WO2020152775A1 - Limit tap restricting device, and electric operating device for load tap changer - Google Patents
Limit tap restricting device, and electric operating device for load tap changer Download PDFInfo
- Publication number
- WO2020152775A1 WO2020152775A1 PCT/JP2019/001846 JP2019001846W WO2020152775A1 WO 2020152775 A1 WO2020152775 A1 WO 2020152775A1 JP 2019001846 W JP2019001846 W JP 2019001846W WO 2020152775 A1 WO2020152775 A1 WO 2020152775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- rotation
- tap
- stopper
- feed screw
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/02—Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
- H01F29/04—Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
Definitions
- the embodiment of the present invention relates to an electric operating device for a limit tap limiting device and a load tap changer.
- the load tap changer is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in an operating state.
- the electric operating device of the load tap changer performs the switching operation of the load tap changer by rotating the main shaft by the motor.
- the electric operating device detects the rotational position of the driving shaft and grasps the tap position of the tap changer under load.
- the electrically operated device electrically stops rotation of the drive shaft.
- the electric operating device has an extreme tap limiting device.
- the limit tap limiting device mechanically stops the rotation of the driving shaft when the electric rotation stopping of the driving shaft does not function.
- the extreme tap limiting device is required to be downsized.
- the problem to be solved by the present invention is to provide an electric operation device for an extreme tap limiting device and a load tap changer that can be downsized.
- the limit tap limiting device of the embodiment has a feed screw mechanism, a top, and a rotation stop unit.
- the feed screw mechanism includes a feed screw shaft that rotates in conjunction with the driving shaft.
- the drive shaft is arranged in a torque transmission path from the motor to the load tap changer.
- the top moves in the axial direction of the feed screw shaft by the feed screw mechanism.
- the rotation stopping unit can stop the rotation of the driving shaft by contacting the top at the axial position corresponding to the limit tap position of the load tap changer.
- FIG. 5 is a sectional view of a top taken along line F5-F5 of FIG.
- FIG. 1 is a perspective view of an electric operating device for a load tap changer according to an embodiment.
- the load tap changer LTC is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in the operating state.
- the electric operating device 1 switches the tap position of the load tap changer LTC between the high position side (step-up side) and the low position side (step-down side).
- the electric operating device 1 rotates the main shaft 10 to switch the tap switch during load LTC via a transmission shaft (not shown).
- the electric operating device 1 includes a housing 1 a, a drive mechanism unit 2, and a control board unit 3.
- the housing 1 a houses the drive mechanism section 2 and the control board section 3.
- the control board unit 3 controls the operation of the drive mechanism unit 2.
- FIG. 2 is a perspective view of the drive mechanism section.
- the X direction, Y direction and Z direction of the Cartesian coordinate system are defined as follows.
- the Z direction is the axial direction of the driving shaft 10.
- the +Z direction is a direction from the drive shaft second pulley 23 toward the drive shaft first pulley 13.
- the X direction is the axial direction of the feed screw shaft 32.
- the +X direction is the direction in which the feed screw nut 42 (see FIG. 4) advances along the feed screw shaft 32 when the load tap changer LTC (see FIG. 1) is switched from the low position side tap to the high position side tap.
- the Y direction is a direction perpendicular to the X and Z directions.
- the +Y direction is a direction from the feed screw shaft 32 toward the driving shaft 10.
- the Z direction is the vertical direction
- the X direction and the Y direction are the horizontal directions.
- the drive mechanism unit 2 includes a motor 5, a main shaft 10, a torque limiter 12, a rotation detector 18, and an extreme tap limiting device 15.
- the rotation axis of the motor 5 is arranged parallel to the Z direction.
- a motor pulley 6 is attached to the rotating shaft of the motor 5.
- the driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC (see FIG. 1).
- the drive shaft 10 is arranged in the ⁇ Y direction of the motor 5.
- the axial direction of the driving shaft 10 is arranged parallel to the Z direction.
- the driving shaft first pulley 13 is mounted in the +Z direction of the driving shaft 10.
- a first timing belt 8 is stretched between the drive shaft first pulley 13 and the motor pulley 6. Torque can be transmitted from the motor 5 to the drive shaft 10 via the motor pulley 6, the first timing belt 8 and the drive shaft first pulley 13. By using the first timing belt 8, lubrication of the torque transmission path becomes unnecessary.
- the torque limiter 12 limits the transmission torque between the outer peripheral side and the inner peripheral side to a predetermined torque or less.
- the outer peripheral side (input side) of the torque limiter 12 is connected to the drive shaft first pulley 13.
- the inner peripheral side (output side) of the torque limiter 12 is connected to the drive shaft 10.
- the limit tap limiting device 15 can stop the rotation of the driving shaft 10. When the extreme tap limiting device 15 stops the rotation of the driving shaft 10, the torque transmitted from the motor 5 to the driving shaft 10 is limited to a predetermined torque.
- the rotation detector 18 is arranged at the end of the drive shaft 10 in the ⁇ Z direction.
- the rotation detector 18 is a multi-rotation absolute position detection type rotation detector (multi-rotation encoder).
- the multi-rotation encoder has a multi-rotation member that rotates n (n>1) times with respect to the main axis.
- the multi-rotation encoder accurately detects the rotation position of the driving shaft 10 by detecting the rotation position of the multi-rotation member.
- the rotation detector 18 outputs a signal corresponding to the rotational position of the driving shaft 10 to the control board unit 3 (see FIG. 1).
- the control board unit 3 shown in FIG. 1 grasps the tap position of the load tap changer LTC based on the rotational position of the driving shaft 10.
- the control board unit 3 outputs an electric signal to stop the motor 5. That is, the electric operating device 1 electrically stops the rotation of the driving shaft 10.
- the rotation detector 18, the control board unit 3 or the motor 5 fails, the electrical rotation stop of the drive shaft 10 does not function.
- the limit tap limiting device 15 mechanically stops the rotation of the driving shaft 10 when the rotation stop of the electric driving shaft 10 does not function electrically.
- the extreme tap limiting device 15 is arranged as a unit in the ⁇ Y direction of the driving shaft 10 as shown in FIG.
- the limit tap limiting device 15 has a pair of frames 16, 16.
- the components of the extreme tap limiting device 15 are directly or indirectly supported by the pair of frames 16, 16.
- the pair of frames 16, 16 are fixed to the casing 1a of the electric operating device 1 shown in FIG.
- FIG. 3 is a perspective view of the extreme tap limiting device of the embodiment.
- the extreme tap limiting device 15 includes a power transmission unit 20, a feed screw shaft portion 30, a feed screw nut portion 40, and a rotation stop unit 15a.
- the rotation stop unit 15a has an arm slider section 50 and a rotation stop mechanism 15b.
- the rotation stop mechanism 15b has a stopper holding mechanism 15c, a stopper 100, and a stopper receiver 110.
- the stopper holding mechanism 15c has a relay arm 70, a first arm 80, and a second arm 90.
- the power transmission unit 20 includes a main drive shaft second pulley 23, a worm shaft 28, a worm pulley 25, and a second timing belt 24.
- the drive shaft second pulley 23 is attached to the drive shaft 10.
- the driving shaft second pulley 23 is arranged in the ⁇ Z direction of the driving shaft first pulley 13 (see FIG. 2).
- the worm shaft 28 is arranged in the ⁇ Y direction of the drive shaft 10.
- the axial direction of the worm shaft 28 is arranged parallel to the Z direction.
- the worm shaft 28 has a worm 29 at the end in the ⁇ Z direction.
- the worm pulley 25 is mounted on the worm shaft 28 in the +Z direction.
- the second timing belt 24 is stretched between the drive shaft second pulley 23 and the worm pulley 25. Torque is transmitted from the drive shaft 10 to the worm shaft 28 via the drive shaft second pulley 23, the second timing belt 24, and the worm pulley 25.
- the worm shaft 28 rotates as the drive shaft 10 rotates.
- the feed screw shaft portion 30 includes a feed screw shaft 32 and a worm wheel 34.
- the feed screw shaft 32 is arranged in the ⁇ Y direction of the worm shaft 28.
- the axial direction of the feed screw shaft 32 is arranged parallel to the X direction.
- the feed screw shaft 32 has a feed screw 36 in a region in the ⁇ X direction.
- the feed screw 36 is a male screw formed on the outer peripheral surface of the feed screw shaft 32.
- the length of the feed screw 36 is at least half the length of the feed screw shaft 32.
- a pair of bearings 31a and 31b are arranged at both ends of the feed screw 36 in the X direction.
- the pair of bearings 31a and 31b support the feed screw shaft 32.
- the worm wheel 34 is mounted near the end of the feed screw shaft 32 in the +X direction.
- the worm wheel 34 meshes with the worm 29 of the worm shaft 28.
- the feed screw shaft 32 rotates as the worm shaft 28 rotates.
- FIG. 4 is a perspective view of the feed screw nut portion.
- the feed screw nut portion 40 includes a feed screw nut 42, a piece support plate 44 (44a, 44b), and a piece 48 (48a, 48b).
- the feed screw shaft 32 of the feed screw shaft portion 30 and the feed screw nut 42 of the feed screw nut portion 40 form a feed screw mechanism 40a.
- the feed screw nut 42 has a female screw that meshes with the feed screw 36 of the feed screw shaft 32.
- the feed screw nut 42 has a through hole in the +Z direction of the female screw. The through hole penetrates the feed screw nut 42 in the X direction.
- the rotation restricting shaft 37 is inserted into the through hole.
- the rotation restricting shaft 37 is arranged in parallel with the feed screw shaft 32. Both ends of the rotation restricting shaft 37 in the X direction are fixed to the pair of bearings 31a and 31b.
- the rotation restricting shaft 37 restricts the rotation of the feed screw nut 42 in the circumferential direction of the feed screw shaft 32. As a result, when the feed screw shaft 32 rotates, the feed screw nut 42 moves in the X direction.
- the drive shaft 10 rotates counterclockwise in the -Z direction.
- the feed screw shaft 32 rotates counterclockwise in the ⁇ X direction, and the feed screw nut 42 moves in the +X direction. That is, the +X direction of the feed screw nut portion 40 corresponds to the higher position side of the load tap changer LTC.
- the ⁇ X direction of the feed screw nut portion 40 corresponds to the low side of the tap changer LTC under load.
- the top support plate 44 (44a, 44b) is fixed to the feed screw nut 42.
- the top support plate 44 is arranged in the ⁇ Y direction of the feed screw nut 42.
- the top support plate 44 is arranged parallel to the XZ plane.
- the top support plate 44 includes a high-side support plate 44a and a low-side support plate 44b.
- the high-level side support plate 44a is arranged in the +X direction of the feed screw nut 42.
- the high-side support plate 44a has a top position adjustment hole 45a that penetrates the high-side support plate 44a in the Y direction.
- the top position adjusting hole 45a is formed in an oval shape extending in the X direction.
- the lower support plate 44b is arranged in the ⁇ X direction of the feed screw nut 42.
- the lower support plate 44b has a top position adjusting hole 45b similar to the top position adjusting hole 45a.
- the tops 48 (48a, 48b) are arranged in the ⁇ Y direction of the top support plate 44.
- the top 48 is formed in a rectangular shape when viewed from the Y direction.
- the top (pressing top) 48 includes a high-side top 48a and a low-side top 48b.
- the high position side piece 48a is formed in a cubic shape.
- the +X direction surface of the high-side piece 48a is parallel to the YZ plane and comes into contact with a piece receiving portion of the high-side arm, which will be described later.
- the lower-side piece 48b is formed similarly to the higher-side piece 48a.
- FIG. 5 is a cross-sectional view of the frame taken along the line F5-F5 of FIG.
- the high-side piece 48a has a mounting shaft 46a protruding in the +Y direction.
- the mounting shaft 46a is inserted into the top position adjusting hole 45a and projects in the +Y direction of the high-level side support plate 44a.
- the base end of the mounting shaft 46a is arranged inside the top position adjusting hole 45a.
- the cross section of the base end portion of the mounting shaft 46a is formed in a rectangular shape.
- a male screw is formed on the outer periphery of the mounting shaft 46a protruding in the +Y direction of the high-level side support plate 44a.
- a top fixing nut 47a is arranged in the +Y direction of the high-side support plate 44a. The top fixing nut 47a is attached to the male screw of the mounting shaft 46a.
- the high-side piece 48a is fixed to the high-side support plate 44a.
- the position of the high-order piece 48a in the X direction is adjusted as follows.
- the high-side piece 48a moves in the +X direction and contacts the piece receiving portion 68a of the high-side arm 60a.
- the high-order side arm 60a abuts on the frame receiving portion 68a in a state in which the engagement protrusion 88 of the first arm 80 and the engagement recess 93 of the second arm 90, which will be described later, are engaged.
- the high position side piece 48a is arranged at a predetermined position in the X direction.
- the position of the high-side piece 48a in the X direction can be changed along the piece position adjusting hole 45a.
- the high-side piece 48a is fixed to the high-side support plate 44a at a predetermined position in the X direction.
- the low-side piece 48b has a mounting shaft 46b.
- the lower piece 48b is fixed to the lower support plate 44b by a piece fixing nut 47b.
- the load tap changer LTC reaches the low-side limit tap position
- the low-side top 48b moves in the -X direction and contacts the top receiving portion 68b of the low-side arm 60b.
- the lower-side piece 48b is arranged at a predetermined position in the X direction so that this contact is realized.
- the rotation stop unit 15a can stop the rotation of the driving shaft 10 by contacting the tops 48a and 48b at a position in the X direction corresponding to the extreme tap position.
- the rotation stop unit 15a has an arm slider section 50 and a rotation stop mechanism 15b.
- FIG. 6 is a perspective view of the arm slider portion.
- the arm slider unit 50 includes a substrate 52, a slider 56, a high-ranking arm 60a, and a low-ranking arm 60b.
- the board 52 is arranged in the ⁇ Y direction of the feed screw nut portion 40.
- the substrate 52 is arranged parallel to the XY plane.
- the substrate 52 is formed in a long plate shape whose longitudinal direction is the X direction.
- the slider 56 is arranged on the surface of the substrate 52 in the +Z direction.
- the slider 56 is arranged at the center of the substrate 52 in the X direction.
- a slit 53 penetrating the substrate 52 in the Z direction is formed at the center of the substrate 52 in the X direction.
- the slit 53 is formed in an oval shape extending in the Y direction.
- FIG. 7 is a cross-sectional view of the arm slider portion taken along the line F7-F7 in FIG.
- the slider 56 has a pair of guide pins 57, 57.
- the pair of guide pins 57, 57 are arranged apart from each other in the Y direction.
- the pair of guide pins 57, 57 penetrates the slit 53 from the ⁇ Z direction of the substrate 52 and is fixed to the slider 56.
- the slider 56 By moving the pair of guide pins 57, 57 along the slit 53, the slider 56 can move in the Y direction.
- the slider 56 has a slider hole 59 that penetrates the slider 56 in the Z direction.
- the slider hole 59 is formed in a rectangular shape extending in the Y direction.
- a first protrusion 72 of a relay arm 70 which will be described later, is inserted into the slider hole 59.
- the high arm 60a is arranged in the +Z direction of the substrate 52 and the slider 56, as shown in FIG.
- the higher arm 60a is formed in an L shape when viewed from the Z direction.
- the higher arm 60a has a long arm 62a extending in the X direction and a short arm 67a extending in the Y direction.
- the long arm 62a is arranged along the edge of the substrate 52 in the ⁇ Y direction.
- the short arm 67a is arranged along the edge of the substrate 52 in the +X direction.
- the +X direction end of the long arm 62a and the ⁇ Y direction end of the short arm 67a are the bent portions of the high-order side arm 60a.
- An arm pin 61 is arranged at the bent portion of the higher arm 60a.
- the arm pins 61a are fixed to the corners of the substrate 52 in the +X direction and the ⁇ Y direction.
- the higher arm 60a is rotatable about an arm pin 61a extending in the Z direction.
- An arm hole 63a penetrating the long arm 62a in the Z direction is formed at the ⁇ X direction end of the long arm 62a.
- the arm hole 63a is formed in an oval shape extending in the X direction.
- a slider pin 58 is arranged in the +Z direction of the slider 56.
- the slider pin 58 is arranged parallel to the Z direction.
- the slider pin 58 is fixed to the ⁇ Y direction guide pin 57 of the slider 56.
- the slider pin 58 is arranged inside the arm hole 63a of the long arm 62a.
- a piece receiving portion 68a is formed at the end of the short arm 67a in the +Y direction.
- the frame receiving portion 68a is a rectangular notch formed at a corner of the short arm 67a in the +Y direction and the ⁇ X direction.
- the surface of the top receiving portion 68a in the ⁇ X direction is parallel to the YZ plane and abuts on the surface of the high-side piece 48a in the +X direction.
- the top frame 48a pushes the frame receiving portion 68a in the +X direction.
- the higher arm 60a rotates clockwise around the arm pin 61a in the -Z direction.
