようにして、ユーザが運転を指示した室内機だけではなく、他の室内機を連動運転することで、設定温度に到達するまでに要する時間を短縮し、運転効率を上げ、消費電力を低減することができる。また、運転効率を上げ、連動運転条件に応じた制御を実現することができるので、効率的かつ空調需要条件を満たす電力デマンド運転制御を行うことが可能となる。 As described above, not only the indoor unit that the user has instructed to operate, but also other indoor units are interlocked to reduce the time required to reach the set temperature, increase operating efficiency, and reduce power consumption. It can be reduced. Further, since it is possible to improve the operation efficiency and realize the control according to the interlocking operation condition, it is possible to efficiently perform the power demand operation control satisfying the air conditioning demand condition.
 これまで本発明の空気調和システム、方法およびプログラムについて上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。したがって、上記のプログラムが記録された記録媒体等のプログラム製品も、本発明の範囲に含まれるものである。 So far, the air conditioning system, method, and program of the present invention have been described in detail with the above-described embodiments, but the present invention is not limited to the above-described embodiments, and other embodiments, additions, and modifications. , Deletion, etc. can be modified within the scope that can be conceived by a person skilled in the art, and in any of the aspects, as long as the action and effect of the present invention are exhibited, it is included in the scope of the present invention. Therefore, a program product such as a recording medium in which the above program is recorded is also included in the scope of the present invention.
10…室内機
11…室外機
12…リモートコントローラ
13…集中コントローラ
14…冷媒配管
15…通信網
20…CPU
21…入出力部
22…通信部
23…RAM
24…メモリディスク
25…電源部
26…バス
30…取得手段
31…設定手段
32…演算手段
33…判断手段
34…制御手段
35…通知手段
36…記憶手段
40…エリア
41~43…ブロック
10... Indoor unit 11... Outdoor unit 12... Remote controller 13... Centralized controller 14... Refrigerant piping 15... Communication network 20... CPU
21... Input/output unit 22... Communication unit 23... RAM
24... Memory disk 25... Power supply unit 26... Bus 30... Acquisition means 31... Setting means 32... Calculation means 33... Judging means 34... Control means 35... Notification means 36... Storage means 40... Areas 41-43... Blocks

Claims (12)

