[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020140587A1 - 马达驱动信号生成方法、电子设备及存储介质 - Google Patents

马达驱动信号生成方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2020140587A1
WO2020140587A1 PCT/CN2019/113828 CN2019113828W WO2020140587A1 WO 2020140587 A1 WO2020140587 A1 WO 2020140587A1 CN 2019113828 W CN2019113828 W CN 2019113828W WO 2020140587 A1 WO2020140587 A1 WO 2020140587A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
motor drive
motor
drive signal
constant
Prior art date
Application number
PCT/CN2019/113828
Other languages
English (en)
French (fr)
Inventor
邓瀚林
路翔
郑亚军
王修越
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020140587A1 publication Critical patent/WO2020140587A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • Embodiments of the present application relate to the technical field of electronic devices, and in particular, to a motor driving signal generation method that provides tactile feedback, an electronic device, and a storage medium.
  • the specially designed electrical signal of the waveform can be used to drive the linear motor to complete the vibration that meets the haptic strength requirements within the specified time. Due to the short duration, usually a few milliseconds to a dozen milliseconds, the electrical signal that drives the motor is also called a short signal.
  • a short signal can be divided into two sections in function. The function of the first section is to drive the motor to increase the vibration intensity from zero level to the level required by the tactile strength in the shortest possible time; the function of the second section is to drive the motor Reduce the vibration intensity from the peak level to zero level in the shortest possible time. Therefore, the first segment of the short signal is called the acceleration segment, and the second segment of the short signal is called the braking segment.
  • short signals can achieve a simple and concentrated tactile effect.
  • Relevant research and experiments have shown that in such application scenarios, users can experience a simple and concentrated tactile effect, the reason is that the short-signal brake segment reduces the vibration intensity from the peak level with a high efficiency in a short time Reduced to zero level. Therefore, efficiently and quickly reducing the vibration intensity has become the only way to design the short signal brake section.
  • the inventor found that there are at least the following problems in the prior art: the tactile experience test in application scenarios such as games and car central control screens found that the existing short signal brake segment design does not provide users with the expected low frequency well Heavy touch effect.
  • the purpose of the embodiments of the present application is to provide a method for generating a motor drive signal, an electronic device, and a storage medium, which achieve a low-frequency heavy haptic effect when controlling the vibration of a motor, and improve the specific haptic effect in application scenarios such as games and car central control screens Fidelity.
  • the embodiments of the present application provide a method for generating a motor drive signal, which obtains an acceleration section signal for driving a motor to start vibration, a constant section signal for achieving a haptic effect of low-frequency vibration of a motor, and a
  • the frequency of the attenuation section of the motor to reduce the amount of vibration of the motor, the frequency of the constant section signal and the attenuation section signal are less than the acceleration section signal; splice the acceleration section signal with the constant section signal, and reserve no signal output between the brake section and the constant section
  • the first motor drive signal is obtained; the constant section signal parameters of the first motor drive signal are adjusted according to the vibration sensing requirements, and the attenuation section signal is spliced after the adjusted first motor drive signal to obtain the second motor drive signal Adjust the attenuation signal parameters of the second motor drive signal to obtain the second motor drive signal with the highest brake efficiency, and determine the second motor drive signal with the highest brake efficiency as the final motor drive signal.
  • An embodiment of the present application also provides an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, and the instructions are at least One processor executes to enable at least one processor to execute the above-mentioned motor driving signal generating method.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the motor driving signal generation method described above is implemented.
  • the embodiment of the present application provides a method for generating a motor drive signal, which introduces a constant-segment signal with a frequency less than that of the acceleration section signal after the acceleration section signal, and reserves no signal between the two During the silent period of the output, after the constant section signal, the attenuation section signal whose splicing frequency is less than the acceleration section signal frequency, and adjust the spliced signal parameters, so that the generated motor drive signal can use the acceleration section signal to drive the motor to vibrate, because the constant section
  • the signal makes the motor continue to vibrate at a constant low frequency, so that the motor continues to produce a sense of vibration; the attenuation section signal causes the motor to gradually reduce the amount of vibration at low frequency, so that the motor produces a heavy low-frequency tactile effect. Therefore, the constant section signal after the quiet period is used Drive the motor with the attenuation signal to achieve a thick low-frequency haptic effect, which improves the fidelity of specific haptic effects in scenes such as games and car
  • the step of adjusting the constant segment signal parameters of the first motor drive signal according to the vibration sensing requirement specifically includes: obtaining the preset vibration duration and the preset vibration intensity according to the vibration sensing demand; determining the preset vibration duration as the constant segment signal duration , Determine the preset vibration intensity as the amplitude of the constant segment signal.
  • the realization method of determining the constant segment signal parameters is given.
  • the constant segment signal is a sinusoidal signal with a fixed frequency.
  • the constant segment signal is defined as a sinusoidal signal with a fixed frequency, so that no sudden change in the waveform signal occurs between the acceleration segment signal and the constant segment signal, thereby avoiding the vibration and tactile sensation of the low-frequency signal.
  • the duration of the constant segment signal is an integer multiple of the half period of the constant segment signal.
  • the duration of the constant segment signal is guaranteed to be an integer multiple of the half period of the constant segment signal, which further prevents the waveform of the motor drive signal from abruptly changing.
  • the method further includes: adjusting the length of the silent period so that the constant segment signal The peak-to-peak value of the motor vibration waveform after input to the motor is smaller than the peak-to-peak value of the motor vibration waveform after inputting the acceleration signal to the motor.
  • the length of the silent period by adjusting the length of the silent period, the amount of vibration of the motor when the constant segment signal is input is smaller than the amount of the motor vibration when the acceleration segment signal is input, to ensure that the amplitude generated by the motor in the latter stage of the drive signal is less than the amplitude when the motor starts.
  • the step of adjusting the attenuation signal parameters of the second motor driving signal to obtain the second motor driving signal with the highest braking efficiency, and determining the second motor driving signal with the highest braking efficiency as the final motor driving signal includes: changing the attenuation At least one of the duration, attenuation strength, and initial amplitude of the segment signal to form multiple different attenuation segment signals; obtain the braking efficiency of the second motor drive signal with multiple different attenuation segment signals; maximize the braking efficiency
  • the second motor drive signal is determined as the final motor drive signal.
  • the frequency of the constant section signal is fixed; the duration of the attenuation section signal is an integer multiple of the half period of the constant section signal.
  • the duration of the attenuation signal is an integer multiple of the constant frequency signal at a fixed frequency. Therefore, there will be no sudden changes in the waveform between the constant signal and the attenuation signal, which will not cause drastic changes in the drive signal. Thereby improving the user's tactile experience.
  • the frequency of the constant section signal and the frequency of the attenuation section signal are both less than 120 Hz. To achieve low-frequency effects.
  • the beneficial effect of the present application is that, compared with the prior art, the embodiments of the present application provide a method for generating a motor drive signal, which introduces, after the acceleration section signal, a constant section signal whose frequency is less than that of the acceleration section signal, and There is a silent period for no signal output between the two, after the constant segment signal, the attenuation signal of the splicing frequency is less than the acceleration segment signal frequency, and the spliced signal parameters are adjusted, so that the generated motor drive signal can be driven by the acceleration segment signal
  • the motor starts to vibrate, because the constant segment signal makes the motor continue to vibrate at a constant low frequency, so that the motor continues to produce a sense of vibration; and the attenuation segment signal causes the motor to gradually reduce the amount of vibration in low frequency mode, so that the motor produces a low-frequency heavy tactile effect, so use
  • the constant segment signal and the attenuation segment signal drive the motor to achieve a low-frequency heavy haptic effect, which improves the fidelity of the specific
  • Figure 1 is a schematic diagram of a motor brake signal according to the prior art
  • FIG. 2 is a schematic flowchart of a motor driving signal generation method according to the first embodiment of the present application
  • FIG. 3 is a schematic flowchart of a motor driving signal generation method according to a second embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to a third embodiment of the present application.
  • the design of the brake section in the existing short signal does not provide users with the expected low-frequency heavy haptic effect well, and cannot achieve the specific haptic effect in games, cars and other scenes.
  • the inventor broke through the existing ideas of the design of the brake section in the short signal, the brake in the short signal
  • the segment signal is replaced by a low-frequency driving signal composed of a constant segment signal and an attenuation segment signal.
  • the constant-frequency signal drives the motor at low frequency and continues to vibrate, the amplitude of the attenuation segment signal remains unchanged, so the motor continues to produce low-frequency vibration sensation; when the attenuation segment
  • the signal drives the motor, the amplitude of the signal in the attenuation section gradually becomes smaller. Therefore, the motor vibrates at a low frequency and gradually reduces the vibration amplitude until the vibration of the motor stops, thereby realizing a low-frequency heavy tactile effect.
  • the first embodiment of the present application designs a method for generating a motor drive signal.
  • the core of the embodiments of the present application is to provide a method for generating a motor drive signal, which obtains an acceleration section signal for driving a motor to start vibration, a constant section signal for achieving a low-frequency vibration haptic effect of a motor, and a low-frequency reduction
  • the frequency of the attenuation section signal of the motor vibration amount, the frequency of the constant section signal and the attenuation section signal are less than the acceleration section signal; the acceleration section signal and the constant section signal are spliced, and the silent period with no signal output is reserved between the braking section and the constant section
  • the embodiment of the present application introduces a constant section signal with a frequency lower than the acceleration section signal frequency after the acceleration section signal, and reserves a silent period between the two without signal output.
  • the splicing frequency is less than the acceleration section signal frequency.
  • the constant segment signal causes the motor to continuously vibrate at a constant low frequency, the motor continues to produce a sense of vibration; and the attenuation segment
  • the signal causes the motor to gradually reduce the amount of vibration at a low frequency, so that the motor produces a heavy low-frequency haptic effect. Therefore, the constant segment signal and the attenuation segment signal after the quiet period are used to drive the motor to achieve a low-frequency heavy haptic effect, which improves games and cars.
  • the fidelity of specific tactile effects in scenes such as the central control screen.
  • FIG. 2 The specific flow diagram of the method for generating a motor drive signal in this embodiment is shown in FIG. 2:
  • Step 101 Obtain an acceleration section signal for driving the motor to vibrate, a constant section signal for realizing the haptic effect of low-frequency vibration of the motor, and an attenuation section signal for reducing the amount of vibration of the motor in a low-frequency manner.
  • the so-called constant segment signal is a signal with a constant envelope (also called: envelope constant segment signal), which is used to make the motor continue to vibrate at a constant low frequency, so that the motor continues to produce a vibration sensation;
  • the so-called attenuation segment signal is that the envelope gradually attenuates
  • the signal also called: envelope attenuation section signal
  • the linear motor can be driven to bring different low-frequency haptics to the user.
  • the frequency of the envelope constant section signal and the envelope attenuation section signal are both less than 120 Hz, so as to drive the motor to achieve a low-frequency vibration effect.
  • the frequency of the envelope attenuation section signal and the envelope constant section signal may be the same, or may be set to be different from each other according to different users' needs for low-frequency haptics.
  • Step 102 Splice the acceleration section signal with the constant section signal, and reserve a silent period between the acceleration section and the constant section with no signal output to obtain the first motor drive signal.
  • Step 103 Adjust the constant signal parameter of the first motor drive signal according to the vibration sensing requirement.
  • the step of adjusting the constant segment signal parameters of the first motor drive signal according to the vibration sensing requirement specifically includes: acquiring the preset vibration duration and the preset vibration intensity according to the vibration sensing requirement; and determining the preset vibration duration as the constant segment signal Duration, the preset vibration intensity is determined as the amplitude of the constant segment signal.
  • the so-called vibration demand refers to the duration and intensity of low-frequency vibration of the user in a specific scene.
  • the user's vibration demand is not the same .
  • the user's requirements for the duration and intensity of low-frequency vibration are also different, so in practice, the user can preset the corresponding preset vibration duration and preset vibration intensity in different scenarios; the so-called preset vibration duration can be based on Different users need to set the duration of low-frequency vibration.
  • the so-called preset vibration intensity is set according to the different needs of different users for low-frequency vibration intensity.
  • the method provided in this embodiment directly obtains the preset vibration duration and the preset vibration intensity in the scene when adjusting the parameters of the first motor driving signal, and determines the preset vibration duration as the duration of the envelope constant segment signal,
  • the preset vibration intensity is determined as the amplitude of the constant envelope signal to meet the personalized needs of the user.
  • the duration of the constant segment signal may be determined according to the preset vibration duration, the amplitude of the constant segment signal may be determined according to the preset vibration intensity, and then the enveloped constant segment signal with the determined parameters and the The signals of the acceleration section are spliced together.
  • the constant envelope signal is a sinusoidal signal with a fixed frequency. Since the signal value of the acceleration section signal returns to zero at the end, there is no signal output in the silent section. If the constant envelope signal is not a sinusoidal signal, then It will cause abrupt changes in the waveform signal from the acceleration section signal to the envelope constant section signal, thereby affecting the vibration and tactile feel of the low-frequency signal.