- the higher arm 60a pushes the slider pin 58 arranged in the arm hole 63a in the +Y direction.
- the slider 56 moves in the +Y direction.
- the length of the long arm 62a in the X direction is longer than the length of the short arm 67a in the Y direction.
- the amount of movement of the arm hole 63a in the +Y direction is larger than the amount of movement of the top receiving portion 68a in the +X direction.
- the amount of movement of the slider 56 in the +Y direction is amplified with respect to the amount of movement of the high-side frame in the +X direction.
- the lower arm 60b is formed substantially symmetrically with respect to the upper arm 60a with the YZ plane located at the center of the substrate 52 in the X direction as a plane of symmetry. However, at the position of the slider pin 58, the end in the ⁇ X direction of the high-side arm 60a is arranged offset in the +Z direction, and the end in the +X direction of the low-side arm 60b is arranged offset in the ⁇ Z direction. It This avoids interference between the high-ranking arm 60a and the low-ranking arm 60b.
- the lower-side piece 48b pushes the piece receiving portion 68b of the lower-side arm 60b in the -X direction.
- the lower arm 60b rotates counterclockwise in the ⁇ Z direction about the arm pin 61b.
- the lower arm 60b pushes the slider pin 58 arranged in the arm hole 63b (see FIG. 7) in the +Y direction.
- the slider 56 moves in the +Y direction.
- the rotation stop mechanism 15b can stop the rotation of the driving shaft 10 by sliding the slider 56.
- the rotation stop mechanism 15b has a stopper holding mechanism 15c, a stopper 100, and a stopper receiver 110.
- the stopper holding mechanism 15c can hold the stopper 100 in the retracted position and release the holding by sliding the slider 56.
- the stopper holding mechanism 15c has a relay arm 70, a first arm 80, and a second arm 90.
- the relay arm 70 is arranged in the +Z direction of the arm slider section 50, as shown in FIG.
- the relay arm 70 is formed in a long plate shape extending in the Z direction, and is arranged parallel to the YZ plane.
- An arm pin 71 is arranged in the ⁇ Z direction from the center of the relay arm 70 in the Z direction.
- the relay arm 70 is rotatable around an arm pin 71 extending in the X direction.
- the relay arm 70 has a first protrusion 72 at the end in the ⁇ Z direction.
- the first protrusion 72 is inserted into a slider hole 59 formed in the slider 56.
- the relay arm 70 has a second protrusion 78 at the end in the +Z direction.
- the second protrusion 78 is inserted into the first arm hole 83 of the first arm 80 described later.
- the slider hole 59 pushes the first protrusion 72 in the +Y direction.
- the relay arm 70 rotates counterclockwise around the arm pin 71 in the ⁇ X direction.
- the second protrusion 78 pushes the first arm hole 83 in the ⁇ Y direction.
- the length from the arm pin 71 to the second protrusion 78 is longer than the length from the arm pin 71 to the first protrusion 72.
- the amount of movement of the second protrusion 78 in the ⁇ Y direction is larger than the amount of movement of the first protrusion 72 in the +Y direction.
- the amount of movement of the first arm 80 in the ⁇ Y direction is amplified with respect to the amount of movement of the slider 56 in the +Y direction.
- the first arm 80 is arranged in the +Z direction of the relay arm 70, as shown in FIG.
- the first arm 80 is formed in an L shape when viewed from the Z direction.
- the first arm 80 has a short arm 82 extending in the X direction and a long arm 87 extending in the Y direction.
- the +X direction end of the short arm 82 and the ⁇ Y direction end of the long arm 87 are the bent portions of the first arm 80.
- An arm pin 81 is arranged at the bent portion of the first arm 80.
- the first arm 80 is rotatable around an arm pin 81 extending in the Z direction.
- a first arm hole 83 that penetrates the short arm 82 in the Z direction is formed at the ⁇ X direction end of the short arm 82.
- the first arm hole 83 is formed in a rectangular shape extending in the Y direction.
- the second protrusion 78 of the relay arm 70 is inserted into the first arm hole 83.
- An engagement protrusion 88 is formed at the end of the long arm 87 in the +Y direction.
- the engagement protrusion 88 is formed in a taper shape in the +Y direction.
- the engagement protrusion 88 is formed by extending the corners of the long arm 87 in the +X direction and the +Y direction in the +Y direction from the corners of the ⁇ X direction and the +Y direction.
- An end side of the engagement protrusion 88 in the +Y direction is a straight line inclined with respect to the X direction.
- the engagement protrusion 88 engages with an engagement recess 93 of the second arm 90 described later.
- a spring 84 which is an elastic member, is arranged in the +X direction of the long arm 87.
- the spring 84 is arranged along the X direction.
- the ⁇ X direction end of the spring 84 is connected to the long arm 87.
- the spring 84 biases the long arm 87 in the +X direction.
- the spring 84 holds the engagement protrusion 88 of the first arm 80 in a state of being engaged with the engagement recess 93 of the second arm 90.
- the second protrusion 78 of the relay arm 70 moves in the ⁇ Y direction
- the second protrusion 78 pushes the first arm hole 83 in the ⁇ Y direction.
- the first arm 80 rotates counterclockwise around the arm pin 81 in the ⁇ Z direction.
- the first arm 80 rotates against the biasing force of the spring 84.
- the engagement protrusion 88 moves in the ⁇ X direction and is disengaged from the engagement recess 93 of the second arm 90. As a result, the engagement between the engagement protrusion 88 and the engagement recess 93 is released.
- the second arm 90 is arranged in the +X direction of the first arm 80, as shown in FIG.
- the second arm 90 is formed in a long plate shape extending in the X direction, and is arranged parallel to the XY plane.
- An arm pin 91 is arranged at the center of the second arm 90 in the X direction.
- the second arm 90 is rotatable around an arm pin 91 extending in the Z direction.
- An engaging recess 93 is formed at the ⁇ X direction end of the second arm 90.
- the engagement concave portion 93 is formed so as to cover the engagement convex portion 88 following the outer shape of the engagement convex portion 88 of the first arm 80.
- the ⁇ X direction tip of the second arm 90 is arranged in the ⁇ X direction and the ⁇ Y direction with respect to the +Y direction tip of the engagement protrusion 88. As a result, the engagement protrusion 88 and the engagement recess 93 are held in the engaged state.
- a notch 98 is formed at the +X direction end of the second arm 90.
- the notch 98 is formed in a rectangular shape at the center of the second arm 90 in the Y direction. The notch 98 engages with the stopper pin 103 of the stopper 100.
- the stopper 100 is arranged in the +X direction, the +Y direction, and the +Z direction of the second arm 90, as shown in FIG.
- the stopper 100 is arranged at the same position in the X direction as the driving shaft 10.
- the stopper 100 is formed in a rectangular parallelepiped shape extending in the Y direction.
- a stopper guide 106 extending in the Y direction is arranged in the +X direction and the ⁇ X direction of the stopper 100.
- the stopper 100 is movable in the Y direction along the stopper guide 106.
- a return lever 109 is erected on the surface of the stopper 100 in the +Z direction. As will be described later, the return lever 109 is used for returning the electric operating device 1 to a state in which it can be normally operated.
- a stopper pin 103 is installed at the end of the stopper 100 in the ⁇ Y direction.
- the stopper pin 103 projects in the ⁇ Z direction of the stopper 100.
- the stopper pin 103 engages with the notch 98 of the second arm 90.
- a spring 104 which is an elastic member, is arranged in the ⁇ Z direction of the stopper 100.
- the spring 104 extends along the Y direction.
- the ⁇ Y direction end of the spring 104 is connected to the stopper pin 103.
- the spring 104 biases the stopper pin 103 and the stopper 100 in the +Y direction.
- An engagement recess 108 is formed near the end of the stopper 100 in the +Y direction.
- the engagement recess 108 is recessed from both ends of the stopper 100 in the X direction toward the center.
- a protrusion protruding in the +X direction and the ⁇ X direction of the stopper 100 is formed.
- the stopper receiver 110 is attached to the drive shaft 10.
- the stopper receiver 110 is arranged at the same position in the Z direction as the stopper 100.
- the stopper receiver 110 is formed in a disk shape and has notches 112 at two locations on the outer circumference.
- the width of the notch 112 in the circumferential direction of the stopper receiver 110 is larger than the width of the stopper 100 in the X direction.
- Engagement protrusions 113 are formed on the outer ends of the notches 112 in the radial direction of the stopper receiver 110 so as to reduce the opening width of the notches 112 in the circumferential direction.
- a recess is formed inside the engagement protrusion 113 in the radial direction of the stopper receiver 110 so as to enlarge the notch 112 in the circumferential direction.
- the notch 98 of the second arm 90 holds the stopper pin 103 in the ⁇ Y direction.
- the second arm 90 holds the stopper pin 103 in the ⁇ Y direction against the biasing force of the spring 104.
- the stopper 100 is held at the position retracted from the stopper receiver 110 in the ⁇ Y direction.
- the stopper 100 is arranged at a retracted position that allows the rotation of the driving shaft 10.
- the engagement state is released when the engagement protrusion 88 moves in the -X direction and separates from the engagement recess 93.
- the second arm 90 becomes rotatable.
- the notch 98 of the second arm 90 is engaged with the stopper pin 103.
- the stopper pin 103 is biased in the +Y direction by the spring 104.
- the second arm 90 is rotated counterclockwise in the ⁇ Z direction about the arm pin 91 by the urging force of the spring 104.
- the stopper pin 103 and the stopper 100 move in the +Y direction by the biasing force of the spring 104.
- the stopper receiver 110 rotates together with the driving shaft 10.
- the stopper 100 enters the notch 112 of the stopper receiver 110.
- the engagement recess 108 of the stopper 100 engages with the engagement protrusion 113 of the stopper receiver 110.
- the stopper 100 is arranged at a stop position where the rotation of the drive shaft 10 is stopped. As a result, the rotation of the stopper receiver 110 and the drive shaft 10 is stopped.
- the operation of the limit tap limiting device 15 will be described. Here, an operation will be described as an example in which the limit tap limiting device 15 stops the load tap changer LTC at the high-side limit tap position.
- the control board unit 3 rotates the motor 5.
- the control board unit 3 rotates the motor 5 in a direction in which the tap position of the tap changer LTC under load shifts to the higher position side.
- the torque of the motor 5 is transmitted to the outer peripheral side (input side) of the torque limiter 12 via the motor pulley 6, the first timing belt 8 and the drive shaft first pulley 13 shown in FIG.
- the main drive shaft 10 is connected to the inner peripheral side (output side) of the torque limiter 12, and the load tap changer LTC is connected to the main drive shaft 10.
- the load torque of the load tap changer LTC is smaller than the limit torque (predetermined torque) of the torque limiter. Therefore, torque is transmitted through the torque limiter 12, and the drive shaft 10 rotates.
- the rotation of the drive shaft 10 shifts the tap position of the load tap changer LTC shown in FIG. 1 to the higher position.
- the control board unit 3 grasps the tap position of the load tap changer LTC based on the rotational position of the drive shaft 10 detected by the rotation detector 18.
- the control board unit 3 stops the motor 5 every time the tap position of the load tap changer LTC shifts by one step.
- the control board unit 3 outputs an electric signal to stop the motor 5. That is, the electric operating device 1 electrically stops the rotation of the driving shaft 10.
- the limit tap limiting device 15 mechanically stops the rotation of the driving shaft 10 when the rotation stop of the electric driving shaft 10 does not function electrically.
- the rotation of the driving shaft 10 causes the worm shaft 28 to rotate via the driving shaft second pulley 23, the second timing belt 24, and the worm pulley 25.
- the rotation of the worm shaft 28 causes the feed screw shaft 32 to rotate via the worm wheel 34.
- the feed screw shaft 32 rotates once.
- the rotation of the feed screw shaft 32 causes the feed screw nut 42 to move in the X direction.
- the driving shaft 10 rotates in the direction of shifting the tap position to the higher position, the feed screw nut 42 moves in the +X direction.
- FIG. 8 is a first operation explanatory diagram of the extreme tap limiting device of the embodiment.
- the high-side piece 48 a connected to the feed screw nut 42 moves in the +X direction together with the feed screw nut 42.
- the load tap changer LTC reaches the high-side limit tap position
- the high-side piece 48a comes into contact with the piece receiving portion 68a of the high-side arm 60a.
- the high-order side piece 48a further moves in the +X direction and pushes the piece receiving portion 68a in the +X direction.
- the higher arm 60a rotates clockwise around the arm pin 61a in the -Z direction.
- the higher arm 60a pushes the slider pin 58 in the +Y direction.
- the slider 56 moves in the +Y direction.
- the relay arm 70 rotates counterclockwise around the arm pin 71 in the ⁇ X direction.
- the first arm 80 rotates counterclockwise around the arm pin 81 in the ⁇ Z direction.
- the engagement protrusion 88 of the first arm 80 is held in a state of being engaged with the engagement recess 93 of the second arm 90 by the biasing force of the spring 84.
- the first arm 80 rotates against the biasing force of the spring 84.
- FIG. 9 is a second operation explanatory diagram of the extreme tap limiting device according to the embodiment.
- the engagement protrusion 88 of the first arm 80 engages with the engagement recess 93 of the second arm 90.
- the notch 98 of the second arm 90 engages with the stopper pin 103 of the stopper 100.
- the stopper 100 is held at the retracted position retracted from the stopper receiver 110 in the ⁇ Y direction.
- FIG. 9 shows a state immediately before the engaging projection 88 is disengaged from the engaging recess 93.
- FIG. 10 is a third operation explanatory diagram of the extreme tap limiting device of the embodiment.
- the engagement protrusion 88 of the first arm 80 separates from the engagement recess 93 of the second arm 90.
- the notch 98 of the second arm 90 is engaged with the stopper pin 103.
- the stopper pin 103 is biased in the +Y direction by the spring 104.
- the second arm 90 is rotated counterclockwise in the ⁇ Z direction about the arm pin 91 by the urging force of the spring 104.
- the stopper pin 103 and the stopper 100 move in the +Y direction by the biasing force of the spring 104.
- the stopper receiver 110 rotates together with the driving shaft 10.
- the stopper 100 enters the notch 112 of the stopper receiver 110.
- the engaging recess 108 of the stopper 100 engages with the engaging protrusion 113 of the stopper receiver 110.
- the stopper 100 is arranged at a stop position where the rotation of the drive shaft 10 is stopped.
- the limit tap limiting device 15 mechanically stops the rotation of the driving shaft 10.
- the rotation of the drive shaft 10 is stopped after the load tap changer LTC reaches the high-side limit tap position and before it reaches the high-side limit tap position one step higher.
- the rotation of the driving shaft 10 is stopped when the driving shaft 10 rotates about 5 times after reaching the high-side limit tap position. This prevents the load tap changer LTC from being switched to a tap position beyond the high-side limit tap position.
- the motor 5 of the electric operating device 1 continues to rotate even if the limit tap limiting device 15 stops the rotation of the driving shaft 10.
- the torque limiter 12 shown in FIG. 2 limits the torque transmission from the motor 5 to the drive shaft 10 to a predetermined torque. As a result, it is possible to suppress an excessive torque from acting on the limit tap limiting device 15 that stops the rotation of the driving shaft 10.
- the work of returning the electric operating device 1 to the normal operation state after the extreme tap limiting device 15 mechanically stops the rotation of the driving shaft 10 will be described.
- the operator operates the return lever 109 shown in FIG. 2 to move the stopper 100 in the ⁇ Y direction.
- the second arm 90 rotates clockwise around the arm pin 91 in the ⁇ Z direction.
- the operator rotates the driving shaft 10 by the motor 5 or manually in the direction in which the tap position of the load tap changer LTC shifts to the lower position side.
- the high position side piece 48a moves in the -X direction and separates from the piece receiving portion 68a of the high position side arm 60a.
- the high-order side arm 60a, the slider 56, the relay arm 70, and the first arm 80 are in a rotatable or movable state.
- the first arm 80 is rotated clockwise about the arm pin 81 in the ⁇ Z direction by the urging force of the spring 84.
- the engagement protrusion 88 of the first arm 80 engages with the engagement recess 93 of the second arm.
- the stopper 100 is held at the retracted position retracted from the stopper receiver 110 in the ⁇ Y direction.
- the electric operating device 1 returns to a state in which it can operate normally.
- the extreme tap limiting device 15 of the embodiment has the feed screw mechanism 40a, the tops 48a and 48b, and the rotation stop unit 15a.
- the feed screw mechanism 40 a includes a feed screw shaft 32 that rotates in conjunction with the driving shaft 10.
- the driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC.
- the tops 48a and 48b move in the axial direction of the feed screw shaft 32 by the feed screw mechanism 40a.
- the rotation stop unit 15a can stop the rotation of the driving shaft 10 by contacting the tops 48a and 48b at the axial position corresponding to the limit tap position of the load tap changer LTC.
