[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020149041A1 - スパイラル型膜エレメント及びその製造方法 - Google Patents

スパイラル型膜エレメント及びその製造方法 Download PDF

Info

Publication number
WO2020149041A1
WO2020149041A1 PCT/JP2019/047509 JP2019047509W WO2020149041A1 WO 2020149041 A1 WO2020149041 A1 WO 2020149041A1 JP 2019047509 W JP2019047509 W JP 2019047509W WO 2020149041 A1 WO2020149041 A1 WO 2020149041A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
membrane element
membrane
coating layer
separation
Prior art date
Application number
PCT/JP2019/047509
Other languages
English (en)
French (fr)
Inventor
川島 敏行
松田 英樹
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2020149041A1 publication Critical patent/WO2020149041A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a spiral wound type membrane element and a method for producing the same.
  • Spiral type membrane element is used in the system for desalination of seawater, production of pure water, wastewater treatment, production of oilfield injection water, etc.
  • the spiral-type membrane element includes, for example, a water collecting pipe and a membrane leaf wound around the water collecting pipe.
  • the membrane leaf is composed of a spacer and multiple separation membranes.
  • the outer peripheral portions of the plurality of separation membranes are sealed with an adhesive so as to have a bag shape.
  • the sealing with the adhesive is insufficient, the raw water leaks from the raw water channel to the permeate channel, and the rejection rate decreases. Poorly sealed products can be found in pre-shipment inspections. However, there may be a very small amount of leak that cannot be detected by inspection before shipment.
  • the present invention aims to provide a technique for preventing an extremely small amount of leak in a spiral wound type membrane element.
  • the present invention is With a water collection pipe, A separation membrane wound around the water collecting pipe, A coating layer provided on the end surface of the separation membrane in a direction parallel to the longitudinal direction of the water collection pipe, There is provided a spiral wound type membrane element.
  • the present invention provides Wrapping the separation membrane around the collection tube, Forming a coating layer on the end face of the separation membrane in a direction parallel to the longitudinal direction of the liquid collection tube; including, Provided is a method for manufacturing a spiral wound type membrane element.
  • FIG. 1 is an exploded perspective view of a spiral wound type membrane element according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of an end portion of the spiral wound type membrane element shown in FIG.
  • FIG. 3 is a perspective view of the separation membrane element showing an end surface of the separation membrane in the circumferential direction of the water collection pipe.
  • FIG. 4A is a diagram showing a manufacturing process of the spiral wound type membrane element.
  • FIG. 4B is a diagram showing a manufacturing process that follows FIG. 4A.
  • FIG. 4C is a diagram showing a manufacturing process that follows FIG. 4B.
  • FIG. 4D is a diagram showing a manufacturing process that follows FIG. 4C.
  • FIG. 1 shows a spiral wound type membrane element 10 (hereinafter, also referred to as “separation membrane element 10”) according to an embodiment of the present invention.
  • the separation membrane element 10 includes a water collecting pipe 21 and a laminated body 22.
  • the laminated body 22 is arranged around the water collection pipe 21.
  • a raw water channel and a permeate channel are formed inside the laminated body 22.
  • the water collection pipe 21 penetrates the center of the stacked body 22.
  • Raw water is supplied to the inside of the separation membrane element 10 from one end surface of the laminated body 22, and flows through the raw water flow path in parallel with the longitudinal direction of the water collection pipe 21.
  • the raw water is filtered to generate concentrated water and permeated water.
  • the permeated water is guided to the outside through the water collection pipe 21.
  • the concentrated water is discharged from the other end surface of the laminated body 22 to the outside of the separation membrane element 10.
  • the liquid to be treated (filtered) by the separation membrane element 10 includes water (raw water).
  • water is used herein as a representative of liquid.
  • the laminated body 22 is composed of a separation membrane 12, a raw water spacer 13, and a permeated water spacer 14.
  • the end surface of the separation film 12 constitutes the end surface of the stacked body 22.
  • the laminated body 22 is composed of a plurality of separation membranes 12, a plurality of raw water spacers 13 and a plurality of permeated water spacers 14.
  • the plurality of separation membranes 12 are overlapped with each other, sealed on three sides so as to have a bag-like structure, and wound around the water collection pipe 21.
  • a raw water spacer 13 is disposed between the separation membranes 12 so as to be located outside the bag-shaped structure. The raw water spacer 13 secures a space as a raw water flow path between the separation membranes 12.
  • a permeate spacer 14 is arranged between the separation membranes 12 so as to be located inside the bag-shaped structure. The permeated water spacer 14 secures a space as a permeated water flow path between the separation membranes 12.
