[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020039852A1 - Obstacle detection device for lean vehicle - Google Patents

Obstacle detection device for lean vehicle Download PDF

Info

Publication number
WO2020039852A1
WO2020039852A1 PCT/JP2019/029639 JP2019029639W WO2020039852A1 WO 2020039852 A1 WO2020039852 A1 WO 2020039852A1 JP 2019029639 W JP2019029639 W JP 2019029639W WO 2020039852 A1 WO2020039852 A1 WO 2020039852A1
Authority
WO
WIPO (PCT)
Prior art keywords
lean vehicle
lean
obstacle detection
vehicle
obstacle
Prior art date
Application number
PCT/JP2019/029639
Other languages
French (fr)
Japanese (ja)
Inventor
友也 斉藤
加藤 毅
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2020039852A1 publication Critical patent/WO2020039852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an lean-vehicle obstacle detecting device that detects an obstacle on a road positioned before a lean vehicle in the lean vehicle.
  • an automatic brake device for a saddle-ride type vehicle described in Patent Literature 1 and Patent Literature 2 is known.
  • This automatic brake device includes an external recognition unit and an ECU.
  • the appearance recognizing means is a camera for photographing a space located in front of the vehicle with respect to the vehicle.
  • the ECU determines whether or not an obstacle is present on a road located in front of the vehicle with respect to the vehicle based on an image of a space located in front of the vehicle with respect to the vehicle captured by the outside world recognition means.
  • an object of the present invention is to provide a new lean-vehicle obstacle detecting device capable of detecting an obstacle existing on a road positioned ahead of a lean vehicle in the lean vehicle.
  • the inventors of the present application have examined imaging of a space located ahead of the lean vehicle in the lean vehicle.
  • the inventor of the present application compared imaging of a space located in front of a lean vehicle with respect to a lean vehicle and imaging of a space located in front of a four-wheeled motor vehicle.
  • the inventor of the present application fixes an image sensor for imaging a space located in front of the lean vehicle to the lean vehicle to the lean vehicle body in order to detect an obstacle existing on a road located in front of the lean vehicle in the lean vehicle.
  • the lean vehicle leans to the left of the lean vehicle when the lean vehicle turns to the left of the lean vehicle, and leans to the right of the lean vehicle when the lean vehicle turns to the right of the lean vehicle. It is a vehicle provided with.
  • the image pickup device is fixed to the lean vehicle body, the image pickup device is tilted leftward in the lean vehicle together with the lean vehicle body when the lean vehicle turns leftward in the lean vehicle.
  • the image pickup device when the image pickup device is fixed to the lean vehicle body, the image pickup device tilts rightward in the lean vehicle together with the lean vehicle body when the lean vehicle turns rightward in the lean vehicle. Therefore, the inventor of the present application has noticed that when the lean vehicle turns leftward in the lean vehicle, the image captured by the image sensor tilts rightward in the lean vehicle body with respect to the image sensor. Similarly, the inventor of the present application has noticed that when the lean vehicle turns rightward in the lean vehicle, the image captured by the image sensor is tilted leftward in the lean vehicle body with respect to the image sensor.
  • the image is tilted to the left in the lean vehicle body or to the right in the lean vehicle body with respect to the image sensor is simply referred to as the image is tilted to the left in the lean vehicle body or to the right in the lean vehicle body.
  • the vehicle body hardly leans when the four-wheeled vehicle turns left or right. Therefore, even if the image sensor is fixed to the vehicle body, the image formed by the image sensor hardly tilts. As described above, the inventor of the present application has noticed that the image formed by the image sensor at the time of turning is completely different between a lean vehicle and a four-wheeled vehicle.
  • the inventor of the present application compared the movement of the obstacle in the image of the turning four-wheeled vehicle with the movement of the obstacle in the image of the turning lean vehicle.
  • the image tilts rightward on the lean vehicle body or leftward on the lean vehicle body. Therefore, the vertical direction in the image coincides with the vertical direction in the lean vehicle body.
  • the horizontal direction in the image corresponds to the horizontal direction in the lean vehicle body.
  • the image hardly tilts even if the four-wheeled vehicle turns to the left.
  • the obstacle located on the path of the four-wheeled vehicle appears near the vertical center of the image and near the left end of the image. The obstacle moves rightward in the image as the four-wheeled vehicle travels.
  • the inventor of the present application has noticed that the movement of an obstacle in an image of a turning four-wheeled vehicle is completely different from the movement of an obstacle in the image of a turning lean vehicle. .
  • the inventor of the present application has realized that when the lean vehicle turns leftward in the lean vehicle, it is sufficient to detect an obstacle near the upper left end of the lean vehicle body in the image.
  • the inventor of the present application has realized that when the lean vehicle turns rightward in the lean vehicle, it is sufficient to detect an obstacle near the upper right end of the lean vehicle body in the image.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • Lean vehicle obstacle detection device When the lean vehicle turns leftward in the lean vehicle, it leans leftward in the lean vehicle, and when the lean vehicle turns rightward in the lean vehicle, it tilts rightward in the lean vehicle.
  • An obstacle detection device for a lean vehicle which is used for the lean vehicle including the lean vehicle body and detects an obstacle existing on a road located in front of the lean vehicle from the lean vehicle,
  • the lean vehicle obstacle detection device includes an imaging unit (A) and an obstacle detection unit (B).
  • the image capturing unit includes an image sensor having a plurality of pixels, and outputs image data of a space located in front of the lean vehicle from the lean vehicle imaged by the image sensor,
  • the image pickup device is provided at the center in the left-right direction of the lean vehicle body of the lean vehicle, so as to be inclined leftward in the lean vehicle or rightward in the lean vehicle together with the lean vehicle body,
  • the image sensor When the lean vehicle body is in an upright state, a horizontal pixel that captures a horizontal line located in front of the lean vehicle in the lean vehicle, When the lean vehicle body is in an upright state, a vertical pixel that images a vertical line located in front of the lean vehicle at the center of the lean vehicle body in the left-right direction in the lean vehicle body, When the lean vehicle body is in an upright state, an upper left pixel provided on the lean vehicle above the horizontal pixel and on the left side of the lean vehicle above the vertical pixel, When the lean vehicle body is in an upright state
  • the obstacle detection unit is configured such that, when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the image captured by the plurality of pixels. Detecting the obstacle present on the road located in front of the lean vehicle from the lean vehicle based on a part of the part imaged by at least the upper left region of the upper left pixel of the data, The obstacle detection unit is configured such that, when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the image captured by the plurality of pixels. Based on at least a part of the portion of the data captured by the upper right region of the upper right pixel, the obstacle existing on the road located before the lean vehicle in the lean vehicle is detected.
  • the lean vehicle obstacle detection device of (1) it is possible to detect an obstacle existing on a road positioned before the lean vehicle relative to the lean vehicle. More specifically, when the lean vehicle leans leftward in the lean vehicle to turn leftward in the lean vehicle, the obstacle located on the path of the lean vehicle is caused by the upper left area of the upper left pixel in the image data. It is highly likely that it will appear in the imaged part. Therefore, when the lean vehicle body is tilted leftward in the lean vehicle because the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit detects at least one of the image data captured by the plurality of pixels.
  • the obstacle detection unit can detect an obstacle when the lean vehicle is tilted leftward in the lean vehicle.
  • an obstacle located on the course of the lean vehicle is imaged by the upper right region of the upper right pixel in the image data. It is likely to appear in the part where it was.
  • the obstacle detection unit detects at least one of the image data captured by the plurality of pixels. An obstacle existing on a road positioned ahead of the lean vehicle is detected based on a part of the part captured by the upper right region of the upper right pixel. Thus, the obstacle detection unit can detect an obstacle when the lean vehicle is inclined rightward in the lean vehicle.
  • the lean-vehicle obstacle detection device of (2) is the lean-vehicle obstacle detection device of (1)
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, at least a part of the obstacle is the leaning vehicle. Detecting the obstacle imaged by the upper left area of the upper left pixel, The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, at least a part of the obstacle is the lean vehicle. The obstacle captured by the upper right area of the upper right pixel is detected.
  • the lean-vehicle obstacle detection device of (3) is the lean-vehicle obstacle detection device of (1) or (2)
  • the obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle.
  • a lean vehicle tilt angle acquisition unit that acquires a physical quantity related to the lean vehicle tilt angle indicating the angle at which the lean vehicle body is tilted when
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels.
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of the portion of the image data captured by the upper right region of the upper right pixel and the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit, the lean vehicle is more lean than the lean vehicle. And detecting the obstacle existing on the road located in front of.
  • the obstacle detection unit exists on a road located before the lean vehicle in the lean vehicle based on the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit. An obstacle has been detected. Therefore, even if the image data is tilted rightward in the lean vehicle body or leftward in the lean vehicle body by the lean vehicle body tilting leftward in the lean vehicle or rightward in the lean vehicle, the obstacle detection unit is not moved. It is possible to easily detect an obstacle existing on a road located ahead of the lean vehicle in the lean vehicle.
  • the lean-vehicle obstacle detection device of (4) is the lean-vehicle obstacle detection device of (3),
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. At least a part of the portion of the image data captured by the upper left region of the upper left pixel is converted based on the lean vehicle tilt angle obtained by the lean vehicle tilt angle obtaining unit, and the lean vehicle is converted to the lean vehicle.
  • the obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. Is present on the road located before the lean vehicle in the lean vehicle based on the image data of the space located in the lean vehicle before the lean vehicle converted by the data tilt conversion unit. The obstacle is detected.
  • the lean vehicle body tilts leftward in the lean vehicle or rightward in the lean vehicle, so that the image data is shifted rightward in the lean vehicle body or in the lean vehicle body.
  • the obstacle detection unit can easily detect an obstacle existing on the road positioned before the lean vehicle in the lean vehicle. More specifically, when the lean vehicle body tilts leftward in the lean vehicle or rightward in the lean vehicle, the image data tilts rightward in the lean vehicle body or leftward in the lean vehicle body. In this case, the obstacle is also inclined rightward on the lean vehicle body or leftward on the lean vehicle body.
  • the obstacle detection unit needs to detect an obstacle that is tilted rightward in the lean vehicle body or leftward in the lean vehicle body. Therefore, the data tilt converter converts the image data of a space located before the lean vehicle in the lean vehicle based on the lean vehicle tilt angle. Thereby, in the converted image data, the angle at which the obstacle is inclined rightward in the lean vehicle body or leftward in the lean vehicle body is smaller than in the image data not converted. As a result, the obstacle detection unit can easily detect an obstacle existing on a road positioned before the lean vehicle in the lean vehicle.
  • the lean-vehicle obstacle detection device of (5) is the lean-vehicle obstacle detection device of (4),
  • the lean vehicle inclination angle acquisition unit acquires a physical quantity related to the lean vehicle inclination angle from a sensor provided outside the lean vehicle obstacle detection device.
  • the (6) lean vehicle obstacle detection device is the (4) lean vehicle obstacle detection device
  • the obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle.
  • An image inclination angle acquisition unit that acquires a physical quantity related to the lean vehicle inclination angle based on the image data of a space located before the lean vehicle in the lean vehicle.
  • the lean vehicle obstacle detection device according to any one of (1) to (6),
  • the image sensor is provided on the lean vehicle body such that when the lean vehicle body is in an upright state, the direction of the optical axis of the image sensor is forward in the lean vehicle and downward in the lean vehicle. I have.
  • the probability that the obstacle detection unit can detect an obstacle increases. More specifically, the obstacle often exists in an area located below the horizontal line in the lean vehicle body in the image data. Therefore, if the area of the lean vehicle main body below the horizontal line occupies a higher proportion in the image data, the probability that the obstacle is imaged by the image sensor increases. Therefore, the image sensor is provided on the lean vehicle body such that the direction of the optical axis of the image sensor is forward in the lean vehicle and downward in the lean vehicle when the lean vehicle body is in the upright state. Thus, the imaging device can image the obstacle with a high probability when there is an obstacle existing on the road located in front of the lean vehicle in the lean vehicle. As a result, the probability that the obstacle detection unit can detect an obstacle increases.
  • the lean vehicle obstacle detection device is the lean vehicle obstacle detection device according to any one of (1) to (7), The lean vehicle obstacle detection device, A first case accommodating the imaging unit; A second case accommodating the obstacle detection unit; Is further provided.
  • the lean vehicle obstacle detection device is the lean vehicle obstacle detection device according to any one of (1) to (7), The lean vehicle obstacle detection device, A third case accommodating the imaging unit and the obstacle detection unit, Further provision.
  • the lean-vehicle obstacle detection device of (10) is the lean-vehicle obstacle detection device of (1),
  • the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion captured by the upper left pixel in the image data of the space located at
  • the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. The obstacle existing only in the portion of the image data in the space located at the position captured by the upper right pixel is detected.
  • the lean-vehicle obstacle detection device of (11) is the lean-vehicle obstacle detection device of (10),
  • the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion imaged by the upper left region of the upper left pixel in the image data of the space located at,
  • the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. The obstacle existing only in a portion imaged by the upper right area of the upper right pixel in the image data in the space located at is detected.
  • the lean-vehicle obstacle detection device of (12) is the lean-vehicle obstacle detection device of (1) or (10),
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of a portion of the image data captured by the upper left region of the upper left pixel and a portion of a portion captured by the lower left region of the upper left pixel, the lean vehicle is positioned before the lean vehicle in the lean vehicle.
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. A position before the lean vehicle in the lean vehicle based on at least a part of the part captured by the upper right area of the upper right pixel and a part of the part captured by the lower right area of the upper right pixel in the image data. The obstacle existing on the road to be changed is detected.
  • the lean vehicle obstacle detection device of (13) is the lean vehicle obstacle detection device of (1),
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels.
  • the obstacle existing on a road positioned before the lean vehicle in the lean vehicle based on at least a part of a part captured by the upper left pixel and a part of a part captured by the lower left pixel in the image data.
  • the obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels.
  • the lean vehicle is present on a road positioned before the lean vehicle in the lean vehicle. Detect obstacles.
  • the present invention it is possible to detect an obstacle existing on a road located ahead of the lean vehicle in the lean vehicle.
  • FIG. 1A is an explanatory diagram of a lean vehicle 6 including a lean vehicle obstacle detection device 10.
  • FIG. 1B is a diagram in which the lean vehicles 6, 6a and the preceding vehicle 100 are viewed in the leftward direction L.
  • FIG. 2 is a diagram showing the image data Im.
  • FIG. 3 is a diagram showing the image data Im.
  • FIG. 4 is a diagram showing the image data Im.
  • FIG. 5 is a diagram showing the image data Im.
  • FIG. 6 is a diagram showing the image data Im.
  • FIG. 7 is an explanatory diagram of the lean vehicle 6a including the lean vehicle obstacle detection device 10a.
  • FIG. 8 is a diagram showing the converted image data Imt.
  • FIG. 9 is a diagram showing the converted image data Imt.
  • FIG. 10 is a diagram showing the image data Im.
  • FIG. 11 is a first area determination table.
  • FIG. 12 is a diagram showing the image data Im.
  • FIG. 13 is a diagram showing the image data Im.
  • FIG. 14 is a diagram showing the converted image data Imt.
  • FIG. 15 is a diagram illustrating the converted image data Imt.
  • FIG. 16 is a flowchart illustrating an operation performed by the obstacle detection unit 16.
  • FIG. 17 is a flowchart illustrating an operation performed by the obstacle detection unit 16.
  • FIG. 18 is a block diagram of the lean vehicle obstacle detection device 10b according to the first modification.
  • FIG. 19 is a block diagram of the lean vehicle obstacle detection device 10c according to the second modification.
  • FIG. 1A is an explanatory diagram of a lean vehicle 6 including a lean vehicle obstacle detection device 10.
  • FIG. 1A shows image data Im, a top view of the running lean vehicle 6 and the preceding vehicle 100, a left side view of the lean vehicle 6, and a block diagram of the lean vehicle obstacle detection device 10.
  • FIG. 1B is a diagram in which the lean vehicles 6, 6a and the preceding vehicle 100 are viewed in the leftward direction L.
  • 2 to 6 are diagrams showing the image data Im. 1A to 6, the views of the image sensor 14 in the forward direction f are superimposed on the image data Im. 1A, 5 and 6, the lean vehicle 6 is turning rightward. 2 to 4, the lean vehicle body 60 is in an upright state.
  • the forward direction / front of the lean vehicle 6 is defined as the forward direction F / front F.
  • the rear direction / rear of the lean vehicle 6 is defined as a rear direction B / rear B.
  • the left direction and left direction of the lean vehicle 6 are defined as left direction L and left L.
  • the right direction and right direction of the lean vehicle 6 are defined as right direction R and right R.
  • An upward direction / upward direction of the lean vehicle 6 is defined as an upward direction U / upward U.
  • a downward direction and a downward direction in the lean vehicle 6 are defined as a downward direction D and a downward D.
  • the front-back direction of the lean vehicle 6 is defined as the front-back direction FB.
  • the left-right direction of the lean vehicle 6 is defined as the left-right direction LR.
  • the vertical direction of the lean vehicle 6 is defined as a vertical direction UD.
  • the front direction / front of the lean vehicle 6 is the front direction / front of the rider straddling the lean vehicle 6.
  • the term “rearward / rearward in the lean vehicle 6” refers to the rearward / rearward direction of a rider straddling the lean vehicle 6.
  • the left direction / left of the lean vehicle 6 is the left direction / left of a rider straddling the lean vehicle 6.
  • the right and right directions of the lean vehicle 6 are the right and right directions of the rider straddling the lean vehicle 6.
  • upward / upward in the lean vehicle 6 refers to the upward direction / upward of a rider straddling the lean vehicle 6.
  • downward / downward in the lean vehicle 6 refers to the downward direction / downward of a rider straddling the lean vehicle 6.
  • the lean vehicle body 60 can be inclined in the left direction L or the right direction R.
  • the up-down direction and the left-right direction of the lean vehicle body 60 do not correspond to the up-down direction UD and the left-right direction LR, respectively.
  • the up-down direction and the left-right direction of the lean vehicle body 60 in the upright state correspond to the up-down direction UD and the left-right direction LR, respectively.
  • the front direction / front in the lean vehicle body 60 is defined as front direction f / front f.
  • the rear direction / rear of the lean vehicle body 60 is defined as the rear direction b / rear b.
  • the left direction and left direction of the lean vehicle body 60 are defined as left direction l and left l.
  • the right direction and right direction of the lean vehicle body 60 are defined as right direction r and right r.
  • the upward direction and the upward direction of the lean vehicle body 60 are defined as an upward direction u and an upward direction u.
  • the downward direction and downward direction of the lean vehicle body 60 are defined as downward direction d and downward d.
  • the front-back direction in the lean vehicle body 60 is defined as the front-back direction fb.
  • the left-right direction in the lean vehicle body 60 is defined as a left-right direction lr.
  • the vertical direction in the lean vehicle main body 60 is defined as the vertical direction ud.
  • the axis or member extending in the front-rear direction does not necessarily mean only an axis or member parallel to the front-rear direction.
  • the shaft or member extending in the front-rear direction includes a shaft or member inclined in a range of ⁇ 45 ° with respect to the front-rear direction.
  • the axis or member extending in the up-down direction includes an axis or member inclined in a range of ⁇ 45 ° with respect to the up-down direction.
  • the shaft or member extending in the left-right direction includes a shaft or member inclined at a range of ⁇ 45 ° with respect to the left-right direction.
  • the upright state of the lean vehicle body 60 means a state in which the front wheels are neither steered nor tilted in a state where no rider gets on the vehicle and no fuel is mounted on the lean vehicle 6.
  • any two members in this specification are defined as a first member and a second member
  • the relationship between the two members has the following meaning.
  • that the first member is supported by the second member means that the first member is attached to the second member so as not to be movable with respect to the second member (that is, is fixed).
  • the case includes the case where the first member is movably attached to the second member with respect to the second member.
  • the first member is supported by the second member when the first member is directly attached to the second member and when the first member is attached to the second member via the third member. Include both cases.
  • the first member and the second member arranged in the front-rear direction indicate the following states.
  • both the first member and the second member are arranged on an arbitrary straight line indicating the front-back direction.
  • the first member and the second member arranged in the front-rear direction when viewed upward or downward indicate the following states.
  • both the first member and the second member are arranged on an arbitrary straight line indicating the front-back direction.
  • one of the first member and the second member is arranged on an arbitrary straight line indicating the front-back direction. It does not need to be done.
  • the first member and the second member may be in contact with each other.
  • the first member and the second member may be separated.
  • a third member may be present between the first member and the second member. This definition applies to directions other than the front-back direction.
  • the expression that the first member is arranged before the second member indicates the following state.
  • the first member is disposed in front of a plane passing through the front end of the second member and orthogonal to the front-rear direction.
  • the first member and the second member may or may not be arranged in the front-rear direction. This definition applies to directions other than the front-back direction.
  • the expression that the first member is arranged before the second member refers to the following state. At least a part of the first member is disposed in an area through which the second member passes when moving in the forward direction. Therefore, the first member may be contained in a region through which the second member passes when moving in the forward direction, or may protrude from a region through which the second member passes when moving in the forward direction. Is also good. In this case, the first member and the second member are arranged in the front-rear direction. This definition applies to directions other than the front-back direction.
  • the first member when the first member is disposed in front of the second member when viewed in the leftward or rightward direction, it refers to the following state.
  • the first member and the second member are arranged in the front-rear direction, and when viewed in the left or right direction, the portion of the first member facing the second member is the second member. It is arranged before the member.
  • the first member and the second member do not have to be arranged in the front-rear direction in three dimensions. This definition applies to directions other than the front-back direction.
  • each part of the first member is defined as follows.
  • the front part of the first member means the front half of the first member.
  • the rear part of the first member means the rear half of the first member.
  • the left part of the first member means the left half of the first member.
  • the right part of the first member means the right half of the first member.
  • the upper part of the first member means the upper half of the first member.
  • the lower part of the first member means the lower half of the first member.
  • the upper end of the first member means an upper end of the first member.
  • the lower end of the first member means a lower end of the first member.
  • the front end of the first member refers to the front end of the first member.
  • the rear end of the first member means the rear end of the first member.
  • the right end of the first member means the right end of the first member.
  • the left end of the first member means the left end of the first member.
  • the upper end of the first member means the upper end of the first member and its vicinity.
  • the lower end of the first member means the lower end of the first member and its vicinity.
  • the front end of the first member means the front end of the first member and its vicinity.
  • the rear end of the first member means the rear end of the first member and its vicinity.
  • the right end of the first member means the right end of the first member and its vicinity.
  • the left end of the first member means the left end of the first member and its vicinity.
  • the first member means a member constituting the lean vehicle 6.
  • a configuration (a member, a space, or an opening) is formed (located or provided) between the first member and the second member in the direction in which the first member and the second member are arranged.
  • the configuration may or may not protrude from the first member or the second member in a direction orthogonal to the direction in which the first member and the second member are arranged.
  • the lean vehicle 6 is, for example, a motorcycle as shown in FIG. 1A.
  • the lean vehicle 6 includes a lean vehicle main body 60, a front wheel 62, a rear wheel 64, a power source 66, and a steering mechanism 68.
  • the lean vehicle body 60 is inclined leftward L when the lean vehicle 6 turns leftward L.
  • the lean vehicle body 60 is inclined in the right direction R when the lean vehicle 6 turns in the right direction R.
  • the steering mechanism 68 is supported at the front of the lean vehicle body 60.
  • the steering mechanism 68 steers the front wheel 62 by a rider's operation.
  • the steering mechanism 68 includes a steering wheel, a steering shaft, and a front fork.
  • the structures of the handle, the steering shaft, and the front fork are the same as those of a general handle, steering shaft, and a front fork, and a description thereof will be omitted.
  • the front wheel 62 is a steering wheel of the lean vehicle 6.
  • the front wheel 62 is arranged at the front of the lean vehicle 6.
  • the front wheel 62 is supported by a lean vehicle body 60 via a steering mechanism 68.
  • the rider can steer the front wheel 62 by operating the steering wheel of the steering mechanism 68.
  • the rear wheel 64 is a drive wheel of the lean vehicle 6.
  • the rear wheel 64 is arranged at the rear of the lean vehicle 6.
  • the rear wheel 64 is supported by the lean vehicle main body 60 via a swing arm.
  • the rear wheel 64 is rotated by a driving force of a power source 66 described later.
  • the power source 66 generates a driving force for rotating the rear wheel 64.
  • the power source 66 is an engine.
  • the power source 66 is supported by the lean vehicle body 60.
  • the driving force generated by the power source 66 is transmitted to the rear wheels 64 via a transmission mechanism such as a transmission.
  • a transmission mechanism such as a transmission.
  • the rear wheel 64 is rotated by the driving force generated by the power source 66.
  • the lean vehicle 6 further includes a lean vehicle obstacle detection device 10.
  • the lean-vehicle obstacle detection device 10 detects an obstacle existing on a road located in front F of the lean vehicle 6.
  • the lean vehicle obstacle detection device 10 includes an imaging unit 12, an obstacle detection unit 16, and a case 18 (third case).
  • the case 18 houses the imaging unit 12 and the obstacle detection unit 16.
  • the case 18 is fixed to a front part of the lean vehicle body 60. Therefore, when the lean vehicle main body 60 is inclined in the left direction L or the right direction R, the imaging unit 12, the obstacle detection unit 16 and the case 18 are inclined in the left direction L or the right direction R together with the lean vehicle body 60.
  • the imaging unit 12 includes the imaging element 14.
  • the imaging unit 12 outputs image data Im of a space located in front F of the lean vehicle 6 captured by the imaging element 14.
  • the image sensor 14 is provided at the center of the lean vehicle main body 60 in the left-right direction lr so as to incline in the left direction L or the right direction R together with the lean vehicle main body 60.
  • the central portion of the lean vehicle body 60 in the left-right direction lr is a portion located in the middle when the lean vehicle body 60 is divided into three equal parts in the left-right direction lr. As shown in FIG.
  • the image sensor 14 is provided on the lean vehicle main body 60 such that the direction of the optical axis AxL of the image sensor 14 is forward F and downward D when the lean vehicle main body 60 is in the upright state. Have been.
  • the image sensor 14 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device).
  • the image sensor 14 has a rectangular shape having a short side extending in the up-down direction ud and a long side extending in the left-right direction lr.
  • the image sensor 14 has a plurality of pixels arranged in a matrix in the vertical direction ud and the horizontal direction lr. The plurality of pixels convert light incident on the pixel from outside the pixel into an electric signal.
  • the image sensor 14 includes a horizontal pixel 14H, a vertical pixel 14V, an upper left pixel 14lu, an upper right pixel 14ru, a lower left pixel 14ld, and a lower right pixel 14rd.
  • the horizontal pixels 14H are a plurality of pixels that capture an image of a horizontal line H0 located in the forward direction F of the lean vehicle 6 when the lean vehicle body 60 is in the upright state. Therefore, the horizontal pixels 14H are a plurality of linear pixels having a width of one pixel in the vertical direction ud and extending in the horizontal direction lr.
  • the horizontal line H0 is tilted leftward l with respect to the horizontal pixels 14H.
  • the horizontal line H0 tilts in the right direction r with respect to the horizontal pixels 14H.
  • the inclination of the horizontal line H0 in the leftward direction l means that the horizontal line H0 rotates counterclockwise when viewed in the forward direction F.
  • the inclination of the horizontal line H0 in the right direction r means that the horizontal line H0 rotates clockwise when viewed in the forward direction F.
  • the vertical pixels 14 ⁇ / b> V are a plurality of pixels that capture an image of a vertical line located in front F of the center of the lean vehicle main body 60 in the left-right direction lr when the lean vehicle main body 60 is in the upright state.
  • the vertical line is orthogonal to the horizontal line H0. Therefore, the vertical pixel 14V is a plurality of linear pixels having a width of one pixel in the left-right direction lr and extending in the vertical direction ud.
  • the vertical pixel 14V is orthogonal to the horizontal pixel 14H.
  • the upper left pixel 14lu is a plurality of pixels provided above the horizontal pixel 14H and to the left L of the vertical pixel 14V when the lean vehicle body 60 is in the upright state. In other words, the upper left pixel 14lu is a plurality of pixels provided above the horizontal pixel 14H and to the left l of the vertical pixel 14V.
  • the upper left pixel 14lu has a rectangular shape.
  • the upper right pixel 14ru is a plurality of pixels provided above the horizontal pixels 14H and right R from the vertical pixels 14V when the lean vehicle body 60 is in the upright state. In other words, the upper right pixel 14ru is a plurality of pixels provided u above the horizontal pixel 14H and right r from the vertical pixel 14V.
  • the upper right pixel 14ru has a rectangular shape.
  • the lower left pixel 14ld is a plurality of pixels provided below the horizontal pixel 14H and to the left L of the vertical pixel 14V when the lean vehicle body 60 is in the upright state.
  • the lower left pixel 14ld is a plurality of pixels provided below the horizontal pixel 14H and to the left l of the vertical pixel 14V.
  • the lower left pixel 14ld has a rectangular shape.
  • the lower right pixel 14rd is a plurality of pixels provided below the horizontal pixel 14H and to the right R of the vertical pixel 14V when the lean vehicle body 60 is in the upright state.
  • the lower right pixel 14rd is a plurality of pixels provided below the horizontal pixel 14H and on the right side of the vertical pixel 14V.
  • the lower right pixel 14rd has a rectangular shape.