- the feed screw mechanism 40a moves the tops 48a and 48b to stop the rotation of the driving shaft 10, so that the limit tap limiting device 15 is downsized. Since the timing for stopping the rotation of the drive shaft 10 is adjusted only by adjusting the positions of the tops 48a and 48b in the X direction, the adjustment work of the limit tap limiting device 15 is facilitated.
- the limit tap limiting device 15 has a torque limiter 12 that limits torque transmission from the motor 5 to the drive shaft 10. At the extreme tap position, the extreme tap limiting device 15 stops the rotation of the driving shaft 10. At this time, the torque limiter 12 limits the transmission torque from the motor 5 to the drive shaft 10 to a predetermined torque. As a result, it is possible to suppress an excessive torque from acting on the limit tap limiting device 15. The torque limiter 12 limits the transmission torque only when the motor 5 does not stop even when the limit tap position is reached.
- the pieces 48a and 48b have a high-side piece 48a and a low-side piece 48b.
- the rotation stop unit 15a includes a high-side arm 60a, a low-side arm 60b, a slider 56, and a rotation stop mechanism 15b.
- the high-side arm 60a is rotatable by contacting with the high-side piece 48a at a position in the X direction corresponding to the high-side extreme tap position of the load tap changer LTC.
- the lower arm 60b contacts the lower piece 48b at a position in the X direction corresponding to the lower limit tap position of the load tap changer LTC, and is rotatable.
- the slider 56 engages with the higher arm 60a and the lower arm 60b.
- the slider 56 is slidable with the rotation of the high-side arm 60a and the low-side arm 60b.
- the rotation stop mechanism 15b can stop the rotation of the driving shaft 10 by sliding the slider 56.
- the operations of the slider 56 and the rotation stop mechanism 15b become the same at the high-side extreme tap position and the low-side extreme tap position. Therefore, the adjustment work of the extreme tap limiting device 15 becomes easy.
- the higher arm 60a has a short arm 67a and a long arm 62a.
- the short arm 67a extends from the arm pin 61a, which is the center of rotation on the high side, to the piece receiving portion 68a, which is the contact position with the piece 48a on the high side.
- the long arm 62a extends from the arm pin 61a to the arm hole 63a where the slider 56 is engaged.
- the long arm 62a is longer than the short arm 67a.
- the lower arm 60b has a short arm 67b and a long arm 62b.
- the short arm 67b extends from the arm pin 61b, which is the lower rotation center, to the piece receiving portion 68b, which is the contact position with the lower piece 48b.
- the long arm 62b extends from the arm pin 61b to the arm hole 63b where the slider 56 is engaged.
- the long arm 62b is longer than the short arm 67b.
- the rotation stop mechanism 15b has a stopper 100 and a stopper holding mechanism 15c.
- the stopper 100 is movable between a stop position that stops the rotation of the driving shaft 10 and a retracted position that allows the rotation of the driving shaft 10.
- the stopper 100 is biased toward the stop position.
- the stopper holding mechanism 15c can hold the stopper 100 at the retracted position and release the holding of the stopper 100 by sliding the slider 56.
- the stopper 100 is urged toward a stop position where the rotation of the drive shaft 10 is stopped.
- the stopper 100 instantly moves to the stop position to stop the rotation of the driving shaft 10. This improves the accuracy of the operation of the extreme tap limiting device 15.
- the stopper holding mechanism 15c has a first arm 80 and a second arm 90.
- the second arm 90 engages with the stopper 100.
- the first arm 80 holds the stopper 100 in the retracted position while being engaged with the second arm 90.
- the first arm 80 is biased in a direction in which the engagement with the second arm 90 is maintained.
- the first arm 80 can be disengaged from the second arm 90 by sliding the slider 56. Accordingly, the stopper holding mechanism 15c can hold the stopper 100 in the retracted position in a stable state.
- the stopper holding mechanism 15c can release the holding of the stopper 100 at the retracted position by sliding the slider 56.
- the electric operating device 1 of the load tap changer LTC of the embodiment includes a motor 5, a main shaft 10, and the above-described limit tap limiting device 15.
- the driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC.
- the limit tap limiting device 15 is arranged near the driving shaft 10 as a small unit. As a result, the electric operating device 1 for the load tap changer LTC is downsized.
- the electric operating device 1 includes a multi-rotation absolute position detection type rotation detector 18 that detects the rotation position of the drive shaft 10.
- the multi-rotation absolute position detection type rotation detector 18 accurately detects the rotation position of the driving shaft 10. Therefore, the stopping accuracy of the driving shaft 10 is improved. This improves the accuracy of the operation of the limit tap limiting device 15 at the limit tap position.
- the feed screw mechanism 40a and the tops 48a and 48b are provided. Thereby, the limit tap limiting device can be downsized.
- LTC Long Term Evolution
- 1... Electric operation device 5... Motor, 8... First timing belt, 10... Main shaft, 12... Torque limiter, 15... Extreme tap limiting device, 15a... Rotation stop unit, 15b... Rotation stop mechanism, 15c...Stopper holding mechanism, 18...Rotation detector, 32...Feed screw shaft, 40a...Feed screw mechanism, 48a...Higher side piece, 48b...Lower side piece, 56...Slider, 60a...Higher side arm, 60b...Lower side arm, 62a...Long arm (higher side long arm), 62b...Long arm (lower side long arm), 67a...Short arm (higher side short arm), 67b...Short arm (lower side short arm), 80... 1st arm, 90... 2nd arm, 100... Stopper.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
Abstract
A limit tap restricting device of an embodiment comprises a feed screw mechanism, a block, and a rotation stopping unit. The feed screw mechanism includes a feed screw shaft which rotates in conjunction with a main drive shaft. The main drive shaft is disposed in a torque transmission path from a motor to a load tap changer. The block is moved by the feed screw mechanism in an axial direction of the feed screw shaft. The rotation stopping unit can be abutted against the block at a position in the axial direction corresponding to a limit tap of the load tap changer, and stop rotation of the main drive shaft.
Description
本発明の実施形態は、極限タップ制限装置および負荷時タップ切換器の電動操作装置に関する。
The embodiment of the present invention relates to an electric operating device for a limit tap limiting device and a load tap changer.
負荷時タップ切換器は、運転状態において変圧器の巻数比(変圧比)を変えることで電圧を調整する装置である。負荷時タップ切換器の電動操作装置は、モータにより主動軸を回転させて負荷時タップ切換器の切換操作を行う。電動操作装置は、主動軸の回転位置を検出して負荷時タップ切換器のタップ位置を把握する。負荷時タップ切換器が極限タップ位置に到達した場合に、電動操作装置は電気的に主動軸の回転を停止させる。電動操作装置は、極限タップ制限装置を有する。極限タップ制限装置は、電気的な主動軸の回転停止が機能しない場合に、機械的に主動軸の回転を停止させる。
極限タップ制限装置には、小型化をすることが求められている。 The load tap changer is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in an operating state. The electric operating device of the load tap changer performs the switching operation of the load tap changer by rotating the main shaft by the motor. The electric operating device detects the rotational position of the driving shaft and grasps the tap position of the tap changer under load. When the load tap changer reaches the extreme tap position, the electrically operated device electrically stops rotation of the drive shaft. The electric operating device has an extreme tap limiting device. The limit tap limiting device mechanically stops the rotation of the driving shaft when the electric rotation stopping of the driving shaft does not function.
The extreme tap limiting device is required to be downsized.
極限タップ制限装置には、小型化をすることが求められている。 The load tap changer is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in an operating state. The electric operating device of the load tap changer performs the switching operation of the load tap changer by rotating the main shaft by the motor. The electric operating device detects the rotational position of the driving shaft and grasps the tap position of the tap changer under load. When the load tap changer reaches the extreme tap position, the electrically operated device electrically stops rotation of the drive shaft. The electric operating device has an extreme tap limiting device. The limit tap limiting device mechanically stops the rotation of the driving shaft when the electric rotation stopping of the driving shaft does not function.
The extreme tap limiting device is required to be downsized.
本発明が解決しようとする課題は、小型化をすることができる極限タップ制限装置および負荷時タップ切換器の電動操作装置を提供することである。
The problem to be solved by the present invention is to provide an electric operation device for an extreme tap limiting device and a load tap changer that can be downsized.
実施形態の極限タップ制限装置は、送りねじ機構と、コマと、回転停止ユニットと、を持つ。送りねじ機構は、主動軸に連動して回転する送りねじ軸を含む。前記主動軸は、モータから負荷時タップ切換器へのトルク伝達経路に配置される。コマは、前記送りねじ機構により前記送りねじ軸の軸方向に移動する。回転停止ユニットは、前記負荷時タップ切換器の極限タップ位置に対応する前記軸方向の位置で前記コマに当接し、前記主動軸の回転を停止させることが可能である。
The limit tap limiting device of the embodiment has a feed screw mechanism, a top, and a rotation stop unit. The feed screw mechanism includes a feed screw shaft that rotates in conjunction with the driving shaft. The drive shaft is arranged in a torque transmission path from the motor to the load tap changer. The top moves in the axial direction of the feed screw shaft by the feed screw mechanism. The rotation stopping unit can stop the rotation of the driving shaft by contacting the top at the axial position corresponding to the limit tap position of the load tap changer.
以下、実施形態の極限タップ制限装置および負荷時タップ切換器の電動操作装置を、図面を参照して説明する。
図1は、実施形態の負荷時タップ切換器の電動操作装置の斜視図である。負荷時タップ切換器LTCは、運転状態において変圧器の巻数比(変圧比)を変えることで電圧を調整する装置である。電動操作装置1は、負荷時タップ切換器LTCのタップ位置を高位側(昇圧側)および低位側(降圧側)に切り換える。電動操作装置1は、主動軸10を回転させることにより、伝動軸(不図示)を介して負荷時タップ切換器LTCの切換操作を行う。電動操作装置1は、筐体1aと、駆動機構部2と、制御基板部3と、を有する。筐体1aは、駆動機構部2および制御基板部3を収容する。制御基板部3は、駆動機構部2の動作を制御する。 Hereinafter, the limit tap limiting device and the electric operating device for the load tap changer of the embodiment will be described with reference to the drawings.
FIG. 1 is a perspective view of an electric operating device for a load tap changer according to an embodiment. The load tap changer LTC is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in the operating state. Theelectric operating device 1 switches the tap position of the load tap changer LTC between the high position side (step-up side) and the low position side (step-down side). The electric operating device 1 rotates the main shaft 10 to switch the tap switch during load LTC via a transmission shaft (not shown). The electric operating device 1 includes a housing 1 a, a drive mechanism unit 2, and a control board unit 3. The housing 1 a houses the drive mechanism section 2 and the control board section 3. The control board unit 3 controls the operation of the drive mechanism unit 2.
図1は、実施形態の負荷時タップ切換器の電動操作装置の斜視図である。負荷時タップ切換器LTCは、運転状態において変圧器の巻数比(変圧比)を変えることで電圧を調整する装置である。電動操作装置1は、負荷時タップ切換器LTCのタップ位置を高位側(昇圧側)および低位側(降圧側)に切り換える。電動操作装置1は、主動軸10を回転させることにより、伝動軸(不図示)を介して負荷時タップ切換器LTCの切換操作を行う。電動操作装置1は、筐体1aと、駆動機構部2と、制御基板部3と、を有する。筐体1aは、駆動機構部2および制御基板部3を収容する。制御基板部3は、駆動機構部2の動作を制御する。 Hereinafter, the limit tap limiting device and the electric operating device for the load tap changer of the embodiment will be described with reference to the drawings.
FIG. 1 is a perspective view of an electric operating device for a load tap changer according to an embodiment. The load tap changer LTC is a device that adjusts the voltage by changing the turns ratio (transformation ratio) of the transformer in the operating state. The
図2は、駆動機構部の斜視図である。本願において、直交座標系のX方向、Y方向およびZ方向が以下のように定義される。Z方向は、主動軸10の軸方向である。+Z方向は、主動軸第2プーリ23から主動軸第1プーリ13に向かう方向である。X方向は、送りねじ軸32の軸方向である。+X方向は、負荷時タップ切換器LTC(図1参照)を低位側タップから高位側タップに切り換えるときに、送りねじ軸32に沿って送りねじナット42(図4参照)が進む方向である。Y方向は、X方向およびZ方向に垂直な方向である。+Y方向は、送りねじ軸32から主動軸10に向かう方向である。例えば、Z方向は鉛直方向であり、X方向およびY方向は水平方向である。
FIG. 2 is a perspective view of the drive mechanism section. In the present application, the X direction, Y direction and Z direction of the Cartesian coordinate system are defined as follows. The Z direction is the axial direction of the driving shaft 10. The +Z direction is a direction from the drive shaft second pulley 23 toward the drive shaft first pulley 13. The X direction is the axial direction of the feed screw shaft 32. The +X direction is the direction in which the feed screw nut 42 (see FIG. 4) advances along the feed screw shaft 32 when the load tap changer LTC (see FIG. 1) is switched from the low position side tap to the high position side tap. The Y direction is a direction perpendicular to the X and Z directions. The +Y direction is a direction from the feed screw shaft 32 toward the driving shaft 10. For example, the Z direction is the vertical direction, and the X direction and the Y direction are the horizontal directions.
駆動機構部2は、モータ5と、主動軸10と、トルクリミッタ12と、回転検出器18と、極限タップ制限装置15と、を有する。
モータ5の回転軸は、Z方向と平行に配置される。モータ5の回転軸には、モータプーリ6が装着される。 Thedrive mechanism unit 2 includes a motor 5, a main shaft 10, a torque limiter 12, a rotation detector 18, and an extreme tap limiting device 15.
The rotation axis of themotor 5 is arranged parallel to the Z direction. A motor pulley 6 is attached to the rotating shaft of the motor 5.
モータ5の回転軸は、Z方向と平行に配置される。モータ5の回転軸には、モータプーリ6が装着される。 The
The rotation axis of the
主動軸10は、モータ5から負荷時タップ切換器LTC(図1参照)へのトルク伝達経路に配置される。主動軸10は、モータ5の-Y方向に配置される。主動軸10の軸方向は、Z方向と平行に配置される。主動軸10の+Z方向には、主動軸第1プーリ13が装着される。主動軸第1プーリ13とモータプーリ6との間には、第1タイミングベルト8が掛け渡される。モータ5から、モータプーリ6、第1タイミングベルト8および主動軸第1プーリ13を介して、主動軸10へのトルク伝達が可能である。第1タイミングベルト8を利用することにより、トルク伝達経路の潤滑が不要になる。
The driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC (see FIG. 1). The drive shaft 10 is arranged in the −Y direction of the motor 5. The axial direction of the driving shaft 10 is arranged parallel to the Z direction. The driving shaft first pulley 13 is mounted in the +Z direction of the driving shaft 10. A first timing belt 8 is stretched between the drive shaft first pulley 13 and the motor pulley 6. Torque can be transmitted from the motor 5 to the drive shaft 10 via the motor pulley 6, the first timing belt 8 and the drive shaft first pulley 13. By using the first timing belt 8, lubrication of the torque transmission path becomes unnecessary.
トルクリミッタ12は、外周側と内周側との間の伝達トルクを所定トルク以下に制限する。トルクリミッタ12の外周側(入力側)は、主動軸第1プーリ13に接続される。トルクリミッタ12の内周側(出力側)は、主動軸10に接続される。後述されるように、極限タップ制限装置15は、主動軸10の回転を停止させることが可能である。極限タップ制限装置15が主動軸10の回転を停止させているとき、モータ5から主動軸10への伝達トルクが所定トルクに制限される。
The torque limiter 12 limits the transmission torque between the outer peripheral side and the inner peripheral side to a predetermined torque or less. The outer peripheral side (input side) of the torque limiter 12 is connected to the drive shaft first pulley 13. The inner peripheral side (output side) of the torque limiter 12 is connected to the drive shaft 10. As will be described later, the limit tap limiting device 15 can stop the rotation of the driving shaft 10. When the extreme tap limiting device 15 stops the rotation of the driving shaft 10, the torque transmitted from the motor 5 to the driving shaft 10 is limited to a predetermined torque.
回転検出器18は、主動軸10の-Z方向の端部に配置される。回転検出器18は、多回転絶対位置検出型の回転検出器(多回転型エンコーダ)である。多回転型エンコーダは、主動軸に対してn(n>1)倍の回転をする多回転部材を有する。多回転型エンコーダは、多回転部材の回転位置を検出することで、主動軸10の回転位置を精度良く検出する。回転検出器18は、主動軸10の回転位置に相当する信号を制御基板部3(図1参照)に出力する。
The rotation detector 18 is arranged at the end of the drive shaft 10 in the −Z direction. The rotation detector 18 is a multi-rotation absolute position detection type rotation detector (multi-rotation encoder). The multi-rotation encoder has a multi-rotation member that rotates n (n>1) times with respect to the main axis. The multi-rotation encoder accurately detects the rotation position of the driving shaft 10 by detecting the rotation position of the multi-rotation member. The rotation detector 18 outputs a signal corresponding to the rotational position of the driving shaft 10 to the control board unit 3 (see FIG. 1).
