WO2020149407A1 - Leaky waveguide - Google Patents
Leaky waveguide Download PDFInfo
- Publication number
- WO2020149407A1 WO2020149407A1 PCT/JP2020/001566 JP2020001566W WO2020149407A1 WO 2020149407 A1 WO2020149407 A1 WO 2020149407A1 JP 2020001566 W JP2020001566 W JP 2020001566W WO 2020149407 A1 WO2020149407 A1 WO 2020149407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- openings
- metal tube
- slot
- leaky waveguide
- center
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/127—Hollow waveguides with a circular, elliptic, or parabolic cross-section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/14—Hollow waveguides flexible
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/22—Longitudinal slot in boundary wall of waveguide or transmission line
Definitions
- the present invention relates to leaky waveguides.
- the present application claims priority based on Japanese Patent Application No. 2019-007323 filed in Japan on January 18, 2019 and Japanese Patent Application No. 2019-007340 filed in Japan on January 18, 2019, and its contents Is used here.
- a leaky waveguide is a hollow tube that has an opening in a conductor that constitutes the waveguide and allows electric waves propagating inside the tube to leak to the outside of the tube through the opening (see Patent Document 1). .. Since the conventional leaky waveguide has never been used for wireless communication between such a moving body and the leaky waveguide, the length of the leaky waveguide is about several meters. .. However, when a leaky waveguide is used for wireless communication between such a moving body and the leaky waveguide, a long leaky guide having a length of several tens to several hundred meters is used from the viewpoint of the efficiency of the laying work. Wave tubes are preferred. Therefore, there is an increasing need for manufacturing a leaky waveguide longer than the conventional leaky waveguide. However, when such a long leaky waveguide is used, it is difficult to sufficiently realize the above wireless communication simply by manufacturing a leaky waveguide having a structure similar to the conventional one.
- the first feature (hereinafter referred to as “feature 1”) is that most of the cross sections of conventional leaky waveguides have an oval shape or an elliptical shape circumscribing a predetermined rectangle, and the opening has a predetermined shape.
- the feature is that it is located near the center of the long side of the rectangle.
- the maximum radiation direction which is the direction in which the radio wave radiated from the opening propagates with the highest intensity, is the direction in which the opening is viewed from the center of the cross section of the leaky waveguide.
- the maximum radiation direction is the direction in which the radio wave emitted from the opening propagates with the strongest intensity.
- the second feature (hereinafter referred to as "feature 2") is that the conventional leaky waveguide bends in the axial direction without buckling.
- the conventional leaky waveguide has a fixed bending direction.
- the direction in which the axis of the conventional leaky waveguide bends is the direction of the long side of the predetermined rectangle viewed from the center of the predetermined rectangle.
- the leaky waveguide is installed with the opening facing the moving body.
- the worker who installs the leaky waveguide does not have to simply install the leaky waveguide in a predetermined direction.
- Such a worker needs to find the position of the opening and install the leaky waveguide according to the installation location of the leaky waveguide so that the opening faces the direction of the moving body. Therefore, the burden on the worker for installing the leaky waveguide may increase.
- the leaky waveguide When installing such a leaky waveguide along the moving path of a moving body, there are problems other than the burden on the worker who installs the opening toward the moving body. If the moving body only travels straight, it suffices to install the leaky waveguide with the opening facing the moving body in advance. However, the moving body may not only go straight, but may curve. In such a case, the leaky waveguide needs to be installed in a bent state. As described above, the leaky waveguide bends only in the direction of the long side of the predetermined rectangle viewed from the center of the predetermined rectangle (Feature 2 above). Therefore, the leaky waveguide needs to be installed so that the long side of a predetermined rectangle faces the direction of the moving body.
- the leaky waveguide By installing the leaky waveguide in this way, the leaky waveguide can be installed along the movement path of the moving body.
- the characteristic 1 in the conventional leaky waveguide, it is not always possible to make the maximum radiation direction substantially coincide with the direction of the moving body viewed from the opening.
- the laying destination There is a problem to be described later due to the situation where the leaky waveguide is laid (hereinafter referred to as the laying destination).
- the laying destination it is conceivable to install the leaky waveguide at a laying destination having a curved section that can be installed only at a position diagonally above the moving body.
- the conventional leaky waveguide in order to install the leaky waveguide along the moving path of the moving body, is such that the long side of a predetermined rectangle of the leaky waveguide faces the moving body. Need to be installed.
- the curve section is a section in which the moving body curves.
- the maximum radiation direction is in the direction in which the maximum radiation direction crosses directly above the moving body. Therefore, the communication efficiency may be lower than that when the maximum radiation direction is substantially the same as the direction of the moving body viewed from the opening.
- the present invention relates to a leaky waveguide installed along a moving path of a moving body, which suppresses a decrease in communication efficiency in wireless communication between the moving body and the leaky waveguide. It is intended to provide a waveguide.
- a leaky waveguide is a leaky waveguide wound around a drum for storage and transportation, and includes a metal tube that propagates electromagnetic waves, and the metal tube leaks the electromagnetic waves.
- the shape of the cross section of the metal pipe having a plurality of openings is substantially the same as a flat circular cross section, and the long side of a rectangle circumscribing the flat circular shape is substantially the same.
- An intersection of the vertical bisector and the surface of the metal tube is a central intersection, and a distance between the center of each of the plurality of openings and the central intersection is greater than 0.
- the distance between the centers of the first openings, which are a part of the openings, and the second openings, which are the rest of the plurality of openings, is longer than a half wavelength, and the number of the first openings and the The number of two openings is plural, respectively, the plurality of first openings are parallel to each other, the plurality of second openings are parallel to each other, and the plurality of first openings are parallel to each other.
- the part has a line connecting the centers located parallel to the axial direction of the metal pipe, and a line connecting the centers parallel to the axial direction of the metal pipe, among the plurality of first openings adjacent to each other.
- the distance between the centers of the first openings is substantially the same as the wavelength of the electromagnetic wave
- the plurality of second openings have a line connecting the centers positioned parallel to the axial direction of the metal tube,
- the distance between the centers of the adjacent second openings among the plurality of second openings in which the line connecting the centers is parallel to the axial direction of the metal tube is substantially the same as the wavelength of the electromagnetic wave.
- the first opening is a coordinate system having an origin at the center of the rectangle, and an axis Q passing through the origin and parallel to the short side of the rectangle is Q.
- the Q coordinate system which is the coordinate system of the axis
- the Q coordinate value is located in the first space which is 0 or a positive space
- the second opening is a space where the Q coordinate value is a negative space. It may be located in two spaces.
- the distance between the center of the first opening and the central intersection is within 19/40 of the long side, and the second opening is formed.
- the distance between the center and the central intersection may be within 19/40 of the long side.
- the distance between the center of the first opening and the central intersection is 7/40 or more of the long side, and the second opening is formed.
- the distance between the center of and the central intersection may be 7/40 or more of the long side.
- the metal tube further has a plurality of third openings for leaking the electromagnetic waves, and each of the plurality of third openings is the first opening.
- Each of the plurality of third openings is parallel to the first opening and has a shape similar to that of the portion between the center of each of the plurality of third openings and the central intersection point. Is greater than 0, and the distance between the center of the first opening and the center of each of the plurality of third openings may be less than half a wavelength.
- the metal tube further has a plurality of fourth openings for leaking the electromagnetic waves, and each of the plurality of fourth openings is the second opening.
- Each of the plurality of fourth openings is parallel to the second opening and has a shape similar to that of the portion between the center of each of the plurality of fourth openings and the central intersection point. May be greater than 0, and the distance between the center of each of the plurality of fourth openings and the center of the second opening may be less than half a wavelength.
- the surface of the metal tube may have wavy unevenness along the axial direction of the metal tube.
- the movement path may have a curve, and the metal tube may be bent so that the axial direction is substantially parallel to the movement path.
- a leaky waveguide is a leaky waveguide wound around a drum for storage and transportation, and includes a metal tube that propagates electromagnetic waves, and the metal tube leaks the electromagnetic waves.
- the metal tube has a plurality of first openings, and the shape of the cross section of the metal pipe is substantially the same as a flat circular cross section, and the length of a rectangle circumscribing the flat circular shape is substantially the same.
- the intersection of the vertical bisector of the side and the surface of the metal tube is the center intersection, and the distance between the center of each of the plurality of first openings and the center intersection is greater than 0.
- the plurality of first openings are parallel to each other, and the line connecting the centers of the adjacent first openings of the plurality of first openings is parallel to the axial direction of the metal pipe. Therefore, the distance between the centers of the adjacent first openings of the plurality of first openings is substantially the same as the wavelength of the electromagnetic wave.
- the distance between the center of each of the plurality of first openings and the central intersection may be within 19/40 of the long side. Good.
- the distance between the center of each of the plurality of first openings and the central intersection may be 7/40 or more of the long sides. Good.
- the metal tube further has a plurality of second openings for leaking the electromagnetic waves, and each of the plurality of second openings is the first opening.
- Each of the plurality of second openings is parallel to the first opening, and has a shape similar to that of the portion between the center of each of the plurality of second openings and the central intersection point. May be greater than 0, and the distance between the center of each of the plurality of second openings and the center of the first opening may be less than half a wavelength.
- the surface of the metal tube may have wavy unevenness along the axial direction of the metal tube.
- the movement path may have a curve, and the metal tube may be bent so that the axial direction is substantially parallel to the movement path.
- a leaky waveguide that is installed along a moving path of a moving body and is capable of suppressing a decrease in communication efficiency in wireless communication with the moving body. Can be provided.
- FIG. 1 It is a partially broken perspective view which shows the concrete structure of the leaky waveguide 1 which concerns on 1st Embodiment of this invention. It is a figure which shows the specific example of the shape of the cross section of the metal tube 11 which concerns on 1st Embodiment of this invention. It is a top view and a sectional view showing a concrete shape of metal pipe 11 concerning a 1st embodiment of the present invention. It is a figure which shows the outline of the electromagnetic field component of a waveguide, and the distribution of the surface current which flows on the surface of a waveguide. It is a figure which shows the outline of the electromagnetic field component of a waveguide, and the distribution of the surface current which flows on the surface of a waveguide.
- FIG. 5 is an experimental result showing a difference in coupling loss due to a difference in arrangement of the slots 111 according to the first embodiment of the present invention. It is an explanatory view explaining a drum used for storage and transportation of leaky waveguide 1 concerning a 1st embodiment of the present invention.
- 6 is an experimental result showing the likelihood of buckling due to the difference in the position of the slot 111 according to the first embodiment of the present invention.
- FIG. 9 is an explanatory diagram illustrating a mechanism in which buckling occurs in a slot 111.
- FIG. 9 is an explanatory diagram illustrating a mechanism in which buckling occurs in a slot 111.
- FIG. 7 is a diagram showing a radial position where the center of the slot 111 is preferably located according to the first embodiment of the present invention.
- FIG. 3 is a top view showing a specific example of the metal tube 11 having an L-shaped slot 111 according to the first embodiment of the present invention.
- FIG. 3 is a top view showing a specific example of a crank-shaped metal tube 11 having a slot 111 according to the first embodiment of the present invention.
- FIG. 3 is a top view showing a specific example of the window-shaped metal tube 11 having the slot 111 according to the first embodiment of the present invention.
- FIG. 3 is a top view showing a specific example of the metal tube 11 having an elliptical slot 111 according to the first embodiment of the present invention.
- FIG. 6 is a top view showing a specific example of the metal tube 11 in which the slot 111 according to the first embodiment of the present invention is rectangular, and the long sides of the rectangle circumscribing the slot are not parallel to the axial direction.
- FIG. 6 is a top view showing a specific example of the metal tube 11 including the slot 111-1 and the slot 111-2 according to the first embodiment of the present invention.
- FIG. 9 is a top view which shows the outline of distribution of the surface current of the metal tube 21 which concerns on 2nd Embodiment of this invention. It is a figure which shows the experimental result of the radiation pattern which the electromagnetic wave which the leaky waveguide 2 which concerns on 2nd Embodiment of this invention radiates was seen from the cross section.
- 9 is an experimental result showing a difference in coupling loss due to a difference in arrangement of the slots 211 according to the second embodiment of the present invention. It is explanatory drawing explaining the drum used for storage and conveyance of the leaky waveguide 2 which concerns on 2nd Embodiment of this invention.
- 9 is an experimental result showing the likelihood of buckling due to the difference in the position of the slot 211 according to the second embodiment of the present invention.
- FIG. 9 is an explanatory diagram illustrating a mechanism in which buckling occurs in a slot 211.
- FIG. 9 is an explanatory diagram illustrating a mechanism in which buckling occurs in a slot 211. It is a figure which shows the position of the radial direction with which the center of the slot 211 based on 2nd Embodiment of this invention is located. It is a top view which shows the specific example of the metal tube 21 in which the slot 211 which concerns on 2nd Embodiment of this invention is L-shaped. It is a top view which shows the specific example of the metal tube 21 of the slot 211 which concerns on 2nd Embodiment of this invention.
- FIG. 1 is a partially cutaway perspective view showing a specific configuration of a leaky waveguide 1 according to the first embodiment of the present invention.
- the leaky waveguide 1 is, for example, a long waveguide installed along a moving path of a moving body, and can propagate an electromagnetic wave to a long area and radiate it uniformly. It is a waveguide.
- the leaky waveguide 1 according to the first embodiment of the present invention can be used in an electromagnetic wave of 4 to 6 GHz, for example.
- the leaky waveguide 1 includes a metal tube 11 and an outer cover 12.
- the axial length of the leaky waveguide 1 is, for example, 50 m or more.
- the direction parallel to the axial direction of the leaky waveguide 1 is a direction substantially parallel to the movement path of the moving body.
- the movement route may have a curve.
- the metal tube 11 is a hollow tube made of a metal material.
- the metal tube 11 propagates electromagnetic waves.
- the electromagnetic wave propagates through the hollow portion of the metal tube 11 in the axial direction of the metal tube 11.
- the shape of the cross section of the metal tube 11 is substantially the same as a flat circular cross section.
- the cross section is a plane perpendicular to the axial direction of the metal tube 11.
- the shape of the flat cross-section of the metal tube 11 that is substantially the same as the flat cross-section is circumscribed in a rectangle (hereinafter referred to as a “circumscribed rectangle in cross section”) in which the lengths of the long sides and the short sides satisfy predetermined conditions.
- the circumscribed rectangle in cross section is, for example, a rectangle in which the ratio of the length of the long side to the length of the short side is approximately equal to 2:1.
- the rectangle circumscribing the cross section may be, for example, a rectangle having a long side of 50 mm and a short side of 25 mm when the wavelength of the electromagnetic wave propagating through the metal tube 11 is 54 mm.
- FIG. 2 is a diagram showing a specific example of the cross-sectional shape of the metal tube 11 according to the first embodiment.
- the shape of the cross section of the metal tube 11 may be a rectangle shown in FIG.
- the shape of the cross section of the metal tube 11 may be a rounded rectangle shown in FIG.
- the shape of the cross section of the metal tube 11 may be an elliptical shape shown in FIG.
- the shape of the cross section of the metal tube 11 may be an ellipse as shown in FIG.
- the shape of the cross section of the metal tube 11 may be a ridge shape as shown in FIG.
- the shape of the cross section of the metal tube 11 may be a peanut shape shown in FIG.
- the shape of the cross section of the metal tube 11 is a rectangle or an oval.
- the metal pipe 11 is reversibly curved in the direction of the long side of the cross-section circumscribed rectangle viewed from the center of the cross-section circumscribed rectangle along the axial direction.
- the direction of the long side of the rectangle circumscribing the cross section viewed from the center of the rectangle circumscribing the cross section is the direction parallel to the short side of the rectangle circumscribing the cross section.
- the direction of the long side of the rectangle circumscribing the section viewed from the center of the rectangle circumscribing the section is referred to as the direction of the short side.
- the metal tube 11 has a plurality of slots 111 on its surface. Some of the plurality of slots 111 (first slots) are located on the surface of the metal pipe 11 in the first space, and the rest of the plurality of slots 111 (second slots) are of the metal pipe 11 in the second space.
- the first space is a coordinate system whose origin is the center of the rectangle circumscribing the cross section, and whose coordinate axis is the axis parallel to the short side of the rectangle circumscribing the cross section through the origin (hereinafter referred to as "Q coordinate system").
- Q coordinate system a coordinate system whose origin is the center of the rectangle circumscribing the cross section, and whose coordinate axis is the axis parallel to the short side of the rectangle circumscribing the cross section through the origin.
- Q coordinate system a coordinate system whose origin is the center of the rectangle circumscribing the cross section, and whose coordinate axis is the axis parallel to the short side of the rectangle circumscrib
- the number of slots 111 located in the first space is plural.
- the number of slots 111 located in the second space is plural.
- the slots 111 located in the first space are located on substantially the same plane.
- the slots 111 located in the second space are located on substantially the same plane.
- the distance between the centers of the slot 111 located in the first space and the slot 111 located in the second space is half a wavelength or more.
- the slot 111 located on the surface in the first space will be described below, but the description is similarly applied to the slot 111 located on the surface in the second space.
- the slots 111 are holes whose centers are located at predetermined intervals S on the surface of the metal tube 11 along the axial direction. “Each interval S” means that the distance between the centers of the adjacent slots 111 (hereinafter referred to as “slot distance”) is S.
- the predetermined interval S is substantially the same as the wavelength ⁇ .
- Each slot 111 is parallel to each other. S is 35 mm, for example, if the frequency of the electromagnetic wave propagating through the metal tube 11 is 6 GHz.
- the slot 111 has a shape having two-fold symmetry, is a line segment parallel to two symmetry axes orthogonal to the two-fold rotation axis, and has an end point that is an intersection of the slot circumscribed rectangle and the symmetry axis. Any shape may be used as long as one of the portions is longer than the other.
- the slot circumscribed rectangle is a rectangle that is larger than the slot 111 and includes the slot 111, and that minimizes the gap between the slot 111 and the slot 111.
- the shape of the slot 111 may be rectangular or oval, for example. Hereinafter, for simplicity of explanation, it is assumed that the shape of the slot 111 is rectangular.
- the length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave.
- the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
- the direction of the rectangle circumscribing the slot may be any direction as long as it obstructs the current flowing in the circumferential direction on the surface of the leaky waveguide 1.
- the long sides of the slot circumscribed rectangle are parallel to the axial direction.
- One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side.
- the other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
- the center of the slot 111 is the intersection of the plane or curved surface including the slot 111 and the two-fold rotation axis.
- the metal tube 11 may be made of any substance as long as it has a high electric conductivity, and may be made of copper, for example. Although the metal tube 11 may have any thickness, it is preferably about 0.5 mm in consideration of mechanical strength.
- the metal tube 11 may be laminated.
- the size of the cross section of the metal tube 11 corresponds to the cutoff frequency for the electromagnetic wave to be propagated.
- the cutoff frequency is expressed by the following equation (1).
- f c represents the cutoff frequency.
- D represents the length of the long side of the rectangle circumscribing the section.
- the length of the short side of the rectangle circumscribing the cross section is, for example, 25 mm.
- the metal tube 11 blocks electromagnetic waves having a frequency of 3 GHz or less. The electromagnetic wave propagating through the metal tube 11 is radiated to the outside from the slot 111.
- FIG. 3 is a top view and a cross-sectional view showing a specific shape of the metal tube 11 according to the first embodiment.
- FIG. 3A shows a top view of the metal tube 11.
- FIG. 3B shows a sectional view of the metal tube 11.
- the shape of the slot 111 is a rectangle whose major axis direction is parallel to the axial direction.
- the slot 111 is located not at the center of the surface of the metal tube 11 but at the end thereof.
- the central portion of the surface of the metal tube 11 passes through the point where the long bisector of the long side of the rectangular circumscribed in section crosses the metal tube 11 and is parallel to the axial direction (hereinafter referred to as “surface central axis”). Is a region near.
- the end portion is an area other than the central portion of the surface of the metal tube 11.
- the point where the long bisector of the long side of the circumscribed rectangle and the metal tube 11 intersect is referred to as the central intersection point.
- the central portion is an area within a range of ( ⁇ 5/40) ⁇ length D to (+5/40) ⁇ length D in the radial direction centering on the surface center axis.
- the outer skin 12 is a polymer material such as polyethylene and covers the metal tube 11.
- FIG. 4A is a diagram schematically showing the distribution of surface current flowing on the surface of the waveguide.
- FIG. 4B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 4A and 4B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
- the magnetic field lines representing the direction of the magnetic field form a closed ring in the waveguide.
- the boundary condition in the rectangular waveguide is satisfied, so that the electric force line representing the electric field is oriented in the direction perpendicular to the magnetic field.
- the boundary condition in the rectangular waveguide is satisfied, so that a part of the surface current flows in the direction in which the electromagnetic wave propagates at a position near the center. Further, according to the Maxwell equation of the electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, a part of the surface current flows on the surface of the waveguide in a direction perpendicular to the propagation direction of the electromagnetic wave.
- FIG. 5 is a top view showing the outline of the distribution of the surface current of the metal tube 11 according to the first embodiment.
- the metal tube 11 is a rectangular waveguide.
- the surface current flowing into the slot 111 forms an electric field in the hole of the slot 111 that oscillates in a direction parallel to the short side of the slot 111 and that oscillates at the same frequency as the surface current.
- the slot 111 can be regarded as a virtual dipole moment that oscillates in the direction perpendicular to the axial direction. Therefore, the slot 111 radiates an electromagnetic wave polarized in a direction perpendicular to the axial direction.
- the inter-slot distance S is approximately the same as the wavelength ⁇ , the dipole moment vibration phases of the respective slots 111 are approximately the same. This means that the phases of the electromagnetic waves emitted from the adjacent slots 111 are substantially the same. Therefore, the electromagnetic waves radiated from each slot 111 of the metal tube 11 reinforce each other and become a highly coherent electromagnetic wave, which is radiated from the metal tube 11.
- FIG. 6 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave emitted by the leaky waveguide 1 according to the first embodiment as seen from a cross-sectional direction.
- the cross-sectional direction is a direction in which the cross-sectional circumscribed rectangle is viewed from the axial position of the metal tube 11.
- the frequency of the electromagnetic wave in FIG. 6 is 5.6 GHz.
- the long side of the rectangle circumscribing the cross section is 50 mm, and the short side is 25 mm.
- the slot is located at a position of 15 mm in the radial direction of the metal tube 11 from the central intersection.
- maximum radiation direction is not 0°. Note that the direction of 0° is a direction in which the central intersection is viewed from the center of the rectangle circumscribing the cross section.
- FIG. 7 is an experimental result showing a difference in coupling loss of vertically polarized waves due to a difference in arrangement of the slots 111 according to the first embodiment.
- vertical polarization means vertical polarization with respect to the axial direction.
- the coupling loss is expressed by the following equation (2).
- L c represents a coupling loss.
- P in represents the input power to the leaky waveguide 1.
- P out represents the output power received by the receiving antenna.
- the receiving antenna is an antenna installed at a predetermined position with respect to the leaky waveguide 1 in order to measure the coupling loss.
- the receiving antenna is, for example, a half-wavelength dipole antenna.
- the leaky waveguide A is a leaky waveguide in which the centers of the slots 111 are at the central intersections, the distances between the centers are approximately equal to a half wavelength, and the adjacent slots 111 are arranged alternately. It is a tube.
- the adjacent slots 111 being staggered means that the adjacent slots 111 are opposite to each other.
- the leaky waveguide A is a leaky waveguide whose slot shape and slot arrangement are the same as those of the conventional leaky waveguide.
- the long side of the slot 111 of the leaky waveguide A has a length of 10 mm, and the short side has a length of 2 mm.
- the center of the slot 111 is located at a position of 15 mm in the radial direction of the metal tube 11 from the central intersection, the distance between the centers is substantially equal to a half wavelength, and the leaky waveguides B are adjacent to each other. It is a leaky waveguide in which slots 111 are alternately arranged.
- the long side of the slot 111 of the leaky waveguide B has a length of 10 mm, and the short side has a length of 2 mm.
- the leaky waveguide C has a slot 111 whose center is located at a position of 15 mm in the radial direction of the metal tube 11 from the center intersection point, a distance between the centers is substantially the same as the wavelength, and adjacent slots are adjacent to each other.
- 111 is a leaky waveguide arranged parallel to each other. That is, the leaky waveguide C is the leaky waveguide 1.
- the long side of the slot 111 of the leaky waveguide C has a length of 13 mm, and the short side has a length of 2 mm.
- the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
- FIG. 7 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
- FIG. 7 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it is understood that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of the slot 111 in the radial direction.
- the number of slots 111 of the leaky waveguide C is This is half the number of slots 111 of the wave tube B. Further, the energy of the electromagnetic wave leaking from the slot of the leaky waveguide increases or decreases in proportion to the length of the long side of the slot.
- the length of the long side of the slot 111 of the leaky waveguide C is twice the length of the long side of the slot 111 of the leaky waveguide B, the energy of the electromagnetic wave leaking from the leaky waveguide C is The amount should be the same as the amount of energy of the electromagnetic wave leaking from the leaky waveguide B, and the coupling loss should be almost the same.
- the experimental result of FIG. 7 shows that the length of the long side of the slot 111 of the leaky waveguide C is 1.3 times the length of the long side of the slot 111 of the leaky waveguide B, which is 2 times or less. If so, the coupling loss of the leaky waveguide C is smaller than that of the leaky waveguide B.
- the slots 111 are parallel to each other when the positions of the slots 111 are displaced from the central intersection in the radial direction and the central tube distance of the slots 111 is substantially equal to the wavelength. This means that the effect of suppressing an increase in coupling loss is exerted.
- the distance between the centers of the slots 111 is the wavelength length, unlike the conventional leaky waveguide in which the distance between the centers of the slots is half the wavelength. Therefore, the distance between the centers of the slots is longer than that of the conventional leaky waveguide. Therefore, the leaky waveguide 1 can be provided with the slot 111 longer than the conventional one while maintaining the strength of resistance to buckling of the metal tube 11.
- the leaky waveguide 1 has a length of 50 m or more. Therefore, when storing and transporting the leaky waveguide 1 to be laid, it is practical to store and transport the leaky waveguide 1 by winding it around a drum having a predetermined radius of curvature. In such a case, since stress is applied to the leaky waveguide 1, buckling may occur in the slot 111. Therefore, the buckling of the leaky waveguide 1 will be considered below.
- FIG. 8 is an explanatory diagram illustrating a drum used for storage and transportation of the leaky waveguide 1 according to the first embodiment.
- the leaky waveguide 1 is stored or transported while being wound around a drum having a diameter of 1400 mm.
- the diameter of the winding body of the drum around which the leaky waveguide 1 is wound is 1400 mm, but the diameter does not necessarily have to be 1400 mm.
- the diameter of the winding body of the drum may be, for example, in the range of 1000 to 2000 mm.
- FIG. 9 is an experimental result showing the likelihood of buckling due to the difference in the position of the slot 111 according to the first embodiment.
- FIG. 9 shows a case where the leakage waveguide 1 in which the slot 111 is located at a position 21 mm in the radial direction from the central intersection is bent so as to have a predetermined radius of curvature, and when the slot 111 is 24 mm in the radial direction from the central intersection.
- the values of VSWR (voltage standing wave ratio) when the leaky waveguide 1 located at a position is bent to have a predetermined radius of curvature are shown. As shown in FIG.
- FIG. 10A and 10B are explanatory views for explaining the mechanism of buckling in the slot 111.
- FIG. 10A is an explanatory diagram illustrating a pressure applied to the slot 111 located in the central portion.
- FIG. 10B is an explanatory diagram illustrating the pressure applied to the slot 111 located at the end.
- 10A and 10B are side views of the metal tube 11. 10A and 10B, the metal tube 11 is curved in the short side direction (that is, the Z-axis direction). Due to the bending of the metal tube 11, compressive stress and tensile stress are applied to the slot 111. Buckling is caused by the difference between compressive stress and tensile stress.
- the difference in force is proportional to the difference in bending radius due to bending between the location where compressive stress is applied and the location where tensile stress is applied.
- the difference between the compressive stress and the tensile stress in FIG. 10A is proportional to the thickness of the surface of the metal tube 11.
- the difference in force between the compressive stress and the tensile stress is substantially the same as 0.
- the difference between the compressive stress and the tensile stress in FIG. 10B is proportional to the length of the short side of the slot 111. The length of the short side of the slot 111 is thicker than the thickness of the surface of the metal tube 11.
- the length of the short side of the slot 111 is 25 mm, and the thickness of the surface of the metal tube 11 is 0.5 mm. Therefore, when the slot 111 is located at the end of the metal tube 11 as shown in FIG. 10B, the compressive stress and tensile force are higher than when the slot 111 is located at the center of the metal tube 11 as shown in FIG. 10A. The difference with the stress is large.
- the radial position of the slot 111 needs to be positioned at an appropriate position according to the diameter of the drum during transportation.
- the diameter of the drum during transportation is 1400 mm in consideration of actual operation.
- the radial position of the slot 111 is preferably within the range shown in FIG.
- the desirable radial position shown in FIG. 11 is the position of the slot 111 having the maximum radiation direction in a direction other than the direction of 0°, and the position of the slot 111 whose resistance to buckling is a predetermined strength or more.
- the predetermined strength is the strength that does not buckle against bending such that the radius of curvature is 700 mm.
- FIG. 11 is a diagram showing a radial position where the center of the slot 111 according to the first embodiment is preferably located.
- the slot 111 may be located anywhere as long as the center is located at a position radially separated from the central intersection by a finite length.
- the slot 111 is located at a position where buckling does not occur with bending such that the radius of curvature is 700 mm.
- a position is a position where the distance from the central intersection is within 19/40 of the length of the long side of the rectangle circumscribing the cross section.
- the radial position where the center of the slot 111 is preferably located is the position shown in FIG. That is, the radial position where the center of the slot 111 is preferably located is a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the section.
- FIG. 12 is a top view showing a specific example of the metal tube 11 having the L-shaped slot 111 according to the first embodiment.
- the L-shape is a shape similar to the letter "L" in the alphabet, as shown in FIG.
- Such an L-shaped slot 111 produces a dipole moment in the radial and axial directions.
- FIG. 13 is a top view showing a specific example of the crank-shaped metal tube 11 having the slots 111 according to the first embodiment.
- the crank-shaped slot 111 has a structure that is bent in a step shape on the surface of the metal tube 11 along the axial direction. Such a crank type slot 111 produces a dipole moment in the radial and axial directions.
- the metal tube 11 having the crank type slots 111 can generate not only the polarized wave in the radial direction (vertical polarized wave) but also the polarized wave in the axial direction (horizontal polarized wave). Therefore, the metal tube 11 having the crank-shaped slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
- FIG. 14 is a top view showing a specific example of the window-shaped metal tube 11 having the slot 111 according to the first embodiment.
- the window-shaped slot 111 has a longer short side than the rectangular slot 111. Therefore, the effect of hindering the surface current along the axial direction is greater than that of the rectangular slot 111. Therefore, the window-shaped slot 111 produces a dipole moment in the radial direction and the axial direction. Since the dipole moment is generated in the radial direction and the axial direction, the metal tube 11 having the window-shaped slot 111 also generates the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can be made.