  • the obstacle detection unit 16 detects the preceding vehicle 100 (obstacle) existing on the road located in front F of the lean vehicle 6 based on the image data Im captured by the image sensor 14.
  • the obstacle detection unit 16 is, for example, an integrated circuit (IC), an electronic control unit (ECU) configured by a combination of electronic components and a circuit board, and an image processing board.
  • positions P1 to P3 are defined.
  • the position P1 is a position away from the lean vehicle 6 in the forward direction F by a distance D1.
  • 1A and 2 are image data when the preceding vehicle 100 is located at the position P1.
  • the position P2 is a position separated from the lean vehicle 6 by a distance D2 in the forward direction F.
  • 3 and 5 are image data when the preceding vehicle 100 is located at the position P2.
  • the position P3 is a position separated from the lean vehicle 6 by a distance D3 in the forward direction F. 4 and 6 are image data when the preceding vehicle 100 is located at the position P3.
  • the relationship of D1> D2> D3 holds. Therefore, the size of the preceding vehicle 100 when the preceding vehicle 100 is located at the position P1 is the smallest. The size of the preceding vehicle 100 when the preceding vehicle 100 is located at the position P3 is the largest.
  • the preceding vehicle 100 is located in the central area 150 that simultaneously satisfies the following (a) and (b) in the image data Im.
  • (A) A region d slightly below the position u at the intersection of the horizontal pixel 14H and the vertical pixel 14V.
  • (B) A region near the vertical pixel 14V.
  • the obstacle detection unit 16 determines the lean vehicle 6 based on at least a part of the portion captured by the central region 150 in the image data Im captured by the plurality of pixels. The preceding vehicle 100 existing on the road located ahead of F is detected.
  • the preceding vehicle 100 when the lean vehicle 6 is turning in the right direction R and the lean vehicle body 60 is tilted in the right direction R, when the preceding vehicle 100 is located at the position P1, as shown in FIG. Appears near the upper right corner of the image data Im.
  • the preceding vehicle 100 When the preceding vehicle 100 is located at the position P2 as the lean vehicle 6 advances, as shown in FIG. 5, the preceding vehicle 100 moves in the lower left direction ld in the image data Im. At the same time, the leading vehicle 100 becomes larger.
  • the preceding vehicle 100 is located at the position P3 as the lean vehicle 6 advances, as shown in FIG. 6, the preceding vehicle 100 further moves in the lower left direction ld in the image data Im. At the same time, the leading vehicle 100 becomes even larger.
  • the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 (obstacle) existing on the road located in front F of the lean vehicle 6 is detected based on a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru.
  • the upper right area 140ru is the right and upper part of the upper right pixel 14ru. More specifically, the obstacle detection unit 16 performs the following operations (1) to (3).
  • the preceding vehicle 100 When the preceding vehicle 100 is located at the position P1 (FIG. 1A) In FIG. 1A, the preceding vehicle 100 does not protrude from a portion of the image data Im captured by the upper right pixel 14ru. Therefore, when the lean vehicle body 60 is tilted in the right direction R because the lean vehicle 6 turns in the right direction R, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper right pixel 14ru. Is detected only in the preceding vehicle 100 existing in the vehicle. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper right pixel 14ru.
  • the preceding vehicle 100 does not protrude from a portion of the image data Im captured by the upper right area 140ru of the upper right pixel 14ru. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 uses the upper right area 140ru of the upper right pixel 14ru in the image data Im. The preceding vehicle 100 existing only in the imaged portion is detected.
  • the obstacle detection unit 16 sets the upper right area 140ru of the upper right pixel 14ru in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
  • the obstacle detection unit 16 detects the upper right pixel 14ru and the right upper pixel 14ru in the image data Im.
  • the preceding vehicle 100 existing only in the portion imaged by the lower pixel 14rd is detected. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines whether the upper right pixel 14ru and the lower right pixel 14rd in the image data Im are present. Does not detect the preceding vehicle 100 that is partially protruding from the part imaged by.
  • the obstacle detection unit 16 detects the preceding vehicle 100 existing in the entire image data Im when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R.
  • the obstacle detection unit 16 determines at least the upper left pixel of the image data Im captured by the plurality of pixels. Based on a part of the portion imaged by the upper left area 140lu of 14lu, the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected.
  • the upper left region 140lu is a left upper portion of the upper left pixel 14lu. More specifically, the obstacle detection unit 16 performs the following operations (4) to (6).
  • the obstacle detection unit 16 When the Leading Vehicle 100 is at the Position P1 When the lean vehicle 6 is tilted to the left L because the lean vehicle 6 turns to the left L, the obstacle detection unit 16 outputs the image data Im. Of the vehicle 100 existing only in the part imaged by the upper left pixel 14lu of the vehicle. Therefore, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper left pixel 14lu. It does not detect the preceding vehicle 100 that is partially protruding from the vehicle.
  • the obstacle detection unit 16 detects the upper left pixel 14lu in the image data Im. Is detected only in the portion imaged by the upper left area 140lu of the vehicle. Therefore, when the lean vehicle body 60 is tilted in the left direction L because the lean vehicle 6 turns in the left direction L, the obstacle detection unit 16 detects the upper left area 140lu of the upper left pixel 14lu in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
  • the obstacle detection unit 16 outputs the image data Im when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. , The preceding vehicle 100 existing in at least the portion imaged by the upper left pixel 14lu and the portion imaged by the lower left pixel 14ld is detected. In the present embodiment, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects the upper left pixel 14lu and the lower left pixel of the image data Im. The preceding vehicle 100 existing only in the part imaged by the pixel 14ld is detected.
  • the obstacle detection unit 16 detects the upper left pixel 14lu and the lower left pixel 14ld in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
  • the obstacle detection unit 16 outputs the image data Im when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. The preceding vehicle 100 existing in the whole is detected.
  • the lean vehicle obstacle detection device 10 it is possible to detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. More specifically, when the lean vehicle body 60 inclines leftward L because the lean vehicle 6 turns leftward L, the preceding vehicle 100 located on the course of the lean vehicle 6 is moved to the upper left of the image data Im. It is highly likely that it will appear in the part imaged by the upper left area 140lu of the pixel 14lu. Therefore, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected.
  • the obstacle detection unit 16 can detect the preceding vehicle 100 when the lean vehicle main body 60 is inclined in the left direction L.
  • the lean vehicle main body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the preceding vehicle 100 located on the course of the lean vehicle 6 becomes the upper right pixel 14ru in the image data Im. Is likely to appear in the portion imaged by the upper right area 140ru of the image.
  • the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected based on a part of the upper right pixel 14ru captured by the upper right region 140ru.
  • the obstacle detection unit 16 can detect the preceding vehicle 100 when the lean vehicle body 60 is inclined in the right direction R.
  • the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases. More specifically, the preceding vehicle 100 often exists in an area located below the horizontal line H0 in the image data Im. Therefore, if the area occupied by d below the horizontal line H0 occupies a higher proportion in the image data Im, the probability that the preceding vehicle 100 is imaged by the image sensor 14 increases. Therefore, the image sensor 14 is provided on the lean vehicle main body 60 such that the direction of the optical axis AxL of the image sensor 14 is forward F and downward D when the lean vehicle 6a is in the upright state. Accordingly, when the preceding vehicle 100 exists in front F of the lean vehicle 6, the image sensor 14 can image the preceding vehicle 100 with a high probability. As a result, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases.
  • FIG. 7 is an explanatory diagram of the lean vehicle 6a including the lean vehicle obstacle detection device 10a.
  • FIG. 7 shows a left side view and a rear view of the lean vehicle 6a, and a block diagram of the lean vehicle obstacle detection device 10a.
  • 8 to 10 and FIGS. 12 to 15 are diagrams illustrating the image data Im or the converted image data Imt. 8 to 10 and 12 to 15, the views of the image sensor 14 in the front direction F are superimposed on the image data Im. 8, 9, 14, and 15, the lean vehicle body 60 is inclined in the right direction R.
  • FIGS. 1 is an explanatory diagram of the lean vehicle 6a including the lean vehicle obstacle detection device 10a.
  • FIG. 7 shows a left side view and a rear view of the lean vehicle 6a, and a block diagram of the lean vehicle obstacle detection device 10a.
  • 8 to 10 and FIGS. 12 to 15 are diagrams illustrating the image data Im or the converted image data Imt. 8 to 10 and 12 to 15, the views of the image
  • FIG. 11 is a first area determination table.
  • the lean vehicle 6a includes a lean vehicle main body 60, a front wheel 62, a rear wheel 64, a power source 66, and a steering mechanism 68.
  • the lean vehicle body 60, the front wheel 62, the rear wheel 64, the power source 66, and the steering mechanism 68 of the lean vehicle 6a are the lean vehicle body 60, the front wheel 62, the rear wheel 64, the power source 66, and the steering mechanism 68 of the lean vehicle 6. Therefore, the description is omitted.
  • the lean vehicle 6a further includes a lean vehicle obstacle detection device 10a and a lean vehicle inclination angle sensor 40. As shown in FIG. 7, the lean vehicle inclination angle sensor 40 is provided outside the lean vehicle obstacle detection device 10a. The lean vehicle inclination angle sensor 40 is fixed to the lean vehicle main body 60. When the lean vehicle body 60 is tilted leftward or rightward R because the lean vehicle 6 turns leftward or rightward, the lean vehicle inclination angle sensor 40 detects that the lean vehicle body 60 A physical quantity related to the lean angle of the lean vehicle 6a indicating the angle inclined in the direction L or the right direction R is detected.
  • the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle ⁇ .
  • the lean vehicle tilt angle ⁇ is such that the lean vehicle body 60 is tilted when the lean vehicle body 60 is tilted in the left direction L or right direction R because the lean vehicle 6a turns in the left direction L or right direction R.
  • the lean vehicle inclination angle ⁇ is an angle formed by the center line Ax2 of the lean vehicle main body 60 with respect to the vertical axis Ax1 extending in the up-down direction UD.
  • the center line Ax2 is a straight line that is located at the center of the lean vehicle body 60 in the left-right direction lr and extends in the up-down direction ud when viewed in the front direction F.
  • the center line Ax2 inclines in the left direction L or the right direction R when the lean vehicle body 60 inclines in the left direction L or the right direction R.
  • the lean vehicle tilt angle ⁇ takes a positive value when the lean vehicle body 60 is tilted leftward L, and takes a negative value when the lean vehicle body 60 tilts rightward R.
  • the lean vehicle obstacle detection device 10a detects an obstacle existing on a road located in front F of the lean vehicle 6a.
  • the lean vehicle obstacle detection device 10a includes an imaging unit 12, an obstacle detection unit 16, and a case 18. However, since the imaging unit 12 and the case 18 of the lean vehicle 6a are the same as the imaging unit 12 and the case 18 of the lean vehicle 6, further description is omitted.
  • the obstacle detection unit 16 detects at least the upper left corner of image data Im captured by a plurality of pixels. Based on a part of the portion imaged by the upper left area 140lu of the pixel 14lu (see FIG. 8) and the lean vehicle inclination angle ⁇ acquired by the lean vehicle inclination angle sensor 40, on the road located ahead of the lean vehicle 6 in front F. An existing preceding vehicle 100 is detected.
  • the obstacle detection unit 16 determines at least the upper right of image data Im captured by a plurality of pixels.
  • the obstacle detection unit 16 is, for example, an integrated circuit (IC), an electronic control unit (ECU) configured by a combination of electronic components and a circuit board, and an image processing board.
  • the obstacle detection unit 16 includes a lean vehicle inclination angle acquisition unit 30, a data inclination conversion unit 32, an area determination unit 34, and an obstacle detection unit calculation unit 36.
  • the lean vehicle inclination angle acquisition unit 30 acquires a physical quantity related to the inclination angle of the lean vehicle 6a from the lean vehicle inclination angle sensor 40.
  • the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle ⁇ .
  • the lean vehicle inclination angle acquisition unit 30 is, for example, a terminal provided in the ECU of the obstacle detection unit 16. The terminal is electrically connected to the lean vehicle inclination angle sensor 40. That is, the electric signal of the lean vehicle inclination angle ⁇ is input to the obstacle detection unit 16 via the lean vehicle inclination angle acquisition unit 30 which is a terminal. As a result, the lean vehicle inclination angle acquisition unit 30 acquires the lean vehicle inclination angle ⁇ .
  • the data tilt converter 32 When the lean vehicle main body 60 is tilted leftward L because the lean vehicle 6a turns leftward L, the data tilt converter 32 performs at least the upper left of image data Im captured by a plurality of pixels. A part of the part imaged by the upper left region 140lu (see FIG. 8) of the pixel 14lu is subjected to data conversion based on the lean vehicle inclination angle ⁇ acquired by the lean vehicle inclination angle acquisition unit 30. In addition, the data inclination conversion unit 32 outputs the image data Im captured by a plurality of pixels when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6a turns rightward R. At least a part of the part imaged by the upper right region 140ru (see FIG.
  • the data tilt converter 32 when the lean vehicle main body 60 is tilted leftward or rightward R because the lean vehicle 6a turns leftward or rightward R, the data tilt converter 32 outputs image data. Data conversion is performed on the entire Im based on the lean vehicle inclination angle ⁇ acquired by the lean vehicle inclination angle acquisition unit 30. More specifically, the imaging unit 12 outputs the image data Im shown in FIG. 1A. As shown in FIG. 8, the data inclination converter 32 performs data conversion so that the image data Im is rotated by the lean vehicle inclination angle ⁇ .
  • converted image data Imt the converted image data Imt.
  • the area determination unit 34 determines the position of the area in which the obstacle detection is performed in the converted image data Imt based on the lean vehicle inclination angle ⁇ . More specifically, as shown in FIGS. 8, 9, and 10, the position where the preceding vehicle 100 appears increases as the absolute value of the lean vehicle inclination angle ⁇ increases. The height is a distance in the vertical direction ud from the horizontal pixel H to the preceding vehicle 100. Therefore, it is preferable that the position of the area in which obstacle detection is performed be changed according to the lean vehicle inclination angle ⁇ .
  • the area determination unit 34 includes a memory for storing the first area determination table shown in FIG.
  • the first area determination table is a table showing a relationship between the lean vehicle inclination angle ⁇ and the center coordinates C1 (x1 ( ⁇ ), y1 ( ⁇ )) of the area A1.
  • the center coordinate C1 (x1 ( ⁇ ), y1 ( ⁇ )) of the area A1 is the intersection of the diagonal lines of the area A1.
  • the origin is the intersection of the vertical pixel 14V and the horizontal pixel 14H.
  • the horizontal pixel 14H is on the x-axis.
  • the positive direction of the x-axis is the right direction r.
  • the vertical pixel 14V is on the y-axis.
  • the positive direction of the y-axis is the upward direction u.
  • the center coordinates C1 (x1 ( ⁇ ), y1 ( ⁇ )) of the area A1 change as follows when the lean vehicle 6 inclines leftward L or rightward R.
  • FIG. 10 The areas A1 to A3 have a rectangular shape having a short side parallel to the vertical direction UD and a long side parallel to the horizontal direction LR.
  • the areas A1 to A3 have shapes similar to each other.
  • the sizes of the areas A1 to A3 are different from each other as described below.
  • positions P1 to P3 are defined.
  • the position P1 is a position away from the lean vehicle 6 in the forward direction F by a distance D1.
  • the image data in FIG. 10 is image data when the preceding vehicle 100 is located at the position P1.
  • the position P2 is a position separated from the lean vehicle 6 by a distance D2 in the forward direction F.
  • the image data in FIG. 12 is image data when the preceding vehicle 100 is located at the position P2.
  • the position P3 is a position separated from the lean vehicle 6 by a distance D3 in the forward direction F.
  • the image data in FIG. 13 is image data when the preceding vehicle 100 is located at the position P3.
  • the relationship of D1> D2> D3 holds.
  • the size of the lean vehicle 6 when the preceding vehicle 100 is located at the position P1 is the smallest.
  • the size of the lean vehicle 6 when the preceding vehicle 100 is located at the position P3 is the largest. Therefore, as shown in FIGS. 10 and 12, the size of the area A1 is smaller than the size of the area A2. As shown in FIGS. 12 and 13, the size of the area A2 is smaller than the size of the area A3.
  • the area determination unit 34 further stores a second area determination table (not shown) indicating the relationship between the lean vehicle inclination angle ⁇ and the center coordinates C2 (x2 ( ⁇ ), y2 ( ⁇ )) of the area A2. are doing.
  • the structure of the second area determination table is the same as the structure of the first area determination table, and will not be described.
  • the center coordinates C2 (x2 ( ⁇ ), y2 ( ⁇ )) of the area A2 are the intersections of the diagonal lines of the area A2, as shown in FIG.
  • the center coordinates C2 (x2 ( ⁇ ), y2 ( ⁇ )) of the area A2 change as follows when the lean vehicle 6 inclines leftward L or rightward R.
  • the area determination unit 34 further stores a third area determination table (not shown) indicating the relationship between the lean vehicle inclination angle ⁇ and the center coordinates C3 (x3 ( ⁇ ), y3 ( ⁇ )) of the area A3. are doing.
  • the structure of the third area determination table is the same as the structure of the first area determination table, and will not be described.
  • the center coordinate C3 (x3 ( ⁇ ), y3 ( ⁇ )) of the area A3 is the intersection of the diagonal lines of the area A3, as shown in FIG.
  • the center coordinates C3 (x3 ( ⁇ ), y3 ( ⁇ )) of the area A3 change as follows when the lean vehicle 6 is tilted leftward L or rightward R.
  • the obstacle detection unit calculation unit 36 moves the frame F1 and scans the area A1.
  • the frame F1 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P1 (see FIG. 1B).
  • the short side of the frame F1 extends in the up-down direction UD.
  • the long side of the frame F1 extends in the left-right direction LR.
  • the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1.
  • the obstacle detection unit calculation unit 36 moves the frame F2 and scans the area A2.
  • the frame F2 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P2 (see FIG. 1B). Therefore, the size of the frame F2 is larger than the size of the frame F1.
  • the short side of the frame F2 extends in the up-down direction UD.
  • the long side of the frame F2 extends in the left-right direction LR.
  • the obstacle detection unit calculation unit 36 scans the area A3 by moving the frame F3.
  • the frame F3 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P3 (see FIG. 1B). Therefore, the size of the frame F3 is larger than the size of the frame F2.
  • the short side of the frame F3 extends in the up-down direction UD.
  • the long side of the frame F3 extends in the left-right direction LR.
  • FIGS. 16 and FIG. 17 are flowcharts illustrating the operation performed by the obstacle detection unit 16.
  • the image data Im and the converted image data Imt shown in FIGS. 1A and 8 will be described as examples.
  • This process is started when the power of the lean vehicle 6 is switched from the OFF state to the ON state.
  • the imaging unit 12 captures the image data Im of the space located in front of the lean vehicle 6 by the imaging device 14 and outputs the image data Im to the obstacle detection unit 16.
  • the obstacle detection unit 16 acquires the image data Im shown in FIG. 1A (Step S1).
  • the lean vehicle inclination angle acquisition unit 30 acquires the lean vehicle inclination angle ⁇ from the lean vehicle inclination angle sensor 40 (Step S2). Specifically, the lean vehicle inclination angle sensor 40 outputs an electric signal of the lean vehicle inclination angle ⁇ . This electric signal is input to the obstacle detection unit 16 via the lean vehicle inclination angle acquisition unit 30 which is a terminal of the obstacle detection unit 16.
  • the data tilt converter 32 converts the image data Im to obtain converted image data Imt (step S3). More specifically, the data tilt converter 32 performs data conversion so as to rotate the image data Im shown in FIG. 1A by the lean vehicle tilt angle ⁇ , and generates converted image data Imt shown in FIG.
  • the area determination unit 34 determines the center coordinates C1 (x1 ( ⁇ ), y1 ( ⁇ )) of the area A1 based on the first area determination table shown in FIG. 11 and the lean vehicle inclination angle ⁇ (step S4).
  • the lean vehicle 6 is inclined rightward R. Therefore, the center coordinate C1 (x1 ( ⁇ ), y1 ( ⁇ )) of the area A1 is located near the upper right corner of the converted image data Imt.
  • the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A1 of the converted image data Imt (Step S5). Therefore, the obstacle detection unit calculation unit 36 scans the area A1 by moving the frame F1 as shown in FIG. The area A1 protrudes from the upper right area 140ru. Therefore, the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in which at least a part of the preceding vehicle 100 is imaged by the upper right area 140ru of the upper right pixel 14ru. Although not shown, when the lean vehicle 6 is inclined in the left direction L, the obstacle detection unit calculation unit 36 captures at least a part of the preceding vehicle 100 using the upper left area 140lu of the upper left pixel 14lu. The detected preceding vehicle 100 is detected.
  • the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A1 (step S6). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F1 exists. When the preceding vehicle 100 that fits in the frame F1 exists, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1. At this time, the process proceeds to step S7. When the preceding vehicle 100 that fits in the frame F1 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P1. At this time, the process proceeds to step S8. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1.
  • the obstacle detection unit calculation unit 36 When the preceding vehicle 100 exists in the area A1, the obstacle detection unit calculation unit 36 outputs a first obstacle detection signal Sig1 indicating that the preceding vehicle 100 exists at the position P1 to the outside of the obstacle detection unit 16. (Step S7). Thereafter, the processing proceeds to step S9.
  • the obstacle detection unit calculation unit 36 When the preceding vehicle 100 does not exist in the area A1, the obstacle detection unit calculation unit 36 outputs the first obstacle non-detection signal Sig11 indicating that the preceding vehicle 100 does not exist at the position P1 to the outside of the obstacle detection unit calculation unit 36. (Step S8). Thereafter, the processing proceeds to step S9.
  • step S9 the area determination unit 34 determines the center coordinates C2 (x2 ( ⁇ ), y2 ( ⁇ )) of the area A2 based on the second area determination table and the lean vehicle inclination angle ⁇ (step S9).
  • the center coordinate C2 (x2 ( ⁇ ), y2 ( ⁇ )) of the area A2 is the center coordinate C1 (x1 ( ⁇ ), y1 ( ⁇ ) of the area A1 in the converted image data Imt. ) Is located at the lower left ld.
  • the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A2 of the converted image data Imt (Step S10). Therefore, the obstacle detection unit calculation unit 36 scans the area A2 by moving the frame F2 as shown in FIG. The area A2 protrudes from the upper right pixel 14ru to the lower right pixel 14rd. Therefore, the obstacle detection unit calculation unit 36 determines at least a part of a part captured by the upper right pixel 14ru and a part of a part captured by the lower right pixel 14rd in the converted image data Imt captured by the plurality of pixels. The preceding vehicle 100 is detected based on.
  • the obstacle detection unit calculation unit 36 includes at least a part of the part captured by the upper left pixel 14lu and a part of the part captured by the lower left pixel 14ld of the converted image data Imt captured by the plurality of pixels. Based on this, the preceding vehicle 100 is detected.
  • the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A2 (step S11). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F2 exists. However, the obstacle detection unit calculation unit 36 excludes the preceding vehicle 100 that is determined to fit in the frame F1 in step S6 from the target of the determination in step S11. When the preceding vehicle 100 that fits in the frame F2 exists, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P2. At this time, the process proceeds to step S12. When the preceding vehicle 100 that fits in the frame F2 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P2. At this time, the process proceeds to step S13. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P2.
  • the obstacle detection unit calculation unit 36 When the preceding vehicle 100 exists in the area A2, the obstacle detection unit calculation unit 36 outputs a second obstacle detection signal Sig2 indicating that the preceding vehicle 100 exists at the position P2 to the outside of the obstacle detection unit 16. (Step S12). Thereafter, the processing proceeds to step S14.
  • the obstacle detection unit calculation unit 36 outputs a second obstacle non-detection signal Sig12 indicating that the preceding vehicle 100 does not exist at the position P2 to the outside of the obstacle detection unit 16. (Step S13). Thereafter, the processing proceeds to step S14.
  • step S14 the area determination unit 34 determines the center coordinates C3 (x3 ( ⁇ ), y3 ( ⁇ )) of the area A3 based on the third area determination table and the lean vehicle inclination angle ⁇ (step S14).
  • the center coordinate C3 (x3 ( ⁇ ), y3 ( ⁇ )) of the area A3 is the center coordinate C2 (x2 ( ⁇ ), y2 ( ⁇ ) of the area A2 in the converted image data Imt. ) Is located at the lower left ld.
  • the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A3 of the converted image data Imt (Step S15). Therefore, the obstacle detection unit calculation unit 36 scans the area A3 by moving the frame F3 as shown in FIG. Then, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A3 (Step S16). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F3 exists. However, the obstacle detection unit calculation unit 36 excludes the preceding vehicle 100 determined to fit in the frame F1 in step S6 and the preceding vehicle 100 determined to fit in the frame F2 in step S11 from the determination target in step S16. .
  • the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P3. At this time, the process proceeds to step S17. When the preceding vehicle 100 that fits in the frame F3 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P3. At this time, the process proceeds to step S18. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that there is no preceding vehicle at the position P3.
  • the obstacle detection unit calculation unit 36 When the preceding vehicle 100 exists in the area A3, the obstacle detection unit calculation unit 36 outputs a third obstacle detection signal Sig3 indicating that the preceding vehicle 100 exists at the position P3 to the outside of the obstacle detection unit 16. (Step S17). Thereafter, the processing proceeds to step S19.
  • the obstacle detection unit calculation unit 36 outputs a third obstacle non-detection signal Sig13 indicating that the preceding vehicle 100 does not exist at the position P3 to the outside of the obstacle detection unit 16. (Step S18). Thereafter, the processing proceeds to step S19.
  • step S19 the obstacle detection unit calculation unit 36 determines whether or not to end the processing (step S19). Therefore, the obstacle detection unit calculation unit 36 determines whether the power of the lean vehicle 6 has been switched from the ON state to the OFF state. When the power of the lean vehicle 6 is switched from the ON state to the OFF state, the obstacle detection unit calculation unit 36 determines to end this processing. If the power of the lean vehicle 6 has not been switched from the ON state to the OFF state, the obstacle detection unit calculation unit 36 determines that this processing is not to be ended. In this case, the process returns to step S1.
  • the preceding vehicle 100 existing on the road located in front of the lean vehicle 6 can be detected for the same reason as the lean vehicle obstacle detection device 10. Further, according to the lean vehicle obstacle detection device 10a, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10.
  • the obstacle detection unit calculation unit 36 determines whether the obstacle detection unit calculation unit 36 is on the road located ahead of the lean vehicle 6a based on the lean vehicle inclination angle ⁇ acquired by the lean vehicle inclination angle acquisition unit 30. Is detected. Therefore, even when the lean vehicle main body 60 inclines in the leftward direction L or the rightward direction R, even if the image data Im inclines in the rightward direction r or the leftward direction l, the obstacle detecting unit calculation unit 36 is in front of the lean vehicle 6. The preceding vehicle 100 existing on the road located at F can be easily detected.
  • the object detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6a. More specifically, when the lean vehicle body 60 tilts in the left direction L or the right direction R, the image data Im tilts in the right direction r or the left direction l. In this case, the preceding vehicle 100 also leans rightward r or leftward l. Therefore, it is necessary for the obstacle detection unit calculation unit 36 to detect the preceding vehicle 100 inclined in the right direction r or the left direction l.
  • the data tilt converter 32 converts the image data Im in the space located in front F of the lean vehicle 6a based on the lean vehicle tilt angle ⁇ .
  • the angle at which the preceding vehicle 100 is inclined in the right direction r or the left direction l becomes small.
  • the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6a.
  • the IC of the four-wheeled vehicle It can be used for the object detection unit calculation unit 36. More specifically, the lean vehicle body 60 tilts in the left direction L when the lean vehicle 6a turns in the left direction L, and tilts in the right direction R when the lean vehicle 6a turns in the right direction R. Therefore, when the lean vehicle 6a turns leftward L, the image data Im tilts rightward r. At this time, the preceding vehicle 100 also leans rightward r. When the lean vehicle 6a turns rightward R, the image data Im tilts leftward l. At this time, the preceding vehicle 100 also leans leftward l.
  • the preceding vehicle 100 also hardly leans. Therefore, the IC of the four-wheeled vehicle detects the preceding vehicle 100 that is not inclined leftward or rightward. As a result, it is difficult for the IC of the four-wheeled vehicle to detect the preceding vehicle 100 inclined in the left direction l or the right direction r in the image data Im.
  • the data tilt converter 32 converts the image data Im in the space located in front F of the lean vehicle 6a based on the lean vehicle tilt angle ⁇ .
  • the angle at which the preceding vehicle 100 is inclined in the right direction r or the left direction l becomes small.
  • the obstacle detection unit calculation unit 36 using the IC of the four-wheeled vehicle can detect the preceding vehicle 100 based on the converted image data Imt.
  • FIG. 18 is a block diagram of the lean vehicle obstacle detection device 10b according to the first modification.
  • the lean vehicle obstacle detection device 10b includes an imaging unit 12, an obstacle detection unit 16, a case 18a (first case), and a case 18b (second case).
  • the case 18a houses the imaging unit 12.
  • the case 18b houses the obstacle detection unit 16.
  • the cases 18a and 18b are fixed to the front part of the lean vehicle body 60. Therefore, when the lean vehicle main body 60 is tilted leftward or rightward R, the imaging unit 12, the obstacle detection unit 16, and the cases 18a and 18b are tilted leftward or rightward together with the lean vehicle main body 60.