  • the constant envelope signal is expressed by formula (1):
  • the value range of the time variable t is 0 to T_constant
  • T_constant is the duration of the envelope constant segment signal
  • A_constant is the amplitude of the envelope constant segment signal
  • PI is the pi
  • Fc is the frequency of the sinusoidal signal.
  • the duration of the envelope constant segment signal is an integral multiple of the half period of the envelope constant segment signal, that is, T_constant is an integer multiple of the half period of the sinusoidal signal, which can further prevent the waveform from abruptly changing.
  • Step 104 Splice the attenuation section signal after the adjusted first motor drive signal to obtain a second motor drive signal.
  • Step 105 Adjust the attenuation parameter of the second motor drive signal to obtain the second motor drive signal with the highest braking efficiency.
  • the motor driving signal with the highest braking efficiency refers to the motor driving signal when the adjustment of the touch energy from the second motor driving signal provides the vibration haptic effect most in line with the user's expectation.
  • Step 106 Determine the second motor driving signal with the highest braking efficiency as the final motor driving signal.
  • the so-called “attenuation signal parameter of the second motor drive signal” in step 105 refers to adjusting the duration, attenuation intensity, or initial amplitude of the envelope attenuation signal.
  • the adjustment in this embodiment refers to changing at least one of the duration, attenuation strength, and initial amplitude of the envelope attenuation section signal to form a plurality of different envelope attenuation section signals.
  • the so-called "determining the second motor driving signal with the highest braking efficiency as the final motor driving signal” in step 106 specifically refers to changing at least one of the duration, attenuation strength and initial amplitude of the envelope attenuation section signal , To form multiple different envelope attenuation section signals; obtain the braking efficiency of the second motor drive signal with multiple different envelope attenuation section signals; determine the second motor drive signal with the highest braking efficiency as the final motor drive signal.
  • the signal of the envelope attenuation section can be expressed by formula (2):
  • T_decay is the duration of the envelope attenuation section signal
  • A_decay is the initial amplitude of the envelope attenuation section signal
  • C_decay is the signal attenuation strength of the envelope attenuation section.
  • envelope attenuation section signal replaces the initial envelope attenuation section signal in the second motor drive signal, so that the replaced motor drive signal with the envelope attenuation section signal with the highest braking efficiency is used as the final motor drive signal.
  • the braking efficiency is the ratio of the initial braking speed of the motor to the elapsed time.
  • the conditions for determining the completion of the motor brake are not limited. Since the motor is absolutely stationary, the value of the vibration intensity of the motor that cannot be noticed by the user and can be ignored can be used as a complete judgment mark of the motor brake.
  • the motor vibration intensity value that cannot be noticed by the user and can be ignored is defined as the residual vibration intensity of the motor Gres.
  • Gres the residual vibration intensity of the motor during the braking process
  • the vibration intensity is very weak and the user feels not At this point, it can be regarded as the completion of braking.
  • Motor residual vibration intensity Gres can be determined by collecting and analyzing a large number of user's perception data, or can be set by the user, and then use this to calculate and input multiple different envelope attenuation segment signals into the motor respectively The braking efficiency of the motor makes the calculated braking efficiency more in line with the actual situation.
  • the user can set the remaining vibration intensity Gres of the motor according to his subjective experience and sensitivity. If the user is not sensitive to the remaining vibration intensity, then Gres can set a relatively large value, otherwise, Gres should set a relatively small value.
  • the duration of the envelope attenuation section signal is an integer multiple of the fixed frequency envelope constant section signal, therefore, no waveform between the envelope constant section signal and the envelope attenuation section signal Sudden changes will not cause drastic changes in the driving signal, thereby improving the user's tactile experience.
  • the embodiment of the present application introduces a constant section signal with a frequency lower than the acceleration section signal after the acceleration section signal, and a silent period with no signal output is reserved between the two, after the constant section signal
  • the splicing frequency is less than the attenuation section signal of the acceleration section signal frequency, and the spliced signal parameters are adjusted, so that the generated motor drive signal can use the acceleration section signal to drive the motor to oscillate.
  • the constant section signal causes the motor to continuously vibrate at a constant low frequency, making The motor continues to produce a sense of vibration; the attenuation section signal causes the motor to gradually reduce the amount of vibration in a low-frequency manner, so that the motor produces a heavy low-frequency haptic effect. Therefore, the constant section signal and the attenuation section signal after the silent period are used to drive the motor to achieve low-frequency heavy
  • the tactile effect improves the fidelity of specific tactile effects in scenes such as games and car central control screens.
  • the second embodiment of the present application relates to a motor drive signal generation method.
  • the second embodiment is an improvement on the first embodiment.
  • the main improvement is that, by adjusting the length of the silent period, the amount of motor vibration when a constant segment signal is input is smaller than the amount of motor vibration when an acceleration segment signal is input, which further improves The fidelity of specific tactile effects in games, cars and other scenes.
  • FIG. 3 The specific flowchart of the method for generating a motor driving signal in this embodiment is shown in FIG. 3, and specifically includes:
  • Step 201 Obtain an acceleration section signal for driving the motor to vibrate, a constant section signal for realizing the haptic effect of low-frequency vibration of the motor, and an attenuation section signal for reducing the amount of vibration of the motor in a low-frequency manner.
  • Step 202 Splice the acceleration section signal with the constant section signal, and reserve a silent period between the acceleration section and the constant section with no signal output to obtain the first motor drive signal.
  • Step 203 Adjust the constant signal parameter of the first motor drive signal according to the vibration sensing requirement.
  • steps 201 to 203 are substantially the same as steps 101 to 103 in the first embodiment, and will not be repeated here.
  • Step 204 Adjust the duration of the quiet period so that the peak-to-peak value of the motor vibration waveform after the constant segment signal is input to the motor is smaller than the peak-to-peak value of the motor vibration waveform after the acceleration segment signal is input to the motor.
  • the method further includes: adjusting the length of the silent period so that the packet The peak-to-peak value of the motor vibration waveform M2 after the constant segment signal is input to the motor is smaller than the peak-to-peak value M1 of the motor vibration waveform after the acceleration segment signal is input to the motor.
  • the length of the silent period by adjusting the length of the silent period, the amount of motor vibration when the envelope constant signal is input is smaller than the amount of motor vibration when the acceleration signal is input, thereby further improving the specific haptic effect in games, car central control screens, etc. Fidelity.
  • Step 205 Splice the attenuation section signal after the adjusted first motor drive signal to obtain a second motor drive signal.
  • Step 206 Adjust the attenuation signal parameters of the second motor drive signal to obtain the second motor drive signal with the highest braking efficiency.
  • Step 207 Determine the second motor driving signal with the highest braking efficiency as the final motor driving signal.
  • steps 204 to 207 are substantially the same as the steps 103 to 106 in the first embodiment, and will not be repeated here.