  • a pair of separation membranes 12 and a pair of permeated water spacers 14 form a membrane leaf 11. The open end of the membrane leaf 11 is connected to the water collection pipe 21 so that the permeate flow path communicates with the water collection pipe 21.
  • the water collection pipe 21 plays a role of collecting permeated water that has permeated each separation membrane 12 and guiding it to the outside of the separation membrane element 10.
  • the water collection pipe 21 is provided with a plurality of through holes 21h at predetermined intervals along the longitudinal direction thereof. The permeated water flows into the water collection pipe 21 through these through holes 21h.
  • the separation membrane element 10 has, as the separation membrane 12, an MF membrane, a UF membrane, an NF membrane, or an RO membrane.
  • the MF membrane Microfiltration membrane
  • the UF membrane Ultrafiltration membrane
  • the RO membrane Reverse Osmosis membrane
  • the NF membrane is a kind of RO membrane and allows monovalent ions such as Na + and Cl ⁇ to pass through and blocks polyvalent ions such as SO 4 2 ⁇ .
  • the raw water spacer 13 and the permeated water spacer 14 are mesh members made of a resin material such as PPS and ethylene-chlorotrifluoroethylene copolymer (ECTFE).
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • the separation membrane element 10 may include a shell that surrounds the laminated body 22.
  • the shell may be made of FRP (fiber reinforced plastic).
  • end face members may be arranged on both sides of the laminated body 22.
  • FIG. 2 shows an enlarged cross section of the end of the separation membrane element 10.
  • the separation membrane element 10 of the present embodiment further includes a coating layer 24.
  • the coating layer 24 is provided on the end surface 12p of the separation membrane 12 in the direction parallel to the longitudinal direction of the water collection pipe 21.
  • the coating layer 24 has a property of not allowing the raw water to permeate therethrough, and prevents the raw water from flowing into the permeated water channel.
  • the coating layer 24 can prevent an extremely small amount of leak in the separation membrane element 10.
  • the end surface of the separation membrane element 10 is composed of the end surface 12p of the separation membrane 12, the end surface 26p of the adhesive layer 26, and the outlet 13p of the raw water flow path.
  • the raw water flow path is secured by a raw water spacer 13 sandwiched between the membrane leaves 11 and the membrane leaf 11.
  • the adhesive layer 26 is a layer of an adhesive used to give the separation membrane 12 a bag-like structure. In detail, the adhesive layer 26 adheres the ends of the pair of separation membranes 12 to each other.
  • the coating layer 24 covers the end surface 12p of the separation membrane 12 and the end surface 26p of the adhesive layer 26. In other words, the coating layer 24 covers the end surface of the membrane leaf 11.
  • the end surface of the membrane leaf 11 is constituted by the end surface 12p of the separation membrane 12 and the end surface 26p of the adhesive layer 26.
  • the outlet 13p of the raw water channel is not covered with the coating layer 24 and is exposed to the outside.
  • the coating layer 24 has a spiral shape.
  • the separation membrane element 10 has a plurality of membrane leaves 11, there may be a plurality of coating layers 24 in the shape of a spiral.
  • the trace amount of leakage in the separation membrane element 10 is caused by the gap formed between the separation membrane 12 and the adhesive layer 26. Since the coating layer 24 is provided so as to straddle the separation membrane 12 and the adhesive layer 26, the gap that causes a leak can be reliably sealed by the coating layer 24. As a result, a very small amount of leak in the separation membrane element 10 can be prevented.
  • the coating layer 24 is made of, for example, a resin material having a composition different from that of the adhesive forming the adhesive layer 26.
  • the adhesive forming the adhesive layer 26 is, for example, a urethane resin adhesive.
  • the resin material forming the coating layer 24 is, for example, an epoxy resin.
  • the urethane resin adhesive is suitable as a material for the adhesive layer 26 because it has low fluidity and high retention.
  • Epoxy resin is suitable as a material for the coating layer 24 because it has high fluidity and high permeability.
  • the coating layer 24 may be made of a resin material (adhesive) having the same composition as that of the adhesive forming the adhesive layer 26. In this case, the effect of cost reduction is expected.
  • the thickness of the coating layer 24 is also not particularly limited.
  • the coating layer 24 has a thickness of, for example, 1 to 1000 ⁇ m.
  • the thickness of the coating layer 24 may be an average value of measurement values at arbitrary plural points (for example, 5 points) measured by a micrometer.
  • FIG. 3 shows the end face 12q of the separation membrane 12 in the circumferential direction of the water collection pipe 21.
  • the coating layer 24 is provided only on both end surfaces of the separation membrane element 10 in the direction parallel to the longitudinal direction of the water collection pipe 21.