  • the imaging unit 12 and the obstacle detection unit 16 of the lean vehicle obstacle detection device 10b are the same as the imaging unit 12 and the obstacle detection unit 16 of the lean vehicle obstacle detection device 10a, and thus description thereof is omitted.
  • the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 can be detected for the same reason as the lean-vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10b, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10a. According to the lean vehicle obstacle detection device 10b, the lean vehicle main body 60 is inclined in the left direction L or the right direction R for the same reason as the lean vehicle obstacle detection device 10a, so that the image data Im becomes right.
  • the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. Further, according to the lean vehicle obstacle detection device 10b, for the same reason as the lean vehicle obstacle detection device 10a, an IC of a four-wheeled vehicle can be used for the obstacle detection unit calculation unit 36.
  • FIG. 19 is a block diagram of the lean vehicle obstacle detection device 10c according to the second modification.
  • the obstacle detection unit 16 includes a lean vehicle inclination angle acquisition unit 30.
  • the obstacle detection unit 16 includes an image tilt angle acquisition unit 50.
  • the image tilt angle acquisition unit 50 When the lean vehicle body 60 is tilted leftward or rightward R because the lean vehicle 6a turns leftward or rightward R, the image tilt angle acquisition unit 50 outputs the front F before the lean vehicle 6a. Of the lean vehicle 6a is acquired based on the image data Im of the space located at the position. In this modification, the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle ⁇ .
  • the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 can be detected for the same reason as the lean-vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10c, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10c, the image data Im is shifted to the right by tilting the lean vehicle body 60 in the left direction L or the right direction R for the same reason as the lean vehicle obstacle detection device 10a.
  • the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. Further, according to the lean vehicle obstacle detection device 10c, the IC of the four-wheeled vehicle can be used for the obstacle detection unit calculation unit 36 for the same reason as the lean vehicle obstacle detection device 10a.
  • the lean vehicles 6, 6a are not limited to motorcycles.
  • the lean vehicle 6, 6a leans leftward when the lean vehicle 6, 6a turns leftward L, and leans rightward R when the lean vehicle 6, 6a turns rightward R.
  • the lean vehicle 6, 6a may be, for example, a three-wheel vehicle having two front wheels and one rear wheel, or a three-wheel vehicle having one front wheel and two rear wheels.
  • the vehicle may be a four-wheel vehicle including two front wheels and two rear wheels.
  • the lean vehicles 6, 6a may be personal watercrafts.
  • the lean vehicles 6, 6a are, for example, the first obstacle detection signal Sig1, the second obstacle detection signal Sig2, the third obstacle detection signal Sig3, the first obstacle non-detection signal Sig11, and the second obstacle non-detection.
  • the signal Sig12 and the third obstacle non-detection signal Sig13 can be used for various notifications and vehicle control.
  • the lean vehicles 6, 6a are provided with, for example, a first obstacle detection signal Sig1, a second obstacle detection signal Sig2, a third obstacle detection signal Sig3, a first obstacle non-detection signal Sig11, and a second obstacle non-detection signal Sig12. Based on the third obstacle non-detection signal Sig13, the rider may be notified that the preceding vehicle 100 is present in the forward direction F.
  • the notification method may be auditory, visual, or tactile.
  • the lean vehicle obstacle detection device 10 similarly to the lean vehicle obstacle detection devices 10a and 10b, the lean vehicle obstacle detection device 10 also includes a first obstacle detection signal Sig1, a second obstacle detection signal Sig2, a third obstacle detection signal Sig3, The first obstacle non-detection signal Sig11, the second obstacle non-detection signal Sig12, and the third obstacle non-detection signal Sig13 may be output.
  • the obstacle is the preceding vehicle 100 (automobile).
  • the obstacle is not limited to the preceding vehicle 100 (automobile), but may be a vehicle other than the automobile, a wall, a guardrail, a person, an animal, and the like.
  • the IC of the data inclination conversion unit 32 and the IC of the obstacle detection unit calculation unit 36 are provided separately.
  • the data inclination conversion unit 32 and the obstacle detection unit calculation unit 36 may be configured by one IC.
  • the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle ⁇ .
  • the physical quantity related to the lean angle of the lean vehicle 6a is not limited to the lean vehicle tilt angle ⁇ .
  • the physical quantity related to the lean angle of the lean vehicle 6a may be a lean vehicle tilt angular velocity obtained by time-differentiating the lean vehicle tilt angle ⁇ .
  • the lean angular velocity of the lean vehicle can be detected by, for example, an angular velocity sensor of an IMU (Inertial Measurement Unit) of the lean vehicle 6a.
  • IMU Inertial Measurement Unit
  • the obstacle detection unit 16 acquires the lean vehicle inclination angle ⁇ by integrating the lean vehicle inclination angular velocity with time. Is also good.
  • the lean-vehicle obstacle detection devices 10a and 10b detect obstacles in three types of areas A1 to A3.
  • the lean vehicle obstacle detection devices 10a and 10b may perform obstacle detection using one type of area, two types of area, or four or more types of areas. As the number of areas increases, the distance from the lean vehicle 6, 6a to the preceding vehicle 100 can be detected with higher accuracy.
  • the obstacle detection unit 16 determines that the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L.
  • the preceding vehicle 100 may be detected based on at least a part of the image taken by the upper left area 140lu of the upper left pixel 14lu in the image data Im captured by the plurality of pixels. Further, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 may be detected based on a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru.
  • the obstacle detection unit 16 detects the upper left area 140lu of the upper left pixel 14lu in the image data Im.
  • the preceding vehicle 100 may be detected based on a part of the imaged part and a part imaged by another region.
  • the obstacle detection unit 16 uses the upper right area 140ru of the upper right pixel 14ru in the image data Im.
  • the preceding vehicle 100 may be detected based on a part of the imaged part and a part imaged by another region. For example, in FIG.
  • the preceding vehicle 100 exists over a portion imaged by the upper right area 140ru and the lower right area 140rd in the converted image data Imt. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicles 6 and 6a (not shown) turn rightward R, the obstacle detection unit 16 (not shown) Based on at least a part of the image taken by the upper right region 140ru of the upper right pixel 14ru and a part of the image taken by the lower right region 140rd of the upper right pixel 14ru in the image data Im taken by the pixel 100 may be detected.
  • the obstacle detection unit 16 (not shown) The preceding vehicle 100 is detected based on at least a part of the image captured by the upper left area 140lu of the upper left pixel 14lu and a part of the image captured by the lower left area 140ld of the image data Im captured by the pixel Is also good.
  • the area in which the obstacle detection is performed may change according to the distance from the lean vehicle 6, 6a to the preceding vehicle 100 and the lean vehicle inclination angle ⁇ .
  • the obstacle detection unit 16 determines that when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the image data Im captured by a plurality of pixels "Detecting the preceding vehicle 100 based on at least a part of the portion captured by the upper left region 140lu of the upper left pixel 14lu" means that the obstacle detector 16 detects the upper left pixel of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 may be detected based on all of the part imaged by the upper left area 140lu of the 14lu, or the obstacle detector 16 may detect the preceding vehicle 100 based on the upper left pixel 14lu of the image data Im captured by a plurality of pixels.
  • the preceding vehicle 100 may be detected based on a part of the part imaged by the area 140lu.
  • the “obstacle detection unit 16 determines whether the lean vehicle 6 turns rightward R and the lean vehicle body 60 is tilted rightward R. "Detecting the preceding vehicle 100 based on at least a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru” means that the obstacle detector 16 detects the upper right pixel of the image data Im captured by the plurality of pixels.
  • the preceding vehicle 100 may be detected based on all of the part imaged by the upper right area 140ru of the 14ru, or the obstacle detector 16 may detect the preceding vehicle 100 by the upper right pixel 14ru of the image data Im captured by a plurality of pixels.
  • the preceding vehicle 100 may be detected based on a part of the part imaged by the area 140ru.
  • the data tilt converter 32 rotates the entire image data Im.
  • the data tilt converter 32 may rotate only the area in the image data Im where the obstacle is to be detected. That is, when the lean vehicle body 60 is tilted to the left L because the lean vehicle 6a turns to the left L, the data tilt converter 32 outputs the image data Im captured by a plurality of pixels. At least a part of the part captured by the upper left region 140lu of the upper left pixel 14lu may be subjected to data conversion based on the lean vehicle inclination angle ⁇ .
  • the data inclination conversion unit 32 outputs the image data Im captured by a plurality of pixels when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6a turns rightward R. At least a part of the part imaged by the upper right region 140ru of the upper right pixel 14ru may be subjected to data conversion based on the lean vehicle inclination angle ⁇ .
  • the power source 66 of the lean vehicles 6, 6a is not limited to the engine, but may be an electric motor or a combination of the engine and the electric motor. Further, the lean vehicles 6, 6a may be a bicycle without the power source 66. Further, the lean vehicles 6, 6a may be electric assist bicycles that run with human power and driving force of an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is an obstacle detection device which is for a lean vehicle and is capable of detecting obstacles present on the road in front of the lean vehicle. While the lean vehicle is turning to the left of the lean vehicle, the obstacle detection unit detects obstacles present on the road in front of the lean vehicle on the basis of a portion of a section captured by an upper-left region of at least upper-left pixels in image data captured by a plurality of pixels. While the lean vehicle is turning to the right of the lean vehicle, the obstacle detection unit detects obstacles present on the road in front of the lean vehicle on the basis of a portion of a section captured by an upper-right region of at least upper-right pixels in the image data captured by the plurality of pixels.

Description

リーンビークル用障害物検知装置Obstacle detection device for lean vehicles
 本発明は、リーンビークルよりリーンビークルにおける前に位置する路上の障害物を検知するリーンビークル用障害物検知装置に関する。 The present invention relates to an lean-vehicle obstacle detecting device that detects an obstacle on a road positioned before a lean vehicle in the lean vehicle.
 従来のリーンビークル用障害物検知装置に関する発明としては、例えば、特許文献1及び特許文献2に記載の鞍乗型車両の自動ブレーキ装置が知られている。この自動ブレーキ装置は、外界認識手段及びECUを備えている。外観認識手段は、車両より車両における前に位置する空間を撮影するカメラである。ECUは、外界認識手段が撮影した車両より車両における前に位置する空間の画像に基づいて、車両より車両における前に位置する路上に障害物が存在するか否かを判定する。 As an invention relating to a conventional lean-vehicle obstacle detection device, for example, an automatic brake device for a saddle-ride type vehicle described in Patent Literature 1 and Patent Literature 2 is known. This automatic brake device includes an external recognition unit and an ECU. The appearance recognizing means is a camera for photographing a space located in front of the vehicle with respect to the vehicle. The ECU determines whether or not an obstacle is present on a road located in front of the vehicle with respect to the vehicle based on an image of a space located in front of the vehicle with respect to the vehicle captured by the outside world recognition means.
特開2017-24644号公報JP-A-2017-24644 特開2017-24645号公報JP 2017-24645 A
 このように、リーンビークルのリーンビークルにおける前に位置する路上に存在する障害物を検知できるリーンビークル用障害物検知装置が望まれている。 As described above, there is a need for a lean vehicle obstacle detection device that can detect an obstacle existing on a road positioned in front of a lean vehicle.
 そこで、本発明の目的は、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知することができる新たなリーンビークル用障害物検知装置を提供することである。 Therefore, an object of the present invention is to provide a new lean-vehicle obstacle detecting device capable of detecting an obstacle existing on a road positioned ahead of a lean vehicle in the lean vehicle.
 本願発明者は、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知することを検討するにあたり、リーンビークルよりリーンビークルにおける前に位置する空間の撮像について検討を行った。まず、本願発明者は、リーンビークルよりリーンビークルにおける前に位置する空間の撮像と自動四輪車より前に位置する空間の撮像とを比較した。 (4) In examining the detection of an obstacle existing on a road located ahead of the lean vehicle relative to the lean vehicle, the inventors of the present application have examined imaging of a space located ahead of the lean vehicle in the lean vehicle. First, the inventor of the present application compared imaging of a space located in front of a lean vehicle with respect to a lean vehicle and imaging of a space located in front of a four-wheeled motor vehicle.
 本願発明者は、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知するために、リーンビークルよりリーンビークルにおける前に位置する空間を撮像する撮像素子をリーンビークル本体に固定すること考えた。リーンビークルは、リーンビークルがリーンビークルの左方向に旋回するときにリーンビークルの左方向に傾斜し、リーンビークルがリーンビークルの右方向に旋回するときにリーンビークルの右方向に傾斜するリーンビークル本体を備える車両である。撮像素子をリーンビークル本体に固定すると、リーンビークルがリーンビークルにおける左方向に旋回するときに撮像素子がリーンビークル本体と一緒にリーンビークルにおける左方向に傾斜する。また、撮像素子をリーンビークル本体に固定すると、リーンビークルがリーンビークルにおける右方向に旋回するときに撮像素子がリーンビークル本体と一緒にリーンビークルにおける右方向に傾斜する。そのため、本願発明者は、リーンビークルがリーンビークルにおける左方向に旋回するときに、撮像素子により撮像されるイメージが撮像素子に対してリーンビークル本体における右方向に傾斜することに気が付いた。同様に、本願発明者は、リーンビークルがリーンビークルにおける右方向に旋回するときに、撮像素子に撮像されるイメージが撮像素子に対してリーンビークル本体における左方向に傾斜することに気が付いた。以下では、イメージが撮像素子に対してリーンビークル本体における左方向又はリーンビークル本体における右方向に傾斜することを、単に、イメージがリーンビークル本体における左方向又はリーンビークル本体における右方向に傾斜するという。 The inventor of the present application fixes an image sensor for imaging a space located in front of the lean vehicle to the lean vehicle to the lean vehicle body in order to detect an obstacle existing on a road located in front of the lean vehicle in the lean vehicle. I thought that. The lean vehicle leans to the left of the lean vehicle when the lean vehicle turns to the left of the lean vehicle, and leans to the right of the lean vehicle when the lean vehicle turns to the right of the lean vehicle. It is a vehicle provided with. When the image pickup device is fixed to the lean vehicle body, the image pickup device is tilted leftward in the lean vehicle together with the lean vehicle body when the lean vehicle turns leftward in the lean vehicle. Further, when the image pickup device is fixed to the lean vehicle body, the image pickup device tilts rightward in the lean vehicle together with the lean vehicle body when the lean vehicle turns rightward in the lean vehicle. Therefore, the inventor of the present application has noticed that when the lean vehicle turns leftward in the lean vehicle, the image captured by the image sensor tilts rightward in the lean vehicle body with respect to the image sensor. Similarly, the inventor of the present application has noticed that when the lean vehicle turns rightward in the lean vehicle, the image captured by the image sensor is tilted leftward in the lean vehicle body with respect to the image sensor. Hereinafter, that the image is tilted to the left in the lean vehicle body or to the right in the lean vehicle body with respect to the image sensor is simply referred to as the image is tilted to the left in the lean vehicle body or to the right in the lean vehicle body. .
 一方、自動四輪車では、車体は、自動四輪車が左方向又は右方向に旋回するときに殆ど傾斜しない。そのため、撮像素子が車体に固定されたとしても、撮像素子により形成されるイメージは、殆ど傾斜しない。このように、本願発明者は、リーンビークルと自動四輪車とでは、旋回時において撮像素子により形成されるイメージが全く異なることに気が付いた。 On the other hand, in a four-wheeled motor vehicle, the vehicle body hardly leans when the four-wheeled vehicle turns left or right. Therefore, even if the image sensor is fixed to the vehicle body, the image formed by the image sensor hardly tilts. As described above, the inventor of the present application has noticed that the image formed by the image sensor at the time of turning is completely different between a lean vehicle and a four-wheeled vehicle.
 次に、本願発明者は、旋回中の自動四輪車におけるイメージ内での障害物の動きと、旋回中のリーンビークルにおけるイメージ内での障害物の動きとを比較した。リーンビークル本体がリーンビークルにおける左方向又はリーンビークルにおける右方向に傾斜すると、イメージがリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜する。従って、イメージにおける上下方向は、リーンビークル本体における上下方向に一致する。イメージにおける左右方向は、リーンビークル本体における左右方向に一致する。また、以下では、自動四輪車が左方向に旋回する場合及びリーンビークルがリーンビークルにおける左方向に旋回する場合を例に挙げて説明する。 Next, the inventor of the present application compared the movement of the obstacle in the image of the turning four-wheeled vehicle with the movement of the obstacle in the image of the turning lean vehicle. As the lean vehicle body tilts leftward on the lean vehicle or rightward on the lean vehicle, the image tilts rightward on the lean vehicle body or leftward on the lean vehicle body. Therefore, the vertical direction in the image coincides with the vertical direction in the lean vehicle body. The horizontal direction in the image corresponds to the horizontal direction in the lean vehicle body. Hereinafter, a case where the four-wheeled vehicle turns leftward and a case where the lean vehicle turns leftward in the lean vehicle will be described as examples.
 まず、自動四輪車では、自動四輪車が左方向に旋回しても、イメージが殆ど傾斜しない。この場合、自動四輪車の進路上に位置する障害物は、イメージの上下方向の中央近傍、かつ、イメージの左端近傍に出現する。そして、障害物は、自動四輪車の走行に伴って、右方向にイメージ内を移動する。 First, in a four-wheeled vehicle, the image hardly tilts even if the four-wheeled vehicle turns to the left. In this case, the obstacle located on the path of the four-wheeled vehicle appears near the vertical center of the image and near the left end of the image. The obstacle moves rightward in the image as the four-wheeled vehicle travels.
 一方、リーンビークルでは、リーンビークルがリーンビークルにおける左方向に旋回すると、イメージがリーンビークル本体における右方向に傾斜する。この場合、リーンビークルの進路上に位置する障害物は、イメージのリーンビークル本体における左上の端近傍に出現する。そして、障害物は、リーンビークルの走行に伴って、リーンビークル本体における右方向かつリーンビークル本体における下方向にイメージ内を移動する。 On the other hand, in a lean vehicle, when the lean vehicle turns leftward in the lean vehicle, the image is tilted rightward in the lean vehicle body. In this case, the obstacle located on the course of the lean vehicle appears near the upper left end of the lean vehicle body of the image. Then, the obstacle moves in the image rightward in the lean vehicle body and downward in the lean vehicle body as the lean vehicle travels.
 以上のように、本願発明者は、旋回中の自動四輪車におけるイメージ内での障害物の動きと、旋回中のリーンビークルにおけるイメージ内での障害物の動きとが全く異なることに気が付いた。そして、本願発明者は、リーンビークルがリーンビークルにおける左方向に旋回するときには、イメージの内のリーンビークル本体における左上の端近傍において障害物を検知すればよいことに思い至った。同様に、本願発明者は、リーンビークルがリーンビークルにおける右方向に旋回するときには、イメージの内のリーンビークル本体における右上の端近傍において障害物を検知すればよいことに思い至った。 As described above, the inventor of the present application has noticed that the movement of an obstacle in an image of a turning four-wheeled vehicle is completely different from the movement of an obstacle in the image of a turning lean vehicle. . The inventor of the present application has realized that when the lean vehicle turns leftward in the lean vehicle, it is sufficient to detect an obstacle near the upper left end of the lean vehicle body in the image. Similarly, the inventor of the present application has realized that when the lean vehicle turns rightward in the lean vehicle, it is sufficient to detect an obstacle near the upper right end of the lean vehicle body in the image.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention employs the following configuration in order to solve the above-described problems.
 (1)のリーンビークル用障害物検知装置は、
 リーンビークルが前記リーンビークルにおける左方向に旋回するときに前記リーンビークルにおける左方向に傾斜し、かつ、前記リーンビークルが前記リーンビークルにおける右方向に旋回するときに前記リーンビークルにおける右方向に傾斜するリーンビークル本体を備える前記リーンビークルに用いられ、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する障害物を検知するリーンビークル用障害物検知装置であって、
 前記リーンビークル用障害物検知装置は、(A)の撮像部及び(B)の障害物検知部を備えている。
(A)
 前記撮像部は、複数の画素を有する撮像素子を含み、かつ、前記撮像素子により撮像された前記リーンビークルより前記リーンビークルにおける前に位置する空間のイメージデータを出力し、
  前記撮像素子は、前記リーンビークル本体と一緒に前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜するように、前記リーンビークルの前記リーンビークル本体における左右方向の中央部に設けられ、
  前記撮像素子は、
   前記リーンビークル本体が直立状態のとき、前記リーンビークルの前記リーンビークルにおける前に位置する水平線を撮像する水平画素と、
   前記リーンビークル本体が直立状態のとき、前記リーンビークル本体の前記リーンビークル本体における左右方向の中心の前記リーンビークルにおける前に位置する鉛直線を撮像する鉛直画素と、
   前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける上かつ前記鉛直画素より前記リーンビークルにおける左に設けられた左上画素と、
   前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける上かつ前記鉛直画素より前記リーンビークルにおける右に設けられた右上画素と、
   前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける下かつ前記鉛直画素より前記リーンビークルにおける左に設けられた左下画素と、
   前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける下かつ前記鉛直画素より前記リーンビークルにおける右に設けられた右下画素と、
  を含む。
(B)
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているとき、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているとき、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
(1) Lean vehicle obstacle detection device
When the lean vehicle turns leftward in the lean vehicle, it leans leftward in the lean vehicle, and when the lean vehicle turns rightward in the lean vehicle, it tilts rightward in the lean vehicle. An obstacle detection device for a lean vehicle, which is used for the lean vehicle including the lean vehicle body and detects an obstacle existing on a road located in front of the lean vehicle from the lean vehicle,
The lean vehicle obstacle detection device includes an imaging unit (A) and an obstacle detection unit (B).
(A)
The image capturing unit includes an image sensor having a plurality of pixels, and outputs image data of a space located in front of the lean vehicle from the lean vehicle imaged by the image sensor,
The image pickup device is provided at the center in the left-right direction of the lean vehicle body of the lean vehicle, so as to be inclined leftward in the lean vehicle or rightward in the lean vehicle together with the lean vehicle body,
The image sensor,
When the lean vehicle body is in an upright state, a horizontal pixel that captures a horizontal line located in front of the lean vehicle in the lean vehicle,
When the lean vehicle body is in an upright state, a vertical pixel that images a vertical line located in front of the lean vehicle at the center of the lean vehicle body in the left-right direction in the lean vehicle body,
When the lean vehicle body is in an upright state, an upper left pixel provided on the lean vehicle above the horizontal pixel and on the left side of the lean vehicle above the vertical pixel,
When the lean vehicle body is in an upright state, an upper right pixel provided in the lean vehicle above the horizontal pixel and in the lean vehicle above the vertical pixel,
When the lean vehicle body is in an upright state, a lower left pixel provided in the lean vehicle below the horizontal pixel and in the lean vehicle below the vertical pixel,
When the lean vehicle body is in an upright state, a lower right pixel provided in the lean vehicle below the horizontal pixel and in the lean vehicle from the vertical pixel,
including.
(B)
The obstacle detection unit is configured such that, when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the image captured by the plurality of pixels. Detecting the obstacle present on the road located in front of the lean vehicle from the lean vehicle based on a part of the part imaged by at least the upper left region of the upper left pixel of the data,
The obstacle detection unit is configured such that, when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the image captured by the plurality of pixels. Based on at least a part of the portion of the data captured by the upper right region of the upper right pixel, the obstacle existing on the road located before the lean vehicle in the lean vehicle is detected.
 (1)のリーンビークル用障害物検知装置によれば、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知することができる。より詳細には、リーンビークルがリーンビークルにおける左方向に旋回するためにリーンビークルにおける左方向に傾斜すると、リーンビークルの進路上に位置する障害物は、イメージデータの内の左上画素の左上領域により撮像された部分に出現する可能性が高い。そこで、障害物検知部は、リーンビークルがリーンビークルにおける左方向に旋回するためにリーンビークル本体がリーンビークルにおける左方向に傾斜しているとき、複数の画素により撮像されたイメージデータの内の少なくとも左上画素の左上領域により撮像された部分の一部に基づいてリーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知する。これにより、障害物検知部は、リーンビークルがリーンビークルにおける左方向に傾斜しているときに、障害物を検知することができる。同様に、リーンビークルがリーンビークルにおける右方向に旋回するためにリーンビークルにおける右方向に傾斜すると、リーンビークルの進路上に位置する障害物は、イメージデータの内の右上画素の右上領域により撮像された部分に出現する可能性が高い。そこで、障害物検知部は、リーンビークルがリーンビークルにおける右方向に旋回するためにリーンビークル本体がリーンビークルにおける右方向に傾斜しているとき、複数の画素により撮像されたイメージデータの内の少なくとも右上画素の右上領域により撮像された部分の一部に基づいてリーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知する。これにより、障害物検知部は、リーンビークルがリーンビークルにおける右方向に傾斜しているときに、障害物を検知することができる。 According to the lean vehicle obstacle detection device of (1), it is possible to detect an obstacle existing on a road positioned before the lean vehicle relative to the lean vehicle. More specifically, when the lean vehicle leans leftward in the lean vehicle to turn leftward in the lean vehicle, the obstacle located on the path of the lean vehicle is caused by the upper left area of the upper left pixel in the image data. It is highly likely that it will appear in the imaged part. Therefore, when the lean vehicle body is tilted leftward in the lean vehicle because the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit detects at least one of the image data captured by the plurality of pixels. An obstacle existing on a road positioned before the lean vehicle in the lean vehicle is detected based on a part of a portion captured by the upper left pixel of the upper left pixel. Thus, the obstacle detection unit can detect an obstacle when the lean vehicle is tilted leftward in the lean vehicle. Similarly, when the lean vehicle leans rightward in the lean vehicle to turn rightward in the lean vehicle, an obstacle located on the course of the lean vehicle is imaged by the upper right region of the upper right pixel in the image data. It is likely to appear in the part where it was. Therefore, when the lean vehicle body is tilted rightward in the lean vehicle because the lean vehicle turns rightward in the lean vehicle, the obstacle detection unit detects at least one of the image data captured by the plurality of pixels. An obstacle existing on a road positioned ahead of the lean vehicle is detected based on a part of the part captured by the upper right region of the upper right pixel. Thus, the obstacle detection unit can detect an obstacle when the lean vehicle is inclined rightward in the lean vehicle.
 (2)のリーンビークル用障害物検知装置は、(1)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記障害物の少なくとも一部が前記左上画素の左上領域により撮像された前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記障害物の少なくとも一部が前記右上画素の右上領域により撮像された前記障害物を検知する。
The lean-vehicle obstacle detection device of (2) is the lean-vehicle obstacle detection device of (1),
The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, at least a part of the obstacle is the leaning vehicle. Detecting the obstacle imaged by the upper left area of the upper left pixel,
The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, at least a part of the obstacle is the lean vehicle. The obstacle captured by the upper right area of the upper right pixel is detected.
 (3)のリーンビークル用障害物検知装置は、(1)又は(2)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに前記リーンビークル本体が傾斜している角度を示すリーンビークル傾斜角度に関する物理量を取得するリーンビークル傾斜角度取得部を含み、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部、及び、前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいて、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部、及び、前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいて、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
The lean-vehicle obstacle detection device of (3) is the lean-vehicle obstacle detection device of (1) or (2),
The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. Includes a lean vehicle tilt angle acquisition unit that acquires a physical quantity related to the lean vehicle tilt angle indicating the angle at which the lean vehicle body is tilted when
The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of the portion of the image data captured by the upper left region of the upper left pixel, and the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit, the lean vehicle from the lean vehicle. Detecting the obstacle present on the road located in front of
The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of the portion of the image data captured by the upper right region of the upper right pixel and the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit, the lean vehicle is more lean than the lean vehicle. And detecting the obstacle existing on the road located in front of.
 (3)のリーンビークル用障害物検知装置では、障害物検知部は、リーンビークル傾斜角度取得部が取得したリーンビークル傾斜角度に基づいて、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知している。そのため、リーンビークル本体がリーンビークルにおける左方向又はリーンビークルにおける右方向に傾斜することにより、イメージデータがリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜したとしても、障害物検知部がリーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を容易に検知することが可能となる。 In the lean vehicle obstacle detection device of (3), the obstacle detection unit exists on a road located before the lean vehicle in the lean vehicle based on the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit. An obstacle has been detected. Therefore, even if the image data is tilted rightward in the lean vehicle body or leftward in the lean vehicle body by the lean vehicle body tilting leftward in the lean vehicle or rightward in the lean vehicle, the obstacle detection unit is not moved. It is possible to easily detect an obstacle existing on a road located ahead of the lean vehicle in the lean vehicle.
 (4)のリーンビークル用障害物検知装置は、(3)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部を前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいてデータ変換し、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部を前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいてデータ変換するデータ傾斜変換部を更に含み、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに、前記データ傾斜変換部で変換された前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータに基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
The lean-vehicle obstacle detection device of (4) is the lean-vehicle obstacle detection device of (3),
The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. At least a part of the portion of the image data captured by the upper left region of the upper left pixel is converted based on the lean vehicle tilt angle obtained by the lean vehicle tilt angle obtaining unit, and the lean vehicle is converted to the lean vehicle. When the lean vehicle body is tilted rightward in the lean vehicle for turning rightward in the vehicle, at least the upper right region of the upper right pixel in the image data captured by the plurality of pixels A part of the imaged part is taken as the lean vehicle inclination angle. Further comprising a data inclined converter for data conversion based on the lean vehicle inclination angle acquired by section,
The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. Is present on the road located before the lean vehicle in the lean vehicle based on the image data of the space located in the lean vehicle before the lean vehicle converted by the data tilt conversion unit. The obstacle is detected.