図1に示される制御基板部3は、主動軸10の回転位置に基づいて、負荷時タップ切換器LTCのタップ位置を把握する。負荷時タップ切換器LTCが極限タップ位置に到達したとき、制御基板部3は電気信号を出力してモータ5を停止させる。すなわち、電動操作装置1は、電気的に主動軸10の回転を停止させる。回転検出器18、制御基板部3またはモータ5が故障したとき、電気的な主動軸10の回転停止が機能しない。極限タップ制限装置15は、電気的な主動軸10の回転停止が機能しないとき、機械的に主動軸10の回転を停止させる。
The control board unit 3 shown in FIG. 1 grasps the tap position of the load tap changer LTC based on the rotational position of the driving shaft 10. When the load tap changer LTC reaches the limit tap position, the control board unit 3 outputs an electric signal to stop the motor 5. That is, the electric operating device 1 electrically stops the rotation of the driving shaft 10. When the rotation detector 18, the control board unit 3 or the motor 5 fails, the electrical rotation stop of the drive shaft 10 does not function. The limit tap limiting device 15 mechanically stops the rotation of the driving shaft 10 when the rotation stop of the electric driving shaft 10 does not function electrically.
極限タップ制限装置15は、図2に示されるように、ユニットとして主動軸10の-Y方向に配置される。極限タップ制限装置15は、一対のフレーム16,16を有する。極限タップ制限装置15の構成要素は、一対のフレーム16,16に直接的または間接的に支持される。一対のフレーム16,16は、図1に示される電動操作装置1の筐体1aに固定される。
The extreme tap limiting device 15 is arranged as a unit in the −Y direction of the driving shaft 10 as shown in FIG. The limit tap limiting device 15 has a pair of frames 16, 16. The components of the extreme tap limiting device 15 are directly or indirectly supported by the pair of frames 16, 16. The pair of frames 16, 16 are fixed to the casing 1a of the electric operating device 1 shown in FIG.
図3は、実施形態の極限タップ制限装置の斜視図である。極限タップ制限装置15は、動力伝達部20と、送りねじ軸部30と、送りねじナット部40と、回転停止ユニット15aと、を有する。回転停止ユニット15aは、アームスライダ部50と、回転停止機構15bと、を有する。回転停止機構15bは、ストッパ保持機構15cと、ストッパ100と、ストッパ受け110と、を有する。ストッパ保持機構15cは、中継アーム70と、第1アーム80と、第2アーム90と、を有する。
FIG. 3 is a perspective view of the extreme tap limiting device of the embodiment. The extreme tap limiting device 15 includes a power transmission unit 20, a feed screw shaft portion 30, a feed screw nut portion 40, and a rotation stop unit 15a. The rotation stop unit 15a has an arm slider section 50 and a rotation stop mechanism 15b. The rotation stop mechanism 15b has a stopper holding mechanism 15c, a stopper 100, and a stopper receiver 110. The stopper holding mechanism 15c has a relay arm 70, a first arm 80, and a second arm 90.
動力伝達部20は、主動軸第2プーリ23と、ウォーム軸28と、ウォームプーリ25と、第2タイミングベルト24と、を有する。
主動軸第2プーリ23は、主動軸10に装着される。主動軸第2プーリ23は、主動軸第1プーリ13(図2参照)の-Z方向に配置される。
ウォーム軸28は、主動軸10の-Y方向に配置される。ウォーム軸28の軸方向は、Z方向と平行に配置される。ウォーム軸28は、-Z方向の端部にウォーム29を有する。
ウォームプーリ25は、ウォーム軸28の+Z方向に装着される。 Thepower transmission unit 20 includes a main drive shaft second pulley 23, a worm shaft 28, a worm pulley 25, and a second timing belt 24.
The drive shaftsecond pulley 23 is attached to the drive shaft 10. The driving shaft second pulley 23 is arranged in the −Z direction of the driving shaft first pulley 13 (see FIG. 2).
Theworm shaft 28 is arranged in the −Y direction of the drive shaft 10. The axial direction of the worm shaft 28 is arranged parallel to the Z direction. The worm shaft 28 has a worm 29 at the end in the −Z direction.
Theworm pulley 25 is mounted on the worm shaft 28 in the +Z direction.
主動軸第2プーリ23は、主動軸10に装着される。主動軸第2プーリ23は、主動軸第1プーリ13(図2参照)の-Z方向に配置される。
ウォーム軸28は、主動軸10の-Y方向に配置される。ウォーム軸28の軸方向は、Z方向と平行に配置される。ウォーム軸28は、-Z方向の端部にウォーム29を有する。
ウォームプーリ25は、ウォーム軸28の+Z方向に装着される。 The
The drive shaft
The
The
第2タイミングベルト24は、主動軸第2プーリ23とウォームプーリ25との間に掛け渡される。主動軸10から、主動軸第2プーリ23、第2タイミングベルト24およびウォームプーリ25を介して、ウォーム軸28にトルクが伝達される。主動軸10の回転に伴って、ウォーム軸28が回転する。第2タイミングベルト24を利用することにより、トルク伝達経路の潤滑が不要になる。
The second timing belt 24 is stretched between the drive shaft second pulley 23 and the worm pulley 25. Torque is transmitted from the drive shaft 10 to the worm shaft 28 via the drive shaft second pulley 23, the second timing belt 24, and the worm pulley 25. The worm shaft 28 rotates as the drive shaft 10 rotates. By using the second timing belt 24, lubrication of the torque transmission path becomes unnecessary.
送りねじ軸部30は、送りねじ軸32と、ウォームホイール34と、を有する。
送りねじ軸32は、ウォーム軸28の-Y方向に配置される。送りねじ軸32の軸方向は、X方向と平行に配置される。送りねじ軸32は、-X方向の領域に送りねじ36を有する。送りねじ36は、送りねじ軸32の外周面に形成された雄ねじである。送りねじ36の長さは、送りねじ軸32の長さの半分以上である。送りねじ36のX方向の両端部に、一対の軸受31a,31bが配置される。一対の軸受31a,31bは、送りねじ軸32を支持する。
ウォームホイール34は、送りねじ軸32の+X方向の端部付近に装着される。ウォームホイール34は、ウォーム軸28のウォーム29と噛み合う。ウォーム軸28の回転に伴って、送りねじ軸32が回転する。 The feedscrew shaft portion 30 includes a feed screw shaft 32 and a worm wheel 34.
Thefeed screw shaft 32 is arranged in the −Y direction of the worm shaft 28. The axial direction of the feed screw shaft 32 is arranged parallel to the X direction. The feed screw shaft 32 has a feed screw 36 in a region in the −X direction. The feed screw 36 is a male screw formed on the outer peripheral surface of the feed screw shaft 32. The length of the feed screw 36 is at least half the length of the feed screw shaft 32. A pair of bearings 31a and 31b are arranged at both ends of the feed screw 36 in the X direction. The pair of bearings 31a and 31b support the feed screw shaft 32.
Theworm wheel 34 is mounted near the end of the feed screw shaft 32 in the +X direction. The worm wheel 34 meshes with the worm 29 of the worm shaft 28. The feed screw shaft 32 rotates as the worm shaft 28 rotates.
送りねじ軸32は、ウォーム軸28の-Y方向に配置される。送りねじ軸32の軸方向は、X方向と平行に配置される。送りねじ軸32は、-X方向の領域に送りねじ36を有する。送りねじ36は、送りねじ軸32の外周面に形成された雄ねじである。送りねじ36の長さは、送りねじ軸32の長さの半分以上である。送りねじ36のX方向の両端部に、一対の軸受31a,31bが配置される。一対の軸受31a,31bは、送りねじ軸32を支持する。
ウォームホイール34は、送りねじ軸32の+X方向の端部付近に装着される。ウォームホイール34は、ウォーム軸28のウォーム29と噛み合う。ウォーム軸28の回転に伴って、送りねじ軸32が回転する。 The feed
The
The
図4は、送りねじナット部の斜視図である。送りねじナット部40は、送りねじナット42と、コマ支持板44(44a,44b)と、コマ48(48a,48b)と、を有する。送りねじ軸部30の送りねじ軸32と、送りねじナット部40の送りねじナット42とにより、送りねじ機構40aが形成される。
FIG. 4 is a perspective view of the feed screw nut portion. The feed screw nut portion 40 includes a feed screw nut 42, a piece support plate 44 (44a, 44b), and a piece 48 (48a, 48b). The feed screw shaft 32 of the feed screw shaft portion 30 and the feed screw nut 42 of the feed screw nut portion 40 form a feed screw mechanism 40a.
送りねじナット42は、送りねじ軸32の送りねじ36と噛み合う雌ねじを有する。送りねじナット42は、雌ねじの+Z方向に貫通孔を有する。貫通孔は、送りねじナット42をX方向に貫通する。貫通孔には、回転規制シャフト37が挿入される。回転規制シャフト37は、送りねじ軸32と平行に並んで配置される。回転規制シャフト37のX方向の両端部は、一対の軸受31a,31bに固定される。回転規制シャフト37は、送りねじ軸32の周方向における送りねじナット42の回転を規制する。これにより、送りねじ軸32が回転すると、送りねじナット42はX方向に移動する。
The feed screw nut 42 has a female screw that meshes with the feed screw 36 of the feed screw shaft 32. The feed screw nut 42 has a through hole in the +Z direction of the female screw. The through hole penetrates the feed screw nut 42 in the X direction. The rotation restricting shaft 37 is inserted into the through hole. The rotation restricting shaft 37 is arranged in parallel with the feed screw shaft 32. Both ends of the rotation restricting shaft 37 in the X direction are fixed to the pair of bearings 31a and 31b. The rotation restricting shaft 37 restricts the rotation of the feed screw nut 42 in the circumferential direction of the feed screw shaft 32. As a result, when the feed screw shaft 32 rotates, the feed screw nut 42 moves in the X direction.
負荷時タップ切換器LTCのタップ位置を高位側に切り換えるとき、主動軸10は-Z方向に向かって左回りに回転する。このとき、送りねじ軸32は-X方向に向かって左回りに回転し、送りねじナット42は+X方向に移動する。すなわち、送りねじナット部40の+X方向が、負荷時タップ切換器LTCの高位側に対応する。逆に、送りねじナット部40の-X方向が、負荷時タップ切換器LTCの低位側に対応する。
When switching the tap position of the load tap changer LTC to the high position side, the drive shaft 10 rotates counterclockwise in the -Z direction. At this time, the feed screw shaft 32 rotates counterclockwise in the −X direction, and the feed screw nut 42 moves in the +X direction. That is, the +X direction of the feed screw nut portion 40 corresponds to the higher position side of the load tap changer LTC. On the contrary, the −X direction of the feed screw nut portion 40 corresponds to the low side of the tap changer LTC under load.
コマ支持板44(44a,44b)は、送りねじナット42に固定される。コマ支持板44は、送りねじナット42の-Y方向に配置される。コマ支持板44は、XZ平面と平行に配置される。コマ支持板44は、高位側支持板44aと、低位側支持板44bと、を有する。
The top support plate 44 (44a, 44b) is fixed to the feed screw nut 42. The top support plate 44 is arranged in the −Y direction of the feed screw nut 42. The top support plate 44 is arranged parallel to the XZ plane. The top support plate 44 includes a high-side support plate 44a and a low-side support plate 44b.
高位側支持板44aは、送りねじナット42の+X方向に配置される。高位側支持板44aは、高位側支持板44aをY方向に貫通するコマ位置調整孔45aを有する。コマ位置調整孔45aは、X方向に伸びる長円形状に形成される。
低位側支持板44bは、送りねじナット42の-X方向に配置される。低位側支持板44bは、コマ位置調整孔45aと同様のコマ位置調整孔45bを有する。 The high-levelside support plate 44a is arranged in the +X direction of the feed screw nut 42. The high-side support plate 44a has a top position adjustment hole 45a that penetrates the high-side support plate 44a in the Y direction. The top position adjusting hole 45a is formed in an oval shape extending in the X direction.
Thelower support plate 44b is arranged in the −X direction of the feed screw nut 42. The lower support plate 44b has a top position adjusting hole 45b similar to the top position adjusting hole 45a.
低位側支持板44bは、送りねじナット42の-X方向に配置される。低位側支持板44bは、コマ位置調整孔45aと同様のコマ位置調整孔45bを有する。 The high-level
The
コマ48(48a,48b)は、コマ支持板44の-Y方向に配置される。コマ48は、Y方向から見て矩形状に形成される。コマ(押圧コマ)48は、高位側コマ48aと、低位側コマ48bと、を有する。
高位側コマ48aは、立方体状に形成される。高位側コマ48aの+X方向の表面は、YZ平面と平行であり、後述される高位側アームのコマ受け部と当接する。
低位側コマ48bは、高位側コマ48aと同様に形成される。 The tops 48 (48a, 48b) are arranged in the −Y direction of the top support plate 44. The top 48 is formed in a rectangular shape when viewed from the Y direction. The top (pressing top) 48 includes a high-side top 48a and a low-side top 48b.
The highposition side piece 48a is formed in a cubic shape. The +X direction surface of the high-side piece 48a is parallel to the YZ plane and comes into contact with a piece receiving portion of the high-side arm, which will be described later.
The lower-side piece 48b is formed similarly to the higher-side piece 48a.
高位側コマ48aは、立方体状に形成される。高位側コマ48aの+X方向の表面は、YZ平面と平行であり、後述される高位側アームのコマ受け部と当接する。
低位側コマ48bは、高位側コマ48aと同様に形成される。 The tops 48 (48a, 48b) are arranged in the −Y direction of the top support plate 44. The top 48 is formed in a rectangular shape when viewed from the Y direction. The top (pressing top) 48 includes a high-
The high
The lower-
図5は、図4のF5-F5線におけるコマの断面図である。高位側コマ48aは、+Y方向に突出する取付軸46aを有する。取付軸46aは、コマ位置調整孔45aに挿入され、高位側支持板44aの+Y方向に突出する。取付軸46aの基端部は、コマ位置調整孔45aの内側に配置される。取付軸46aの基端部の断面は、矩形状に形成される。高位側支持板44aの+Y方向に突出する取付軸46aの外周には、雄ねじが形成される。高位側支持板44aの+Y方向には、コマ固定ナット47aが配置される。コマ固定ナット47aは、取付軸46aの雄ねじに装着される。これにより、高位側コマ48aが高位側支持板44aに固定される。
FIG. 5 is a cross-sectional view of the frame taken along the line F5-F5 of FIG. The high-side piece 48a has a mounting shaft 46a protruding in the +Y direction. The mounting shaft 46a is inserted into the top position adjusting hole 45a and projects in the +Y direction of the high-level side support plate 44a. The base end of the mounting shaft 46a is arranged inside the top position adjusting hole 45a. The cross section of the base end portion of the mounting shaft 46a is formed in a rectangular shape. A male screw is formed on the outer periphery of the mounting shaft 46a protruding in the +Y direction of the high-level side support plate 44a. A top fixing nut 47a is arranged in the +Y direction of the high-side support plate 44a. The top fixing nut 47a is attached to the male screw of the mounting shaft 46a. As a result, the high-side piece 48a is fixed to the high-side support plate 44a.
高位側コマ48aのX方向の位置は、以下のように調整される。負荷時タップ切換器LTCが高位側極限タップ位置に到達するとき、高位側コマ48aは+X方向に移動して高位側アーム60aのコマ受け部68aに当接する。高位側アーム60aは、後述される第1アーム80の係合凸部88と第2アーム90の係合凹部93とが係合した状態でのコマ受け部68aと当接する。この当接が実現するように、高位側コマ48aがX方向の所定位置に配置される。高位側コマ48aのX方向の位置は、コマ位置調整孔45aに沿って変更可能である。高位側コマ48aは、X方向の所定位置で高位側支持板44aに固定される。
The position of the high-order piece 48a in the X direction is adjusted as follows. When the load tap changer LTC reaches the high-side limit tap position, the high-side piece 48a moves in the +X direction and contacts the piece receiving portion 68a of the high-side arm 60a. The high-order side arm 60a abuts on the frame receiving portion 68a in a state in which the engagement protrusion 88 of the first arm 80 and the engagement recess 93 of the second arm 90, which will be described later, are engaged. In order to realize this contact, the high position side piece 48a is arranged at a predetermined position in the X direction. The position of the high-side piece 48a in the X direction can be changed along the piece position adjusting hole 45a. The high-side piece 48a is fixed to the high-side support plate 44a at a predetermined position in the X direction.