  1.  複数の室内機と1以上の室外機とを備えた空気調和システムであって、
     前記複数の室内機と前記1以上の室外機のうち運転指示を受けて運転している室内機および室外機から運転に関連する情報を取得する取得手段と、
     取得された前記情報に応じて、運転指示を受けていない少なくとも1つの室内機に対して運転を指示する制御手段と
    を含む、空気調和システム。
    An air conditioning system comprising a plurality of indoor units and one or more outdoor units,
    An acquisition unit that acquires information related to operation from the indoor unit and the outdoor unit that are operating in response to a driving instruction among the plurality of indoor units and the one or more outdoor units;
    An air conditioning system including: a control unit that instructs a driving operation to at least one indoor unit that has not received a driving instruction in accordance with the acquired information.
  2.  取得された前記情報に基づき、運転中の室内機および室外機が非効率運転か否かを判断する判断手段を含み、
     前記制御手段は、非効率運転と判断された場合に、前記運転指示を受けていない少なくとも1つの室内機に対して運転を指示する、請求項1に記載の空気調和システム。
    Based on the acquired information, including a determining means for determining whether the indoor unit and the outdoor unit in operation is inefficient operation,
    The air conditioning system according to claim 1, wherein the control unit instructs the operation to at least one indoor unit that has not received the operation instruction when it is determined that the operation is inefficient.
  3.  前記複数の室内機は、運転指示を与えるリモートコントローラ毎、設置空間を複数に分割した設置領域毎、設置空間毎の少なくとも1つにグループ化され、
     前記制御手段は、運転中の室内機が属するグループ内の運転指示を受けていない室内機に対して運転を指示する、請求項1または2に記載の空気調和システム。
    The plurality of indoor units are grouped into at least one of each remote controller for giving a driving instruction, each installation area obtained by dividing the installation space into a plurality of installation spaces, and each installation space,
    The air conditioning system according to claim 1 or 2, wherein the control unit instructs the indoor unit that has not received a driving instruction in a group to which the indoor unit that is operating belongs to operate.
  4.  前記制御手段は、前記空気調和システムの運転に関して優先すべき事項として設定された条件に応じて、運転を指示する室内機を変更する、請求項1~3のいずれか1項に記載の空気調和システム。 The air conditioner according to any one of claims 1 to 3, wherein the control unit changes the indoor unit instructing the operation according to a condition set as a priority item regarding the operation of the air conditioning system. system.
  5.  前記複数の室内機は、運転指示を与えるリモートコントローラ毎、設置空間を複数に分割した設置領域毎、設置空間毎にグループ化され、
     前記取得手段は、一定の時間間隔で前記情報を取得し、
     前記制御手段は、前記空気調和システムの運転に関して優先すべき事項として設定された条件が消費電力優先の場合、室内機の数が少ないグループから順にグループを選択し、選択したグループ内の運転指示を受けていない室内機に対して運転を指示する、請求項1~4のいずれか1項に記載の空気調和システム。
    The plurality of indoor units are grouped for each remote controller for giving a driving instruction, for each installation area obtained by dividing the installation space into a plurality, and for each installation space,
    The acquisition means acquires the information at regular time intervals,
    When the condition set as a matter to be prioritized for the operation of the air conditioning system is power consumption priority, the control means selects groups in order from a group having a smaller number of indoor units, and gives a driving instruction in the selected group. The air conditioning system according to any one of claims 1 to 4, which instructs an indoor unit that has not received the operation.
  6.  前記複数の室内機は、運転指示を与えるリモートコントローラ毎、設置空間を複数に分割した設置領域毎、設置空間毎にグループ化され、
     前記取得手段は、一定の時間間隔で前記情報を取得し、
     前記制御手段は、前記空気調和システムの運転に関して優先すべき事項として設定された条件が速さ優先の場合、室内機の数が多いグループから順にグループを選択し、室内機の数が最も多いグループを選択した場合は選択したグループ内の運転指示を受けていない室内機に対して運転を指示し、それ以外のグループを選択した場合は選択したグループ外の運転指示を受けて運転している室内機に対して運転停止を指示する、請求項1~4のいずれか1項に記載の空気調和システム。
    The plurality of indoor units are grouped for each remote controller for giving a driving instruction, for each installation area obtained by dividing the installation space into a plurality, and for each installation space,
    The acquisition means acquires the information at regular time intervals,
    When the condition set as a priority item regarding the operation of the air conditioning system is speed priority, the control unit selects a group from the group having the largest number of indoor units, and the group having the largest number of indoor units. When is selected, the indoor unit that has not received a driving instruction within the selected group is instructed to operate, and when any other group is selected, the indoor unit that is receiving a driving instruction outside the selected group is operating. The air conditioning system according to any one of claims 1 to 4, which instructs the machine to stop operation.
  7.  前記制御手段は、運転中の室内機が運転停止指示を受けた場合、運転指示を受けて運転している室内機に対して運転停止を指示する、請求項1~6のいずれか1項に記載の空気調和システム。 7. The control unit, when receiving an operation stop instruction for an indoor unit that is in operation, instructs the indoor unit that is operating in response to the operation instruction to stop operation, according to any one of claims 1 to 6. Air conditioning system described.
  8.  前記複数の室内機を運転しても設定温度に達しない場合、ユーザに対して表示または音声により注意喚起を行う通知手段を含む、請求項1~7のいずれか1項に記載の空気調和システム。 The air conditioning system according to any one of claims 1 to 7, further comprising: a notification unit that alerts a user with a display or voice when the set temperature is not reached even after operating the plurality of indoor units. ..
  9.  前記複数の室内機の配置図を記憶する記憶手段を含み、
     前記制御手段は、前記運転指示を受けていない室内機に対して運転を指示する際、前記配置図を参照し、前記運転中の室内機に向けて送風するように風向を指示する、請求項1~8のいずれか1項に記載の空気調和システム。
    A storage unit that stores a layout of the plurality of indoor units;
    The control means, when instructing operation to an indoor unit that has not received the operation instruction, refers to the layout plan, and instructs the wind direction to blow air toward the indoor unit in operation. The air conditioning system according to any one of 1 to 8.
  10.  前記制御手段は、取得された前記情報により室外機が運転停止状態であることを検知した場合、該室外機に接続された室内機に対して運転停止を指示する、請求項1~9のいずれか1項に記載の空気調和システム。 10. The control unit instructs the indoor unit connected to the outdoor unit to stop the operation when detecting that the outdoor unit is in the operation stop state based on the acquired information. The air conditioning system according to Item 1.
  11.  複数の室内機と1以上の室外機とを備えた空気調和システムの運転を制御装置により制御する方法であって、
     前記制御装置が前記複数の室内機と前記1以上の室外機のうち運転指示を受けて運転している室内機および室外機から運転に関連する情報を取得するステップと、
     取得された前記情報に応じて、前記制御装置が運転指示を受けていない少なくとも1つの室内機に対して運転を指示するステップと
    を含む、運転制御方法。
    A method for controlling the operation of an air conditioning system including a plurality of indoor units and one or more outdoor units by a control device,
    A step in which the control device obtains information related to operation from the indoor unit and the outdoor unit that are operating by receiving a driving instruction from the plurality of indoor units and the one or more outdoor units;
    The operation control method, comprising the step of instructing the operation to at least one indoor unit which has not received the operation instruction by the control device, in accordance with the acquired information.
  12.  請求項11に記載の運転制御方法に含まれる各ステップをコンピュータに実行させるためのプログラム。 A program for causing a computer to execute each step included in the operation control method according to claim 11.
PCT/JP2019/002408 2019-01-25 2019-01-25 Air conditioning system, operation control method, and program WO2020152837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/002408 WO2020152837A1 (en) 2019-01-25 2019-01-25 Air conditioning system, operation control method, and program
JP2020567325A JP7321190B2 (en) 2019-01-25 2019-01-25 Air conditioning system, operation control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002408 WO2020152837A1 (en) 2019-01-25 2019-01-25 Air conditioning system, operation control method, and program