 (4)のリーンビークル用障害物検知装置によれば、リーンビークル本体がリーンビークルにおける左方向又はリーンビークルにおける右方向に傾斜することにより、イメージデータがリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜したとしても、障害物検知部がリーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を容易に検知することが可能となる。より詳細には、リーンビークル本体がリーンビークルにおける左方向又はリーンビークルにおける右方向に傾斜すると、イメージデータがリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜する。この場合、障害物もリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜する。故に、障害物検知部は、リーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜した障害物を検知する必要がある。そこで、データ傾斜変換部は、リーンビークルよりリーンビークルにおける前に位置する空間のイメージデータをリーンビークル傾斜角度に基づいてデータ変換している。これにより、データ変換されたイメージデータでは、データ変換されていないイメージデータに比べて、障害物がリーンビークル本体における右方向又はリーンビークル本体における左方向に傾斜している角度が小さくなる。その結果、障害物検知部は、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を容易に検知することができる。 According to the lean-vehicle obstacle detection device of (4), the lean vehicle body tilts leftward in the lean vehicle or rightward in the lean vehicle, so that the image data is shifted rightward in the lean vehicle body or in the lean vehicle body. Even if the vehicle is inclined to the left, the obstacle detection unit can easily detect an obstacle existing on the road positioned before the lean vehicle in the lean vehicle. More specifically, when the lean vehicle body tilts leftward in the lean vehicle or rightward in the lean vehicle, the image data tilts rightward in the lean vehicle body or leftward in the lean vehicle body. In this case, the obstacle is also inclined rightward on the lean vehicle body or leftward on the lean vehicle body. Therefore, the obstacle detection unit needs to detect an obstacle that is tilted rightward in the lean vehicle body or leftward in the lean vehicle body. Therefore, the data tilt converter converts the image data of a space located before the lean vehicle in the lean vehicle based on the lean vehicle tilt angle. Thereby, in the converted image data, the angle at which the obstacle is inclined rightward in the lean vehicle body or leftward in the lean vehicle body is smaller than in the image data not converted. As a result, the obstacle detection unit can easily detect an obstacle existing on a road positioned before the lean vehicle in the lean vehicle.
 (5)のリーンビークル用障害物検知装置は、(4)のリーンビークル用障害物検知装置であって、
 前記リーンビークル傾斜角度取得部は、前記リーンビークル用障害物検知装置の外部に設けられたセンサから前記リーンビークル傾斜角度に関する物理量を取得する。
The lean-vehicle obstacle detection device of (5) is the lean-vehicle obstacle detection device of (4),
The lean vehicle inclination angle acquisition unit acquires a physical quantity related to the lean vehicle inclination angle from a sensor provided outside the lean vehicle obstacle detection device.
 (6)のリーンビークル用障害物検知装置は、(4)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータに基づいて前記リーンビークル傾斜角度に関する物理量を取得するイメージ傾斜角度取得部を含む。
The (6) lean vehicle obstacle detection device is the (4) lean vehicle obstacle detection device,
The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. An image inclination angle acquisition unit that acquires a physical quantity related to the lean vehicle inclination angle based on the image data of a space located before the lean vehicle in the lean vehicle.
 (7)のリーンビークル用障害物検知装置は、(1)ないし(6)のいずれかのリーンビークル用障害物検知装置であって、
 前記撮像素子は、前記リーンビークル本体が直立状態のとき、前記撮像素子の光軸の向きが前記リーンビークルにおける前方向かつ前記リーンビークルにおける下方向となるように、前記リーンビークル本体に設けられている。
(7) The lean vehicle obstacle detection device according to any one of (1) to (6),
The image sensor is provided on the lean vehicle body such that when the lean vehicle body is in an upright state, the direction of the optical axis of the image sensor is forward in the lean vehicle and downward in the lean vehicle. I have.
 (7)のリーンビークル用障害物検知装置によれば、障害物検知部が障害物を検知できる確率が高くなる。より詳細には、障害物は、イメージデータにおいて水平線よりリーンビークル本体における下に位置する領域に存在することが多い。そこで、水平線よりリーンビークル本体における下に位置する領域がイメージデータに占める割合が高くなれば、障害物が撮像素子により撮像される確率が高くなる。そこで、撮像素子は、リーンビークル本体が直立状態のとき、撮像素子の光軸の向きがリーンビークルにおける前方向かつリーンビークルにおける下方向となるように、リーンビークル本体に設けられている。これにより、撮像素子は、リーンビークルのリーンビークルにおける前に位置する路上に存在する障害物が存在するときに、障害物を高い確率で撮像することができる。その結果、障害物検知部が障害物を検知できる確率が高くなる。 According to the lean vehicle obstacle detection device of (7), the probability that the obstacle detection unit can detect an obstacle increases. More specifically, the obstacle often exists in an area located below the horizontal line in the lean vehicle body in the image data. Therefore, if the area of the lean vehicle main body below the horizontal line occupies a higher proportion in the image data, the probability that the obstacle is imaged by the image sensor increases. Therefore, the image sensor is provided on the lean vehicle body such that the direction of the optical axis of the image sensor is forward in the lean vehicle and downward in the lean vehicle when the lean vehicle body is in the upright state. Thus, the imaging device can image the obstacle with a high probability when there is an obstacle existing on the road located in front of the lean vehicle in the lean vehicle. As a result, the probability that the obstacle detection unit can detect an obstacle increases.
 (8)のリーンビークル用障害物検知装置は、(1)ないし(7)のいずれかのリーンビークル用障害物検知装置であって、
 前記リーンビークル用障害物検知装置は、
 前記撮像部を収容する第1ケースと、
 前記障害物検知部を収容する第2ケースと、
 を更に備える。
The lean vehicle obstacle detection device according to (8) is the lean vehicle obstacle detection device according to any one of (1) to (7),
The lean vehicle obstacle detection device,
A first case accommodating the imaging unit;
A second case accommodating the obstacle detection unit;
Is further provided.
 (9)のリーンビークル用障害物検知装置は、(1)ないし(7)のいずれかのリーンビークル用障害物検知装置であって、
 前記リーンビークル用障害物検知装置は、
 前記撮像部及び前記障害物検知部を収容する第3ケースを、
 更に備える。
The lean vehicle obstacle detection device according to (9) is the lean vehicle obstacle detection device according to any one of (1) to (7),
The lean vehicle obstacle detection device,
A third case accommodating the imaging unit and the obstacle detection unit,
Further provision.
 (10)のリーンビークル用障害物検知装置は、(1)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記左上画素により撮像された部分だけに存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記右上画素により撮像された部分だけに存在する前記障害物を検知する。
The lean-vehicle obstacle detection device of (10) is the lean-vehicle obstacle detection device of (1),
When the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion captured by the upper left pixel in the image data of the space located at
When the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. The obstacle existing only in the portion of the image data in the space located at the position captured by the upper right pixel is detected.
 (11)のリーンビークル用障害物検知装置は、(10)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記左上画素の左上領域により撮像された部分だけに存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記右上画素の右上領域により撮像された部分だけに存在する前記障害物を検知する。
The lean-vehicle obstacle detection device of (11) is the lean-vehicle obstacle detection device of (10),
When the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion imaged by the upper left region of the upper left pixel in the image data of the space located at,
When the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. The obstacle existing only in a portion imaged by the upper right area of the upper right pixel in the image data in the space located at is detected.
 (12)のリーンビークル用障害物検知装置は、(1)又は(10)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部及び前記左上画素の左下領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部及び前記右上画素の右下領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
The lean-vehicle obstacle detection device of (12) is the lean-vehicle obstacle detection device of (1) or (10),
The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of a portion of the image data captured by the upper left region of the upper left pixel and a portion of a portion captured by the lower left region of the upper left pixel, the lean vehicle is positioned before the lean vehicle in the lean vehicle. Detecting the obstacle on the road,
The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. A position before the lean vehicle in the lean vehicle based on at least a part of the part captured by the upper right area of the upper right pixel and a part of the part captured by the lower right area of the upper right pixel in the image data. The obstacle existing on the road to be changed is detected.
 (13)のリーンビークル用障害物検知装置は、(1)のリーンビークル用障害物検知装置であって、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素により撮像された部分の一部及び前記左下画素により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
 前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素により撮像された部分の一部及び前記右下画素により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
The lean vehicle obstacle detection device of (13) is the lean vehicle obstacle detection device of (1),
The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. The obstacle existing on a road positioned before the lean vehicle in the lean vehicle based on at least a part of a part captured by the upper left pixel and a part of a part captured by the lower left pixel in the image data. Detect objects
The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of a part imaged by the upper right pixel and a part of a part imaged by the lower right pixel of the image data, the lean vehicle is present on a road positioned before the lean vehicle in the lean vehicle. Detect obstacles.
 この発明の上述の目的及びその他の目的、特徴、局面及び利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。 The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention taken in conjunction with the accompanying drawings.
 本明細書にて使用される場合、用語「及び/又は(and/or)」は1つの、又は複数の関連した列挙されたアイテム(items)のあらゆる又は全ての組み合わせを含む。 用語 As used herein, the term “and / or” includes any and all combinations of one or more of the associated listed items.
 本明細書中で使用される場合、用語「含む、備える(including)」、「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。 As used herein, the use of the terms "including," "comprising," or "having," and variations thereof, refers to the recited feature, step, operation. , Identify elements, components, and / or their equivalents, but may include one or more of steps, actions, elements, components, and / or groups thereof.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。 限 り Unless defined otherwise, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
 一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。 Terms such as those defined in commonly used dictionaries should be construed to have a meaning consistent with the meaning in the context of the relevant art and this disclosure, and are explicitly defined herein. Unless otherwise stated, they are not to be construed in an ideal or overly formal sense.
 本発明の説明においては、技術及び工程の数が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせの全てを繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び特許請求項の範囲内にあることを理解して読まれるべきである。 It is understood that in the description of the present invention, the number of techniques and steps are disclosed. Each of these has distinct benefits, and each may be used with one or more, or possibly all, of the other disclosed techniques. Thus, for the sake of clarity, this description will refrain from repeating all possible combinations of the individual steps unnecessarily. Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the invention and the claims.
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。 In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without these specific details. This disclosure is to be considered as illustrative of the present invention, and is not intended to limit the present invention to the particular embodiments illustrated by the following drawings or description.
 本発明によれば、リーンビークルよりリーンビークルにおける前に位置する路上に存在する障害物を検知することができる。 According to the present invention, it is possible to detect an obstacle existing on a road located ahead of the lean vehicle in the lean vehicle.
図1Aは、リーンビークル用障害物検知装置10を備えるリーンビークル6の説明図である。FIG. 1A is an explanatory diagram of a lean vehicle 6 including a lean vehicle obstacle detection device 10. 図1Bは、リーンビークル6,6a及び先行車両100を左方向Lに見た図である。FIG. 1B is a diagram in which the lean vehicles 6, 6a and the preceding vehicle 100 are viewed in the leftward direction L. 図2は、イメージデータImを示した図である。FIG. 2 is a diagram showing the image data Im. 図3は、イメージデータImを示した図である。FIG. 3 is a diagram showing the image data Im. 図4は、イメージデータImを示した図である。FIG. 4 is a diagram showing the image data Im. 図5は、イメージデータImを示した図である。FIG. 5 is a diagram showing the image data Im. 図6は、イメージデータImを示した図である。FIG. 6 is a diagram showing the image data Im. 図7は、リーンビークル用障害物検知装置10aを備えるリーンビークル6aの説明図である。FIG. 7 is an explanatory diagram of the lean vehicle 6a including the lean vehicle obstacle detection device 10a. 図8は、変換イメージデータImtを示した図である。FIG. 8 is a diagram showing the converted image data Imt. 図9は、変換イメージデータImtを示した図である。FIG. 9 is a diagram showing the converted image data Imt. 図10は、イメージデータImを示した図である。FIG. 10 is a diagram showing the image data Im. 図11は、第1エリア決定テーブルである。FIG. 11 is a first area determination table. 図12は、イメージデータImを示した図である。FIG. 12 is a diagram showing the image data Im. 図13は、イメージデータImを示した図である。FIG. 13 is a diagram showing the image data Im. 図14は、変換イメージデータImtを示した図である。FIG. 14 is a diagram showing the converted image data Imt. 図15は、変換イメージデータImtを示した図である。FIG. 15 is a diagram illustrating the converted image data Imt. 図16は、障害物検知部16が行う動作を示したフローチャートである。FIG. 16 is a flowchart illustrating an operation performed by the obstacle detection unit 16. 図17は、障害物検知部16が行う動作を示したフローチャートである。FIG. 17 is a flowchart illustrating an operation performed by the obstacle detection unit 16. 図18は、第1の変形例に係るリーンビークル用障害物検知装置10bのブロック図である。FIG. 18 is a block diagram of the lean vehicle obstacle detection device 10b according to the first modification. 図19は、第2の変形例に係るリーンビークル用障害物検知装置10cのブロック図である。FIG. 19 is a block diagram of the lean vehicle obstacle detection device 10c according to the second modification.
(第1の実施形態)
[全体構成]
 以下に、第1の実施形態に係るリーンビークル用障害物検知装置の全体構成について図面を参照しながら説明する。図1Aは、リーンビークル用障害物検知装置10を備えるリーンビークル6の説明図である。図1Aでは、イメージデータIm、走行中のリーンビークル6及び先行車両100の上視図、リーンビークル6の左側面図、及び、リーンビークル用障害物検知装置10のブロック図を示した。図1Bは、リーンビークル6,6a及び先行車両100を左方向Lに見た図である。図2ないし図6は、イメージデータImを示した図である。図1Aないし図6では、撮像素子14を前方向fに見た図をイメージデータImに重ね合わせた。図1A、図5及び図6では、リーンビークル6が右方向Rに旋回している。図2ないし図4では、リーンビークル本体60が直立状態である。
(First embodiment)
[overall structure]
Hereinafter, the overall configuration of the lean vehicle obstacle detection device according to the first embodiment will be described with reference to the drawings. FIG. 1A is an explanatory diagram of a lean vehicle 6 including a lean vehicle obstacle detection device 10. FIG. 1A shows image data Im, a top view of the running lean vehicle 6 and the preceding vehicle 100, a left side view of the lean vehicle 6, and a block diagram of the lean vehicle obstacle detection device 10. FIG. 1B is a diagram in which the lean vehicles 6, 6a and the preceding vehicle 100 are viewed in the leftward direction L. 2 to 6 are diagrams showing the image data Im. 1A to 6, the views of the image sensor 14 in the forward direction f are superimposed on the image data Im. 1A, 5 and 6, the lean vehicle 6 is turning rightward. 2 to 4, the lean vehicle body 60 is in an upright state.
 以下では、リーンビークル6における前方向・前を前方向F・前Fと定義する。リーンビークル6における後方向・後を後方向B・後Bと定義する。リーンビークル6における左方向・左を左方向L・左Lと定義する。リーンビークル6における右方向・右を右方向R・右Rと定義する。リーンビークル6における上方向・上を上方向U・上Uと定義する。リーンビークル6における下方向・下を下方向D・下Dと定義する。リーンビークル6における前後方向を前後方向FBと定義する。リーンビークル6における左右方向を左右方向LRと定義する。リーンビークル6における上下方向を上下方向UDと定義する。リーンビークル6における前方向・前とは、リーンビークル6に跨ったライダーにおける前方向・前である。リーンビークル6における後方向・後とは、リーンビークル6に跨ったライダーにおける後方向・後である。リーンビークル6における左方向・左とは、リーンビークル6に跨ったライダーにおける左方向・左である。リーンビークル6における右方向・右とは、リーンビークル6に跨ったライダーにおける右方向・右である。リーンビークル6における上方向・上とは、リーンビークル6に跨ったライダーにおける上方向・上である。リーンビークル6における下方向・下とは、リーンビークル6に跨ったライダーにおける下方向・下である。 前 Hereinafter, the forward direction / front of the lean vehicle 6 is defined as the forward direction F / front F. The rear direction / rear of the lean vehicle 6 is defined as a rear direction B / rear B. The left direction and left direction of the lean vehicle 6 are defined as left direction L and left L. The right direction and right direction of the lean vehicle 6 are defined as right direction R and right R. An upward direction / upward direction of the lean vehicle 6 is defined as an upward direction U / upward U. A downward direction and a downward direction in the lean vehicle 6 are defined as a downward direction D and a downward D. The front-back direction of the lean vehicle 6 is defined as the front-back direction FB. The left-right direction of the lean vehicle 6 is defined as the left-right direction LR. The vertical direction of the lean vehicle 6 is defined as a vertical direction UD. The front direction / front of the lean vehicle 6 is the front direction / front of the rider straddling the lean vehicle 6. The term “rearward / rearward in the lean vehicle 6” refers to the rearward / rearward direction of a rider straddling the lean vehicle 6. The left direction / left of the lean vehicle 6 is the left direction / left of a rider straddling the lean vehicle 6. The right and right directions of the lean vehicle 6 are the right and right directions of the rider straddling the lean vehicle 6. The term “upward / upward” in the lean vehicle 6 refers to the upward direction / upward of a rider straddling the lean vehicle 6. The term "downward / downward in the lean vehicle 6" refers to the downward direction / downward of a rider straddling the lean vehicle 6.
 また、リーンビークル6では、リーンビークル本体60が左方向L又は右方向Rに傾斜できる。リーンビークル本体60が左方向L又は右方向Rに傾斜した場合には、リーンビークル本体60における上下方向及び左右方向はそれぞれ、上下方向UD及び左右方向LRと一致しない。一方、直立状態のリーンビークル本体60における上下方向及び左右方向はそれぞれ、上下方向UD及び左右方向LRと一致する。以下では、リーンビークル本体60における前方向・前を前方向f・前fと定義する。リーンビークル本体60の後方向・後を後方向b・後bと定義する。リーンビークル本体60の左方向・左を左方向l・左lと定義する。リーンビークル本体60の右方向・右を右方向r・右rと定義する。リーンビークル本体60の上方向・上を上方向u・上uと定義する。リーンビークル本体60の下方向・下を下方向d・下dと定義する。リーンビークル本体60における前後方向を前後方向fbと定義する。リーンビークル本体60における左右方向を左右方向lrと定義する。リーンビークル本体60における上下方向を上下方向udと定義する。 で は Further, in the lean vehicle 6, the lean vehicle body 60 can be inclined in the left direction L or the right direction R. When the lean vehicle body 60 is inclined in the left direction L or the right direction R, the up-down direction and the left-right direction of the lean vehicle body 60 do not correspond to the up-down direction UD and the left-right direction LR, respectively. On the other hand, the up-down direction and the left-right direction of the lean vehicle body 60 in the upright state correspond to the up-down direction UD and the left-right direction LR, respectively. Hereinafter, the front direction / front in the lean vehicle body 60 is defined as front direction f / front f. The rear direction / rear of the lean vehicle body 60 is defined as the rear direction b / rear b. The left direction and left direction of the lean vehicle body 60 are defined as left direction l and left l. The right direction and right direction of the lean vehicle body 60 are defined as right direction r and right r. The upward direction and the upward direction of the lean vehicle body 60 are defined as an upward direction u and an upward direction u. The downward direction and downward direction of the lean vehicle body 60 are defined as downward direction d and downward d. The front-back direction in the lean vehicle body 60 is defined as the front-back direction fb. The left-right direction in the lean vehicle body 60 is defined as a left-right direction lr. The vertical direction in the lean vehicle main body 60 is defined as the vertical direction ud.
 本明細書において、前後方向に延びる軸や部材とは、必ずしも前後方向と平行である軸や部材だけを示すものではない。前後方向に延びる軸や部材とは、前後方向に対して±45°の範囲で傾斜している軸や部材を含む。同様に、上下方向に延びる軸や部材とは、上下方向に対して±45°の範囲で傾斜している軸や部材を含む。左右方向に延びる軸や部材とは、左右方向に対して±45°の範囲で傾斜している軸や部材を含む。また、リーンビークル本体60の直立状態とは、ライダーが乗車せず、リーンビークル6に燃料を搭載していない状態における、前輪が操舵も傾斜もしていない状態を意味する。 軸 In the present specification, the axis or member extending in the front-rear direction does not necessarily mean only an axis or member parallel to the front-rear direction. The shaft or member extending in the front-rear direction includes a shaft or member inclined in a range of ± 45 ° with respect to the front-rear direction. Similarly, the axis or member extending in the up-down direction includes an axis or member inclined in a range of ± 45 ° with respect to the up-down direction. The shaft or member extending in the left-right direction includes a shaft or member inclined at a range of ± 45 ° with respect to the left-right direction. The upright state of the lean vehicle body 60 means a state in which the front wheels are neither steered nor tilted in a state where no rider gets on the vehicle and no fuel is mounted on the lean vehicle 6.
 本明細書における任意の2つの部材を第1部材及び第2部材と定義した場合、任意の2つの部材の関係は以下のような意味になる。本明細書において、第1部材が第2部材に支持されているとは、第1部材が第2部材に対して移動不可能に第2部材に取り付けられている(すなわち、固定されている)場合、及び、第1部材が第2部材に対して移動可能に第2部材に取り付けられている場合を含む。また、第1部材が第2部材に支持されているとは、第1部材が第2部材に直接に取り付けられている場合、及び、第1部材が第3部材を介して第2部材に取り付けられている場合の両方を含む。 場合 When any two members in this specification are defined as a first member and a second member, the relationship between the two members has the following meaning. In this specification, that the first member is supported by the second member means that the first member is attached to the second member so as not to be movable with respect to the second member (that is, is fixed). The case includes the case where the first member is movably attached to the second member with respect to the second member. The first member is supported by the second member when the first member is directly attached to the second member and when the first member is attached to the second member via the third member. Include both cases.
 本明細書において、前後方向に並ぶ第1部材及び第2部材とは、以下の状態を示す。前後方向に垂直な方向に第1部材及び第2部材を見たときに、第1部材及び第2部材の両方が前後方向を示す任意の直線上に配置されている状態である。本明細書において、上方向又は下方向に見て前後方向に並ぶ第1部材及び第2部材とは、以下の状態を示す。上方向又は下方向に第1部材及び第2部材を見たときに、第1部材及び第2部材の両方が前後方向を示す任意の直線上に配置されている。この場合、上方向及び下方向とは異なる左方向又は右方向に第1部材及び第2部材を見ると、第1部材及び第2部材のいずれか一方が前後方向を示す任意の直線上に配置されていなくてもよい。なお、第1部材と第2部材とが接触していてもよい。第1部材と第2部材とが離れていてもよい。第1部材と第2部材との間に第3部材が存在していてもよい。この定義は、前後方向以外の方向にも適用される。 に お い て In this specification, the first member and the second member arranged in the front-rear direction indicate the following states. When the first member and the second member are viewed in a direction perpendicular to the front-back direction, both the first member and the second member are arranged on an arbitrary straight line indicating the front-back direction. In this specification, the first member and the second member arranged in the front-rear direction when viewed upward or downward indicate the following states. When the first member and the second member are viewed upward or downward, both the first member and the second member are arranged on an arbitrary straight line indicating the front-back direction. In this case, when viewing the first member and the second member in a left direction or a right direction different from the upward direction and the downward direction, one of the first member and the second member is arranged on an arbitrary straight line indicating the front-back direction. It does not need to be done. Note that the first member and the second member may be in contact with each other. The first member and the second member may be separated. A third member may be present between the first member and the second member. This definition applies to directions other than the front-back direction.
 本明細書において、第1部材が第2部材より前に配置されるとは、以下の状態を指す。第1部材は、第2部材の前端を通り前後方向に直交する平面の前に配置される。この場合、第1部材及び第2部材は、前後方向に並んでいてもよく、並んでいなくてもよい。この定義は、前後方向以外の方向にも適用される。 に お い て In this specification, the expression that the first member is arranged before the second member indicates the following state. The first member is disposed in front of a plane passing through the front end of the second member and orthogonal to the front-rear direction. In this case, the first member and the second member may or may not be arranged in the front-rear direction. This definition applies to directions other than the front-back direction.
 本明細書において、第1部材が第2部材の前に配置されるとは、以下の状態を指す。第1部材の少なくとも一部は、第2部材が前方向に平行移動するときに通過する領域内に配置されている。よって、第1部材は、第2部材が前方向に平行移動するときに通過する領域内に収まっていてもよいし、第2部材が前方向に平行移動するときに通過する領域から突出していてもよい。この場合、第1部材及び第2部材は、前後方向に並んでいる。この定義は、前後方向以外の方向にも適用される。 に お い て In this specification, the expression that the first member is arranged before the second member refers to the following state. At least a part of the first member is disposed in an area through which the second member passes when moving in the forward direction. Therefore, the first member may be contained in a region through which the second member passes when moving in the forward direction, or may protrude from a region through which the second member passes when moving in the forward direction. Is also good. In this case, the first member and the second member are arranged in the front-rear direction. This definition applies to directions other than the front-back direction.
 本明細書において、左方向又は右方向に見て、第1部材が第2部材の前に配置されるとは、以下の状態を指す。左方向又は右方向に見て、第1部材と第2部材が前後方向に並んでおり、且つ、左方向又は右方向に見て、第1部材の第2部材と対向する部分が、第2部材の前に配置される。この定義において、第1部材と第2部材は、3次元では、前後方向に並んでいなくてもよい。この定義は、前後方向以外の方向も適用される。 に お い て In the present specification, when the first member is disposed in front of the second member when viewed in the leftward or rightward direction, it refers to the following state. When viewed in the left or right direction, the first member and the second member are arranged in the front-rear direction, and when viewed in the left or right direction, the portion of the first member facing the second member is the second member. It is arranged before the member. In this definition, the first member and the second member do not have to be arranged in the front-rear direction in three dimensions. This definition applies to directions other than the front-back direction.
 本明細書において、特に断りのない場合には、第1部材の各部について以下のように定義する。第1部材の前部とは、第1部材の前半分を意味する。第1部材の後部とは、第1部材の後半分を意味する。第1部材の左部とは、第1部材の左半分を意味する。第1部材の右部とは、第1部材の右半分を意味する。第1部材の上部とは、第1部材の上半分を意味する。第1部材の下部とは、第1部材の下半分を意味する。第1部材の上端とは、第1部材の上方向の端を意味する。第1部材の下端とは、第1部材の下方向の端を意味する。第1部材の前端とは、第1部材の前方向の端を意味する。第1部材の後端とは、第1部材の後方向の端を意味する。第1部材の右端とは、第1部材の右方向の端を意味する。第1部材の左端とは、第1部材の左方向の端を意味する。第1部材の上端部とは、第1部材の上端及びその近傍を意味する。第1部材の下端部とは、第1部材の下端及びその近傍を意味する。第1部材の前端部とは、第1部材の前端及びその近傍を意味する。第1部材の後端部とは、第1部材の後端及びその近傍を意味する。第1部材の右端部とは、第1部材の右端及びその近傍を意味する。第1部材の左端部とは、第1部材の左端及びその近傍を意味する。第1部材とは、リーンビークル6を構成する部材を意味する。 に お い て In this specification, unless otherwise specified, each part of the first member is defined as follows. The front part of the first member means the front half of the first member. The rear part of the first member means the rear half of the first member. The left part of the first member means the left half of the first member. The right part of the first member means the right half of the first member. The upper part of the first member means the upper half of the first member. The lower part of the first member means the lower half of the first member. The upper end of the first member means an upper end of the first member. The lower end of the first member means a lower end of the first member. The front end of the first member refers to the front end of the first member. The rear end of the first member means the rear end of the first member. The right end of the first member means the right end of the first member. The left end of the first member means the left end of the first member. The upper end of the first member means the upper end of the first member and its vicinity. The lower end of the first member means the lower end of the first member and its vicinity. The front end of the first member means the front end of the first member and its vicinity. The rear end of the first member means the rear end of the first member and its vicinity. The right end of the first member means the right end of the first member and its vicinity. The left end of the first member means the left end of the first member and its vicinity. The first member means a member constituting the lean vehicle 6.
 本明細書において、第1部材と第2部材との間に構成(部材、空間又は開口)が形成される(位置する又は設けられる)とは、第1部材と第2部材とが並ぶ方向において第1部材と第2部材との間に構成が存在することを意味する。ただし、構成は、第1部材と第2部材とが並ぶ方向に直交する方向に第1部材又は第2部材から突出していてもよいし、突出していなくてもよい。 In this specification, a configuration (a member, a space, or an opening) is formed (located or provided) between the first member and the second member in the direction in which the first member and the second member are arranged. This means that a configuration exists between the first member and the second member. However, the configuration may or may not protrude from the first member or the second member in a direction orthogonal to the direction in which the first member and the second member are arranged.
 リーンビークル6は、図1Aに示すように、例えば、自動二輪車である。リーンビークル6は、リーンビークル本体60、前輪62、後輪64、動力源66及び操舵機構68を備えている。リーンビークル本体60は、リーンビークル6が左方向Lに旋回するときに左方向Lに傾斜する。リーンビークル本体60は、リーンビークル6が右方向Rに旋回するときに右方向Rに傾斜する。 The lean vehicle 6 is, for example, a motorcycle as shown in FIG. 1A. The lean vehicle 6 includes a lean vehicle main body 60, a front wheel 62, a rear wheel 64, a power source 66, and a steering mechanism 68. The lean vehicle body 60 is inclined leftward L when the lean vehicle 6 turns leftward L. The lean vehicle body 60 is inclined in the right direction R when the lean vehicle 6 turns in the right direction R.