  • the embodiment of the present application provides a motor driving method.
  • the attenuation section signal is spliced on the adjusted first motor driving signal Previously, it also included adjusting the length of the silent period so that the peak-to-peak value of the motor vibration waveform after the constant segment signal is input to the motor is smaller than the peak-to-peak value of the motor vibration waveform after the acceleration segment signal is input to the motor.
  • the length of the silent period By adjusting the length of the silent period, the amount of motor vibration when a constant segment signal is input is smaller than the amount of motor vibration when an acceleration segment signal is input, thereby further improving the fidelity of specific tactile effects in scenes such as games and car central control screens.
  • the third embodiment of the present application relates to an electronic device, as shown in FIG. 4, including at least one processor 301; and, a memory 302 communicatively connected to the at least one processor 301; wherein the memory 302 stores at least one processor Instructions executed by the processor 301, the instructions are executed by at least one processor 301, so that the at least one processor 301 can execute the motor driving signal generation method described above.
  • the bus may include any number of interconnected buses and bridges.
  • the bus connects one or more processors and various circuits of the memory 302 together.
  • the bus can also connect various other circuits such as peripheral devices, voltage regulators and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface between the bus and the transceiver.
  • the transceiver can be a single element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on the transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna. Further, the antenna also receives the data and transmits the data to the processor 301.
  • the processor 301 is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interfaces,
  • the memory 302 may be used to store data used by the processor when performing operations.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the motor driving signal generation method described above is implemented.
  • a program which is stored in a storage medium and includes several instructions to make a device ( It may be a single chip microcomputer, a chip, etc.) or a processor (processor) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic discs or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种马达驱动信号生成方法,涉及电子设备技术领域,包括:获取加速段信号、恒定段信号和衰减段信号(101),恒定段信号和衰减段信号的频率均小于加速段信号;将加速段信号与恒定段信号拼接,并在加速段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号(102);根据振感需求调整第一马达驱动信号的恒定段信号参数(103),并将衰减段信号拼接在调整后的第一马达驱动信号后,得到第二马达驱动信号(104);调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号(105),将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号(106)。该方法使得控制马达振动时能够实现低频厚重的触感效果,从而提高游戏、汽车中控屏等场景中特定触感效果的逼真度。

Description

马达驱动信号生成方法、电子设备及存储介质 技术领域
本申请实施例涉及电子设备技术领域,特别涉及一种提供触感反馈的马达驱动信号生成方法、电子设备和存储介质。
背景技术
波形经过特殊设计的电信号,可以用来驱动线性马达在规定的时间内完成达到触感强度要求的振动。由于持续时间较短,通常是几毫秒至十几毫秒,这种驱动马达的电信号也被叫做短信号。一个短信号在功能上可以被分为两段,第一段的功能是驱动马达在尽可能短的时间内将振动强度从零水平提升到触感强度要求的水平;第二段的功能是驱动马达在尽可能短的时间内将振动强度从峰值水平降低到零水平。因此,短信号的第一段叫做加速段,短信号的第二段叫做刹车段。
在手机的虚拟Home键或一些APP操作之类的应用场景中,短信号能够实现干脆、集中的触感效果。相关的研究和实验表明,此类应用场景中能够让用户体会到干脆、集中的触感效果,其原因在于,短信号的刹车段在较短的时间内以很高的效率将振动强度从峰值水平降低到零水平。因此,高效、快速地降低振动强度成为了短信号刹车段设计的唯一思路。
技术问题
然而,发明人发现现有技术中至少存在如下问题:在游戏、汽车中控屏等应用场景中的触感体验测试发现,现有的短信号刹车段设计并不能很好地给用户提供预期的低频厚重的触感效果。
技术解决方案
本申请实施方式的目的在于提供一种马达驱动信号生成方法、电子设备和存储介质,在控制马达振动时实现了低频厚重的触感效果,提高了游戏、汽车中控屏等应用场景中特定触感效果的逼真度。
为解决上述技术问题,本申请的实施方式提供了一种马达驱动信号生成方法,获取用于驱动马达起振的加速段信号、用于实现马达低频振动触感效果的恒定段信号和用于以低频方式减小马达振动量的衰减段信号,恒定段信号和衰减段信号的频率均小于加速段信号;将加速段信号与恒定段信号拼接,并在刹车段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号;根据振感需求调整第一马达驱动信号的恒定段信号参数,并将衰减段信号拼接在调整后的第一马达驱动信号之后,得到第二马达驱动信号;调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号,将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