Publications (1)

Publication Number Publication Date
WO2020152837A1 true WO2020152837A1 (en) 2020-07-30

Family

ID=71736692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002408 WO2020152837A1 (en) 2019-01-25 2019-01-25 Air conditioning system, operation control method, and program

Country Status (2)

Country Link
JP (1) JP7321190B2 (en)
WO (1) WO2020152837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847681A (en) * 2021-08-31 2021-12-28 青岛海尔空调电子有限公司 Air conditioner and control method thereof
WO2024116653A1 (en) * 2022-11-29 2024-06-06 パナソニックIpマネジメント株式会社 Air conditioning control system, air conditioning control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258611A (en) * 1984-06-05 1985-12-20 Yamato Scient Co Ltd Temperature controller
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner
JP2014238215A (en) * 2013-06-07 2014-12-18 三菱電機株式会社 Air conditioner
JP2017096603A (en) * 2015-11-27 2017-06-01 株式会社富士通ゼネラル Air-conditioning equipment
JP2018146188A (en) * 2017-03-07 2018-09-20 ダイキン工業株式会社 Multi-room type air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236748A (en) 2009-03-31 2010-10-21 Fujitsu General Ltd Air conditioning system
JP6019773B2 (en) 2012-06-05 2016-11-02 ダイキン工業株式会社 Air conditioner control device
JP7016023B2 (en) 2017-05-23 2022-02-04 パナソニックIpマネジメント株式会社 Equipment information management system, remote control and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258611A (en) * 1984-06-05 1985-12-20 Yamato Scient Co Ltd Temperature controller
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner
JP2014238215A (en) * 2013-06-07 2014-12-18 三菱電機株式会社 Air conditioner
JP2017096603A (en) * 2015-11-27 2017-06-01 株式会社富士通ゼネラル Air-conditioning equipment
JP2018146188A (en) * 2017-03-07 2018-09-20 ダイキン工業株式会社 Multi-room type air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847681A (en) * 2021-08-31 2021-12-28 青岛海尔空调电子有限公司 Air conditioner and control method thereof
CN113847681B (en) * 2021-08-31 2023-04-28 青岛海尔空调电子有限公司 Air conditioner and control method thereof
WO2024116653A1 (en) * 2022-11-29 2024-06-06 パナソニックIpマネジメント株式会社 Air conditioning control system, air conditioning control method, and program

Also Published As

Publication number Publication date
JPWO2020152837A1 (en) 2021-09-30
JP7321190B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
US10415842B2 (en) Outdoor unit for air conditioner, air conditioner, and method for controlling air conditioner
US8249751B2 (en) Power saving air-conditioning system
EP2148147B1 (en) Method of controlling air conditioner
US20060207269A1 (en) Multi-air conditioner peak power control system and control method thereof
AU2016392133B2 (en) Air-conditioning control system and remote control device
EP2607805A1 (en) Outdoor-air treating air conditioner and multi-air conditioning system using same
WO2020152837A1 (en) Air conditioning system, operation control method, and program
JP4297532B2 (en) Air conditioner
JP5136403B2 (en) Equipment control system
JP2008249154A (en) Centralized control device, centralized control program and centralized control system
WO2020003447A1 (en) Air-conditioning system
KR20120019279A (en) Demand control system and method for chiller
JP5118181B2 (en) Air conditioning control device and air conditioning control method for air conditioning system
KR102238868B1 (en) Method for controlling air conditioning indoor unit, controller and air conditioner using the same
KR20160010197A (en) Air-conditioner and method
JP6854896B2 (en) Air conditioning system, air conditioning system, operation control method and program
JP5131185B2 (en) Equipment control system
KR20110138014A (en) Air conditioning system
JP3984945B2 (en) Air conditioner system
JPH07332739A (en) Air conditioner
JP6740491B1 (en) Outdoor units, air conditioning systems and programs
JP2003287257A (en) Indoor unit of air-conditioner, and the air-conditioner
KR101785655B1 (en) Air conditioning system
KR102229871B1 (en) Air conditioner and control method of the same
JP6929341B2 (en) Building air conditioning system and building air conditioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911396

Country of ref document: EP

Kind code of ref document: A1