[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020149107A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020149107A1
WO2020149107A1 PCT/JP2019/050342 JP2019050342W WO2020149107A1 WO 2020149107 A1 WO2020149107 A1 WO 2020149107A1 JP 2019050342 W JP2019050342 W JP 2019050342W WO 2020149107 A1 WO2020149107 A1 WO 2020149107A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflow pipe
heat exchanger
tank portion
flow
tube
Prior art date
Application number
PCT/JP2019/050342
Other languages
French (fr)
Japanese (ja)
Inventor
章太 茶谷
聡也 長沢
浜田 浩
雄太 松田
直人 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020149107A1 publication Critical patent/WO2020149107A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to heat exchangers.
  • the fluid tends to flow into the tube arranged near the inflow pipe, while the fluid tends to hardly flow into the tube arranged apart from the inflow pipe. .. This is a factor that makes the flow rate distribution of a plurality of tubes uneven.
  • the heat exchanger described in Patent Document 1 below is provided with a plate-shaped member inside the inlet tank.
  • the plate-shaped member partially closes an opening at one end of a predetermined number of tubes arranged on the same side as the inflow pipe and the discharge pipe in the tube stacking direction.
  • the opening area at one end is reduced.
  • An object of the present disclosure is to provide a heat exchanger capable of reducing noise while suppressing uneven distribution of flow rate in a plurality of tubes.
  • the fluid when the fluid flows from the inflow pipe into the first tank portion, the fluid flows so as to form a predetermined angle with respect to the tube stacking direction. Therefore, at one end of the first tank portion, the fluid flows in the predetermined direction. The velocity of the fluid flowing through the region along the line increases. As a result, the velocity distribution of the fluid flowing through the one end of the first tank portion becomes uneven. Due to this bias in the velocity distribution of the fluid, the pressure loss when the fluid flows into the tube increases in the region where the velocity of the fluid is high. Therefore, it becomes difficult for the fluid to flow into the tube arranged near the one end of the first tank portion.
  • FIG. 1 is a front view showing the front structure of the heat exchanger of the first embodiment.
  • FIG. 2 is a sectional view showing a sectional structure taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing the cross-sectional structure of the tube of the modified example of the first embodiment.
  • FIG. 4 is a sectional view showing the sectional structure of the heat exchanger of the second embodiment.
  • FIG. 5 is sectional drawing which shows the cross-section of the heat exchanger of 3rd Embodiment.
  • FIG. 6 is a sectional view showing the sectional structure of the heat exchanger of the fourth embodiment.
  • FIG. 7 is a perspective view which shows the perspective structure of the edge part of the side plate of 4th Embodiment.
  • FIG. 1 is a front view showing the front structure of the heat exchanger of the first embodiment.
  • FIG. 2 is a sectional view showing a sectional structure taken along line II-II in FIG.
  • FIG. 3 is a cross-
  • FIG. 8 is sectional drawing which shows the cross-section of the heat exchanger of 5th Embodiment.
  • FIG. 9 is sectional drawing which shows the cross-section of the heat exchanger of 6th Embodiment.
  • FIG. 10 is sectional drawing which shows the cross-section of the heat exchanger of 7th Embodiment.
  • FIG. 11 is sectional drawing which shows the cross-section of the heat exchanger of 8th Embodiment.
  • FIG. 12: is sectional drawing which shows the cross-section of the heat exchanger of 9th Embodiment.
  • FIG. 13 is sectional drawing which shows the cross-section of the inflow pipe of 9th Embodiment.
  • FIG. 14 is a perspective view showing a perspective structure of a drift member according to the ninth embodiment.
  • the heat exchanger 10 is used, for example, as a heater core of an air conditioner mounted on a vehicle.
  • the air conditioner is a device that air-conditions the vehicle interior by blowing heated or cooled conditioned air into the vehicle interior.
  • the heat exchanger 10 is arranged in an air conditioning duct through which conditioned air flows. Inside the heat exchanger 10, engine cooling water is circulated.
  • the cooling water flowing inside the heat exchanger 10 is in a liquid single-phase state.
  • the heat exchanger 10 heats the conditioned air by the heat of the cooling water by exchanging heat between the cooling water flowing inside the heat exchanger 10 and the conditioned air flowing inside the air conditioning duct.
  • the conditioned air heated by the heat exchanger 10 is blown into the vehicle compartment through the air conditioning duct to heat the vehicle compartment.
  • the cooling water flowing inside the heat exchanger 10 corresponds to the fluid.
  • the heat exchanger 10 includes a heat exchange core portion 20, tank portions 31 and 32, and side plates 41 and 42.
  • the heat exchanger 10 is made of a metal material such as an aluminum alloy.
  • the heat exchange core portion 20 is a portion that exchanges heat between the cooling water and the air.
  • the heat exchange core portion 20 includes a plurality of tubes 21 arranged in a stack at a predetermined interval in the X-axis direction in the figure, and a plurality of fins 22 arranged in a gap between adjacent tubes 21. Have In FIG. 1, only a part of the plurality of fins 22 is shown.
  • the X-axis direction is also referred to as "tube stacking direction X”. Further, one of the tube stacking directions X is referred to as "X1 direction”, and the other direction is referred to as "X2 direction”.
  • the tube 21 is an elongated pipe having an internal flow passage W10 through which cooling water flows.
  • the cross-sectional shape of the tube 21 orthogonal to the Z-axis direction is flat.
  • the tube 21 is formed so as to extend in the Z-axis direction.
  • the Z-axis direction is also referred to as “tube longitudinal direction Z”.
  • one of the tube longitudinal directions Z is referred to as "Z1 direction”
  • the other direction is referred to as Z2 direction.
  • a direction orthogonal to both the X-axis direction and the Z-axis direction is also referred to as "tube width direction Y".
  • the fins 22 are so-called corrugated fins formed by bending a thin and long metal plate into a wavy shape.
  • the bent portion of the fin 22 is fixed to the outer peripheral surface of the adjacent tubes 21 and 21 by brazing.
  • the fins 22 are provided to increase the heat transfer area of the tubes 21 and thereby increase the heat exchange efficiency between the cooling water and the air.
  • the tank portions 31 and 32 are cylindrical members formed so as to extend in the tube stacking direction X. As shown in FIG. 2, inside the first tank portion 31, an internal passage W20 through which cooling water flows is formed. One end portions 210 of the plurality of tubes 21 in the Z2 direction are connected to the first tank portion 31. One end portions 210 of the plurality of tubes 21 are arranged so as to penetrate the peripheral wall 312 of the first tank portion 31 and extend to the internal flow passage W20 of the first tank portion 31. Similarly, inside the second tank portion, an internal flow path through which cooling water flows is formed. As shown in FIG. 1, the second tank portion 32 is connected to the other end portions 211 of the plurality of tubes 21 in the Z1 direction.
  • the inflow pipe 40 is connected to the end 331 of the inflow port 33 in the X2 direction. Specifically, a flange portion 400 is formed at the tip of the inflow pipe 40.
  • the inflow pipe 40 is fixed to the end 331 of the inflow port 33 by crimping the flange portion 400 to the end 331 of the inflow port 33.
  • a seal member 50 is arranged between the outer peripheral surface of the inflow pipe 40 and the inner peripheral surface of the inflow port 33 to seal between them.
  • the side plates 41 and 42 are arranged at both ends of the heat exchange core portion 20 in the X-axis direction.
  • the respective end portions 410 and 420 of the side plates 41 and 42 in the Z2 direction are connected to the first tank portion 31.
  • the end portion 410 of the side plate 41 is arranged so as to penetrate the peripheral wall 312 of the first tank portion 31 and extend to the internal flow path W20 of the first tank portion 31.