本申请的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述的马达驱动信号生成方法。
本申请的实施方式还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实上述马达驱动信号生成方法。
本申请实施方式相对于现有技术而言,提供了一种马达驱动信号生成方法,其在加速段信号后引入频率小于加速段信号频率的恒定段信号、并在二者之间预留无信号输出的静默期,在恒定段信号后拼接频率小于加速段信号频率的衰减段信号、并调整拼接后的信号参数,从而使得生成的马达驱动信号能够利用加速段信号驱动马达起振,由于恒定段信号使马达以恒定低频持续振动,使得马达持续产生震感;而衰减段信号使马达以低频方式逐渐减小振动量,以使马达产生低频厚重的触感效果,因此,利用静默期后的恒定段信号和衰减段信号驱动马达实现低频厚重的触感效果,提高了游戏、汽车中控屏等场景下特定触感效果的逼真度。
另外,根据振感需求调整第一马达驱动信号的恒定段信号参数的步骤,具体包括:根据振感需求获取预设振动时长和预设振动强度;将预设振动时长确定为恒定段信号的时长,将预设振动强度确定为恒定段信号的幅值。该方案中给出了确定恒定段信号参数的实现方式。
另外,恒定段信号为频率固定的正弦信号。该方案中限定恒定段信号为频率固定的正弦信号,使得在加速段信号到恒定段信号之间不会出现波形信号的突变,从而避免影响低频信号的振动触感。
    另外,恒定段信号的时长为恒定段信号的半个周期的整数倍。该方案中确保恒定段信号的时长为恒定段信号的半个周期的整数倍,进一步防止马达驱动信号的波形出现突变。
另外,在根据振感需求调整第一马达驱动信号的恒定段信号参数之后,在将衰减段信号拼接在调整后的第一马达驱动信号之前,还包括:调整静默期的时长,使得恒定段信号输入马达后的马达振动波形峰峰值小于将加速段信号输入马达后的马达振动波形峰峰值。该方案中通过调整静默期的时长,使得输入恒定段信号时的马达振动量小于输入加速段信号时的马达振动量,确保马达在驱动信号后段产生的振幅小于马达起振时的振幅,进一步提高了游戏、汽车中控屏等场景下低频触感效果的逼真度。
另外,调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号,将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号的步骤,具体包括:改变衰减段信号的时长、衰减强度及初始幅值中的至少一者,以形成多个不同的衰减段信号;获取具有多个不同的衰减段信号的第二马达驱动信号的刹车效率;将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。该方案中给出了第二马达驱动信号的衰减段信号参数的一种实现方式。
另外,恒定段信号频率固定;衰减段信号的时长为恒定段信号的半个周期的整数倍。该方案中衰减段信号的时长为固定频率的恒定段信号的整数倍,因此,在恒定段信号和衰减段信号之间不会出现波形的突变,也就并不会导致驱动信号出现剧烈变化,从而提高用户的触感体验。
另外,恒定段信号的频率和衰减段信号的频率均小于120赫兹。实现低频效果。
有益效果
本申请的有益效果在于:本申请实施方式相对于现有技术而言,提供了一种马达驱动信号生成方法,其在加速段信号后引入频率小于加速段信号频率的恒定段信号、并在二者之间预留无信号输出的静默期,在恒定段信号后拼接频率小于加速段信号频率的衰减段信号、并调整拼接后的信号参数,从而使得生成的马达驱动信号能够利用加速段信号驱动马达起振,由于恒定段信号使马达以恒定低频持续振动,使得马达持续产生震感;而衰减段信号使马达以低频方式逐渐减小振动量,以使马达产生低频厚重的触感效果,因此,利用静默期后的恒定段信号和衰减段信号驱动马达实现低频厚重的触感效果,提高了游戏、汽车中控屏等场景下特定触感效果的逼真度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据现有技术中的马达刹车信号示意图;
图2是根据本申请第一实施方式的马达驱动信号生成方法的流程示意图;
图3是根据本申请第二实施方式的马达驱动信号生成方法的流程示意图;
图4是根据本申请第三实施方式的电子设备的结构示意图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请实施方式所要求保护的技术方案。
现有的刹车信号如图1所示,一般采用能够高效、快速地降低马达振动强度的短信号,其包括:用于马达起振的加速段信号、无信号输出的静默期、以及实现马达刹车的刹车段信号。在静默期时马达断电,之后通过接触器用点动方式对原相位进行对调,即给马达电机一个反向电流,从而达到刹车的作用。发明人通过在游戏、汽车等场景下的控屏等的触感体验测试中发现,在游戏中出现枪击、关门等事件时用户期望同步感受到低频厚重的触感效果;在汽车中控屏这类大质量负载上进行点击操作时,用户更喜欢感受到低频厚重的触感效果;在一些非按键类的操作上,用户并不强调刹车段处理后的马达剩余振动强度一定严格等于零水平。而现有的短信号中刹车段设计并不能很好地给用户提供预期的低频厚重的触感效果,并不能够实现在游戏、汽车等场景下的特定触感效果。
因此,为了在与游戏、汽车等相关的应用场景中为用户提供自然真实、符合预期的低频厚重触感效果时,发明人突破了短信号中刹车段设计的现有思路,将短信号中的刹车段信号替换为由恒定段信号和衰减段信号组成的低频驱动信号,当恒定段信号驱动时马达低频持续振动时,由于衰减段信号幅值保持不变,因此马达持续产生低频震感;当衰减段信号驱动马达时,由于衰减段信号幅值逐渐变小,因此,马达以低频方式振动且逐渐降低振动幅度,直至马达振动停止,从而实现了低频厚重触感效果。
本申请的第一实施方式设计一种马达驱动信号生成方法。本申请实施方式的核心在于,提供了一种马达驱动信号生成方法,获取用于驱动马达起振的加速段信号、用于实现马达低频振动触感效果的恒定段信号和用于以低频方式减小马达振动量的衰减段信号,恒定段信号和衰减段信号的频率均小于加速段信号;将加速段信号与恒定段信号拼接,并在刹车段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号;根据振感需求调整第一马达驱动信号的恒定段信号参数,并将衰减段信号拼接在调整后的第一马达驱动信号之后,得到第二马达驱动信号;调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号,将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
本申请实施方式通过在加速段信号后引入频率小于加速段信号频率的恒定段信号、并在二者之间预留无信号输出的静默期,在恒定段信号后拼接频率小于加速段信号频率的衰减段信号,并调整拼接后的信号参数,从而使得生成的马达驱动信号能够利用加速段信号驱动马达起振,由于恒定段信号使马达以恒定低频持续振动,使得马达持续产生震感;而衰减段信号使马达以低频方式逐渐减小振动量,以使马达产生低频厚重的触感效果,因此,利用静默期后的恒定段信号和衰减段信号驱动马达实现低频厚重的触感效果,提高了游戏、汽车中控屏等场景中特定触感效果的逼真度。
下面对本实施方式的马达驱动信号生成方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本实施方式中的马达驱动信号生成方法的具体流程示意图如图2所示:
步骤101:获取用于驱动马达起振的加速段信号、用于实现马达低频振动触感效果的恒定段信号和用于以低频方式减小马达振动量的衰减段信号。
具体地,所谓恒定段信号为包络恒定的信号(又称:包络恒定段信号),用以使马达以恒定低频持续振动,使得马达持续产生震感;所谓衰减段信号为包络逐渐衰减的信号(又称:包络衰减段信号),用以使马达以低频方式逐渐减小振动量,以使马达产生低频的触感效果。使用不同频率的信号,可以驱动线性马达给用户带来不同的低频触感。本实施方式中包络恒定段信号的频率和包络衰减段信号的频率均小于120赫兹,以驱动马达实现低频振动效果。当然,需要说明的是,所述包络衰减段信号和包络恒定段信号频率可以相同,也可根据不同用户对低频触感需求的不同而设置为互不相同。
步骤102:将加速段信号与恒定段信号拼接,并在加速段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号。
步骤103:根据振感需求调整第一马达驱动信号的恒定段信号参数。
具体的,根据振感需求调整第一马达驱动信号的恒定段信号参数的步骤,具体包括:根据振感需求获取预设振动时长和预设振动强度;将预设振动时长确定为恒定段信号的时长,将预设振动强度确定为恒定段信号的幅值。
本实施方式中,所谓振感需求是指用户于特定场景下的低频振动的持续时间和振动强度,在不同场景下(例如:在模拟枪机和碰撞时),用户的振感需求并不相同,用户对于低频振动的持续时间和振动强度的要求也就不相同,因此,在实际中,用户可以预先设置不同场景下对应的预设振动时长和预设振动强度;所谓预设振动时长可以根据不同用户对于低频振动持续时间的需求进行设置,所谓预设振动强度根据不同用户对于低频振动强度的需求的不同进行设置。而本实施方式提供的方法则在调整第一马达驱动信号的参数时,直接获取该场景下的预设振动时长和预设振动强度,将预设振动时长确定为包络恒定段信号的时长,将预设振动强度确定为包络恒定段信号的幅值,以满足用户的个性化需求。
可选地,本实施方式中也可以先根据预设振动时长确定好恒定段信号的时长,根据预设振动强度确定恒定段信号的幅值,然后再将确定好参数的包络恒定段信号与加速段信号拼接起来。
另外,本实施方式中包络恒定段信号为频率固定的正弦信号,由于加速段信号在结束时信号值归零,静默段中也无信号输出,若包络恒定段信号不为正弦信号,则会使得在加速段信号到包络恒定段信号之间出现波形信号的突变,从而影响到低频信号的振动触感。具体的,包络恒定段信号用公式(1)表示:
S_constant(t)=A_constant * sin(2 * PI * Fc * t)                                (1)
其中,时间变量t的取值范围是0至T_constant,T_constant为包络恒定段信号时长,A_constant 为包络恒定段信号幅值,PI是圆周率,Fc为正弦信号频率。
需要说明的是,本实施方式中确保包络恒定段信号的时长为包络恒定段信号的半个周期的整数倍,即T_constant为正弦信号半周期的整数倍,可以进一步防止波形出现突变。
步骤104:将衰减段信号拼接在调整后的第一马达驱动信号之后,得到第二马达驱动信号。
步骤105:调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号。在本实施例中,刹车效率最高的马达驱动信号是指从第二马达驱动信号中比较调整触能提供振动触感效果最符合用户预期时的马达驱动信号。
步骤106:将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
需要说明的是,步骤105所谓“第二马达驱动信号的衰减段信号参数”,指的是调整包络衰减段信号的时长、衰减强度或初始幅值。本实施方式中的调整,是指通过改变包络衰减段信号的时长、衰减强度及初始幅值中的至少一者,以形成多个不同的包络衰减段信号。
相应的,步骤106所谓“将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号”,具体是指,改变包络衰减段信号的时长、衰减强度及初始幅值中的至少一者,以形成多个不同的包络衰减段信号;获取具有多个不同的包络衰减段信号的第二马达驱动信号的刹车效率;将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
在步骤105和步骤106的具体实施过程中,可以将包络衰减段信号用公式(2)表示:
S_decay(t)=A_decay * exp(-C_decay * t) * sin(2 * PI * Fc *t)                     (2)
其中,时间变量t的取值范围是0至T_decay,T_decay为包络衰减段信号时长,A_decay为包络衰减段信号初始幅值,C_decay为包络衰减段信号衰减强度。先通过改变T_decay、A_decay以及C_decay中的至少一者,来形成多个不同的包络衰减段信号,然后将得到的多由于恒定段信号使马达以恒定低频持续振动,使得马达持续产生震感;而衰减段信号使马达以低频方式逐渐减小振动量,以使马达产生低频厚重的触感效果,因此,个不同的包络衰减段信号分别输入马达中以求取刹车效率,并将刹车效率最高的包络衰减段信号替换掉第二马达驱动信号中的初始包络衰减段信号,从而将替换后的具有该刹车效率最高的包络衰减段信号的马达驱动信号作为最终的马达驱动信号。
本实施方式中刹车效率为马达刹车起始速度与所用时间的比值。
值得说明的是,不同的用户对马达趋近振动结束时的剩余振动强度的感知不同,因此,在获取多个不同的包络衰减段信号的刹车效率时,判断马达刹车完成的条件并不局限于马达绝对静止,也可以将用户无法察觉到、而可以忽略的马达振动强度值作为马达刹车完整的判断标志。
在此,本实施方式将用户无法察觉到、而可以忽略的马达振动强度值定义为马达剩余振动强度Gres,当马达在刹车过程中剩余的振动强度为Gres时,振动强度很微弱而用户感觉不到,此时即可视为刹车完成。马达剩余振动强度Gres可以通过对大量用户的感知数据进行收集和分析后确定,也可以由用户自行设定,然后以此来计算将得到的多个不同的包络衰减段信号分别输入马达中得到的马达刹车效率,使得计算得出的刹车效率更加符合实际情况。当然,用户可以根据自身主观体验和敏感度设定马达剩余振动强度Gres,如果用户对剩余振动强度不敏感,那么Gres可以设定比较大的数值,否则,Gres应该设定比较小的数值。 
进一步地,在本实施方式中,包络衰减段信号的时长为固定频率的包络恒定段信号的整数倍,因此,在包络恒定段信号和包络衰减段信号之间不会出现波形的突变,也就并不会导致驱动信号出现剧烈变化,从而提高用户的触感体验。
与现有技术相比,本申请实施方式,通过在加速段信号后引入频率小于加速段信号频率的恒定段信号、并在二者之间预留无信号输出的静默期,在恒定段信号后拼接频率小于加速段信号频率的衰减段信号,并调整拼接后的信号参数,从而使得生成的马达驱动信号能够利用加速段信号驱动马达起振,由于恒定段信号使马达以恒定低频持续振动,使得马达持续产生震感;而衰减段信号使马达以低频方式逐渐减小振动量,以使马达产生低频厚重的触感效果,因此,并利用静默期后的恒定段信号和衰减段信号驱动马达实现低频厚重的触感效果,提高了游戏、汽车中控屏等场景下特定触感效果的逼真度。
本申请的第二实施方式涉及一种马达驱动信号生成方法。第二实施方式是对第一实施方式的改进,主要改进之处在于,通过调整静默期的时长,使得输入恒定段信号时的马达振动量小于输入加速段信号时的马达振动量,进一步提高了游戏、汽车等场景下特定触感效果的逼真度。
本实施方式中的马达驱动信号生成方法的具体流程示意图如图3所示,具体包括:
步骤201:获取用于驱动马达起振的加速段信号、用于实现马达低频振动触感效果的恒定段信号和用于以低频方式减小马达振动量的衰减段信号。
步骤202:将加速段信号与恒定段信号拼接,并在加速段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号。
步骤203:根据振感需求调整所述第一马达驱动信号的恒定段信号参数。
上述步骤201至步骤203与第一实施方式中的步骤101至步骤103大致相同,在此不再赘述。
步骤204:调整静默期的时长,使得恒定段信号输入马达后的马达振动波形峰峰值小于将加速段信号输入马达后的马达振动波形峰峰值。
具体的说,在根据振感需求调整第一马达驱动信号的恒定段信号参数之后,在将衰减段信号拼接在调整后的第一马达驱动信号之前,还包括:调整静默期的时长,使得包络恒定段信号输入马达后的马达振动波形峰峰值M2小于将加速段信号输入马达后的马达振动波形峰峰值M1。该方案中通过调整静默期的时长,使得输入包络恒定段信号时的马达振动量小于输入加速段信号时的马达振动量,从而进一步提高了游戏、汽车中控屏等场景下特定触感效果的逼真度。
步骤205:将衰减段信号拼接在调整后的第一马达驱动信号之后,得到第二马达驱动信号。
步骤206:调整第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号。
步骤207:将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
上述步骤204至步骤207与第一实施方式中的步骤103至步骤106大致相同,在此不再赘述。
与现有技术相比,本申请实施方式中提供了一种马达驱动方法,在根据振感需求调整第一马达驱动信号的参数之后,在将衰减段信号拼接在调整后的第一马达驱动信号之前,还包括:调整静默期的时长,使得恒定段信号输入马达后的马达振动波形峰峰值小于将加速段信号输入马达后的马达振动波形峰峰值。通过调整静默期的时长,使得输入恒定段信号时的马达振动量小于输入加速段信号时的马达振动量,从而进一步提高了游戏、汽车中控屏等场景下特定触感效果的逼真度。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第三实施方式涉及一种电子设备,如图4所示,包括至少一个处理器301;以及,与至少一个处理器301通信连接的存储器302;其中,存储器302存储有可被至少一个处理器301执行的指令,指令被至少一个处理器301执行,以使至少一个处理器301能够执行上述的马达驱动信号生成方法。