- the metal tube 11 having the window-shaped slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the electromagnetic wave receiving side. Further, since such a window type has a long length in the radial direction, it has an effect that the manufacturer can easily process it.
- FIG. 15 is a top view showing a specific example of the metal tube 11 having an elliptical slot 111 according to the first embodiment. Since the elliptical slot 111 has a shorter side length than the rectangular slot 111, a dipole moment is generated in the radial direction and the axial direction like the window slot 111. Therefore, the metal tube 11 having the elliptical slot 111 can generate polarization in the axial direction (horizontal polarization) in addition to polarization in the radial direction (vertical polarization). Therefore, the metal tube 11 having the elliptical slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
- such an elliptic shape has a long radial length, like the window shape, and therefore has the effect of being easily processed by the manufacturer. Further, such an elliptical shape is more rounded than the window type. Therefore, the oval-shaped slot 111 has an effect that cracks are less likely to occur from the corners of the slot 111 than the window-shaped slot 111.
- the long sides of the slot circumscribed rectangle are parallel to the axial direction.
- the slot circumscribed rectangle does not necessarily need to have its long sides parallel to the axial direction.
- the slot circumscribed rectangle may be formed such that the long side is inclined at an angle with the axial direction.
- FIG. 16 is a top view showing a specific example of the metal tube 11 in which the slot 111 according to the first embodiment is rectangular and the long sides of the rectangle circumscribing the slot are not parallel to the axial direction.
- the rectangular slot 111 in which the long sides of such a slot-circumscribing rectangle are not parallel to the axial direction produces a dipole moment in the radial direction and the axial direction. Therefore, the metal tube 11 having the rectangular slot 111 in which the long sides of the slot-circumscribing rectangle are not parallel to the axial direction has the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can also be generated.
- the metal tube 11 having the rectangular slot 111 whose long side of the slot circumscribed rectangle is not parallel to the axial direction has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave reception side.
- the shape of the slot 111 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. It may be oval.
- the metal tube 11 has only one slot 111 in the radial direction.
- the metal tube 11 does not necessarily need to include only one slot 111 in the radial direction.
- the metal tube 11 may include a plurality of slots 111 in the radial direction.
- a case where the metal tube 11 includes a plurality of slots 111 in the radial direction will be described. Further, hereinafter, for simplicity of explanation, it is assumed that the metal tube 11 includes two slots 111 in the radial direction.
- the slot 111 close to the surface central axis will be referred to as a slot 111-1
- the slot 111 far from the surface central axis will be referred to as a slot 111-2.
- the slot 111-1 and the slot 111-2 are not distinguished, they are referred to as the slot 111.
- FIG. 17 is a top view showing a specific example of the metal tube 11 including the slot 111-1 and the slot 111-2 according to the first embodiment.
- the distance h between the centers of the adjacent slots 111-1 and 111-2 in the radial direction is equal to or less than a half wavelength. Therefore, the phases of the vibrations of the dipole moments excited in the slots 111-1 and 111-2 adjacent to each other in the radial direction are substantially the same.
- the intermediate distance S between the slots 111-1 and 111-2 adjacent to each other in the axial direction is substantially the same as the wavelength. Therefore, all the slots 111 included in the metal tube 11 vibrate in substantially the same phase. Therefore, the electromagnetic waves radiated from each slot 111 of the metal tube 11 reinforce each other and become a highly coherent electromagnetic wave, which is radiated from the metal tube 11.
- the metal tube 11 does not need to have only two slots 111 in the radial direction, and may have three or more slots 111.
- the distance between the centers of the plurality of slots 111 provided in the radial direction is equal to or less than half the wavelength between the center of the slot 111 closest to the central intersection and the center of the slot 111 farthest from the central intersection. It is located at a position that satisfies the condition.
- the shape of the slot 111 in FIG. 17 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. The shape may be oval or elliptical.
- the centers of the plurality of slots 111 in the radial direction are located at a position where the distance from the central intersection is 7/40 or more and 19/40 or more of the length of the long side of the rectangle circumscribing the section.
- the leaky waveguide 1 having a plurality of slots 111 thus configured in the radial direction has an effect of reducing the coupling loss as compared with the case where one slot 111 is provided in the radial direction.
- the leaky waveguide 1 according to the first embodiment configured as described above includes the plurality of slots 111 arranged at the ends at wavelength intervals, and thus can radiate radio waves in directions other than the direction of 0°. it can. Therefore, for example, it is possible to suppress a decrease in communication efficiency in wireless communication with a moving body using the leaky waveguide 1 having a length of 50 m or more. Further, the leaky waveguide 1 configured as described above has an effect that it does not buckle during transportation even though it has a length of, for example, 50 m or more.
- the inside of the metal tube 11 does not necessarily have to be hollow.
- the inside of the metal tube 11 may be a dielectric that transmits electromagnetic waves.
- the surface of the metal tube 11 may have wavy unevenness along the axial direction.
- the metal tube 11 has wavy unevenness along the axial direction, it becomes possible to increase the angle of reversible bending in the direction of the long side of the circumscribed rectangle of the cross section when viewed from the center of the circumscribed rectangle of the cross section.
- the metal tube 11 does not necessarily need to have wavy unevenness in the propagation direction in the metal tube.
- a flat copper laminate strip is produced.
- the flat copper-laminated strip-shaped body wound around the drum of the delivery machine is continuously delivered to the forming part.
- This forming unit forms a circular forming machine for forming the copper laminate strip into a circular shape from the upstream side (feeding side of the copper laminate strip), and a flattened circular shape for the circular copper laminate strip. It has a flat forming machine.
- the copper laminate strip sent out to the forming part is curved by the circular forming part into a C shape, and one end edge and the other end edge in the width direction are overlapped to form a circular shape.
- the copper laminate strip is heated by a heater to heat-bond the joint part.
- the method of heat fusion may be any method, for example, arc welding may be used.
- the copper laminate strip is formed into an elliptical cross section by the flat forming part. In this way, the flat pipe body is formed.
- the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
- the flat pipe body having a flat circular cross section is then sent to a slot forming machine that forms a slot 111.
- the slot forming machine forms the slots 111 by laser, punching, cutting or the like.
- the flat pipe body in which the slot 111 is formed is sent to the corrugating machine.
- the flat pipe body in which the slots 111 are formed has irregularities formed on its surface by a corrugating machine.
- the corrugating machine eccentrically fits the corrugating die onto the flat pipe body, externally fits the corrugated die, rotates the corrugating die, and sends the corrugating die in the longitudinal direction in synchronization with the rotation, thereby forming a (spiral) uneven wave.
- the corrugated flat pipe body is sent to a sinking die.
- the corrugated flat pipe body is formed into a predetermined cross section by a sinking die.
- the predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section.
- the flat pipe body formed by the sinking die is the metal pipe 11.
- the metal tube 11 is sent to the sheath extruder.
- the sheath extruder coats the outside of the metal tube 11 with a polymer material such as polyethylene.
- the polymer material that covers the metal tube 11 is the outer cover 12.
- the slot 111 located in the first space and the slot 111 located in the second space may be located in any of the respective spaces.
- the center position of the slot 111 passes through the origin of the Q coordinate system and is parallel to the long side of the circumscribed rectangle. It may be located at symmetrical positions with a plane including the axis and the axis parallel to the axial direction passing through the origin of the Q coordinate system.
- the slot 111 located in the first space and the slot 111 located in the second space are, for example, the center of the slot 111 located in the first space and the center of the slot 111 located in the second space.
- the position may be such that the minimum value of the axial distance between them is a half wavelength.
- the slot 111 located in the first space and the slot 111 located in the second space may have different shapes. Further, the number of radial slots 111 may be different between the first space and the second space. For example, a plurality of slots 111 may be located in the first space in the radial direction, and one slot 111 may be located in the second space in the radial direction.
- the slot 111 is an example of the first opening, the second opening, the third opening, and the fourth opening.
- the slot 111 located in the first space is an example of the first opening and the third opening.
- the slot 111 located in the second space is an example of the second opening and the fourth opening.
- the slot 111-1 is an example of the first opening and the second opening.
- the slot 111-2 is an example of the third opening and the fourth opening.
- FIG. 18 is a partially cutaway perspective view showing a specific configuration of the leaky waveguide 2 according to the second embodiment of the present invention.
- the leaky waveguide 2 is, for example, a long waveguide installed along a moving path of a moving body, and can propagate an electromagnetic wave to a long area and radiate it uniformly. It is a waveguide.
- the leaky waveguide 2 according to the second embodiment of the present invention can be used in an electromagnetic wave of 4 to 6 GHz, for example.
- the leaky waveguide 2 includes a metal tube 21 and an outer cover 22.
- the axial length of the leaky waveguide 2 is, for example, 50 m or more.
- the direction parallel to the axial direction of the leaky waveguide 2 is substantially parallel to the moving path of the moving body.
- the movement route may have a curve.
- the metal tube 21 is a hollow tube made of a metal material.
- the metal tube 21 propagates electromagnetic waves.
- the electromagnetic wave propagates through the hollow portion of the metal tube 21 in the axial direction of the metal tube 21.
- the shape of the cross section of the metal tube 21 is substantially the same as the flat circular cross section.
- the cross section is a plane perpendicular to the axial direction of the metal tube 21.
- a shape substantially identical to the flat circular cross section of the metal tube 21 is circumscribed into a rectangle (hereinafter referred to as a “circumscribed rectangle in cross section”) whose long sides and short sides satisfy predetermined conditions.
- the circumscribed rectangle in cross section is, for example, a rectangle in which the ratio of the length of the long side to the length of the short side is approximately equal to 2:1.
- the rectangle circumscribing the cross section may be, for example, a rectangle having a long side of 50 mm and a short side of 25 mm when the wavelength of the electromagnetic wave propagating through the metal tube 21 is 54
- FIG. 19 is a diagram showing a specific example of the cross-sectional shape of the metal tube 21 according to the second embodiment.
- the shape of the cross section of the metal tube 21 may be a rectangle shown in FIG.
- the shape of the cross section of the metal tube 21 may be a rounded rectangle as shown in FIG.
- the shape of the cross section of the metal tube 21 may be an elliptical shape shown in FIG.
- the shape of the cross section of the metal tube 21 may be an elliptical shape as shown in FIG.
- the shape of the cross section of the metal tube 21 may be a ridge shape as shown in FIG.
- the shape of the cross section of the metal tube 21 may be a peanut shape shown in FIG.
- the shape of the cross section of the metal tube 21 is rectangular or oval.
- the metal tube 21 is reversibly curved in the direction of the long side of the cross-section circumscribed rectangle viewed from the center of the cross-section circumscribed rectangle along the axial direction.
- the direction of the long side of the rectangle circumscribing the cross section viewed from the center of the rectangle circumscribing the cross section is the direction parallel to the short side of the rectangle circumscribing the cross section.
- the direction of the long side of the rectangle circumscribing the section viewed from the center of the rectangle circumscribing the section is referred to as the direction of the short side.
- the metal tube 21 has a plurality of slots 211 on the surface.
- the plurality of slots 211 are located on substantially the same plane.
- the slots 211 are holes whose centers are located at predetermined intervals S on the surface of the metal tube 21 along the axial direction. “Each interval S” means that the center-to-center distance between adjacent slots 211 (hereinafter referred to as “slot distance”) is S.
- the predetermined interval S is substantially the same as the wavelength ⁇ .
- Each slot 211 is parallel to each other. For example, S is 35 mm when the frequency of the electromagnetic wave propagating through the metal tube 21 is 6 GHz.
- the shape of the slot 211 is a shape having a two-fold symmetry, is a line segment parallel to two symmetry axes orthogonal to the two-fold rotation axis, and has an end point that is an intersection of the slot circumscribed rectangle and the symmetry axis. Any shape may be used as long as one of the portions is longer than the other.
- the slot circumscribing rectangle is a rectangle that is larger than the slot 211 and that includes the slot 211 and that minimizes the gap with the slot 211.
- the shape of the slot 211 may be rectangular or oval, for example. Hereinafter, for simplicity of explanation, it is assumed that the shape of the slot 211 is rectangular.
- the length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave.
- the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
- the orientation of the rectangle circumscribing the slot may be any orientation as long as it obstructs the current flowing in the circumferential direction on the surface of the leaky waveguide 2.
- the long sides of the slot circumscribed rectangle are parallel to the axial direction.
- One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side.
- the other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
- the center of the slot 211 is the intersection of the plane or curved surface including the slot 211 and the two-fold rotation axis.
- the metal tube 21 may be made of any substance as long as it has a high electric conductivity, and may be made of copper, for example.
- the metal tube 21 may have any thickness, but in consideration of mechanical strength, it is preferably about 0.5 mm.
- the metal tube 21 may be laminated.
- the size of the cross section of the metal tube 21 corresponds to the cutoff frequency for the electromagnetic wave to be propagated.
- the cutoff frequency is expressed by the following equation (3).
- f c represents a cutoff frequency.
- D represents the length of the long side of the rectangle circumscribing the cross section.
- the length of the short side of the rectangle circumscribing the cross section is, for example, 25 mm.
- the metal tube 21 blocks electromagnetic waves having a frequency of 3 GHz or less. The electromagnetic wave propagating through the metal tube 21 is radiated to the outside from the slot 211.
- FIG. 20A and 20B are a top view and a cross-sectional view showing a specific shape of the metal tube 21 according to the second embodiment.
- FIG. 20A shows a top view of the metal tube 21.
- FIG. 20B shows a sectional view of the metal tube 21.
- the shape of the slot 211 is a rectangle whose major axis direction is parallel to the axial direction.
- the slot 211 is located not at the center of the surface of the metal tube 21 but at the end thereof.
- the central portion of the surface of the metal tube 21 passes through the point where the long bisector of the long side of the rectangle circumscribing the cross section intersects with the metal tube 21, and is an axis parallel to the axial direction (hereinafter referred to as "surface central axis").
- the end portion is an area other than the central portion of the surface of the metal tube 21.
- the point where the long bisector of the long side of the rectangle circumscribing the cross section and the metal tube 21 intersect is referred to as the central intersection point.
- the central portion is an area within a range of ( ⁇ 5/40) ⁇ length D to (+5/40) ⁇ length D in the radial direction centering on the surface center axis.
- the outer skin 22 is a polymer material such as polyethylene and covers the metal tube 21.
- FIG. 21A is a diagram showing an outline of the distribution of the surface current flowing on the surface of the waveguide.
- FIG. 21B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 21A and 21B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
- the magnetic field lines representing the direction of the magnetic field form a closed ring in the waveguide.
- the boundary condition in the rectangular waveguide is satisfied, so that the electric force line representing the electric field is oriented in the direction perpendicular to the magnetic field.
- the boundary condition in the rectangular waveguide is satisfied, so that a part of the surface current flows in the direction in which the electromagnetic wave propagates at a position near the center. Further, according to the Maxwell equation of the electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, a part of the surface current flows on the surface of the waveguide in a direction perpendicular to the propagation direction of the electromagnetic wave.
- FIG. 22 is a top view showing the outline of the distribution of the surface current of the metal tube 21 according to the second embodiment.
- the metal tube 21 is a rectangular waveguide.
- the surface current flowing into the slot 211 forms an electric field in the hole of the slot 211 that vibrates in the direction parallel to the short side of the slot 211 and that vibrates at the same frequency as the surface current.
- the slot 211 can be regarded as a virtual dipole moment that oscillates in a direction perpendicular to the axial direction. Therefore, the slot 211 radiates an electromagnetic wave polarized in a direction perpendicular to the axial direction. Further, since the inter-slot distance S is approximately the same as the wavelength ⁇ , the dipole moment vibration phases of the respective slots 211 are approximately the same.
- FIG. 23 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave radiated by the leaky waveguide 2 according to the second embodiment as seen from a cross-sectional direction.
- the cross-sectional direction is the direction in which the cross-sectional circumscribed rectangle is viewed from the axial position of the metal tube 21.
- the frequency of the electromagnetic wave in FIG. 23 is 5.6 GHz.
- the long side of the rectangle circumscribing the cross section is 50 mm, and the short side is 25 mm.
- the slot is located at a position of 15 mm in the radial direction of the metal tube 21 from the central intersection.
- maximum radiation direction is not 0°. Note that the direction of 0° is a direction in which the central intersection is viewed from the center of the rectangle circumscribing the cross section.
- FIG. 24 is an experimental result showing a difference in vertical polarization coupling loss due to a difference in arrangement of the slots 211 according to the second embodiment.
- vertical polarization means vertical polarization in the axial direction.
- the coupling loss is expressed by the following equation (4).
- L c represents a coupling loss.
- P in represents the input power to the leaky waveguide 2.
- P out represents the output power received by the receiving antenna.
- the receiving antenna is an antenna installed at a predetermined position with respect to the leaky waveguide 2 in order to measure the coupling loss.
- the receiving antenna is, for example, a half-wavelength dipole antenna.
- a leaky waveguide A is a leaky waveguide in which the centers of the slots 211 are at the central intersections, the center-to-center distances are substantially equal to a half wavelength, and the adjacent slots 211 are arranged alternately. Is.
- the staggering of the adjacent slots 211 means that the adjacent slots 211 are in opposite directions.
- the leaky waveguide A is a leaky waveguide whose slot shape and slot arrangement are the same as those of the conventional leaky waveguide.
- the long side of the slot 211 of the leaky waveguide A has a length of 10 mm, and the short side has a length of 2 mm.
- the center of the slot 211 is located at a position of 15 mm in the radial direction of the metal tube 21 from the center intersection point, the center-to-center distance is substantially equal to a half wavelength, and the adjacent slots are adjacent to each other.
- Reference numeral 211 is a leaky waveguide arranged alternately.
- the length of the long side of the slot 211 of the leaky waveguide B is 10 mm, and the length of the short side is 2 mm.
- the center of the slot 211 is located at a position of 15 mm in the radial direction of the metal tube 21 from the central intersection point, the center-to-center distance is substantially the same as the wavelength, and the adjacent slots 211 are adjacent to each other.
- the leaky waveguide C is the leaky waveguide 2.
- the length of the long side of the slot 211 of the leaky waveguide C is 13 mm, and the length of the short side is 2 mm.
- the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
- FIG. 24 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
- FIG. 24 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it can be seen that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of the slot 211 in the radial direction.
- the number of slots 211 of the leaky waveguide C is equal to This is half the number of slots 211 of the wave tube B. Further, the energy of the electromagnetic wave leaking from the slot of the leaky waveguide increases or decreases in proportion to the length of the long side of the slot.
- the length of the long side of the slot 211 of the leaky waveguide C is twice the length of the long side of the slot 211 of the leaky waveguide B, the energy of the electromagnetic wave leaking from the leaky waveguide C is The amount should be the same as the amount of energy of the electromagnetic wave leaking from the leaky waveguide B, and the coupling loss should be almost the same.
- the experimental result of FIG. 24 shows that the length of the long side of the slot 211 of the leaky waveguide C is 1.3 times the length of the long side of the slot 211 of the leaky waveguide B, which is 2 times or less. If so, the coupling loss of the leaky waveguide C is smaller than that of the leaky waveguide B.
- the slots 211 are parallel to each other when the positions of the slots 211 are displaced from the central intersection in the radial direction and the central tube distance of the slots 211 is substantially equal to the wavelength. This means that the effect of suppressing an increase in coupling loss is exerted.
- the distance between the centers of the slots 211 is the length of the wavelength, unlike the conventional leaky waveguide in which the distance between the centers of the slots is a half wavelength. Therefore, the distance between the centers of the slots is longer than that of the conventional leaky waveguide. Therefore, the leaky waveguide 2 can be provided with the slot 211 longer than the conventional one while maintaining the strength of the metal tube 21 against buckling.
- the leaky waveguide 2 has a length of, for example, 50 m or more. Therefore, when storing and transporting the leaky waveguide 2 to be laid, it is practical to store and transport the leaky waveguide 2 by winding it around a drum having a predetermined radius of curvature. In such a case, since stress is applied to the leaky waveguide 2, buckling may occur in the slot 211. Therefore, the buckling of the leaky waveguide 2 will be considered below.
- FIG. 25 is an explanatory diagram illustrating a drum used for storage and transportation of the leaky waveguide 2 according to the second embodiment.
- the leaky waveguide 2 is stored or transported while being wound around a drum having a diameter of 1400 mm.
- the diameter of the winding body of the drum around which the leaky waveguide 2 is wound is 1400 mm, but the diameter is not necessarily 1400 mm.
- the diameter of the winding body of the drum may be, for example, in the range of 1000 to 2000 mm.
- FIG. 26 is an experimental result showing the likelihood of buckling due to the difference in the position of the slot 211 according to the second embodiment.
- FIG. 26 shows a case where the slot 211 is bent so that the leaky waveguide 2 located at a position of 21 mm in the radial direction from the central intersection has a predetermined radius of curvature and the slot 211 has a radius of 24 mm in the radial direction from the central intersection.
- the values of VSWR (voltage standing wave ratio) when the leaky waveguide 2 positioned at a position is bent to have a predetermined radius of curvature are shown. As shown in FIG.
- FIG. 27A and 27B are explanatory views for explaining a mechanism in which buckling occurs in the slot 211.
- 27A and 27B it is assumed that the cross section has an oval shape for the sake of simplicity.
- FIG. 27A is an explanatory diagram illustrating a pressure applied to the slot 211 located in the central portion.
- FIG. 27B is an explanatory diagram illustrating the pressure applied to the slot 211 located at the end.
- 27A and 27B are side views of the metal tube 21.
- the metal tube 21 is curved in the short side direction (that is, the Z-axis direction). Due to the bending of the metal tube 21, compressive stress and tensile stress are applied to the slot 211. Buckling is caused by the difference between compressive stress and tensile stress.
- the difference in force is proportional to the difference in bending radius due to bending between the location where compressive stress is applied and the location where tensile stress is applied.
- the difference between the compressive stress and the tensile stress in FIG. 27A is proportional to the thickness of the surface of the metal tube 21.
- the force difference between the compressive stress and the tensile stress is substantially the same as 0.
- the difference between the compressive stress and the tensile stress in FIG. 27B is proportional to the length of the short side of the slot 211.
- the length of the short side of the slot 211 is thicker than the thickness of the surface of the metal tube 21.
- the length of the short side of the slot 211 is 25 mm, and the thickness of the surface of the metal tube 21 is 0.5 mm. Therefore, when the slot 211 is located at the end of the metal tube 21 as shown in FIG. 27B, the compressive stress and tensile force are higher than when the slot 211 is located at the center of the metal tube 21 as shown in FIG. 27A. The difference with the stress is large.
- the radial position of the slot 211 needs to be positioned at an appropriate position according to the diameter of the drum during transportation.
- the diameter of the drum during transportation is 1400 mm in consideration of actual operation.
- the radial position of the slot 211 is preferably in the range shown in FIG.
- the desirable radial position shown in FIG. 28 is the position of the slot 211 having the maximum radiation direction in a direction other than the direction of 0°, and the position of the slot 211 whose resistance to buckling is a predetermined strength or more.
- the predetermined strength is the strength that does not buckle against bending such that the radius of curvature is 700 mm.
- FIG. 28 is a diagram showing a radial position where the center of the slot 211 is preferably located according to the second embodiment.
- the slot 211 may be located anywhere as long as the center is located at a position finite distance in the radial direction from the central intersection.
- it is desirable that the center of the slot 211 is located at a position distant from the central intersection in the radial direction by 7/40 or more of the length of the long side of the rectangle circumscribing the section.
- the slot 211 is located at a position where buckling does not occur with bending such that the radius of curvature is 700 mm.
- a position is a position where the distance from the central intersection is within 19/40 of the length of the long side of the rectangle circumscribing the cross section.
- the radial position where the center of the slot 211 is preferably located is the position shown in FIG. That is, the radial position where the center of the slot 211 is preferably located is a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the cross section.
- FIG. 29 is a top view showing a specific example of the metal tube 21 having an L-shaped slot 211 according to the second embodiment. As shown in FIG. 29, the L-shape is a shape similar to the letter "L" of the alphabet. Such an L-shaped slot 211 produces a dipole moment in the radial and axial directions.
- FIG. 30 is a top view showing a specific example of the crank-shaped metal tube 21 having the slots 211 according to the second embodiment.
- the crank type slot 211 has a structure that is bent in a step shape on the surface of the metal tube 21 along the axial direction. Such a crank type slot 211 produces a dipole moment in the radial and axial directions.
- the metal tube 21 having the crank type slot 211 can generate not only the polarized wave in the radial direction (vertical polarized wave) but also the polarized wave in the axial direction (horizontal polarized wave). Therefore, the metal tube 21 having the crank type slot 211 has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave receiving side.
- FIG. 31 is a top view showing a specific example of the window-shaped metal tube 21 having the slot 211 according to the second embodiment.
- the window-shaped slot 211 has a shorter side length than that of the rectangular slot 211. Therefore, the effect of blocking the surface current along the axial direction is larger than that of the rectangular slot 211. Therefore, the window-shaped slot 211 produces a dipole moment in the radial direction and the axial direction. Since the dipole moment is generated in the radial direction and the axial direction, the metal tube 21 having the window-shaped slot 211 also generates the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can be made.
- the metal tube 21 having the window-shaped slot 211 has an effect that information can be transmitted without depending on the polarization direction of the antenna on the reception side of electromagnetic waves. Further, since such a window type has a long length in the radial direction, it has an effect that the manufacturer can easily process it.
- FIG. 32 is a top view showing a specific example of the metal tube 21 having an elliptical slot 211 according to the second embodiment. Since the elliptical slot 211 has a shorter side length than the rectangular slot 211, it produces a dipole moment in the radial direction and the axial direction like the window type slot 211. Therefore, the metal tube 21 having the elliptical slot 211 can generate polarization in the axial direction (horizontal polarization) in addition to polarization in the radial direction (vertical polarization). Therefore, the metal tube 21 having the elliptical slot 211 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
- such an elliptic shape has a long radial length, like the window shape, and therefore has the effect of being easily processed by the manufacturer. Further, such an elliptical shape is more rounded than the window type. Therefore, the oval-shaped slot 211 has an effect that a crack is less likely to be generated from the corner of the slot 211 than the window-shaped slot 211.
- the long sides of the slot circumscribed rectangle are parallel to the axial direction.
- the slot circumscribed rectangle does not necessarily need to have its long sides parallel to the axial direction.
- the slot circumscribed rectangle may be formed such that the long side is inclined at an angle with the axial direction.
- FIG. 33 is a top view showing a specific example of the metal tube 21 in which the slots 211 according to the second embodiment are rectangular and the long sides of the rectangle circumscribing the slots are not parallel to the axial direction.
- the rectangular slot 211 in which the long sides of such a slot-circumscribing rectangle are not parallel to the axial direction generates a dipole moment in the radial direction and the axial direction. Therefore, the metal tube 21 having the rectangular slot 211 in which the long sides of the slot-circumscribing rectangle are not parallel to the axial direction has the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can also be generated.
- the metal tube 21 having the rectangular slot 211 whose long side of the slot circumscribed rectangle is not parallel to the axial direction has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave receiving side.
- the shape of the slot 211 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. It may be oval.
- the metal tube 21 has only one slot 211 in the radial direction.
- the metal tube 21 does not necessarily need to include only one slot 211 in the radial direction.
- the metal tube 21 may include a plurality of slots 211 in the radial direction.
- a case where the metal tube 21 includes a plurality of slots 211 in the radial direction will be described. Further, hereinafter, for simplification of description, it is assumed that the metal tube 21 includes two slots 211 in the radial direction.
- the slot 211 close to the surface central axis is referred to as a slot 211-1 and the slot 211 far from the surface central axis is referred to as a slot 211-2. Further, hereinafter, when the slot 211-1 and the slot 211-2 are not distinguished, they are referred to as the slot 211.
- FIG. 34 is a top view showing a specific example of the metal tube 21 including the slots 211-1 and 211-2 according to the second embodiment.
- the distance h between the centers of the adjacent slots 211-1 and 211-2 in the radial direction is equal to or less than a half wavelength. Therefore, the phases of vibrations of the dipole moments excited in the slots 211-1 and 211-2 adjacent to each other in the radial direction are substantially the same.
- the intermediate distance S between the slots 211-1 and 211-2 that are axially adjacent to each other is substantially the same as the wavelength. Therefore, all the slots 211 provided in the metal tube 21 vibrate in substantially the same phase. Therefore, the electromagnetic waves radiated from each slot 211 of the metal tube 21 strengthen each other and become an electromagnetic wave with high coherence, which is radiated from the metal tube 21.
- the metal tube 21 does not need to have only two slots 211 in the radial direction, and may have three or more slots 211.
- the distance between the centers of the plurality of slots 211 provided in the radial direction is equal to or less than half the wavelength between the center of the slot 211 closest to the central intersection and the center of the slot 211 farthest from the central intersection. It is located at a position that satisfies the condition.
- the shape of the slot 211 in FIG. 34 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. The shape may be oval or elliptical.
- the centers of the plurality of slots 211 in the radial direction be located at a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the cross section.
- the leaky waveguide 2 including the plurality of slots 211 configured in the radial direction in this way has an effect of reducing the coupling loss as compared with the case where one slot 211 is provided in the radial direction.
- the leaky waveguide 2 according to the second embodiment configured as described above includes a plurality of slots 211 arranged at the ends at wavelength intervals, and thus can emit radio waves in directions other than 0°. it can. Therefore, for example, it is possible to suppress a decrease in communication efficiency in wireless communication with a moving body using the leaky waveguide 2 having a length of 50 m or more. Further, the leaky waveguide 2 configured as described above has an effect that it does not buckle during transportation even though it has a length of, for example, 50 m or more.
- the inside of the metal tube 21 does not necessarily have to be hollow.
- the inside of the metal tube 21 of the leaky waveguide 2 may be a dielectric that allows electromagnetic waves to pass therethrough.
- the surface of the metal tube 21 may have wavy unevenness along the axial direction.
- the metal tube 21 has wavy unevenness along the axial direction, it becomes possible to increase the angle of reversible bending in the direction of the long side of the circumscribed rectangle of the section as viewed from the center of the circumscribed rectangle of the section.
- the metal tube 21 does not necessarily have to have wavy unevenness in the propagation direction in the metal tube.
- a flat copper laminate strip is produced.
- the flat copper-laminated strip-shaped body wound around the drum of the delivery machine is continuously delivered to the forming part.
- This forming unit forms a circular forming machine for forming the copper laminate strip into a circular shape from the upstream side (feeding side of the copper laminate strip), and a flattened circular shape for the circular copper laminate strip. It has a flat forming machine.
- the copper laminate strip sent out to the forming part is curved by the circular forming part into a C shape, and one end edge and the other end edge in the width direction are overlapped to form a circular shape.
- the copper laminate strip is heated by a heater to heat-bond the joint part.
- the method of heat fusion may be any method, for example, arc welding may be used.
- the copper laminate strip is formed into an elliptical cross section by the flat forming part. In this way, the flat pipe body is formed.
- the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
- the flat pipe body having a flat circular cross section is then sent to a slot forming machine that forms slots 211.
- the slot forming machine forms the slots 211 by laser, punching, cutting or the like.
- the flat pipe body in which the slots 211 are formed is sent to the corrugating machine.
- the flat pipe body in which the slots 211 are formed has irregularities formed on its surface by a corrugating machine.