  • the end portion 420 of the side plate 42 is also connected to the first tank portion 31.
  • the other end portions 411 and 421 of the side plates 41 and 42 in the Z1 direction are connected to the second tank portion 32.
  • the side plates 41, 42 are provided to reinforce the heat exchange core section 20.
  • the single-phase cooling water flows into the first tank portion 31 through the inflow pipe 40.
  • the cooling water that has flowed into the first tank portion 31 is distributed to each tube 21 by flowing from the one end portion 210 of each tube 21 into the internal flow path W10 of each tube 21.
  • the cooling water distributed to each tube 21 flows through the internal flow path W10 of each tube 21 toward the second tank portion 32.
  • heat is exchanged between the cooling water flowing through the internal flow passage W10 of each tube 21 and the air flowing between the adjacent tubes 21 and 21, whereby the heat of the cooling water is converted into air. It is transmitted and the air is heated.
  • the cooling water that has passed through each tube 21 is collected in the second tank portion 32 and then discharged from the discharge pipe 43.
  • the cooling water flowing from the inflow pipe 40 into the first tank portion 31 is indicated by the arrow. It flows in the direction indicated by D1, that is, in the direction forming a predetermined angle ⁇ with respect to the axis m1.
  • the flow of the cooling water from the opening 401 of the inflow pipe 40 in the direction indicated by the arrow D1 increases the speed of the cooling water flowing in the region A1 along the arrow D1 at the end portion 310 of the first tank portion 31.
  • the velocity distribution of the cooling water flowing through the end portion 310 of the first tank portion 31 becomes uneven in the tube width direction Y.
  • the actions and effects shown in the following (1) and (2) can be obtained.
  • the deviation of the flow distribution of the tubes 21 due to the position of the inflow pipe 40 can be offset, and as a result, the deviation of the flow distribution of the plurality of tubes 21 can be suppressed.
  • the one end portion 210 of the tube 21 is not closed, and therefore, as compared with the structure in which one end portion of the tube is closed like the conventional heat exchanger, the inside of the tube 21 is Disturbance does not easily occur in the flow of cooling water. Therefore, it is possible to reduce noise.
  • the pressure loss of the cooling water flowing through the flow passages W11 and W12 of the tube 21 becomes larger than that of the tube having no partition wall 212. Therefore, as the flow velocity of the cooling water flowing through the inside of the first tank portion 31 becomes faster, it becomes more difficult for the cooling water to flow into the flow passages W11 and W12 of each tube 21. Inside the first tank portion 31, the flow velocity of the cooling water is highest near the opening 401 of the inflow pipe 40. By using the tube 21 as shown in FIG. 3, it becomes more difficult for the cooling water to flow into the tube 21 arranged near the opening 401 of the inflow pipe 40, and thus each tube caused by the position of the inflow pipe 40. It is possible to further alleviate the bias in the flow distribution of 21.
  • a drift portion 404 is formed in the middle of the inflow pipe 40.
  • the uneven flow portion 404 is formed so as to be bent in the inflow pipe 40, and includes a portion formed to partially narrow the flow passage cross-sectional area of the inflow pipe 40. With such a drift portion 404, the flow direction of the cooling water flowing inside the inflow pipe 40 can be changed.
  • a drift structure 313 is provided on the peripheral wall 312 of the first tank portion 31.
  • the non-uniform flow structure 313 has a structure in which a part of the peripheral wall 312 of the first tank portion 31 is deformed so as to be recessed inward. Due to this non-uniform flow structure 313, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 becomes difficult to flow in the portion where the non-uniform flow structure 313 is provided, and becomes easy to flow in the part where the non-uniform flow structure 313 is not provided. .. Thereby, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 so as to form a predetermined angle ⁇ with respect to the tube stacking direction X.
  • the inflow pipe 40 in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle ⁇ with respect to the tube stacking direction X, the inflow pipe 40 is inclined and attached to the first tank portion 31. Specifically, the inflow pipe 40 is attached to the first tank portion 31 so that its central axis m2 is inclined with respect to the tube stacking direction X. As a result, as shown by the arrow D1 in FIG. 9, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle ⁇ with respect to the tube stacking direction X. ..
  • the inflow pipe 40 is attached to the first tank portion 31 at an eccentric position. That is, the inflow pipe 40 is attached to the first tank portion 31 such that the central axis m2 thereof deviates from the central axis m1 of the first tank portion 31.
  • the arrow D1 in FIG. 10 it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle ⁇ with respect to the tube stacking direction X. ..
  • the inflow pipe 40 is attached to the side surface of the first tank portion 31. Specifically, the inflow pipe 40 is attached to the side surface of the first tank portion 31 located in the tube width direction Y. According to such a structure, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 flows so as to be substantially orthogonal to the tube stacking direction X. That is, the angle ⁇ in FIG. 11 is approximately 90 degrees.
  • the drift member 70 is provided inside the first tank portion 31.
  • the drift member 70 is a member formed in a cylindrical shape around the axis m1.
  • the drift member 70 has a through hole 71 formed at a position displaced from the central axis m1.
  • the inflow pipe 40 forms a predetermined angle ⁇ with respect to the tube stacking direction X, as indicated by an arrow D1 in FIG. It is possible to allow the cooling water to flow into the first tank portion 31.
  • each embodiment can also be implemented in the following forms.
  • any fluid other than cooling water can be adopted as the fluid flowing through the heat exchanger 10.
  • the present disclosure is not limited to the above specific examples.
  • a person skilled in the art appropriately modified the above-described specific examples is also included in the scope of the present disclosure as long as the features of the present disclosure are provided.
  • Each element included in each of the above-described specific examples, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed.
  • the respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

This heat exchanger comprises a heat exchange core part and a first tank part (31). A plurality of tubes (21) through which a fluid flows are layered and disposed in the heat exchange core part. The first tank is connected to one end part of the plurality of tubes and distributes the fluid to the plurality of tubes. An inflow pipe (40) through which the fluid flows into the first tank part is connected to one end part of the first tank part positioned in the tube layering direction. The fluid flows from the inflow pipe to the first tank part so as to form a prescribed angle with respect to the tube layering direction.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年1月15日に出願された日本国特許出願2019-004396号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-004396 filed on January 15, 2019, and claims the benefit of its priority, and the entire contents of the patent application are Incorporated herein by reference.
 本開示は、熱交換器に関する。 The present disclosure relates to heat exchangers.
 従来、下記の特許文献1に記載の熱交換器がある。特許文献1に記載の熱交換器は、積層して配置される複数のチューブと、各チューブの一端部に接続される入口タンクと、各チューブの他端部に接続される出口タンクとを備えている。チューブの積層方向における入口タンクの端部には、入口タンクに流体を流入させる流入パイプが設けられている。チューブ積層方向における出口タンクの両端部のうち、流入口と同一側の端部には、出口タンク内の流体を排出する排出パイプが設けられている。 Conventionally, there is a heat exchanger described in Patent Document 1 below. The heat exchanger described in Patent Document 1 includes a plurality of tubes arranged in a stack, an inlet tank connected to one end of each tube, and an outlet tank connected to the other end of each tube. ing. At the end of the inlet tank in the stacking direction of the tubes, an inflow pipe is provided to allow a fluid to flow into the inlet tank. Of both ends of the outlet tank in the tube stacking direction, a discharge pipe for discharging the fluid in the outlet tank is provided at the end on the same side as the inflow port.
 ところで、このような構造を有する熱交換器では、流入パイプ付近に配置されるチューブには流体が流入し易い一方、流入パイプから離間して配置されるチューブには流体が流入し難い傾向がある。これが複数のチューブの流量分布を不均一にさせる要因となっている。 By the way, in the heat exchanger having such a structure, the fluid tends to flow into the tube arranged near the inflow pipe, while the fluid tends to hardly flow into the tube arranged apart from the inflow pipe. .. This is a factor that makes the flow rate distribution of a plurality of tubes uneven.