其中,存储器302和处理器301采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器302的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公 知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器301。
处理器301负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,
电压调节、电源管理以及其他控制功能。而存储器302可以被用于存储处理器在执行操作时所使用的数据。
本申请的实施方式还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实上述马达驱动信号生成方法。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请实施方式各个实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种马达驱动信号生成方法,其特征在于,包括:
    获取用于驱动马达起振的加速段信号、用于实现马达低频振动触感效果的恒定段信号和用于以低频方式减小马达振动量的衰减段信号,所述恒定段信号和所述衰减段信号的频率均小于所述加速段信号;
    将所述加速段信号与所述恒定段信号拼接,并在加速段和恒定段之间预留无信号输出的静默期,得到第一马达驱动信号;
    根据振感需求调整所述第一马达驱动信号的恒定段信号参数,并将所述衰减段信号拼接在调整后的所述第一马达驱动信号之后,得到第二马达驱动信号;
    调整所述第二马达驱动信号的衰减段信号参数以得到第二马达驱动信号,将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
  2. 根据权利要求1所述的马达驱动信号生成方法,其特征在于,所述根据振感需求调整所述第一马达驱动信号的恒定段信号参数的步骤,具体包括:
    根据所述振感需求获取预设振动时长和预设振动强度;
    将所述预设振动时长确定为所述恒定段信号的时长,将所述预设振动强度确定为所述恒定段信号的幅值。
  3. 根据权利要求2所述的马达驱动信号生成方法,其特征在于,所述恒定段信号为固定频率的正弦信号。
  4. 根据权利要求3所述的马达驱动信号生成方法,其特征在于,所述恒定段信号的时长为所述恒定段信号的半个周期的整数倍。
  5. 根据权利要求1所述的马达驱动信号生成方法,其特征在于,在所述根据振感需求调整所述第一马达驱动信号的恒定段信号参数之后,在所述将所述衰减段信号拼接在调整后的所述第一马达驱动信号之前,还包括:
    调整所述静默期的时长,使得所述恒定段信号输入马达后的马达振动波形峰峰值小于将所述加速段信号输入马达后的马达振动波形峰峰值。
  6. 根据权利要求1所述的马达驱动信号生成方法,其特征在于,所述调整所述第二马达驱动信号的衰减段信号参数以得到刹车效率最高的第二马达驱动信号,将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号的步骤,具体包括:
    改变所述衰减段信号的时长、衰减强度及初始幅值中的至少一者,以形成多个不同的衰减段信号;
    获取具有所述多个不同的衰减段信号的第二马达驱动信号的刹车效率;
    将刹车效率最高的第二马达驱动信号确定为最终的马达驱动信号。
  7. 根据权利要求6所述的马达驱动信号生成方法,其特征在于,所述恒定段信号频率固定;所述衰减段信号的时长为所述恒定段信号的半个周期的整数倍。
  8. 根据权利要求1所述的马达驱动信号生成方法,其特征在于,所述恒定段信号的频率和所述衰减段信号的频率均小于120赫兹。
  9. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一所述的马达驱动信号生成方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的马达驱动信号生成方法。
PCT/CN2019/113828 2018-12-31 2019-10-29 马达驱动信号生成方法、电子设备及存储介质 WO2020140587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811655026.4A CN110011591B (zh) 2018-12-31 2018-12-31 马达驱动信号生成方法、电子设备及存储介质
CN201811655026.4 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020140587A1 true WO2020140587A1 (zh) 2020-07-09

Family

ID=67165356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113828 WO2020140587A1 (zh) 2018-12-31 2019-10-29 马达驱动信号生成方法、电子设备及存储介质

Country Status (3)

Country Link
US (1) US11025187B2 (zh)
CN (1) CN110011591B (zh)
WO (1) WO2020140587A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011591B (zh) * 2018-12-31 2022-07-05 瑞声科技(新加坡)有限公司 马达驱动信号生成方法、电子设备及存储介质
CN111030412B (zh) * 2019-12-04 2022-04-29 瑞声科技(新加坡)有限公司 一种振动波形的设计方法及振动马达
WO2021109092A1 (zh) * 2019-12-05 2021-06-10 瑞声声学科技(深圳)有限公司 触感信号的实现方法、装置、终端及存储介质
WO2021119932A1 (zh) * 2019-12-16 2021-06-24 瑞声声学科技(深圳)有限公司 电机振动信号的生成方法、装置、终端及存储介质
CN111124114B (zh) * 2019-12-16 2023-09-29 瑞声科技(新加坡)有限公司 自定义振动的方法、装置、计算机设备及存储介质
WO2021120100A1 (zh) * 2019-12-19 2021-06-24 瑞声声学科技(深圳)有限公司 一种电机信号控制方法、终端设备及存储介质
CN110943671B (zh) * 2019-12-19 2023-05-26 瑞声科技(新加坡)有限公司 一种电机信号控制方法、终端设备及存储介质
CN111490712B (zh) * 2019-12-24 2022-02-11 瑞声科技(新加坡)有限公司 控制线性电机振动频率的方法、装置和存储介质
CN111338477A (zh) * 2020-02-25 2020-06-26 瑞声科技(新加坡)有限公司 触觉振动效果的实现方法、装置和存储介质
CN111552379B (zh) * 2020-04-17 2023-05-26 瑞声科技(新加坡)有限公司 振动系统快速停止的方法、装置、计算机设备及存储介质
CN111552380B (zh) * 2020-04-20 2023-05-26 瑞声科技(新加坡)有限公司 触觉振动自调节方法、装置、设备和介质
CN112054721B (zh) * 2020-09-03 2023-05-02 立得微电子(惠州)有限公司 一种用于微型振动马达驱动芯片的电压控制方法
CN112286165B (zh) * 2020-09-30 2022-02-01 上海艾为电子技术股份有限公司 线性马达的驱动波形数据的校准方法和电子设备
CN112271979B (zh) * 2020-10-30 2022-04-26 瑞声新能源发展(常州)有限公司科教城分公司 基于温度测算的电机保护方法、装置、电子设备和介质
CN114021079B (zh) * 2021-10-20 2024-09-03 武汉市聚芯微电子有限责任公司 一种振动控制方法及振动装置、存储介质
CN114924642A (zh) * 2022-04-13 2022-08-19 瑞声光电科技(常州)有限公司 一种振动控制方法、装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793050A (zh) * 2012-10-30 2014-05-14 德州仪器公司 触觉致动器控制器
US20170344117A1 (en) * 2016-05-25 2017-11-30 Lenovo (Singapore) Pte. Ltd. Method and apparatus for driving actuators
CN108258973A (zh) * 2018-01-04 2018-07-06 瑞声科技(新加坡)有限公司 一种马达驱动信号的生成方法及装置
CN108334193A (zh) * 2018-01-04 2018-07-27 瑞声科技(新加坡)有限公司 一种马达刹车信号的生成方法及装置
CN108475106A (zh) * 2015-10-13 2018-08-31 Dav公司 触摸界面模块和用于生成触觉反馈的方法
CN110011591A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 马达驱动信号生成方法、电子设备及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020305A1 (en) * 1995-11-30 1997-06-05 Virtual Technologies, Inc. Tactile feedback man-machine interface device
US7561142B2 (en) * 1999-07-01 2009-07-14 Immersion Corporation Vibrotactile haptic feedback devices
DE20080209U1 (de) * 1999-09-28 2001-08-09 Immersion Corp Steuerung von haptischen Empfindungen für Schnittstellenvorrichtungen mit Vibrotaktiler Rückkopplung
US7161580B2 (en) * 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
US20060017691A1 (en) * 2004-07-23 2006-01-26 Juan Manuel Cruz-Hernandez System and method for controlling audio output associated with haptic effects
KR100883010B1 (ko) * 2004-11-30 2009-02-12 임머숀 코퍼레이션 진동촉각 햅틱 효과를 발생시키는 공진 디바이스를제어하기 위한 시스템 및 방법
WO2015006467A1 (en) * 2013-07-09 2015-01-15 Coactive Drive Corporation Synchronized array of vibration actuators in an integrated module
KR20110074333A (ko) * 2009-12-24 2011-06-30 삼성전자주식회사 휴대 단말의 진동 발생 방법 및 장치
TWI530818B (zh) * 2011-01-20 2016-04-21 宏達國際電子股份有限公司 具有觸覺回饋之電子裝置及提供觸覺回饋之方法
US8737006B2 (en) * 2012-09-07 2014-05-27 Lsi Corporation Storage device having degauss circuitry generating degauss signal with multiple decay segments
US9549393B2 (en) * 2014-08-27 2017-01-17 Tractouch Mobile Partners, Llc Mobile vibratory alert system and method for logging alert transmissions and reception of acknowledgments
WO2018126560A1 (zh) * 2017-01-04 2018-07-12 华为技术有限公司 一种线性马达的驱动方法及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793050A (zh) * 2012-10-30 2014-05-14 德州仪器公司 触觉致动器控制器
CN108475106A (zh) * 2015-10-13 2018-08-31 Dav公司 触摸界面模块和用于生成触觉反馈的方法
US20170344117A1 (en) * 2016-05-25 2017-11-30 Lenovo (Singapore) Pte. Ltd. Method and apparatus for driving actuators
CN108258973A (zh) * 2018-01-04 2018-07-06 瑞声科技(新加坡)有限公司 一种马达驱动信号的生成方法及装置
CN108334193A (zh) * 2018-01-04 2018-07-27 瑞声科技(新加坡)有限公司 一种马达刹车信号的生成方法及装置
CN110011591A (zh) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 马达驱动信号生成方法、电子设备及存储介质

Also Published As

Publication number Publication date
US11025187B2 (en) 2021-06-01
CN110011591B (zh) 2022-07-05
CN110011591A (zh) 2019-07-12
US20200212832A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020140587A1 (zh) 马达驱动信号生成方法、电子设备及存储介质
US10613635B2 (en) Method and apparatus for generating motor brake signal
US10339772B2 (en) Sound to haptic effect conversion system using mapping
US7639232B2 (en) Systems and methods for controlling a resonant device for generating vibrotactile haptic effects
CN108762506B (zh) 独立于流的声音到触觉效应转换系统
JP6749455B2 (ja) モータ駆動方法、端末装置及びコンピュータ読み取り可能な記録媒体
CN108325806B (zh) 振动信号的生成方法及装置
JP2014052580A (ja) 音声案内システム及び電子機器
TW202018493A (zh) 用於產生觸覺輸出以增強使用者體驗的系統及方法
US11876474B2 (en) Linear resonant device, and braking method for same
US20150323994A1 (en) Dynamic haptic effect modification
WO2018193557A1 (ja) 振動制御装置
JPWO2019043781A1 (ja) 振動制御装置、振動制御方法、及びプログラム
KR20140079582A (ko) 오디오 신호의 햅틱 신호 변환 방법 및 이를 수행하는 장치
JPWO2019038887A1 (ja) 振動制御装置
JP7449334B2 (ja) 振動デバイス、情報処理装置、及び振動制御システム
WO2021097890A1 (zh) 一种低频振感补偿方法、装置及电子设备
WO2017013723A1 (ja) 電力変換装置、及び、その出力電流ノイズの低減方法
US20240184366A1 (en) Tactile Sensation Generation Method, Haptic Reproduction Device and Computer Storage Medium
US11645896B2 (en) Systems, devices, and methods for providing actuator braking
CN109246554B (zh) 终端及其振动器的调控方法
WO2021049085A1 (ja) 制御装置、制御方法、およびプログラム
CN113703609A (zh) 一种马达闭环控制方法及电子设备
JP7503168B2 (ja) 振動装置およびその動作方法
CN116132280B (zh) 一种振动方法、装置、设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906851

Country of ref document: EP

Kind code of ref document: A1