- the corrugating machine eccentrically fits the corrugating die onto the flat pipe body, externally fits the corrugated die, rotates the corrugating die, and sends the corrugating die in the longitudinal direction in synchronization with the rotation, thereby forming a (spiral) uneven wave.
- the corrugated flat pipe body is sent to a sinking die.
- the corrugated flat pipe body is formed into a predetermined cross section by a sinking die.
- the predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section.
- the flat pipe body formed by the sinking die is the metal pipe 21.
- the metal tube 21 is sent to the sheath extruder.
- the sheath extruder coats the outside of the metal tube 21 with a polymer material such as polyethylene.
- the polymer material that covers the metal tube 21 is the outer skin 22.
- the slot 211 is an example of the first opening and the second opening.
- the slot 211-1 is an example of the first opening.
- the slot 211-2 is an example of the second opening.
Landscapes
- Waveguide Aerials (AREA)
- Waveguides (AREA)
Abstract
A leaky waveguide is configured by forming metal tubes for propagating electromagnetic waves in such a manner that a cross-section thereof is a flat-circular shape and the metal tubes each have a first opening and a second opening with the distance between the centers of these openings being longer than a half-wave length. The plurality of first openings and second openings are mutually parallel. The plurality of first openings are positioned such that a line connecting the centers thereof is parallel to the axial direction of the metal tubes. The distance between the centers of adjacent ones of the plurality of first openings positioned such that the line connecting the centers thereof is parallel to the axial direction of the metal tubes is approximately equal to the wavelength of the electromagnetic waves. The plurality of second openings are positioned such that a line connecting the centers thereof is parallel to the axial direction of the metal tubes. The distance between the centers of adjacent ones of the plurality of second openings positioned such that the line connecting the centers thereof is parallel to the axial direction of the metal tubes is approximately equal to the wavelength of the electromagnetic waves.
Description
本発明は、漏洩導波管に関する。
本願は、2019年1月18日に日本に出願された特願2019-007323号及び2019年1月18日に日本に出願された特願2019-007340号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to leaky waveguides.
The present application claims priority based on Japanese Patent Application No. 2019-007323 filed in Japan on January 18, 2019 and Japanese Patent Application No. 2019-007340 filed in Japan on January 18, 2019, and its contents Is used here.
本願は、2019年1月18日に日本に出願された特願2019-007323号及び2019年1月18日に日本に出願された特願2019-007340号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to leaky waveguides.
The present application claims priority based on Japanese Patent Application No. 2019-007323 filed in Japan on January 18, 2019 and Japanese Patent Application No. 2019-007340 filed in Japan on January 18, 2019, and its contents Is used here.
自動車や電車等の移動体と、移動体の移動経路に沿って敷設された漏洩同軸ケーブルとの間の無線通信行う通信システムが知られている。これまで、このような無線通信の周波数帯域は、0.7GHz~2GHzであったが、近年、キャリア各社が3.5GHz帯を採用したり、2.4GHz帯あるいは5GHz帯のWi-Fiサービスの需要が増えたりなど、高周波帯域への対応が迫られている。しかしながら、例えば、5GHz帯のような高周波帯域では漏洩同軸ケーブルは損失が大きいため、漏洩同軸ケーブルに代えてより損失の小さい漏洩導波管(LWG:Leaky Wave Guide)を用いることが提案されている(図35参照)。
漏洩導波管は、導波管を構成する導体に開口部を備え、開口部を介して管の内部を伝搬する電波を管の外部へと漏洩させる中空の管である(特許文献1参照)。従来の漏洩導波管は、このような移動体と漏洩導波管との間の無線通信に用いられることがなかったため、漏洩導波管の長さは、数メートル程度の長さであった。しかしながら、このような移動体と漏洩導波管との間の無線通信に漏洩導波管を用いる場合、敷設作業の効率の観点から、長さが数十~数百メートルの長尺の漏洩導波管が望ましい。そのため、従来の漏洩導波管よりも長い漏洩導波管の製造へのニーズが高まっている。
しかしながら、このような長尺の漏洩導波管を使用する場合、単に、従来と同様の構造の漏洩導波管を製造するだけでは上記の無線通信を十分に実現することは難しい。 There is known a communication system for performing wireless communication between a moving body such as an automobile or a train and a leaky coaxial cable laid along a moving route of the moving body. Until now, the frequency band of such wireless communication has been 0.7 GHz to 2 GHz, but in recent years, carrier companies have adopted the 3.5 GHz band, or the Wi-Fi service of the 2.4 GHz band or the 5 GHz band. With increasing demand, there is an urgent need to support high frequency bands. However, for example, in a high frequency band such as a 5 GHz band, a loss in a leaky coaxial cable is large. Therefore, it is proposed to use a leaky waveguide (LWG: Leaky Wave Guide) having a smaller loss in place of the leaky coaxial cable. (See FIG. 35).
A leaky waveguide is a hollow tube that has an opening in a conductor that constitutes the waveguide and allows electric waves propagating inside the tube to leak to the outside of the tube through the opening (see Patent Document 1). .. Since the conventional leaky waveguide has never been used for wireless communication between such a moving body and the leaky waveguide, the length of the leaky waveguide is about several meters. .. However, when a leaky waveguide is used for wireless communication between such a moving body and the leaky waveguide, a long leaky guide having a length of several tens to several hundred meters is used from the viewpoint of the efficiency of the laying work. Wave tubes are preferred. Therefore, there is an increasing need for manufacturing a leaky waveguide longer than the conventional leaky waveguide.
However, when such a long leaky waveguide is used, it is difficult to sufficiently realize the above wireless communication simply by manufacturing a leaky waveguide having a structure similar to the conventional one.
漏洩導波管は、導波管を構成する導体に開口部を備え、開口部を介して管の内部を伝搬する電波を管の外部へと漏洩させる中空の管である(特許文献1参照)。従来の漏洩導波管は、このような移動体と漏洩導波管との間の無線通信に用いられることがなかったため、漏洩導波管の長さは、数メートル程度の長さであった。しかしながら、このような移動体と漏洩導波管との間の無線通信に漏洩導波管を用いる場合、敷設作業の効率の観点から、長さが数十~数百メートルの長尺の漏洩導波管が望ましい。そのため、従来の漏洩導波管よりも長い漏洩導波管の製造へのニーズが高まっている。
しかしながら、このような長尺の漏洩導波管を使用する場合、単に、従来と同様の構造の漏洩導波管を製造するだけでは上記の無線通信を十分に実現することは難しい。 There is known a communication system for performing wireless communication between a moving body such as an automobile or a train and a leaky coaxial cable laid along a moving route of the moving body. Until now, the frequency band of such wireless communication has been 0.7 GHz to 2 GHz, but in recent years, carrier companies have adopted the 3.5 GHz band, or the Wi-Fi service of the 2.4 GHz band or the 5 GHz band. With increasing demand, there is an urgent need to support high frequency bands. However, for example, in a high frequency band such as a 5 GHz band, a loss in a leaky coaxial cable is large. Therefore, it is proposed to use a leaky waveguide (LWG: Leaky Wave Guide) having a smaller loss in place of the leaky coaxial cable. (See FIG. 35).
A leaky waveguide is a hollow tube that has an opening in a conductor that constitutes the waveguide and allows electric waves propagating inside the tube to leak to the outside of the tube through the opening (see Patent Document 1). .. Since the conventional leaky waveguide has never been used for wireless communication between such a moving body and the leaky waveguide, the length of the leaky waveguide is about several meters. .. However, when a leaky waveguide is used for wireless communication between such a moving body and the leaky waveguide, a long leaky guide having a length of several tens to several hundred meters is used from the viewpoint of the efficiency of the laying work. Wave tubes are preferred. Therefore, there is an increasing need for manufacturing a leaky waveguide longer than the conventional leaky waveguide.
However, when such a long leaky waveguide is used, it is difficult to sufficiently realize the above wireless communication simply by manufacturing a leaky waveguide having a structure similar to the conventional one.
その実現の難しさを説明するにあたって、まず従来の漏洩導波管の特徴を2つ説明する。
1つ目の特徴(以下「特徴1」という。)は、従来の漏洩導波管の断面の多くは、所定の長方形に外接する長円形や楕円形の形状であって、開口部が所定の長方形の長辺の中央付近に位置するという特徴である。
開口部から放射される電波が最も強い強度で伝搬する方向である最大輻射方向は、漏洩導波管の断面の中心から開口部を見た方向である。最大輻射方向とは、開口部から放射される電波が最も強い強度で伝搬する方向である。
2つ目の特徴(以下「特徴2」という。)は、従来の漏洩導波管は、座屈することなく軸方向に曲がるということである。ただし、従来の漏洩導波管は、曲がる方向が決まっている。従来の漏洩導波管の軸が曲がる方向は、所定の長方形の中心から見た所定の長方形の長辺の方向である。 In explaining the difficulty of realizing it, first, two characteristics of the conventional leaky waveguide will be described.
The first feature (hereinafter referred to as “feature 1”) is that most of the cross sections of conventional leaky waveguides have an oval shape or an elliptical shape circumscribing a predetermined rectangle, and the opening has a predetermined shape. The feature is that it is located near the center of the long side of the rectangle.
The maximum radiation direction, which is the direction in which the radio wave radiated from the opening propagates with the highest intensity, is the direction in which the opening is viewed from the center of the cross section of the leaky waveguide. The maximum radiation direction is the direction in which the radio wave emitted from the opening propagates with the strongest intensity.
The second feature (hereinafter referred to as "feature 2") is that the conventional leaky waveguide bends in the axial direction without buckling. However, the conventional leaky waveguide has a fixed bending direction. The direction in which the axis of the conventional leaky waveguide bends is the direction of the long side of the predetermined rectangle viewed from the center of the predetermined rectangle.
1つ目の特徴(以下「特徴1」という。)は、従来の漏洩導波管の断面の多くは、所定の長方形に外接する長円形や楕円形の形状であって、開口部が所定の長方形の長辺の中央付近に位置するという特徴である。
開口部から放射される電波が最も強い強度で伝搬する方向である最大輻射方向は、漏洩導波管の断面の中心から開口部を見た方向である。最大輻射方向とは、開口部から放射される電波が最も強い強度で伝搬する方向である。
2つ目の特徴(以下「特徴2」という。)は、従来の漏洩導波管は、座屈することなく軸方向に曲がるということである。ただし、従来の漏洩導波管は、曲がる方向が決まっている。従来の漏洩導波管の軸が曲がる方向は、所定の長方形の中心から見た所定の長方形の長辺の方向である。 In explaining the difficulty of realizing it, first, two characteristics of the conventional leaky waveguide will be described.
The first feature (hereinafter referred to as “
The maximum radiation direction, which is the direction in which the radio wave radiated from the opening propagates with the highest intensity, is the direction in which the opening is viewed from the center of the cross section of the leaky waveguide. The maximum radiation direction is the direction in which the radio wave emitted from the opening propagates with the strongest intensity.
The second feature (hereinafter referred to as "
このような漏洩導波管を移動体の移動経路に沿って設置する場合、通信効率の点から、最大輻射方向が開口部から見た移動体の方向に略一致することが望ましい。そのため、漏洩導波管は、移動体の方向に開口部を向けた状態で設置される。このような場合、漏洩導波管を設置する作業員は、単に予め定められた向きに漏洩導波管を設置すればよいのではない。このような作業員は、開口部の位置を探し出し、開口部が移動体の方向に向くように漏洩導波管の設置先に応じた漏洩導波管の設置をする必要がある。そのため、漏洩導波管の設置に係る作業員の負担が増大する場合があった。
When installing such a leaky waveguide along the moving path of a moving body, it is desirable from the viewpoint of communication efficiency that the maximum radiation direction be approximately the same as the direction of the moving body seen from the opening. Therefore, the leaky waveguide is installed with the opening facing the moving body. In such a case, the worker who installs the leaky waveguide does not have to simply install the leaky waveguide in a predetermined direction. Such a worker needs to find the position of the opening and install the leaky waveguide according to the installation location of the leaky waveguide so that the opening faces the direction of the moving body. Therefore, the burden on the worker for installing the leaky waveguide may increase.
このような漏洩導波管を移動体の移動経路に沿って設置する場合、開口部を移動体の方向に向けて設置することに係る作業員の負担以外にも、課題がある。移動体が直進するだけであれば、予め移動体の方向に開口部を向けて、漏洩導波管を設置すればよい。しかしながら、移動体は、必ずしも直進するだけではなく、カーブする場合もある。このような場合、漏洩導波管は曲がった状態で設置される必要がある。上記のように、漏洩導波管は、所定の長方形の中心から見た所定の長方形の長辺の方向にしか曲がらない(上記特徴2)。そのため、漏洩導波管は所定の長方形の長辺が移動体の方向を向くように設置される必要がある。このように漏洩導波管を設置することで、漏洩導波管を移動体の移動経路に沿って設置することができる。しかしながら、特徴1のため、従来の漏洩導波管では、必ずしも、最大輻射方向が開口部から見た移動体の方向に略一致であるようにすることはできない。漏洩導波管が敷設される箇所(以下、敷設先と称する)の事情により、後述するような問題がある。例えば、カーブ区間を有する敷設先であって移動体の斜め上の位置にしか設置できない敷設先に漏洩導波管を設置する必要が考えられる。この場合、漏洩導波管を移動体の移動経路に沿って設置するためには、従来の漏洩導波管は、漏洩導波管の所定の長方形の長辺が移動体の方向を向くように設置される必要がある。なお、カーブ区間とは、移動体がカーブする区間である。しかしながら、このような場合、従来の漏洩導波管が特徴1を有するため、開口部は、最大輻射方向が移動体の真上を横切る方向になる。そのため、最大輻射方向が開口部から見た移動体の方向に略一致する場合よりも通信効率が低下する場合がある。
When installing such a leaky waveguide along the moving path of a moving body, there are problems other than the burden on the worker who installs the opening toward the moving body. If the moving body only travels straight, it suffices to install the leaky waveguide with the opening facing the moving body in advance. However, the moving body may not only go straight, but may curve. In such a case, the leaky waveguide needs to be installed in a bent state. As described above, the leaky waveguide bends only in the direction of the long side of the predetermined rectangle viewed from the center of the predetermined rectangle (Feature 2 above). Therefore, the leaky waveguide needs to be installed so that the long side of a predetermined rectangle faces the direction of the moving body. By installing the leaky waveguide in this way, the leaky waveguide can be installed along the movement path of the moving body. However, due to the characteristic 1, in the conventional leaky waveguide, it is not always possible to make the maximum radiation direction substantially coincide with the direction of the moving body viewed from the opening. There is a problem to be described later due to the situation where the leaky waveguide is laid (hereinafter referred to as the laying destination). For example, it is conceivable to install the leaky waveguide at a laying destination having a curved section that can be installed only at a position diagonally above the moving body. In this case, in order to install the leaky waveguide along the moving path of the moving body, the conventional leaky waveguide is such that the long side of a predetermined rectangle of the leaky waveguide faces the moving body. Need to be installed. The curve section is a section in which the moving body curves. However, in such a case, since the conventional leaky waveguide has the feature 1, the maximum radiation direction is in the direction in which the maximum radiation direction crosses directly above the moving body. Therefore, the communication efficiency may be lower than that when the maximum radiation direction is substantially the same as the direction of the moving body viewed from the opening.
上記事情に鑑み、本発明は、移動体の移動経路に沿って設置される漏洩導波管であって、移動体と漏洩導波管との間の無線通信における通信効率の低下を抑制する漏洩導波管を提供することを目的としている。
In view of the above circumstances, the present invention relates to a leaky waveguide installed along a moving path of a moving body, which suppresses a decrease in communication efficiency in wireless communication between the moving body and the leaky waveguide. It is intended to provide a waveguide.
本発明の一態様に係る漏洩導波管は、ドラムに巻かれて保管、運搬される漏洩導波管であって、電磁波を伝搬させる金属管を備え、前記金属管は、前記電磁波を漏洩させる複数の開口部を有し、前記金属管の断面の形状は、横断面偏平円形状に略同一の形状であって、前記横断面偏平円形状に略同一の形状に外接する長方形の長辺の垂直二等分線と前記金属管の表面との交点は、中央交点であり、前記複数の開口部の各々の中心と前記中央交点との間の距離は、0より大きな距離であり、前記複数の開口部の一部である第1開口部と、前記複数の開口部の残りである第2開口部との中心間の距離は、半波長より長く、前記第1開口部の個数と前記第2開口部の個数とは、それぞれ複数であって、前記複数の第1開口部は、互いに平行であって、前記複数の第2開口部は、互いに平行であって、前記複数の第1開口部は、中心間を結ぶ線が前記金属管の軸方向に平行に位置し、中心間を結ぶ線が前記金属管の前記軸方向に平行である前記複数の第1開口部のうち隣り合う前記第1開口部の中心間の距離は、前記電磁波の波長に略同一であって、前記複数の第2開口部は、中心間を結ぶ線が前記金属管の前記軸方向に平行に位置し、中心間を結ぶ線が前記金属管の前記軸方向に平行である前記複数の第2開口部のうち隣り合う前記第2開口部の中心間の距離は、前記電磁波の波長に略同一である。
A leaky waveguide according to one aspect of the present invention is a leaky waveguide wound around a drum for storage and transportation, and includes a metal tube that propagates electromagnetic waves, and the metal tube leaks the electromagnetic waves. The shape of the cross section of the metal pipe having a plurality of openings is substantially the same as a flat circular cross section, and the long side of a rectangle circumscribing the flat circular shape is substantially the same. An intersection of the vertical bisector and the surface of the metal tube is a central intersection, and a distance between the center of each of the plurality of openings and the central intersection is greater than 0. The distance between the centers of the first openings, which are a part of the openings, and the second openings, which are the rest of the plurality of openings, is longer than a half wavelength, and the number of the first openings and the The number of two openings is plural, respectively, the plurality of first openings are parallel to each other, the plurality of second openings are parallel to each other, and the plurality of first openings are parallel to each other. The part has a line connecting the centers located parallel to the axial direction of the metal pipe, and a line connecting the centers parallel to the axial direction of the metal pipe, among the plurality of first openings adjacent to each other. The distance between the centers of the first openings is substantially the same as the wavelength of the electromagnetic wave, and the plurality of second openings have a line connecting the centers positioned parallel to the axial direction of the metal tube, The distance between the centers of the adjacent second openings among the plurality of second openings in which the line connecting the centers is parallel to the axial direction of the metal tube is substantially the same as the wavelength of the electromagnetic wave.
本発明の一態様に係る漏洩導波管においては、前記第1開口部は、前記長方形の中心を原点とする座標系であって前記原点を通って前記長方形の短辺に平行な軸をQ軸とする座標系であるQ座標系においてQ座標の値が0又は正の空間である第1空間内に位置し、前記第2開口部は、前記Q座標の値が負の空間である第2空間内に位置してもよい。
In the leaky waveguide according to one aspect of the present invention, the first opening is a coordinate system having an origin at the center of the rectangle, and an axis Q passing through the origin and parallel to the short side of the rectangle is Q. In the Q coordinate system which is the coordinate system of the axis, the Q coordinate value is located in the first space which is 0 or a positive space, and the second opening is a space where the Q coordinate value is a negative space. It may be located in two spaces.
本発明の一態様に係る漏洩導波管においては、前記第1開口部の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離であり、前記第2開口部の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離であってもよい。
In the leaky waveguide according to one aspect of the present invention, the distance between the center of the first opening and the central intersection is within 19/40 of the long side, and the second opening is formed. The distance between the center and the central intersection may be within 19/40 of the long side.
本発明の一態様に係る漏洩導波管においては、前記第1開口部の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離であり、前記第2開口部の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離であってもよい。
In the leaky waveguide according to one aspect of the present invention, the distance between the center of the first opening and the central intersection is 7/40 or more of the long side, and the second opening is formed. The distance between the center of and the central intersection may be 7/40 or more of the long side.
本発明の一態様に係る漏洩導波管においては、前記金属管は、前記電磁波を漏洩させる複数の第3開口部をさらに有し、前記複数の第3開口部の各々は、前記第1開口部と同様の形状であって、前記複数の第3開口部の各々は、前記第1開口部に平行であって、前記複数の第3開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、前記第1開口部の中心と、前記複数の第3開口部の各々の中心との間の距離は、半波長より短くてもよい。
In the leaky waveguide according to one aspect of the present invention, the metal tube further has a plurality of third openings for leaking the electromagnetic waves, and each of the plurality of third openings is the first opening. Each of the plurality of third openings is parallel to the first opening and has a shape similar to that of the portion between the center of each of the plurality of third openings and the central intersection point. Is greater than 0, and the distance between the center of the first opening and the center of each of the plurality of third openings may be less than half a wavelength.
本発明の一態様に係る漏洩導波管においては、前記金属管は、前記電磁波を漏洩させる複数の第4開口部をさらに有し、前記複数の第4開口部の各々は、前記第2開口部と同様の形状であって、前記複数の第4開口部の各々は、前記第2開口部に平行であって、前記複数の第4開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、前記複数の第4開口部の各々の中心と、前記第2開口部の中心との間の距離は、半波長より短くてもよい。
In the leaky waveguide according to one aspect of the present invention, the metal tube further has a plurality of fourth openings for leaking the electromagnetic waves, and each of the plurality of fourth openings is the second opening. Each of the plurality of fourth openings is parallel to the second opening and has a shape similar to that of the portion between the center of each of the plurality of fourth openings and the central intersection point. May be greater than 0, and the distance between the center of each of the plurality of fourth openings and the center of the second opening may be less than half a wavelength.
本発明の一態様に係る漏洩導波管においては、前記金属管の表面は、前記金属管の前記軸方向に沿って波状の凹凸を有してもよい。
In the leaky waveguide according to one aspect of the present invention, the surface of the metal tube may have wavy unevenness along the axial direction of the metal tube.
本発明の一態様に係る漏洩導波管においては、前記移動経路がカーブを有し、前記金属管は、前記軸方向が前記移動経路に略平行であるように曲げられてもよい。
In the leaky waveguide according to one aspect of the present invention, the movement path may have a curve, and the metal tube may be bent so that the axial direction is substantially parallel to the movement path.
本発明の一態様に係る漏洩導波管は、ドラムに巻かれて保管、運搬される漏洩導波管であって、電磁波を伝搬させる金属管を備え、前記金属管は、前記電磁波を漏洩させる複数の第1開口部を有し、前記金属管の断面の形状は、横断面偏平円形状に略同一の形状であって、前記横断面偏平円形状に略同一の形状に外接する長方形の長辺の垂直二等分線と前記金属管の表面との交点は、中央交点であり、前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、0より大きな距離であり、前記複数の第1開口部は、互いに平行であって、前記複数の第1開口部のうち隣り合う前記第1開口部の中心間を結ぶ線は、前記金属管の軸方向に平行であって、前記複数の第1開口部のうち隣り合う前記第1開口部の中心間の距離は、前記電磁波の波長に略同一である。
A leaky waveguide according to one aspect of the present invention is a leaky waveguide wound around a drum for storage and transportation, and includes a metal tube that propagates electromagnetic waves, and the metal tube leaks the electromagnetic waves. The metal tube has a plurality of first openings, and the shape of the cross section of the metal pipe is substantially the same as a flat circular cross section, and the length of a rectangle circumscribing the flat circular shape is substantially the same. The intersection of the vertical bisector of the side and the surface of the metal tube is the center intersection, and the distance between the center of each of the plurality of first openings and the center intersection is greater than 0. And the plurality of first openings are parallel to each other, and the line connecting the centers of the adjacent first openings of the plurality of first openings is parallel to the axial direction of the metal pipe. Therefore, the distance between the centers of the adjacent first openings of the plurality of first openings is substantially the same as the wavelength of the electromagnetic wave.
本発明の一態様に係る漏洩導波管においては、前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離であってもよい。
In the leaky waveguide according to one aspect of the present invention, the distance between the center of each of the plurality of first openings and the central intersection may be within 19/40 of the long side. Good.
本発明の一態様に係る漏洩導波管においては、前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離であってもよい。
In the leaky waveguide according to an aspect of the present invention, the distance between the center of each of the plurality of first openings and the central intersection may be 7/40 or more of the long sides. Good.
本発明の一態様に係る漏洩導波管においては、前記金属管は、前記電磁波を漏洩させる複数の第2開口部をさらに有し、前記複数の第2開口部の各々は、前記第1開口部と同様の形状であって、前記複数の第2開口部の各々は、前記第1開口部に平行であって、前記複数の第2開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、前記複数の第2開口部の各々の中心と、前記第1開口部の中心との間の距離は、半波長より短くてもよい。
In the leaky waveguide according to one aspect of the present invention, the metal tube further has a plurality of second openings for leaking the electromagnetic waves, and each of the plurality of second openings is the first opening. Each of the plurality of second openings is parallel to the first opening, and has a shape similar to that of the portion between the center of each of the plurality of second openings and the central intersection point. May be greater than 0, and the distance between the center of each of the plurality of second openings and the center of the first opening may be less than half a wavelength.
本発明の一態様に係る漏洩導波管においては、前記金属管の表面は、前記金属管の前記軸方向に沿って波状の凹凸を有してもよい。
In the leaky waveguide according to one aspect of the present invention, the surface of the metal tube may have wavy unevenness along the axial direction of the metal tube.
本発明の一態様に係る漏洩導波管においては、前記移動経路がカーブを有し、前記金属管は、前記軸方向が前記移動経路に略平行であるように曲げられてもよい。
In the leaky waveguide according to one aspect of the present invention, the movement path may have a curve, and the metal tube may be bent so that the axial direction is substantially parallel to the movement path.
上述した本発明の態様により、移動体の移動経路に沿って設置される漏洩導波管であって移動体との間の無線通信における通信効率の低下を抑制することが可能な漏洩導波管を提供することができる。
According to the above-described aspect of the present invention, a leaky waveguide that is installed along a moving path of a moving body and is capable of suppressing a decrease in communication efficiency in wireless communication with the moving body. Can be provided.
(第1実施形態)
図1は、本発明の第1実施形態に係る漏洩導波管1の具体的な構成を示す一部破断斜視図である。漏洩導波管1は、例えば、移動体の移動経路等に沿って設置される長尺の導波管であって、長大なエリアに対して電磁波を伝搬するとともに均一に輻射することが可能な導波管である。本発明の第1実施形態に係る漏洩導波管1は、例えば、4~6GHzの電磁波において用いることができる。漏洩導波管1は、金属管11及び外皮12を備える。漏洩導波管1の軸方向の長さは、例えば、50m以上である。漏洩導波管1の軸方向に平行な方向は、移動体の移動経路に略平行な方向である。なお、移動経路は、カーブを有してもよい。 (First embodiment)
FIG. 1 is a partially cutaway perspective view showing a specific configuration of aleaky waveguide 1 according to the first embodiment of the present invention. The leaky waveguide 1 is, for example, a long waveguide installed along a moving path of a moving body, and can propagate an electromagnetic wave to a long area and radiate it uniformly. It is a waveguide. The leaky waveguide 1 according to the first embodiment of the present invention can be used in an electromagnetic wave of 4 to 6 GHz, for example. The leaky waveguide 1 includes a metal tube 11 and an outer cover 12. The axial length of the leaky waveguide 1 is, for example, 50 m or more. The direction parallel to the axial direction of the leaky waveguide 1 is a direction substantially parallel to the movement path of the moving body. The movement route may have a curve.
図1は、本発明の第1実施形態に係る漏洩導波管1の具体的な構成を示す一部破断斜視図である。漏洩導波管1は、例えば、移動体の移動経路等に沿って設置される長尺の導波管であって、長大なエリアに対して電磁波を伝搬するとともに均一に輻射することが可能な導波管である。本発明の第1実施形態に係る漏洩導波管1は、例えば、4~6GHzの電磁波において用いることができる。漏洩導波管1は、金属管11及び外皮12を備える。漏洩導波管1の軸方向の長さは、例えば、50m以上である。漏洩導波管1の軸方向に平行な方向は、移動体の移動経路に略平行な方向である。なお、移動経路は、カーブを有してもよい。 (First embodiment)
FIG. 1 is a partially cutaway perspective view showing a specific configuration of a
金属管11は、金属素材でできた中空の管である。金属管11は、電磁波を伝搬させる。電磁波は、金属管11の中空箇所を金属管11の軸方向に伝搬する。金属管11の断面の形状は、横断面偏平円形状に略同一の形状である。断面は、金属管11の軸方向に垂直な面である。金属管11の横断面偏平円形状に略同一の形状は、長辺及び短辺の長さが所定の条件を満たす長方形(以下「断面外接長方形」という。)に外接される。断面外接長方形は、例えば、長辺と短辺との長さの比が2:1に略同一である長方形である。断面外接長方形は、例えば、金属管11を伝搬する電磁波の波長が54mmである場合に、長辺が50mmであって、短辺が25mmの長方形であってもよい。
The metal tube 11 is a hollow tube made of a metal material. The metal tube 11 propagates electromagnetic waves. The electromagnetic wave propagates through the hollow portion of the metal tube 11 in the axial direction of the metal tube 11. The shape of the cross section of the metal tube 11 is substantially the same as a flat circular cross section. The cross section is a plane perpendicular to the axial direction of the metal tube 11. The shape of the flat cross-section of the metal tube 11 that is substantially the same as the flat cross-section is circumscribed in a rectangle (hereinafter referred to as a “circumscribed rectangle in cross section”) in which the lengths of the long sides and the short sides satisfy predetermined conditions. The circumscribed rectangle in cross section is, for example, a rectangle in which the ratio of the length of the long side to the length of the short side is approximately equal to 2:1. The rectangle circumscribing the cross section may be, for example, a rectangle having a long side of 50 mm and a short side of 25 mm when the wavelength of the electromagnetic wave propagating through the metal tube 11 is 54 mm.
図2は、第1実施形態に係る金属管11の断面の形状の具体例を示す図である。
金属管11の断面の形状は、図2(a)に示す長方形であってもよい。金属管11の断面の形状は、図2(b)に示す角丸長方形であってもよい。金属管11の断面の形状は、図2(c)に示す長円形であってもよい。金属管11の断面の形状は、図2(d)に示す、楕円形であってもよい。金属管11の断面の形状は、図2(e)に示す、リッジ形であってもよい。金属管11の断面の形状は、図2(f)に示す、ピーナッツ形(peanut shape)であってもよい。 FIG. 2 is a diagram showing a specific example of the cross-sectional shape of themetal tube 11 according to the first embodiment.
The shape of the cross section of themetal tube 11 may be a rectangle shown in FIG. The shape of the cross section of the metal tube 11 may be a rounded rectangle shown in FIG. The shape of the cross section of the metal tube 11 may be an elliptical shape shown in FIG. The shape of the cross section of the metal tube 11 may be an ellipse as shown in FIG. The shape of the cross section of the metal tube 11 may be a ridge shape as shown in FIG. The shape of the cross section of the metal tube 11 may be a peanut shape shown in FIG.
金属管11の断面の形状は、図2(a)に示す長方形であってもよい。金属管11の断面の形状は、図2(b)に示す角丸長方形であってもよい。金属管11の断面の形状は、図2(c)に示す長円形であってもよい。金属管11の断面の形状は、図2(d)に示す、楕円形であってもよい。金属管11の断面の形状は、図2(e)に示す、リッジ形であってもよい。金属管11の断面の形状は、図2(f)に示す、ピーナッツ形(peanut shape)であってもよい。 FIG. 2 is a diagram showing a specific example of the cross-sectional shape of the
The shape of the cross section of the
以下、説明の簡単のため、金属管11の断面の形状は、長方形又は長円形であると仮定する。
For simplicity of explanation, it is assumed below that the shape of the cross section of the metal tube 11 is a rectangle or an oval.
図1の説明に戻る。金属管11の断面は、断面外接長方形に内接する形状であるため、金属管11は、軸方向に沿って断面外接長方形の中心から見た断面外接長方形の長辺の方向への可逆的な湾曲が可能である。断面外接長方形の中心から見た断面外接長方形の長辺の方向とは、断面外接長方形の短辺に平行な方向である。以下、断面外接長方形の中心から見た断面外接長方形の長辺の方向を、短辺方向という。
Return to the explanation of Figure 1. Since the cross section of the metal pipe 11 is inscribed in the cross-section circumscribed rectangle, the metal pipe 11 is reversibly curved in the direction of the long side of the cross-section circumscribed rectangle viewed from the center of the cross-section circumscribed rectangle along the axial direction. Is possible. The direction of the long side of the rectangle circumscribing the cross section viewed from the center of the rectangle circumscribing the cross section is the direction parallel to the short side of the rectangle circumscribing the cross section. Hereinafter, the direction of the long side of the rectangle circumscribing the section viewed from the center of the rectangle circumscribing the section is referred to as the direction of the short side.
金属管11は、表面に複数のスロット111を有する。複数のスロット111の一部(第1スロット)は、第1空間内の金属管11の表面に位置し、複数のスロット111の残り(第2スロット)は、第2空間内の金属管11の表面に位置する。第1空間は、断面外接長方形の中心を原点とする座標系であって原点を通って断面外接長方形の短辺に平行な軸をQ軸とする座標系(以下「Q座標系」という。)において、Q座標の値が0又は正の空間である。第2空間は、Q座標の値が負の空間である。
The metal tube 11 has a plurality of slots 111 on its surface. Some of the plurality of slots 111 (first slots) are located on the surface of the metal pipe 11 in the first space, and the rest of the plurality of slots 111 (second slots) are of the metal pipe 11 in the second space. Located on the surface. The first space is a coordinate system whose origin is the center of the rectangle circumscribing the cross section, and whose coordinate axis is the axis parallel to the short side of the rectangle circumscribing the cross section through the origin (hereinafter referred to as "Q coordinate system"). In, the value of the Q coordinate is 0 or a positive space. The second space is a space in which the value of the Q coordinate is negative.
第1空間内に位置するスロット111の個数は、複数である。第2空間内に位置するスロット111の個数は、複数である。第1空間内に位置するスロット111は、略同一の面上に位置する。
第2空間内に位置するスロット111は、略同一の面上に位置する。
第1空間内に位置するスロット111と、第2空間内に位置するスロット111との中心間の距離は、半波長以上である。
以下、説明の簡単のため、第1空間内の表面に位置するスロット111について説明するが、この説明は、第2空間内の表面に位置するスロット111についても同様に適用される。 The number ofslots 111 located in the first space is plural. The number of slots 111 located in the second space is plural. The slots 111 located in the first space are located on substantially the same plane.
Theslots 111 located in the second space are located on substantially the same plane.
The distance between the centers of theslot 111 located in the first space and the slot 111 located in the second space is half a wavelength or more.
For simplicity of description, theslot 111 located on the surface in the first space will be described below, but the description is similarly applied to the slot 111 located on the surface in the second space.
第2空間内に位置するスロット111は、略同一の面上に位置する。
第1空間内に位置するスロット111と、第2空間内に位置するスロット111との中心間の距離は、半波長以上である。
以下、説明の簡単のため、第1空間内の表面に位置するスロット111について説明するが、この説明は、第2空間内の表面に位置するスロット111についても同様に適用される。 The number of
The
The distance between the centers of the
For simplicity of description, the
スロット111は、中心が軸方向に沿って金属管11の表面に所定の間隔Sごとに位置する孔である。間隔Sごととは、隣り合うスロット111の中心間の距離(以下「スロット間距離」という。)がSという意味である。所定の間隔Sは、波長λに略同一である。
各スロット111は、互いに平行である。Sは、例えば、金属管11を伝搬する電磁波の周波数が6GHzであれば、35mmである。 Theslots 111 are holes whose centers are located at predetermined intervals S on the surface of the metal tube 11 along the axial direction. “Each interval S” means that the distance between the centers of the adjacent slots 111 (hereinafter referred to as “slot distance”) is S. The predetermined interval S is substantially the same as the wavelength λ.
Eachslot 111 is parallel to each other. S is 35 mm, for example, if the frequency of the electromagnetic wave propagating through the metal tube 11 is 6 GHz.
各スロット111は、互いに平行である。Sは、例えば、金属管11を伝搬する電磁波の周波数が6GHzであれば、35mmである。 The
Each
スロット111の形状は、2回対称性を有する形状であって、2回回転軸に直交する2つの対称軸に平行な線分であって端点がスロット外接長方形と対称軸との交点である線分の一方が他方より長い形状であれば、どのような形状であってもよい。スロット外接長方形は、スロット111より大きくスロット111を包含する長方形であってスロット111との隙間を最小にする長方形である。スロット111の形状は、例えば、長方形であってもよいし、長円形であってもよい。以下、説明の簡単のため、スロット111の形状が長方形であると仮定する。
なお、スロット外接長方形の長辺と短辺の長さとは、電磁波の周波数に応じてどのような長さであってもよいが、例えば、電磁波の周波数が6GHzの場合、長辺の長さが10mmであって、短辺の長さが2mmであってもよい。
なお、スロット外接長方形の向きは、漏洩導波管1の表面を周方向に流れる電流を妨げる向きであれば、どのような向きであってもよい。
以下説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定する。
対称軸に平行な線分の一方(第1線分)は、スロット外接長方形の長辺に平行であって長辺と同じ長さである。対称軸に平行な線分の他方(第2線分)は、スロット外接長方形の短辺に平行であって短辺と同じ長さである。
スロット111の中心とは、スロット111を含む平面又は曲面と2回回転軸との交点である。 Theslot 111 has a shape having two-fold symmetry, is a line segment parallel to two symmetry axes orthogonal to the two-fold rotation axis, and has an end point that is an intersection of the slot circumscribed rectangle and the symmetry axis. Any shape may be used as long as one of the portions is longer than the other. The slot circumscribed rectangle is a rectangle that is larger than the slot 111 and includes the slot 111, and that minimizes the gap between the slot 111 and the slot 111. The shape of the slot 111 may be rectangular or oval, for example. Hereinafter, for simplicity of explanation, it is assumed that the shape of the slot 111 is rectangular.
The length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave. For example, when the frequency of the electromagnetic wave is 6 GHz, the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
The direction of the rectangle circumscribing the slot may be any direction as long as it obstructs the current flowing in the circumferential direction on the surface of theleaky waveguide 1.
For simplicity of description below, it is assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction.
One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side. The other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
The center of theslot 111 is the intersection of the plane or curved surface including the slot 111 and the two-fold rotation axis.
なお、スロット外接長方形の長辺と短辺の長さとは、電磁波の周波数に応じてどのような長さであってもよいが、例えば、電磁波の周波数が6GHzの場合、長辺の長さが10mmであって、短辺の長さが2mmであってもよい。
なお、スロット外接長方形の向きは、漏洩導波管1の表面を周方向に流れる電流を妨げる向きであれば、どのような向きであってもよい。
以下説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定する。
対称軸に平行な線分の一方(第1線分)は、スロット外接長方形の長辺に平行であって長辺と同じ長さである。対称軸に平行な線分の他方(第2線分)は、スロット外接長方形の短辺に平行であって短辺と同じ長さである。
スロット111の中心とは、スロット111を含む平面又は曲面と2回回転軸との交点である。 The
The length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave. For example, when the frequency of the electromagnetic wave is 6 GHz, the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
The direction of the rectangle circumscribing the slot may be any direction as long as it obstructs the current flowing in the circumferential direction on the surface of the
For simplicity of description below, it is assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction.
One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side. The other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
The center of the
金属管11は、電気伝導率の高い物質であればどのような物質で構成されてもよく、例えば、銅で構成されてもよい。金属管11の厚さは、どのような厚さであってもよいが、機械的な強度を考慮する場合、0.5mm程度が望ましい。金属管11には、ラミネート加工が施されてもよい。金属管11の断面の大きさは、伝搬させるべき電磁波に対する遮断周波数に応じた大きさである。遮断周波数は、以下の式(1)で表される。
The metal tube 11 may be made of any substance as long as it has a high electric conductivity, and may be made of copper, for example. Although the metal tube 11 may have any thickness, it is preferably about 0.5 mm in consideration of mechanical strength. The metal tube 11 may be laminated. The size of the cross section of the metal tube 11 corresponds to the cutoff frequency for the electromagnetic wave to be propagated. The cutoff frequency is expressed by the following equation (1).
式(1)において、fcは、遮断周波数を表す。式(1)において、Dは、断面外接長方形の長辺の長さを表す。具体的なDの値は、例えば、金属管11が伝搬させるべき電磁波の周波数が6GHzである場合、D=50mmである。また、この場合、例えば、断面外接長方形の短辺の長さは、例えば、25mmである。また、断面外接長方形の長辺の長さが50mmであって、短辺の長さ25mmである場合、金属管11は、周波数が3GHz以下の電磁波を遮断する。
金属管11を伝搬する電磁波は、スロット111から外部に放射される。 In Expression (1), f c represents the cutoff frequency. In Expression (1), D represents the length of the long side of the rectangle circumscribing the section. The specific value of D is D=50 mm, for example, when the frequency of the electromagnetic wave to be propagated by themetal tube 11 is 6 GHz. Further, in this case, for example, the length of the short side of the rectangle circumscribing the cross section is, for example, 25 mm. When the length of the long side of the rectangle circumscribing the cross section is 50 mm and the length of the short side is 25 mm, the metal tube 11 blocks electromagnetic waves having a frequency of 3 GHz or less.
The electromagnetic wave propagating through themetal tube 11 is radiated to the outside from the slot 111.
金属管11を伝搬する電磁波は、スロット111から外部に放射される。 In Expression (1), f c represents the cutoff frequency. In Expression (1), D represents the length of the long side of the rectangle circumscribing the section. The specific value of D is D=50 mm, for example, when the frequency of the electromagnetic wave to be propagated by the
The electromagnetic wave propagating through the
図3は、第1実施形態に係る金属管11の具体的な形状を示す上面図及び断面図である。
図3(a)は、金属管11の上面図を示す。図3(b)は、金属管11の断面図を示す。
スロット111の形状は、軸方向に平行な方向を長軸方向とする長方形である。スロット111は、金属管11の表面の中心部には位置せず、端部に位置する。金属管11の表面の中心部とは、断面外接長方形の長辺の垂直二等分線と金属管11とが交わる点を通り、軸方向に平行な軸(以下「表面中央軸」という。)の近傍の領域である。端部とは、金属管11の表面の中心部以外の領域である。以下、断面外接長方形の長辺の垂直二等分線と金属管11とが交わる点を中央交点という。
中心部は、具体的には、表面中央軸を中心として半径方向の範囲が(-5/40)×長さD~(+5/40)×長さDの範囲内の領域である。 FIG. 3 is a top view and a cross-sectional view showing a specific shape of themetal tube 11 according to the first embodiment.
FIG. 3A shows a top view of themetal tube 11. FIG. 3B shows a sectional view of the metal tube 11.
The shape of theslot 111 is a rectangle whose major axis direction is parallel to the axial direction. The slot 111 is located not at the center of the surface of the metal tube 11 but at the end thereof. The central portion of the surface of the metal tube 11 passes through the point where the long bisector of the long side of the rectangular circumscribed in section crosses the metal tube 11 and is parallel to the axial direction (hereinafter referred to as “surface central axis”). Is a region near. The end portion is an area other than the central portion of the surface of the metal tube 11. Hereinafter, the point where the long bisector of the long side of the circumscribed rectangle and the metal tube 11 intersect is referred to as the central intersection point.
Specifically, the central portion is an area within a range of (−5/40)×length D to (+5/40)×length D in the radial direction centering on the surface center axis.
図3(a)は、金属管11の上面図を示す。図3(b)は、金属管11の断面図を示す。
スロット111の形状は、軸方向に平行な方向を長軸方向とする長方形である。スロット111は、金属管11の表面の中心部には位置せず、端部に位置する。金属管11の表面の中心部とは、断面外接長方形の長辺の垂直二等分線と金属管11とが交わる点を通り、軸方向に平行な軸(以下「表面中央軸」という。)の近傍の領域である。端部とは、金属管11の表面の中心部以外の領域である。以下、断面外接長方形の長辺の垂直二等分線と金属管11とが交わる点を中央交点という。
中心部は、具体的には、表面中央軸を中心として半径方向の範囲が(-5/40)×長さD~(+5/40)×長さDの範囲内の領域である。 FIG. 3 is a top view and a cross-sectional view showing a specific shape of the
FIG. 3A shows a top view of the
The shape of the
Specifically, the central portion is an area within a range of (−5/40)×length D to (+5/40)×length D in the radial direction centering on the surface center axis.
外皮12は、ポリエチレン等の高分子材料であって、金属管11を覆う。
The outer skin 12 is a polymer material such as polyethylene and covers the metal tube 11.
図4A、図4B、及び図5を用いて第1実施形態に係る漏洩導波管1が奏する効果について説明する。
図4Aは、導波管の表面を流れる表面電流の分布の概略を示す図である。図4Bは、導波管の電磁界分布の概略を示す図である。図4A及び図4Bにおいては、簡単のため、導波管が方形導波管であると仮定して説明を行う。 Effects obtained by theleaky waveguide 1 according to the first embodiment will be described with reference to FIGS. 4A, 4B, and 5.
FIG. 4A is a diagram schematically showing the distribution of surface current flowing on the surface of the waveguide. FIG. 4B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 4A and 4B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
図4Aは、導波管の表面を流れる表面電流の分布の概略を示す図である。図4Bは、導波管の電磁界分布の概略を示す図である。図4A及び図4Bにおいては、簡単のため、導波管が方形導波管であると仮定して説明を行う。 Effects obtained by the
FIG. 4A is a diagram schematically showing the distribution of surface current flowing on the surface of the waveguide. FIG. 4B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 4A and 4B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、磁界の向きを表す磁力線は、導波管内において閉じた環を形成する。電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、電界を表す電気力線は、磁界に垂直な方向を向く。電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、表面電流の一部は、中心部近傍の位置において電磁波が伝搬する方向に流れる。また、電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、表面電流の一部は、電磁波が伝搬する方向に垂直な方向に導波管の表面上を流れる。
According to the Maxwell equation of electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, the magnetic field lines representing the direction of the magnetic field form a closed ring in the waveguide. According to the Maxwell equation of the electromagnetic field, the boundary condition in the rectangular waveguide is satisfied, so that the electric force line representing the electric field is oriented in the direction perpendicular to the magnetic field. According to the Maxwell equation of the electromagnetic field, the boundary condition in the rectangular waveguide is satisfied, so that a part of the surface current flows in the direction in which the electromagnetic wave propagates at a position near the center. Further, according to the Maxwell equation of the electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, a part of the surface current flows on the surface of the waveguide in a direction perpendicular to the propagation direction of the electromagnetic wave.
図5は、第1実施形態に係る金属管11の表面電流の分布の概略を示す上面図である。図5において、簡単のため、金属管11が方形導波管であると仮定して説明を行う。
FIG. 5 is a top view showing the outline of the distribution of the surface current of the metal tube 11 according to the first embodiment. In FIG. 5, for the sake of simplicity, description will be made assuming that the metal tube 11 is a rectangular waveguide.
金属管11の表面を流れる表面電流の一部は、スロット111に流入する。スロット111に流入する表面電流は、スロット111の孔に、スロット111の短辺に平行な方向に振動する電場であって、表面電流と同じ周波数で振動する電場を形成する。このことは、スロット111を、軸方向に垂直な方向に振動する仮想的な双極子モーメントと見なすことができることを意味する。
そのため、スロット111からは、軸方向に垂直な方向に偏光した電磁波が放射される。
また、スロット間距離Sが波長λに略同一であるため、各スロット111の双極子モーメントの振動の位相は、略同一である。このことは、隣り合うスロット111から放射される電磁波の位相が略同一であることを意味する。そのため、金属管11の各スロット111から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管11から放射される。 A part of the surface current flowing on the surface of themetal tube 11 flows into the slot 111. The surface current flowing into the slot 111 forms an electric field in the hole of the slot 111 that oscillates in a direction parallel to the short side of the slot 111 and that oscillates at the same frequency as the surface current. This means that the slot 111 can be regarded as a virtual dipole moment that oscillates in the direction perpendicular to the axial direction.
Therefore, theslot 111 radiates an electromagnetic wave polarized in a direction perpendicular to the axial direction.
Further, since the inter-slot distance S is approximately the same as the wavelength λ, the dipole moment vibration phases of therespective slots 111 are approximately the same. This means that the phases of the electromagnetic waves emitted from the adjacent slots 111 are substantially the same. Therefore, the electromagnetic waves radiated from each slot 111 of the metal tube 11 reinforce each other and become a highly coherent electromagnetic wave, which is radiated from the metal tube 11.
そのため、スロット111からは、軸方向に垂直な方向に偏光した電磁波が放射される。
また、スロット間距離Sが波長λに略同一であるため、各スロット111の双極子モーメントの振動の位相は、略同一である。このことは、隣り合うスロット111から放射される電磁波の位相が略同一であることを意味する。そのため、金属管11の各スロット111から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管11から放射される。 A part of the surface current flowing on the surface of the
Therefore, the
Further, since the inter-slot distance S is approximately the same as the wavelength λ, the dipole moment vibration phases of the
図6は、第1実施形態に係る漏洩導波管1が放射する電磁波の、断面方向から見た放射パターンの実験結果を示す図である。なお、断面方向とは、金属管11の軸上の位置から断面外接長方形を見る方向である。図6における電磁波の周波数は、5.6GHzである。図6において、断面外接長方形の長辺は、50mmであって、短辺は、25mmである。スロットは、中央交点から金属管11の半径方向に15mmの位置に位置する。
スロット111の中心点が、中央交点に位置しないため、放射強度が最大の方向(以下「最大輻射方向」という。)が0°の方向ではないことがわかる。なお、0°の方向とは、断面外接長方形の中心から中央交点を見る方向である。 FIG. 6 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave emitted by theleaky waveguide 1 according to the first embodiment as seen from a cross-sectional direction. The cross-sectional direction is a direction in which the cross-sectional circumscribed rectangle is viewed from the axial position of the metal tube 11. The frequency of the electromagnetic wave in FIG. 6 is 5.6 GHz. In FIG. 6, the long side of the rectangle circumscribing the cross section is 50 mm, and the short side is 25 mm. The slot is located at a position of 15 mm in the radial direction of the metal tube 11 from the central intersection.
Since the central point of theslot 111 is not located at the central intersection, it can be seen that the direction of maximum radiation intensity (hereinafter referred to as “maximum radiation direction”) is not 0°. Note that the direction of 0° is a direction in which the central intersection is viewed from the center of the rectangle circumscribing the cross section.
スロット111の中心点が、中央交点に位置しないため、放射強度が最大の方向(以下「最大輻射方向」という。)が0°の方向ではないことがわかる。なお、0°の方向とは、断面外接長方形の中心から中央交点を見る方向である。 FIG. 6 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave emitted by the
Since the central point of the
図7は、第1実施形態に係るスロット111の配置の違いによる、垂直偏波の結合損失の違いを示す実験結果である。図7において垂直偏波は、軸方向に対する垂直偏波を意味する。結合損失は、以下の式(2)で表される。
FIG. 7 is an experimental result showing a difference in coupling loss of vertically polarized waves due to a difference in arrangement of the slots 111 according to the first embodiment. In FIG. 7, vertical polarization means vertical polarization with respect to the axial direction. The coupling loss is expressed by the following equation (2).
式(2)において、Lcは、結合損失を表す。式(2)において、Pinは、漏洩導波管1への入力電力を表す。式(2)において、Poutは、受信アンテナが受信した出力電力を表す。受信アンテナは、結合損失を測定するために、漏洩導波管1に対する所定の位置に、設置されたアンテナである。受信アンテナは、例えば、半波長ダイポールアンテナである。
In Expression (2), L c represents a coupling loss. In Equation (2), P in represents the input power to the leaky waveguide 1. In Expression (2), P out represents the output power received by the receiving antenna. The receiving antenna is an antenna installed at a predetermined position with respect to the leaky waveguide 1 in order to measure the coupling loss. The receiving antenna is, for example, a half-wavelength dipole antenna.
図7において、漏洩導波管Aは、スロット111の中心が中央交点にあって中心間の距離が半波長に略同一であって、かつ、隣り合うスロット111が互い違いに配置された漏洩導波管である。隣り合うスロット111が互い違いとは、隣り合うスロット111が互いに逆向きであることを意味する。漏洩導波管Aは、スロット形状及びスロットの配置が従来の漏洩導波管と同様である漏洩導波管である。なお、図7において、漏洩導波管Aのスロット111の長辺の長さは、10mmであって、短辺の長さは、2mmである。
In FIG. 7, the leaky waveguide A is a leaky waveguide in which the centers of the slots 111 are at the central intersections, the distances between the centers are approximately equal to a half wavelength, and the adjacent slots 111 are arranged alternately. It is a tube. The adjacent slots 111 being staggered means that the adjacent slots 111 are opposite to each other. The leaky waveguide A is a leaky waveguide whose slot shape and slot arrangement are the same as those of the conventional leaky waveguide. In FIG. 7, the long side of the slot 111 of the leaky waveguide A has a length of 10 mm, and the short side has a length of 2 mm.
図7において、漏洩導波管Bは、スロット111の中心が中央交点から金属管11の半径方向に15mmの位置にあって中心間の距離が半波長に略同一であって、かつ、隣り合うスロット111が互い違いに配置された漏洩導波管である。なお、図7において、漏洩導波管Bのスロット111の長辺の長さは、10mmであって、短辺の長さは、2mmである。
7, in the leaky waveguide B, the center of the slot 111 is located at a position of 15 mm in the radial direction of the metal tube 11 from the central intersection, the distance between the centers is substantially equal to a half wavelength, and the leaky waveguides B are adjacent to each other. It is a leaky waveguide in which slots 111 are alternately arranged. In FIG. 7, the long side of the slot 111 of the leaky waveguide B has a length of 10 mm, and the short side has a length of 2 mm.
図7において、漏洩導波管Cは、スロット111の中心が中央交点から金属管11の半径方向に15mmの位置にあって中心間の距離が波長に略同一であって、かつ、隣り合うスロット111が互いに平行に配置された漏洩導波管である。すなわち、漏洩導波管Cは、漏洩導波管1である。なお、図7において、漏洩導波管Cのスロット111の長辺の長さは、13mmであって、短辺の長さは、2mmである。
In FIG. 7, the leaky waveguide C has a slot 111 whose center is located at a position of 15 mm in the radial direction of the metal tube 11 from the center intersection point, a distance between the centers is substantially the same as the wavelength, and adjacent slots are adjacent to each other. 111 is a leaky waveguide arranged parallel to each other. That is, the leaky waveguide C is the leaky waveguide 1. In FIG. 7, the long side of the slot 111 of the leaky waveguide C has a length of 13 mm, and the short side has a length of 2 mm.
図7において、漏洩導波管A、漏洩導波管B、及び漏洩導波管Cは、ケーブルの長さ方向の0.1mから0.7mに位置する。
図7は、漏洩導波管Bは、漏洩導波管Aよりも5dB程度結合損失が大きいことを示す。
また、図7は、漏洩導波管Cは、漏洩導波管Bよりも結合損失が小さく漏洩導波管Aの結合損失に近いことを示す。このことから、従来の漏洩導波管において、単にスロット111の位置を半径方向にズラしただけでは、結合効率が下がってしまうことがわかる。また、スロット111の位置が中央交点から半径方向にずれた位置に位置する場合であっても、スロット111の中心管距離が波長に略同一であって、スロット111が互いに平行であれば、従来の漏洩導波管と同等の結合効率が実現されることを示す。
このように、スロット111が中央交点から半径方向にずれた位置に位置する場合には、スロット111が互いに平行であれば、結合損失の増大が抑制される。
なお、漏洩導波管Cのスロット111の中心間距離は、漏洩導波管Bのスロット111の中心間距離の略2倍であるため、漏洩導波管Cのスロット111の個数は、漏洩導波管Bのスロット111の個数の半分である。また、漏洩導波管のスロットから漏洩する電磁波のエネルギーは、スロットの長辺の長さに比例して増減する。そのため、漏洩導波管Bのスロット111の長辺の長さに対する漏洩導波管Cのスロット111の長辺の長さが2倍であれば、漏洩導波管Cから漏洩する電磁波のエネルギーの量が漏洩導波管Bから漏洩する電磁波のエネルギーの量と同じになり、結合損失が略同一であるはずである。しかしながら、図7の実験結果は、漏洩導波管Bのスロット111の長辺の長さに対する漏洩導波管Cのスロット111の長辺の長さが、2倍以下の1.3倍でありさえすれば、漏洩導波管Cの結合損失は、漏洩導波管Bの結合損失よりも小さいことを示す。このことは、スロット111の位置が中央交点から半径方向にずれた位置に位置する場合であってスロット111の中心管距離が波長に略同一である場合に、スロット111が互いに平行であることが結合損失の増大を抑制する効果を奏することを意味する。 In FIG. 7, the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
FIG. 7 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
Further, FIG. 7 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it is understood that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of theslot 111 in the radial direction. Even when the position of the slot 111 is displaced from the central intersection in the radial direction, as long as the central tube distance of the slot 111 is substantially the same as the wavelength and the slots 111 are parallel to each other, it is a conventional practice. It is shown that a coupling efficiency equivalent to that of the leaky waveguide of 1 is realized.
As described above, when theslots 111 are located at positions radially displaced from the central intersection, if the slots 111 are parallel to each other, an increase in coupling loss is suppressed.
Since the center-to-center distance of theslots 111 of the leaky waveguide C is approximately twice the center-to-center distance of the slots 111 of the leaky waveguide B, the number of slots 111 of the leaky waveguide C is This is half the number of slots 111 of the wave tube B. Further, the energy of the electromagnetic wave leaking from the slot of the leaky waveguide increases or decreases in proportion to the length of the long side of the slot. Therefore, if the length of the long side of the slot 111 of the leaky waveguide C is twice the length of the long side of the slot 111 of the leaky waveguide B, the energy of the electromagnetic wave leaking from the leaky waveguide C is The amount should be the same as the amount of energy of the electromagnetic wave leaking from the leaky waveguide B, and the coupling loss should be almost the same. However, the experimental result of FIG. 7 shows that the length of the long side of the slot 111 of the leaky waveguide C is 1.3 times the length of the long side of the slot 111 of the leaky waveguide B, which is 2 times or less. If so, the coupling loss of the leaky waveguide C is smaller than that of the leaky waveguide B. This means that the slots 111 are parallel to each other when the positions of the slots 111 are displaced from the central intersection in the radial direction and the central tube distance of the slots 111 is substantially equal to the wavelength. This means that the effect of suppressing an increase in coupling loss is exerted.
図7は、漏洩導波管Bは、漏洩導波管Aよりも5dB程度結合損失が大きいことを示す。
また、図7は、漏洩導波管Cは、漏洩導波管Bよりも結合損失が小さく漏洩導波管Aの結合損失に近いことを示す。このことから、従来の漏洩導波管において、単にスロット111の位置を半径方向にズラしただけでは、結合効率が下がってしまうことがわかる。また、スロット111の位置が中央交点から半径方向にずれた位置に位置する場合であっても、スロット111の中心管距離が波長に略同一であって、スロット111が互いに平行であれば、従来の漏洩導波管と同等の結合効率が実現されることを示す。
このように、スロット111が中央交点から半径方向にずれた位置に位置する場合には、スロット111が互いに平行であれば、結合損失の増大が抑制される。
なお、漏洩導波管Cのスロット111の中心間距離は、漏洩導波管Bのスロット111の中心間距離の略2倍であるため、漏洩導波管Cのスロット111の個数は、漏洩導波管Bのスロット111の個数の半分である。また、漏洩導波管のスロットから漏洩する電磁波のエネルギーは、スロットの長辺の長さに比例して増減する。そのため、漏洩導波管Bのスロット111の長辺の長さに対する漏洩導波管Cのスロット111の長辺の長さが2倍であれば、漏洩導波管Cから漏洩する電磁波のエネルギーの量が漏洩導波管Bから漏洩する電磁波のエネルギーの量と同じになり、結合損失が略同一であるはずである。しかしながら、図7の実験結果は、漏洩導波管Bのスロット111の長辺の長さに対する漏洩導波管Cのスロット111の長辺の長さが、2倍以下の1.3倍でありさえすれば、漏洩導波管Cの結合損失は、漏洩導波管Bの結合損失よりも小さいことを示す。このことは、スロット111の位置が中央交点から半径方向にずれた位置に位置する場合であってスロット111の中心管距離が波長に略同一である場合に、スロット111が互いに平行であることが結合損失の増大を抑制する効果を奏することを意味する。 In FIG. 7, the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
FIG. 7 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
Further, FIG. 7 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it is understood that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of the
As described above, when the
Since the center-to-center distance of the
漏洩導波管1は、スロットの中心間の距離が半波長の長さである従来の漏洩導波管と異なり、スロット111の中心間の距離が波長の長さである。そのため、スロットの中心間の距離が従来の漏洩導波管よりも長い。そのため、漏洩導波管1は、金属管11の座屈に対する耐性の強さを維持したまま、従来よりも長いスロット111を備えることができる。
In the leaky waveguide 1, the distance between the centers of the slots 111 is the wavelength length, unlike the conventional leaky waveguide in which the distance between the centers of the slots is half the wavelength. Therefore, the distance between the centers of the slots is longer than that of the conventional leaky waveguide. Therefore, the leaky waveguide 1 can be provided with the slot 111 longer than the conventional one while maintaining the strength of resistance to buckling of the metal tube 11.
ここで、漏洩導波管1を敷設する状況について考える。漏洩導波管1は、50m以上の長さである。そのため、敷設する漏洩導波管1を保管、運搬する際は、漏洩導波管1を所定の曲率半径を有するドラムに巻き付けて保管、運搬することが現実的である。このような場合、漏洩導波管1には応力が加わるため、スロット111において座屈が生じる可能性がある。そこで、以下、漏洩導波管1の座屈について考察する。
Here, consider the situation in which the leaky waveguide 1 is laid. The leaky waveguide 1 has a length of 50 m or more. Therefore, when storing and transporting the leaky waveguide 1 to be laid, it is practical to store and transport the leaky waveguide 1 by winding it around a drum having a predetermined radius of curvature. In such a case, since stress is applied to the leaky waveguide 1, buckling may occur in the slot 111. Therefore, the buckling of the leaky waveguide 1 will be considered below.
図8は、第1実施形態に係る漏洩導波管1の保管、運搬に用いられるドラムを説明する説明図である。
漏洩導波管1は、直径1400mmのドラムに巻きつけられた状態で、保管されたり運搬されたりする。なお、図8において、漏洩導波管1が巻きつけられるドラムの巻回胴部の直径は、1400mmであるが、その直径は必ずしも、1400mmでなくてもよい。ドラムの巻回胴部の直径は、例えば、1000~2000mmの範囲であってもよい。 FIG. 8 is an explanatory diagram illustrating a drum used for storage and transportation of theleaky waveguide 1 according to the first embodiment.
Theleaky waveguide 1 is stored or transported while being wound around a drum having a diameter of 1400 mm. In FIG. 8, the diameter of the winding body of the drum around which the leaky waveguide 1 is wound is 1400 mm, but the diameter does not necessarily have to be 1400 mm. The diameter of the winding body of the drum may be, for example, in the range of 1000 to 2000 mm.
漏洩導波管1は、直径1400mmのドラムに巻きつけられた状態で、保管されたり運搬されたりする。なお、図8において、漏洩導波管1が巻きつけられるドラムの巻回胴部の直径は、1400mmであるが、その直径は必ずしも、1400mmでなくてもよい。ドラムの巻回胴部の直径は、例えば、1000~2000mmの範囲であってもよい。 FIG. 8 is an explanatory diagram illustrating a drum used for storage and transportation of the
The
図9は、第1実施形態に係るスロット111の位置の違いによる座屈の起こりやすさを示す実験結果である。
図9は、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合と、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合とにおけるVSWR(voltage standing wave ratio)の値を示す。
図9に示すように、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合よりもVSWRの値が小さい。このことは、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合には座屈が生じ、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合には座屈が生じていないことを示す。
このように、スロット111の半径方向の位置の違いが座屈の生じやすさに影響を与える。 FIG. 9 is an experimental result showing the likelihood of buckling due to the difference in the position of theslot 111 according to the first embodiment.
FIG. 9 shows a case where theleakage waveguide 1 in which the slot 111 is located at a position 21 mm in the radial direction from the central intersection is bent so as to have a predetermined radius of curvature, and when the slot 111 is 24 mm in the radial direction from the central intersection. The values of VSWR (voltage standing wave ratio) when the leaky waveguide 1 located at a position is bent to have a predetermined radius of curvature are shown.
As shown in FIG. 9, when theleaky waveguide 1 in which the slot 111 is located at a position of 24 mm in the radial direction from the central intersection is bent so as to have a predetermined curvature radius, the slot 111 is radially moved from the central intersection. The value of VSWR is smaller than that when the leaky waveguide 1 located at the position of 21 mm is bent to have a predetermined radius of curvature. This means that when the leaky waveguide 1 in which the slot 111 is located at a position 24 mm in the radial direction from the central intersection is bent so as to have a predetermined radius of curvature, buckling occurs, and the slot 111 is separated from the central intersection. It shows that no buckling occurs when the leaky waveguide 1 located at a position of 21 mm in the radial direction is bent so as to have a predetermined radius of curvature.
As described above, the difference in the radial position of theslot 111 affects the likelihood of buckling.
図9は、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合と、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合とにおけるVSWR(voltage standing wave ratio)の値を示す。
図9に示すように、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合よりもVSWRの値が小さい。このことは、スロット111が中央交点から半径方向に24mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合には座屈が生じ、スロット111が中央交点から半径方向に21mmの位置に位置する漏洩導波管1が所定の曲率半径を有するように曲げられた場合には座屈が生じていないことを示す。
このように、スロット111の半径方向の位置の違いが座屈の生じやすさに影響を与える。 FIG. 9 is an experimental result showing the likelihood of buckling due to the difference in the position of the
FIG. 9 shows a case where the
As shown in FIG. 9, when the
As described above, the difference in the radial position of the
図10A及び図10Bは、スロット111において座屈が発生するメカニズムを説明する説明図である。図10において、説明の簡単のため断面は、長円形であると仮定する。
図10Aは、中央部に位置するスロット111に印加される圧力を説明する説明図である。図10Bは、端部に位置するスロット111に印加される圧力を説明する説明図である。図10A及び図10Bは、金属管11の側面図である。図10A及び図10Bにおいて、金属管11は、短辺方向(すなわちZ軸方向)に湾曲している。
金属管11の湾曲によって、スロット111には圧縮応力と引張応力とが印加される。
座屈は、圧縮応力と引張応力との差によって生じる。圧縮応力と引張応力との差が大きいほどスロット111近傍の位置における座屈が生じやすい。力の差は、圧縮応力が印加される箇所と、引張応力が印加される箇所との、湾曲による曲げ半径の違いに比例する。 10A and 10B are explanatory views for explaining the mechanism of buckling in theslot 111. In FIG. 10, for simplicity of explanation, it is assumed that the cross section has an oval shape.
FIG. 10A is an explanatory diagram illustrating a pressure applied to theslot 111 located in the central portion. FIG. 10B is an explanatory diagram illustrating the pressure applied to the slot 111 located at the end. 10A and 10B are side views of the metal tube 11. 10A and 10B, the metal tube 11 is curved in the short side direction (that is, the Z-axis direction).
Due to the bending of themetal tube 11, compressive stress and tensile stress are applied to the slot 111.
Buckling is caused by the difference between compressive stress and tensile stress. The greater the difference between the compressive stress and the tensile stress, the more likely buckling will occur at the position near theslot 111. The difference in force is proportional to the difference in bending radius due to bending between the location where compressive stress is applied and the location where tensile stress is applied.
図10Aは、中央部に位置するスロット111に印加される圧力を説明する説明図である。図10Bは、端部に位置するスロット111に印加される圧力を説明する説明図である。図10A及び図10Bは、金属管11の側面図である。図10A及び図10Bにおいて、金属管11は、短辺方向(すなわちZ軸方向)に湾曲している。
金属管11の湾曲によって、スロット111には圧縮応力と引張応力とが印加される。
座屈は、圧縮応力と引張応力との差によって生じる。圧縮応力と引張応力との差が大きいほどスロット111近傍の位置における座屈が生じやすい。力の差は、圧縮応力が印加される箇所と、引張応力が印加される箇所との、湾曲による曲げ半径の違いに比例する。 10A and 10B are explanatory views for explaining the mechanism of buckling in the
FIG. 10A is an explanatory diagram illustrating a pressure applied to the
Due to the bending of the
Buckling is caused by the difference between compressive stress and tensile stress. The greater the difference between the compressive stress and the tensile stress, the more likely buckling will occur at the position near the
図10Aにおいて、スロット111は、金属管11の中央部に位置するため、図10Aにおける圧縮応力と引張応力との力の差は、金属管11の表面の厚さに比例する。
金属管11の表面の厚さが0に略同一である場合には、圧縮応力と引張応力との力の差は、0に略同一である。
また、図10Bにおいて、スロット111は、金属管11の端部に位置するため、図10Bにおける圧縮応力と引張応力との力の差は、スロット111の短辺の長さに比例する。スロット111の短辺の長さは、金属管11の表面の厚さよりも厚い。
例えば、スロット111の短辺の長さが25mmであって、金属管11の表面の厚さは、0.5mmである。
そのため、図10Bに示すようにスロット111が金属管11の端部に位置する場合には、図10Aに示すようなスロット111が金属管11の中央部に位置する場合よりも、圧縮応力と引張応力との差が大きい。 In FIG. 10A, since theslot 111 is located at the center of the metal tube 11, the difference between the compressive stress and the tensile stress in FIG. 10A is proportional to the thickness of the surface of the metal tube 11.
When the thickness of the surface of themetal tube 11 is substantially the same as 0, the difference in force between the compressive stress and the tensile stress is substantially the same as 0.
Further, in FIG. 10B, since theslot 111 is located at the end of the metal tube 11, the difference between the compressive stress and the tensile stress in FIG. 10B is proportional to the length of the short side of the slot 111. The length of the short side of the slot 111 is thicker than the thickness of the surface of the metal tube 11.
For example, the length of the short side of theslot 111 is 25 mm, and the thickness of the surface of the metal tube 11 is 0.5 mm.
Therefore, when theslot 111 is located at the end of the metal tube 11 as shown in FIG. 10B, the compressive stress and tensile force are higher than when the slot 111 is located at the center of the metal tube 11 as shown in FIG. 10A. The difference with the stress is large.
金属管11の表面の厚さが0に略同一である場合には、圧縮応力と引張応力との力の差は、0に略同一である。
また、図10Bにおいて、スロット111は、金属管11の端部に位置するため、図10Bにおける圧縮応力と引張応力との力の差は、スロット111の短辺の長さに比例する。スロット111の短辺の長さは、金属管11の表面の厚さよりも厚い。
例えば、スロット111の短辺の長さが25mmであって、金属管11の表面の厚さは、0.5mmである。
そのため、図10Bに示すようにスロット111が金属管11の端部に位置する場合には、図10Aに示すようなスロット111が金属管11の中央部に位置する場合よりも、圧縮応力と引張応力との差が大きい。 In FIG. 10A, since the
When the thickness of the surface of the
Further, in FIG. 10B, since the
For example, the length of the short side of the
Therefore, when the
このように、スロット111の半径方向の位置が端部に近いほど座屈が生じやすい。そのため、漏洩導波管1は、スロット111の半径方向の位置が運搬時のドラムの直径に応じた適切な位置に位置する必要がある。運搬時のドラムの直径は、実際の運用を考慮した場合、1400mmである。
実験結果によると、ドラムの直径が1400mmである場合、スロット111の半径方向の位置は、次の図11に示す範囲にあることが望ましい。図11が示す望ましい半径方向の位置は、0°の方向以外の方向に最大輻射方向を有するスロット111の位置であって、座屈に対する耐性が所定の強さ以上のスロット111の位置である。所定の強さとは、曲率半径が700mmであるような曲げに対して座屈しない強さである。 As described above, the closer the radial position of theslot 111 is to the end portion, the more easily buckling occurs. Therefore, in the leaky waveguide 1, the radial position of the slot 111 needs to be positioned at an appropriate position according to the diameter of the drum during transportation. The diameter of the drum during transportation is 1400 mm in consideration of actual operation.
According to the experimental results, when the diameter of the drum is 1400 mm, the radial position of theslot 111 is preferably within the range shown in FIG. The desirable radial position shown in FIG. 11 is the position of the slot 111 having the maximum radiation direction in a direction other than the direction of 0°, and the position of the slot 111 whose resistance to buckling is a predetermined strength or more. The predetermined strength is the strength that does not buckle against bending such that the radius of curvature is 700 mm.
実験結果によると、ドラムの直径が1400mmである場合、スロット111の半径方向の位置は、次の図11に示す範囲にあることが望ましい。図11が示す望ましい半径方向の位置は、0°の方向以外の方向に最大輻射方向を有するスロット111の位置であって、座屈に対する耐性が所定の強さ以上のスロット111の位置である。所定の強さとは、曲率半径が700mmであるような曲げに対して座屈しない強さである。 As described above, the closer the radial position of the
According to the experimental results, when the diameter of the drum is 1400 mm, the radial position of the
図11は、第1実施形態に係るスロット111の中心が位置することが望ましい半径方向の位置を示す図である。
スロット111は、0°の方向以外の方向に最大輻射方向を有するためには、中心が中央交点から半径方向に有限の長さだけ離れた位置に位置すれば、どこに位置してもよい。
しかしながら、スロット111の製造技術による制限があるため、スロット111の中心は、中央交点から半径方向に、断面外接長方形の長辺の長さの7/40以上離れた位置に位置することが望ましい。
また、スロット111は、曲率半径が700mmであるような曲げに対して座屈が生じない位置に位置することが望ましい。このような位置は、実験結果によると、中央交点からの距離が、断面外接長方形の長辺の長さの19/40以内である位置である。
このような要因によって、スロット111の中心が位置することが望ましい半径方向の位置は、図11に示す位置になる。すなわち、スロット111の中心が位置することが望ましい半径方向の位置は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置である。 FIG. 11 is a diagram showing a radial position where the center of theslot 111 according to the first embodiment is preferably located.
In order for theslot 111 to have the maximum radiation direction in a direction other than the direction of 0°, the slot 111 may be located anywhere as long as the center is located at a position radially separated from the central intersection by a finite length.
However, since there is a limitation due to the manufacturing technique of theslot 111, it is desirable that the center of the slot 111 is located at a position distant from the central intersection in the radial direction by 7/40 or more of the length of the long side of the rectangle circumscribing the section.
Further, it is desirable that theslot 111 is located at a position where buckling does not occur with bending such that the radius of curvature is 700 mm. According to the experimental results, such a position is a position where the distance from the central intersection is within 19/40 of the length of the long side of the rectangle circumscribing the cross section.
Due to such factors, the radial position where the center of theslot 111 is preferably located is the position shown in FIG. That is, the radial position where the center of the slot 111 is preferably located is a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the section.
スロット111は、0°の方向以外の方向に最大輻射方向を有するためには、中心が中央交点から半径方向に有限の長さだけ離れた位置に位置すれば、どこに位置してもよい。
しかしながら、スロット111の製造技術による制限があるため、スロット111の中心は、中央交点から半径方向に、断面外接長方形の長辺の長さの7/40以上離れた位置に位置することが望ましい。
また、スロット111は、曲率半径が700mmであるような曲げに対して座屈が生じない位置に位置することが望ましい。このような位置は、実験結果によると、中央交点からの距離が、断面外接長方形の長辺の長さの19/40以内である位置である。
このような要因によって、スロット111の中心が位置することが望ましい半径方向の位置は、図11に示す位置になる。すなわち、スロット111の中心が位置することが望ましい半径方向の位置は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置である。 FIG. 11 is a diagram showing a radial position where the center of the
In order for the
However, since there is a limitation due to the manufacturing technique of the
Further, it is desirable that the
Due to such factors, the radial position where the center of the
ここまで、スロット111の形状を長円形又は長方形と仮定して説明をしてきた。しかしながら、スロット111の形状は、必ずしも、長円形又は長方形である必要はない。スロット111の形状は、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。
図12は、第1実施形態に係るスロット111がL字型の金属管11の具体例を示す上面図である。
L字型は、図12に示すように、アルファベットの「L」の文字に似た形状である。
このようなL字型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、L字型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、L字型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。
図13は、第1実施形態に係るスロット111がクランク型の金属管11の具体例を示す上面図である。
クランク型のスロット111は、軸方向に沿って、金属管11の表面上で、階段状に折れ曲がった構造である。
このようなクランク型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、クランク型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、クランク型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。 Up to this point, the description has been made assuming that the shape of theslot 111 is an ellipse or a rectangle. However, the shape of the slot 111 does not necessarily have to be oval or rectangular. The shape of the slot 111 may be L-shaped, crank-shaped, window-shaped, or elliptical.
FIG. 12 is a top view showing a specific example of themetal tube 11 having the L-shaped slot 111 according to the first embodiment.
The L-shape is a shape similar to the letter "L" in the alphabet, as shown in FIG.
Such an L-shapedslot 111 produces a dipole moment in the radial and axial directions. Therefore, the metal tube 11 having the L-shaped slot 111 can generate not only the polarized wave in the radial direction (vertical polarized wave) but also the polarized wave in the axial direction (horizontal polarized wave). Therefore, the metal tube 11 having the L-shaped slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
FIG. 13 is a top view showing a specific example of the crank-shapedmetal tube 11 having the slots 111 according to the first embodiment.
The crank-shapedslot 111 has a structure that is bent in a step shape on the surface of the metal tube 11 along the axial direction.
Such acrank type slot 111 produces a dipole moment in the radial and axial directions. Therefore, the metal tube 11 having the crank type slots 111 can generate not only the polarized wave in the radial direction (vertical polarized wave) but also the polarized wave in the axial direction (horizontal polarized wave). Therefore, the metal tube 11 having the crank-shaped slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
図12は、第1実施形態に係るスロット111がL字型の金属管11の具体例を示す上面図である。
L字型は、図12に示すように、アルファベットの「L」の文字に似た形状である。
このようなL字型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、L字型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、L字型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。
図13は、第1実施形態に係るスロット111がクランク型の金属管11の具体例を示す上面図である。
クランク型のスロット111は、軸方向に沿って、金属管11の表面上で、階段状に折れ曲がった構造である。
このようなクランク型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、クランク型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、クランク型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。 Up to this point, the description has been made assuming that the shape of the
FIG. 12 is a top view showing a specific example of the
The L-shape is a shape similar to the letter "L" in the alphabet, as shown in FIG.
Such an L-shaped
FIG. 13 is a top view showing a specific example of the crank-shaped
The crank-shaped
Such a
図14は、第1実施形態に係るスロット111が窓型の金属管11の具体例を示す上面図である。
窓型のスロット111は、長方形のスロット111よりも短辺の長さが長い。そのため、軸方向に沿った表面電流を妨げる効果が、長方形のスロット111よりも大きい。このため、窓型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。半径方向及び軸方向に双極子モーメントを生じるため、窓型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、窓型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような窓型は、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。 FIG. 14 is a top view showing a specific example of the window-shapedmetal tube 11 having the slot 111 according to the first embodiment.
The window-shapedslot 111 has a longer short side than the rectangular slot 111. Therefore, the effect of hindering the surface current along the axial direction is greater than that of the rectangular slot 111. Therefore, the window-shaped slot 111 produces a dipole moment in the radial direction and the axial direction. Since the dipole moment is generated in the radial direction and the axial direction, the metal tube 11 having the window-shaped slot 111 also generates the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can be made. Therefore, the metal tube 11 having the window-shaped slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the electromagnetic wave receiving side. Further, since such a window type has a long length in the radial direction, it has an effect that the manufacturer can easily process it.
窓型のスロット111は、長方形のスロット111よりも短辺の長さが長い。そのため、軸方向に沿った表面電流を妨げる効果が、長方形のスロット111よりも大きい。このため、窓型のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。半径方向及び軸方向に双極子モーメントを生じるため、窓型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、窓型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような窓型は、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。 FIG. 14 is a top view showing a specific example of the window-shaped
The window-shaped
図15は、第1実施形態に係るスロット111が楕円型の金属管11の具体例を示す上面図である。
楕円型のスロット111は、長方形のスロット111よりも短辺の長さが長いため、窓型のスロット111と同様に、半径方向及び軸方向に双極子モーメントを生じる。このため、楕円型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、楕円型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような楕円型は、窓型と同様に、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。また、このような楕円型は、窓型よりも丸みを帯びている。そのため、楕円型のスロット111は、窓型のスロット111よりも、スロット111の角から亀裂が生じる可能性が低いという効果を奏する。 FIG. 15 is a top view showing a specific example of themetal tube 11 having an elliptical slot 111 according to the first embodiment.
Since theelliptical slot 111 has a shorter side length than the rectangular slot 111, a dipole moment is generated in the radial direction and the axial direction like the window slot 111. Therefore, the metal tube 11 having the elliptical slot 111 can generate polarization in the axial direction (horizontal polarization) in addition to polarization in the radial direction (vertical polarization). Therefore, the metal tube 11 having the elliptical slot 111 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves. Further, such an elliptic shape has a long radial length, like the window shape, and therefore has the effect of being easily processed by the manufacturer. Further, such an elliptical shape is more rounded than the window type. Therefore, the oval-shaped slot 111 has an effect that cracks are less likely to occur from the corners of the slot 111 than the window-shaped slot 111.
楕円型のスロット111は、長方形のスロット111よりも短辺の長さが長いため、窓型のスロット111と同様に、半径方向及び軸方向に双極子モーメントを生じる。このため、楕円型のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、楕円型のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような楕円型は、窓型と同様に、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。また、このような楕円型は、窓型よりも丸みを帯びている。そのため、楕円型のスロット111は、窓型のスロット111よりも、スロット111の角から亀裂が生じる可能性が低いという効果を奏する。 FIG. 15 is a top view showing a specific example of the
Since the
ここまで、説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定してきた。しかしながら、スロット外接長方形は、必ずしも、長辺が軸方向に平行である必要は無い。スロット外接長方形は、長辺が軸方向と角度を有して傾斜するように形成されてもよい。
Up to this point, for simplicity of explanation, it has been assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction. However, the slot circumscribed rectangle does not necessarily need to have its long sides parallel to the axial direction. The slot circumscribed rectangle may be formed such that the long side is inclined at an angle with the axial direction.
図16は、第1実施形態に係るスロット111が長方形であって、スロット外接長方形の長辺が軸方向に平行でない金属管11の具体例を示す上面図である。
このようなスロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。なお、スロット111の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 FIG. 16 is a top view showing a specific example of themetal tube 11 in which the slot 111 according to the first embodiment is rectangular and the long sides of the rectangle circumscribing the slot are not parallel to the axial direction.
Therectangular slot 111 in which the long sides of such a slot-circumscribing rectangle are not parallel to the axial direction produces a dipole moment in the radial direction and the axial direction. Therefore, the metal tube 11 having the rectangular slot 111 in which the long sides of the slot-circumscribing rectangle are not parallel to the axial direction has the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can also be generated. Therefore, the metal tube 11 having the rectangular slot 111 whose long side of the slot circumscribed rectangle is not parallel to the axial direction has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave reception side. The shape of the slot 111 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. It may be oval.
このようなスロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111は、半径方向及び軸方向に双極子モーメントを生じる。このため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111を有する金属管11は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット111を有する金属管11は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。なお、スロット111の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 FIG. 16 is a top view showing a specific example of the
The
ここまで、金属管11は、スロット111を半径方向にひとつだけ備える場合について説明してきた。しかしながら、金属管11は、必ずしも、スロット111を半径方向にひとつだけ備える必要はない。金属管11は、スロット111を半径方向に複数個備えてもよい。以下、金属管11が、スロット111を半径方向に複数個備える場合について説明する。また、以下、説明の簡単のため、金属管11は、スロット111を半径方向に2つ備えると仮定する。また、以下、半径方向に2つ備えられるスロット111について、表面中央軸に近いスロット111をスロット111-1とし、表面中央軸から遠いスロット111をスロット111-2という。また、以下、スロット111-1及びスロット111-2を区別しない場合、スロット111という。
Up to this point, the case where the metal tube 11 has only one slot 111 in the radial direction has been described. However, the metal tube 11 does not necessarily need to include only one slot 111 in the radial direction. The metal tube 11 may include a plurality of slots 111 in the radial direction. Hereinafter, a case where the metal tube 11 includes a plurality of slots 111 in the radial direction will be described. Further, hereinafter, for simplicity of explanation, it is assumed that the metal tube 11 includes two slots 111 in the radial direction. Further, of the two slots 111 provided in the radial direction, the slot 111 close to the surface central axis will be referred to as a slot 111-1, and the slot 111 far from the surface central axis will be referred to as a slot 111-2. Further, hereinafter, when the slot 111-1 and the slot 111-2 are not distinguished, they are referred to as the slot 111.
図17は、第1実施形態に係るスロット111-1及びスロット111-2を備える金属管11の具体例を示す上面図である。隣り合うスロット111-1及びスロット111-2の半径方向の中心間の距離hは、半波長以下の距離である。そのため、半径方向に隣り合うスロット111-1及びスロット111-2のそれぞれに励起される双極子モーメントの振動の位相は略同一である。また、軸方向に隣り合うスロット111-1及びスロット111-2の間の中間距離Sは、波長に略同一である。このため、金属管11が備えるスロット111の全ては、略同一の位相で振動する。そのため、金属管11の各スロット111から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管11から放射される。
FIG. 17 is a top view showing a specific example of the metal tube 11 including the slot 111-1 and the slot 111-2 according to the first embodiment. The distance h between the centers of the adjacent slots 111-1 and 111-2 in the radial direction is equal to or less than a half wavelength. Therefore, the phases of the vibrations of the dipole moments excited in the slots 111-1 and 111-2 adjacent to each other in the radial direction are substantially the same. The intermediate distance S between the slots 111-1 and 111-2 adjacent to each other in the axial direction is substantially the same as the wavelength. Therefore, all the slots 111 included in the metal tube 11 vibrate in substantially the same phase. Therefore, the electromagnetic waves radiated from each slot 111 of the metal tube 11 reinforce each other and become a highly coherent electromagnetic wave, which is radiated from the metal tube 11.
なお、金属管11は、スロット111を半径方向に2つだけ備える必要はなく、3つ以上であってもよい。このような場合、半径方向に備えられた複数のスロット111の中心間の距離は、中央交点に最も近いスロット111の中心と中央交点に最も遠いスロット111の中心との間の距離は半波長以下である、という条件を満たす位置に位置する。
図17におけるスロット111の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 Themetal tube 11 does not need to have only two slots 111 in the radial direction, and may have three or more slots 111. In such a case, the distance between the centers of the plurality of slots 111 provided in the radial direction is equal to or less than half the wavelength between the center of the slot 111 closest to the central intersection and the center of the slot 111 farthest from the central intersection. It is located at a position that satisfies the condition.
The shape of theslot 111 in FIG. 17 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. The shape may be oval or elliptical.
図17におけるスロット111の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 The
The shape of the
また、半径方向の複数のスロット111の中心は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置に位置することが望ましい。
Moreover, it is desirable that the centers of the plurality of slots 111 in the radial direction are located at a position where the distance from the central intersection is 7/40 or more and 19/40 or more of the length of the long side of the rectangle circumscribing the section.
このように構成されたスロット111を半径方向に複数備える漏洩導波管1は、スロット111を半径方向に一つ備える場合よりも、結合損失が低減するという効果を奏する。
The leaky waveguide 1 having a plurality of slots 111 thus configured in the radial direction has an effect of reducing the coupling loss as compared with the case where one slot 111 is provided in the radial direction.
このように構成された第1実施形態に係る漏洩導波管1は、波長間隔で端部に配置された複数のスロット111を備えるため、0°の方向以外の方向に電波を放射することができる。そのため、例えば、50m以上の長さの漏洩導波管1を用いた移動体との間の無線通信における通信効率の低下を抑制することができる。さらに、このように構成された漏洩導波管1は、例えば、50m以上の長さを有しながらも運搬時に座屈しないという効果を奏する。
The leaky waveguide 1 according to the first embodiment configured as described above includes the plurality of slots 111 arranged at the ends at wavelength intervals, and thus can radiate radio waves in directions other than the direction of 0°. it can. Therefore, for example, it is possible to suppress a decrease in communication efficiency in wireless communication with a moving body using the leaky waveguide 1 having a length of 50 m or more. Further, the leaky waveguide 1 configured as described above has an effect that it does not buckle during transportation even though it has a length of, for example, 50 m or more.
なお、金属管11の内部は、必ずしも中空である必要はない。漏洩導波管1は、金属管11の内部は、電磁波を透過させる誘電体であってもよい。
The inside of the metal tube 11 does not necessarily have to be hollow. In the leaky waveguide 1, the inside of the metal tube 11 may be a dielectric that transmits electromagnetic waves.
なお、金属管11の表面は、軸方向に沿って波状の凹凸を有してもよい。金属管11が軸方向に沿って波状の凹凸を有する場合、断面外接長方形の中心から見た断面外接長方形の長辺の方向への可逆的な湾曲の角度を大きくすることが可能となる。なお、金属管11は、必ずしも、金属管内伝搬方向に波状の凹凸を有する必要はない。
Note that the surface of the metal tube 11 may have wavy unevenness along the axial direction. When the metal tube 11 has wavy unevenness along the axial direction, it becomes possible to increase the angle of reversible bending in the direction of the long side of the circumscribed rectangle of the cross section when viewed from the center of the circumscribed rectangle of the cross section. In addition, the metal tube 11 does not necessarily need to have wavy unevenness in the propagation direction in the metal tube.
(作成方法)
以下、第1実施形態に係る漏洩導波管1の作成方法を説明する。先ず、平坦な銅ラミネート帯状体が作製される。その後、送り出し機のドラムに巻設された平坦な銅ラミネート帯状体を連続的にフォーミング部へ送り出していく。このフォーミング部は、上流側(銅ラミネート帯状体の送り側)より、銅ラミネート帯状体を円形形状にフォーミングする円形フォーミング機と、円形にされた銅ラミネート帯状体を引き続いて偏平円形状にフォーミングする偏平フォーミング機とを有する。フォーミング部に送り出された銅ラミネート帯状体は、円形フォーミング部によって、銅ラミネート帯状体がC字状に湾曲していき、幅方向の一端縁と他端縁とが重ね合わさって円形形状になる。この際、銅ラミネート帯状体の他端縁と一端縁とが重ね合わされ接合部が形成される。次に、フォーミング部において、銅ラミネート帯状体は、加熱機によって加熱され、接合部が熱融着される。熱融着の方法は、どのような方法であってもよく、例えば、アーク溶接であってもよい。次に、銅ラミネート帯状体は、偏平フォーミング部によって、横断面長円形状に成形される。このようにして、偏平パイプ体が形成される。
なお、銅ラミネート帯状体は、銅テープ(薄い銅板)の一面に接着層を積層していてもよい。 (How to make)
Hereinafter, a method of making theleaky waveguide 1 according to the first embodiment will be described. First, a flat copper laminate strip is produced. After that, the flat copper-laminated strip-shaped body wound around the drum of the delivery machine is continuously delivered to the forming part. This forming unit forms a circular forming machine for forming the copper laminate strip into a circular shape from the upstream side (feeding side of the copper laminate strip), and a flattened circular shape for the circular copper laminate strip. It has a flat forming machine. The copper laminate strip sent out to the forming part is curved by the circular forming part into a C shape, and one end edge and the other end edge in the width direction are overlapped to form a circular shape. At this time, the other end edge and one end edge of the copper laminate strip are overlapped to form a joint. Next, in the forming part, the copper laminate strip is heated by a heater to heat-bond the joint part. The method of heat fusion may be any method, for example, arc welding may be used. Next, the copper laminate strip is formed into an elliptical cross section by the flat forming part. In this way, the flat pipe body is formed.
In addition, the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
以下、第1実施形態に係る漏洩導波管1の作成方法を説明する。先ず、平坦な銅ラミネート帯状体が作製される。その後、送り出し機のドラムに巻設された平坦な銅ラミネート帯状体を連続的にフォーミング部へ送り出していく。このフォーミング部は、上流側(銅ラミネート帯状体の送り側)より、銅ラミネート帯状体を円形形状にフォーミングする円形フォーミング機と、円形にされた銅ラミネート帯状体を引き続いて偏平円形状にフォーミングする偏平フォーミング機とを有する。フォーミング部に送り出された銅ラミネート帯状体は、円形フォーミング部によって、銅ラミネート帯状体がC字状に湾曲していき、幅方向の一端縁と他端縁とが重ね合わさって円形形状になる。この際、銅ラミネート帯状体の他端縁と一端縁とが重ね合わされ接合部が形成される。次に、フォーミング部において、銅ラミネート帯状体は、加熱機によって加熱され、接合部が熱融着される。熱融着の方法は、どのような方法であってもよく、例えば、アーク溶接であってもよい。次に、銅ラミネート帯状体は、偏平フォーミング部によって、横断面長円形状に成形される。このようにして、偏平パイプ体が形成される。
なお、銅ラミネート帯状体は、銅テープ(薄い銅板)の一面に接着層を積層していてもよい。 (How to make)
Hereinafter, a method of making the
In addition, the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
横断面偏平円形状に形成された偏平パイプ体は、次に、スロット111を形成するスロット形成機へ送られる。スロット形成機は、レーザ、抜き打ち、切削等によって、スロット111を形成する。
スロット111が形成された偏平パイプ体は、波付け機に送られる。スロット111が形成された偏平パイプ体は、波付け機によって、表面に凹凸が形成される。波付け機は、波付けダイスを偏平パイプ体に偏心させて外嵌させ、波付けダイスを回転させ、回転に同期させて波付けダイスを長手方向に送ることで、(螺旋状の)凹凸波を形成する。
波付けされた偏平パイプ体は、シンキングダイスに送られる。波付けされた偏平パイプ体は、シンキングダイスによって、断面が所定の形状に成形される。シンキングダイスによって形成される所定の形状とは、断面外接長方形に外接される形状であって、横断面偏平円形状に略同一の形状である。シンキングダイスによって成形された偏平パイプ体が、金属管11である。
シンキングダイスによって成形された後、金属管11は、シース押出機に送られる。シース押出機は、金属管11の外側をポリエチレン等の高分子材料によって被覆する。金属管11を被覆する高分子材料が外皮12である。 The flat pipe body having a flat circular cross section is then sent to a slot forming machine that forms aslot 111. The slot forming machine forms the slots 111 by laser, punching, cutting or the like.
The flat pipe body in which theslot 111 is formed is sent to the corrugating machine. The flat pipe body in which the slots 111 are formed has irregularities formed on its surface by a corrugating machine. The corrugating machine eccentrically fits the corrugating die onto the flat pipe body, externally fits the corrugated die, rotates the corrugating die, and sends the corrugating die in the longitudinal direction in synchronization with the rotation, thereby forming a (spiral) uneven wave. To form.
The corrugated flat pipe body is sent to a sinking die. The corrugated flat pipe body is formed into a predetermined cross section by a sinking die. The predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section. The flat pipe body formed by the sinking die is themetal pipe 11.
After being formed by the sinking die, themetal tube 11 is sent to the sheath extruder. The sheath extruder coats the outside of the metal tube 11 with a polymer material such as polyethylene. The polymer material that covers the metal tube 11 is the outer cover 12.
スロット111が形成された偏平パイプ体は、波付け機に送られる。スロット111が形成された偏平パイプ体は、波付け機によって、表面に凹凸が形成される。波付け機は、波付けダイスを偏平パイプ体に偏心させて外嵌させ、波付けダイスを回転させ、回転に同期させて波付けダイスを長手方向に送ることで、(螺旋状の)凹凸波を形成する。
波付けされた偏平パイプ体は、シンキングダイスに送られる。波付けされた偏平パイプ体は、シンキングダイスによって、断面が所定の形状に成形される。シンキングダイスによって形成される所定の形状とは、断面外接長方形に外接される形状であって、横断面偏平円形状に略同一の形状である。シンキングダイスによって成形された偏平パイプ体が、金属管11である。
シンキングダイスによって成形された後、金属管11は、シース押出機に送られる。シース押出機は、金属管11の外側をポリエチレン等の高分子材料によって被覆する。金属管11を被覆する高分子材料が外皮12である。 The flat pipe body having a flat circular cross section is then sent to a slot forming machine that forms a
The flat pipe body in which the
The corrugated flat pipe body is sent to a sinking die. The corrugated flat pipe body is formed into a predetermined cross section by a sinking die. The predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section. The flat pipe body formed by the sinking die is the
After being formed by the sinking die, the
なお、第1空間内に位置するスロット111と、第2空間内に位置するスロット111とは、それぞれ各空間内でどのように位置してもよい。第1空間内に位置するスロット111と、第2空間内に位置するスロット111とは、例えば、スロット111の中心の位置が、Q座標系の原点を通って断面外接長方形の長辺に平行な軸とQ座標系の原点を通って軸方向に平行な軸とを含む面、を挟んで対称な位置に位置してもよい。第1空間内に位置するスロット111と、第2空間内に位置するスロット111とは、例えば、第1空間内に位置するスロット111の中心と、第2空間内に位置するスロット111の中心との間の軸方向の距離の最小値が半波長であるような位置であってもよい。
なお、第1空間内に位置するスロット111と、第2空間内に位置するスロット111とは、異なる形状であってもよい。
また、第1空間内と第2空間内とで、半径方向のスロット111の個数は、異なってもよい。例えば、第1空間内には、半径方向に複数のスロット111が位置し、第2空間内には、半径方向に1つのスロット111が位置してもよい。 It should be noted that theslot 111 located in the first space and the slot 111 located in the second space may be located in any of the respective spaces. For the slot 111 located in the first space and the slot 111 located in the second space, for example, the center position of the slot 111 passes through the origin of the Q coordinate system and is parallel to the long side of the circumscribed rectangle. It may be located at symmetrical positions with a plane including the axis and the axis parallel to the axial direction passing through the origin of the Q coordinate system. The slot 111 located in the first space and the slot 111 located in the second space are, for example, the center of the slot 111 located in the first space and the center of the slot 111 located in the second space. The position may be such that the minimum value of the axial distance between them is a half wavelength.
Theslot 111 located in the first space and the slot 111 located in the second space may have different shapes.
Further, the number ofradial slots 111 may be different between the first space and the second space. For example, a plurality of slots 111 may be located in the first space in the radial direction, and one slot 111 may be located in the second space in the radial direction.
なお、第1空間内に位置するスロット111と、第2空間内に位置するスロット111とは、異なる形状であってもよい。
また、第1空間内と第2空間内とで、半径方向のスロット111の個数は、異なってもよい。例えば、第1空間内には、半径方向に複数のスロット111が位置し、第2空間内には、半径方向に1つのスロット111が位置してもよい。 It should be noted that the
The
Further, the number of
なお、スロット111は、第1開口部、第2開口部、第3開口部及び第4開口部の一例である。なお、第1空間内に位置するスロット111は、第1開口部及び第3開口部の一例である。第2空間内に位置するスロット111は、第2開口部及び第4開口部の一例である。なお、スロット111-1は、第1開口部及び第2開口部の一例である。スロット111-2は、第3開口部及び第4開口部の一例である。
The slot 111 is an example of the first opening, the second opening, the third opening, and the fourth opening. The slot 111 located in the first space is an example of the first opening and the third opening. The slot 111 located in the second space is an example of the second opening and the fourth opening. The slot 111-1 is an example of the first opening and the second opening. The slot 111-2 is an example of the third opening and the fourth opening.
(第2実施形態)
図18は、本発明の第2実施形態に係る漏洩導波管2の具体的な構成を示す一部破断斜視図である。漏洩導波管2は、例えば、移動体の移動経路等に沿って設置される長尺の導波管であって、長大なエリアに対して電磁波を伝搬するとともに均一に輻射することが可能な導波管である。本発明の第2実施形態に係る漏洩導波管2は、例えば、4~6GHzの電磁波において用いることができる。漏洩導波管2は、金属管21及び外皮22を備える。漏洩導波管2の軸方向の長さは、例えば、50m以上である。漏洩導波管2の軸方向に平行な方向は、移動体の移動経路に略平行な方向である。なお、移動経路はカーブを有してもよい。 (Second embodiment)
FIG. 18 is a partially cutaway perspective view showing a specific configuration of theleaky waveguide 2 according to the second embodiment of the present invention. The leaky waveguide 2 is, for example, a long waveguide installed along a moving path of a moving body, and can propagate an electromagnetic wave to a long area and radiate it uniformly. It is a waveguide. The leaky waveguide 2 according to the second embodiment of the present invention can be used in an electromagnetic wave of 4 to 6 GHz, for example. The leaky waveguide 2 includes a metal tube 21 and an outer cover 22. The axial length of the leaky waveguide 2 is, for example, 50 m or more. The direction parallel to the axial direction of the leaky waveguide 2 is substantially parallel to the moving path of the moving body. The movement route may have a curve.
図18は、本発明の第2実施形態に係る漏洩導波管2の具体的な構成を示す一部破断斜視図である。漏洩導波管2は、例えば、移動体の移動経路等に沿って設置される長尺の導波管であって、長大なエリアに対して電磁波を伝搬するとともに均一に輻射することが可能な導波管である。本発明の第2実施形態に係る漏洩導波管2は、例えば、4~6GHzの電磁波において用いることができる。漏洩導波管2は、金属管21及び外皮22を備える。漏洩導波管2の軸方向の長さは、例えば、50m以上である。漏洩導波管2の軸方向に平行な方向は、移動体の移動経路に略平行な方向である。なお、移動経路はカーブを有してもよい。 (Second embodiment)
FIG. 18 is a partially cutaway perspective view showing a specific configuration of the
金属管21は、金属素材でできた中空の管である。金属管21は、電磁波を伝搬させる。電磁波は、金属管21の中空箇所を金属管21の軸方向に伝搬する。金属管21の断面の形状は、横断面偏平円形状に略同一の形状である。断面は、金属管21の軸方向に垂直な面である。金属管21の横断面偏平円形状に略同一の形状は、長辺及び短辺の長さが所定の条件を満たす長方形(以下「断面外接長方形」という。)に外接される。断面外接長方形は、例えば、長辺と短辺との長さの比が2:1に略同一である長方形である。断面外接長方形は、例えば、金属管21を伝搬する電磁波の波長が54mmである場合に、長辺が50mmであって、短辺が25mmの長方形であってもよい。
The metal tube 21 is a hollow tube made of a metal material. The metal tube 21 propagates electromagnetic waves. The electromagnetic wave propagates through the hollow portion of the metal tube 21 in the axial direction of the metal tube 21. The shape of the cross section of the metal tube 21 is substantially the same as the flat circular cross section. The cross section is a plane perpendicular to the axial direction of the metal tube 21. A shape substantially identical to the flat circular cross section of the metal tube 21 is circumscribed into a rectangle (hereinafter referred to as a “circumscribed rectangle in cross section”) whose long sides and short sides satisfy predetermined conditions. The circumscribed rectangle in cross section is, for example, a rectangle in which the ratio of the length of the long side to the length of the short side is approximately equal to 2:1. The rectangle circumscribing the cross section may be, for example, a rectangle having a long side of 50 mm and a short side of 25 mm when the wavelength of the electromagnetic wave propagating through the metal tube 21 is 54 mm.
図19は、第2実施形態に係る金属管21の断面の形状の具体例を示す図である。
金属管21の断面の形状は、図19(a)に示す長方形であってもよい。金属管21の断面の形状は、図19(b)に示す角丸長方形であってもよい。金属管21の断面の形状は、図19(c)に示す長円形であってもよい。金属管21の断面の形状は、図19(d)に示す、楕円形であってもよい。金属管21の断面の形状は、図19(e)に示す、リッジ形であってもよい。金属管21の断面の形状は、図19(f)に示す、ピーナッツ形(peanut shape)であってもよい。 FIG. 19 is a diagram showing a specific example of the cross-sectional shape of themetal tube 21 according to the second embodiment.
The shape of the cross section of themetal tube 21 may be a rectangle shown in FIG. The shape of the cross section of the metal tube 21 may be a rounded rectangle as shown in FIG. The shape of the cross section of the metal tube 21 may be an elliptical shape shown in FIG. The shape of the cross section of the metal tube 21 may be an elliptical shape as shown in FIG. The shape of the cross section of the metal tube 21 may be a ridge shape as shown in FIG. The shape of the cross section of the metal tube 21 may be a peanut shape shown in FIG.
金属管21の断面の形状は、図19(a)に示す長方形であってもよい。金属管21の断面の形状は、図19(b)に示す角丸長方形であってもよい。金属管21の断面の形状は、図19(c)に示す長円形であってもよい。金属管21の断面の形状は、図19(d)に示す、楕円形であってもよい。金属管21の断面の形状は、図19(e)に示す、リッジ形であってもよい。金属管21の断面の形状は、図19(f)に示す、ピーナッツ形(peanut shape)であってもよい。 FIG. 19 is a diagram showing a specific example of the cross-sectional shape of the
The shape of the cross section of the
以下、説明の簡単のため、金属管21の断面の形状は、長方形又は長円形であると仮定する。
For simplicity of explanation, it is assumed below that the shape of the cross section of the metal tube 21 is rectangular or oval.
図18の説明に戻る。金属管21の断面は、断面外接長方形に内接する形状であるため、金属管21は、軸方向に沿って断面外接長方形の中心から見た断面外接長方形の長辺の方向への可逆的な湾曲が可能である。断面外接長方形の中心から見た断面外接長方形の長辺の方向とは、断面外接長方形の短辺に平行な方向である。以下、断面外接長方形の中心から見た断面外接長方形の長辺の方向を、短辺方向という。
Return to the explanation of FIG. Since the cross-section of the metal tube 21 is inscribed in the cross-section circumscribed rectangle, the metal tube 21 is reversibly curved in the direction of the long side of the cross-section circumscribed rectangle viewed from the center of the cross-section circumscribed rectangle along the axial direction. Is possible. The direction of the long side of the rectangle circumscribing the cross section viewed from the center of the rectangle circumscribing the cross section is the direction parallel to the short side of the rectangle circumscribing the cross section. Hereinafter, the direction of the long side of the rectangle circumscribing the section viewed from the center of the rectangle circumscribing the section is referred to as the direction of the short side.
金属管21は、表面に複数のスロット211を有する。複数のスロット211は、略同一の面上に位置する。スロット211は、中心が軸方向に沿って金属管21の表面に所定の間隔Sごとに位置する孔である。間隔Sごととは、隣り合うスロット211の中心間距離(以下「スロット間距離」という。)がSという意味である。所定の間隔Sは、波長λに略同一である。各スロット211は、互いに平行である。Sは、例えば、金属管21を伝搬する電磁波の周波数が6GHzであれば、35mmである。
The metal tube 21 has a plurality of slots 211 on the surface. The plurality of slots 211 are located on substantially the same plane. The slots 211 are holes whose centers are located at predetermined intervals S on the surface of the metal tube 21 along the axial direction. “Each interval S” means that the center-to-center distance between adjacent slots 211 (hereinafter referred to as “slot distance”) is S. The predetermined interval S is substantially the same as the wavelength λ. Each slot 211 is parallel to each other. For example, S is 35 mm when the frequency of the electromagnetic wave propagating through the metal tube 21 is 6 GHz.
スロット211の形状は、2回対称性を有する形状であって、2回回転軸に直交する2つの対称軸に平行な線分であって端点がスロット外接長方形と対称軸との交点である線分の一方が他方より長い形状であれば、どのような形状であってもよい。スロット外接長方形は、スロット211より大きくスロット211を包含する長方形であってスロット211との隙間を最小にする長方形である。スロット211の形状は、例えば、長方形であってもよいし、長円形であってもよい。以下、説明の簡単のため、スロット211の形状が長方形であると仮定する。
なお、スロット外接長方形の長辺と短辺の長さとは、電磁波の周波数に応じてどのような長さであってもよいが、例えば、電磁波の周波数が6GHzの場合、長辺の長さが10mmであって、短辺の長さが2mmであってもよい。
なお、スロット外接長方形の向きは、漏洩導波管2の表面を周方向に流れる電流を妨げる向きであれば、どのような向きであってもよい。
以下説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定する。
対称軸に平行な線分の一方(第1線分)は、スロット外接長方形の長辺に平行であって長辺と同じ長さである。対称軸に平行な線分の他方(第2線分)は、スロット外接長方形の短辺に平行であって短辺と同じ長さである。
スロット211の中心とは、スロット211を含む平面又は曲面と2回回転軸との交点である。 The shape of theslot 211 is a shape having a two-fold symmetry, is a line segment parallel to two symmetry axes orthogonal to the two-fold rotation axis, and has an end point that is an intersection of the slot circumscribed rectangle and the symmetry axis. Any shape may be used as long as one of the portions is longer than the other. The slot circumscribing rectangle is a rectangle that is larger than the slot 211 and that includes the slot 211 and that minimizes the gap with the slot 211. The shape of the slot 211 may be rectangular or oval, for example. Hereinafter, for simplicity of explanation, it is assumed that the shape of the slot 211 is rectangular.
The length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave. For example, when the frequency of the electromagnetic wave is 6 GHz, the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
The orientation of the rectangle circumscribing the slot may be any orientation as long as it obstructs the current flowing in the circumferential direction on the surface of theleaky waveguide 2.
For simplicity of description below, it is assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction.
One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side. The other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
The center of theslot 211 is the intersection of the plane or curved surface including the slot 211 and the two-fold rotation axis.
なお、スロット外接長方形の長辺と短辺の長さとは、電磁波の周波数に応じてどのような長さであってもよいが、例えば、電磁波の周波数が6GHzの場合、長辺の長さが10mmであって、短辺の長さが2mmであってもよい。
なお、スロット外接長方形の向きは、漏洩導波管2の表面を周方向に流れる電流を妨げる向きであれば、どのような向きであってもよい。
以下説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定する。
対称軸に平行な線分の一方(第1線分)は、スロット外接長方形の長辺に平行であって長辺と同じ長さである。対称軸に平行な線分の他方(第2線分)は、スロット外接長方形の短辺に平行であって短辺と同じ長さである。
スロット211の中心とは、スロット211を含む平面又は曲面と2回回転軸との交点である。 The shape of the
The length of the long side and the length of the short side of the slot circumscribed rectangle may be any length depending on the frequency of the electromagnetic wave. For example, when the frequency of the electromagnetic wave is 6 GHz, the length of the long side is It may be 10 mm and the length of the short side may be 2 mm.
The orientation of the rectangle circumscribing the slot may be any orientation as long as it obstructs the current flowing in the circumferential direction on the surface of the
For simplicity of description below, it is assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction.
One of the line segments parallel to the axis of symmetry (first line segment) is parallel to the long side of the slot circumscribing rectangle and has the same length as the long side. The other (second line segment) parallel to the axis of symmetry is parallel to the short side of the slot circumscribing rectangle and has the same length as the short side.
The center of the
金属管21は、電気伝導率の高い物質であればどのような物質で構成されてもよく、例えば、銅で構成されてもよい。金属管21の厚さは、どのような厚さであってもよいが、機械的な強度を考慮する場合、0.5mm程度が望ましい。金属管21には、ラミネート加工が施されてもよい。金属管21の断面の大きさは、伝搬させるべき電磁波に対する遮断周波数に応じた大きさである。遮断周波数は、以下の式(3)で表される。
The metal tube 21 may be made of any substance as long as it has a high electric conductivity, and may be made of copper, for example. The metal tube 21 may have any thickness, but in consideration of mechanical strength, it is preferably about 0.5 mm. The metal tube 21 may be laminated. The size of the cross section of the metal tube 21 corresponds to the cutoff frequency for the electromagnetic wave to be propagated. The cutoff frequency is expressed by the following equation (3).
式(3)において、fcは、遮断周波数を表す。式(3)において、Dは、断面外接長方形の長辺の長さを表す。具体的なDの値は、例えば、金属管21が伝搬させるべき電磁波の周波数が6GHzである場合、D=50mmである。また、この場合、例えば、断面外接長方形の短辺の長さは、例えば、25mmである。また、断面外接長方形の長辺の長さが50mmであって、短辺の長さ25mmである場合、金属管21は、周波数が3GHz以下の電磁波を遮断する。
金属管21を伝搬する電磁波は、スロット211から外部に放射される。 In Expression (3), f c represents a cutoff frequency. In Expression (3), D represents the length of the long side of the rectangle circumscribing the cross section. The specific value of D is, for example, D=50 mm when the frequency of the electromagnetic wave to be propagated by themetal tube 21 is 6 GHz. Further, in this case, for example, the length of the short side of the rectangle circumscribing the cross section is, for example, 25 mm. When the length of the long side of the rectangle circumscribing the cross section is 50 mm and the length of the short side is 25 mm, the metal tube 21 blocks electromagnetic waves having a frequency of 3 GHz or less.
The electromagnetic wave propagating through themetal tube 21 is radiated to the outside from the slot 211.
金属管21を伝搬する電磁波は、スロット211から外部に放射される。 In Expression (3), f c represents a cutoff frequency. In Expression (3), D represents the length of the long side of the rectangle circumscribing the cross section. The specific value of D is, for example, D=50 mm when the frequency of the electromagnetic wave to be propagated by the
The electromagnetic wave propagating through the
図20は、第2実施形態に係る金属管21の具体的な形状を示す上面図及び断面図である。
図20(a)は、金属管21の上面図を示す。図20(b)は、金属管21の断面図を示す。
スロット211の形状は、軸方向に平行な方向を長軸方向とする長方形である。スロット211は、金属管21の表面の中心部には位置せず、端部に位置する。金属管21の表面の中心部とは、断面外接長方形の長辺の垂直二等分線と金属管21とが交わる点を通り、軸方向に平行な軸(以下「表面中央軸」という。)の近傍の領域である。端部とは、金属管21の表面の中心部以外の領域である。以下、断面外接長方形の長辺の垂直二等分線と金属管21とが交わる点を中央交点という。
中心部は、具体的には、表面中央軸を中心として半径方向の範囲が(-5/40)×長さD~(+5/40)×長さDの範囲内の領域である。 20A and 20B are a top view and a cross-sectional view showing a specific shape of themetal tube 21 according to the second embodiment.
FIG. 20A shows a top view of themetal tube 21. FIG. 20B shows a sectional view of the metal tube 21.
The shape of theslot 211 is a rectangle whose major axis direction is parallel to the axial direction. The slot 211 is located not at the center of the surface of the metal tube 21 but at the end thereof. The central portion of the surface of the metal tube 21 passes through the point where the long bisector of the long side of the rectangle circumscribing the cross section intersects with the metal tube 21, and is an axis parallel to the axial direction (hereinafter referred to as "surface central axis"). Is a region near. The end portion is an area other than the central portion of the surface of the metal tube 21. Hereinafter, the point where the long bisector of the long side of the rectangle circumscribing the cross section and the metal tube 21 intersect is referred to as the central intersection point.
Specifically, the central portion is an area within a range of (−5/40)×length D to (+5/40)×length D in the radial direction centering on the surface center axis.
図20(a)は、金属管21の上面図を示す。図20(b)は、金属管21の断面図を示す。
スロット211の形状は、軸方向に平行な方向を長軸方向とする長方形である。スロット211は、金属管21の表面の中心部には位置せず、端部に位置する。金属管21の表面の中心部とは、断面外接長方形の長辺の垂直二等分線と金属管21とが交わる点を通り、軸方向に平行な軸(以下「表面中央軸」という。)の近傍の領域である。端部とは、金属管21の表面の中心部以外の領域である。以下、断面外接長方形の長辺の垂直二等分線と金属管21とが交わる点を中央交点という。
中心部は、具体的には、表面中央軸を中心として半径方向の範囲が(-5/40)×長さD~(+5/40)×長さDの範囲内の領域である。 20A and 20B are a top view and a cross-sectional view showing a specific shape of the
FIG. 20A shows a top view of the
The shape of the
Specifically, the central portion is an area within a range of (−5/40)×length D to (+5/40)×length D in the radial direction centering on the surface center axis.
外皮22は、ポリエチレン等の高分子材料であって、金属管21を覆う。
The outer skin 22 is a polymer material such as polyethylene and covers the metal tube 21.
図21A、図21B、及び図22を用いて第2実施形態に係る漏洩導波管2が奏する効果について説明する。
図21Aは、導波管の表面を流れる表面電流の分布の概略を示す図である。図21Bは、導波管の電磁界分布の概略を示す図である。図21A及び図21Bにおいては、簡単のため、導波管が方形導波管であると仮定して説明を行う。 The effect of theleaky waveguide 2 according to the second embodiment will be described with reference to FIGS. 21A, 21B, and 22.
FIG. 21A is a diagram showing an outline of the distribution of the surface current flowing on the surface of the waveguide. FIG. 21B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 21A and 21B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
図21Aは、導波管の表面を流れる表面電流の分布の概略を示す図である。図21Bは、導波管の電磁界分布の概略を示す図である。図21A及び図21Bにおいては、簡単のため、導波管が方形導波管であると仮定して説明を行う。 The effect of the
FIG. 21A is a diagram showing an outline of the distribution of the surface current flowing on the surface of the waveguide. FIG. 21B is a diagram showing an outline of the electromagnetic field distribution of the waveguide. 21A and 21B, for simplification, description will be made assuming that the waveguide is a rectangular waveguide.
電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、磁界の向きを表す磁力線は、導波管内において閉じた環を形成する。電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、電界を表す電気力線は、磁界に垂直な方向を向く。電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、表面電流の一部は、中心部近傍の位置において電磁波が伝搬する方向に流れる。また、電磁場のマクスウェル方程式によれば、方形導波管における境界条件を満足するため、表面電流の一部は、電磁波が伝搬する方向に垂直な方向に導波管の表面上を流れる。
According to the Maxwell equation of electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, the magnetic field lines representing the direction of the magnetic field form a closed ring in the waveguide. According to the Maxwell equation of the electromagnetic field, the boundary condition in the rectangular waveguide is satisfied, so that the electric force line representing the electric field is oriented in the direction perpendicular to the magnetic field. According to the Maxwell equation of the electromagnetic field, the boundary condition in the rectangular waveguide is satisfied, so that a part of the surface current flows in the direction in which the electromagnetic wave propagates at a position near the center. Further, according to the Maxwell equation of the electromagnetic field, since the boundary condition in the rectangular waveguide is satisfied, a part of the surface current flows on the surface of the waveguide in a direction perpendicular to the propagation direction of the electromagnetic wave.
図22は、第2実施形態に係る金属管21の表面電流の分布の概略を示す上面図である。図22において、簡単のため、金属管21が方形導波管であると仮定して説明を行う。
FIG. 22 is a top view showing the outline of the distribution of the surface current of the metal tube 21 according to the second embodiment. In FIG. 22, for the sake of simplicity, description will be given assuming that the metal tube 21 is a rectangular waveguide.
金属管21の表面を流れる表面電流の一部は、スロット211に流入する。スロット211に流入する表面電流は、スロット211の孔に、スロット211の短辺に平行な方向に振動する電場であって、表面電流と同じ周波数で振動する電場を形成する。このことは、スロット211を、軸方向に垂直な方向に振動する仮想的な双極子モーメントと見なすことができることを意味する。
そのため、スロット211からは、軸方向に垂直な方向に偏光した電磁波が放射される。
また、スロット間距離Sが波長λに略同一であるため、各スロット211の双極子モーメントの振動の位相は、略同一である。このことは、隣り合うスロット211から放射される電磁波の位相が略同一であることを意味する。そのため、金属管21の各スロット211から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管21から放射される。 A part of the surface current flowing on the surface of themetal tube 21 flows into the slot 211. The surface current flowing into the slot 211 forms an electric field in the hole of the slot 211 that vibrates in the direction parallel to the short side of the slot 211 and that vibrates at the same frequency as the surface current. This means that the slot 211 can be regarded as a virtual dipole moment that oscillates in a direction perpendicular to the axial direction.
Therefore, theslot 211 radiates an electromagnetic wave polarized in a direction perpendicular to the axial direction.
Further, since the inter-slot distance S is approximately the same as the wavelength λ, the dipole moment vibration phases of therespective slots 211 are approximately the same. This means that the phases of electromagnetic waves emitted from the adjacent slots 211 are substantially the same. Therefore, the electromagnetic waves radiated from each slot 211 of the metal tube 21 strengthen each other and become an electromagnetic wave with high coherence, which is radiated from the metal tube 21.
そのため、スロット211からは、軸方向に垂直な方向に偏光した電磁波が放射される。
また、スロット間距離Sが波長λに略同一であるため、各スロット211の双極子モーメントの振動の位相は、略同一である。このことは、隣り合うスロット211から放射される電磁波の位相が略同一であることを意味する。そのため、金属管21の各スロット211から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管21から放射される。 A part of the surface current flowing on the surface of the
Therefore, the
Further, since the inter-slot distance S is approximately the same as the wavelength λ, the dipole moment vibration phases of the
図23は、第2実施形態に係る漏洩導波管2が放射する電磁波の、断面方向から見た放射パターンの実験結果を示す図である。なお、断面方向とは、金属管21の軸上の位置から断面外接長方形を見る方向である。図23における電磁波の周波数は、5.6GHzである。図23において、断面外接長方形の長辺は、50mmであって、短辺は、25mmである。スロットは、中央交点から金属管21の半径方向に15mmの位置に位置する。
スロット211の中心点が、中央交点に位置しないため、放射強度が最大の方向(以下「最大輻射方向」という。)が0°の方向ではないことがわかる。なお、0°の方向とは、断面外接長方形の中心から中央交点を見る方向である。 FIG. 23 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave radiated by theleaky waveguide 2 according to the second embodiment as seen from a cross-sectional direction. The cross-sectional direction is the direction in which the cross-sectional circumscribed rectangle is viewed from the axial position of the metal tube 21. The frequency of the electromagnetic wave in FIG. 23 is 5.6 GHz. In FIG. 23, the long side of the rectangle circumscribing the cross section is 50 mm, and the short side is 25 mm. The slot is located at a position of 15 mm in the radial direction of the metal tube 21 from the central intersection.
Since the center point of theslot 211 is not located at the center intersection point, it can be seen that the direction of maximum radiation intensity (hereinafter referred to as “maximum radiation direction”) is not 0°. Note that the direction of 0° is a direction in which the central intersection is viewed from the center of the rectangle circumscribing the cross section.
スロット211の中心点が、中央交点に位置しないため、放射強度が最大の方向(以下「最大輻射方向」という。)が0°の方向ではないことがわかる。なお、0°の方向とは、断面外接長方形の中心から中央交点を見る方向である。 FIG. 23 is a diagram showing an experimental result of a radiation pattern of an electromagnetic wave radiated by the
Since the center point of the
図24は、第2実施形態に係るスロット211の配置の違いによる、垂直偏波の結合損失の違いを示す実験結果である。図24において垂直偏波は、軸方向に対する垂直偏波を意味する。結合損失は、以下の式(4)で表される。
FIG. 24 is an experimental result showing a difference in vertical polarization coupling loss due to a difference in arrangement of the slots 211 according to the second embodiment. In FIG. 24, vertical polarization means vertical polarization in the axial direction. The coupling loss is expressed by the following equation (4).
式(4)において、Lcは、結合損失を表す。式(4)において、Pinは、漏洩導波管2への入力電力を表す。式(4)において、Poutは、受信アンテナが受信した出力電力を表す。受信アンテナは、結合損失を測定するために、漏洩導波管2に対する所定の位置に、設置されたアンテナである。受信アンテナは、例えば、半波長ダイポールアンテナである。
In Expression (4), L c represents a coupling loss. In Equation (4), P in represents the input power to the leaky waveguide 2. In Expression (4), P out represents the output power received by the receiving antenna. The receiving antenna is an antenna installed at a predetermined position with respect to the leaky waveguide 2 in order to measure the coupling loss. The receiving antenna is, for example, a half-wavelength dipole antenna.