 これを解消するため、下記の特許文献1に記載の熱交換器では、入口タンクの内部に板状部材を設けるようにしている。板状部材は、複数のチューブのうち、チューブ積層方向において流入パイプ及び排出パイプと同一側に配置される所定本のチューブの一端の開口部を部分的に閉塞することにより、所定本のチューブの一端部の開口面積を小さくしている。これにより、流入パイプ付近に配置される所定本のチューブに流体が流入し難くなるため、複数のチューブの流量を均一化することが可能となる。 In order to solve this, the heat exchanger described in Patent Document 1 below is provided with a plate-shaped member inside the inlet tank. Among the plurality of tubes, the plate-shaped member partially closes an opening at one end of a predetermined number of tubes arranged on the same side as the inflow pipe and the discharge pipe in the tube stacking direction. The opening area at one end is reduced. As a result, it becomes difficult for the fluid to flow into the predetermined number of tubes arranged near the inflow pipe, so that the flow rates of the plurality of tubes can be made uniform.
特許第4830918号公報Japanese Patent No. 4830918
 特許文献1に記載の熱交換器のように、チューブの一端部の開口部を板状部材で部分的に閉塞するようにした場合、チューブの一端部からチューブ内に流体が流入する際に、板状部材に流体が衝突するため、チューブ内の流体の流れに乱れが生じ易くなる。チューブ内の流体の流れに乱れが生じると、騒音が生じる可能性がある。 When the opening at one end of the tube is partially closed by the plate-like member as in the heat exchanger described in Patent Document 1, when a fluid flows into the tube from one end of the tube, Since the fluid collides with the plate member, the flow of the fluid in the tube is likely to be disturbed. Disturbances in the flow of fluid in the tube can result in noise.
 本開示の目的は、複数のチューブにおける流量分布の偏りを抑制しつつ、騒音を低減することの可能な熱交換器を提供することにある。 An object of the present disclosure is to provide a heat exchanger capable of reducing noise while suppressing uneven distribution of flow rate in a plurality of tubes.
 本開示の一態様による熱交換器は、熱交換コア部と、第1タンク部と、第2タンク部と、を備える。熱交換コア部には、流体が流れる複数のチューブが積層して配置される。第1タンク部は、複数のチューブの一端部に接続され、流体を複数のチューブに分配する。第2タンク部は、複数のチューブの他端部に接続され、複数のチューブを通過した流体を集める。複数のチューブが積層して配置される方向をチューブ積層方向とするとき、チューブ積層方向に位置する第1タンク部の一端部には、第1タンク部の内部に流体を流入させる流入パイプが接続されている。チューブ積層方向において流入パイプと同一側に位置する第2タンク部の一端部には、第2タンク部の内部の流体を排出する排出パイプが接続されている。チューブ積層方向に対して所定角度をなすように流入パイプから第1タンク部に流体が流入する。 A heat exchanger according to one aspect of the present disclosure includes a heat exchange core section, a first tank section, and a second tank section. A plurality of tubes through which a fluid flows are stacked and arranged in the heat exchange core portion. The first tank portion is connected to one end of the plurality of tubes and distributes the fluid to the plurality of tubes. The second tank unit is connected to the other ends of the plurality of tubes and collects the fluid that has passed through the plurality of tubes. When the direction in which a plurality of tubes are stacked and arranged is the tube stacking direction, an inflow pipe that allows a fluid to flow into the inside of the first tank part is connected to one end of the first tank part located in the tube stacking direction. Has been done. A discharge pipe for discharging the fluid inside the second tank portion is connected to one end of the second tank portion located on the same side as the inflow pipe in the tube stacking direction. The fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction.
 この構成によれば、流入パイプから第1タンク部に流体が流入する際に、チューブ積層方向に対して所定角度をなすように流体が流れるため、第1タンク部の一端部において、所定方向に沿った領域を流れる流体の速度が増加する。これにより、第1タンク部の一端部を流れる流体の速度分布に偏りが生じるようになる。この流体の速度分布の偏りにより、流体の速度が速い領域では、流体がチューブに流入する際の圧力損失が大きくなる。したがって、第1タンク部の一端部付近に配置されるチューブには、流体が流入し難くなる。このようにして各チューブの流量分布を意図的に偏らせることにより、流入パイプの位置に起因するチューブの流量分布の偏りを相殺することができるため、複数のチューブにおける流量分布の偏りを抑制することができる。また、上記の構成によれば、チューブの一端部を閉塞する必要がないため、チューブ内の流体の流れに乱れが生じ難い。そのため、騒音を低減することができる。 According to this configuration, when the fluid flows from the inflow pipe into the first tank portion, the fluid flows so as to form a predetermined angle with respect to the tube stacking direction. Therefore, at one end of the first tank portion, the fluid flows in the predetermined direction. The velocity of the fluid flowing through the region along the line increases. As a result, the velocity distribution of the fluid flowing through the one end of the first tank portion becomes uneven. Due to this bias in the velocity distribution of the fluid, the pressure loss when the fluid flows into the tube increases in the region where the velocity of the fluid is high. Therefore, it becomes difficult for the fluid to flow into the tube arranged near the one end of the first tank portion. By intentionally biasing the flow rate distribution of each tube in this way, it is possible to cancel the bias of the flow rate distribution of the tubes due to the position of the inflow pipe, thus suppressing the bias of the flow rate distribution in the plurality of tubes. be able to. Further, according to the above configuration, since it is not necessary to close one end of the tube, it is difficult for the flow of fluid in the tube to be disturbed. Therefore, noise can be reduced.
図1は、第1実施形態の熱交換器の正面構造を示す正面図である。FIG. 1 is a front view showing the front structure of the heat exchanger of the first embodiment. 図2は、図1のII-II線に沿った断面構造を示す断面図である。FIG. 2 is a sectional view showing a sectional structure taken along line II-II in FIG. 図3は、第1実施形態の変形例のチューブの断面構造を示す断面図である。FIG. 3 is a cross-sectional view showing the cross-sectional structure of the tube of the modified example of the first embodiment. 図4は、第2実施形態の熱交換器の断面構造を示す断面図である。FIG. 4 is a sectional view showing the sectional structure of the heat exchanger of the second embodiment. 図5は、第3実施形態の熱交換器の断面構造を示す断面図である。FIG. 5: is sectional drawing which shows the cross-section of the heat exchanger of 3rd Embodiment. 図6は、第4実施形態の熱交換器の断面構造を示す断面図である。FIG. 6 is a sectional view showing the sectional structure of the heat exchanger of the fourth embodiment. 図7は、第4実施形態のサイドプレートの端部の斜視構造を示す斜視図である。FIG. 7: is a perspective view which shows the perspective structure of the edge part of the side plate of 4th Embodiment. 図8は、第5実施形態の熱交換器の断面構造を示す断面図である。FIG. 8: is sectional drawing which shows the cross-section of the heat exchanger of 5th Embodiment. 図9は、第6実施形態の熱交換器の断面構造を示す断面図である。FIG. 9: is sectional drawing which shows the cross-section of the heat exchanger of 6th Embodiment. 図10は、第7実施形態の熱交換器の断面構造を示す断面図である。FIG. 10: is sectional drawing which shows the cross-section of the heat exchanger of 7th Embodiment. 図11は、第8実施形態の熱交換器の断面構造を示す断面図である。FIG. 11: is sectional drawing which shows the cross-section of the heat exchanger of 8th Embodiment. 図12は、第9実施形態の熱交換器の断面構造を示す断面図である。FIG. 12: is sectional drawing which shows the cross-section of the heat exchanger of 9th Embodiment. 図13は、第9実施形態の流入パイプの断面構造を示す断面図である。FIG. 13: is sectional drawing which shows the cross-section of the inflow pipe of 9th Embodiment. 図14は、第9実施形態の偏流部材の斜視構造を示す斜視図である。FIG. 14 is a perspective view showing a perspective structure of a drift member according to the ninth embodiment.