 操舵機構68は、リーンビークル本体60の前部に支持されている。操舵機構68は、ライダーの操作により前輪62を操舵する。操舵機構68は、ハンドル、ステアリングシャフト及びフロントフォークを含んでいる。ただし、ハンドル、ステアリングシャフト及びフロントフォークの構造は、一般的なハンドル、ステアリングシャフト及びフロントフォークの構造と同じであるので説明を省略する。 The steering mechanism 68 is supported at the front of the lean vehicle body 60. The steering mechanism 68 steers the front wheel 62 by a rider's operation. The steering mechanism 68 includes a steering wheel, a steering shaft, and a front fork. However, the structures of the handle, the steering shaft, and the front fork are the same as those of a general handle, steering shaft, and a front fork, and a description thereof will be omitted.
 前輪62は、リーンビークル6の操舵輪である。前輪62は、リーンビークル6の前部に配置されている。前輪62は、操舵機構68を介してリーンビークル本体60に支持されている。また、ライダーは、操舵機構68のハンドルを操作することにより、前輪62を操舵することができる。 The front wheel 62 is a steering wheel of the lean vehicle 6. The front wheel 62 is arranged at the front of the lean vehicle 6. The front wheel 62 is supported by a lean vehicle body 60 via a steering mechanism 68. The rider can steer the front wheel 62 by operating the steering wheel of the steering mechanism 68.
 後輪64は、リーンビークル6の駆動輪である。後輪64は、リーンビークル6の後部に配置されている。後輪64は、スイングアームを介してリーンビークル本体60に支持されている。後輪64は、後述する動力源66の駆動力により回転させられる。 The rear wheel 64 is a drive wheel of the lean vehicle 6. The rear wheel 64 is arranged at the rear of the lean vehicle 6. The rear wheel 64 is supported by the lean vehicle main body 60 via a swing arm. The rear wheel 64 is rotated by a driving force of a power source 66 described later.
 動力源66は、後輪64を回転させる駆動力を発生する。動力源66は、エンジンである。動力源66は、リーンビークル本体60に支持されている。動力源66が発生した駆動力は、変速機等の伝達機構を介して後輪64に伝達される。これにより、後輪64は、動力源66が発生した駆動力により回転させられる。 The power source 66 generates a driving force for rotating the rear wheel 64. The power source 66 is an engine. The power source 66 is supported by the lean vehicle body 60. The driving force generated by the power source 66 is transmitted to the rear wheels 64 via a transmission mechanism such as a transmission. As a result, the rear wheel 64 is rotated by the driving force generated by the power source 66.
 リーンビークル6は、リーンビークル用障害物検知装置10を更に備えている。リーンビークル用障害物検知装置10は、リーンビークル6より前Fに位置する路上に存在する障害物を検知する。リーンビークル用障害物検知装置10は、撮像部12、障害物検知部16及びケース18(第3ケース)を備えている。 The lean vehicle 6 further includes a lean vehicle obstacle detection device 10. The lean-vehicle obstacle detection device 10 detects an obstacle existing on a road located in front F of the lean vehicle 6. The lean vehicle obstacle detection device 10 includes an imaging unit 12, an obstacle detection unit 16, and a case 18 (third case).
 ケース18は、撮像部12及び障害物検知部16を収容している。ケース18は、リーンビークル本体60の前部に固定されている。そのため、撮像部12、障害物検知部16及びケース18は、リーンビークル本体60が左方向L又は右方向Rに傾斜すると、リーンビークル本体60と共に左方向L又は右方向Rに傾斜する。 The case 18 houses the imaging unit 12 and the obstacle detection unit 16. The case 18 is fixed to a front part of the lean vehicle body 60. Therefore, when the lean vehicle main body 60 is inclined in the left direction L or the right direction R, the imaging unit 12, the obstacle detection unit 16 and the case 18 are inclined in the left direction L or the right direction R together with the lean vehicle body 60.
 撮像部12は、撮像素子14を含んでいる。撮像部12は、撮像素子14により撮像されたリーンビークル6より前Fに位置する空間のイメージデータImを出力する。撮像素子14は、リーンビークル本体60と一緒に左方向L又は右方向Rに傾斜するように、リーンビークル本体60の左右方向lrの中央部に設けられている。リーンビークル本体60の左右方向lrの中央部とは、リーンビークル本体60を左右方向lrに三等分したときに、真ん中に位置する部分である。撮像素子14は、図1Bに示すように、リーンビークル本体60が直立状態のとき、撮像素子14の光軸AxLの向きが前方向Fかつ下方向Dとなるように、リーンビークル本体60に設けられている。撮像素子14は、例えば、CMOS(Complementary Metal Oxide Semiconductor)又はCCD(Charge Coupled Device)である。撮像素子14は、図1Aに示すように、上下方向udに延びる短辺及び左右方向lrに延びる長辺を有する長方形状を有している。撮像素子14は、上下方向ud及び左右方向lrに行列状に配置された複数の画素を有している。複数の画素は、画素の外部から画素に入射してくる光を電気信号に変換する。 The imaging unit 12 includes the imaging element 14. The imaging unit 12 outputs image data Im of a space located in front F of the lean vehicle 6 captured by the imaging element 14. The image sensor 14 is provided at the center of the lean vehicle main body 60 in the left-right direction lr so as to incline in the left direction L or the right direction R together with the lean vehicle main body 60. The central portion of the lean vehicle body 60 in the left-right direction lr is a portion located in the middle when the lean vehicle body 60 is divided into three equal parts in the left-right direction lr. As shown in FIG. 1B, the image sensor 14 is provided on the lean vehicle main body 60 such that the direction of the optical axis AxL of the image sensor 14 is forward F and downward D when the lean vehicle main body 60 is in the upright state. Have been. The image sensor 14 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device). As shown in FIG. 1A, the image sensor 14 has a rectangular shape having a short side extending in the up-down direction ud and a long side extending in the left-right direction lr. The image sensor 14 has a plurality of pixels arranged in a matrix in the vertical direction ud and the horizontal direction lr. The plurality of pixels convert light incident on the pixel from outside the pixel into an electric signal.
 また、撮像素子14は、図2に示すように、水平画素14H、鉛直画素14V、左上画素14lu、右上画素14ru、左下画素14ld及び右下画素14rdを含んでいる。水平画素14Hは、図2に示すように、リーンビークル本体60が直立状態のとき、リーンビークル6の前方向Fに位置する水平線H0を撮像する複数の画素である。従って、水平画素14Hは、上下方向udに1画素分の幅を有し、左右方向lrに延びる線状の複数の画素である。 {Circle around (2)} As shown in FIG. 2, the image sensor 14 includes a horizontal pixel 14H, a vertical pixel 14V, an upper left pixel 14lu, an upper right pixel 14ru, a lower left pixel 14ld, and a lower right pixel 14rd. As shown in FIG. 2, the horizontal pixels 14H are a plurality of pixels that capture an image of a horizontal line H0 located in the forward direction F of the lean vehicle 6 when the lean vehicle body 60 is in the upright state. Therefore, the horizontal pixels 14H are a plurality of linear pixels having a width of one pixel in the vertical direction ud and extending in the horizontal direction lr.
 図1Aに示すように、リーンビークル本体60が右方向Rに傾斜すると、水平線H0は、水平画素14Hに対して左方向lに傾斜する。リーンビークル本体60が左方向Lに傾斜すると、水平線H0は、水平画素14Hに対して右方向rに傾斜する。水平線H0が左方向lに傾斜するとは、前方向Fに見たときに、水平線H0が反時計回りに回転することである。水平線H0が右方向rに傾斜するとは、前方向Fに見たときに、水平線H0が時計回りに回転することである。 As shown in FIG. 1A, when the lean vehicle body 60 is tilted rightward R, the horizontal line H0 is tilted leftward l with respect to the horizontal pixels 14H. When the lean vehicle body 60 tilts in the left direction L, the horizontal line H0 tilts in the right direction r with respect to the horizontal pixels 14H. The inclination of the horizontal line H0 in the leftward direction l means that the horizontal line H0 rotates counterclockwise when viewed in the forward direction F. The inclination of the horizontal line H0 in the right direction r means that the horizontal line H0 rotates clockwise when viewed in the forward direction F.
 鉛直画素14Vは、図2に示すように、リーンビークル本体60が直立状態のとき、リーンビークル本体60の左右方向lrの中心の前Fに位置する鉛直線を撮像する複数の画素である。鉛直線は、水平線H0と直交する。従って、鉛直画素14Vは、左右方向lrに1画素分の幅を有し、上下方向udに延びる線状の複数の画素である。鉛直画素14Vは、水平画素14Hと直交する。 As shown in FIG. 2, the vertical pixels 14 </ b> V are a plurality of pixels that capture an image of a vertical line located in front F of the center of the lean vehicle main body 60 in the left-right direction lr when the lean vehicle main body 60 is in the upright state. The vertical line is orthogonal to the horizontal line H0. Therefore, the vertical pixel 14V is a plurality of linear pixels having a width of one pixel in the left-right direction lr and extending in the vertical direction ud. The vertical pixel 14V is orthogonal to the horizontal pixel 14H.
 左上画素14luは、リーンビークル本体60が直立状態のとき、水平画素14Hより上Uかつ鉛直画素14Vより左Lに設けられている複数の画素である。換言すれば、左上画素14luは、水平画素14Hより上uかつ鉛直画素14Vより左lに設けられている複数の画素である。左上画素14luは、長方形状を有している。右上画素14ruは、リーンビークル本体60が直立状態のとき、水平画素14Hより上Uかつ鉛直画素14Vより右Rに設けられている複数の画素である。換言すれば、右上画素14ruは、水平画素14Hより上uかつ鉛直画素14Vより右rに設けられている複数の画素である。右上画素14ruは、長方形状を有している。左下画素14ldは、リーンビークル本体60が直立状態のとき、水平画素14Hより下Dかつ鉛直画素14Vより左Lに設けられている複数の画素である。換言すれば、左下画素14ldは、水平画素14Hより下dかつ鉛直画素14Vより左lに設けられている複数の画素である。左下画素14ldは、長方形状を有している。右下画素14rdは、リーンビークル本体60が直立状態のとき、水平画素14Hより下Dかつ鉛直画素14Vより右Rに設けられている複数の画素である。換言すれば、右下画素14rdは、水平画素14Hより下dかつ鉛直画素14Vより右rに設けられている複数の画素である。右下画素14rdは、長方形状を有している。 The upper left pixel 14lu is a plurality of pixels provided above the horizontal pixel 14H and to the left L of the vertical pixel 14V when the lean vehicle body 60 is in the upright state. In other words, the upper left pixel 14lu is a plurality of pixels provided above the horizontal pixel 14H and to the left l of the vertical pixel 14V. The upper left pixel 14lu has a rectangular shape. The upper right pixel 14ru is a plurality of pixels provided above the horizontal pixels 14H and right R from the vertical pixels 14V when the lean vehicle body 60 is in the upright state. In other words, the upper right pixel 14ru is a plurality of pixels provided u above the horizontal pixel 14H and right r from the vertical pixel 14V. The upper right pixel 14ru has a rectangular shape. The lower left pixel 14ld is a plurality of pixels provided below the horizontal pixel 14H and to the left L of the vertical pixel 14V when the lean vehicle body 60 is in the upright state. In other words, the lower left pixel 14ld is a plurality of pixels provided below the horizontal pixel 14H and to the left l of the vertical pixel 14V. The lower left pixel 14ld has a rectangular shape. The lower right pixel 14rd is a plurality of pixels provided below the horizontal pixel 14H and to the right R of the vertical pixel 14V when the lean vehicle body 60 is in the upright state. In other words, the lower right pixel 14rd is a plurality of pixels provided below the horizontal pixel 14H and on the right side of the vertical pixel 14V. The lower right pixel 14rd has a rectangular shape.
 障害物検知部16は、撮像素子14により撮像されたイメージデータImに基づいて、リーンビークル6より前Fに位置する路上に存在する先行車両100(障害物)を検知する。障害物検知部16は、例えば、IC(Integrated Circuit)、電子部品及び回路基板の組み合わせにより構成されたECU(Electrical Control Unit)や画像処理ボード等である。 The obstacle detection unit 16 detects the preceding vehicle 100 (obstacle) existing on the road located in front F of the lean vehicle 6 based on the image data Im captured by the image sensor 14. The obstacle detection unit 16 is, for example, an integrated circuit (IC), an electronic control unit (ECU) configured by a combination of electronic components and a circuit board, and an image processing board.
(障害物検知部16の動作)
 次に、障害物検知部16の動作について図面を参照しながら説明する。まず、リーンビークル6が直進しているときの障害物検知について図面を参照しながら説明する。
(Operation of the obstacle detection unit 16)
Next, the operation of the obstacle detection unit 16 will be described with reference to the drawings. First, obstacle detection when the lean vehicle 6 is traveling straight will be described with reference to the drawings.
 まず、図1Bに示すように、位置P1~P3を定義する。位置P1は、リーンビークル6から前方向Fに距離D1だけ離れた位置である。図1A及び図2のイメージデータは、先行車両100が位置P1に位置しているときのイメージデータである。位置P2は、リーンビークル6から前方向Fに距離D2だけ離れた位置である。図3及び図5のイメージデータは、先行車両100が位置P2に位置しているときのイメージデータである。位置P3は、リーンビークル6から前方向Fに距離D3だけ離れた位置である。図4及び図6のイメージデータは、先行車両100が位置P3に位置しているときのイメージデータである。D1>D2>D3の関係が成立している。そのため、先行車両100が位置P1に位置するときの先行車両100のサイズが最も小さい。先行車両100が位置P3に位置するときの先行車両100のサイズが最も大きい。 First, as shown in FIG. 1B, positions P1 to P3 are defined. The position P1 is a position away from the lean vehicle 6 in the forward direction F by a distance D1. 1A and 2 are image data when the preceding vehicle 100 is located at the position P1. The position P2 is a position separated from the lean vehicle 6 by a distance D2 in the forward direction F. 3 and 5 are image data when the preceding vehicle 100 is located at the position P2. The position P3 is a position separated from the lean vehicle 6 by a distance D3 in the forward direction F. 4 and 6 are image data when the preceding vehicle 100 is located at the position P3. The relationship of D1> D2> D3 holds. Therefore, the size of the preceding vehicle 100 when the preceding vehicle 100 is located at the position P1 is the smallest. The size of the preceding vehicle 100 when the preceding vehicle 100 is located at the position P3 is the largest.
 リーンビークル6が直進しているときには、先行車両100が位置P1に位置すると、図2に示すように、先行車両100がイメージデータImにおいて水平画素14Hと鉛直画素14Vとの交点付近に出現する。リーンビークル6が進行することによって、先行車両100が位置P2に位置すると、図3に示すように、先行車両100がイメージデータImにおいて鉛直画素14Vに沿って下方向dに移動する。同時に、先行車両100が大きくなる。リーンビークル6が進行することによって、先行車両100が位置P3に位置すると、図4に示すように、先行車両100がイメージデータImにおいて鉛直画素14Vに沿って下方向dに更に移動する。同時に、先行車両100が更に大きくなる。 (2) When the lean vehicle 6 is traveling straight ahead and the preceding vehicle 100 is located at the position P1, as shown in FIG. 2, the preceding vehicle 100 appears near the intersection of the horizontal pixel 14H and the vertical pixel 14V in the image data Im. When the preceding vehicle 100 is located at the position P2 as the lean vehicle 6 advances, as shown in FIG. 3, the preceding vehicle 100 moves downward d along the vertical pixel 14V in the image data Im. At the same time, the leading vehicle 100 becomes larger. When the preceding vehicle 100 is located at the position P3 as the lean vehicle 6 advances, as shown in FIG. 4, the preceding vehicle 100 further moves in the downward direction d along the vertical pixel 14V in the image data Im. At the same time, the leading vehicle 100 becomes even larger.
 このように、リーンビークル6が直進しているときには、先行車両100は、イメージデータImにおいて以下の(a)及び(b)を同時に満たす中央領域150に位置する。
(a)水平画素14Hと鉛直画素14Vとの交点の僅かに上uの位置より下dの領域
(b)鉛直画素14Vの近傍の領域
As described above, when the lean vehicle 6 is traveling straight, the preceding vehicle 100 is located in the central area 150 that simultaneously satisfies the following (a) and (b) in the image data Im.
(A) A region d slightly below the position u at the intersection of the horizontal pixel 14H and the vertical pixel 14V. (B) A region near the vertical pixel 14V.
 そこで、障害物検知部16は、リーンビークル6が直進しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも中央領域150により撮像された部分の一部に基づいてリーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。 Therefore, when the lean vehicle 6 is traveling straight, the obstacle detection unit 16 determines the lean vehicle 6 based on at least a part of the portion captured by the central region 150 in the image data Im captured by the plurality of pixels. The preceding vehicle 100 existing on the road located ahead of F is detected.
 一方、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときには、先行車両100が位置P1に位置すると、図1Aに示すように、先行車両100がイメージデータImにおいて右上ruの角近傍に出現する。リーンビークル6が進行することによって、先行車両100が位置P2に位置すると、図5に示すように、先行車両100がイメージデータImにおいて左下方向ldに移動する。同時に、先行車両100が大きくなる。リーンビークル6が進行することによって、先行車両100が位置P3に位置すると、図6に示すように、先行車両100がイメージデータImにおいて左下方向ldに更に移動する。同時に、先行車両100が更に大きくなる。 On the other hand, when the lean vehicle 6 is turning in the right direction R and the lean vehicle body 60 is tilted in the right direction R, when the preceding vehicle 100 is located at the position P1, as shown in FIG. Appears near the upper right corner of the image data Im. When the preceding vehicle 100 is located at the position P2 as the lean vehicle 6 advances, as shown in FIG. 5, the preceding vehicle 100 moves in the lower left direction ld in the image data Im. At the same time, the leading vehicle 100 becomes larger. When the preceding vehicle 100 is located at the position P3 as the lean vehicle 6 advances, as shown in FIG. 6, the preceding vehicle 100 further moves in the lower left direction ld in the image data Im. At the same time, the leading vehicle 100 becomes even larger.
 そこで、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部に基づいてリーンビークル6より前Fに位置する路上に存在する先行車両100(障害物)を検知する。右上領域140ruは、右上画素14ruの右部かつ上部である。より詳細には、障害物検知部16は、以下の(1)~(3)の動作を行う。 Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels. The preceding vehicle 100 (obstacle) existing on the road located in front F of the lean vehicle 6 is detected based on a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru. The upper right area 140ru is the right and upper part of the upper right pixel 14ru. More specifically, the obstacle detection unit 16 performs the following operations (1) to (3).
(1)先行車両100が位置P1に位置する場合(図1A)
 図1Aでは、先行車両100は、イメージデータImの内の右上画素14ruにより撮像された部分からはみ出していない。そこで、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ruにより撮像された部分だけに存在する先行車両100を検知する。そのため、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ruにより撮像された部分から一部がはみ出している先行車両100を検知しない。
 特に、本実施形態では、図1Aでは、先行車両100は、イメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分からはみ出していない。そこで、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分だけに存在する先行車両100を検知する。そのため、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分から一部がはみ出している先行車両100を検知しない。
(1) When the preceding vehicle 100 is located at the position P1 (FIG. 1A)
In FIG. 1A, the preceding vehicle 100 does not protrude from a portion of the image data Im captured by the upper right pixel 14ru. Therefore, when the lean vehicle body 60 is tilted in the right direction R because the lean vehicle 6 turns in the right direction R, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper right pixel 14ru. Is detected only in the preceding vehicle 100 existing in the vehicle. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper right pixel 14ru. It does not detect the preceding vehicle 100 that is partially protruding from the vehicle.
In particular, in the present embodiment, in FIG. 1A, the preceding vehicle 100 does not protrude from a portion of the image data Im captured by the upper right area 140ru of the upper right pixel 14ru. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 uses the upper right area 140ru of the upper right pixel 14ru in the image data Im. The preceding vehicle 100 existing only in the imaged portion is detected. Therefore, when the lean vehicle body 60 is tilted in the right direction R because the lean vehicle 6 turns in the right direction R, the obstacle detection unit 16 sets the upper right area 140ru of the upper right pixel 14ru in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
(2)先行車両100が位置P2に位置する場合(図5)
 図5では、先行車両100は、イメージデータImの内の右上画素14ruにより撮像された部分から右下画素14rdにより撮像された部分にはみ出している。そこで、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の少なくとも右上画素14ruにより撮像された部分及び右下画素14rdにより撮像された部分に存在する先行車両100を検知する。本実施形態では、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ru及び右下画素14rdにより撮像された部分だけに存在する先行車両100を検知する。従って、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ru及び右下画素14rdにより撮像された部分から一部がはみ出している先行車両100を検知しない。
(2) When the preceding vehicle 100 is located at the position P2 (FIG. 5)
In FIG. 5, the preceding vehicle 100 protrudes from a portion of the image data Im captured by the upper right pixel 14ru to a portion captured by the lower right pixel 14rd. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 captures an image using at least the upper right pixel 14ru of the image data Im. The preceding vehicle 100 existing in the part and the part imaged by the lower right pixel 14rd is detected. In the present embodiment, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 detects the upper right pixel 14ru and the right upper pixel 14ru in the image data Im. The preceding vehicle 100 existing only in the portion imaged by the lower pixel 14rd is detected. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines whether the upper right pixel 14ru and the lower right pixel 14rd in the image data Im are present. Does not detect the preceding vehicle 100 that is partially protruding from the part imaged by.
(3)先行車両100が位置P3に位置する場合(図6)
 障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータIm全体に存在する先行車両100を検知する。
(3) When the preceding vehicle 100 is located at the position P3 (FIG. 6)
The obstacle detection unit 16 detects the preceding vehicle 100 existing in the entire image data Im when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R.
 以上のように、(1)において、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときに障害物検知部16が障害物検知に用いる右上領域140ruは、リーンビークル6が直進しているときに障害物検知部16が障害物検知に用いる中央領域150より上uに位置する。ただし、右上領域140ruの上端が中央領域150の上端より上uに位置していれば、右上領域140ruの下端が中央領域150の上端より下dに位置していてもよい。 As described above, in (1), the upper right area used by the obstacle detection unit 16 for obstacle detection when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R. 140ru is located above the central region 150 used by the obstacle detection unit 16 for obstacle detection when the lean vehicle 6 is traveling straight. However, if the upper end of the upper right region 140ru is located above the upper end of the central region 150, the lower end of the upper right region 140ru may be located below the upper end of the central region 150.
 障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部に基づいてリーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。左上領域140luは、左上画素14luの左部かつ上部である。より詳細には、障害物検知部16は、以下の(4)~(6)の動作を行う。 When the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 determines at least the upper left pixel of the image data Im captured by the plurality of pixels. Based on a part of the portion imaged by the upper left area 140lu of 14lu, the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected. The upper left region 140lu is a left upper portion of the upper left pixel 14lu. More specifically, the obstacle detection unit 16 performs the following operations (4) to (6).
(4)先行車両100が位置P1に位置する場合
 障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14luにより撮像された部分だけに存在する先行車両100を検知する。そのため、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14luにより撮像された部分から一部がはみ出している先行車両100を検知しない。特に、本実施形態では、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14luの左上領域140luにより撮像された部分だけに存在する先行車両100を検知する。そのため、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14luの左上領域140luにより撮像された部分から一部がはみ出している先行車両100を検知しない。
(4) When the Leading Vehicle 100 is at the Position P1 When the lean vehicle 6 is tilted to the left L because the lean vehicle 6 turns to the left L, the obstacle detection unit 16 outputs the image data Im. Of the vehicle 100 existing only in the part imaged by the upper left pixel 14lu of the vehicle. Therefore, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects a portion of the image data Im captured by the upper left pixel 14lu. It does not detect the preceding vehicle 100 that is partially protruding from the vehicle. In particular, in the present embodiment, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects the upper left pixel 14lu in the image data Im. Is detected only in the portion imaged by the upper left area 140lu of the vehicle. Therefore, when the lean vehicle body 60 is tilted in the left direction L because the lean vehicle 6 turns in the left direction L, the obstacle detection unit 16 detects the upper left area 140lu of the upper left pixel 14lu in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
(5)先行車両100が位置P2に位置する場合
 障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の少なくとも左上画素14luにより撮像された部分及び左下画素14ldにより撮像された部分に存在する先行車両100を検知する。本実施形態では、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14lu及び左下画素14ldにより撮像された部分だけに存在する先行車両100を検知する。従って、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14lu及び左下画素14ldにより撮像された部分から一部がはみ出している先行車両100を検知しない。
(5) When the Leading Vehicle 100 is Located at the Position P2 The obstacle detection unit 16 outputs the image data Im when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. , The preceding vehicle 100 existing in at least the portion imaged by the upper left pixel 14lu and the portion imaged by the lower left pixel 14ld is detected. In the present embodiment, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects the upper left pixel 14lu and the lower left pixel of the image data Im. The preceding vehicle 100 existing only in the part imaged by the pixel 14ld is detected. Accordingly, when the lean vehicle body 60 is tilted to the left L because the lean vehicle 6 turns to the left L, the obstacle detection unit 16 detects the upper left pixel 14lu and the lower left pixel 14ld in the image data Im. It does not detect the preceding vehicle 100 that is partially out of the imaged portion.
(6)先行車両100が位置P3に位置する場合
 障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータIm全体に存在する先行車両100を検知する。
(6) When the Leading Vehicle 100 is Located at the Position P3 The obstacle detection unit 16 outputs the image data Im when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. The preceding vehicle 100 existing in the whole is detected.
 以上のように、(4)において、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているときに障害物検知部16が障害物検知に用いる左上領域140luは、リーンビークル6が直進しているときに障害物検知部16が障害物検知に用いる中央領域150より上uに位置する。ただし、左上領域140luの上端が中央領域150の上端より上uに位置していれば、左上領域140luの下端が中央領域150の上端より下dに位置していてもよい。 As described above, in (4), the upper left area used by the obstacle detection unit 16 for obstacle detection when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. 140lu is located above the central region 150 used by the obstacle detection unit 16 for obstacle detection when the lean vehicle 6 is traveling straight. However, if the upper end of the upper left region 140lu is located above the upper end of the central region 150, the lower end of the upper left region 140lu may be located below the upper end of the central region 150.
[効果]
 リーンビークル用障害物検知装置10によれば、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知することができる。より詳細には、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜すると、リーンビークル6の進路上に位置する先行車両100は、イメージデータImの内の左上画素14luの左上領域140luにより撮像された部分に出現する可能性が高い。そこで、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部に基づいてリーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。これにより、障害物検知部16は、リーンビークル本体60が左方向Lに傾斜しているときに、先行車両100を検知することができる。同様に、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜すると、リーンビークル6の進路上に位置する先行車両100は、イメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分に出現する可能性が高い。そこで、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部に基づいてリーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。これにより、障害物検知部16は、リーンビークル本体60が右方向Rに傾斜しているときに、先行車両100を検知することができる。
[effect]
According to the lean vehicle obstacle detection device 10, it is possible to detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. More specifically, when the lean vehicle body 60 inclines leftward L because the lean vehicle 6 turns leftward L, the preceding vehicle 100 located on the course of the lean vehicle 6 is moved to the upper left of the image data Im. It is highly likely that it will appear in the part imaged by the upper left area 140lu of the pixel 14lu. Therefore, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels. Based on a part of the portion of the upper left pixel 14lu imaged by the upper left area 140lu, the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected. Thereby, the obstacle detection unit 16 can detect the preceding vehicle 100 when the lean vehicle main body 60 is inclined in the left direction L. Similarly, when the lean vehicle main body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the preceding vehicle 100 located on the course of the lean vehicle 6 becomes the upper right pixel 14ru in the image data Im. Is likely to appear in the portion imaged by the upper right area 140ru of the image. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels. The preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 is detected based on a part of the upper right pixel 14ru captured by the upper right region 140ru. Thus, the obstacle detection unit 16 can detect the preceding vehicle 100 when the lean vehicle body 60 is inclined in the right direction R.
 また、リーンビークル用障害物検知装置10によれば、障害物検知部16が先行車両100を検知できる確率が高くなる。より詳細には、先行車両100は、イメージデータImにおいて水平線H0より下dに位置する領域に存在することが多い。そこで、水平線H0より下dに位置する領域がイメージデータImに占める割合が高くなれば、先行車両100が撮像素子14により撮像される確率が高くなる。そのため、撮像素子14は、リーンビークル6aが直立状態のとき、撮像素子14の光軸AxLの向きが前方向Fかつ下方向Dとなるように、リーンビークル本体60に設けられている。これにより、撮像素子14は、リーンビークル6の前Fに先行車両100が存在するときに、先行車両100を高い確率で撮像することができる。その結果、障害物検知部16が先行車両100を検知できる確率が高くなる。 According to the lean vehicle obstacle detection device 10, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases. More specifically, the preceding vehicle 100 often exists in an area located below the horizontal line H0 in the image data Im. Therefore, if the area occupied by d below the horizontal line H0 occupies a higher proportion in the image data Im, the probability that the preceding vehicle 100 is imaged by the image sensor 14 increases. Therefore, the image sensor 14 is provided on the lean vehicle main body 60 such that the direction of the optical axis AxL of the image sensor 14 is forward F and downward D when the lean vehicle 6a is in the upright state. Accordingly, when the preceding vehicle 100 exists in front F of the lean vehicle 6, the image sensor 14 can image the preceding vehicle 100 with a high probability. As a result, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases.