高位側コマ48aと同様に、低位側コマ48bは取付軸46bを有する。低位側コマ48bは、コマ固定ナット47bにより低位側支持板44bに固定される。
負荷時タップ切換器LTCが低位側極限タップ位置に到達するとき、低位側コマ48bは-X方向に移動して低位側アーム60bのコマ受け部68bに当接する。この当接が実現するように、低位側コマ48bがX方向の所定位置に配置される。 Like the high-side piece 48a, the low-side piece 48b has a mounting shaft 46b. The lower piece 48b is fixed to the lower support plate 44b by a piece fixing nut 47b.
When the load tap changer LTC reaches the low-side limit tap position, the low-side top 48b moves in the -X direction and contacts the top receiving portion 68b of the low-side arm 60b. The lower-side piece 48b is arranged at a predetermined position in the X direction so that this contact is realized.
負荷時タップ切換器LTCが低位側極限タップ位置に到達するとき、低位側コマ48bは-X方向に移動して低位側アーム60bのコマ受け部68bに当接する。この当接が実現するように、低位側コマ48bがX方向の所定位置に配置される。 Like the high-
When the load tap changer LTC reaches the low-side limit tap position, the low-
図3に示されるように、回転停止ユニット15aは、極限タップ位置に対応するX方向の位置でコマ48a,48bに当接し、主動軸10の回転を停止させることが可能である。回転停止ユニット15aは、アームスライダ部50と、回転停止機構15bと、を有する。
As shown in FIG. 3, the rotation stop unit 15a can stop the rotation of the driving shaft 10 by contacting the tops 48a and 48b at a position in the X direction corresponding to the extreme tap position. The rotation stop unit 15a has an arm slider section 50 and a rotation stop mechanism 15b.
図6は、アームスライダ部の斜視図である。アームスライダ部50は、基板52と、スライダ56と、高位側アーム60aと、低位側アーム60bと、を有する。
基板52は、送りねじナット部40の-Y方向に配置される。基板52は、XY平面と平行に配置される。基板52は、X方向を長手方向とする長板状に形成される。 FIG. 6 is a perspective view of the arm slider portion. Thearm slider unit 50 includes a substrate 52, a slider 56, a high-ranking arm 60a, and a low-ranking arm 60b.
Theboard 52 is arranged in the −Y direction of the feed screw nut portion 40. The substrate 52 is arranged parallel to the XY plane. The substrate 52 is formed in a long plate shape whose longitudinal direction is the X direction.
基板52は、送りねじナット部40の-Y方向に配置される。基板52は、XY平面と平行に配置される。基板52は、X方向を長手方向とする長板状に形成される。 FIG. 6 is a perspective view of the arm slider portion. The
The
スライダ56は、基板52の+Z方向の表面上に配置される。スライダ56は、基板52のX方向の中央部に配置される。基板52のX方向の中央部には、基板52をZ方向に貫通するスリット53が形成される。スリット53は、Y方向に伸びる長円形状に形成される。
The slider 56 is arranged on the surface of the substrate 52 in the +Z direction. The slider 56 is arranged at the center of the substrate 52 in the X direction. A slit 53 penetrating the substrate 52 in the Z direction is formed at the center of the substrate 52 in the X direction. The slit 53 is formed in an oval shape extending in the Y direction.
図7は、図6のF7-F7線におけるアームスライダ部の断面図である。スライダ56は、一対のガイドピン57,57を有する。一対のガイドピン57,57は、Y方向に離間して配置される。一対のガイドピン57,57は、基板52の-Z方向からスリット53を貫通してスライダ56に固定される。一対のガイドピン57,57がスリット53に沿って移動することにより、スライダ56はY方向に移動可能である。スライダ56は、スライダ56をZ方向に貫通するスライダ孔59を有する。スライダ孔59は、Y方向に伸びる長方形状に形成される。スライダ孔59には、後述される中継アーム70の第1突起72が挿入される。
FIG. 7 is a cross-sectional view of the arm slider portion taken along the line F7-F7 in FIG. The slider 56 has a pair of guide pins 57, 57. The pair of guide pins 57, 57 are arranged apart from each other in the Y direction. The pair of guide pins 57, 57 penetrates the slit 53 from the −Z direction of the substrate 52 and is fixed to the slider 56. By moving the pair of guide pins 57, 57 along the slit 53, the slider 56 can move in the Y direction. The slider 56 has a slider hole 59 that penetrates the slider 56 in the Z direction. The slider hole 59 is formed in a rectangular shape extending in the Y direction. A first protrusion 72 of a relay arm 70, which will be described later, is inserted into the slider hole 59.
高位側アーム60aは、図6に示されるように、基板52およびスライダ56の+Z方向に配置される。高位側アーム60aは、Z方向から見てL字状に形成される。高位側アーム60aは、X方向に伸びる長アーム62aと、Y方向に伸びる短アーム67aと、を有する。長アーム62aは、基板52の-Y方向の端辺に沿って配置される。短アーム67aは、基板52の+X方向の端辺に沿って配置される。長アーム62aの+X方向の端部および短アーム67aの-Y方向の端部が、高位側アーム60aの屈曲部である。高位側アーム60aの屈曲部には、アームピン61が配置される。アームピン61aは、基板52の+X方向および-Y方向の角部に固定される。高位側アーム60aは、Z方向に伸びるアームピン61aを中心に回動可能である。
The high arm 60a is arranged in the +Z direction of the substrate 52 and the slider 56, as shown in FIG. The higher arm 60a is formed in an L shape when viewed from the Z direction. The higher arm 60a has a long arm 62a extending in the X direction and a short arm 67a extending in the Y direction. The long arm 62a is arranged along the edge of the substrate 52 in the −Y direction. The short arm 67a is arranged along the edge of the substrate 52 in the +X direction. The +X direction end of the long arm 62a and the −Y direction end of the short arm 67a are the bent portions of the high-order side arm 60a. An arm pin 61 is arranged at the bent portion of the higher arm 60a. The arm pins 61a are fixed to the corners of the substrate 52 in the +X direction and the −Y direction. The higher arm 60a is rotatable about an arm pin 61a extending in the Z direction.
長アーム62aの-X方向の端部には、長アーム62aをZ方向に貫通するアーム孔63aが形成される。アーム孔63aは、X方向に伸びる長円形状に形成される。図7に示されるように、スライダ56の+Z方向には、スライダピン58が配置される。スライダピン58は、Z方向と平行に配置される。スライダピン58は、スライダ56の-Y方向のガイドピン57に固定される。スライダピン58は、長アーム62aのアーム孔63aの内側に配置される。
An arm hole 63a penetrating the long arm 62a in the Z direction is formed at the −X direction end of the long arm 62a. The arm hole 63a is formed in an oval shape extending in the X direction. As shown in FIG. 7, a slider pin 58 is arranged in the +Z direction of the slider 56. The slider pin 58 is arranged parallel to the Z direction. The slider pin 58 is fixed to the −Y direction guide pin 57 of the slider 56. The slider pin 58 is arranged inside the arm hole 63a of the long arm 62a.
図6に示されるように、短アーム67aの+Y方向の端部には、コマ受け部68aが形成される。コマ受け部68aは、短アーム67aの+Y方向および-X方向の角部に形成された矩形状の切り欠きである。コマ受け部68aの-X方向の表面は、YZ平面と平行であり、高位側コマ48aの+X方向の表面と当接する。
As shown in FIG. 6, a piece receiving portion 68a is formed at the end of the short arm 67a in the +Y direction. The frame receiving portion 68a is a rectangular notch formed at a corner of the short arm 67a in the +Y direction and the −X direction. The surface of the top receiving portion 68a in the −X direction is parallel to the YZ plane and abuts on the surface of the high-side piece 48a in the +X direction.
高位側コマ48aは、コマ受け部68aを+X方向に押す。高位側アーム60aは、アームピン61aを中心に、-Z方向に向かって右回りに回動する。高位側アーム60aは、アーム孔63aに配置されたスライダピン58を+Y方向に押す。これにより、スライダ56が+Y方向に移動する。ここで、長アーム62aのX方向の長さは、短アーム67aのY方向の長さより長い。アーム孔63aの+Y方向への移動量は、コマ受け部68aの+X方向への移動量より大きい。これにより、スライダ56の+Y方向への移動量が、高位側コマの+X方向への移動量に対して増幅される。
▽The top frame 48a pushes the frame receiving portion 68a in the +X direction. The higher arm 60a rotates clockwise around the arm pin 61a in the -Z direction. The higher arm 60a pushes the slider pin 58 arranged in the arm hole 63a in the +Y direction. As a result, the slider 56 moves in the +Y direction. Here, the length of the long arm 62a in the X direction is longer than the length of the short arm 67a in the Y direction. The amount of movement of the arm hole 63a in the +Y direction is larger than the amount of movement of the top receiving portion 68a in the +X direction. As a result, the amount of movement of the slider 56 in the +Y direction is amplified with respect to the amount of movement of the high-side frame in the +X direction.
低位側アーム60bは、基板52のX方向の中心に配置されるYZ平面を対称面として、高位側アーム60aに対して略面対称に形成される。ただし、スライダピン58の位置において、高位側アーム60aの-X方向の端部が+Z方向にオフセットして配置され、低位側アーム60bの+X方向の端部が-Z方向にオフセットして配置される。これにより、高位側アーム60aと低位側アーム60bとの干渉が回避される。
The lower arm 60b is formed substantially symmetrically with respect to the upper arm 60a with the YZ plane located at the center of the substrate 52 in the X direction as a plane of symmetry. However, at the position of the slider pin 58, the end in the −X direction of the high-side arm 60a is arranged offset in the +Z direction, and the end in the +X direction of the low-side arm 60b is arranged offset in the −Z direction. It This avoids interference between the high-ranking arm 60a and the low-ranking arm 60b.
低位側コマ48bは、低位側アーム60bのコマ受け部68bを-X方向に押す。低位側アーム60bは、アームピン61bを中心に、-Z方向に向かって左回りに回動する。低位側アーム60bは、アーム孔63b(図7参照)に配置されたスライダピン58を+Y方向に押す。これにより、スライダ56が+Y方向に移動する。
The lower-side piece 48b pushes the piece receiving portion 68b of the lower-side arm 60b in the -X direction. The lower arm 60b rotates counterclockwise in the −Z direction about the arm pin 61b. The lower arm 60b pushes the slider pin 58 arranged in the arm hole 63b (see FIG. 7) in the +Y direction. As a result, the slider 56 moves in the +Y direction.
図3に示されるように、回転停止機構15bは、スライダ56のスライドにより主動軸10の回転を停止させることが可能である。回転停止機構15bは、ストッパ保持機構15cと、ストッパ100と、ストッパ受け110と、を有する。ストッパ保持機構15cは、ストッパ100を退避位置に保持し、スライダ56のスライドにより前記保持を解除することが可能である。ストッパ保持機構15cは、中継アーム70と、第1アーム80と、第2アーム90と、を有する。
As shown in FIG. 3, the rotation stop mechanism 15b can stop the rotation of the driving shaft 10 by sliding the slider 56. The rotation stop mechanism 15b has a stopper holding mechanism 15c, a stopper 100, and a stopper receiver 110. The stopper holding mechanism 15c can hold the stopper 100 in the retracted position and release the holding by sliding the slider 56. The stopper holding mechanism 15c has a relay arm 70, a first arm 80, and a second arm 90.
中継アーム70は、図6に示されるように、アームスライダ部50の+Z方向に配置される。中継アーム70は、Z方向に伸びる長板状に形成され、YZ平面と平行に配置される。中継アーム70のZ方向の中心より-Z方向に、アームピン71が配置される。中継アーム70は、X方向に伸びるアームピン71を中心に回動可能である。中継アーム70は、-Z方向の端部に第1突起72を有する。第1突起72は、スライダ56に形成されたスライダ孔59に挿入される。中継アーム70は、+Z方向の端部に第2突起78を有する。第2突起78は、後述される第1アーム80の第1アーム孔83に挿入される。
The relay arm 70 is arranged in the +Z direction of the arm slider section 50, as shown in FIG. The relay arm 70 is formed in a long plate shape extending in the Z direction, and is arranged parallel to the YZ plane. An arm pin 71 is arranged in the −Z direction from the center of the relay arm 70 in the Z direction. The relay arm 70 is rotatable around an arm pin 71 extending in the X direction. The relay arm 70 has a first protrusion 72 at the end in the −Z direction. The first protrusion 72 is inserted into a slider hole 59 formed in the slider 56. The relay arm 70 has a second protrusion 78 at the end in the +Z direction. The second protrusion 78 is inserted into the first arm hole 83 of the first arm 80 described later.
スライダ56が+Y方向に移動すると、スライダ孔59が第1突起72を+Y方向に押す。中継アーム70は、アームピン71を中心に、-X方向に向かって左回りに回動する。第2突起78は、第1アーム孔83を-Y方向に押す。ここで、アームピン71から第2突起78までの長さは、アームピン71から第1突起72までの長さより長い。第2突起78の-Y方向への移動量は、第1突起72の+Y方向への移動量より大きい。これにより、第1アーム80の-Y方向への移動量が、スライダ56の+Y方向への移動量に対して増幅される。
When the slider 56 moves in the +Y direction, the slider hole 59 pushes the first protrusion 72 in the +Y direction. The relay arm 70 rotates counterclockwise around the arm pin 71 in the −X direction. The second protrusion 78 pushes the first arm hole 83 in the −Y direction. Here, the length from the arm pin 71 to the second protrusion 78 is longer than the length from the arm pin 71 to the first protrusion 72. The amount of movement of the second protrusion 78 in the −Y direction is larger than the amount of movement of the first protrusion 72 in the +Y direction. As a result, the amount of movement of the first arm 80 in the −Y direction is amplified with respect to the amount of movement of the slider 56 in the +Y direction.
第1アーム80は、図6に示されるように、中継アーム70の+Z方向に配置される。第1アーム80は、Z方向から見てL字状に形成される。第1アーム80は、X方向に伸びる短アーム82と、Y方向に伸びる長アーム87と、を有する。短アーム82の+X方向の端部および長アーム87の-Y方向の端部が、第1アーム80の屈曲部である。第1アーム80の屈曲部には、アームピン81が配置される。第1アーム80は、Z方向に伸びるアームピン81を中心に回動可能である。
The first arm 80 is arranged in the +Z direction of the relay arm 70, as shown in FIG. The first arm 80 is formed in an L shape when viewed from the Z direction. The first arm 80 has a short arm 82 extending in the X direction and a long arm 87 extending in the Y direction. The +X direction end of the short arm 82 and the −Y direction end of the long arm 87 are the bent portions of the first arm 80. An arm pin 81 is arranged at the bent portion of the first arm 80. The first arm 80 is rotatable around an arm pin 81 extending in the Z direction.
短アーム82の-X方向の端部には、短アーム82をZ方向に貫通する第1アーム孔83が形成される。第1アーム孔83は、Y方向に伸びる長方形状に形成される。第1アーム孔83には、中継アーム70の第2突起78が挿入される。
長アーム87の+Y方向の端部には、係合凸部88が形成される。係合凸部88は、+Y方向に向かって先細りの形状に形成される。係合凸部88は、長アーム87の+X方向および+Y方向の角部を、-X方向および+Y方向の角部より+Y方向に延長して形成される。係合凸部88の+Y方向の端辺は、X方向に対して傾斜する直線である。係合凸部88は、後述される第2アーム90の係合凹部93と係合する。 Afirst arm hole 83 that penetrates the short arm 82 in the Z direction is formed at the −X direction end of the short arm 82. The first arm hole 83 is formed in a rectangular shape extending in the Y direction. The second protrusion 78 of the relay arm 70 is inserted into the first arm hole 83.
Anengagement protrusion 88 is formed at the end of the long arm 87 in the +Y direction. The engagement protrusion 88 is formed in a taper shape in the +Y direction. The engagement protrusion 88 is formed by extending the corners of the long arm 87 in the +X direction and the +Y direction in the +Y direction from the corners of the −X direction and the +Y direction. An end side of the engagement protrusion 88 in the +Y direction is a straight line inclined with respect to the X direction. The engagement protrusion 88 engages with an engagement recess 93 of the second arm 90 described later.
長アーム87の+Y方向の端部には、係合凸部88が形成される。係合凸部88は、+Y方向に向かって先細りの形状に形成される。係合凸部88は、長アーム87の+X方向および+Y方向の角部を、-X方向および+Y方向の角部より+Y方向に延長して形成される。係合凸部88の+Y方向の端辺は、X方向に対して傾斜する直線である。係合凸部88は、後述される第2アーム90の係合凹部93と係合する。 A
An
長アーム87の+X方向には、弾性部材であるばね84が配置される。ばね84は、X方向に沿って配置される。ばね84の-X方向の端部は、長アーム87に接続される。ばね84は、長アーム87を+X方向に付勢する。ばね84は、第1アーム80の係合凸部88を、第2アーム90の係合凹部93と係合した状態に保持する。
A spring 84, which is an elastic member, is arranged in the +X direction of the long arm 87. The spring 84 is arranged along the X direction. The −X direction end of the spring 84 is connected to the long arm 87. The spring 84 biases the long arm 87 in the +X direction. The spring 84 holds the engagement protrusion 88 of the first arm 80 in a state of being engaged with the engagement recess 93 of the second arm 90.
中継アーム70の第2突起78が-Y方向に移動すると、第2突起78が第1アーム孔83を-Y方向に押す。第1アーム80は、アームピン81を中心に、-Z方向に向かって左回りに回動する。第1アーム80は、ばね84の付勢力に抗って回動する。係合凸部88は、-X方向に移動して、第2アーム90の係合凹部93から離脱する。これにより、係合凸部88と係合凹部93との係合が解除される。
When the second protrusion 78 of the relay arm 70 moves in the −Y direction, the second protrusion 78 pushes the first arm hole 83 in the −Y direction. The first arm 80 rotates counterclockwise around the arm pin 81 in the −Z direction. The first arm 80 rotates against the biasing force of the spring 84. The engagement protrusion 88 moves in the −X direction and is disengaged from the engagement recess 93 of the second arm 90. As a result, the engagement between the engagement protrusion 88 and the engagement recess 93 is released.
第2アーム90は、図3に示されるように、第1アーム80の+X方向に配置される。第2アーム90は、X方向に伸びる長板状に形成され、XY平面と平行に配置される。第2アーム90のX方向の中央部には、アームピン91が配置される。第2アーム90は、Z方向に伸びるアームピン91を中心に回動可能である。
The second arm 90 is arranged in the +X direction of the first arm 80, as shown in FIG. The second arm 90 is formed in a long plate shape extending in the X direction, and is arranged parallel to the XY plane. An arm pin 91 is arranged at the center of the second arm 90 in the X direction. The second arm 90 is rotatable around an arm pin 91 extending in the Z direction.
第2アーム90の-X方向の端部には、係合凹部93が形成される。係合凹部93は、第1アーム80の係合凸部88の外形に倣って、係合凸部88を覆うように形成される。第2アーム90の-X方向の先端部は、係合凸部88の+Y方向の先端部より、-X方向および-Y方向に配置される。これにより、係合凸部88と係合凹部93とが係合状態に保持される。
第2アーム90の+X方向の端部には、切り欠き98が形成される。切り欠き98は、第2アーム90のY方向の中央に、矩形状に形成される。切り欠き98は、ストッパ100のストッパピン103と係合する。 An engagingrecess 93 is formed at the −X direction end of the second arm 90. The engagement concave portion 93 is formed so as to cover the engagement convex portion 88 following the outer shape of the engagement convex portion 88 of the first arm 80. The −X direction tip of the second arm 90 is arranged in the −X direction and the −Y direction with respect to the +Y direction tip of the engagement protrusion 88. As a result, the engagement protrusion 88 and the engagement recess 93 are held in the engaged state.
Anotch 98 is formed at the +X direction end of the second arm 90. The notch 98 is formed in a rectangular shape at the center of the second arm 90 in the Y direction. The notch 98 engages with the stopper pin 103 of the stopper 100.
第2アーム90の+X方向の端部には、切り欠き98が形成される。切り欠き98は、第2アーム90のY方向の中央に、矩形状に形成される。切り欠き98は、ストッパ100のストッパピン103と係合する。 An engaging
A
ストッパ100は、図3に示されるように、第2アーム90の+X方向、+Y方向および+Z方向に配置される。ストッパ100は、主動軸10と同じX方向の位置に配置される。ストッパ100は、Y方向に伸びる直方体状に形成される。図2に示されるように、ストッパ100の+X方向および-X方向には、Y方向に伸びるストッパガイド106が配置される。ストッパ100は、ストッパガイド106に沿ってY方向に移動可能である。ストッパ100の+Z方向の面には、復帰レバー109が立設される。後述されるように、復帰レバー109は、電動操作装置1を平常動作可能な状態に復帰させる作業に使用される。
The stopper 100 is arranged in the +X direction, the +Y direction, and the +Z direction of the second arm 90, as shown in FIG. The stopper 100 is arranged at the same position in the X direction as the driving shaft 10. The stopper 100 is formed in a rectangular parallelepiped shape extending in the Y direction. As shown in FIG. 2, a stopper guide 106 extending in the Y direction is arranged in the +X direction and the −X direction of the stopper 100. The stopper 100 is movable in the Y direction along the stopper guide 106. A return lever 109 is erected on the surface of the stopper 100 in the +Z direction. As will be described later, the return lever 109 is used for returning the electric operating device 1 to a state in which it can be normally operated.
図3に示されるように、ストッパ100の-Y方向の端部には、ストッパピン103が設置される。ストッパピン103は、ストッパ100の-Z方向に突出する。ストッパピン103は、第2アーム90の切り欠き98に係合する。ストッパ100の-Z方向には、弾性部材であるばね104が配置される。ばね104は、Y方向に沿って伸びる。ばね104の-Y方向の端部は、ストッパピン103に接続される。ばね104は、ストッパピン103およびストッパ100を+Y方向に付勢する。
As shown in FIG. 3, a stopper pin 103 is installed at the end of the stopper 100 in the −Y direction. The stopper pin 103 projects in the −Z direction of the stopper 100. The stopper pin 103 engages with the notch 98 of the second arm 90. A spring 104, which is an elastic member, is arranged in the −Z direction of the stopper 100. The spring 104 extends along the Y direction. The −Y direction end of the spring 104 is connected to the stopper pin 103. The spring 104 biases the stopper pin 103 and the stopper 100 in the +Y direction.
ストッパ100の+Y方向の端部付近には、係合凹部108が形成される。係合凹部108は、ストッパ100のX方向の両端部から中央部に向かって窪む。係合凹部108の+Y方向には、ストッパ100の+X方向および-X方向に突出する凸部が形成される。
An engagement recess 108 is formed near the end of the stopper 100 in the +Y direction. The engagement recess 108 is recessed from both ends of the stopper 100 in the X direction toward the center. In the +Y direction of the engagement recess 108, a protrusion protruding in the +X direction and the −X direction of the stopper 100 is formed.
ストッパ受け110は、主動軸10に装着される。ストッパ受け110は、ストッパ100と同じZ方向の位置に配置される。ストッパ受け110は、円盤状に形成され、外周上の2か所に切り欠き112を有する。ストッパ受け110の周方向における切り欠き112の幅は、ストッパ100のX方向の幅より大きい。ストッパ受け110の径方向における切り欠き112の外側端部には、切り欠き112の開口幅を周方向に縮小するように係合凸部113が形成される。ストッパ受け110の径方向における係合凸部113の内側には、切り欠き112を周方向に拡大するように凹部が形成される。
The stopper receiver 110 is attached to the drive shaft 10. The stopper receiver 110 is arranged at the same position in the Z direction as the stopper 100. The stopper receiver 110 is formed in a disk shape and has notches 112 at two locations on the outer circumference. The width of the notch 112 in the circumferential direction of the stopper receiver 110 is larger than the width of the stopper 100 in the X direction. Engagement protrusions 113 are formed on the outer ends of the notches 112 in the radial direction of the stopper receiver 110 so as to reduce the opening width of the notches 112 in the circumferential direction. A recess is formed inside the engagement protrusion 113 in the radial direction of the stopper receiver 110 so as to enlarge the notch 112 in the circumferential direction.
第1アーム80の係合凸部88と第2アーム90の係合凹部93とが係合した状態では、第2アーム90の切り欠き98がストッパピン103を-Y方向に保持する。第2アーム90は、ばね104の付勢力に抗って、ストッパピン103を-Y方向に保持する。これにより、ストッパ100は、ストッパ受け110から-Y方向に退避した位置に保持される。ストッパ100は、主動軸10の回転を許容する退避位置に配置される。
In the state where the engaging protrusion 88 of the first arm 80 and the engaging recess 93 of the second arm 90 are engaged, the notch 98 of the second arm 90 holds the stopper pin 103 in the −Y direction. The second arm 90 holds the stopper pin 103 in the −Y direction against the biasing force of the spring 104. As a result, the stopper 100 is held at the position retracted from the stopper receiver 110 in the −Y direction. The stopper 100 is arranged at a retracted position that allows the rotation of the driving shaft 10.
係合凸部88が-X方向に移動して係合凹部93から離脱すると、係合状態が解除される。これにより、第2アーム90が回動可能な状態になる。第2アーム90の切り欠き98は、ストッパピン103と係合している。ストッパピン103は、ばね104により+Y方向に付勢される。第2アーム90は、ばね104の付勢力により、アームピン91を中心に、-Z方向に向かって左回りに回動する。ストッパピン103およびストッパ100は、ばね104の付勢力により、+Y方向に移動する。ストッパ受け110は、主動軸10とともに回転している。ストッパ100は、ストッパ受け110の切り欠き112に進入する。ストッパ100の係合凹部108が、ストッパ受け110の係合凸部113に係合する。ストッパ100は、主動軸10の回転を停止させる停止位置に配置される。これにより、ストッパ受け110および主動軸10の回転が停止する。
The engagement state is released when the engagement protrusion 88 moves in the -X direction and separates from the engagement recess 93. As a result, the second arm 90 becomes rotatable. The notch 98 of the second arm 90 is engaged with the stopper pin 103. The stopper pin 103 is biased in the +Y direction by the spring 104. The second arm 90 is rotated counterclockwise in the −Z direction about the arm pin 91 by the urging force of the spring 104. The stopper pin 103 and the stopper 100 move in the +Y direction by the biasing force of the spring 104. The stopper receiver 110 rotates together with the driving shaft 10. The stopper 100 enters the notch 112 of the stopper receiver 110. The engagement recess 108 of the stopper 100 engages with the engagement protrusion 113 of the stopper receiver 110. The stopper 100 is arranged at a stop position where the rotation of the drive shaft 10 is stopped. As a result, the rotation of the stopper receiver 110 and the drive shaft 10 is stopped.
極限タップ制限装置15の動作について説明する。ここでは、極限タップ制限装置15が負荷時タップ切換器LTCを高位側極限タップ位置において停止させる動作を例にして説明する。
The operation of the limit tap limiting device 15 will be described. Here, an operation will be described as an example in which the limit tap limiting device 15 stops the load tap changer LTC at the high-side limit tap position.
図1に示される電動操作装置1において、制御基板部3がモータ5を回転させる。制御基板部3は、負荷時タップ切換器LTCのタップ位置が高位側にシフトする方向に、モータ5を回転させる。モータ5のトルクは、図2に示されるモータプーリ6、第1タイミングベルト8および主動軸第1プーリ13を介して、トルクリミッタ12の外周側(入力側)に伝達される。トルクリミッタ12の内周側(出力側)には主動軸10が接続され、主動軸10に負荷時タップ切換器LTCが接続される。負荷時タップ切換器LTCの負荷トルクは、トルクリミッタの制限トルク(所定トルク)より小さい。そのため、トルクリミッタ12を介してトルクが伝達され、主動軸10が回転する。
In the electric operating device 1 shown in FIG. 1, the control board unit 3 rotates the motor 5. The control board unit 3 rotates the motor 5 in a direction in which the tap position of the tap changer LTC under load shifts to the higher position side. The torque of the motor 5 is transmitted to the outer peripheral side (input side) of the torque limiter 12 via the motor pulley 6, the first timing belt 8 and the drive shaft first pulley 13 shown in FIG. The main drive shaft 10 is connected to the inner peripheral side (output side) of the torque limiter 12, and the load tap changer LTC is connected to the main drive shaft 10. The load torque of the load tap changer LTC is smaller than the limit torque (predetermined torque) of the torque limiter. Therefore, torque is transmitted through the torque limiter 12, and the drive shaft 10 rotates.
主動軸10の回転により、図1に示される負荷時タップ切換器LTCのタップ位置が高位側にシフトする。例えば、主動軸10が33回転すると、負荷時タップ切換器LTCのタップ位置が1段階シフトする。制御基板部3は、回転検出器18により検出した主動軸10の回転位置に基づいて、負荷時タップ切換器LTCのタップ位置を把握する。制御基板部3は、負荷時タップ切換器LTCのタップ位置が1段階シフトする度に、モータ5を停止させる。負荷時タップ切換器LTCが高位側極限タップ位置に到達したとき、制御基板部3は電気信号を出力してモータ5を停止させる。すなわち、電動操作装置1は、電気的に主動軸10の回転を停止させる。
極限タップ制限装置15は、電気的な主動軸10の回転停止が機能しないとき、機械的に主動軸10の回転を停止させる。 The rotation of thedrive shaft 10 shifts the tap position of the load tap changer LTC shown in FIG. 1 to the higher position. For example, when the drive shaft 10 rotates 33 times, the tap position of the tap changer LTC under load is shifted by one step. The control board unit 3 grasps the tap position of the load tap changer LTC based on the rotational position of the drive shaft 10 detected by the rotation detector 18. The control board unit 3 stops the motor 5 every time the tap position of the load tap changer LTC shifts by one step. When the tap changer LTC under load reaches the high-side limit tap position, the control board unit 3 outputs an electric signal to stop the motor 5. That is, the electric operating device 1 electrically stops the rotation of the driving shaft 10.
The limittap limiting device 15 mechanically stops the rotation of the driving shaft 10 when the rotation stop of the electric driving shaft 10 does not function electrically.
極限タップ制限装置15は、電気的な主動軸10の回転停止が機能しないとき、機械的に主動軸10の回転を停止させる。 The rotation of the
The limit
図3に示されるように、主動軸10の回転により、主動軸第2プーリ23、第2タイミングベルト24およびウォームプーリ25を介して、ウォーム軸28が回転する。ウォーム軸28の回転により、ウォームホイール34を介して、送りねじ軸32が回転する。例えば、主動軸10が33回転すると、送りねじ軸32が1回転する。送りねじ軸32の回転により、送りねじナット42がX方向に移動する。タップ位置を高位側にシフトさせる方向に主動軸10が回転するとき、送りねじナット42は+X方向に移動する。
As shown in FIG. 3, the rotation of the driving shaft 10 causes the worm shaft 28 to rotate via the driving shaft second pulley 23, the second timing belt 24, and the worm pulley 25. The rotation of the worm shaft 28 causes the feed screw shaft 32 to rotate via the worm wheel 34. For example, when the driving shaft 10 rotates 33 times, the feed screw shaft 32 rotates once. The rotation of the feed screw shaft 32 causes the feed screw nut 42 to move in the X direction. When the driving shaft 10 rotates in the direction of shifting the tap position to the higher position, the feed screw nut 42 moves in the +X direction.
図8は、実施形態の極限タップ制限装置の第1動作説明図である。送りねじナット42に連結された高位側コマ48aは、送りねじナット42と共に+X方向に移動する。負荷時タップ切換器LTCが高位側極限タップ位置に到達するとき、高位側コマ48aは、高位側アーム60aのコマ受け部68aに当接する。負荷時タップ切換器LTCが高位側極限タップ位置に到達しても、電気的な主動軸10の回転停止が機能しないとき、主動軸10は回転を続ける。高位側コマ48aは、さらに+X方向に移動し、コマ受け部68aを+X方向に押す。高位側アーム60aは、アームピン61aを中心に、-Z方向に向かって右回りに回動する。高位側アーム60aは、スライダピン58を+Y方向に押す。これにより、スライダ56が+Y方向に移動する。
FIG. 8 is a first operation explanatory diagram of the extreme tap limiting device of the embodiment. The high-side piece 48 a connected to the feed screw nut 42 moves in the +X direction together with the feed screw nut 42. When the load tap changer LTC reaches the high-side limit tap position, the high-side piece 48a comes into contact with the piece receiving portion 68a of the high-side arm 60a. Even when the load tap changer LTC reaches the high-side limit tap position, when the electric rotation stop of the electric drive shaft 10 does not function, the drive shaft 10 continues to rotate. The high-order side piece 48a further moves in the +X direction and pushes the piece receiving portion 68a in the +X direction. The higher arm 60a rotates clockwise around the arm pin 61a in the -Z direction. The higher arm 60a pushes the slider pin 58 in the +Y direction. As a result, the slider 56 moves in the +Y direction.
スライダ56が+Y方向に移動すると、中継アーム70は、アームピン71を中心に、-X方向に向かって左回りに回動する。中継アーム70に連動して、第1アーム80は、アームピン81を中心に、-Z方向に向かって左回りに回動する。第1アーム80の係合凸部88は、ばね84の付勢力により、第2アーム90の係合凹部93と係合した状態に保持されている。第1アーム80は、ばね84の付勢力に抗って回動する。
When the slider 56 moves in the +Y direction, the relay arm 70 rotates counterclockwise around the arm pin 71 in the −X direction. Interlocking with the relay arm 70, the first arm 80 rotates counterclockwise around the arm pin 81 in the −Z direction. The engagement protrusion 88 of the first arm 80 is held in a state of being engaged with the engagement recess 93 of the second arm 90 by the biasing force of the spring 84. The first arm 80 rotates against the biasing force of the spring 84.
図9は、実施形態の極限タップ制限装置の第2動作説明図である。第1アーム80の係合凸部88は、第2アーム90の係合凹部93と係合している。第2アーム90の切り欠き98は、ストッパ100のストッパピン103と係合している。ストッパ100は、ストッパ受け110から-Y方向に退避した退避位置に保持される。
第1アーム80が回動すると、係合凸部88は-X方向に移動する。図9は、係合凸部88が係合凹部93から離脱する直前の状態を示している。 FIG. 9 is a second operation explanatory diagram of the extreme tap limiting device according to the embodiment. Theengagement protrusion 88 of the first arm 80 engages with the engagement recess 93 of the second arm 90. The notch 98 of the second arm 90 engages with the stopper pin 103 of the stopper 100. The stopper 100 is held at the retracted position retracted from the stopper receiver 110 in the −Y direction.
When thefirst arm 80 rotates, the engagement protrusion 88 moves in the −X direction. FIG. 9 shows a state immediately before the engaging projection 88 is disengaged from the engaging recess 93.
第1アーム80が回動すると、係合凸部88は-X方向に移動する。図9は、係合凸部88が係合凹部93から離脱する直前の状態を示している。 FIG. 9 is a second operation explanatory diagram of the extreme tap limiting device according to the embodiment. The
When the
図10は、実施形態の極限タップ制限装置の第3動作説明図である。第1アーム80がさらに回動すると、第1アーム80の係合凸部88が第2アーム90の係合凹部93から離脱する。これにより、係合凸部88と係合凹部93との係合が解除されて、第2アーム90が回動可能な状態になる。第2アーム90の切り欠き98は、ストッパピン103と係合している。ストッパピン103は、ばね104により+Y方向に付勢される。第2アーム90は、ばね104の付勢力により、アームピン91を中心に、-Z方向に向かって左回りに回動する。ストッパピン103およびストッパ100は、ばね104の付勢力により、+Y方向に移動する。ストッパ受け110は、主動軸10とともに回転している。ストッパ100は、ストッパ受け110の切り欠き112に進入する。ストッパ100の係合凹部108が、ストッパ受け110の係合凸部113と係合する。ストッパ100は、主動軸10の回転を停止させる停止位置に配置される。以上により、極限タップ制限装置15は、機械的に主動軸10の回転を停止させる。
FIG. 10 is a third operation explanatory diagram of the extreme tap limiting device of the embodiment. When the first arm 80 further rotates, the engagement protrusion 88 of the first arm 80 separates from the engagement recess 93 of the second arm 90. As a result, the engagement between the engagement protrusion 88 and the engagement recess 93 is released, and the second arm 90 becomes rotatable. The notch 98 of the second arm 90 is engaged with the stopper pin 103. The stopper pin 103 is biased in the +Y direction by the spring 104. The second arm 90 is rotated counterclockwise in the −Z direction about the arm pin 91 by the urging force of the spring 104. The stopper pin 103 and the stopper 100 move in the +Y direction by the biasing force of the spring 104. The stopper receiver 110 rotates together with the driving shaft 10. The stopper 100 enters the notch 112 of the stopper receiver 110. The engaging recess 108 of the stopper 100 engages with the engaging protrusion 113 of the stopper receiver 110. The stopper 100 is arranged at a stop position where the rotation of the drive shaft 10 is stopped. As described above, the limit tap limiting device 15 mechanically stops the rotation of the driving shaft 10.
負荷時タップ切換器LTCが高位側極限タップ位置に到達してから、高位側極限タップ位置の1段階高位のタップ位置に到達する前に、主動軸10の回転が停止される。例えば、高位側極限タップ位置に到達してから、主動軸10が約5回転した時点で、主動軸10の回転が停止される。これにより、負荷時タップ切換器LTCが高位側極限タップ位置を越えたタップ位置に切り換えられることがない。
The rotation of the drive shaft 10 is stopped after the load tap changer LTC reaches the high-side limit tap position and before it reaches the high-side limit tap position one step higher. For example, the rotation of the driving shaft 10 is stopped when the driving shaft 10 rotates about 5 times after reaching the high-side limit tap position. This prevents the load tap changer LTC from being switched to a tap position beyond the high-side limit tap position.
極限タップ制限装置15が主動軸10の回転を停止させても、電動操作装置1のモータ5は回転を続ける。この場合でも、図2に示されるトルクリミッタ12が、モータ5から主動軸10へのトルク伝達を所定トルクに制限する。これにより、主動軸10の回転を停止させている極限タップ制限装置15に対して過大なトルクが作用するのを抑制できる。
The motor 5 of the electric operating device 1 continues to rotate even if the limit tap limiting device 15 stops the rotation of the driving shaft 10. Even in this case, the torque limiter 12 shown in FIG. 2 limits the torque transmission from the motor 5 to the drive shaft 10 to a predetermined torque. As a result, it is possible to suppress an excessive torque from acting on the limit tap limiting device 15 that stops the rotation of the driving shaft 10.
極限タップ制限装置15が機械的に主動軸10の回転を停止させた後に、電動操作装置1を平常動作可能な状態に復帰させる作業について説明する。
作業者が、図2に示される復帰レバー109を操作して、ストッパ100を-Y方向に移動させる。図9に示されるように、第2アーム90は、アームピン91を中心に、-Z方向に向かって右回りに回動する。作業者は、負荷時タップ切換器LTCのタップ位置が低位側にシフトする方向に、モータ5または手動により主動軸10を回転させる。これにより、高位側コマ48aが-X方向に移動して、高位側アーム60aのコマ受け部68aから離れる。高位側アーム60a、スライダ56、中継アーム70および第1アーム80は、回動または移動可能な状態になる。第1アーム80は、ばね84の付勢力により、アームピン81を中心に、-Z方向に向かって右回りに回動する。これにより、第1アーム80の係合凸部88が、第2アームの係合凹部93に係合する。ストッパ100は、ストッパ受け110から-Y方向に退避した退避位置に保持される。以上により、電動操作装置1が平常動作可能な状態に復帰する。 The work of returning theelectric operating device 1 to the normal operation state after the extreme tap limiting device 15 mechanically stops the rotation of the driving shaft 10 will be described.
The operator operates thereturn lever 109 shown in FIG. 2 to move the stopper 100 in the −Y direction. As shown in FIG. 9, the second arm 90 rotates clockwise around the arm pin 91 in the −Z direction. The operator rotates the driving shaft 10 by the motor 5 or manually in the direction in which the tap position of the load tap changer LTC shifts to the lower position side. As a result, the high position side piece 48a moves in the -X direction and separates from the piece receiving portion 68a of the high position side arm 60a. The high-order side arm 60a, the slider 56, the relay arm 70, and the first arm 80 are in a rotatable or movable state. The first arm 80 is rotated clockwise about the arm pin 81 in the −Z direction by the urging force of the spring 84. As a result, the engagement protrusion 88 of the first arm 80 engages with the engagement recess 93 of the second arm. The stopper 100 is held at the retracted position retracted from the stopper receiver 110 in the −Y direction. As described above, the electric operating device 1 returns to a state in which it can operate normally.
作業者が、図2に示される復帰レバー109を操作して、ストッパ100を-Y方向に移動させる。図9に示されるように、第2アーム90は、アームピン91を中心に、-Z方向に向かって右回りに回動する。作業者は、負荷時タップ切換器LTCのタップ位置が低位側にシフトする方向に、モータ5または手動により主動軸10を回転させる。これにより、高位側コマ48aが-X方向に移動して、高位側アーム60aのコマ受け部68aから離れる。高位側アーム60a、スライダ56、中継アーム70および第1アーム80は、回動または移動可能な状態になる。第1アーム80は、ばね84の付勢力により、アームピン81を中心に、-Z方向に向かって右回りに回動する。これにより、第1アーム80の係合凸部88が、第2アームの係合凹部93に係合する。ストッパ100は、ストッパ受け110から-Y方向に退避した退避位置に保持される。以上により、電動操作装置1が平常動作可能な状態に復帰する。 The work of returning the
The operator operates the
以上に詳述されたように、実施形態の極限タップ制限装置15は、送りねじ機構40aと、コマ48a,48bと、回転停止ユニット15aと、を持つ。送りねじ機構40aは、主動軸10に連動して回転する送りねじ軸32を含む。主動軸10は、モータ5から負荷時タップ切換器LTCへのトルク伝達経路に配置される。コマ48a,48bは、送りねじ機構40aにより送りねじ軸32の軸方向に移動する。回転停止ユニット15aは、負荷時タップ切換器LTCの極限タップ位置に対応する前記軸方向の位置でコマ48a,48bに当接し、主動軸10の回転を停止させることが可能である。
As described in detail above, the extreme tap limiting device 15 of the embodiment has the feed screw mechanism 40a, the tops 48a and 48b, and the rotation stop unit 15a. The feed screw mechanism 40 a includes a feed screw shaft 32 that rotates in conjunction with the driving shaft 10. The driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC. The tops 48a and 48b move in the axial direction of the feed screw shaft 32 by the feed screw mechanism 40a. The rotation stop unit 15a can stop the rotation of the driving shaft 10 by contacting the tops 48a and 48b at the axial position corresponding to the limit tap position of the load tap changer LTC.
送りねじ機構40aによりコマ48a,48bを移動させて主動軸10の回転を停止させるので、極限タップ制限装置15が小型化される。コマ48a,48bのX方向の位置の調整のみにより主動軸10の回転停止のタイミングが調整されるので、極限タップ制限装置15の調整作業が容易になる。
The feed screw mechanism 40a moves the tops 48a and 48b to stop the rotation of the driving shaft 10, so that the limit tap limiting device 15 is downsized. Since the timing for stopping the rotation of the drive shaft 10 is adjusted only by adjusting the positions of the tops 48a and 48b in the X direction, the adjustment work of the limit tap limiting device 15 is facilitated.
極限タップ制限装置15は、モータ5から主動軸10へのトルク伝達を制限するトルクリミッタ12を有する。
極限タップ位置において、極限タップ制限装置15は主動軸10の回転を停止させる。このとき、トルクリミッタ12はモータ5から主動軸10への伝達トルクを所定トルクに制限する。これにより、極限タップ制限装置15に過大なトルクが作用するのを抑制できる。なお、トルクリミッタ12が伝達トルクを制限するのは、極限タップ位置に到達してもモータ5が停止しない異常時のみである。 The limittap limiting device 15 has a torque limiter 12 that limits torque transmission from the motor 5 to the drive shaft 10.
At the extreme tap position, the extremetap limiting device 15 stops the rotation of the driving shaft 10. At this time, the torque limiter 12 limits the transmission torque from the motor 5 to the drive shaft 10 to a predetermined torque. As a result, it is possible to suppress an excessive torque from acting on the limit tap limiting device 15. The torque limiter 12 limits the transmission torque only when the motor 5 does not stop even when the limit tap position is reached.
極限タップ位置において、極限タップ制限装置15は主動軸10の回転を停止させる。このとき、トルクリミッタ12はモータ5から主動軸10への伝達トルクを所定トルクに制限する。これにより、極限タップ制限装置15に過大なトルクが作用するのを抑制できる。なお、トルクリミッタ12が伝達トルクを制限するのは、極限タップ位置に到達してもモータ5が停止しない異常時のみである。 The limit
At the extreme tap position, the extreme
これにより、極限タップ位置に到達してもモータ5が停止しない異常時に、モータ5から主動軸10へのトルク伝達を遮断することが不要になる。これに伴って、トルク伝達を遮断するための滑り機構が不要になる。モータ5の回転方向を反転させてタップ切換の進行方向を反転させる場合でも、主動軸10は滑り機構を介することなく回転する。そのため、滑り機構の摩擦による消耗を考慮する必要がない。また、滑り機構の摩擦バランスを考慮する必要がない。すなわち、滑り機構の部品の精度への特別な配慮が不要である。また、極限タップ制限装置15の組み立てが容易になる。したがって、極限タップ制限装置15の信頼性が向上し、製造コストが抑制される。
This makes it unnecessary to interrupt the torque transmission from the motor 5 to the drive shaft 10 when the motor 5 does not stop even when it reaches the extreme tap position. Along with this, a sliding mechanism for interrupting the torque transmission becomes unnecessary. Even when the rotation direction of the motor 5 is reversed and the advancing direction of tap switching is reversed, the drive shaft 10 rotates without a sliding mechanism. Therefore, it is not necessary to consider wear of the sliding mechanism due to friction. Further, it is not necessary to consider the friction balance of the sliding mechanism. That is, no special consideration is given to the accuracy of the parts of the sliding mechanism. Further, the limit tap limiting device 15 can be easily assembled. Therefore, the reliability of the limit tap limiting device 15 is improved, and the manufacturing cost is suppressed.
コマ48a,48bは、高位側コマ48aと、低位側コマ48bと、を有する。回転停止ユニット15aは、高位側アーム60aと、低位側アーム60bと、スライダ56と、回転停止機構15bと、を有する。高位側アーム60aは、負荷時タップ切換器LTCの高位側極限タップ位置に対応するX方向の位置で高位側コマ48aに当接し、回動可能である。低位側アーム60bは、負荷時タップ切換器LTCの低位側極限タップ位置に対応するX方向の位置で低位側コマ48bに当接し、回動可能である。スライダ56は、高位側アーム60aおよび低位側アーム60bに係合する。スライダ56は、高位側アーム60aおよび低位側アーム60bの回動に伴ってスライド可能である。回転停止機構15bは、スライダ56のスライドにより主動軸10の回転を停止させることが可能である。
これにより、高位側極限タップ位置および低位側極限タップ位置において、スライダ56および回転停止機構15bの動作が同じになる。したがって、極限タップ制限装置15の調整作業が容易になる。 The pieces 48a and 48b have a high-side piece 48a and a low-side piece 48b. The rotation stop unit 15a includes a high-side arm 60a, a low-side arm 60b, a slider 56, and a rotation stop mechanism 15b. The high-side arm 60a is rotatable by contacting with the high-side piece 48a at a position in the X direction corresponding to the high-side extreme tap position of the load tap changer LTC. The lower arm 60b contacts the lower piece 48b at a position in the X direction corresponding to the lower limit tap position of the load tap changer LTC, and is rotatable. The slider 56 engages with the higher arm 60a and the lower arm 60b. The slider 56 is slidable with the rotation of the high-side arm 60a and the low-side arm 60b. The rotation stop mechanism 15b can stop the rotation of the driving shaft 10 by sliding the slider 56.
As a result, the operations of theslider 56 and the rotation stop mechanism 15b become the same at the high-side extreme tap position and the low-side extreme tap position. Therefore, the adjustment work of the extreme tap limiting device 15 becomes easy.
これにより、高位側極限タップ位置および低位側極限タップ位置において、スライダ56および回転停止機構15bの動作が同じになる。したがって、極限タップ制限装置15の調整作業が容易になる。 The
As a result, the operations of the
高位側アーム60aは、短アーム67aと、長アーム62aと、を有する。短アーム67aは、高位側回動中心であるアームピン61aから高位側コマ48aとの当接位置であるコマ受け部68aにかけて伸びる。長アーム62aは、アームピン61aからスライダ56との係合位置であるアーム孔63aにかけて伸びる。長アーム62aは、短アーム67aより長い。
低位側アーム60bは、短アーム67bと、長アーム62bと、を有する。短アーム67bは、低位側回動中心であるアームピン61bから低位側コマ48bとの当接位置であるコマ受け部68bにかけて伸びる。長アーム62bは、アームピン61bからスライダ56との係合位置であるアーム孔63bにかけて伸びる。長アーム62bは、短アーム67bより長い。
これにより、高位側コマ48aの移動量が小さくても、低位側コマ48bの移動量が小さくても、スライダ56の移動量が大きくなる。したがって、回転停止機構15bの動作の精度が向上する。 Thehigher arm 60a has a short arm 67a and a long arm 62a. The short arm 67a extends from the arm pin 61a, which is the center of rotation on the high side, to the piece receiving portion 68a, which is the contact position with the piece 48a on the high side. The long arm 62a extends from the arm pin 61a to the arm hole 63a where the slider 56 is engaged. The long arm 62a is longer than the short arm 67a.
Thelower arm 60b has a short arm 67b and a long arm 62b. The short arm 67b extends from the arm pin 61b, which is the lower rotation center, to the piece receiving portion 68b, which is the contact position with the lower piece 48b. The long arm 62b extends from the arm pin 61b to the arm hole 63b where the slider 56 is engaged. The long arm 62b is longer than the short arm 67b.
As a result, the movement amount of theslider 56 increases even if the movement amount of the high-order piece 48a is small or the movement amount of the low-side piece 48b is small. Therefore, the accuracy of the operation of the rotation stop mechanism 15b is improved.