 以下、熱交換器の一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の熱交換器10について説明する。熱交換器10は、例えば車両に搭載される空調装置のヒータコアとして用いられる。空調装置は、加熱又は冷却された空調空気を車室内に送風することにより、車室内の空調を行う装置である。熱交換器10は、空調空気が流れる空調ダクト内に配置されている。熱交換器10の内部には、エンジンの冷却水が循環している。熱交換器10の内部を流れる冷却水は液体の単相状態である。熱交換器10は、その内部を流れる冷却水と、空調ダクト内を流れる空調空気との間で熱交換を行うことにより、冷却水の熱により空調空気を加熱する。熱交換器10により加熱された空調空気が空調ダクトを通じて車室内に送風されることにより、車室内の暖房が行われる。本実施形態では、熱交換器10の内部を流れる冷却水が流体に相当する。
Hereinafter, an embodiment of the heat exchanger will be described with reference to the drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
First, the heat exchanger 10 of the first embodiment shown in FIG. 1 will be described. The heat exchanger 10 is used, for example, as a heater core of an air conditioner mounted on a vehicle. The air conditioner is a device that air-conditions the vehicle interior by blowing heated or cooled conditioned air into the vehicle interior. The heat exchanger 10 is arranged in an air conditioning duct through which conditioned air flows. Inside the heat exchanger 10, engine cooling water is circulated. The cooling water flowing inside the heat exchanger 10 is in a liquid single-phase state. The heat exchanger 10 heats the conditioned air by the heat of the cooling water by exchanging heat between the cooling water flowing inside the heat exchanger 10 and the conditioned air flowing inside the air conditioning duct. The conditioned air heated by the heat exchanger 10 is blown into the vehicle compartment through the air conditioning duct to heat the vehicle compartment. In the present embodiment, the cooling water flowing inside the heat exchanger 10 corresponds to the fluid.
 図1に示されるように、熱交換器10は、熱交換コア部20と、タンク部31,32と、サイドプレート41,42とを備えている。熱交換器10は、アルミニウム合金等の金属材料により形成されている。
 熱交換コア部20は、冷却水と空気との間で熱交換を行う部分である。熱交換コア部20は、図中のX軸方向に所定の間隔をおいて積層して配置される複数のチューブ21と、隣り合うチューブ21の間の隙間に配置される複数のフィン22とを有している。なお、図1では、複数のフィン22のうちの一部のみが図示されている。以下では、X軸方向を「チューブ積層方向X」とも称する。また、チューブ積層方向Xのうちの一方向を「X1方向」と称し、その他方向を「X2方向」と称する。
As shown in FIG. 1, the heat exchanger 10 includes a heat exchange core portion 20, tank portions 31 and 32, and side plates 41 and 42. The heat exchanger 10 is made of a metal material such as an aluminum alloy.
The heat exchange core portion 20 is a portion that exchanges heat between the cooling water and the air. The heat exchange core portion 20 includes a plurality of tubes 21 arranged in a stack at a predetermined interval in the X-axis direction in the figure, and a plurality of fins 22 arranged in a gap between adjacent tubes 21. Have In FIG. 1, only a part of the plurality of fins 22 is shown. Below, the X-axis direction is also referred to as "tube stacking direction X". Further, one of the tube stacking directions X is referred to as "X1 direction", and the other direction is referred to as "X2 direction".
 図2に示されるように、チューブ21は、その内部に冷却水の流れる内部流路W10を有する細長い配管からなる。Z軸方向に直交するチューブ21の断面形状は扁平状をなしている。図1に示されるように、チューブ21は、Z軸方向に延びるように形成されている。以下では、Z軸方向を「チューブ長手方向Z」とも称する。また、チューブ長手方向Zのうちの一方向を「Z1方向」と称し、その他方向をZ2方向と称する。さらに、X軸方向及びZ軸方向の両方に直交する方向を「チューブ幅方向Y」とも称する。熱交換器10では、隣り合うチューブ21,21の間に形成される隙間をチューブ幅方向Yに向かって空気が流れる。 As shown in FIG. 2, the tube 21 is an elongated pipe having an internal flow passage W10 through which cooling water flows. The cross-sectional shape of the tube 21 orthogonal to the Z-axis direction is flat. As shown in FIG. 1, the tube 21 is formed so as to extend in the Z-axis direction. Below, the Z-axis direction is also referred to as “tube longitudinal direction Z”. Further, one of the tube longitudinal directions Z is referred to as "Z1 direction", and the other direction is referred to as Z2 direction. Further, a direction orthogonal to both the X-axis direction and the Z-axis direction is also referred to as "tube width direction Y". In the heat exchanger 10, air flows in the tube width direction Y through the gap formed between the adjacent tubes 21 and 21.
 フィン22は、薄く長い金属板を波状に折り曲げることにより形成される、いわゆるコルゲートフィンからなる。フィン22の折り曲がり部分は、隣接するチューブ21,21の外周面にろう付けにより固定されている。フィン22は、チューブ21の伝熱面積を増加させることにより、冷却水と空気との熱交換効率を高めるために設けられている。 The fins 22 are so-called corrugated fins formed by bending a thin and long metal plate into a wavy shape. The bent portion of the fin 22 is fixed to the outer peripheral surface of the adjacent tubes 21 and 21 by brazing. The fins 22 are provided to increase the heat transfer area of the tubes 21 and thereby increase the heat exchange efficiency between the cooling water and the air.
 タンク部31,32は、チューブ積層方向Xに延びるように形成される筒状の部材からなる。図2に示されるように、第1タンク部31の内部には、冷却水の流れる内部流路W20が形成されている。第1タンク部31には、Z2方向における複数のチューブ21の一端部210が接続されている。複数のチューブ21の一端部210は、第1タンク部31の周壁312を貫通して第1タンク部31の内部流路W20まで延びるように配置されている。同様に、第2タンク部の内部には、冷却水の流れる内部流路が形成されている。図1に示されるように、第2タンク部32には、Z1方向における複数のチューブ21の他端部211が接続されている。 The tank portions 31 and 32 are cylindrical members formed so as to extend in the tube stacking direction X. As shown in FIG. 2, inside the first tank portion 31, an internal passage W20 through which cooling water flows is formed. One end portions 210 of the plurality of tubes 21 in the Z2 direction are connected to the first tank portion 31. One end portions 210 of the plurality of tubes 21 are arranged so as to penetrate the peripheral wall 312 of the first tank portion 31 and extend to the internal flow passage W20 of the first tank portion 31. Similarly, inside the second tank portion, an internal flow path through which cooling water flows is formed. As shown in FIG. 1, the second tank portion 32 is connected to the other end portions 211 of the plurality of tubes 21 in the Z1 direction.
 X1方向における第1タンク部31の端部311は、閉塞されている。X2方向における第1タンク部31の端部310には、流入口33が設けられている。流入口33は筒状に形成されている。図2に示されるように、X1方向における流入口33の端部330は、ろう付け等により第1タンク部31の端部310に接合されて固定されている。図2に示される軸線m1は、第1タンク部31の中心軸を示している。図2に示されるように、流入口33は、第1タンク部31と同一の軸線m1上に配置されている。 The end portion 311 of the first tank portion 31 in the X1 direction is closed. The inflow port 33 is provided at the end portion 310 of the first tank portion 31 in the X2 direction. The inflow port 33 is formed in a tubular shape. As shown in FIG. 2, the end portion 330 of the inflow port 33 in the X1 direction is joined and fixed to the end portion 310 of the first tank portion 31 by brazing or the like. The axis m1 shown in FIG. 2 indicates the central axis of the first tank portion 31. As shown in FIG. 2, the inflow port 33 is arranged on the same axis m1 as that of the first tank portion 31.
 X2方向における流入口33の端部331には、流入パイプ40が接続される。具体的には、流入パイプ40の先端部には、フランジ部400が形成されている。フランジ部400が流入口33の端部331にかしめられることにより、流入口33の端部331に流入パイプ40が固定されている。流入パイプ40の外周面と流入口33の内周面との間には、それらの間をシールするためのシール部材50が配置されている。 The inflow pipe 40 is connected to the end 331 of the inflow port 33 in the X2 direction. Specifically, a flange portion 400 is formed at the tip of the inflow pipe 40. The inflow pipe 40 is fixed to the end 331 of the inflow port 33 by crimping the flange portion 400 to the end 331 of the inflow port 33. A seal member 50 is arranged between the outer peripheral surface of the inflow pipe 40 and the inner peripheral surface of the inflow port 33 to seal between them.
 流入パイプ40において第1タンク部31内に開口する開口部401の内壁面402には、傾斜面403が形成されている。傾斜面403は、チューブ積層方向Xに対して傾斜するように形成されている。
 図1に示されるように、X2方向における第2タンク部32の端部320には、排出口34が設けられている。第2タンク部32と排出口34との接続構造は、図2に示される第1タンク部31と流入口33との接続構造と略同一であるため、その詳細な説明は割愛する。排出口34には排出パイプ43が接続されている。排出パイプ43は、チューブ積層方向Xにおいて流入パイプ40と同一側に位置する第2タンク部32の一端部に設けられている。X1方向における第2タンク部32の端部321は閉塞されている。
An inclined surface 403 is formed on the inner wall surface 402 of the opening portion 401 that opens into the first tank portion 31 in the inflow pipe 40. The inclined surface 403 is formed so as to be inclined with respect to the tube stacking direction X.
As shown in FIG. 1, a discharge port 34 is provided at the end 320 of the second tank portion 32 in the X2 direction. The connection structure between the second tank portion 32 and the discharge port 34 is substantially the same as the connection structure between the first tank portion 31 and the inflow port 33 shown in FIG. 2, so a detailed description thereof will be omitted. A discharge pipe 43 is connected to the discharge port 34. The discharge pipe 43 is provided at one end of the second tank portion 32 located on the same side as the inflow pipe 40 in the tube stacking direction X. The end portion 321 of the second tank portion 32 in the X1 direction is closed.
 図1に示されるように、サイドプレート41,42は、X軸方向における熱交換コア部20の両端部にそれぞれ配置されている。Z2方向におけるサイドプレート41,42のそれぞれの端部410,420は、第1タンク部31に接続されている。図2に示されるように、サイドプレート41の端部410は、第1タンク部31の周壁312を貫通して第1タンク部31の内部流路W20まで延びるように配置されている。同様に、サイドプレート42の端部420も第1タンク部31に接続されている。さらに、図1に示されるように、Z1方向におけるサイドプレート41,42の他端部411,421は、第2タンク部32に接続されている。サイドプレート41,42は、熱交換コア部20を補強するために設けられている。 As shown in FIG. 1, the side plates 41 and 42 are arranged at both ends of the heat exchange core portion 20 in the X-axis direction. The respective end portions 410 and 420 of the side plates 41 and 42 in the Z2 direction are connected to the first tank portion 31. As shown in FIG. 2, the end portion 410 of the side plate 41 is arranged so as to penetrate the peripheral wall 312 of the first tank portion 31 and extend to the internal flow path W20 of the first tank portion 31. Similarly, the end portion 420 of the side plate 42 is also connected to the first tank portion 31. Further, as shown in FIG. 1, the other end portions 411 and 421 of the side plates 41 and 42 in the Z1 direction are connected to the second tank portion 32. The side plates 41, 42 are provided to reinforce the heat exchange core section 20.
 次に、本実施形態の熱交換器10の動作例について説明する。
 熱交換器10では、流入パイプ40を通じて第1タンク部31の内部に単相の冷却水が流入する。第1タンク部31に流入した冷却水は、各チューブ21の一端部210から各チューブ21の内部流路W10に流入することにより、各チューブ21に分配される。各チューブ21に分配された冷却水は、各チューブ21の内部流路W10を第2タンク部32に向かって流れる。熱交換器10では、各チューブ21の内部流路W10を流れる冷却水と、隣り合うチューブ21,21の間を流れる空気との間で熱交換が行われることにより、冷却水の熱が空気に伝達されて、空気が加熱される。各チューブ21を通過した冷却水は、第2タンク部32に集められた後、排出パイプ43から排出される。
Next, an operation example of the heat exchanger 10 of this embodiment will be described.
In the heat exchanger 10, the single-phase cooling water flows into the first tank portion 31 through the inflow pipe 40. The cooling water that has flowed into the first tank portion 31 is distributed to each tube 21 by flowing from the one end portion 210 of each tube 21 into the internal flow path W10 of each tube 21. The cooling water distributed to each tube 21 flows through the internal flow path W10 of each tube 21 toward the second tank portion 32. In the heat exchanger 10, heat is exchanged between the cooling water flowing through the internal flow passage W10 of each tube 21 and the air flowing between the adjacent tubes 21 and 21, whereby the heat of the cooling water is converted into air. It is transmitted and the air is heated. The cooling water that has passed through each tube 21 is collected in the second tank portion 32 and then discharged from the discharge pipe 43.
 この熱交換器10では、流入パイプ40の内壁面402に傾斜面403が形成されているため、図2に示されるように、流入パイプ40から第1タンク部31に流入する冷却水は、矢印D1で示される方向、すなわち軸線m1に対して所定角度θをなす方向に流れる。流入パイプ40の開口部401から矢印D1で示される方向に冷却水が流れることにより、第1タンク部31の端部310において、矢印D1に沿った領域A1を流れる冷却水の速度が増加する。これにより、第1タンク部31の端部310を流れる冷却水の速度分布には、チューブ幅方向Yに偏りが生じるようになる。この冷却水の速度分布の偏りにより、冷却水の速度が速い領域A1では、冷却水がチューブ21に流入する際の圧力損失が大きくなる。結果的に、第1タンク部31の端部310付近に配置される複数のチューブ21には冷却水が流入し難くなる。 In this heat exchanger 10, since the inclined surface 403 is formed on the inner wall surface 402 of the inflow pipe 40, as shown in FIG. 2, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 is indicated by the arrow. It flows in the direction indicated by D1, that is, in the direction forming a predetermined angle θ with respect to the axis m1. The flow of the cooling water from the opening 401 of the inflow pipe 40 in the direction indicated by the arrow D1 increases the speed of the cooling water flowing in the region A1 along the arrow D1 at the end portion 310 of the first tank portion 31. As a result, the velocity distribution of the cooling water flowing through the end portion 310 of the first tank portion 31 becomes uneven in the tube width direction Y. Due to this bias in the velocity distribution of the cooling water, the pressure loss when the cooling water flows into the tube 21 becomes large in the region A1 where the velocity of the cooling water is high. As a result, it becomes difficult for the cooling water to flow into the plurality of tubes 21 arranged near the end portion 310 of the first tank portion 31.
 以上説明した本実施形態の熱交換器10によれば、以下の(1)及び(2)に示される作用及び効果を得ることができる。
 (1)図1に示されるような構造を有する熱交換器10では、流入パイプ40から第1タンク部31に流入する冷却水が、第1タンク部31の端部310の付近に配置されるチューブ21に分配され易い一方、第1タンク部31の端部310から離間した位置に配置されるチューブ21に分配され難くなる。この点、本実施形態の熱交換器10では、図2に示されるように、第1タンク部31の端部310付近に配置される複数のチューブ21に冷却水が流入し難くなるように、複数のチューブ21の流量分布を意図的に偏らせることができる。これにより、流入パイプ40の位置に起因するチューブ21の流量分布の偏りを相殺することができるため、結果的に複数のチューブ21における流量分布の偏りを抑制することができる。また、本実施形態の熱交換器10では、チューブ21の一端部210が閉塞されていないため、従来の熱交換器のようにチューブの一端部が閉塞されている構造と比較すると、チューブ21内の冷却水の流れに乱れが生じ難い。そのため、騒音を低減することが可能である。
According to the heat exchanger 10 of the present embodiment described above, the actions and effects shown in the following (1) and (2) can be obtained.
(1) In the heat exchanger 10 having the structure as shown in FIG. 1, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 is arranged near the end portion 310 of the first tank portion 31. While it is easy to distribute to the tube 21, it becomes difficult to distribute to the tube 21 arranged at a position separated from the end portion 310 of the first tank portion 31. In this respect, in the heat exchanger 10 of the present embodiment, as shown in FIG. 2, it is difficult for the cooling water to flow into the plurality of tubes 21 arranged near the end portion 310 of the first tank portion 31, The flow rate distribution of the plurality of tubes 21 can be intentionally biased. As a result, the deviation of the flow distribution of the tubes 21 due to the position of the inflow pipe 40 can be offset, and as a result, the deviation of the flow distribution of the plurality of tubes 21 can be suppressed. Further, in the heat exchanger 10 of the present embodiment, the one end portion 210 of the tube 21 is not closed, and therefore, as compared with the structure in which one end portion of the tube is closed like the conventional heat exchanger, the inside of the tube 21 is Disturbance does not easily occur in the flow of cooling water. Therefore, it is possible to reduce noise.
 (2)流入パイプ40において第1タンク部31の内部に開口する開口部401の内壁面402には、チューブ積層方向Xに対して傾斜する傾斜面403が形成されている。このような構成によれば、チューブ積層方向Xに対して所定角度θをなして流入パイプ40から第1タンク部31に冷却水が流入する構造を容易に実現することが可能である。 (2) In the inflow pipe 40, an inclined surface 403 that is inclined with respect to the tube stacking direction X is formed on the inner wall surface 402 of the opening portion 401 that opens inside the first tank portion 31. With such a configuration, it is possible to easily realize a structure in which the cooling water flows into the first tank portion 31 from the inflow pipe 40 at a predetermined angle θ with respect to the tube stacking direction X.
 (変形例)
 次に、第1実施形態の熱交換器10の変形例について説明する。
 本変形例の熱交換器10では、チューブ21として、図3に示されるような構造を有する、いわゆるB型チューブが採用されている。図3に示されるように、チューブ21には、その内部流路W10を2つの流路W11,W12に仕切る隔壁212が形成されている。
(Modification)
Next, a modified example of the heat exchanger 10 of the first embodiment will be described.
In the heat exchanger 10 of this modification, a so-called B-type tube having a structure as shown in FIG. 3 is adopted as the tube 21. As shown in FIG. 3, the tube 21 is formed with a partition wall 212 that partitions the internal flow passage W10 into two flow passages W11 and W12.
 このような構造を有するチューブ21を熱交換器10に用いた場合、隔壁212を有していないチューブと比較すると、チューブ21の各流路W11,W12を流れる冷却水の圧力損失が大きくなる。そのため、第1タンク部31の内部を流れる冷却水の流速が速くなるほど、各チューブ21の流路W11,W12に冷却水が流入し難くなる。第1タンク部31の内部では、流入パイプ40の開口部401の付近で冷却水の流速が最も速くなる。図3に示されるようなチューブ21を用いることにより、流入パイプ40の開口部401の付近に配置されるチューブ21に冷却水が更に流入し難くなるため、流入パイプ40の位置に起因する各チューブ21の流量分布の偏りを更に緩和することが可能となる。 When the tube 21 having such a structure is used for the heat exchanger 10, the pressure loss of the cooling water flowing through the flow passages W11 and W12 of the tube 21 becomes larger than that of the tube having no partition wall 212. Therefore, as the flow velocity of the cooling water flowing through the inside of the first tank portion 31 becomes faster, it becomes more difficult for the cooling water to flow into the flow passages W11 and W12 of each tube 21. Inside the first tank portion 31, the flow velocity of the cooling water is highest near the opening 401 of the inflow pipe 40. By using the tube 21 as shown in FIG. 3, it becomes more difficult for the cooling water to flow into the tube 21 arranged near the opening 401 of the inflow pipe 40, and thus each tube caused by the position of the inflow pipe 40. It is possible to further alleviate the bias in the flow distribution of 21.
 <第2実施形態>
 次に、第2実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
 図4に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、流入パイプ40の途中部分に偏流部404が形成されている。偏流部404は、流入パイプ40において折り曲げられるように形成され、且つ流入パイプ40の流路断面積を部分的に狭くするように形成された部分からなる。このような偏流部404により、流入パイプ40の内部を流れる冷却水の流れ方向を変化させることができる。具体的には、図4に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
<Second Embodiment>
Next, the heat exchanger 10 of the second embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in FIG. 4, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 to the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, A drift portion 404 is formed in the middle of the inflow pipe 40. The uneven flow portion 404 is formed so as to be bent in the inflow pipe 40, and includes a portion formed to partially narrow the flow passage cross-sectional area of the inflow pipe 40. With such a drift portion 404, the flow direction of the cooling water flowing inside the inflow pipe 40 can be changed. Specifically, as shown by an arrow D1 in FIG. 4, it becomes possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X. Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as the heat exchanger 10 of the first embodiment can be obtained.
 <第3実施形態>
 次に、第3実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
 図5に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31の内部に偏流部材60が設けられている。偏流部材60は、軸線m1からずれた位置に貫通孔61を有する板状の部材からなる。貫通孔61の内周面には、チューブ積層方向Xに対して所定角度をなすように傾斜する傾斜面62が形成されている。流入パイプ40から第1タンク部31に流入する冷却水が傾斜面62に沿って貫通孔61を流れることにより、図5に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。
<Third Embodiment>
Next, the heat exchanger 10 of the third embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
As shown in FIG. 5, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, The drift member 60 is provided inside the first tank portion 31. The drift member 60 is a plate-shaped member having a through hole 61 at a position displaced from the axis m1. On the inner peripheral surface of the through hole 61, an inclined surface 62 that is inclined so as to form a predetermined angle with respect to the tube stacking direction X is formed. As the cooling water flowing from the inflow pipe 40 into the first tank portion 31 flows through the through hole 61 along the inclined surface 62, as shown by an arrow D1 in FIG. It is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 so that
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第4実施形態>
 次に、第4実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Fourth Embodiment>
Next, the heat exchanger 10 of the fourth embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図6に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、サイドプレート41の一端部410に偏流構造412が設けられている。図7に示されるように、偏流構造412は、サイドプレート41の端部410の一部を部分的に突出させた構造からなる。図6に示されるように、偏流構造412は第1タンク部31内に突出している。そのため、流入パイプ40から第1タンク部31に流入する冷却水は、偏流構造412が設けられている部分では流れ難くなる一方、偏流構造412が設けられていない部分では流れ易くなる。これにより、図6に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。 As shown in FIG. 6, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, A drift structure 412 is provided at one end portion 410 of the side plate 41. As shown in FIG. 7, the drift structure 412 is formed by partially projecting a part of the end portion 410 of the side plate 41. As shown in FIG. 6, the drift structure 412 projects into the first tank portion 31. Therefore, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 becomes difficult to flow in the portion where the non-uniform flow structure 412 is provided, but becomes easy to flow in the portion where the non-uniform flow structure 412 is not provided. As a result, as shown by the arrow D1 in FIG. 6, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X. ..