(第2の実施形態)
[全体構成]
 以下に、第2の実施形態に係るリーンビークル用障害物検知装置の全体構成について図面を参照しながら説明する。図7は、リーンビークル用障害物検知装置10aを備えるリーンビークル6aの説明図である。図7では、リーンビークル6aの左側面図及び背面図、及び、リーンビークル用障害物検知装置10aのブロック図を示した。図8ないし図10及び図12ないし図15は、イメージデータIm又は変換イメージデータImtを示した図である。図8ないし図10及び図12ないし図15では、撮像素子14を前方向Fに見た図をイメージデータImに重ね合わせた。図8、図9、図14及び図15では、リーンビークル本体60が右方向Rに傾斜している。図8、図14及び図15では、θは-20°である。図9では、θは-10°である。図10、図12及び図13では、リーンビークル本体60が直立状態である。図10、図12及び図13では、0°である。図11は、第1エリア決定テーブルである。
(Second embodiment)
[overall structure]
Hereinafter, the overall configuration of the lean vehicle obstacle detection device according to the second embodiment will be described with reference to the drawings. FIG. 7 is an explanatory diagram of the lean vehicle 6a including the lean vehicle obstacle detection device 10a. FIG. 7 shows a left side view and a rear view of the lean vehicle 6a, and a block diagram of the lean vehicle obstacle detection device 10a. 8 to 10 and FIGS. 12 to 15 are diagrams illustrating the image data Im or the converted image data Imt. 8 to 10 and 12 to 15, the views of the image sensor 14 in the front direction F are superimposed on the image data Im. 8, 9, 14, and 15, the lean vehicle body 60 is inclined in the right direction R. In FIGS. 8, 14 and 15, θ is −20 °. In FIG. 9, θ is −10 °. 10, 12, and 13, the lean vehicle body 60 is in an upright state. In FIGS. 10, 12 and 13, the angle is 0 °. FIG. 11 is a first area determination table.
 リーンビークル6aは、図7に示すように、リーンビークル本体60、前輪62、後輪64、動力源66及び操舵機構68を備えている。ただし、リーンビークル6aのリーンビークル本体60、前輪62、後輪64、動力源66及び操舵機構68は、リーンビークル6のリーンビークル本体60、前輪62、後輪64、動力源66及び操舵機構68と同じであるので説明を省略する。 As shown in FIG. 7, the lean vehicle 6a includes a lean vehicle main body 60, a front wheel 62, a rear wheel 64, a power source 66, and a steering mechanism 68. However, the lean vehicle body 60, the front wheel 62, the rear wheel 64, the power source 66, and the steering mechanism 68 of the lean vehicle 6a are the lean vehicle body 60, the front wheel 62, the rear wheel 64, the power source 66, and the steering mechanism 68 of the lean vehicle 6. Therefore, the description is omitted.
 リーンビークル6aは、リーンビークル用障害物検知装置10a及びリーンビークル傾斜角度センサ40を更に備えている。リーンビークル傾斜角度センサ40は、図7に示すように、リーンビークル用障害物検知装置10aの外部に設けられている。リーンビークル傾斜角度センサ40は、リーンビークル本体60に固定されている。リーンビークル傾斜角度センサ40は、リーンビークル6が左方向L又は右方向Rに旋回するためにリーンビークル本体60が左方向L又は右方向Rに傾斜しているときに、リーンビークル本体60が左方向L又は右方向Rに傾斜している角度を示すリーンビークル6aの傾斜角度に関する物理量を検出する。本実施形態では、リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θである。リーンビークル傾斜角度θは、リーンビークル6aが左方向L又は右方向Rに旋回するためにリーンビークル本体60が左方向L又は右方向Rに傾斜しているときにリーンビークル本体60が傾斜している角度を示す。具体的には、リーンビークル傾斜角度θは、図7に示すように、上下方向UDに延びる鉛直軸Ax1に対してリーンビークル本体60の中心線Ax2がなす角度である。中心線Ax2は、前方向Fに見たときに、リーンビークル本体60の左右方向lrの中心に位置し、上下方向udに延びる直線である。中心線Ax2は、リーンビークル本体60が左方向L又は右方向Rに傾斜すると、左方向L又は右方向Rに傾斜する。リーンビークル傾斜角度θは、リーンビークル本体60が左方向Lに傾斜したときに正の値を取り、リーンビークル本体60が右方向Rに傾斜したときに負の値を取る。 The lean vehicle 6a further includes a lean vehicle obstacle detection device 10a and a lean vehicle inclination angle sensor 40. As shown in FIG. 7, the lean vehicle inclination angle sensor 40 is provided outside the lean vehicle obstacle detection device 10a. The lean vehicle inclination angle sensor 40 is fixed to the lean vehicle main body 60. When the lean vehicle body 60 is tilted leftward or rightward R because the lean vehicle 6 turns leftward or rightward, the lean vehicle inclination angle sensor 40 detects that the lean vehicle body 60 A physical quantity related to the lean angle of the lean vehicle 6a indicating the angle inclined in the direction L or the right direction R is detected. In the present embodiment, the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle θ. The lean vehicle tilt angle θ is such that the lean vehicle body 60 is tilted when the lean vehicle body 60 is tilted in the left direction L or right direction R because the lean vehicle 6a turns in the left direction L or right direction R. Indicates the angle at which Specifically, as shown in FIG. 7, the lean vehicle inclination angle θ is an angle formed by the center line Ax2 of the lean vehicle main body 60 with respect to the vertical axis Ax1 extending in the up-down direction UD. The center line Ax2 is a straight line that is located at the center of the lean vehicle body 60 in the left-right direction lr and extends in the up-down direction ud when viewed in the front direction F. The center line Ax2 inclines in the left direction L or the right direction R when the lean vehicle body 60 inclines in the left direction L or the right direction R. The lean vehicle tilt angle θ takes a positive value when the lean vehicle body 60 is tilted leftward L, and takes a negative value when the lean vehicle body 60 tilts rightward R.
 リーンビークル用障害物検知装置10aは、リーンビークル6aより前Fに位置する路上に存在する障害物を検知する。リーンビークル用障害物検知装置10aは、撮像部12、障害物検知部16及びケース18を備えている。ただし、リーンビークル6aの撮像部12及びケース18は、リーンビークル6の撮像部12及びケース18と同じであるのでこれ以上の説明を省略する。 The lean vehicle obstacle detection device 10a detects an obstacle existing on a road located in front F of the lean vehicle 6a. The lean vehicle obstacle detection device 10a includes an imaging unit 12, an obstacle detection unit 16, and a case 18. However, since the imaging unit 12 and the case 18 of the lean vehicle 6a are the same as the imaging unit 12 and the case 18 of the lean vehicle 6, further description is omitted.
 障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140lu(図8参照)により撮像された部分の一部及びリーンビークル傾斜角度センサ40により取得されたリーンビークル傾斜角度θに基づいて、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部及びリーンビークル傾斜角度センサ40により取得されたリーンビークル傾斜角度θに基づいて、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知する。障害物検知部16は、例えば、IC(Integrated Circuit)、電子部品及び回路基板の組み合わせにより構成されたECU(Electrical Control Unit)や画像処理ボード等である。障害物検知部16は、リーンビークル傾斜角度取得部30、データ傾斜変換部32、エリア決定部34及び障害物検知部演算部36を含んでいる。 When the lean vehicle main body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects at least the upper left corner of image data Im captured by a plurality of pixels. Based on a part of the portion imaged by the upper left area 140lu of the pixel 14lu (see FIG. 8) and the lean vehicle inclination angle θ acquired by the lean vehicle inclination angle sensor 40, on the road located ahead of the lean vehicle 6 in front F. An existing preceding vehicle 100 is detected. When the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines at least the upper right of image data Im captured by a plurality of pixels. The preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 based on a part of the portion imaged by the upper right area 140ru of the pixel 14ru and the lean vehicle tilt angle θ acquired by the lean vehicle tilt angle sensor 40. Is detected. The obstacle detection unit 16 is, for example, an integrated circuit (IC), an electronic control unit (ECU) configured by a combination of electronic components and a circuit board, and an image processing board. The obstacle detection unit 16 includes a lean vehicle inclination angle acquisition unit 30, a data inclination conversion unit 32, an area determination unit 34, and an obstacle detection unit calculation unit 36.
 リーンビークル傾斜角度取得部30は、リーンビークル傾斜角度センサ40からリーンビークル6aの傾斜角度に関する物理量を取得する。本実施形態では、リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θである。リーンビークル傾斜角度取得部30は、例えば、障害物検知部16のECUに設けられている端子である。端子は、リーンビークル傾斜角度センサ40に電気的に接続されている。すなわち、リーンビークル傾斜角度θの電気信号が、端子であるリーンビークル傾斜角度取得部30を介して障害物検知部16に入力する。これにより、リーンビークル傾斜角度取得部30は、リーンビークル傾斜角度θを取得する。 The lean vehicle inclination angle acquisition unit 30 acquires a physical quantity related to the inclination angle of the lean vehicle 6a from the lean vehicle inclination angle sensor 40. In the present embodiment, the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle θ. The lean vehicle inclination angle acquisition unit 30 is, for example, a terminal provided in the ECU of the obstacle detection unit 16. The terminal is electrically connected to the lean vehicle inclination angle sensor 40. That is, the electric signal of the lean vehicle inclination angle θ is input to the obstacle detection unit 16 via the lean vehicle inclination angle acquisition unit 30 which is a terminal. As a result, the lean vehicle inclination angle acquisition unit 30 acquires the lean vehicle inclination angle θ.
 データ傾斜変換部32は、リーンビークル6aが左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140lu(図8参照)により撮像された部分の一部をリーンビークル傾斜角度取得部30により取得されたリーンビークル傾斜角度θに基づいてデータ変換する。また、データ傾斜変換部32は、リーンビークル6aが右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ru(図8参照)により撮像された部分の一部をリーンビークル傾斜角度取得部30により取得されたリーンビークル傾斜角度θに基づいてデータ変換する。本実施形態では、データ傾斜変換部32は、リーンビークル6aが左方向L又は右方向Rに旋回するためにリーンビークル本体60が左方向L又は右方向Rに傾斜しているときに、イメージデータIm全体をリーンビークル傾斜角度取得部30により取得されたリーンビークル傾斜角度θに基づいてデータ変換する。より詳細には、撮像部12は、図1Aに示すイメージデータImを出力する。データ傾斜変換部32は、図8に示すように、イメージデータImをリーンビークル傾斜角度θだけ回転させるようにデータ変換を行う。以下では、データ変換後のイメージデータImを変換イメージデータImtと呼ぶ。 When the lean vehicle main body 60 is tilted leftward L because the lean vehicle 6a turns leftward L, the data tilt converter 32 performs at least the upper left of image data Im captured by a plurality of pixels. A part of the part imaged by the upper left region 140lu (see FIG. 8) of the pixel 14lu is subjected to data conversion based on the lean vehicle inclination angle θ acquired by the lean vehicle inclination angle acquisition unit 30. In addition, the data inclination conversion unit 32 outputs the image data Im captured by a plurality of pixels when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6a turns rightward R. At least a part of the part imaged by the upper right region 140ru (see FIG. 8) of the upper right pixel 14ru is converted into data based on the lean vehicle inclination angle θ acquired by the lean vehicle inclination angle acquisition unit 30. In the present embodiment, when the lean vehicle main body 60 is tilted leftward or rightward R because the lean vehicle 6a turns leftward or rightward R, the data tilt converter 32 outputs image data. Data conversion is performed on the entire Im based on the lean vehicle inclination angle θ acquired by the lean vehicle inclination angle acquisition unit 30. More specifically, the imaging unit 12 outputs the image data Im shown in FIG. 1A. As shown in FIG. 8, the data inclination converter 32 performs data conversion so that the image data Im is rotated by the lean vehicle inclination angle θ. Hereinafter, the converted image data Im is referred to as converted image data Imt.
 エリア決定部34は、リーンビークル傾斜角度θに基づいて、変換イメージデータImtにおいて障害物検知を行うエリアの位置を決定する。より詳細には、図8、図9及び図10に示すように、リーンビークル傾斜角度θの絶対値が大きくなるにしたがって、先行車両100が出現する位置が高くなる。高さとは、水平画素Hから先行車両100までの上下方向udの距離である。従って、リーンビークル傾斜角度θに応じて、障害物検知を行うエリアの位置が変更されることが好ましい。 The area determination unit 34 determines the position of the area in which the obstacle detection is performed in the converted image data Imt based on the lean vehicle inclination angle θ. More specifically, as shown in FIGS. 8, 9, and 10, the position where the preceding vehicle 100 appears increases as the absolute value of the lean vehicle inclination angle θ increases. The height is a distance in the vertical direction ud from the horizontal pixel H to the preceding vehicle 100. Therefore, it is preferable that the position of the area in which obstacle detection is performed be changed according to the lean vehicle inclination angle θ.
 そこで、エリア決定部34は、図11に示す第1エリア決定テーブルを記憶するメモリを含んでいる。第1エリア決定テーブルは、リーンビークル傾斜角度θとエリアA1の中心座標C1(x1(θ),y1(θ))との関係を示したテーブルである。エリアA1の中心座標C1(x1(θ),y1(θ))は、エリアA1の対角線の交点である。原点は、鉛直画素14Vと水平画素14Hとの交点である。水平画素14Hがx軸である。x軸の正方向は、右方向rである。鉛直画素14Vがy軸である。y軸の正方向は、上方向uである。エリアA1の中心座標C1(x1(θ),y1(θ))は、リーンビークル6が左方向L又は右方向Rに傾斜すると、以下のように変化する。 Therefore, the area determination unit 34 includes a memory for storing the first area determination table shown in FIG. The first area determination table is a table showing a relationship between the lean vehicle inclination angle θ and the center coordinates C1 (x1 (θ), y1 (θ)) of the area A1. The center coordinate C1 (x1 (θ), y1 (θ)) of the area A1 is the intersection of the diagonal lines of the area A1. The origin is the intersection of the vertical pixel 14V and the horizontal pixel 14H. The horizontal pixel 14H is on the x-axis. The positive direction of the x-axis is the right direction r. The vertical pixel 14V is on the y-axis. The positive direction of the y-axis is the upward direction u. The center coordinates C1 (x1 (θ), y1 (θ)) of the area A1 change as follows when the lean vehicle 6 inclines leftward L or rightward R.
・リーンビークル6が左方向Lに傾斜すると、エリアA1の中心座標C1(x1(θ),y1(θ))が中心座標C1(x1(0),y1(0))から左上方向luに離れていく。
・リーンビークル6が右方向Rに傾斜すると、エリアA1の中心座標C1(x1(θ),y1(θ))が中心座標C1(x1(0),y1(0))から右上方向ruに離れていく(図8、図9及び図10参照)。
When the lean vehicle 6 is tilted in the left direction L, the center coordinates C1 (x1 (θ), y1 (θ)) of the area A1 move away from the center coordinates C1 (x1 (0), y1 (0)) in the upper left direction lu. To go.
When the lean vehicle 6 tilts in the right direction R, the center coordinates C1 (x1 (θ), y1 (θ)) of the area A1 move away from the center coordinates C1 (x1 (0), y1 (0)) in the upper right direction ru. (See FIGS. 8, 9 and 10).
 ところで、障害物検知を行うエリアには、互いに大きさの異なる3種類のエリアA1~A3が存在する。以下に、図10、図12及び図13を参照しながら、エリアA1~A3について説明する。エリアA1~A3は、上下方向UDに平行な短辺及び左右方向LRに平行な長辺を有する長方形状を有する。エリアA1~A3は、互いに相似形状である。エリアA1~A3のサイズは、以下に説明するように、互いに異なっている。 By the way, there are three types of areas A1 to A3 having different sizes from each other in the area where obstacle detection is performed. Hereinafter, the areas A1 to A3 will be described with reference to FIGS. 10, 12, and 13. FIG. The areas A1 to A3 have a rectangular shape having a short side parallel to the vertical direction UD and a long side parallel to the horizontal direction LR. The areas A1 to A3 have shapes similar to each other. The sizes of the areas A1 to A3 are different from each other as described below.
 まず、図1B示すように、位置P1~P3を定義する。位置P1は、リーンビークル6から前方向Fに距離D1だけ離れた位置である。図10のイメージデータは、先行車両100が位置P1に位置しているときのイメージデータである。位置P2は、リーンビークル6から前方向Fに距離D2だけ離れた位置である。図12のイメージデータは、先行車両100が位置P2に位置しているときのイメージデータである。位置P3は、リーンビークル6から前方向Fに距離D3だけ離れた位置である。図13のイメージデータは、先行車両100が位置P3に位置しているときのイメージデータである。D1>D2>D3の関係が成立している。そのため、先行車両100が位置P1に位置するときのリーンビークル6のサイズが最も小さい。先行車両100が位置P3に位置するときのリーンビークル6のサイズが最も大きい。従って、図10及び図12に示すように、エリアA1のサイズは、エリアA2のサイズより小さい。図12及び図13に示すように、エリアA2のサイズは、エリアA3のサイズより小さい。 First, as shown in FIG. 1B, positions P1 to P3 are defined. The position P1 is a position away from the lean vehicle 6 in the forward direction F by a distance D1. The image data in FIG. 10 is image data when the preceding vehicle 100 is located at the position P1. The position P2 is a position separated from the lean vehicle 6 by a distance D2 in the forward direction F. The image data in FIG. 12 is image data when the preceding vehicle 100 is located at the position P2. The position P3 is a position separated from the lean vehicle 6 by a distance D3 in the forward direction F. The image data in FIG. 13 is image data when the preceding vehicle 100 is located at the position P3. The relationship of D1> D2> D3 holds. Therefore, the size of the lean vehicle 6 when the preceding vehicle 100 is located at the position P1 is the smallest. The size of the lean vehicle 6 when the preceding vehicle 100 is located at the position P3 is the largest. Therefore, as shown in FIGS. 10 and 12, the size of the area A1 is smaller than the size of the area A2. As shown in FIGS. 12 and 13, the size of the area A2 is smaller than the size of the area A3.
 また、エリア決定部34は、リーンビークル傾斜角度θとエリアA2の中心座標C2(x2(θ),y2(θ))との関係を示した第2エリア決定テーブル(図示せず)を更に記憶している。第2エリア決定テーブルの構造は、第1エリア決定テーブルの構造と同じであるので説明を省略する。エリアA2の中心座標C2(x2(θ),y2(θ))は、図12に示すように、エリアA2の対角線の交点である。エリアA2の中心座標C2(x2(θ),y2(θ))は、リーンビークル6が左方向L又は右方向Rに傾斜すると、以下のように変化する。 Further, the area determination unit 34 further stores a second area determination table (not shown) indicating the relationship between the lean vehicle inclination angle θ and the center coordinates C2 (x2 (θ), y2 (θ)) of the area A2. are doing. The structure of the second area determination table is the same as the structure of the first area determination table, and will not be described. The center coordinates C2 (x2 (θ), y2 (θ)) of the area A2 are the intersections of the diagonal lines of the area A2, as shown in FIG. The center coordinates C2 (x2 (θ), y2 (θ)) of the area A2 change as follows when the lean vehicle 6 inclines leftward L or rightward R.
・リーンビークル6が左方向Lに傾斜すると、エリアA2の中心座標C2(x2(θ),y2(θ))が中心座標C2(x2(0),y2(0))から左上方向luに離れていく。
・リーンビークル6が右方向Rに傾斜すると、エリアA2の中心座標C2(x2(θ),y2(θ))が中心座標C2(x2(0),y2(0))から右上方向ruに離れていく(図12及び図14参照)。
When the lean vehicle 6 tilts in the left direction L, the center coordinates C2 (x2 (θ), y2 (θ)) of the area A2 move away from the center coordinates C2 (x2 (0), y2 (0)) in the upper left direction lu. To go.
When the lean vehicle 6 tilts in the right direction R, the center coordinates C2 (x2 (θ), y2 (θ)) of the area A2 move away from the center coordinates C2 (x2 (0), y2 (0)) in the upper right direction ru. (See FIGS. 12 and 14).
 また、エリア決定部34は、リーンビークル傾斜角度θとエリアA3の中心座標C3(x3(θ),y3(θ))との関係を示した第3エリア決定テーブル(図示せず)を更に記憶している。第3エリア決定テーブルの構造は、第1エリア決定テーブルの構造と同じであるので説明を省略する。エリアA3の中心座標C3(x3(θ),y3(θ))は、図13に示すように、エリアA3の対角線の交点である。エリアA3の中心座標C3(x3(θ),y3(θ))は、リーンビークル6が左方向L又は右方向Rに傾斜すると、以下のように変化する。 The area determination unit 34 further stores a third area determination table (not shown) indicating the relationship between the lean vehicle inclination angle θ and the center coordinates C3 (x3 (θ), y3 (θ)) of the area A3. are doing. The structure of the third area determination table is the same as the structure of the first area determination table, and will not be described. The center coordinate C3 (x3 (θ), y3 (θ)) of the area A3 is the intersection of the diagonal lines of the area A3, as shown in FIG. The center coordinates C3 (x3 (θ), y3 (θ)) of the area A3 change as follows when the lean vehicle 6 is tilted leftward L or rightward R.
・リーンビークル6が左方向Lに傾斜すると、エリアA3の中心座標C3(x3(θ),y3(θ))が中心座標C3(x3(0),y3(0))から左上方向luに離れていく。
・リーンビークル6が右方向Rに傾斜すると、エリアA3の中心座標C3(x3(θ),y3(θ))が中心座標C3(x3(0),y3(0))から右上方向ruに離れていく(図13及び図15参照)。
When the lean vehicle 6 tilts in the left direction L, the center coordinates C3 (x3 (θ), y3 (θ)) of the area A3 move away from the center coordinates C3 (x3 (0), y3 (0)) in the upper left direction lu. To go.
When the lean vehicle 6 tilts in the right direction R, the center coordinates C3 (x3 (θ), y3 (θ)) of the area A3 move away from the center coordinates C3 (x3 (0), y3 (0)) in the upper right direction ru. (See FIGS. 13 and 15).
 次に、障害物検知部演算部36による先行車両100の検知について説明する。障害物検知部演算部36は、図10に示すように、フレームF1を移動させてエリアA1をスキャンする。フレームF1は、位置P1(図1B参照)に位置する先行車両100のサイズと略一致する長方形状を有している。フレームF1の短辺は、上下方向UDに延びている。フレームF1の長辺は、左右方向LRに延びている。先行車両100がフレームF1内に収まった場合、障害物検知部演算部36は、位置P1に先行車両100が存在すると判定する。 Next, detection of the preceding vehicle 100 by the obstacle detection unit calculation unit 36 will be described. As shown in FIG. 10, the obstacle detection unit calculation unit 36 moves the frame F1 and scans the area A1. The frame F1 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P1 (see FIG. 1B). The short side of the frame F1 extends in the up-down direction UD. The long side of the frame F1 extends in the left-right direction LR. When the preceding vehicle 100 is within the frame F1, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1.
 また、障害物検知部演算部36は、図12に示すように、フレームF2を移動させてエリアA2をスキャンする。フレームF2は、位置P2(図1B参照)に位置する先行車両100のサイズと略一致する長方形状を有している。従って、フレームF2のサイズは、フレームF1のサイズより大きい。フレームF2の短辺は、上下方向UDに延びている。フレームF2の長辺は、左右方向LRに延びている。先行車両100がフレームF2内に収まった場合、障害物検知部演算部36は、位置P2に先行車両100が存在すると判定する。 {Circle around (2)} As shown in FIG. 12, the obstacle detection unit calculation unit 36 moves the frame F2 and scans the area A2. The frame F2 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P2 (see FIG. 1B). Therefore, the size of the frame F2 is larger than the size of the frame F1. The short side of the frame F2 extends in the up-down direction UD. The long side of the frame F2 extends in the left-right direction LR. When the preceding vehicle 100 is within the frame F2, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P2.
 また、障害物検知部演算部36は、図13に示すように、フレームF3を移動させてエリアA3をスキャンする。フレームF3は、位置P3(図1B参照)に位置する先行車両100のサイズと略一致する長方形状を有している。従って、フレームF3のサイズは、フレームF2のサイズより大きい。フレームF3の短辺は、上下方向UDに延びている。フレームF3の長辺は、左右方向LRに延びている。先行車両100がフレームF3内に収まった場合、障害物検知部演算部36は、位置P3に先行車両100が存在すると判定する。 {Circle around (3)} As shown in FIG. 13, the obstacle detection unit calculation unit 36 scans the area A3 by moving the frame F3. The frame F3 has a rectangular shape substantially matching the size of the preceding vehicle 100 located at the position P3 (see FIG. 1B). Therefore, the size of the frame F3 is larger than the size of the frame F2. The short side of the frame F3 extends in the up-down direction UD. The long side of the frame F3 extends in the left-right direction LR. When the preceding vehicle 100 is within the frame F3, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P3.
(障害物検知部16の動作)
 次に、障害物検知部16の動作について図16及び図17を参照しながら説明する。図16及び図17は、障害物検知部16が行う動作を示したフローチャートである。以下の説明では、図1A及び図8に示すイメージデータIm及び変換イメージデータImtを例に挙げて説明する。
(Operation of the obstacle detection unit 16)
Next, the operation of the obstacle detection unit 16 will be described with reference to FIGS. FIG. 16 and FIG. 17 are flowcharts illustrating the operation performed by the obstacle detection unit 16. In the following description, the image data Im and the converted image data Imt shown in FIGS. 1A and 8 will be described as examples.
 本処理は、リーンビークル6の電源がOFF状態からON状態に切り替えられることにより開始される。本処理の実行中では、撮像部12は、撮像素子14によりリーンビークル6より前Fに位置する空間のイメージデータImを撮像し、イメージデータImを障害物検知部16に出力する。これにより、障害物検知部16は、図1Aに示すイメージデータImを取得する(ステップS1)。 This process is started when the power of the lean vehicle 6 is switched from the OFF state to the ON state. During the execution of this process, the imaging unit 12 captures the image data Im of the space located in front of the lean vehicle 6 by the imaging device 14 and outputs the image data Im to the obstacle detection unit 16. Thus, the obstacle detection unit 16 acquires the image data Im shown in FIG. 1A (Step S1).
 次に、リーンビークル傾斜角度取得部30は、リーンビークル傾斜角度センサ40からリーンビークル傾斜角度θを取得する(ステップS2)。具体的には、リーンビークル傾斜角度センサ40は、リーンビークル傾斜角度θの電気信号を出力する。この電気信号が、障害物検知部16の端子であるリーンビークル傾斜角度取得部30を介して障害物検知部16に入力する。 Next, the lean vehicle inclination angle acquisition unit 30 acquires the lean vehicle inclination angle θ from the lean vehicle inclination angle sensor 40 (Step S2). Specifically, the lean vehicle inclination angle sensor 40 outputs an electric signal of the lean vehicle inclination angle θ. This electric signal is input to the obstacle detection unit 16 via the lean vehicle inclination angle acquisition unit 30 which is a terminal of the obstacle detection unit 16.
 次に、データ傾斜変換部32は、イメージデータImをデータ変換して、変換イメージデータImtを取得する(ステップS3)。より詳細には、データ傾斜変換部32は、図1Aに示すイメージデータImをリーンビークル傾斜角度θだけ回転させるようにデータ変換を行って、図8に示す変換イメージデータImtを生成する。 Next, the data tilt converter 32 converts the image data Im to obtain converted image data Imt (step S3). More specifically, the data tilt converter 32 performs data conversion so as to rotate the image data Im shown in FIG. 1A by the lean vehicle tilt angle θ, and generates converted image data Imt shown in FIG.
 エリア決定部34は、図11に示す第1エリア決定テーブル及びリーンビークル傾斜角度θに基づいて、エリアA1の中心座標C1(x1(θ),y1(θ))を決定する(ステップS4)。図8に示す変換イメージデータImtでは、リーンビークル6が右方向Rに傾斜している。従って、エリアA1の中心座標C1(x1(θ),y1(θ))は、変換イメージデータImtにおいて右上ruの角近傍に位置する。 The area determination unit 34 determines the center coordinates C1 (x1 (θ), y1 (θ)) of the area A1 based on the first area determination table shown in FIG. 11 and the lean vehicle inclination angle θ (step S4). In the converted image data Imt shown in FIG. 8, the lean vehicle 6 is inclined rightward R. Therefore, the center coordinate C1 (x1 (θ), y1 (θ)) of the area A1 is located near the upper right corner of the converted image data Imt.
 次に、障害物検知部演算部36は、変換イメージデータImtのエリアA1において先行車両100を検知する(ステップS5)。そこで、障害物検知部演算部36は、図8に示すように、フレームF1を移動させてエリアA1をスキャンする。エリアA1は、右上領域140ruからはみ出している。故に、障害物検知部演算部36は、先行車両100の少なくとも一部が右上画素14ruの右上領域140ruにより撮像された先行車両100を検知する。なお、図示を省略するが、リーンビークル6が左方向Lに傾斜している場合には、障害物検知部演算部36は、先行車両100の少なくとも一部が左上画素14luの左上領域140luにより撮像された先行車両100を検知する。 Next, the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A1 of the converted image data Imt (Step S5). Therefore, the obstacle detection unit calculation unit 36 scans the area A1 by moving the frame F1 as shown in FIG. The area A1 protrudes from the upper right area 140ru. Therefore, the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in which at least a part of the preceding vehicle 100 is imaged by the upper right area 140ru of the upper right pixel 14ru. Although not shown, when the lean vehicle 6 is inclined in the left direction L, the obstacle detection unit calculation unit 36 captures at least a part of the preceding vehicle 100 using the upper left area 140lu of the upper left pixel 14lu. The detected preceding vehicle 100 is detected.