図24において、漏洩導波管Aは、スロット211の中心が中央交点にあって中心間距離が半波長に略同一であって、かつ、隣り合うスロット211が互い違いに配置された漏洩導波管である。隣り合うスロット211が互い違いとは、隣り合うスロット211が互いに逆向きであることを意味する。漏洩導波管Aは、スロット形状及びスロットの配置が従来の漏洩導波管と同様である漏洩導波管である。なお、図24において、漏洩導波管Aのスロット211の長辺の長さは、10mmであって、短辺の長さは、2mmである。
In FIG. 24, a leaky waveguide A is a leaky waveguide in which the centers of the slots 211 are at the central intersections, the center-to-center distances are substantially equal to a half wavelength, and the adjacent slots 211 are arranged alternately. Is. The staggering of the adjacent slots 211 means that the adjacent slots 211 are in opposite directions. The leaky waveguide A is a leaky waveguide whose slot shape and slot arrangement are the same as those of the conventional leaky waveguide. In FIG. 24, the long side of the slot 211 of the leaky waveguide A has a length of 10 mm, and the short side has a length of 2 mm.
図24において、漏洩導波管Bは、スロット211の中心が中央交点から金属管21の半径方向に15mmの位置にあって中心間距離が半波長に略同一であって、かつ、隣り合うスロット211が互い違いに配置された漏洩導波管である。なお、図24において、漏洩導波管Bのスロット211の長辺の長さは、10mmであって、短辺の長さは、2mmである。
24, in the leaky waveguide B, the center of the slot 211 is located at a position of 15 mm in the radial direction of the metal tube 21 from the center intersection point, the center-to-center distance is substantially equal to a half wavelength, and the adjacent slots are adjacent to each other. Reference numeral 211 is a leaky waveguide arranged alternately. In addition, in FIG. 24, the length of the long side of the slot 211 of the leaky waveguide B is 10 mm, and the length of the short side is 2 mm.
図24において、漏洩導波管Cは、スロット211の中心が中央交点から金属管21の半径方向に15mmの位置にあって中心間距離が波長に略同一であって、かつ、隣り合うスロット211が互いに平行に配置された漏洩導波管である。すなわち、漏洩導波管Cは、漏洩導波管2である。なお、図24において、漏洩導波管Cのスロット211の長辺の長さは、13mmであって、短辺の長さは、2mmである。
24, in the leaky waveguide C, the center of the slot 211 is located at a position of 15 mm in the radial direction of the metal tube 21 from the central intersection point, the center-to-center distance is substantially the same as the wavelength, and the adjacent slots 211 are adjacent to each other. Are leaky waveguides arranged in parallel with each other. That is, the leaky waveguide C is the leaky waveguide 2. In addition, in FIG. 24, the length of the long side of the slot 211 of the leaky waveguide C is 13 mm, and the length of the short side is 2 mm.
図24において、漏洩導波管A、漏洩導波管B、及び漏洩導波管Cは、ケーブルの長さ方向の0.1mから0.7mに位置する。
図24は、漏洩導波管Bは、漏洩導波管Aよりも5dB程度結合損失が大きいことを示す。
また、図24は、漏洩導波管Cは、漏洩導波管Bよりも結合損失が小さく漏洩導波管Aの結合損失に近いことを示す。このことから、従来の漏洩導波管において、単にスロット211の位置を半径方向にズラしただけでは、結合効率が下がってしまうことがわかる。また、スロット211の位置が中央交点から半径方向にずれた位置に位置する場合であっても、スロット211の中心管距離が波長に略同一であって、スロット211が互いに平行であれば、従来の漏洩導波管と同等の結合効率が実現されることを示す。
このように、スロット211が中央交点から半径方向にずれた位置に位置する場合には、スロット211が互いに平行であれば、結合損失の増大が抑制される。
なお、漏洩導波管Cのスロット211の中心間距離は、漏洩導波管Bのスロット211の中心間距離の略2倍であるため、漏洩導波管Cのスロット211の個数は、漏洩導波管Bのスロット211の個数の半分である。また、漏洩導波管のスロットから漏洩する電磁波のエネルギーは、スロットの長辺の長さに比例して増減する。そのため、漏洩導波管Bのスロット211の長辺の長さに対する漏洩導波管Cのスロット211の長辺の長さが2倍であれば、漏洩導波管Cから漏洩する電磁波のエネルギーの量が漏洩導波管Bから漏洩する電磁波のエネルギーの量と同じになり、結合損失が略同一であるはずである。しかしながら、図24の実験結果は、漏洩導波管Bのスロット211の長辺の長さに対する漏洩導波管Cのスロット211の長辺の長さが、2倍以下の1.3倍でありさえすれば、漏洩導波管Cの結合損失は、漏洩導波管Bの結合損失よりも小さいことを示す。このことは、スロット211の位置が中央交点から半径方向にずれた位置に位置する場合であってスロット211の中心管距離が波長に略同一である場合に、スロット211が互いに平行であることが結合損失の増大を抑制する効果を奏することを意味する。 In FIG. 24, the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
FIG. 24 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
Further, FIG. 24 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it can be seen that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of theslot 211 in the radial direction. Further, even when the position of the slot 211 is located at a position displaced in the radial direction from the central intersection, if the central tube distance of the slot 211 is substantially the same as the wavelength and the slots 211 are parallel to each other, it is conventional. It is shown that a coupling efficiency equivalent to that of the leaky waveguide of 1 is realized.
In this way, when theslots 211 are located at positions displaced from the central intersection in the radial direction, if the slots 211 are parallel to each other, an increase in coupling loss is suppressed.
Since the distance between the centers of theslots 211 of the leaky waveguide C is approximately twice the distance between the centers of the slots 211 of the leaky waveguide B, the number of slots 211 of the leaky waveguide C is equal to This is half the number of slots 211 of the wave tube B. Further, the energy of the electromagnetic wave leaking from the slot of the leaky waveguide increases or decreases in proportion to the length of the long side of the slot. Therefore, if the length of the long side of the slot 211 of the leaky waveguide C is twice the length of the long side of the slot 211 of the leaky waveguide B, the energy of the electromagnetic wave leaking from the leaky waveguide C is The amount should be the same as the amount of energy of the electromagnetic wave leaking from the leaky waveguide B, and the coupling loss should be almost the same. However, the experimental result of FIG. 24 shows that the length of the long side of the slot 211 of the leaky waveguide C is 1.3 times the length of the long side of the slot 211 of the leaky waveguide B, which is 2 times or less. If so, the coupling loss of the leaky waveguide C is smaller than that of the leaky waveguide B. This means that the slots 211 are parallel to each other when the positions of the slots 211 are displaced from the central intersection in the radial direction and the central tube distance of the slots 211 is substantially equal to the wavelength. This means that the effect of suppressing an increase in coupling loss is exerted.
図24は、漏洩導波管Bは、漏洩導波管Aよりも5dB程度結合損失が大きいことを示す。
また、図24は、漏洩導波管Cは、漏洩導波管Bよりも結合損失が小さく漏洩導波管Aの結合損失に近いことを示す。このことから、従来の漏洩導波管において、単にスロット211の位置を半径方向にズラしただけでは、結合効率が下がってしまうことがわかる。また、スロット211の位置が中央交点から半径方向にずれた位置に位置する場合であっても、スロット211の中心管距離が波長に略同一であって、スロット211が互いに平行であれば、従来の漏洩導波管と同等の結合効率が実現されることを示す。
このように、スロット211が中央交点から半径方向にずれた位置に位置する場合には、スロット211が互いに平行であれば、結合損失の増大が抑制される。
なお、漏洩導波管Cのスロット211の中心間距離は、漏洩導波管Bのスロット211の中心間距離の略2倍であるため、漏洩導波管Cのスロット211の個数は、漏洩導波管Bのスロット211の個数の半分である。また、漏洩導波管のスロットから漏洩する電磁波のエネルギーは、スロットの長辺の長さに比例して増減する。そのため、漏洩導波管Bのスロット211の長辺の長さに対する漏洩導波管Cのスロット211の長辺の長さが2倍であれば、漏洩導波管Cから漏洩する電磁波のエネルギーの量が漏洩導波管Bから漏洩する電磁波のエネルギーの量と同じになり、結合損失が略同一であるはずである。しかしながら、図24の実験結果は、漏洩導波管Bのスロット211の長辺の長さに対する漏洩導波管Cのスロット211の長辺の長さが、2倍以下の1.3倍でありさえすれば、漏洩導波管Cの結合損失は、漏洩導波管Bの結合損失よりも小さいことを示す。このことは、スロット211の位置が中央交点から半径方向にずれた位置に位置する場合であってスロット211の中心管距離が波長に略同一である場合に、スロット211が互いに平行であることが結合損失の増大を抑制する効果を奏することを意味する。 In FIG. 24, the leaky waveguide A, the leaky waveguide B, and the leaky waveguide C are located at 0.1 m to 0.7 m in the length direction of the cable.
FIG. 24 shows that the leaky waveguide B has a larger coupling loss than the leaky waveguide A by about 5 dB.
Further, FIG. 24 shows that the leakage waveguide C has a smaller coupling loss than the leakage waveguide B and is closer to the coupling loss of the leakage waveguide A. From this, it can be seen that in the conventional leaky waveguide, the coupling efficiency is lowered by merely shifting the position of the
In this way, when the
Since the distance between the centers of the
漏洩導波管2は、スロットの中心間距離が半波長の長さである従来の漏洩導波管と異なり、スロット211の中心間距離が波長の長さである。そのため、スロットの中心間距離が従来の漏洩導波管よりも長い。そのため、漏洩導波管2は、金属管21の座屈に対する耐性の強さを維持したまま、従来よりも長いスロット211を備えることができる。
In the leaky waveguide 2, the distance between the centers of the slots 211 is the length of the wavelength, unlike the conventional leaky waveguide in which the distance between the centers of the slots is a half wavelength. Therefore, the distance between the centers of the slots is longer than that of the conventional leaky waveguide. Therefore, the leaky waveguide 2 can be provided with the slot 211 longer than the conventional one while maintaining the strength of the metal tube 21 against buckling.
ここで、漏洩導波管2を敷設する状況について考える。漏洩導波管2は、例えば、50m以上の長さである。そのため、敷設する漏洩導波管2を保管、運搬する際は、漏洩導波管2を所定の曲率半径を有するドラムに巻き付けて保管、運搬することが現実的である。このような場合、漏洩導波管2には応力が加わるため、スロット211において座屈が生じる可能性がある。そこで、以下、漏洩導波管2の座屈について考察する。
Here, consider the situation in which the leaky waveguide 2 is laid. The leaky waveguide 2 has a length of, for example, 50 m or more. Therefore, when storing and transporting the leaky waveguide 2 to be laid, it is practical to store and transport the leaky waveguide 2 by winding it around a drum having a predetermined radius of curvature. In such a case, since stress is applied to the leaky waveguide 2, buckling may occur in the slot 211. Therefore, the buckling of the leaky waveguide 2 will be considered below.
図25は、第2実施形態に係る漏洩導波管2の保管、運搬に用いられるドラムを説明する説明図である。
漏洩導波管2は、直径1400mmのドラムに巻きつけられた状態で、保管されたり運搬されたりする。なお、図25において、漏洩導波管2が巻きつけられるドラムの巻回胴部の直径は、1400mmであるが、その直径は必ずしも、1400mmでなくてもよい。ドラムの巻回胴部の直径は、例えば、1000~2000mmの範囲であってもよい。 FIG. 25 is an explanatory diagram illustrating a drum used for storage and transportation of theleaky waveguide 2 according to the second embodiment.
Theleaky waveguide 2 is stored or transported while being wound around a drum having a diameter of 1400 mm. Note that, in FIG. 25, the diameter of the winding body of the drum around which the leaky waveguide 2 is wound is 1400 mm, but the diameter is not necessarily 1400 mm. The diameter of the winding body of the drum may be, for example, in the range of 1000 to 2000 mm.
漏洩導波管2は、直径1400mmのドラムに巻きつけられた状態で、保管されたり運搬されたりする。なお、図25において、漏洩導波管2が巻きつけられるドラムの巻回胴部の直径は、1400mmであるが、その直径は必ずしも、1400mmでなくてもよい。ドラムの巻回胴部の直径は、例えば、1000~2000mmの範囲であってもよい。 FIG. 25 is an explanatory diagram illustrating a drum used for storage and transportation of the
The
図26は、第2実施形態に係るスロット211の位置の違いによる座屈の起こりやすさを示す実験結果である。
図26は、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合と、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合とにおけるVSWR(voltage standing wave ratio)の値を示す。
図26に示すように、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合よりもVSWRの値が小さい。このことは、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合には座屈が生じ、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合には座屈が生じていないことを示す。
このように、スロット211の半径方向の位置の違いが座屈の生じやすさに影響を与える。 FIG. 26 is an experimental result showing the likelihood of buckling due to the difference in the position of theslot 211 according to the second embodiment.
FIG. 26 shows a case where theslot 211 is bent so that the leaky waveguide 2 located at a position of 21 mm in the radial direction from the central intersection has a predetermined radius of curvature and the slot 211 has a radius of 24 mm in the radial direction from the central intersection. The values of VSWR (voltage standing wave ratio) when the leaky waveguide 2 positioned at a position is bent to have a predetermined radius of curvature are shown.
As shown in FIG. 26, when theleaky waveguide 2 in which the slot 211 is located at a position of 24 mm in the radial direction from the central intersection is bent so as to have a predetermined radius of curvature, the slot 211 is radially moved from the central intersection. The value of VSWR is smaller than that when the leaky waveguide 2 located at the position of 21 mm is bent to have a predetermined radius of curvature. This means that when the leaky waveguide 2 located at a position 24 mm in the radial direction from the central intersection point is bent so as to have a predetermined radius of curvature, buckling occurs, and the slot 211 is separated from the central intersection point. It shows that buckling does not occur when the leaky waveguide 2 located at a position of 21 mm in the radial direction is bent to have a predetermined radius of curvature.
As described above, the difference in the radial position of theslot 211 affects the likelihood of buckling.
図26は、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合と、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合とにおけるVSWR(voltage standing wave ratio)の値を示す。
図26に示すように、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合よりもVSWRの値が小さい。このことは、スロット211が中央交点から半径方向に24mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合には座屈が生じ、スロット211が中央交点から半径方向に21mmの位置に位置する漏洩導波管2が所定の曲率半径を有するように曲げられた場合には座屈が生じていないことを示す。
このように、スロット211の半径方向の位置の違いが座屈の生じやすさに影響を与える。 FIG. 26 is an experimental result showing the likelihood of buckling due to the difference in the position of the
FIG. 26 shows a case where the
As shown in FIG. 26, when the
As described above, the difference in the radial position of the
図27A及び図27Bは、スロット211において座屈が発生するメカニズムを説明する説明図である。図27A及び図27Bにおいて、説明の簡単のため断面は、長円形であると仮定する。
図27Aは、中央部に位置するスロット211に印加される圧力を説明する説明図である。図27Bは、端部に位置するスロット211に印加される圧力を説明する説明図である。図27A及び図27Bは、金属管21の側面図である。図27A及び図27Bにおいて、金属管21は、短辺方向(すなわちZ軸方向)に湾曲している。
金属管21の湾曲によって、スロット211には圧縮応力と引張応力とが印加される。
座屈は、圧縮応力と引張応力との差によって生じる。圧縮応力と引張応力との差が大きいほどスロット211近傍の位置における座屈が生じやすい。力の差は、圧縮応力が印加される箇所と、引張応力が印加される箇所との、湾曲による曲げ半径の違いに比例する。 27A and 27B are explanatory views for explaining a mechanism in which buckling occurs in theslot 211. 27A and 27B, it is assumed that the cross section has an oval shape for the sake of simplicity.
FIG. 27A is an explanatory diagram illustrating a pressure applied to theslot 211 located in the central portion. FIG. 27B is an explanatory diagram illustrating the pressure applied to the slot 211 located at the end. 27A and 27B are side views of the metal tube 21. 27A and 27B, the metal tube 21 is curved in the short side direction (that is, the Z-axis direction).
Due to the bending of themetal tube 21, compressive stress and tensile stress are applied to the slot 211.
Buckling is caused by the difference between compressive stress and tensile stress. The greater the difference between the compressive stress and the tensile stress, the more likely buckling will occur at the position near theslot 211. The difference in force is proportional to the difference in bending radius due to bending between the location where compressive stress is applied and the location where tensile stress is applied.
図27Aは、中央部に位置するスロット211に印加される圧力を説明する説明図である。図27Bは、端部に位置するスロット211に印加される圧力を説明する説明図である。図27A及び図27Bは、金属管21の側面図である。図27A及び図27Bにおいて、金属管21は、短辺方向(すなわちZ軸方向)に湾曲している。
金属管21の湾曲によって、スロット211には圧縮応力と引張応力とが印加される。
座屈は、圧縮応力と引張応力との差によって生じる。圧縮応力と引張応力との差が大きいほどスロット211近傍の位置における座屈が生じやすい。力の差は、圧縮応力が印加される箇所と、引張応力が印加される箇所との、湾曲による曲げ半径の違いに比例する。 27A and 27B are explanatory views for explaining a mechanism in which buckling occurs in the
FIG. 27A is an explanatory diagram illustrating a pressure applied to the
Due to the bending of the
Buckling is caused by the difference between compressive stress and tensile stress. The greater the difference between the compressive stress and the tensile stress, the more likely buckling will occur at the position near the
図27Aにおいて、スロット211は、金属管21の中央部に位置するため、図27Aにおける圧縮応力と引張応力との力の差は、金属管21の表面の厚さに比例する。
金属管21の表面の厚さが0に略同一である場合には、圧縮応力と引張応力との力の差は、0に略同一である。
また、図27Bにおいて、スロット211は、金属管21の端部に位置するため、図27Bにおける圧縮応力と引張応力との力の差は、スロット211の短辺の長さに比例する。スロット211の短辺の長さは、金属管21の表面の厚さよりも厚い。
例えば、スロット211の短辺の長さが25mmであって、金属管21の表面の厚さは、0.5mmである。
そのため、図27Bに示すようにスロット211が金属管21の端部に位置する場合には、図27Aに示すようなスロット211が金属管21の中央部に位置する場合よりも、圧縮応力と引張応力との差が大きい。 In FIG. 27A, since theslot 211 is located at the center of the metal tube 21, the difference between the compressive stress and the tensile stress in FIG. 27A is proportional to the thickness of the surface of the metal tube 21.
When the thickness of the surface of themetal tube 21 is substantially the same as 0, the force difference between the compressive stress and the tensile stress is substantially the same as 0.
27B, since theslot 211 is located at the end of the metal tube 21, the difference between the compressive stress and the tensile stress in FIG. 27B is proportional to the length of the short side of the slot 211. The length of the short side of the slot 211 is thicker than the thickness of the surface of the metal tube 21.
For example, the length of the short side of theslot 211 is 25 mm, and the thickness of the surface of the metal tube 21 is 0.5 mm.
Therefore, when theslot 211 is located at the end of the metal tube 21 as shown in FIG. 27B, the compressive stress and tensile force are higher than when the slot 211 is located at the center of the metal tube 21 as shown in FIG. 27A. The difference with the stress is large.
金属管21の表面の厚さが0に略同一である場合には、圧縮応力と引張応力との力の差は、0に略同一である。
また、図27Bにおいて、スロット211は、金属管21の端部に位置するため、図27Bにおける圧縮応力と引張応力との力の差は、スロット211の短辺の長さに比例する。スロット211の短辺の長さは、金属管21の表面の厚さよりも厚い。
例えば、スロット211の短辺の長さが25mmであって、金属管21の表面の厚さは、0.5mmである。
そのため、図27Bに示すようにスロット211が金属管21の端部に位置する場合には、図27Aに示すようなスロット211が金属管21の中央部に位置する場合よりも、圧縮応力と引張応力との差が大きい。 In FIG. 27A, since the
When the thickness of the surface of the
27B, since the
For example, the length of the short side of the
Therefore, when the
このように、スロット211の半径方向の位置が端部に近いほど座屈が生じやすい。そのため、漏洩導波管2は、スロット211の半径方向の位置が運搬時のドラムの直径に応じた適切な位置に位置する必要がある。運搬時のドラムの直径は、実際の運用を考慮した場合、1400mmである。
実験結果によると、ドラムの直径が1400mmである場合、スロット211の半径方向の位置は、次の図28に示す範囲にあることが望ましい。図28が示す望ましい半径方向の位置は、0°の方向以外の方向に最大輻射方向を有するスロット211の位置であって、座屈に対する耐性が所定の強さ以上のスロット211の位置である。所定の強さとは、曲率半径が700mmであるような曲げに対して座屈しない強さである。 As described above, the closer the radial position of theslot 211 is to the end, the more easily buckling occurs. Therefore, in the leaky waveguide 2, the radial position of the slot 211 needs to be positioned at an appropriate position according to the diameter of the drum during transportation. The diameter of the drum during transportation is 1400 mm in consideration of actual operation.
According to the experimental results, when the diameter of the drum is 1400 mm, the radial position of theslot 211 is preferably in the range shown in FIG. The desirable radial position shown in FIG. 28 is the position of the slot 211 having the maximum radiation direction in a direction other than the direction of 0°, and the position of the slot 211 whose resistance to buckling is a predetermined strength or more. The predetermined strength is the strength that does not buckle against bending such that the radius of curvature is 700 mm.
実験結果によると、ドラムの直径が1400mmである場合、スロット211の半径方向の位置は、次の図28に示す範囲にあることが望ましい。図28が示す望ましい半径方向の位置は、0°の方向以外の方向に最大輻射方向を有するスロット211の位置であって、座屈に対する耐性が所定の強さ以上のスロット211の位置である。所定の強さとは、曲率半径が700mmであるような曲げに対して座屈しない強さである。 As described above, the closer the radial position of the
According to the experimental results, when the diameter of the drum is 1400 mm, the radial position of the
図28は、第2実施形態に係るスロット211の中心が位置することが望ましい半径方向の位置を示す図である。
スロット211は、0°の方向以外の方向に最大輻射方向を有するためには、中心が中央交点から半径方向に有限の長さだけ離れた位置に位置すれば、どこに位置してもよい。
しかしながら、スロット211の製造技術による制限があるため、スロット211の中心は、中央交点から半径方向に、断面外接長方形の長辺の長さの7/40以上離れた位置に位置することが望ましい。
また、スロット211は、曲率半径が700mmであるような曲げに対して座屈が生じない位置に位置することが望ましい。このような位置は、実験結果によると、中央交点からの距離が、断面外接長方形の長辺の長さの19/40以内である位置である。
このような要因によって、スロット211の中心が位置することが望ましい半径方向の位置は、図28に示す位置になる。すなわち、スロット211の中心が位置することが望ましい半径方向の位置は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置である。 FIG. 28 is a diagram showing a radial position where the center of theslot 211 is preferably located according to the second embodiment.
In order for theslot 211 to have the maximum radiation direction in a direction other than the direction of 0°, the slot 211 may be located anywhere as long as the center is located at a position finite distance in the radial direction from the central intersection.
However, since there is a limitation due to the manufacturing technology of theslot 211, it is desirable that the center of the slot 211 is located at a position distant from the central intersection in the radial direction by 7/40 or more of the length of the long side of the rectangle circumscribing the section.
Further, it is desirable that theslot 211 is located at a position where buckling does not occur with bending such that the radius of curvature is 700 mm. According to the experimental results, such a position is a position where the distance from the central intersection is within 19/40 of the length of the long side of the rectangle circumscribing the cross section.
Due to such factors, the radial position where the center of theslot 211 is preferably located is the position shown in FIG. That is, the radial position where the center of the slot 211 is preferably located is a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the cross section.
スロット211は、0°の方向以外の方向に最大輻射方向を有するためには、中心が中央交点から半径方向に有限の長さだけ離れた位置に位置すれば、どこに位置してもよい。
しかしながら、スロット211の製造技術による制限があるため、スロット211の中心は、中央交点から半径方向に、断面外接長方形の長辺の長さの7/40以上離れた位置に位置することが望ましい。
また、スロット211は、曲率半径が700mmであるような曲げに対して座屈が生じない位置に位置することが望ましい。このような位置は、実験結果によると、中央交点からの距離が、断面外接長方形の長辺の長さの19/40以内である位置である。
このような要因によって、スロット211の中心が位置することが望ましい半径方向の位置は、図28に示す位置になる。すなわち、スロット211の中心が位置することが望ましい半径方向の位置は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置である。 FIG. 28 is a diagram showing a radial position where the center of the
In order for the
However, since there is a limitation due to the manufacturing technology of the
Further, it is desirable that the
Due to such factors, the radial position where the center of the
ここまで、スロット211の形状を長円形又は長方形と仮定して説明をしてきた。しかしながら、スロット211の形状は、必ずしも、長円形又は長方形である必要はない。スロット211の形状は、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。
図29は、第2実施形態に係るスロット211がL字型の金属管21の具体例を示す上面図である。
L字型は、図29に示すように、アルファベットの「L」の文字に似た形状である。
このようなL字型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、L字型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、L字型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。
図30は、第2実施形態に係るスロット211がクランク型の金属管21の具体例を示す上面図である。
クランク型のスロット211は、軸方向に沿って、金属管21の表面上で、階段状に折れ曲がった構造である。
このようなクランク型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、クランク型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、クランク型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。 Up to this point, the description has been made assuming that the shape of theslot 211 is an ellipse or a rectangle. However, the shape of the slot 211 does not necessarily have to be oval or rectangular. The shape of the slot 211 may be L-shaped, crank-shaped, window-shaped, or elliptical.
FIG. 29 is a top view showing a specific example of themetal tube 21 having an L-shaped slot 211 according to the second embodiment.
As shown in FIG. 29, the L-shape is a shape similar to the letter "L" of the alphabet.
Such an L-shapedslot 211 produces a dipole moment in the radial and axial directions. Therefore, the metal tube 21 having the L-shaped slot 211 can generate polarization in the axial direction (horizontal polarization) in addition to polarization in the radial direction (vertical polarization). Therefore, the metal tube 21 having the L-shaped slot 211 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves.
FIG. 30 is a top view showing a specific example of the crank-shapedmetal tube 21 having the slots 211 according to the second embodiment.
Thecrank type slot 211 has a structure that is bent in a step shape on the surface of the metal tube 21 along the axial direction.
Such acrank type slot 211 produces a dipole moment in the radial and axial directions. Therefore, the metal tube 21 having the crank type slot 211 can generate not only the polarized wave in the radial direction (vertical polarized wave) but also the polarized wave in the axial direction (horizontal polarized wave). Therefore, the metal tube 21 having the crank type slot 211 has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave receiving side.
図29は、第2実施形態に係るスロット211がL字型の金属管21の具体例を示す上面図である。
L字型は、図29に示すように、アルファベットの「L」の文字に似た形状である。
このようなL字型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、L字型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、L字型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。
図30は、第2実施形態に係るスロット211がクランク型の金属管21の具体例を示す上面図である。
クランク型のスロット211は、軸方向に沿って、金属管21の表面上で、階段状に折れ曲がった構造である。
このようなクランク型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、クランク型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、クランク型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。 Up to this point, the description has been made assuming that the shape of the
FIG. 29 is a top view showing a specific example of the
As shown in FIG. 29, the L-shape is a shape similar to the letter "L" of the alphabet.
Such an L-shaped
FIG. 30 is a top view showing a specific example of the crank-shaped
The
Such a
図31は、第2実施形態に係るスロット211が窓型の金属管21の具体例を示す上面図である。
窓型のスロット211は、長方形のスロット211よりも短辺の長さが長い。そのため、軸方向に沿った表面電流を妨げる効果が、長方形のスロット211よりも大きい。このため、窓型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。半径方向及び軸方向に双極子モーメントを生じるため、窓型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、窓型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような窓型は、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。 FIG. 31 is a top view showing a specific example of the window-shapedmetal tube 21 having the slot 211 according to the second embodiment.
The window-shapedslot 211 has a shorter side length than that of the rectangular slot 211. Therefore, the effect of blocking the surface current along the axial direction is larger than that of the rectangular slot 211. Therefore, the window-shaped slot 211 produces a dipole moment in the radial direction and the axial direction. Since the dipole moment is generated in the radial direction and the axial direction, the metal tube 21 having the window-shaped slot 211 also generates the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can be made. Therefore, the metal tube 21 having the window-shaped slot 211 has an effect that information can be transmitted without depending on the polarization direction of the antenna on the reception side of electromagnetic waves. Further, since such a window type has a long length in the radial direction, it has an effect that the manufacturer can easily process it.
窓型のスロット211は、長方形のスロット211よりも短辺の長さが長い。そのため、軸方向に沿った表面電流を妨げる効果が、長方形のスロット211よりも大きい。このため、窓型のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。半径方向及び軸方向に双極子モーメントを生じるため、窓型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、窓型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような窓型は、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。 FIG. 31 is a top view showing a specific example of the window-shaped
The window-shaped
図32は、第2実施形態に係るスロット211が楕円型の金属管21の具体例を示す上面図である。
楕円型のスロット211は、長方形のスロット211よりも短辺の長さが長いため、窓型のスロット211と同様に、半径方向及び軸方向に双極子モーメントを生じる。このため、楕円型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、楕円型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような楕円型は、窓型と同様に、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。また、このような楕円型は、窓型よりも丸みを帯びている。そのため、楕円型のスロット211は、窓型のスロット211よりも、スロット211の角から亀裂が生じる可能性が低いという効果を奏する。 FIG. 32 is a top view showing a specific example of themetal tube 21 having an elliptical slot 211 according to the second embodiment.
Since theelliptical slot 211 has a shorter side length than the rectangular slot 211, it produces a dipole moment in the radial direction and the axial direction like the window type slot 211. Therefore, the metal tube 21 having the elliptical slot 211 can generate polarization in the axial direction (horizontal polarization) in addition to polarization in the radial direction (vertical polarization). Therefore, the metal tube 21 having the elliptical slot 211 has an effect of transmitting information without depending on the polarization direction of the antenna on the reception side of electromagnetic waves. Further, such an elliptic shape has a long radial length, like the window shape, and therefore has the effect of being easily processed by the manufacturer. Further, such an elliptical shape is more rounded than the window type. Therefore, the oval-shaped slot 211 has an effect that a crack is less likely to be generated from the corner of the slot 211 than the window-shaped slot 211.
楕円型のスロット211は、長方形のスロット211よりも短辺の長さが長いため、窓型のスロット211と同様に、半径方向及び軸方向に双極子モーメントを生じる。このため、楕円型のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、楕円型のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。また、このような楕円型は、窓型と同様に、半径方向の長さが長いため、製造者が加工しやすいという効果を奏する。また、このような楕円型は、窓型よりも丸みを帯びている。そのため、楕円型のスロット211は、窓型のスロット211よりも、スロット211の角から亀裂が生じる可能性が低いという効果を奏する。 FIG. 32 is a top view showing a specific example of the
Since the
ここまで、説明の簡単のため、スロット外接長方形は、長辺が軸方向に平行であると仮定してきた。しかしながら、スロット外接長方形は、必ずしも、長辺が軸方向に平行である必要は無い。スロット外接長方形は、長辺が軸方向と角度を有して傾斜するように形成されてもよい。
Up to this point, for simplicity of explanation, it has been assumed that the long sides of the slot circumscribed rectangle are parallel to the axial direction. However, the slot circumscribed rectangle does not necessarily need to have its long sides parallel to the axial direction. The slot circumscribed rectangle may be formed such that the long side is inclined at an angle with the axial direction.
図33は、第2実施形態に係るスロット211が長方形であって、スロット外接長方形の長辺が軸方向に平行でない金属管21の具体例を示す上面図である。
このようなスロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。なお、スロット211の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 FIG. 33 is a top view showing a specific example of themetal tube 21 in which the slots 211 according to the second embodiment are rectangular and the long sides of the rectangle circumscribing the slots are not parallel to the axial direction.
Therectangular slot 211 in which the long sides of such a slot-circumscribing rectangle are not parallel to the axial direction generates a dipole moment in the radial direction and the axial direction. Therefore, the metal tube 21 having the rectangular slot 211 in which the long sides of the slot-circumscribing rectangle are not parallel to the axial direction has the axial polarization (horizontal polarization) in addition to the radial polarization (vertical polarization). Can also be generated. Therefore, the metal tube 21 having the rectangular slot 211 whose long side of the slot circumscribed rectangle is not parallel to the axial direction has an effect that information can be transmitted without depending on the polarization direction of the antenna on the electromagnetic wave receiving side. The shape of the slot 211 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. It may be oval.
このようなスロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211は、半径方向及び軸方向に双極子モーメントを生じる。このため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211を有する金属管21は、半径方向の偏波(垂直偏波)に加えて軸方向の偏波(水平偏波)も発生させることができる。そのため、スロット外接長方形の長辺が軸方向に平行ではない長方形のスロット211を有する金属管21は、電磁波の受信側のアンテナの偏波方向に依存せず、情報を送信できるという効果を奏する。なお、スロット211の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 FIG. 33 is a top view showing a specific example of the
The
ここまで、金属管21は、スロット211を半径方向にひとつだけ備える場合について説明してきた。しかしながら、金属管21は、必ずしも、スロット211を半径方向にひとつだけ備える必要はない。金属管21は、スロット211を半径方向に複数個備えてもよい。以下、金属管21が、スロット211を半径方向に複数個備える場合について説明する。また、以下、説明の簡単のため、金属管21は、スロット211を半径方向に2つ備えると仮定する。また、以下、半径方向に2つ備えられるスロット211について、表面中央軸に近いスロット211をスロット211-1とし、表面中央軸から遠いスロット211をスロット211-2という。また、以下、スロット211-1及びスロット211-2を区別しない場合、スロット211という。
Up to this point, the case where the metal tube 21 has only one slot 211 in the radial direction has been described. However, the metal tube 21 does not necessarily need to include only one slot 211 in the radial direction. The metal tube 21 may include a plurality of slots 211 in the radial direction. Hereinafter, a case where the metal tube 21 includes a plurality of slots 211 in the radial direction will be described. Further, hereinafter, for simplification of description, it is assumed that the metal tube 21 includes two slots 211 in the radial direction. Further, of the two slots 211 provided in the radial direction, the slot 211 close to the surface central axis is referred to as a slot 211-1 and the slot 211 far from the surface central axis is referred to as a slot 211-2. Further, hereinafter, when the slot 211-1 and the slot 211-2 are not distinguished, they are referred to as the slot 211.
図34は、第2実施形態に係るスロット211-1及びスロット211-2を備える金属管21の具体例を示す上面図である。隣り合うスロット211-1及びスロット211-2の半径方向の中心間の距離hは、半波長以下の距離である。そのため、半径方向に隣り合うスロット211-1及びスロット211-2のそれぞれに励起される双極子モーメントの振動の位相は略同一である。また、軸方向に隣り合うスロット211-1及びスロット211-2の間の中間距離Sは、波長に略同一である。このため、金属管21が備えるスロット211の全ては、略同一の位相で振動する。そのため、金属管21の各スロット211から放射される電磁波は、互いに強め合い、コヒーレント性の高い電磁波となって、金属管21から放射される。
FIG. 34 is a top view showing a specific example of the metal tube 21 including the slots 211-1 and 211-2 according to the second embodiment. The distance h between the centers of the adjacent slots 211-1 and 211-2 in the radial direction is equal to or less than a half wavelength. Therefore, the phases of vibrations of the dipole moments excited in the slots 211-1 and 211-2 adjacent to each other in the radial direction are substantially the same. In addition, the intermediate distance S between the slots 211-1 and 211-2 that are axially adjacent to each other is substantially the same as the wavelength. Therefore, all the slots 211 provided in the metal tube 21 vibrate in substantially the same phase. Therefore, the electromagnetic waves radiated from each slot 211 of the metal tube 21 strengthen each other and become an electromagnetic wave with high coherence, which is radiated from the metal tube 21.
なお、金属管21は、スロット211を半径方向に2つだけ備える必要はなく、3つ以上であってもよい。このような場合、半径方向に備えられた複数のスロット211の中心間距離は、中央交点に最も近いスロット211の中心と中央交点に最も遠いスロット211の中心との間の距離は半波長以下である、という条件を満たす位置に位置する。
図34におけるスロット211の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 Themetal tube 21 does not need to have only two slots 211 in the radial direction, and may have three or more slots 211. In such a case, the distance between the centers of the plurality of slots 211 provided in the radial direction is equal to or less than half the wavelength between the center of the slot 211 closest to the central intersection and the center of the slot 211 farthest from the central intersection. It is located at a position that satisfies the condition.
The shape of theslot 211 in FIG. 34 does not necessarily have to be rectangular, and may be oval, L-shaped, crank-shaped, or window-shaped. The shape may be oval or elliptical.
図34におけるスロット211の形状は、必ずしも長方形でなくてもよく、長円形であってもよいし、L字型であってもよいし、クランク型であってもよいし、窓型であってもよいし、楕円型であってもよい。 The
The shape of the
また、半径方向の複数のスロット211の中心は、中央交点からの距離が、断面外接長方形の長辺の長さの7/40以上19/40以内の位置に位置することが望ましい。
Further, it is desirable that the centers of the plurality of slots 211 in the radial direction be located at a position where the distance from the central intersection is 7/40 or more and 19/40 or less of the length of the long side of the rectangle circumscribing the cross section.
このように構成されたスロット211を半径方向に複数備える漏洩導波管2は、スロット211を半径方向に一つ備える場合よりも、結合損失が低減するという効果を奏する。
The leaky waveguide 2 including the plurality of slots 211 configured in the radial direction in this way has an effect of reducing the coupling loss as compared with the case where one slot 211 is provided in the radial direction.
このように構成された第2実施形態に係る漏洩導波管2は、波長間隔で端部に配置された複数のスロット211を備えるため、0°の方向以外の方向に電波を放射することができる。そのため、例えば、50m以上の長さの漏洩導波管2を用いた移動体との間の無線通信における通信効率の低下を抑制することができる。さらに、このように構成された漏洩導波管2は、例えば、50m以上の長さを有しながらも運搬時に座屈しないという効果を奏する。
The leaky waveguide 2 according to the second embodiment configured as described above includes a plurality of slots 211 arranged at the ends at wavelength intervals, and thus can emit radio waves in directions other than 0°. it can. Therefore, for example, it is possible to suppress a decrease in communication efficiency in wireless communication with a moving body using the leaky waveguide 2 having a length of 50 m or more. Further, the leaky waveguide 2 configured as described above has an effect that it does not buckle during transportation even though it has a length of, for example, 50 m or more.
なお、金属管21の内部は、必ずしも中空である必要はない。漏洩導波管2は、金属管21の内部は、電磁波を透過させる誘電体であってもよい。
The inside of the metal tube 21 does not necessarily have to be hollow. The inside of the metal tube 21 of the leaky waveguide 2 may be a dielectric that allows electromagnetic waves to pass therethrough.
なお、金属管21の表面は、軸方向に沿って波状の凹凸を有してもよい。金属管21が軸方向に沿って波状の凹凸を有する場合、断面外接長方形の中心から見た断面外接長方形の長辺の方向への可逆的な湾曲の角度を大きくすることが可能となる。なお、金属管21は、必ずしも、金属管内伝搬方向に波状の凹凸を有する必要はない。
Note that the surface of the metal tube 21 may have wavy unevenness along the axial direction. When the metal tube 21 has wavy unevenness along the axial direction, it becomes possible to increase the angle of reversible bending in the direction of the long side of the circumscribed rectangle of the section as viewed from the center of the circumscribed rectangle of the section. Note that the metal tube 21 does not necessarily have to have wavy unevenness in the propagation direction in the metal tube.
(作成方法)
以下、第2実施形態に係る漏洩導波管2の作成方法を説明する。先ず、平坦な銅ラミネート帯状体が作製される。その後、送り出し機のドラムに巻設された平坦な銅ラミネート帯状体を連続的にフォーミング部へ送り出していく。このフォーミング部は、上流側(銅ラミネート帯状体の送り側)より、銅ラミネート帯状体を円形形状にフォーミングする円形フォーミング機と、円形にされた銅ラミネート帯状体を引き続いて偏平円形状にフォーミングする偏平フォーミング機とを有する。フォーミング部に送り出された銅ラミネート帯状体は、円形フォーミング部によって、銅ラミネート帯状体がC字状に湾曲していき、幅方向の一端縁と他端縁とが重ね合わさって円形形状になる。この際、銅ラミネート帯状体の他端縁と一端縁とが重ね合わされ接合部が形成される。次に、フォーミング部において、銅ラミネート帯状体は、加熱機によって加熱され、接合部が熱融着される。熱融着の方法は、どのような方法であってもよく、例えば、アーク溶接であってもよい。次に、銅ラミネート帯状体は、偏平フォーミング部によって、横断面長円形状に成形される。このようにして、偏平パイプ体が形成される。
なお、銅ラミネート帯状体は、銅テープ(薄い銅板)の一面に接着層を積層していてもよい。 (How to make)
Hereinafter, a method of making theleaky waveguide 2 according to the second embodiment will be described. First, a flat copper laminate strip is produced. After that, the flat copper-laminated strip-shaped body wound around the drum of the delivery machine is continuously delivered to the forming part. This forming unit forms a circular forming machine for forming the copper laminate strip into a circular shape from the upstream side (feeding side of the copper laminate strip), and a flattened circular shape for the circular copper laminate strip. It has a flat forming machine. The copper laminate strip sent out to the forming part is curved by the circular forming part into a C shape, and one end edge and the other end edge in the width direction are overlapped to form a circular shape. At this time, the other end edge and one end edge of the copper laminate strip are overlapped to form a joint. Next, in the forming part, the copper laminate strip is heated by a heater to heat-bond the joint part. The method of heat fusion may be any method, for example, arc welding may be used. Next, the copper laminate strip is formed into an elliptical cross section by the flat forming part. In this way, the flat pipe body is formed.
In addition, the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
以下、第2実施形態に係る漏洩導波管2の作成方法を説明する。先ず、平坦な銅ラミネート帯状体が作製される。その後、送り出し機のドラムに巻設された平坦な銅ラミネート帯状体を連続的にフォーミング部へ送り出していく。このフォーミング部は、上流側(銅ラミネート帯状体の送り側)より、銅ラミネート帯状体を円形形状にフォーミングする円形フォーミング機と、円形にされた銅ラミネート帯状体を引き続いて偏平円形状にフォーミングする偏平フォーミング機とを有する。フォーミング部に送り出された銅ラミネート帯状体は、円形フォーミング部によって、銅ラミネート帯状体がC字状に湾曲していき、幅方向の一端縁と他端縁とが重ね合わさって円形形状になる。この際、銅ラミネート帯状体の他端縁と一端縁とが重ね合わされ接合部が形成される。次に、フォーミング部において、銅ラミネート帯状体は、加熱機によって加熱され、接合部が熱融着される。熱融着の方法は、どのような方法であってもよく、例えば、アーク溶接であってもよい。次に、銅ラミネート帯状体は、偏平フォーミング部によって、横断面長円形状に成形される。このようにして、偏平パイプ体が形成される。
なお、銅ラミネート帯状体は、銅テープ(薄い銅板)の一面に接着層を積層していてもよい。 (How to make)
Hereinafter, a method of making the
In addition, the copper laminate strip may have an adhesive layer laminated on one surface of a copper tape (thin copper plate).
横断面偏平円形状に形成された偏平パイプ体は、次に、スロット211を形成するスロット形成機へ送られる。スロット形成機は、レーザ、抜き打ち、切削等によって、スロット211を形成する。
スロット211が形成された偏平パイプ体は、波付け機に送られる。スロット211が形成された偏平パイプ体は、波付け機によって、表面に凹凸が形成される。波付け機は、波付けダイスを偏平パイプ体に偏心させて外嵌させ、波付けダイスを回転させ、回転に同期させて波付けダイスを長手方向に送ることで、(螺旋状の)凹凸波を形成する。
波付けされた偏平パイプ体は、シンキングダイスに送られる。波付けされた偏平パイプ体は、シンキングダイスによって、断面が所定の形状に成形される。シンキングダイスによって形成される所定の形状とは、断面外接長方形に外接される形状であって、横断面偏平円形状に略同一の形状である。シンキングダイスによって成形された偏平パイプ体が、金属管21である。
シンキングダイスによって成形された後、金属管21は、シース押出機に送られる。シース押出機は、金属管21の外側をポリエチレン等の高分子材料によって被覆する。金属管21を被覆する高分子材料が外皮22である。 The flat pipe body having a flat circular cross section is then sent to a slot forming machine that formsslots 211. The slot forming machine forms the slots 211 by laser, punching, cutting or the like.
The flat pipe body in which theslots 211 are formed is sent to the corrugating machine. The flat pipe body in which the slots 211 are formed has irregularities formed on its surface by a corrugating machine. The corrugating machine eccentrically fits the corrugating die onto the flat pipe body, externally fits the corrugated die, rotates the corrugating die, and sends the corrugating die in the longitudinal direction in synchronization with the rotation, thereby forming a (spiral) uneven wave. To form.
The corrugated flat pipe body is sent to a sinking die. The corrugated flat pipe body is formed into a predetermined cross section by a sinking die. The predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section. The flat pipe body formed by the sinking die is themetal pipe 21.
After being formed by the sinking die, themetal tube 21 is sent to the sheath extruder. The sheath extruder coats the outside of the metal tube 21 with a polymer material such as polyethylene. The polymer material that covers the metal tube 21 is the outer skin 22.
スロット211が形成された偏平パイプ体は、波付け機に送られる。スロット211が形成された偏平パイプ体は、波付け機によって、表面に凹凸が形成される。波付け機は、波付けダイスを偏平パイプ体に偏心させて外嵌させ、波付けダイスを回転させ、回転に同期させて波付けダイスを長手方向に送ることで、(螺旋状の)凹凸波を形成する。
波付けされた偏平パイプ体は、シンキングダイスに送られる。波付けされた偏平パイプ体は、シンキングダイスによって、断面が所定の形状に成形される。シンキングダイスによって形成される所定の形状とは、断面外接長方形に外接される形状であって、横断面偏平円形状に略同一の形状である。シンキングダイスによって成形された偏平パイプ体が、金属管21である。
シンキングダイスによって成形された後、金属管21は、シース押出機に送られる。シース押出機は、金属管21の外側をポリエチレン等の高分子材料によって被覆する。金属管21を被覆する高分子材料が外皮22である。 The flat pipe body having a flat circular cross section is then sent to a slot forming machine that forms
The flat pipe body in which the
The corrugated flat pipe body is sent to a sinking die. The corrugated flat pipe body is formed into a predetermined cross section by a sinking die. The predetermined shape formed by the sinking die is a shape circumscribing a circumscribing rectangle in cross section, and is substantially the same as a flat circular cross section. The flat pipe body formed by the sinking die is the
After being formed by the sinking die, the
なお、スロット211は、第1開口部及び第2開口部の一例である。なお、スロット211-1は、第1開口部の一例である。なお、スロット211-2は、第2開口部の一例である。
The slot 211 is an example of the first opening and the second opening. The slot 211-1 is an example of the first opening. The slot 211-2 is an example of the second opening.
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られず、この発明の要旨を逸脱しない範囲の設計等も含まれる。
Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment and includes a design and the like within a range not departing from the gist of the present invention.
1、2…漏洩導波管、 11、21…金属管、 12、22…外皮、 111、211…スロット
1, 2... Leakage waveguide, 11, 21... Metal tube, 12, 22... Outer skin, 111, 211... Slot
Claims (14)
- ドラムに巻かれて保管、運搬される漏洩導波管であって、
電磁波を伝搬させる金属管を備え、
前記金属管は、前記電磁波を漏洩させる複数の開口部を有し、
前記金属管の断面の形状は、横断面偏平円形状に略同一の形状であって、
前記横断面偏平円形状に略同一の形状に外接する長方形の長辺の垂直二等分線と前記金属管の表面との交点は、中央交点であり、
前記複数の開口部の各々の中心と前記中央交点との間の距離は、0より大きな距離であり、
前記複数の開口部の一部である第1開口部と、前記複数の開口部の残りである第2開口部との中心間の距離は、半波長より長く、
前記第1開口部の個数と前記第2開口部の個数とは、それぞれ複数であって、
前記複数の第1開口部は、互いに平行であって、
前記複数の第2開口部は、互いに平行であって、
前記複数の第1開口部は、中心間を結ぶ線が前記金属管の軸方向に平行に位置し、
中心間を結ぶ線が前記金属管の前記軸方向に平行である前記複数の第1開口部のうち隣り合う前記第1開口部の中心間の距離は、前記電磁波の波長に略同一であって、
前記複数の第2開口部は、中心間を結ぶ線が前記金属管の前記軸方向に平行に位置し、
中心間を結ぶ線が前記金属管の前記軸方向に平行である前記複数の第2開口部のうち隣り合う前記第2開口部の中心間の距離は、前記電磁波の波長に略同一である、
漏洩導波管。 A leaky waveguide that is wound around a drum for storage and transportation.
Equipped with a metal tube that propagates electromagnetic waves,
The metal tube has a plurality of openings for leaking the electromagnetic waves,
The cross-sectional shape of the metal tube is substantially the same as a flat circular cross section,
The intersection of the vertical bisector of the long side of the rectangle circumscribing in the substantially same shape as the cross-section flat circular shape and the surface of the metal pipe is the central intersection.
The distance between the center of each of the plurality of openings and the central intersection is greater than 0,
The distance between the centers of the first openings that are a part of the plurality of openings and the second openings that are the rest of the plurality of openings is longer than a half wavelength,
The number of the first openings and the number of the second openings are each plural,
The plurality of first openings are parallel to each other,
The plurality of second openings are parallel to each other,
A line connecting the centers of the plurality of first openings is located parallel to the axial direction of the metal pipe,
The distance between the centers of the adjacent first openings of the plurality of first openings in which the line connecting the centers is parallel to the axial direction of the metal tube is substantially the same as the wavelength of the electromagnetic wave. ,
A line connecting the centers of the plurality of second openings is positioned parallel to the axial direction of the metal tube,
The distance between the centers of the adjacent second openings of the plurality of second openings in which the line connecting the centers is parallel to the axial direction of the metal tube is substantially the same as the wavelength of the electromagnetic wave,
Leaky waveguide. - 前記第1開口部は、前記長方形の中心を原点とする座標系であって前記原点を通って前記長方形の短辺に平行な軸をQ軸とする座標系であるQ座標系においてQ座標の値が0又は正の空間である第1空間内に位置し、
前記第2開口部は、前記Q座標の値が負の空間である第2空間内に位置する、
請求項1に記載の漏洩導波管。 The first opening is a coordinate system having a center of the rectangle as an origin, and a coordinate system having a Q axis as an axis passing through the origin and parallel to the short side of the rectangle. Located in the first space where the value is 0 or positive space,
The second opening is located in a second space in which the value of the Q coordinate is negative.
The leaky waveguide according to claim 1. - 前記第1開口部の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離であり、
前記第2開口部の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離である、
請求項1又は請求項2に記載の漏洩導波管。 The distance between the center of the first opening and the central intersection is within 19/40 of the long side,
The distance between the center of the second opening and the central intersection is within 19/40 of the long side,
The leaky waveguide according to claim 1. - 前記第1開口部の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離であり、
前記第2開口部の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離である、
請求項1から請求項3のいずれか一項に記載の漏洩導波管。 The distance between the center of the first opening and the central intersection is 7/40 or more of the long side,
The distance between the center of the second opening and the central intersection is 7/40 or more of the long side,
The leaky waveguide according to any one of claims 1 to 3. - 前記金属管は、前記電磁波を漏洩させる複数の第3開口部をさらに有し、
前記複数の第3開口部の各々は、前記第1開口部と同様の形状であって、
前記複数の第3開口部の各々は、前記第1開口部に平行であって、
前記複数の第3開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、
前記第1開口部の中心と、前記複数の第3開口部の各々の中心との間の距離は、半波長より短い、
請求項1から請求項4のいずれか一項に記載の漏洩導波管。 The metal tube further has a plurality of third openings for leaking the electromagnetic waves,
Each of the plurality of third openings has the same shape as the first opening,
Each of the plurality of third openings is parallel to the first opening,
The distance between the center of each of the plurality of third openings and the central intersection is greater than 0,
A distance between a center of the first opening and a center of each of the plurality of third openings is shorter than a half wavelength;
The leaky waveguide according to any one of claims 1 to 4. - 前記金属管は、前記電磁波を漏洩させる複数の第4開口部をさらに有し、
前記複数の第4開口部の各々は、前記第2開口部と同様の形状であって、
前記複数の第4開口部の各々は、前記第2開口部に平行であって、
前記複数の第4開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、
前記複数の第4開口部の各々の中心と、前記第2開口部の中心との間の距離は、半波長より短い、
請求項1から請求項5のいずれか一項に記載の漏洩導波管。 The metal tube further has a plurality of fourth openings for leaking the electromagnetic waves,
Each of the plurality of fourth openings has the same shape as the second opening,
Each of the plurality of fourth openings is parallel to the second opening,
The distance between the center of each of the plurality of fourth openings and the central intersection is greater than 0,
A distance between a center of each of the plurality of fourth openings and a center of the second opening is shorter than a half wavelength;
The leaky waveguide according to any one of claims 1 to 5. - 前記金属管の表面は、前記金属管の前記軸方向に沿って波状の凹凸を有する、
請求項1から請求項6のいずれか一項に記載の漏洩導波管。 The surface of the metal tube has wavy unevenness along the axial direction of the metal tube,
The leaky waveguide according to any one of claims 1 to 6. - 前記移動経路がカーブを有し、
前記金属管は、前記軸方向が前記移動経路に略平行であるように曲げられる、
請求項1から請求項7のいずれか一項に記載の漏洩導波管。 The movement path has a curve,
The metal tube is bent so that the axial direction is substantially parallel to the movement path,
The leaky waveguide according to any one of claims 1 to 7. - ドラムに巻かれて保管、運搬される漏洩導波管であって、
電磁波を伝搬させる金属管を備え、
前記金属管は、前記電磁波を漏洩させる複数の第1開口部を有し、
前記金属管の断面の形状は、横断面偏平円形状に略同一の形状であって、
前記横断面偏平円形状に略同一の形状に外接する長方形の長辺の垂直二等分線と前記金属管の表面との交点は、中央交点であり、
前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、0より大きな距離であり、
前記複数の第1開口部は、互いに平行であって、
前記複数の第1開口部のうち隣り合う前記第1開口部の中心間を結ぶ線は、前記金属管の軸方向に平行であって、
前記複数の第1開口部のうち隣り合う前記第1開口部の中心間の距離は、前記電磁波の波長に略同一である、
漏洩導波管。 A leaky waveguide that is wound around a drum for storage and transportation.
Equipped with a metal tube that propagates electromagnetic waves,
The metal tube has a plurality of first openings for leaking the electromagnetic waves,
The cross-sectional shape of the metal tube is substantially the same as a flat circular cross section,
The intersection of the vertical bisector of the long side of the rectangle circumscribing in the substantially same shape as the cross-section flat circular shape and the surface of the metal pipe is the central intersection.
The distance between the center of each of the plurality of first openings and the central intersection is greater than 0,
The plurality of first openings are parallel to each other,
A line connecting the centers of the adjacent first openings of the plurality of first openings is parallel to the axial direction of the metal tube,
The distance between the centers of the adjacent first openings of the plurality of first openings is substantially the same as the wavelength of the electromagnetic wave.
Leaky waveguide. - 前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、前記長辺の19/40以内の距離である、
請求項9に記載の漏洩導波管。 The distance between the center of each of the plurality of first openings and the central intersection is within 19/40 of the long side,
The leaky waveguide according to claim 9. - 前記複数の第1開口部の各々の中心と前記中央交点との間の距離は、前記長辺の7/40以上の距離である、
請求項9又は請求項10に記載の漏洩導波管。 The distance between the center of each of the plurality of first openings and the central intersection is 7/40 or more of the long sides,
The leaky waveguide according to claim 9 or 10. - 前記金属管は、前記電磁波を漏洩させる複数の第2開口部をさらに有し、
前記複数の第2開口部の各々は、前記第1開口部と同様の形状であって、
前記複数の第2開口部の各々は、前記第1開口部に平行であって、
前記複数の第2開口部の各々の中心と、前記中央交点との間の距離は、0より大きな距離であり、
前記複数の第2開口部の各々の中心と、前記第1開口部の中心との間の距離は、半波長より短い、
請求項9から請求項11のいずれか一項に記載の漏洩導波管。 The metal tube further has a plurality of second openings for leaking the electromagnetic waves,
Each of the plurality of second openings has the same shape as the first opening,
Each of the plurality of second openings is parallel to the first opening,
The distance between the center of each of the plurality of second openings and the central intersection is greater than 0,
A distance between a center of each of the plurality of second openings and a center of the first opening is shorter than a half wavelength;
The leaky waveguide according to any one of claims 9 to 11. - 前記金属管の表面は、前記金属管の前記軸方向に沿って波状の凹凸を有する、
請求項9から請求項12のいずれか一項に記載の漏洩導波管。 The surface of the metal tube has wavy unevenness along the axial direction of the metal tube,
The leaky waveguide according to any one of claims 9 to 12. - 前記移動経路がカーブを有し、
前記金属管は、前記軸方向が前記移動経路に略平行であるように曲げられる、
請求項9から請求項13のいずれか一項に記載の漏洩導波管。 The movement path has a curve,
The metal tube is bent so that the axial direction is substantially parallel to the movement path,
The leaky waveguide according to any one of claims 9 to 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020566505A JPWO2020149407A1 (en) | 2019-01-18 | 2020-01-17 | Leakage waveguide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-007323 | 2019-01-18 | ||
JP2019007323 | 2019-01-18 | ||
JP2019007340 | 2019-01-18 | ||
JP2019-007340 | 2019-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020149407A1 true WO2020149407A1 (en) | 2020-07-23 |
Family
ID=71614527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001566 WO2020149407A1 (en) | 2019-01-18 | 2020-01-17 | Leaky waveguide |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020149407A1 (en) |
WO (1) | WO2020149407A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220263246A1 (en) * | 2019-09-10 | 2022-08-18 | Commscope Technologies Llc | Leaky waveguide antennas having spaced-apart radiating nodes with respective coupling ratios that support efficient radiation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50151448A (en) * | 1974-05-24 | 1975-12-05 | ||
JP2000031728A (en) * | 1998-07-09 | 2000-01-28 | Hitachi Cable Ltd | Leaky waveguide |
JP2002163770A (en) * | 2000-11-27 | 2002-06-07 | Natl Inst For Land & Infrastructure Management Mlit | Communication system between road and vehicle in complicated road structure |
JP2003168907A (en) * | 2001-12-03 | 2003-06-13 | Mitsubishi Cable Ind Ltd | Method for manufacturing leaky waveguide |
JP2003168919A (en) * | 2001-11-29 | 2003-06-13 | Mitsubishi Cable Ind Ltd | Laying structure of leaky cable |
JP2003179415A (en) * | 2001-12-13 | 2003-06-27 | Mitsubishi Cable Ind Ltd | Leakage waveguide and manufacturing method thereof |
EP2587586A1 (en) * | 2011-10-26 | 2013-05-01 | Alcatel Lucent | Distributed antenna system and method of manufacturing a distributed antenna system |
-
2020
- 2020-01-17 JP JP2020566505A patent/JPWO2020149407A1/en active Pending
- 2020-01-17 WO PCT/JP2020/001566 patent/WO2020149407A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50151448A (en) * | 1974-05-24 | 1975-12-05 | ||
JP2000031728A (en) * | 1998-07-09 | 2000-01-28 | Hitachi Cable Ltd | Leaky waveguide |
JP2002163770A (en) * | 2000-11-27 | 2002-06-07 | Natl Inst For Land & Infrastructure Management Mlit | Communication system between road and vehicle in complicated road structure |
JP2003168919A (en) * | 2001-11-29 | 2003-06-13 | Mitsubishi Cable Ind Ltd | Laying structure of leaky cable |
JP2003168907A (en) * | 2001-12-03 | 2003-06-13 | Mitsubishi Cable Ind Ltd | Method for manufacturing leaky waveguide |
JP2003179415A (en) * | 2001-12-13 | 2003-06-27 | Mitsubishi Cable Ind Ltd | Leakage waveguide and manufacturing method thereof |
EP2587586A1 (en) * | 2011-10-26 | 2013-05-01 | Alcatel Lucent | Distributed antenna system and method of manufacturing a distributed antenna system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220263246A1 (en) * | 2019-09-10 | 2022-08-18 | Commscope Technologies Llc | Leaky waveguide antennas having spaced-apart radiating nodes with respective coupling ratios that support efficient radiation |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020149407A1 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101130774B1 (en) | Leaky cable | |
US11069981B2 (en) | Radiating cable and method of manufacturing a radiating cable with an inner and outer conductor, each having openings | |
CN108701900B (en) | Double-frequency antenna | |
WO2020149407A1 (en) | Leaky waveguide | |
CN106716718A (en) | Folded radiation slots for short wall waveguide radiation | |
JP2007318348A (en) | Antenna unit and antenna system | |
EP1860725B1 (en) | Radiation-emitting cable and a radiation-emitting element comprised therein | |
JP5622881B2 (en) | Leaky coaxial cable | |
CN104752828B (en) | A kind of ground communication equipment in subway train-ground communication system | |
JP6845193B2 (en) | Manufacturing method of leaky coaxial cable and leaky coaxial cable | |
JP6208592B2 (en) | Power transmission communication transmission line | |
JP6246032B2 (en) | Method for manufacturing antenna array | |
EP3584887A1 (en) | Dielectric-based leaky-wave structure | |
JP3680710B2 (en) | Dielectric planar antenna | |
JP4863397B2 (en) | Antenna device | |
US10483611B2 (en) | Waveguide/transmission line converter configured to feed a plurality of antenna elements in an antenna device | |
JP3269685B2 (en) | Image type leak wave NRD guide | |
JP2012151786A (en) | Antenna device | |
US11742584B2 (en) | Radiating coaxial cable | |
JP7147536B2 (en) | radio wave transmission cable | |
WO2021220791A1 (en) | Power supply sheet, power transmission system, and power supply sheet formation method | |
WO2021085464A1 (en) | Electronic device and antenna device | |
JP2004350163A (en) | Dielectric body leak wave antenna | |
JP3304483B2 (en) | Leak wave NRD guide | |
JP4606381B2 (en) | In-pipe wireless communication structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20740901 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020566505 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20740901 Country of ref document: EP Kind code of ref document: A1 |