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第5実施形態>
 次に、第5実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Fifth Embodiment>
Next, the heat exchanger 10 of 5th Embodiment is demonstrated. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図8に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31の周壁312に偏流構造313が設けられている。偏流構造313は、第1タンク部31の周壁312の一部を内側に凹むように変形させた構造からなる。この偏流構造313により、流入パイプ40から第1タンク部31に流入する冷却水は、偏流構造313が設けられている部分では流れ難くなる一方、偏流構造313が設けられていない部分では流れ易くなる。これにより、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。 As shown in FIG. 8, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, A drift structure 313 is provided on the peripheral wall 312 of the first tank portion 31. The non-uniform flow structure 313 has a structure in which a part of the peripheral wall 312 of the first tank portion 31 is deformed so as to be recessed inward. Due to this non-uniform flow structure 313, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 becomes difficult to flow in the portion where the non-uniform flow structure 313 is provided, and becomes easy to flow in the part where the non-uniform flow structure 313 is not provided. .. Thereby, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 so as to form a predetermined angle θ with respect to the tube stacking direction X.
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第6実施形態>
 次に、第6実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Sixth Embodiment>
Next, the heat exchanger 10 of the sixth embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図9に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31に対して流入パイプ40が傾斜して取り付けられている。具体的には、流入パイプ40は、その中心軸m2がチューブ積層方向Xに対して傾斜するように第1タンク部31に取り付けられている。これにより、図9に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。 As shown in FIG. 9, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, The inflow pipe 40 is inclined and attached to the first tank portion 31. Specifically, the inflow pipe 40 is attached to the first tank portion 31 so that its central axis m2 is inclined with respect to the tube stacking direction X. As a result, as shown by the arrow D1 in FIG. 9, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X. ..
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第7実施形態>
 次に、第7実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Seventh Embodiment>
Next, the heat exchanger 10 of the seventh embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図10に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31に対して流入パイプ40が偏心した位置に取り付けられている。すなわち、流入パイプ40は、その中心軸m2が第1タンク部31の中心軸m1からずれるように第1タンク部31に取り付けられている。これにより、図10に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。 As shown in FIG. 10, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, The inflow pipe 40 is attached to the first tank portion 31 at an eccentric position. That is, the inflow pipe 40 is attached to the first tank portion 31 such that the central axis m2 thereof deviates from the central axis m1 of the first tank portion 31. As a result, as shown by the arrow D1 in FIG. 10, it is possible to flow the cooling water from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X. ..
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第8実施形態>
 次に、第8実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Eighth Embodiment>
Next, the heat exchanger 10 of the eighth embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図11に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31の側面に流入パイプ40が取り付けられている。具体的には、流入パイプ40は、第1タンク部31においてチューブ幅方向Yに位置する側面に取り付けられている。このような構造によれば、流入パイプ40から第1タンク部31に流入する冷却水は、チューブ積層方向Xに対して略直交するように流れる。すなわち、図11の角度θは略90度となる。 As shown in FIG. 11, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, The inflow pipe 40 is attached to the side surface of the first tank portion 31. Specifically, the inflow pipe 40 is attached to the side surface of the first tank portion 31 located in the tube width direction Y. According to such a structure, the cooling water flowing from the inflow pipe 40 into the first tank portion 31 flows so as to be substantially orthogonal to the tube stacking direction X. That is, the angle θ in FIG. 11 is approximately 90 degrees.
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <第9実施形態>
 次に、第9実施形態の熱交換器10について説明する。以下、第1実施形態の熱交換器10との相違点を中心に説明する。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Ninth Embodiment>
Next, the heat exchanger 10 of the ninth embodiment will be described. Hereinafter, differences from the heat exchanger 10 of the first embodiment will be mainly described.
 図12に示されるように、本実施形態の熱交換器10では、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させるために、第1タンク部31の内部に偏流部材70が設けられている。図13及び図14に示されるように、偏流部材70は、軸線m1を中心に円柱状に形成された部材からなる。偏流部材70には、その中心軸m1からずれた位置に貫通孔71が形成されている。流入パイプ40を流れる冷却水が偏流部材70の貫通孔71を通過することにより、図12に矢印D1で示されるように、チューブ積層方向Xに対して所定角度θをなすように流入パイプ40から第1タンク部31に冷却水を流入させることが可能となっている。 As shown in FIG. 12, in the heat exchanger 10 of the present embodiment, in order to allow the cooling water to flow from the inflow pipe 40 into the first tank portion 31 at a predetermined angle θ with respect to the tube stacking direction X, The drift member 70 is provided inside the first tank portion 31. As shown in FIGS. 13 and 14, the drift member 70 is a member formed in a cylindrical shape around the axis m1. The drift member 70 has a through hole 71 formed at a position displaced from the central axis m1. As the cooling water flowing through the inflow pipe 40 passes through the through hole 71 of the drift member 70, the inflow pipe 40 forms a predetermined angle θ with respect to the tube stacking direction X, as indicated by an arrow D1 in FIG. It is possible to allow the cooling water to flow into the first tank portion 31.
 本実施形態のような構造を有する熱交換器10であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることができる。
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
Even with the heat exchanger 10 having the structure of this embodiment, the same or similar action and effect as those of the heat exchanger 10 of the first embodiment can be obtained.
<Other Embodiments>
In addition, each embodiment can also be implemented in the following forms.
 ・各実施形態の熱交換器10では、熱交換器10を流れる流体として、冷却水以外の任意の流体を採用することが可能である。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
-In the heat exchanger 10 of each embodiment, any fluid other than cooling water can be adopted as the fluid flowing through the heat exchanger 10.
The present disclosure is not limited to the above specific examples. A person skilled in the art appropriately modified the above-described specific examples is also included in the scope of the present disclosure as long as the features of the present disclosure are provided. Each element included in each of the above-described specific examples, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

Claims (11)

  1.  流体が流れる複数のチューブ(21)が積層して配置される熱交換コア部(20)と、
     複数の前記チューブの一端部に接続され、流体を複数の前記チューブに分配する第1タンク部(31)と、
     複数の前記チューブの他端部に接続され、複数の前記チューブを通過した流体を集める第2タンク部(32)と、を備え、
     複数の前記チューブが積層して配置される方向をチューブ積層方向とするとき、
     前記チューブ積層方向に位置する前記第1タンク部の一端部には、前記第1タンク部の内部に流体を流入させる流入パイプ(40)が接続され、
     前記チューブ積層方向において前記流入パイプと同一側に位置する前記第2タンク部の一端部には、前記第2タンク部の内部の流体を排出する排出パイプ(43)が接続され、
     前記チューブ積層方向に対して所定角度をなすように前記流入パイプから前記第1タンク部に流体が流入する
     熱交換器。
    A heat exchange core part (20) in which a plurality of tubes (21) through which fluid flows are stacked and arranged;
    A first tank portion (31) connected to one end of the plurality of tubes and distributing a fluid to the plurality of tubes;
    A second tank part (32), which is connected to the other ends of the plurality of tubes and collects the fluid that has passed through the plurality of tubes.
    When the tube stacking direction is a direction in which the plurality of tubes are stacked and arranged,
    An inflow pipe (40) for allowing a fluid to flow into the first tank unit is connected to one end of the first tank unit located in the tube stacking direction,
    A discharge pipe (43) for discharging the fluid inside the second tank part is connected to one end of the second tank part located on the same side as the inflow pipe in the tube stacking direction,
    A heat exchanger in which a fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction.
  2.  前記流入パイプにおいて前記第1タンク部の内部に開口する開口部の内壁面(402)には、前記チューブ積層方向に対して所定角度をなすように前記流入パイプから前記第1タンク部に流体が流入するように、前記チューブ積層方向に対して傾斜する傾斜面(403)が形成されている
     請求項1に記載の熱交換器。
    On the inner wall surface (402) of the opening portion of the inflow pipe that opens to the inside of the first tank portion, fluid from the inflow pipe to the first tank portion is formed at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, wherein an inclined surface (403) that is inclined with respect to the tube stacking direction is formed so as to flow in.
  3.  前記流入パイプには、前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプの内部を流れる流体の流れ方向を変化させる偏流部(404)が形成されている
     請求項1に記載の熱交換器。
    A biased flow that changes the flow direction of the fluid flowing in the inflow pipe so that the fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, wherein a part (404) is formed.
  4.  前記第1タンク部の内部には、前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプから前記第1タンク部に流入した流体の流れ方向を変化させる偏流部材(60)が設けられている
     請求項1に記載の熱交換器。
    Inside the first tank portion, the fluid flows from the inflow pipe into the first tank portion such that a fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, further comprising a drift member (60) for changing a flow direction of the generated fluid.
  5.  前記チューブ積層方向における前記熱交換コア部の両端部に配置され、前記熱交換コア部を補強するサイドプレート(41)を更に備え、
     前記サイドプレートの両端部は、前記第1タンク部及び前記第2タンク部にそれぞれ接続され、
     前記サイドプレートにおいて前記第1タンク部に接続されている一端部には、前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプから前記第1タンク部に流入した流体の流れ方向を変化させる偏流構造(412)が設けられている
     請求項1に記載の熱交換器。
    Further comprising side plates (41) arranged at both ends of the heat exchange core portion in the tube stacking direction to reinforce the heat exchange core portion,
    Both end portions of the side plate are respectively connected to the first tank portion and the second tank portion,
    The one end of the side plate, which is connected to the first tank part, is made to flow into the first tank part from the inflow pipe at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, further comprising a biased flow structure (412) for changing a flow direction of the fluid flowing from the pipe into the first tank portion.
  6.  前記第1タンク部の周壁(312)には、前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプの内部を流れる流体の流れ方向を変化させる偏流構造(313)が設けられている
     請求項1に記載の熱交換器。
    A fluid flowing inside the inflow pipe is formed on the peripheral wall (312) of the first tank portion so that the fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, further comprising a drift structure (313) that changes a flow direction of the heat exchanger.
  7.  前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプは、その中心軸が前記チューブ積層方向に対して傾斜するように前記第1タンク部に取り付けられている
     請求項1に記載の熱交換器。
    The inflow pipe may have a central axis inclined with respect to the tube stacking direction so that a fluid may flow into the first tank portion from the inflow pipe at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, which is attached to the first tank portion.
  8.  前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプは、その中心軸が前記第1タンク部の中心軸からずれるように前記第1タンク部に取り付けられている
     請求項1に記載の熱交換器。
    A central axis of the inflow pipe is displaced from a central axis of the first tank part so that the fluid flows from the inflow pipe into the first tank part at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, which is attached to the first tank portion.
  9.  前記チューブが延びる方向をチューブ長手方向とし、前記チューブ積層方向及び前記チューブ長手方向の両方に直交する方向をチューブ幅方向とするとき、
     前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプは、前記チューブ幅方向に位置する前記第1タンク部の側面に取り付けられている
     請求項1に記載の熱交換器。
    When the tube extending direction is the tube longitudinal direction, and the tube width direction is a direction orthogonal to both the tube stacking direction and the tube longitudinal direction,
    The inflow pipe is attached to a side surface of the first tank portion positioned in the tube width direction so that the fluid flows from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1.
  10.  前記流入パイプの内部には、前記チューブ積層方向に対して所定角度をなして前記流入パイプから前記第1タンク部に流体が流入するように、前記流入パイプの内部を流れる流体の流れ方向を変化させる偏流部材(70)が設けられている
     請求項1に記載の熱交換器。
    The flow direction of the fluid flowing inside the inflow pipe is changed so that the fluid may flow from the inflow pipe into the first tank portion at a predetermined angle with respect to the tube stacking direction. The heat exchanger according to claim 1, further comprising a biasing member (70) for causing the flow to flow.
  11.  前記チューブには、その内部流路を2つの流路に仕切る隔壁(212)が形成されている
     請求項1~10のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 10, wherein a partition wall (212) for partitioning the internal flow passage into two flow passages is formed in the tube.
PCT/JP2019/050342 2019-01-15 2019-12-23 Heat exchanger WO2020149107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004396 2019-01-15
JP2019004396A JP7006626B2 (en) 2019-01-15 2019-01-15 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2020149107A1 true WO2020149107A1 (en) 2020-07-23

Family

ID=71613289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050342 WO2020149107A1 (en) 2019-01-15 2019-12-23 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7006626B2 (en)
WO (1) WO2020149107A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308386A (en) * 2004-03-23 2005-11-04 Showa Denko Kk Heat exchanger
JP2009008277A (en) * 2007-06-26 2009-01-15 Showa Denko Kk Heat exchanger and its manufacturing method
JP2010223508A (en) * 2009-03-24 2010-10-07 Tokyo Radiator Mfg Co Ltd Intercooler of engine for vehicle
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
JP2018105509A (en) * 2015-04-28 2018-07-05 株式会社デンソー Heat exchanger
WO2018221751A1 (en) * 2018-07-03 2018-12-06 株式会社小松製作所 Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414504B2 (en) 2015-04-14 2018-10-31 株式会社デンソー Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308386A (en) * 2004-03-23 2005-11-04 Showa Denko Kk Heat exchanger
JP2009008277A (en) * 2007-06-26 2009-01-15 Showa Denko Kk Heat exchanger and its manufacturing method
JP2010223508A (en) * 2009-03-24 2010-10-07 Tokyo Radiator Mfg Co Ltd Intercooler of engine for vehicle
JP2018105509A (en) * 2015-04-28 2018-07-05 株式会社デンソー Heat exchanger
WO2018055826A1 (en) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device
WO2018221751A1 (en) * 2018-07-03 2018-12-06 株式会社小松製作所 Heat exchanger

Also Published As

Publication number Publication date
JP7006626B2 (en) 2022-01-24
JP2020112322A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP4211998B2 (en) Heat exchanger plate
US10907906B2 (en) Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
US6318455B1 (en) Heat exchanger
JP4613645B2 (en) Heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
JP5775971B2 (en) Air heat exchanger
JP6577282B2 (en) Heat exchanger
WO2020149107A1 (en) Heat exchanger
WO2017094366A1 (en) Fin for heat exchanger
WO2016175193A1 (en) Heat exchanger
JP2018044707A (en) Heat exchanger
US12007183B2 (en) Heat exchanger
JP7259287B2 (en) Heat exchanger
JP5574737B2 (en) Heat exchanger
US20220349655A1 (en) Heat exchanger
JP2020091056A (en) Heat exchanger
JP2011158130A (en) Heat exchanger
JP7226364B2 (en) Heat exchanger
JP6732647B2 (en) Heat exchanger
WO2019216183A1 (en) Laminated plate type heat exchanger
JP2011158127A (en) Heat exchanger
JP2016057036A (en) Heat exchanger
JP2011117699A (en) Heat exchanger
JP2015508881A (en) Heat exchanger
JP2002130984A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910051

Country of ref document: EP

Kind code of ref document: A1