 次に、障害物検知部演算部36は、エリアA1に先行車両100が存在するか否かを判定する(ステップS6)。そこで、障害物検知部演算部36は、フレームF1に収まる先行車両100が存在するか否かを判定する。フレームF1に収まる先行車両100が存在する場合、障害物検知部演算部36は、位置P1に先行車両100が存在すると判定する。このとき、本処理はステップS7に進む。フレームF1に収まる先行車両100が存在しない場合、障害物検知部演算部36は、位置P1に先行車両100が存在しないと判定する。このとき、本処理はステップS8に進む。図8に示す変換イメージデータImtでは、障害物検知部演算部36は、位置P1に先行車両100が存在すると判定する。 Next, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A1 (step S6). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F1 exists. When the preceding vehicle 100 that fits in the frame F1 exists, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1. At this time, the process proceeds to step S7. When the preceding vehicle 100 that fits in the frame F1 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P1. At this time, the process proceeds to step S8. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P1.
 エリアA1に先行車両100が存在する場合、障害物検知部演算部36は、位置P1に先行車両100が存在することを示す第1障害物検知信号Sig1を障害物検知部16の外部に出力する(ステップS7)。この後、本処理はステップS9に進む。 When the preceding vehicle 100 exists in the area A1, the obstacle detection unit calculation unit 36 outputs a first obstacle detection signal Sig1 indicating that the preceding vehicle 100 exists at the position P1 to the outside of the obstacle detection unit 16. (Step S7). Thereafter, the processing proceeds to step S9.
 エリアA1に先行車両100が存在しない場合、障害物検知部演算部36は、位置P1に先行車両100が存在しないことを示す第1障害物非検知信号Sig11を障害物検知部演算部36の外部に出力する(ステップS8)。この後、本処理はステップS9に進む。 When the preceding vehicle 100 does not exist in the area A1, the obstacle detection unit calculation unit 36 outputs the first obstacle non-detection signal Sig11 indicating that the preceding vehicle 100 does not exist at the position P1 to the outside of the obstacle detection unit calculation unit 36. (Step S8). Thereafter, the processing proceeds to step S9.
 前記ステップS9において、エリア決定部34は、第2エリア決定テーブル及びリーンビークル傾斜角度θに基づいて、エリアA2の中心座標C2(x2(θ),y2(θ))を決定する(ステップS9)。図8に示す変換イメージデータImtでは、エリアA2の中心座標C2(x2(θ),y2(θ))は、変換イメージデータImtにおいてエリアA1の中心座標C1(x1(θ),y1(θ))の左下ldに位置する。 In step S9, the area determination unit 34 determines the center coordinates C2 (x2 (θ), y2 (θ)) of the area A2 based on the second area determination table and the lean vehicle inclination angle θ (step S9). . In the converted image data Imt shown in FIG. 8, the center coordinate C2 (x2 (θ), y2 (θ)) of the area A2 is the center coordinate C1 (x1 (θ), y1 (θ) of the area A1 in the converted image data Imt. ) Is located at the lower left ld.
 次に、障害物検知部演算部36は、変換イメージデータImtのエリアA2において先行車両100を検知する(ステップS10)。そこで、障害物検知部演算部36は、図8に示すように、フレームF2を移動させてエリアA2をスキャンする。エリアA2は、右上画素14ruから右下画素14rdにはみ出している。故に、障害物検知部演算部36は、複数の画素により撮像された変換イメージデータImtの内の少なくとも右上画素14ruにより撮像された部分の一部及び右下画素14rdにより撮像された部分の一部に基づいて先行車両100を検知する。なお、図示を省略するが、リーンビークル6が左方向Lに傾斜している場合には、エリアA2は、左上画素14luから左下画素14ldにはみ出している。故に、障害物検知部演算部36は、複数の画素により撮像された変換イメージデータImtの内の少なくとも左上画素14luにより撮像された部分の一部及び左下画素14ldにより撮像された部分の一部に基づいて先行車両100を検知する。 Next, the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A2 of the converted image data Imt (Step S10). Therefore, the obstacle detection unit calculation unit 36 scans the area A2 by moving the frame F2 as shown in FIG. The area A2 protrudes from the upper right pixel 14ru to the lower right pixel 14rd. Therefore, the obstacle detection unit calculation unit 36 determines at least a part of a part captured by the upper right pixel 14ru and a part of a part captured by the lower right pixel 14rd in the converted image data Imt captured by the plurality of pixels. The preceding vehicle 100 is detected based on. Although not shown, when the lean vehicle 6 is inclined in the left direction L, the area A2 extends from the upper left pixel 14lu to the lower left pixel 14ld. Therefore, the obstacle detection unit calculation unit 36 includes at least a part of the part captured by the upper left pixel 14lu and a part of the part captured by the lower left pixel 14ld of the converted image data Imt captured by the plurality of pixels. Based on this, the preceding vehicle 100 is detected.
 次に、障害物検知部演算部36は、エリアA2に先行車両100が存在するか否かを判定する(ステップS11)。そこで、障害物検知部演算部36は、フレームF2に収まる先行車両100が存在するか否かを判定する。ただし、障害物検知部演算部36は、ステップS6においてフレームF1に収まると判定した先行車両100については、ステップS11の判定の対象から除外する。フレームF2に収まる先行車両100が存在する場合、障害物検知部演算部36は、位置P2に先行車両100が存在すると判定する。このとき、本処理はステップS12に進む。フレームF2に収まる先行車両100が存在しない場合、障害物検知部演算部36は、位置P2に先行車両100が存在しないと判定する。このとき、本処理はステップS13に進む。図8に示す変換イメージデータImtでは、障害物検知部演算部36は、位置P2に先行車両100が存在しないと判定する。 Next, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A2 (step S11). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F2 exists. However, the obstacle detection unit calculation unit 36 excludes the preceding vehicle 100 that is determined to fit in the frame F1 in step S6 from the target of the determination in step S11. When the preceding vehicle 100 that fits in the frame F2 exists, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P2. At this time, the process proceeds to step S12. When the preceding vehicle 100 that fits in the frame F2 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P2. At this time, the process proceeds to step S13. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P2.
 エリアA2に先行車両100が存在する場合、障害物検知部演算部36は、位置P2に先行車両100が存在することを示す第2障害物検知信号Sig2を障害物検知部16の外部に出力する(ステップS12)。この後、本処理はステップS14に進む。 When the preceding vehicle 100 exists in the area A2, the obstacle detection unit calculation unit 36 outputs a second obstacle detection signal Sig2 indicating that the preceding vehicle 100 exists at the position P2 to the outside of the obstacle detection unit 16. (Step S12). Thereafter, the processing proceeds to step S14.
 エリアA2に先行車両100が存在しない場合、障害物検知部演算部36は、位置P2に先行車両100が存在しないことを示す第2障害物非検知信号Sig12を障害物検知部16の外部に出力する(ステップS13)。この後、本処理はステップS14に進む。 When the preceding vehicle 100 does not exist in the area A2, the obstacle detection unit calculation unit 36 outputs a second obstacle non-detection signal Sig12 indicating that the preceding vehicle 100 does not exist at the position P2 to the outside of the obstacle detection unit 16. (Step S13). Thereafter, the processing proceeds to step S14.
 前記ステップS14において、エリア決定部34は、第3エリア決定テーブル及びリーンビークル傾斜角度θに基づいて、エリアA3の中心座標C3(x3(θ),y3(θ))を決定する(ステップS14)。図8に示す変換イメージデータImtでは、エリアA3の中心座標C3(x3(θ),y3(θ))は、変換イメージデータImtにおいてエリアA2の中心座標C2(x2(θ),y2(θ))の左下ldに位置する。 In step S14, the area determination unit 34 determines the center coordinates C3 (x3 (θ), y3 (θ)) of the area A3 based on the third area determination table and the lean vehicle inclination angle θ (step S14). . In the converted image data Imt shown in FIG. 8, the center coordinate C3 (x3 (θ), y3 (θ)) of the area A3 is the center coordinate C2 (x2 (θ), y2 (θ) of the area A2 in the converted image data Imt. ) Is located at the lower left ld.
 次に、障害物検知部演算部36は、変換イメージデータImtのエリアA3において先行車両100を検知する(ステップS15)。そこで、障害物検知部演算部36は、図8に示すように、フレームF3を移動させてエリアA3をスキャンする。そして、障害物検知部演算部36は、エリアA3に先行車両100が存在するか否かを判定する(ステップS16)。そこで、障害物検知部演算部36は、フレームF3に収まる先行車両100が存在するか否かを判定する。ただし、障害物検知部演算部36は、ステップS6においてフレームF1に収まると判定した先行車両100及びステップS11においてフレームF2に収まると判定した先行車両100については、ステップS16の判定の対象から除外する。フレームF3に収まる先行車両100が存在する場合、障害物検知部演算部36は、位置P3に先行車両100が存在すると判定する。このとき、本処理はステップS17に進む。フレームF3に収まる先行車両100が存在しない場合、障害物検知部演算部36は、位置P3に先行車両100が存在しないと判定する。このとき、本処理はステップS18に進む。図8に示す変換イメージデータImtでは、障害物検知部演算部36は、位置P3に先行車両が存在しないと判定する。 Next, the obstacle detection unit calculation unit 36 detects the preceding vehicle 100 in the area A3 of the converted image data Imt (Step S15). Therefore, the obstacle detection unit calculation unit 36 scans the area A3 by moving the frame F3 as shown in FIG. Then, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 exists in the area A3 (Step S16). Therefore, the obstacle detection unit calculation unit 36 determines whether or not the preceding vehicle 100 that fits in the frame F3 exists. However, the obstacle detection unit calculation unit 36 excludes the preceding vehicle 100 determined to fit in the frame F1 in step S6 and the preceding vehicle 100 determined to fit in the frame F2 in step S11 from the determination target in step S16. . When the preceding vehicle 100 that fits in the frame F3 exists, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 exists at the position P3. At this time, the process proceeds to step S17. When the preceding vehicle 100 that fits in the frame F3 does not exist, the obstacle detection unit calculation unit 36 determines that the preceding vehicle 100 does not exist at the position P3. At this time, the process proceeds to step S18. In the converted image data Imt illustrated in FIG. 8, the obstacle detection unit calculation unit 36 determines that there is no preceding vehicle at the position P3.
 エリアA3に先行車両100が存在する場合、障害物検知部演算部36は、位置P3に先行車両100が存在することを示す第3障害物検知信号Sig3を障害物検知部16の外部に出力する(ステップS17)。この後、本処理はステップS19に進む。 When the preceding vehicle 100 exists in the area A3, the obstacle detection unit calculation unit 36 outputs a third obstacle detection signal Sig3 indicating that the preceding vehicle 100 exists at the position P3 to the outside of the obstacle detection unit 16. (Step S17). Thereafter, the processing proceeds to step S19.
 エリアA3に先行車両100が存在しない場合、障害物検知部演算部36は、位置P3に先行車両100が存在しないことを示す第3障害物非検知信号Sig13を障害物検知部16の外部に出力する(ステップS18)。この後、本処理はステップS19に進む。 When the preceding vehicle 100 does not exist in the area A3, the obstacle detection unit calculation unit 36 outputs a third obstacle non-detection signal Sig13 indicating that the preceding vehicle 100 does not exist at the position P3 to the outside of the obstacle detection unit 16. (Step S18). Thereafter, the processing proceeds to step S19.
 前記ステップS19において、障害物検知部演算部36は、本処理を終了するか否かを判定する(ステップS19)。そこで、障害物検知部演算部36は、リーンビークル6の電源がON状態からOFF状態に切り替えられたか否かを判定する。リーンビークル6の電源がON状態からOFF状態に切り替えられた場合、障害物検知部演算部36は、本処理を終了すると判定する。リーンビークル6の電源がON状態からOFF状態に切り替えられていない場合、障害物検知部演算部36は、本処理を終了しないと判定する。この場合、本処理は、ステップS1に戻る。 (4) In step S19, the obstacle detection unit calculation unit 36 determines whether or not to end the processing (step S19). Therefore, the obstacle detection unit calculation unit 36 determines whether the power of the lean vehicle 6 has been switched from the ON state to the OFF state. When the power of the lean vehicle 6 is switched from the ON state to the OFF state, the obstacle detection unit calculation unit 36 determines to end this processing. If the power of the lean vehicle 6 has not been switched from the ON state to the OFF state, the obstacle detection unit calculation unit 36 determines that this processing is not to be ended. In this case, the process returns to step S1.
[効果]
 リーンビークル用障害物検知装置10aによれば、リーンビークル用障害物検知装置10と同じ理由により、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知することができる。また、リーンビークル用障害物検知装置10aによれば、リーンビークル用障害物検知装置10と同じ理由により、障害物検知部16が先行車両100を検知できる確率が高くなる。
[effect]
According to the lean vehicle obstacle detection device 10a, the preceding vehicle 100 existing on the road located in front of the lean vehicle 6 can be detected for the same reason as the lean vehicle obstacle detection device 10. Further, according to the lean vehicle obstacle detection device 10a, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10.
 また、リーンビークル用障害物検知装置10aでは、障害物検知部演算部36は、リーンビークル傾斜角度取得部30が取得したリーンビークル傾斜角度θに基づいて、リーンビークル6aより前Fに位置する路上に存在する先行車両100を検知している。そのため、リーンビークル本体60が左方向L又は右方向Rに傾斜することにより、イメージデータImが右方向r又は左方向lに傾斜したとしても、障害物検知部演算部36がリーンビークル6より前Fに位置する路上に存在する先行車両100を容易に検知することが可能となる。 Further, in the lean vehicle obstacle detection device 10a, the obstacle detection unit calculation unit 36 determines whether the obstacle detection unit calculation unit 36 is on the road located ahead of the lean vehicle 6a based on the lean vehicle inclination angle θ acquired by the lean vehicle inclination angle acquisition unit 30. Is detected. Therefore, even when the lean vehicle main body 60 inclines in the leftward direction L or the rightward direction R, even if the image data Im inclines in the rightward direction r or the leftward direction l, the obstacle detecting unit calculation unit 36 is in front of the lean vehicle 6. The preceding vehicle 100 existing on the road located at F can be easily detected.
 また、リーンビークル用障害物検知装置10aによれば、リーンビークル本体60が左方向L又は右方向Rに傾斜することにより、イメージデータImが右方向r又は左方向lに傾斜したとしても、障害物検知部演算部36がリーンビークル6aより前Fに位置する路上に存在する先行車両100を容易に検知することが可能となる。より詳細には、リーンビークル本体60が左方向L又は右方向Rに傾斜すると、イメージデータImが右方向r又は左方向lに傾斜する。この場合、先行車両100も右方向r又は左方向lに傾斜する。故に、障害物検知部演算部36は、右方向r又は左方向lに傾斜した先行車両100を検知する必要がある。そこで、データ傾斜変換部32は、リーンビークル6aより前Fに位置する空間のイメージデータImをリーンビークル傾斜角度θに基づいてデータ変換している。これにより、データ変換された変換イメージデータImtでは、先行車両100が右方向r又は左方向lに傾斜している角度が小さくなる。その結果、障害物検知部演算部36は、リーンビークル6aより前Fに位置する路上に存在する先行車両100を容易に検知することができる。 Further, according to the lean vehicle obstacle detection device 10a, even if the image data Im is inclined to the right direction r or the left direction l by the lean vehicle main body 60 being inclined to the left direction L or the right direction R, the obstacle is not affected. The object detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6a. More specifically, when the lean vehicle body 60 tilts in the left direction L or the right direction R, the image data Im tilts in the right direction r or the left direction l. In this case, the preceding vehicle 100 also leans rightward r or leftward l. Therefore, it is necessary for the obstacle detection unit calculation unit 36 to detect the preceding vehicle 100 inclined in the right direction r or the left direction l. Thus, the data tilt converter 32 converts the image data Im in the space located in front F of the lean vehicle 6a based on the lean vehicle tilt angle θ. As a result, in the converted image data Imt, the angle at which the preceding vehicle 100 is inclined in the right direction r or the left direction l becomes small. As a result, the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6a.
 また、リーンビークル用障害物検知装置10aによれば、データ傾斜変換部32のICと障害物検知部演算部36のICとが別々に設けられている場合に、自動四輪車のICが障害物検知部演算部36に用いられることができる。より詳細には、リーンビークル本体60は、リーンビークル6aが左方向Lに旋回するときに左方向Lに傾斜し、リーンビークル6aが右方向Rに旋回するときに右方向Rに傾斜する。そのため、リーンビークル6aが左方向Lに旋回するときには、イメージデータImが右方向rに傾斜する。このとき、先行車両100も右方向rに傾斜する。また、リーンビークル6aが右方向Rに旋回するときには、イメージデータImが左方向lに傾斜する。このとき、先行車両100も左方向lに傾斜する。 Further, according to the lean vehicle obstacle detection device 10a, when the IC of the data inclination conversion unit 32 and the IC of the obstacle detection unit calculation unit 36 are separately provided, the IC of the four-wheeled vehicle It can be used for the object detection unit calculation unit 36. More specifically, the lean vehicle body 60 tilts in the left direction L when the lean vehicle 6a turns in the left direction L, and tilts in the right direction R when the lean vehicle 6a turns in the right direction R. Therefore, when the lean vehicle 6a turns leftward L, the image data Im tilts rightward r. At this time, the preceding vehicle 100 also leans rightward r. When the lean vehicle 6a turns rightward R, the image data Im tilts leftward l. At this time, the preceding vehicle 100 also leans leftward l.
 一方、自動四輪車は、自動四輪車が左方向又は右方向に旋回するときにほとんど傾斜しない。そのため、先行車両100もほとんど傾斜しない。従って、自動四輪車のICは、左方向又は右方向に傾斜していない先行車両100を検知している。その結果、自動四輪車のICは、イメージデータImにおいて左方向l又は右方向rに傾斜した先行車両100を検知することが難しい。 On the other hand, an automobile hardly leans when the automobile turns left or right. Therefore, the preceding vehicle 100 also hardly leans. Therefore, the IC of the four-wheeled vehicle detects the preceding vehicle 100 that is not inclined leftward or rightward. As a result, it is difficult for the IC of the four-wheeled vehicle to detect the preceding vehicle 100 inclined in the left direction l or the right direction r in the image data Im.
 そこで、データ傾斜変換部32は、リーンビークル6aより前Fに位置する空間のイメージデータImをリーンビークル傾斜角度θに基づいてデータ変換している。これにより、データ変換された変換イメージデータImtでは、先行車両100が右方向r又は左方向lに傾斜している角度が小さくなる。その結果、自動四輪車のICが用いられた障害物検知部演算部36は、変換イメージデータImtに基づいて、先行車両100を検知することができる。 Therefore, the data tilt converter 32 converts the image data Im in the space located in front F of the lean vehicle 6a based on the lean vehicle tilt angle θ. As a result, in the converted image data Imt, the angle at which the preceding vehicle 100 is inclined in the right direction r or the left direction l becomes small. As a result, the obstacle detection unit calculation unit 36 using the IC of the four-wheeled vehicle can detect the preceding vehicle 100 based on the converted image data Imt.
(第1の変形例)
 次に、第1の変形例に係るリーンビークル用障害物検知装置10bについて図面を参照しながら説明する。図18は、第1の変形例に係るリーンビークル用障害物検知装置10bのブロック図である。
(First Modification)
Next, a lean vehicle obstacle detection device 10b according to a first modification will be described with reference to the drawings. FIG. 18 is a block diagram of the lean vehicle obstacle detection device 10b according to the first modification.
 リーンビークル用障害物検知装置10bは、撮像部12、障害物検知部16、ケース18a(第1ケース)及びケース18b(第2ケース)を備えている。ケース18aは、撮像部12を収容している。ケース18bは、障害物検知部16を収容している。ケース18a,18bは、リーンビークル本体60の前部に固定されている。そのため、撮像部12、障害物検知部16、ケース18a,18bは、リーンビークル本体60が左方向L又は右方向Rに傾斜すると、リーンビークル本体60と共に左方向L又は右方向Rに傾斜する。 The lean vehicle obstacle detection device 10b includes an imaging unit 12, an obstacle detection unit 16, a case 18a (first case), and a case 18b (second case). The case 18a houses the imaging unit 12. The case 18b houses the obstacle detection unit 16. The cases 18a and 18b are fixed to the front part of the lean vehicle body 60. Therefore, when the lean vehicle main body 60 is tilted leftward or rightward R, the imaging unit 12, the obstacle detection unit 16, and the cases 18a and 18b are tilted leftward or rightward together with the lean vehicle main body 60.
 なお、リーンビークル用障害物検知装置10bの撮像部12及び障害物検知部16は、リーンビークル用障害物検知装置10aの撮像部12及び障害物検知部16と同じであるので説明を省略する。 Note that the imaging unit 12 and the obstacle detection unit 16 of the lean vehicle obstacle detection device 10b are the same as the imaging unit 12 and the obstacle detection unit 16 of the lean vehicle obstacle detection device 10a, and thus description thereof is omitted.
 リーンビークル用障害物検知装置10bによれば、リーンビークル用障害物検知装置10aと同じ理由により、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知することができる。また、リーンビークル用障害物検知装置10bによれば、リーンビークル用障害物検知装置10aと同じ理由により、障害物検知部16が先行車両100を検知できる確率が高くなる。また、リーンビークル用障害物検知装置10bによれば、リーンビークル用障害物検知装置10aと同じ理由により、リーンビークル本体60が左方向L又は右方向Rに傾斜することにより、イメージデータImが右方向r又は左方向lに傾斜したとしても、障害物検知部演算部36がリーンビークル6より前Fに位置する路上に存在する先行車両100を容易に検知することが可能となる。また、リーンビークル用障害物検知装置10bによれば、リーンビークル用障害物検知装置10aと同じ理由により、自動四輪車のICを障害物検知部演算部36に用いることができる。 According to the lean-vehicle obstacle detection device 10b, the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 can be detected for the same reason as the lean-vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10b, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10a. According to the lean vehicle obstacle detection device 10b, the lean vehicle main body 60 is inclined in the left direction L or the right direction R for the same reason as the lean vehicle obstacle detection device 10a, so that the image data Im becomes right. Even if the vehicle is inclined in the direction r or the left direction l, the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. Further, according to the lean vehicle obstacle detection device 10b, for the same reason as the lean vehicle obstacle detection device 10a, an IC of a four-wheeled vehicle can be used for the obstacle detection unit calculation unit 36.
(第2の変形例)
 次に、第2の変形例に係るリーンビークル用障害物検知装置10cについて図面を参照しながら説明する。図19は、第2の変形例に係るリーンビークル用障害物検知装置10cのブロック図である。
(Second Modification)
Next, a lean vehicle obstacle detection device 10c according to a second modification will be described with reference to the drawings. FIG. 19 is a block diagram of the lean vehicle obstacle detection device 10c according to the second modification.
 リーンビークル用障害物検知装置10aでは、障害物検知部16は、リーンビークル傾斜角度取得部30を含んでいる。一方、リーンビークル用障害物検知装置10cでは、障害物検知部16は、イメージ傾斜角度取得部50を含んでいる。 In the lean vehicle obstacle detection device 10a, the obstacle detection unit 16 includes a lean vehicle inclination angle acquisition unit 30. On the other hand, in the lean vehicle obstacle detection device 10c, the obstacle detection unit 16 includes an image tilt angle acquisition unit 50.
 イメージ傾斜角度取得部50は、リーンビークル6aが左方向L又は右方向Rに旋回するためにリーンビークル本体60が左方向L又は右方向Rに傾斜しているときに、リーンビークル6aより前Fに位置する空間のイメージデータImに基づいてリーンビークル6aの傾斜角度に関する物理量を取得する。本変形例では、リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θである。 When the lean vehicle body 60 is tilted leftward or rightward R because the lean vehicle 6a turns leftward or rightward R, the image tilt angle acquisition unit 50 outputs the front F before the lean vehicle 6a. Of the lean vehicle 6a is acquired based on the image data Im of the space located at the position. In this modification, the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle θ.
 リーンビークル用障害物検知装置10cのその他の構造は、リーンビークル用障害物検知装置10aと同じであるので説明を省略する。 Other structures of the lean-vehicle obstacle detection device 10c are the same as those of the lean-vehicle obstacle detection device 10a, and thus description thereof is omitted.
 リーンビークル用障害物検知装置10cによれば、リーンビークル用障害物検知装置10aと同じ理由により、リーンビークル6より前Fに位置する路上に存在する先行車両100を検知することができる。また、リーンビークル用障害物検知装置10cによれば、リーンビークル用障害物検知装置10aと同じ理由により、障害物検知部16が先行車両100を検知できる確率が高くなる。また、リーンビークル用障害物検知装置10cによれば、リーンビークル用障害物検知装置10aと同じ理由により、リーンビークル本体60が左方向L又は右方向Rに傾斜することにより、イメージデータImが右方向r又は左方向lに傾斜したとしても、障害物検知部演算部36がリーンビークル6より前Fに位置する路上に存在する先行車両100を容易に検知することが可能となる。また、リーンビークル用障害物検知装置10cによれば、リーンビークル用障害物検知装置10aと同じ理由により、自動四輪車のICを障害物検知部演算部36に用いることができる。 According to the lean-vehicle obstacle detection device 10c, the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6 can be detected for the same reason as the lean-vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10c, the probability that the obstacle detection unit 16 can detect the preceding vehicle 100 increases for the same reason as the lean vehicle obstacle detection device 10a. Further, according to the lean vehicle obstacle detection device 10c, the image data Im is shifted to the right by tilting the lean vehicle body 60 in the left direction L or the right direction R for the same reason as the lean vehicle obstacle detection device 10a. Even if the vehicle is inclined in the direction r or the left direction l, the obstacle detection unit calculation unit 36 can easily detect the preceding vehicle 100 existing on the road located in front F of the lean vehicle 6. Further, according to the lean vehicle obstacle detection device 10c, the IC of the four-wheeled vehicle can be used for the obstacle detection unit calculation unit 36 for the same reason as the lean vehicle obstacle detection device 10a.
(その他の実施形態)
 本明細書において記載と図示の少なくとも一方がなされた実施形態及び変形例は、本開示の理解を容易にするためのものであって、本開示の思想を限定するものではない。上記の実施形態及び変形例は、その趣旨を逸脱することなく変更・改良され得る。
(Other embodiments)
The embodiments and modifications described and / or illustrated in the present specification are for facilitating understanding of the present disclosure, and do not limit the idea of the present disclosure. The above embodiments and modified examples can be changed and improved without departing from the gist thereof.
 当該趣旨は、本明細書に開示された実施形態に基づいて当業者によって認識されうる、均等な要素、修正、削除、組み合わせ(例えば、実施形態及び変形例に跨る特徴の組み合わせ)、改良、変更を包含する。特許請求の範囲における限定事項は当該特許請求の範囲で用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態及び変形例に限定されるべきではない。そのような実施形態及び変形例は非排他的であると解釈されるべきである。例えば、本明細書において、「好ましくは」、「よい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」、「よいがこれに限定されるものではない」ということを意味する。 Such purports may be recognized by those skilled in the art based on the embodiments disclosed herein, such as equivalent elements, modifications, deletions, combinations (for example, combinations of features across the embodiments and modifications), improvements, and changes. Is included. Limitations in the claims should be construed broadly based on the terms used in the claims and are limited to the embodiments and variations described in this specification or in the prosecution of this application. Should not be done. Such embodiments and variations are to be construed as non-exclusive. For example, as used herein, the terms "preferably" and "good" are non-exclusive and include "preferably but not limited to" and "good but not limited thereto." No. "
 なお、リーンビークル6,6aは、自動二輪車に限らない。リーンビークル6,6aは、リーンビークル6,6aが左方向Lに旋回するときに左方向Lに傾斜し、リーンビークル6,6aが右方向Rに旋回するときに右方向Rに傾斜するリーンビークル本体60を備えていればよい。従って、リーンビークル6,6aは、例えば、2つの前輪と1つの後輪とを備える3輪車両であってもよいし、1つの前輪と2つの後輪とを備える3輪車両であってもよいし、2つの前輪と2つの後輪とを備える4輪車両であってもよい。また、リーンビークル6,6aは、水上バイクであってもよい。 Note that the lean vehicles 6, 6a are not limited to motorcycles. The lean vehicle 6, 6a leans leftward when the lean vehicle 6, 6a turns leftward L, and leans rightward R when the lean vehicle 6, 6a turns rightward R. What is necessary is just to have the main body 60. Therefore, the lean vehicle 6, 6a may be, for example, a three-wheel vehicle having two front wheels and one rear wheel, or a three-wheel vehicle having one front wheel and two rear wheels. Alternatively, the vehicle may be a four-wheel vehicle including two front wheels and two rear wheels. Further, the lean vehicles 6, 6a may be personal watercrafts.