低位側アーム60bは、短アーム67bと、長アーム62bと、を有する。短アーム67bは、低位側回動中心であるアームピン61bから低位側コマ48bとの当接位置であるコマ受け部68bにかけて伸びる。長アーム62bは、アームピン61bからスライダ56との係合位置であるアーム孔63bにかけて伸びる。長アーム62bは、短アーム67bより長い。
これにより、高位側コマ48aの移動量が小さくても、低位側コマ48bの移動量が小さくても、スライダ56の移動量が大きくなる。したがって、回転停止機構15bの動作の精度が向上する。 The
The
As a result, the movement amount of the
回転停止機構15bは、ストッパ100と、ストッパ保持機構15cと、を有する。ストッパ100は、主動軸10の回転を停止させる停止位置と、主動軸10の回転を許容する退避位置との間を移動可能である。ストッパ100は、停止位置に向かって付勢される。ストッパ保持機構15cは、ストッパ100を退避位置に保持し、スライダ56のスライドによりストッパ100の保持を解除することが可能である。
ストッパ100は、主動軸10の回転を停止させる停止位置に向かって付勢される。ストッパ保持機構15cによるストッパ100の保持が解除されると、ストッパ100は瞬時に停止位置に移動して主動軸10の回転を停止させる。これにより、極限タップ制限装置15の動作の精度が向上する。 Therotation stop mechanism 15b has a stopper 100 and a stopper holding mechanism 15c. The stopper 100 is movable between a stop position that stops the rotation of the driving shaft 10 and a retracted position that allows the rotation of the driving shaft 10. The stopper 100 is biased toward the stop position. The stopper holding mechanism 15c can hold the stopper 100 at the retracted position and release the holding of the stopper 100 by sliding the slider 56.
Thestopper 100 is urged toward a stop position where the rotation of the drive shaft 10 is stopped. When the holding of the stopper 100 by the stopper holding mechanism 15c is released, the stopper 100 instantly moves to the stop position to stop the rotation of the driving shaft 10. This improves the accuracy of the operation of the extreme tap limiting device 15.
ストッパ100は、主動軸10の回転を停止させる停止位置に向かって付勢される。ストッパ保持機構15cによるストッパ100の保持が解除されると、ストッパ100は瞬時に停止位置に移動して主動軸10の回転を停止させる。これにより、極限タップ制限装置15の動作の精度が向上する。 The
The
ストッパ保持機構15cは、第1アーム80と、第2アーム90と、を有する。第2アーム90は、ストッパ100と係合する。第1アーム80は、第2アーム90と係合した状態でストッパ100を退避位置に保持する。第1アーム80は、第2アーム90との係合を保持する方向に付勢される。第1アーム80は、スライダ56のスライドにより第2アーム90との係合を解除することが可能である。
これにより、ストッパ保持機構15cは、ストッパ100を退避位置に安定した状態で保持できる。ストッパ保持機構15cは、スライダ56のスライドにより、ストッパ100の退避位置での保持を解除することが可能になる。 Thestopper holding mechanism 15c has a first arm 80 and a second arm 90. The second arm 90 engages with the stopper 100. The first arm 80 holds the stopper 100 in the retracted position while being engaged with the second arm 90. The first arm 80 is biased in a direction in which the engagement with the second arm 90 is maintained. The first arm 80 can be disengaged from the second arm 90 by sliding the slider 56.
Accordingly, thestopper holding mechanism 15c can hold the stopper 100 in the retracted position in a stable state. The stopper holding mechanism 15c can release the holding of the stopper 100 at the retracted position by sliding the slider 56.
これにより、ストッパ保持機構15cは、ストッパ100を退避位置に安定した状態で保持できる。ストッパ保持機構15cは、スライダ56のスライドにより、ストッパ100の退避位置での保持を解除することが可能になる。 The
Accordingly, the
実施形態の負荷時タップ切換器LTCの電動操作装置1は、モータ5と、主動軸10と、前述された極限タップ制限装置15と、を有する。主動軸10は、モータ5から負荷時タップ切換器LTCへのトルク伝達経路に配置される。
極限タップ制限装置15は、小型のユニットとして主動軸10の近くに配置される。これにより、負荷時タップ切換器LTCの電動操作装置1が小型化される。 Theelectric operating device 1 of the load tap changer LTC of the embodiment includes a motor 5, a main shaft 10, and the above-described limit tap limiting device 15. The driving shaft 10 is arranged in the torque transmission path from the motor 5 to the load tap changer LTC.
The limittap limiting device 15 is arranged near the driving shaft 10 as a small unit. As a result, the electric operating device 1 for the load tap changer LTC is downsized.
極限タップ制限装置15は、小型のユニットとして主動軸10の近くに配置される。これにより、負荷時タップ切換器LTCの電動操作装置1が小型化される。 The
The limit
電動操作装置1は、主動軸10の回転位置を検出する多回転絶対位置検出型の回転検出器18を有する。
多回転絶対位置検出型の回転検出器18は、主動軸10の回転位置を精度良く検出する。そのため、主動軸10の停止精度が向上する。これにより、極限タップ位置における極限タップ制限装置15の動作の精度が向上する。 Theelectric operating device 1 includes a multi-rotation absolute position detection type rotation detector 18 that detects the rotation position of the drive shaft 10.
The multi-rotation absolute position detectiontype rotation detector 18 accurately detects the rotation position of the driving shaft 10. Therefore, the stopping accuracy of the driving shaft 10 is improved. This improves the accuracy of the operation of the limit tap limiting device 15 at the limit tap position.
多回転絶対位置検出型の回転検出器18は、主動軸10の回転位置を精度良く検出する。そのため、主動軸10の停止精度が向上する。これにより、極限タップ位置における極限タップ制限装置15の動作の精度が向上する。 The
The multi-rotation absolute position detection
以上説明した少なくともひとつの実施形態によれば、送りねじ機構40aと、コマ48a,48bと、を持つ。これにより、極限タップ制限装置を小型化することができる。
According to at least one embodiment described above, the feed screw mechanism 40a and the tops 48a and 48b are provided. Thereby, the limit tap limiting device can be downsized.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and the gist of the invention.
LTC…負荷時タップ切換器、1…電動操作装置、5…モータ、8…第1タイミングベルト、10…主動軸、12…トルクリミッタ、15…極限タップ制限装置、15a…回転停止ユニット、15b…回転停止機構、15c…ストッパ保持機構、18…回転検出器、32…送りねじ軸、40a…送りねじ機構、48a…高位側コマ、48b…低位側コマ、56…スライダ、60a…高位側アーム、60b…低位側アーム、62a…長アーム(高位側長アーム)、62b…長アーム(低位側長アーム)、67a…短アーム(高位側短アーム)、67b…短アーム(低位側短アーム)、80…第1アーム、90…第2アーム、100…ストッパ。
LTC... Tap changer under load, 1... Electric operation device, 5... Motor, 8... First timing belt, 10... Main shaft, 12... Torque limiter, 15... Extreme tap limiting device, 15a... Rotation stop unit, 15b... Rotation stop mechanism, 15c...Stopper holding mechanism, 18...Rotation detector, 32...Feed screw shaft, 40a...Feed screw mechanism, 48a...Higher side piece, 48b...Lower side piece, 56...Slider, 60a...Higher side arm, 60b...Lower side arm, 62a...Long arm (higher side long arm), 62b...Long arm (lower side long arm), 67a...Short arm (higher side short arm), 67b...Short arm (lower side short arm), 80... 1st arm, 90... 2nd arm, 100... Stopper.
Claims (8)
- モータから負荷時タップ切換器へのトルク伝達経路に配置される主動軸に連動して回転する送りねじ軸を含む送りねじ機構と、
前記送りねじ機構により前記送りねじ軸の軸方向に移動するコマと、
前記負荷時タップ切換器の極限タップ位置に対応する前記軸方向の位置で前記コマに当接し、前記主動軸の回転を停止させることが可能な回転停止ユニットと、を有する、
極限タップ制限装置。 A feed screw mechanism including a feed screw shaft that rotates in conjunction with a main shaft that is arranged in a torque transmission path from a motor to a load tap changer,
A top that moves in the axial direction of the feed screw shaft by the feed screw mechanism,
A rotation stop unit capable of stopping the rotation of the driving shaft by contacting the top at a position in the axial direction corresponding to the limit tap position of the load tap changer.
Extreme tap limiting device. - 前記モータから前記主動軸へのトルク伝達を制限するトルクリミッタを有する、
請求項1に記載の極限タップ制限装置。 A torque limiter for limiting torque transmission from the motor to the drive shaft,
The limit tap limiting device according to claim 1. - 前記コマは、高位側コマと、低位側コマと、を有し、
前記回転停止ユニットは、
前記負荷時タップ切換器の高位側極限タップ位置に対応する前記軸方向の位置で前記高位側コマに当接し、回動可能な高位側アームと、
前記負荷時タップ切換器の低位側極限タップ位置に対応する前記軸方向の位置で前記低位側コマに当接し、回動可能な低位側アームと、
前記高位側アームおよび前記高位側アームに係合し、前記高位側アームおよび前記高位側アームの回動に伴ってスライド可能なスライダと、
前記スライダのスライドにより前記主動軸の回転を停止させることが可能な回転停止機構と、
を有する、
請求項1または2に記載の極限タップ制限装置。 The top has a high-side top and a low-side top,
The rotation stop unit,
A high-side arm that is rotatable and abuts the high-side piece at a position in the axial direction corresponding to the high-side extreme tap position of the load tap changer;
A low-side arm that contacts the low-side piece at a position in the axial direction that corresponds to the low-side extreme tap position of the load tap changer and that is rotatable,
A slider that is engaged with the high-order side arm and the high-order side arm and is slidable with the rotation of the high-order side arm and the high-order side arm;
A rotation stop mechanism capable of stopping the rotation of the drive shaft by sliding the slider,
Has,
The limit tap limiting device according to claim 1 or 2. - 前記高位側アームは、高位側回動中心から前記高位側コマとの当接位置にかけて伸びる高位側短アームと、前記高位側回動中心から前記スライダとの係合位置にかけて伸びる高位側長アームと、を有し、
前記高位側長アームは、前記高位側短アームより長く、
前記低位側アームは、低位側回動中心から前記低位側コマとの当接位置にかけて伸びる低位側短アームと、前記低位側回動中心から前記スライダとの係合位置にかけて伸びる低位側長アームと、を有し、
前記低位側長アームは、前記低位側短アームより長い、
請求項3に記載の極限タップ制限装置。 The high-side arm includes a high-side short arm extending from the high-side rotation center to a contact position with the high-side piece, and a high-side long arm extending from the high-side rotation center to an engagement position with the slider. Has,
The high-side long arm is longer than the high-side short arm,
The low-side arm includes a low-side short arm extending from the low-side rotation center to a contact position with the low-side top, and a low-side long arm extending from the low-side rotation center to an engagement position with the slider. Has,
The low-side long arm is longer than the low-side short arm,
The limit tap limiting device according to claim 3. - 前記回転停止機構は、
前記主動軸の回転を停止させる停止位置と、前記主動軸の回転を許容する退避位置との間を移動可能であり、前記停止位置に向かって付勢されるストッパと、
前記ストッパを前記退避位置に保持し、前記スライダのスライドにより前記ストッパの保持を解除することが可能なストッパ保持機構と、
を有する、
請求項3または4に記載の極限タップ制限装置。 The rotation stop mechanism is
A stopper that is movable between a stop position that stops rotation of the drive shaft and a retracted position that allows rotation of the drive shaft, and is biased toward the stop position;
A stopper holding mechanism capable of holding the stopper at the retracted position and releasing the holding of the stopper by sliding the slider;
Has,
The extreme tap limiting device according to claim 3 or 4. - 前記ストッパ保持機構は、第1アームと、第2アームと、を有し、
前記第2アームは、前記ストッパと係合し、
前記第1アームは、前記第2アームと係合した状態で前記ストッパを前記退避位置に保持し、前記第2アームとの係合を保持する方向に付勢され、前記スライダのスライドにより前記第2アームとの係合を解除することが可能である、
請求項5に記載の極限タップ制限装置。 The stopper holding mechanism has a first arm and a second arm,
The second arm engages with the stopper,
The first arm holds the stopper in the retracted position while being engaged with the second arm, and is urged in a direction of retaining the engagement with the second arm, and the first arm is slid to move the first arm. It is possible to release the engagement with the two arms,
The extreme tap limiting device according to claim 5. - 請求項1から6のいずれか1項に記載の極限タップ制限装置と、
前記モータと、
前記モータから負荷時タップ切換器へのトルク伝達経路に配置される前記主動軸と、を有する、
負荷時タップ切換器の電動操作装置。 An extreme tap limiting device according to any one of claims 1 to 6,
The motor,
The drive shaft arranged in a torque transmission path from the motor to the load tap changer,
Electric operation device for tap changer under load. - 前記主動軸の回転位置を検出する多回転絶対位置検出型の回転検出器を有する、
請求項7に記載の負荷時タップ切換器の電動操作装置。 It has a multi-rotation absolute position detection type rotation detector for detecting the rotation position of the drive shaft,
An electrically operated device for a load tap changer according to claim 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/001846 WO2020152775A1 (en) | 2019-01-22 | 2019-01-22 | Limit tap restricting device, and electric operating device for load tap changer |
JP2020567701A JP7021374B2 (en) | 2019-01-22 | 2019-01-22 | Electric operation device for extreme tap limiter and tap changer under load |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/001846 WO2020152775A1 (en) | 2019-01-22 | 2019-01-22 | Limit tap restricting device, and electric operating device for load tap changer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020152775A1 true WO2020152775A1 (en) | 2020-07-30 |
Family
ID=71736631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001846 WO2020152775A1 (en) | 2019-01-22 | 2019-01-22 | Limit tap restricting device, and electric operating device for load tap changer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7021374B2 (en) |
WO (1) | WO2020152775A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220032242A (en) * | 2020-09-07 | 2022-03-15 | (주) 모노인더스트리 | No load tap changer for automatic control |
JP2022059887A (en) * | 2020-10-02 | 2022-04-14 | 株式会社東芝 | Limit tap restricting device and electric operating device for load tap changer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4882419U (en) * | 1972-01-10 | 1973-10-08 | ||
JP2001267150A (en) * | 2000-03-17 | 2001-09-28 | Fuji Electric Co Ltd | On-load tap changer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4882419B2 (en) | 2006-02-27 | 2012-02-22 | 富士ゼロックス株式会社 | Image forming apparatus |
-
2019
- 2019-01-22 WO PCT/JP2019/001846 patent/WO2020152775A1/en active Application Filing
- 2019-01-22 JP JP2020567701A patent/JP7021374B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4882419U (en) * | 1972-01-10 | 1973-10-08 | ||
JP2001267150A (en) * | 2000-03-17 | 2001-09-28 | Fuji Electric Co Ltd | On-load tap changer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220032242A (en) * | 2020-09-07 | 2022-03-15 | (주) 모노인더스트리 | No load tap changer for automatic control |
KR102401801B1 (en) * | 2020-09-07 | 2022-05-25 | (주) 모노인더스트리 | No load tap changer for automatic control |
JP2022059887A (en) * | 2020-10-02 | 2022-04-14 | 株式会社東芝 | Limit tap restricting device and electric operating device for load tap changer |
JP7387571B2 (en) | 2020-10-02 | 2023-11-28 | 株式会社東芝 | Electric operating devices for extreme tap limiters and on-load tap changers |
Also Published As
Publication number | Publication date |
---|---|
JP7021374B2 (en) | 2022-02-16 |
JPWO2020152775A1 (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7297891B2 (en) | Trigger switch | |
US10245711B2 (en) | Electric power tool with vibration mechanism | |
WO2020152775A1 (en) | Limit tap restricting device, and electric operating device for load tap changer | |
JP5630168B2 (en) | Pull-out circuit breaker operation mechanism | |
US11408531B2 (en) | Spool valve | |
KR20100035127A (en) | Diaphragm device | |
US7232965B2 (en) | Linear motion compensator | |
US9664536B2 (en) | Calibration mechanism for proximity switch | |
US10289149B2 (en) | Input operating apparatus | |
US5177524A (en) | Device for controlling automatic focusing lens device | |
US8567277B2 (en) | Transmission device | |
JP2019113724A (en) | Lid opening/closing mechanism and electronic apparatus | |
JP7387571B2 (en) | Electric operating devices for extreme tap limiters and on-load tap changers | |
US5939685A (en) | Stopping device with a switch | |
KR101757891B1 (en) | Tapping tapping depth adjustment and spindle forward and reverse drive control device | |
US8643961B2 (en) | Optical device | |
JP2000350409A (en) | Valve-driving actuator | |
JP7526679B2 (en) | Damper | |
EP3232458A1 (en) | Input operating apparatus | |
JP5873695B2 (en) | Switch device rotation detection mechanism | |
KR200494624Y1 (en) | Linkage | |
JP2008065093A (en) | Lens drive device | |
JP2021005911A (en) | Driving device | |
JP2841032B2 (en) | Waterproof switch | |
WO2019093275A1 (en) | Stand position detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911308 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020567701 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19911308 Country of ref document: EP Kind code of ref document: A1 |