  • the end face 12q of the separation membrane 12 in the circumferential direction of the water collection pipe 21 (the end face of the membrane leaf 11 in the circumferential direction of the water collection pipe 21) is exposed to the outside. Since the end face 12q of the separation membrane 12 in the circumferential direction of the water collection pipe 21 is usually covered with a shell, it is unlikely to be exposed to the flow of raw water and is unlikely to be a leak occurrence site.
  • the manufacturing process can be simplified.
  • a minute gap that causes a leak may be formed by trimming. ..
  • the coating layers 24 are provided on both end surfaces of the separation membrane element 10 in the direction parallel to the longitudinal direction of the water collection pipe 21, even if a minute gap that causes a leak occurs in the trimming process, It is possible to reliably seal such a minute gap by the coating layer 24.
  • the coating layer 24 may be provided on the end surface 12q of the separation membrane 12 in the circumferential direction of the water collection pipe 21. In this case, it is possible to prevent the end surface 12q of the separation membrane 12 in the circumferential direction of the water collection pipe 21 from becoming a leak generation site.
  • the separation membrane 12, the raw water spacer 13, and the permeated water spacer 14 are wound around the water collection pipe 21.
  • the raw water spacer 13 is arranged between the separation membranes 12 folded in two, and the permeate spacer 14 is arranged on the separation membrane 12.
  • the adhesive 26a is applied to the three sides of the perimeter of the permeate spacer 14. Thereby, the separation membrane unit U is obtained.
  • the adhesive 26a is in an uncured state at this point.
  • a plurality of (for example, four) separation membrane units U are wound around the water collection pipe 21.
  • the adhesive 26a is cured to form the adhesive layer 26 and the bag-shaped membrane leaf 11 is formed.
  • an assembly including the water collecting pipe 21 and the laminated body 22 is obtained.
  • only one separation membrane unit U may be wound around the water collecting pipe 21.
  • the end 12t of the separation membrane 12 in the direction parallel to the longitudinal direction of the water collection pipe 21 is trimmed.
  • the end portion of the laminated body 22 is trimmed.
  • the trimming step may be omitted.
  • a resin material 24a such as an epoxy resin is applied on the end surface 12p of the separation membrane 12 in a direction parallel to the longitudinal direction of the water collection pipe 21 to form a coating layer 24.
  • the coating layer 24 is formed so as to cover the entire end surface 12p of the separation film 12 and the end surface 26p of the adhesive layer 26.
  • the method for forming the coating layer 24 is not particularly limited.
  • the coating layer 24 can be formed by applying the resin material 24a on the end surface 12p of the separation film 12.
  • Examples of the method of applying the resin material 24a include a printing method, a dipping method, a spray method and the like. Since the outlet 13p of the raw water channel (see FIG. 2) is relatively wide, it is easy to prevent the outlet 13p of the raw water channel from being blocked by the resin material 24a, and many coating methods can be adopted. it can.
  • the coating layer 24 can be accurately and selectively formed on the end surface 12p of the separation film 12 and the end surface 26p of the adhesive layer 26.
  • the coating layer 24 is particularly effective when the separation membrane element 10 is an NF membrane element or an RO membrane element.
  • the NF membrane element and the RO membrane element are used, for example, in the production of ultrapure water. It is desirable that ultrapure water does not contain a very small amount of impurities, and for that purpose, it is desirable that there is no very small amount of leakage.
  • Reverse osmosis membranes such as NF membrane and RO membranes are often composite separation membranes having a laminated structure of a support layer and a skin layer.
  • the support layer may be a laminated film of a non-woven fabric and a UF layer.
  • the skin layer is a layer that exhibits a separating function, and is typically made of polyamide.
  • the adhesive 26 a when the adhesive 26 a is applied, the adhesive 26 a impregnates the nonwoven fabric of the separation membrane 12. If the non-woven fabric is not sufficiently impregnated with the adhesive 26 a, a gap that allows the leakage of fine particles may remain between the separation membrane 12 and the adhesive layer 26.
  • the coating layer 24 plays a role of sealing such a minute gap. Therefore, in the spiral wound type membrane element using the composite separation membrane, the benefit of the coating layer 24 can be maximized.
  • the technique of the present invention is useful for a spiral wound type membrane element.
  • the technique of the present invention is particularly useful for a spiral wound type membrane element using a composite separation membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明のスパイラル型膜エレメント10は、集水管21と、集水管21に巻き付けられた分離膜12と、集水管21の長手方向と平行な方向における分離膜12の端面12p上に設けられた被覆層24と、を備えている。被覆層24は、例えば、分離膜12に袋状の構造を付与するために使用された接着剤26の組成と異なる組成の樹脂材料で構成されている。

Description

スパイラル型膜エレメント及びその製造方法
 本発明は、スパイラル型膜エレメント及びその製造方法に関する。
 スパイラル型膜エレメントは、海水の淡水化、純水の製造、廃水処理、油田注入水の製造などを目的としたシステムに使用されている。スパイラル型膜エレメントは、例えば、集水管と、集水管に巻きつけられた膜リーフとを備えている。
 膜リーフは、スペーサ及び複数の分離膜によって構成されている。複数の分離膜は、袋状の形状を有するように外周部分が接着剤によって封止されている。
特開2009-018239号公報
 接着剤による封止が不十分である場合、原水流路から透過水流路へと原水がリークし、阻止率が低下する。封止が不十分な製品は、出荷前の検査で発見することができる。ただし、出荷前の検査で発見できないほど極微量のリークが生じていることもある。
 本発明は、スパイラル型膜エレメントにおける極微量のリークを防ぐための技術を提供することを目的とする。
 本発明は、
 集水管と、
 前記集水管に巻き付けられた分離膜と、
 前記集水管の長手方向と平行な方向における前記分離膜の端面上に設けられた被覆層と、
 を備えた、スパイラル型膜エレメントを提供する。
 別の側面において、本発明は、
 分離膜を集液管に巻き付けることと、
 前記集液管の長手方向に平行な方向における前記分離膜の端面上に被覆層を形成することと、
 を含む、
 スパイラル型膜エレメントの製造方法を提供する。
 本発明によれば、スパイラル型膜エレメントにおける極微量のリークを防ぐことができる。
図1は、本発明の一実施形態に係るスパイラル型膜エレメントの展開斜視図である。 図2は、図1に示すスパイラル型膜エレメントの端部の拡大断面図である。 図3は、集水管の周方向における分離膜の端面を示す分離膜エレメントの斜視図である。 図4Aは、スパイラル型膜エレメントの製造工程を示す図である。 図4Bは、図4Aに続く製造工程を示す図である。 図4Cは、図4Bに続く製造工程を示す図である。 図4Dは、図4Cに続く製造工程を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。
 図1は、本発明の一実施形態に係るスパイラル型膜エレメント10(以下、「分離膜エレメント10」とも称する)を示している。分離膜エレメント10は、集水管21及び積層体22を備えている。積層体22は、集水管21の周囲に配置されている。積層体22の内部に原水流路と透過水流路とが形成されている。集水管21は、積層体22の中心を貫いている。
 原水は、積層体22の一方の端面から分離膜エレメント10の内部に供給され、集水管21の長手方向に平行に原水流路を流れる。分離膜エレメント10において、原水がろ過されて濃縮水と透過水とが生成される。透過水は、集水管21を通じて外部に導かれる。濃縮水は、積層体22の他方の端面から分離膜エレメント10の外部に排出される。
 分離膜エレメント10によって処理(ろ過)されるべき液体としては、水(原水)が挙げられる。本明細書では、簡単のため、液体の代表として「水」の用語を使用する。
 積層体22は、分離膜12、原水スペーサ13及び透過水スペーサ14によって構成されている。分離膜12の端面が積層体22の端面を構成する。積層体22は、詳細には、複数の分離膜12、複数の原水スペーサ13及び複数の透過水スペーサ14によって構成されている。
 複数の分離膜12は、互いに重ね合わされ、袋状の構造を有するように3辺において封止され、集水管21に巻きつけられている。袋状の構造の外部に位置するように、分離膜12と分離膜12との間に原水スペーサ13が配置されている。原水スペーサ13は、分離膜12と分離膜12との間に原水流路としての空間を確保している。袋状の構造の内部に位置するように、分離膜12と分離膜12との間に透過水スペーサ14が配置されている。透過水スペーサ14は、分離膜12と分離膜12との間に透過水流路としての空間を確保している。1対の分離膜12及び透過水スペーサ14によって膜リーフ11が構成されている。透過水流路が集水管21に連通するように、膜リーフ11の開口端が集水管21に接続されている。
 集水管21は、各分離膜12を透過した透過水を集めて分離膜エレメント10の外部に導く役割を担っている。集水管21には、その長手方向に沿って複数の貫通孔21hが所定間隔で設けられている。透過水は、これらの貫通孔21hを通じて集水管21の中に流入する。
 分離膜エレメント10は、分離膜12として、MF膜、UF膜、NF膜又はRO膜を有する。MF膜(Microfiltration membrane)は、0.05~10μm程度の大きさの微粒子及び微生物を液体から分離することを目的とした膜である。UF膜(Ultrafiltration membrane)は、MF膜によって除去することができない大きさの微粒子、及び、1000~300000程度の分子量を有する溶質を液体から分離することを目的とした膜である。RO膜(Reverse Osmosis membrane)は、逆浸透現象によって水を透過水流路に移行させることによって水と溶質とを分離することを目的とした膜である。NF膜(Nanofiltration membrane)は、RO膜の一種であって、Na+及びCl-のような1価イオンを通し、SO4 2-のような多価イオンを阻止する。
 原水スペーサ13及び透過水スペーサ14は、PPS、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)などの樹脂材料で作られた網状の部材である。
 分離膜エレメント10は、積層体22を包囲するシェルを備えていてもよい。シェルは、FRP(fiber reinforced plastic)によって作られていてもよい。積層体22の端面を保護するとともに、積層体22がテレスコピック状に伸張することを防止するために、積層体22の両側に端面部材が配置されていてもよい。
 図2は、分離膜エレメント10の端部の断面を拡大して示している。本実施形態の分離膜エレメント10は、被覆層24をさらに備えている。被覆層24は、集水管21の長手方向と平行な方向における分離膜12の端面12pの上に設けられている。被覆層24は、原水が透過できない性質を持っており、透過水流路への原水の流入を阻止する。被覆層24によって、分離膜エレメント10における極微量のリークを防ぐことができる。
 図2に示すように、分離膜エレメント10の端面は、分離膜12の端面12p、接着剤層26の端面26p、及び、原水流路の出口13pによって構成されている。原水流路は、膜リーフ11と膜リーフ11との間に挟まれた原水スペーサ13によって確保されている。接着剤層26は、分離膜12に袋状の構造を付与するために使用された接着剤の層である。接着剤層26は、詳細には、1対の分離膜12の端部同士を接着している。被覆層24は、分離膜12の端面12p及び接着剤層26の端面26pを被覆している。言い換えれば、被覆層24は、膜リーフ11の端面を被覆している。膜リーフ11の端面は、分離膜12の端面12p及び接着剤層26の端面26pによって構成されている。原水流路の出口13pは、被覆層24によって被覆されておらず、外部に露出している。分離膜12の端面を平面視すると、被覆層24は、螺旋の形状を呈する。分離膜エレメント10が複数の膜リーフ11を有するとき、螺旋の形状の複数の被覆層24が存在しうる。
 分離膜エレメント10における極微量のリークは、分離膜12と接着剤層26との間に形成された隙間が原因で起こると考えられる。被覆層24は、分離膜12と接着剤層26とにまたがって設けられているので、リークの原因となる隙間を被覆層24によって確実に封じることができる。その結果、分離膜エレメント10における極微量のリークを防ぐことができる。
 被覆層24は、例えば、接着剤層26を構成する接着剤の組成と異なる組成の樹脂材料で構成されている。接着剤層26を構成する接着剤は、例えば、ウレタン樹脂接着剤である。被覆層24を構成する樹脂材料は、例えば、エポキシ樹脂である。ウレタン樹脂接着剤は、流動性が低く保持性が高いので、接着剤層26の材料として適している。エポキシ樹脂は、流動性が高く浸透性が高いので、被覆層24の材料として適している。分離膜12と接着剤層26との間の微小な隙間に被覆層24の材料が染み込むことによって、微小な隙間によって引き起こされる微量のリークを防止することができる。本実施形態によれば、各部分に適した材料を選択して採用することができる。
 あるいは、被覆層24は、接着剤層26を構成する接着剤の組成と同一の組成の樹脂材料(接着剤)によって構成されていてもよい。この場合、コスト低減の効果が見込まれる。
 被覆層24の厚さも特に限定されない。被覆層24の厚さは、例えば、1~1000μmである。被覆層24の厚さは、マイクロメータによる任意の複数点(例えば5点)での測定値の平均値でありうる。
 図3は、集水管21の周方向における分離膜12の端面12qを示している。本実施形態において、被覆層24は、集水管21の長手方向と平行な方向における分離膜エレメント10の両端面のそれぞれにのみ設けられている。集水管21の周方向における分離膜12の端面12q(集水管21の周方向における膜リーフ11の端面)は外部に露出している。集水管21の周方向における分離膜12の端面12qは、通常、シェルによって被覆されているので、原水の流れに晒される可能性は低く、リークの発生箇所となる可能性も低い。一方、集水管21の周方向における分離膜12の端面12qから被覆層24を省略することによって、製造工程を簡素化できる。
 後述するように、集水管21の長手方向と平行な方向における分離膜エレメント10の両端部にトリミングが施されている場合、リークの原因となる微小な隙間がトリミングによって形成される可能性もある。集水管21の長手方向と平行な方向における分離膜エレメント10の両端面のそれぞれに被覆層24が設けられていると、リークの原因となる微小な隙間がトリミング工程で発生したとしても、そのような微小な隙間を被覆層24によって確実に封じることができる。
 もちろん、集水管21の周方向における分離膜12の端面12qの上にも被覆層24が設けられていてもよい。この場合、集水管21の周方向における分離膜12の端面12qがリークの発生箇所となることも防止できる。
 次に、図4A~図4Dを参照して分離膜エレメント10の製造方法を説明する。
 まず、図4A及び図4Bに示すように、分離膜12、原水スペーサ13及び透過水スペーサ14を集水管21に巻き付ける。詳細には、図4Aに示すように、2つに折り畳まれた分離膜12の間に原水スペーサ13を配置し、分離膜12の上に透過水スペーサ14を配置する。さらに、透過水スペーサ14の外周部の3辺に接着剤26aを塗布する。これにより、分離膜ユニットUが得られる。接着剤26aは、この時点では、未硬化の状態である。図4Bに示すように、複数(例えば4つ)の分離膜ユニットUを集水管21に巻き付ける。集水管21に分離膜ユニットUが巻き付けられたのち、接着剤26aが硬化して接着剤層26が形成されるとともに、袋状の膜リーフ11が形成される。これにより、集水管21及び積層体22を含む組立体が得られる。なお、分離膜ユニットUを1つのみ集水管21に巻き付けることもある。
 分離膜12を集水管21に巻き付けたのち、図4Cに示すように、集水管21の長手方向に平行な方向における分離膜12の端部12tをトリミングする。言い換えれば、積層体22の端部をトリミングする。これにより、集水管21及び積層体22を含む組立体の端面を平滑に仕上げることができる。トリミングの工程は省略されることもある。
 その後、図4Dに示すように、集水管21の長手方向に平行な方向における分離膜12の端面12pの上にエポキシ樹脂などの樹脂材料24aを塗布して被覆層24を形成する。詳細には、分離膜12の端面12p及び接着剤層26の端面26pの全体を被覆するように被覆層24を形成する。これにより、本実施形態のスパイラル型膜エレメント10が得られる。
 被覆層24を形成する方法は特に限定されない。例えば、分離膜12の端面12pの上に樹脂材料24aを塗布することによって被覆層24を形成することができる。樹脂材料24aを塗布する方法としては、印刷法、ディッピング法、スプレー法などが挙げられる。原水流路の出口13p(図2参照)の幅は比較的広いので、原水流路の出口13pが樹脂材料24aによって塞がらないようにすることは容易であり、多くの塗布方法を採用することができる。
 例えば、スクリーン28を用いたスクリーン印刷法によれば、分離膜12の端面12p及び接着剤層26の端面26pの上に正確かつ選択的に被覆層24を形成できる。
 被覆層24は、分離膜エレメント10がNF膜エレメント又はRO膜エレメントであるときに特に効果を発揮する。NF膜エレメント及びRO膜エレメントは、例えば、超純水の製造に使用される。超純水には極微量の不純物も含まれていないことが望ましく、そのためには、極微量のリークも無いことが望ましい。
 NF膜及びRO膜など逆浸透膜の構造も極微量のリークに関与している。NF膜及びRO膜など逆浸透膜は、支持層とスキン層との積層構造を有する複合分離膜であることが多い。支持層は、不織布とUF層との積層膜でありうる。スキン層は、分離機能を発揮する層であり、典型的には、ポリアミドによって構成されている。
 図4Aを参照して説明したように、接着剤26aを塗布したとき、接着剤26aは、分離膜12の不織布に含浸する。不織布への接着剤26aの含浸が不十分である場合、微粒子のリークを許容する隙間が分離膜12と接着剤層26との間に残る可能性がある。被覆層24は、そのような微小な隙間を封じる役割を果たす。したがって、複合分離膜を用いたスパイラル型膜エレメントにおいて、被覆層24による利益を最大限に得られる。
 本発明の技術は、スパイラル型膜エレメントに有用である。本発明の技術は、特に、複合分離膜を用いたスパイラル型膜エレメントに有用である。

Claims (7)

  1.  集液管と、
     前記集液管に巻き付けられた分離膜と、
     前記集液管の長手方向と平行な方向における前記分離膜の端面上に設けられた被覆層と、
     を備えた、スパイラル型膜エレメント。
  2.  前記被覆層は、前記分離膜に袋状の構造を付与するために使用された接着剤の組成と異なる組成の樹脂材料で構成されている、請求項1に記載のスパイラル型膜エレメント。
  3.  前記接着剤がウレタン樹脂接着剤であり、
     前記被覆層を構成する前記樹脂材料がエポキシ樹脂である、請求項2に記載のスパイラル型膜エレメント。
  4.  前記集液管の周方向における前記分離膜の端面は外部に露出している、請求項1から3のいずれか1項に記載のスパイラル型膜エレメント。
  5.  分離膜を集液管に巻き付けることと、
     前記集液管の長手方向に平行な方向における前記分離膜の端面上に被覆層を形成することと、
     を含む、
     スパイラル型膜エレメントの製造方法。
  6.  前記分離膜を前記集液管に巻き付けたのち、前記集液管の長手方向に平行な方向における前記分離膜の端部をトリミングすることをさらに含む、請求項5に記載のスパイラル型膜エレメントの製造方法。
  7.  前記分離膜の端面上に樹脂材料を塗布することによって前記被覆層を形成する、請求項5又は6に記載のスパイラル型膜エレメントの製造方法。
PCT/JP2019/047509 2019-01-18 2019-12-04 スパイラル型膜エレメント及びその製造方法 WO2020149041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007264A JP7302973B2 (ja) 2019-01-18 2019-01-18 スパイラル型膜エレメント及びその製造方法
JP2019-007264 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020149041A1 true WO2020149041A1 (ja) 2020-07-23

Family

ID=71614356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047509 WO2020149041A1 (ja) 2019-01-18 2019-12-04 スパイラル型膜エレメント及びその製造方法

Country Status (2)

Country Link
JP (1) JP7302973B2 (ja)
WO (1) WO2020149041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203136A1 (ja) * 2023-03-24 2024-10-03 日東電工株式会社 膜分離装置用封止材料及び膜分離装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103516A (ja) * 2003-10-02 2005-04-21 Nitto Denko Corp スパイラル型膜エレメント及びその製造方法
JP2006068644A (ja) * 2004-09-02 2006-03-16 Nitto Denko Corp スパイラル型逆浸透膜エレメント、その製造方法およびその使用方法
WO2012133153A1 (ja) * 2011-03-29 2012-10-04 東レ株式会社 スパイラル型分離膜エレメントおよびその製造方法
JP2014140837A (ja) * 2012-12-26 2014-08-07 Toray Ind Inc 分離膜エレメント
JP2015110220A (ja) * 2013-10-31 2015-06-18 東レ株式会社 スパイラル型分離膜エレメントおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103516A (ja) * 2003-10-02 2005-04-21 Nitto Denko Corp スパイラル型膜エレメント及びその製造方法
JP2006068644A (ja) * 2004-09-02 2006-03-16 Nitto Denko Corp スパイラル型逆浸透膜エレメント、その製造方法およびその使用方法
WO2012133153A1 (ja) * 2011-03-29 2012-10-04 東レ株式会社 スパイラル型分離膜エレメントおよびその製造方法
JP2014140837A (ja) * 2012-12-26 2014-08-07 Toray Ind Inc 分離膜エレメント
JP2015110220A (ja) * 2013-10-31 2015-06-18 東レ株式会社 スパイラル型分離膜エレメントおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203136A1 (ja) * 2023-03-24 2024-10-03 日東電工株式会社 膜分離装置用封止材料及び膜分離装置

Also Published As

Publication number Publication date
JP2020116484A (ja) 2020-08-06
JP7302973B2 (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
US5460720A (en) Pleated membrane crossflow fluid separation device
CN103167902B (zh) 膜分离模块
KR101593341B1 (ko) 스파이럴형 분리막 엘리먼트용 단부재, 스파이럴형 분리막 엘리먼트 및 분리막 모듈
JP2012505748A (ja) 螺旋状に巻かれた膜セパレータアセンブリ
TWI584869B (zh) 用於雙向直接滲透之裝置及方法
CN102481522A (zh) 包含具有毛细管通道的膜片材的过滤组件
US10358366B2 (en) Spiral wound filtration assembly including integral bioreactor
US9095820B2 (en) Filtration system having fluid couplings
CN108697973A (zh) 多叶膜组件及其制造方法
ES2653858T3 (es) Módulo de filtro y sistema con filtros de membrana enrollados en forma de espiral
WO2011058778A1 (ja) 分離膜ユニット及びこれを備えた分離膜エレメント
US20190388839A1 (en) Spiral wound membrane rolls and modules
WO2020149041A1 (ja) スパイラル型膜エレメント及びその製造方法
JP2015107483A (ja) 螺旋流水処理装置
AU2016218454A1 (en) Submerged hyperfiltration system
CN106413863A (zh) 具有集成式渗透物流量控制器的螺旋卷绕组件
EP2790818A1 (en) Multi-pass hyperfiltration system
CN207929012U (zh) 一种卷式过滤膜组件
WO2000027511A1 (en) High flow high recovery spirally wound filtration element
KR20210118869A (ko) 복합막
JP2017080709A (ja) 分離膜エレメント
US20160151743A1 (en) Potted flat sheet membrane filtration module
WO2017070775A1 (en) Potted flat sheet membrane filtration module
JPH04247223A (ja) 中空糸膜モジュール
JP2016144795A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910547

Country of ref document: EP

Kind code of ref document: A1