 なお、リーンビークル6,6aは、例えば、第1障害物検知信号Sig1、第2障害物検知信号Sig2、第3障害物検知信号Sig3、第1障害物非検知信号Sig11、第2障害物非検知信号Sig12及び第3障害物非検知信号Sig13を種々の通知や車両制御に利用することができる。リーンビークル6,6aは、例えば、第1障害物検知信号Sig1、第2障害物検知信号Sig2、第3障害物検知信号Sig3、第1障害物非検知信号Sig11、第2障害物非検知信号Sig12及び第3障害物非検知信号Sig13に基づいて、前方向Fに先行車両100が存在することをライダーに通知してもよい。通知方法は、聴覚に訴えてもよいし、視覚に訴えてもよいし、触覚に訴えてもよい。 Note that the lean vehicles 6, 6a are, for example, the first obstacle detection signal Sig1, the second obstacle detection signal Sig2, the third obstacle detection signal Sig3, the first obstacle non-detection signal Sig11, and the second obstacle non-detection. The signal Sig12 and the third obstacle non-detection signal Sig13 can be used for various notifications and vehicle control. The lean vehicles 6, 6a are provided with, for example, a first obstacle detection signal Sig1, a second obstacle detection signal Sig2, a third obstacle detection signal Sig3, a first obstacle non-detection signal Sig11, and a second obstacle non-detection signal Sig12. Based on the third obstacle non-detection signal Sig13, the rider may be notified that the preceding vehicle 100 is present in the forward direction F. The notification method may be auditory, visual, or tactile.
 なお、リーンビークル用障害物検知装置10も、リーンビークル用障害物検知装置10a,10bと同様に、第1障害物検知信号Sig1、第2障害物検知信号Sig2、第3障害物検知信号Sig3、第1障害物非検知信号Sig11、第2障害物非検知信号Sig12及び第3障害物非検知信号Sig13を出力してもよい。 Note that, similarly to the lean vehicle obstacle detection devices 10a and 10b, the lean vehicle obstacle detection device 10 also includes a first obstacle detection signal Sig1, a second obstacle detection signal Sig2, a third obstacle detection signal Sig3, The first obstacle non-detection signal Sig11, the second obstacle non-detection signal Sig12, and the third obstacle non-detection signal Sig13 may be output.
 なお、障害物は、先行車両100(自動四輪車)であるとした。しかしながら、障害物は、先行車両100(自動四輪車)に限らず、例えば、自動四輪車以外の車両、壁、ガードレール、人、動物等であってもよい。 Note that the obstacle is the preceding vehicle 100 (automobile). However, the obstacle is not limited to the preceding vehicle 100 (automobile), but may be a vehicle other than the automobile, a wall, a guardrail, a person, an animal, and the like.
 なお、リーンビークル用障害物検知装置10aでは、データ傾斜変換部32のICと障害物検知部演算部36のICとが別々に設けられているとした。しかしながら、データ傾斜変換部32と障害物検知部演算部36とは一つのICにより構成されていてもよい。 In the lean vehicle obstacle detection device 10a, the IC of the data inclination conversion unit 32 and the IC of the obstacle detection unit calculation unit 36 are provided separately. However, the data inclination conversion unit 32 and the obstacle detection unit calculation unit 36 may be configured by one IC.
 なお、リーンビークル用障害物検知装置10a,10bでは、リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θであるとした。ただし、リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θに限らない。リーンビークル6aの傾斜角度に関する物理量は、リーンビークル傾斜角度θを時間微分したリーンビークル傾斜角速度であってもよい。リーンビークル傾斜角速度は、例えば、リーンビークル6aのIMU(Inertial Measurement Unit)の角速度センサにより検知できる。また、リーンビークル傾斜角速度がリーンビークル6aの傾斜角度に関する物理量として用いられる場合には、障害物検知部16は、リーンビークル傾斜角速度が時間積分されることにより、リーンビークル傾斜角度θを取得してもよい。 In the lean vehicle obstacle detection devices 10a and 10b, the physical quantity related to the lean angle of the lean vehicle 6a is the lean vehicle tilt angle θ. However, the physical quantity related to the lean angle of the lean vehicle 6a is not limited to the lean vehicle tilt angle θ. The physical quantity related to the lean angle of the lean vehicle 6a may be a lean vehicle tilt angular velocity obtained by time-differentiating the lean vehicle tilt angle θ. The lean angular velocity of the lean vehicle can be detected by, for example, an angular velocity sensor of an IMU (Inertial Measurement Unit) of the lean vehicle 6a. When the lean vehicle inclination angular velocity is used as a physical quantity related to the inclination angle of the lean vehicle 6a, the obstacle detection unit 16 acquires the lean vehicle inclination angle θ by integrating the lean vehicle inclination angular velocity with time. Is also good.
 なお、リーンビークル用障害物検知装置10a,10bは、3種類のエリアA1~A3により障害物検知を行う。しかしながら、リーンビークル用障害物検知装置10a,10bは、1種類のエリア、2種類のエリア又は4種類以上のエリアにより障害物検知を行ってもよい。エリアの数が多くなるにしたがって、リーンビークル6,6aから先行車両100までの距離を精度よく検知できるようになる。 Note that the lean-vehicle obstacle detection devices 10a and 10b detect obstacles in three types of areas A1 to A3. However, the lean vehicle obstacle detection devices 10a and 10b may perform obstacle detection using one type of area, two types of area, or four or more types of areas. As the number of areas increases, the distance from the lean vehicle 6, 6a to the preceding vehicle 100 can be detected with higher accuracy.
 なお、リーンビークル用障害物検知装置10,10a,10bでは、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部に基づいて先行車両100を検知すればよい。また、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部に基づいて先行車両100を検知すればよい。従って、障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、イメージデータImの内の左上画素14luの左上領域140luにより撮像された部分の一部及びその他の領域により撮像された部分に基づいて先行車両100を検知してもよい。また、障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、イメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分の一部及びその他の領域により撮像された部分に基づいて先行車両100を検知してもよい。例えば、図9では、先行車両100は、変換イメージデータImtの内の右上領域140ru及び右下領域140rdにより撮像された部分に跨って存在している。そこで、障害物検知部16(図示せず)は、リーンビークル6,6a(図示せず)が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部及び右上画素14ruの右下領域140rdにより撮像された部分の一部に基づいて先行車両100を検知してもよい。また、障害物検知部16(図示せず)は、リーンビークル6,6a(図示せず)が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部及び左下領域140ldにより撮像された部分の一部に基づいて先行車両100を検知してもよい。このように、障害物検知が行われるエリアは、リーンビークル6,6aから先行車両100までの距離及びリーンビークル傾斜角度θに応じて変化してもよい。 In the lean vehicle obstacle detection devices 10, 10a, and 10b, the obstacle detection unit 16 determines that the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L. The preceding vehicle 100 may be detected based on at least a part of the image taken by the upper left area 140lu of the upper left pixel 14lu in the image data Im captured by the plurality of pixels. Further, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 determines at least one of the image data Im captured by the plurality of pixels. The preceding vehicle 100 may be detected based on a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru. Accordingly, when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the obstacle detection unit 16 detects the upper left area 140lu of the upper left pixel 14lu in the image data Im. The preceding vehicle 100 may be detected based on a part of the imaged part and a part imaged by another region. Further, when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6 turns rightward R, the obstacle detection unit 16 uses the upper right area 140ru of the upper right pixel 14ru in the image data Im. The preceding vehicle 100 may be detected based on a part of the imaged part and a part imaged by another region. For example, in FIG. 9, the preceding vehicle 100 exists over a portion imaged by the upper right area 140ru and the lower right area 140rd in the converted image data Imt. Therefore, when the lean vehicle body 60 is tilted rightward R because the lean vehicles 6 and 6a (not shown) turn rightward R, the obstacle detection unit 16 (not shown) Based on at least a part of the image taken by the upper right region 140ru of the upper right pixel 14ru and a part of the image taken by the lower right region 140rd of the upper right pixel 14ru in the image data Im taken by the pixel 100 may be detected. When the lean vehicle body 60 is tilted leftward L because the lean vehicles 6 and 6a (not shown) turn leftward L, the obstacle detection unit 16 (not shown) The preceding vehicle 100 is detected based on at least a part of the image captured by the upper left area 140lu of the upper left pixel 14lu and a part of the image captured by the lower left area 140ld of the image data Im captured by the pixel Is also good. As described above, the area in which the obstacle detection is performed may change according to the distance from the lean vehicle 6, 6a to the preceding vehicle 100 and the lean vehicle inclination angle θ.
 なお、「障害物検知部16は、リーンビークル6が左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部に基づいて先行車両100を検知する」とは、障害物検知部16が複数の画素により撮像されたイメージデータImの内の左上画素14luの左上領域140luにより撮像された部分の全部に基づいて先行車両100を検知してもよいし、障害物検知部16が複数の画素により撮像されたイメージデータImの内の左上画素14luの左上領域140luにより撮像された部分の一部に基づいて先行車両100を検知してもよい。また、「障害物検知部16は、リーンビークル6が右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているとき、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部に基づいて先行車両100を検知する」とは、障害物検知部16が複数の画素により撮像されたイメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分の全部に基づいて先行車両100を検知してもよいし、障害物検知部16が複数の画素により撮像されたイメージデータImの内の右上画素14ruの右上領域140ruにより撮像された部分の一部に基づいて先行車両100を検知してもよい。 It should be noted that the obstacle detection unit 16 determines that when the lean vehicle body 60 is tilted leftward L because the lean vehicle 6 turns leftward L, the image data Im captured by a plurality of pixels "Detecting the preceding vehicle 100 based on at least a part of the portion captured by the upper left region 140lu of the upper left pixel 14lu" means that the obstacle detector 16 detects the upper left pixel of the image data Im captured by the plurality of pixels. The preceding vehicle 100 may be detected based on all of the part imaged by the upper left area 140lu of the 14lu, or the obstacle detector 16 may detect the preceding vehicle 100 based on the upper left pixel 14lu of the image data Im captured by a plurality of pixels. The preceding vehicle 100 may be detected based on a part of the part imaged by the area 140lu. In addition, the “obstacle detection unit 16 determines whether the lean vehicle 6 turns rightward R and the lean vehicle body 60 is tilted rightward R. "Detecting the preceding vehicle 100 based on at least a part of the portion of the upper right pixel 14ru captured by the upper right region 140ru" means that the obstacle detector 16 detects the upper right pixel of the image data Im captured by the plurality of pixels. The preceding vehicle 100 may be detected based on all of the part imaged by the upper right area 140ru of the 14ru, or the obstacle detector 16 may detect the preceding vehicle 100 by the upper right pixel 14ru of the image data Im captured by a plurality of pixels. The preceding vehicle 100 may be detected based on a part of the part imaged by the area 140ru.
 なお、リーンビークル用障害物検知装置10a,10bでは、データ傾斜変換部32は、イメージデータImの全体を回転させている。しかしながら、データ傾斜変換部32は、イメージデータImの内の障害物検知を行うエリアのみを回転させてもよい。すなわち、データ傾斜変換部32は、リーンビークル6aが左方向Lに旋回するためにリーンビークル本体60が左方向Lに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも左上画素14luの左上領域140luにより撮像された部分の一部をリーンビークル傾斜角度θに基づいてデータ変換してもよい。また、データ傾斜変換部32は、リーンビークル6aが右方向Rに旋回するためにリーンビークル本体60が右方向Rに傾斜しているときに、複数の画素により撮像されたイメージデータImの内の少なくとも右上画素14ruの右上領域140ruにより撮像された部分の一部をリーンビークル傾斜角度θに基づいてデータ変換してもよい。 In the lean vehicle obstacle detection devices 10a and 10b, the data tilt converter 32 rotates the entire image data Im. However, the data tilt converter 32 may rotate only the area in the image data Im where the obstacle is to be detected. That is, when the lean vehicle body 60 is tilted to the left L because the lean vehicle 6a turns to the left L, the data tilt converter 32 outputs the image data Im captured by a plurality of pixels. At least a part of the part captured by the upper left region 140lu of the upper left pixel 14lu may be subjected to data conversion based on the lean vehicle inclination angle θ. In addition, the data inclination conversion unit 32 outputs the image data Im captured by a plurality of pixels when the lean vehicle body 60 is tilted rightward R because the lean vehicle 6a turns rightward R. At least a part of the part imaged by the upper right region 140ru of the upper right pixel 14ru may be subjected to data conversion based on the lean vehicle inclination angle θ.
 なお、リーンビークル6,6aの動力源66は、エンジンに限らず、電気モータであってもよいし、エンジンと電気モータとの組み合わせであってもよい。また、リーンビークル6,6aは、動力源66を備えない自転車であってもよい。また、リーンビークル6,6aは、人力と電気モータによる駆動力により走行する電動アシスト自転車であってもよい。 The power source 66 of the lean vehicles 6, 6a is not limited to the engine, but may be an electric motor or a combination of the engine and the electric motor. Further, the lean vehicles 6, 6a may be a bicycle without the power source 66. Further, the lean vehicles 6, 6a may be electric assist bicycles that run with human power and driving force of an electric motor.
6,6a:リーンビークル
10,10a,10b,10c:リーンビークル用障害物検知装置
12:撮像部
14:撮像素子
14H:水平画素
14V:鉛直画素
14ld:左下画素
14lu:左上画素
14rd:右下画素
14ru:右上画素
16:障害物検知部
18,18a,18b:ケース
30:リーンビークル傾斜角度取得部
32:データ傾斜変換部
34:エリア決定部
36:障害物検知部演算部
40:リーンビークル傾斜角度センサ
50:イメージ傾斜角度取得部
60:リーンビークル本体
62:前輪
64:後輪
66:動力源
68:操舵機構
100:先行車両
140ld:左下領域
140lu:左上領域
140rd:右下領域
140ru:右上領域
150:中央領域
A1~A3:エリア
F1,F2,F3:フレーム
H0:水平線
Im:イメージデータ
Imt:変換イメージデータ
6, 6a: lean vehicle 10, 10a, 10b, 10c: lean vehicle obstacle detector 12: imaging unit 14: imaging element 14H: horizontal pixel 14V: vertical pixel 14ld: lower left pixel 14lu: upper left pixel 14rd: lower right pixel 14ru: upper right pixel 16: obstacle detection unit 18, 18a, 18b: case 30: lean vehicle inclination angle acquisition unit 32: data inclination conversion unit 34: area determination unit 36: obstacle detection unit calculation unit 40: lean vehicle inclination angle Sensor 50: image tilt angle acquisition unit 60: lean vehicle body 62: front wheel 64: rear wheel 66: power source 68: steering mechanism 100: preceding vehicle 140ld: lower left area 140lu: upper left area 140rd: lower right area 140ru: upper right area 150 : Central areas A1 to A3: Areas F1, F2, F3: Frame H0: Horizontal line Im: A Jideta Imt: conversion image data

Claims (13)

  1.  リーンビークルが前記リーンビークルにおける左方向に旋回するときに前記リーンビークルにおける左方向に傾斜し、かつ、前記リーンビークルが前記リーンビークルにおける右方向に旋回するときに前記リーンビークルにおける右方向に傾斜するリーンビークル本体を備える前記リーンビークルに用いられ、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する障害物を検知するリーンビークル用障害物検知装置であって、
     前記リーンビークル用障害物検知装置は、(A)の撮像部及び(B)の障害物検知部を備えている。
    (A)
     前記撮像部は、複数の画素を有する撮像素子を含み、かつ、前記撮像素子により撮像された前記リーンビークルより前記リーンビークルにおける前に位置する空間のイメージデータを出力し、
      前記撮像素子は、前記リーンビークル本体と一緒に前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜するように、前記リーンビークルの前記リーンビークル本体における左右方向の中央部に設けられ、
      前記撮像素子は、
       前記リーンビークル本体が直立状態のとき、前記リーンビークルの前記リーンビークルにおける前に位置する水平線を撮像する水平画素と、
       前記リーンビークル本体が直立状態のとき、前記リーンビークル本体の前記リーンビークル本体における左右方向の中心の前記リーンビークルにおける前に位置する鉛直線を撮像する鉛直画素と、
       前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける上かつ前記鉛直画素より前記リーンビークルにおける左に設けられた左上画素と、
       前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける上かつ前記鉛直画素より前記リーンビークルにおける右に設けられた右上画素と、
       前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける下かつ前記鉛直画素より前記リーンビークルにおける左に設けられた左下画素と、
       前記リーンビークル本体が直立状態のとき、前記水平画素より前記リーンビークルにおける下かつ前記鉛直画素より前記リーンビークルにおける右に設けられた右下画素と、
      を含む。
    (B)
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているとき、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているとき、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する。
    When the lean vehicle turns leftward in the lean vehicle, it leans leftward in the lean vehicle, and when the lean vehicle turns rightward in the lean vehicle, it tilts rightward in the lean vehicle. An obstacle detection device for a lean vehicle, which is used for the lean vehicle including the lean vehicle body and detects an obstacle existing on a road located in front of the lean vehicle from the lean vehicle,
    The lean vehicle obstacle detection device includes an imaging unit (A) and an obstacle detection unit (B).
    (A)
    The image capturing unit includes an image sensor having a plurality of pixels, and outputs image data of a space located in front of the lean vehicle from the lean vehicle imaged by the image sensor,
    The image sensor is provided at the center in the left-right direction of the lean vehicle body of the lean vehicle, so as to incline leftward in the lean vehicle or rightward in the lean vehicle together with the lean vehicle body,
    The image sensor,
    When the lean vehicle body is in an upright state, a horizontal pixel that captures a horizontal line located in front of the lean vehicle in the lean vehicle,
    When the lean vehicle body is in an upright state, a vertical pixel that images a vertical line located in front of the lean vehicle at the center of the lean vehicle body in the left-right direction in the lean vehicle body,
    When the lean vehicle body is in an upright state, an upper left pixel provided on the lean vehicle above the horizontal pixel and on the left side of the lean vehicle above the vertical pixel,
    When the lean vehicle body is in an upright state, an upper right pixel provided in the lean vehicle above the horizontal pixel and in the lean vehicle above the vertical pixel,
    When the lean vehicle body is in an upright state, a lower left pixel provided in the lean vehicle below the horizontal pixel and in the lean vehicle below the vertical pixel,
    When the lean vehicle body is in an upright state, a lower right pixel provided in the lean vehicle below the horizontal pixel and in the lean vehicle from the vertical pixel,
    including.
    (B)
    The obstacle detection unit is configured such that, when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the image captured by the plurality of pixels. Detecting the obstacle present on the road located in front of the lean vehicle from the lean vehicle based on a part of the part imaged by at least the upper left region of the upper left pixel of the data,
    The obstacle detection unit is configured such that, when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the image captured by the plurality of pixels. Based on at least a part of the portion of the data captured by the upper right region of the upper right pixel, the obstacle existing on the road located before the lean vehicle in the lean vehicle is detected.
  2.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記障害物の少なくとも一部が前記左上画素の左上領域により撮像された前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記障害物の少なくとも一部が前記右上画素の右上領域により撮像された前記障害物を検知する、
     請求項1に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, at least a part of the obstacle is the leaning vehicle. Detecting the obstacle imaged by the upper left area of the upper left pixel,
    The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, at least a part of the obstacle is the lean vehicle. Detecting the obstacle captured by the upper right area of the upper right pixel,
    The lean vehicle obstacle detection device according to claim 1.
  3.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに前記リーンビークル本体が傾斜している角度を示すリーンビークル傾斜角度に関する物理量を取得するリーンビークル傾斜角度取得部を含み、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部、及び、前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいて、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部、及び、前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいて、前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する、
     請求項1又は請求項2に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. Includes a lean vehicle tilt angle acquisition unit that acquires a physical quantity related to the lean vehicle tilt angle indicating the angle at which the lean vehicle body is tilted when
    The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of the portion of the image data captured by the upper left region of the upper left pixel, and the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit, the lean vehicle from the lean vehicle. Detecting the obstacle present on the road located in front of
    The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of the portion of the image data captured by the upper right region of the upper right pixel and the lean vehicle inclination angle acquired by the lean vehicle inclination angle acquisition unit, the lean vehicle is more lean than the lean vehicle. Detecting the obstacle present on the road located in front of,
    An obstacle detection device for a lean vehicle according to claim 1 or 2.
  4.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部を前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいてデータ変換し、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部を前記リーンビークル傾斜角度取得部により取得された前記リーンビークル傾斜角度に基づいてデータ変換するデータ傾斜変換部を更に含み、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに、前記データ傾斜変換部で変換された前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータに基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する、
     請求項3に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. At least a part of the portion of the image data captured by the upper left region of the upper left pixel is converted based on the lean vehicle tilt angle obtained by the lean vehicle tilt angle obtaining unit, and the lean vehicle is converted to the lean vehicle. When the lean vehicle body is tilted rightward in the lean vehicle for turning rightward in the vehicle, at least the upper right region of the upper right pixel in the image data captured by the plurality of pixels A part of the imaged part is taken as the lean vehicle inclination angle. Further comprising a data inclined converter for data conversion based on the lean vehicle inclination angle acquired by section,
    The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. Is present on the road located before the lean vehicle in the lean vehicle based on the image data of the space located in the lean vehicle before the lean vehicle converted by the data tilt conversion unit. Detecting the obstacle,
    The lean vehicle obstacle detection device according to claim 3.
  5.  前記リーンビークル傾斜角度取得部は、前記リーンビークル用障害物検知装置の外部に設けられたセンサから前記リーンビークル傾斜角度に関する物理量を取得する、
     請求項4に記載のリーンビークル用障害物検知装置。
    The lean vehicle inclination angle acquisition unit acquires a physical quantity related to the lean vehicle inclination angle from a sensor provided outside the lean vehicle obstacle detection device,
    The obstacle detection device for a lean vehicle according to claim 4.
  6.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向又は前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータに基づいて前記リーンビークル傾斜角度に関する物理量を取得するイメージ傾斜角度取得部を含む、
     請求項4に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit may be configured such that the lean vehicle body is inclined leftward in the lean vehicle or rightward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle or rightward in the lean vehicle. When, during the lean vehicle includes an image tilt angle acquisition unit that acquires a physical quantity related to the lean vehicle tilt angle based on the image data of the space located in front of the lean vehicle,
    The obstacle detection device for a lean vehicle according to claim 4.
  7.  前記撮像素子は、前記リーンビークル本体が直立状態のとき、前記撮像素子の光軸の向きが前記リーンビークルにおける前方向かつ前記リーンビークルにおける下方向となるように、前記リーンビークル本体に設けられている、
     請求項1ないし請求項6のいずれかに記載のリーンビークル用障害物検知装置。
    The image sensor is provided on the lean vehicle body such that when the lean vehicle body is in an upright state, the direction of the optical axis of the image sensor is forward in the lean vehicle and downward in the lean vehicle. Yes,
    The obstacle detection device for a lean vehicle according to any one of claims 1 to 6.
  8.  前記リーンビークル用障害物検知装置は、
     前記撮像部を収容する第1ケースと、
     前記障害物検知部を収容する第2ケースと、
     を更に備える、
     請求項1ないし請求項7のいずれかに記載のリーンビークル用障害物検知装置。
    The lean vehicle obstacle detection device,
    A first case accommodating the imaging unit;
    A second case accommodating the obstacle detection unit;
    Further comprising
    An obstacle detection device for a lean vehicle according to any one of claims 1 to 7.
  9.  前記リーンビークル用障害物検知装置は、
     前記撮像部及び前記障害物検知部を収容する第3ケースを、
     更に備える、
     請求項1ないし請求項7のいずれかに記載のリーンビークル用障害物検知装置。
    The lean vehicle obstacle detection device,
    A third case accommodating the imaging unit and the obstacle detection unit,
    Further prepare,
    An obstacle detection device for a lean vehicle according to any one of claims 1 to 7.
  10.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記左上画素により撮像された部分だけに存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記右上画素により撮像された部分だけに存在する前記障害物を検知する、
     請求項1に記載のリーンビークル用障害物検知装置。
    When the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion captured by the upper left pixel in the image data of the space located at
    When the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion imaged by the upper right pixel of the image data of the space located at
    The lean vehicle obstacle detection device according to claim 1.
  11.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記左上画素の左上領域により撮像された部分だけに存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記リーンビークルより前記リーンビークルにおける前に位置する空間の前記イメージデータの内の前記右上画素の右上領域により撮像された部分だけに存在する前記障害物を検知する、
     請求項10に記載のリーンビークル用障害物検知装置。
    When the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle that exists only in the portion imaged by the upper left region of the upper left pixel in the image data of the space located at,
    When the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the obstacle detection unit is located in front of the lean vehicle in the lean vehicle. Detecting the obstacle existing only in the portion imaged by the upper right region of the upper right pixel in the image data of the space located at,
    An obstacle detection device for a lean vehicle according to claim 10.
  12.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素の左上領域により撮像された部分の一部及び前記左上画素の左下領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素の右上領域により撮像された部分の一部及び前記右上画素の右下領域により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する、
     請求項1又は請求項10に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of a portion of the image data captured by the upper left region of the upper left pixel and a portion of a portion captured by the lower left region of the upper left pixel, the lean vehicle is positioned before the lean vehicle in the lean vehicle. Detecting the obstacle on the road,
    The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. A position before the lean vehicle in the lean vehicle based on at least a part of the part captured by the upper right area of the upper right pixel and a part of the part captured by the lower right area of the upper right pixel in the image data. Detecting the obstacle present on the road to
    The lean vehicle obstacle detection device according to claim 1.
  13.  前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける左方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける左方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記左上画素により撮像された部分の一部及び前記左下画素により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知し、
     前記障害物検知部は、前記リーンビークルが前記リーンビークルにおける右方向に旋回するために前記リーンビークル本体が前記リーンビークルにおける右方向に傾斜しているときに、前記複数の画素により撮像された前記イメージデータの内の少なくとも前記右上画素により撮像された部分の一部及び前記右下画素により撮像された部分の一部に基づいて前記リーンビークルより前記リーンビークルにおける前に位置する路上に存在する前記障害物を検知する、
     請求項1に記載のリーンビークル用障害物検知装置。
    The obstacle detection unit is configured such that when the lean vehicle body is tilted leftward in the lean vehicle so that the lean vehicle turns leftward in the lean vehicle, the lean image is captured by the plurality of pixels. The obstacle existing on a road positioned before the lean vehicle in the lean vehicle based on at least a part of a part captured by the upper left pixel and a part of a part captured by the lower left pixel in the image data. Detect objects
    The obstacle detection unit is configured such that when the lean vehicle body is tilted rightward in the lean vehicle so that the lean vehicle turns rightward in the lean vehicle, the lean image is captured by the plurality of pixels. Based on at least a part of a part imaged by the upper right pixel and a part of a part imaged by the lower right pixel of the image data, the lean vehicle is present on a road positioned before the lean vehicle in the lean vehicle. Detect obstacles,
    The lean vehicle obstacle detection device according to claim 1.
PCT/JP2019/029639 2018-08-23 2019-07-29 Obstacle detection device for lean vehicle WO2020039852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156523 2018-08-23
JP2018156523 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020039852A1 true WO2020039852A1 (en) 2020-02-27

Family

ID=69592983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029639 WO2020039852A1 (en) 2018-08-23 2019-07-29 Obstacle detection device for lean vehicle

Country Status (1)

Country Link
WO (1) WO2020039852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021181825A1 (en) * 2020-03-11 2021-09-16
US12142055B2 (en) 2020-03-11 2024-11-12 Hitachi Astemo, Ltd. Image processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725286A (en) * 1993-07-13 1995-01-27 Daihatsu Motor Co Ltd Preceding vehicle recognizing method
JPH11242735A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Traveling environment recognizing device
JP2016068606A (en) * 2014-09-26 2016-05-09 本田技研工業株式会社 Approach notification device of saddle-riding type vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725286A (en) * 1993-07-13 1995-01-27 Daihatsu Motor Co Ltd Preceding vehicle recognizing method
JPH11242735A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Traveling environment recognizing device
JP2016068606A (en) * 2014-09-26 2016-05-09 本田技研工業株式会社 Approach notification device of saddle-riding type vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021181825A1 (en) * 2020-03-11 2021-09-16
WO2021181825A1 (en) * 2020-03-11 2021-09-16 日立Astemo株式会社 Image processing device
JP7298011B2 (en) 2020-03-11 2023-06-26 日立Astemo株式会社 Image processing device
US12142055B2 (en) 2020-03-11 2024-11-12 Hitachi Astemo, Ltd. Image processing device

Similar Documents

Publication Publication Date Title
JP4952765B2 (en) Vehicle night vision support device
JP6028848B2 (en) Vehicle control apparatus and program
JP6361382B2 (en) Vehicle control device
US9294733B2 (en) Driving assist apparatus
WO2019123840A1 (en) Imaging device, imaging system, and display system
JP5810773B2 (en) Rear video display device for motorcycles
WO2011010346A1 (en) Driving support device
JP6281289B2 (en) Perimeter monitoring apparatus and program
JP2005112004A (en) Vehicle reversing motion assisting device and vehicle reversing motion assisting method
JP6543823B2 (en) Optical sensor arrangement structure of straddle type vehicle
JP2013084242A (en) Video-based warning system for vehicle
JP5273300B2 (en) Vehicle periphery monitoring device
JP2011095321A (en) Image display device for vehicle
US11167815B2 (en) Saddled vehicle
JP6869467B2 (en) Parking support device
WO2020039852A1 (en) Obstacle detection device for lean vehicle
JP2017094922A (en) Periphery monitoring device
JP2008074139A (en) On-vehicle monitoring camera
WO2018061652A1 (en) Saddled vehicle
JP2009056848A (en) Driving support system
JP4932293B2 (en) Obstacle recognition device
JP2007251880A (en) On-vehicle image display device, and method of compositing images
JP2006131213A (en) Rear view recognition device for motorcycle
JP6127391B2 (en) Vehicle periphery visual recognition device
JP2006168683A (en) On-vehicle camera device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP