[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020039788A1 - ゴム組成物及びタイヤ - Google Patents

ゴム組成物及びタイヤ Download PDF

Info

Publication number
WO2020039788A1
WO2020039788A1 PCT/JP2019/027528 JP2019027528W WO2020039788A1 WO 2020039788 A1 WO2020039788 A1 WO 2020039788A1 JP 2019027528 W JP2019027528 W JP 2019027528W WO 2020039788 A1 WO2020039788 A1 WO 2020039788A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
rubber composition
guanidine
fatty acid
Prior art date
Application number
PCT/JP2019/027528
Other languages
English (en)
French (fr)
Inventor
拓哉 影山
麻耶 岡庭
享 印南
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201980054297.0A priority Critical patent/CN112585207B/zh
Priority to US17/270,625 priority patent/US11905391B2/en
Priority to EP19852554.5A priority patent/EP3842486A4/en
Priority to JP2019567386A priority patent/JP6702517B1/ja
Priority to KR1020207035079A priority patent/KR20210049715A/ko
Publication of WO2020039788A1 publication Critical patent/WO2020039788A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present invention relates to a rubber composition and a tire including the rubber composition.
  • the filler is a compounding agent used for the purpose of mixing the rubber with the rubber to reinforce the rubber, increase the weight, or impart a special function.
  • Carbon black which is a typical filler, not only contributes to the improvement (reinforcing effect) of mechanical properties such as rubber elastic modulus and breaking strength, but also has a function of imparting conductivity.
  • the inorganic filler When compounding the inorganic filler in the rubber composition containing the inorganic filler, the inorganic filler, particularly hydrophilic silica having a silanol group on the surface, has a low affinity for hydrophobic rubber and rubber. Agglomerates in the composition. Therefore, it is necessary to increase the affinity between silica and rubber in order to enhance the reinforcing property by silica and further obtain the effect of reducing heat generation.
  • a technique of blending a silane coupling agent has been developed. It is also known to incorporate a substance that improves the reactivity between silica and a silane coupling agent in order to improve the properties of such a silica-containing rubber composition.
  • Patent Document 1 discloses that diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, diethylthiourea, and dicatechol borate are used as reaction promoting compounds of silica and a silane coupling agent.
  • Basic vulcanization accelerators such as -o-tolylguanidine salts are disclosed.
  • Patent Documents 2 to 4 a modified rubber obtained by modification with a strongly basic compound such as aminoguanidine, alkylideneaminoguanidine or diaminoguanidine, an inorganic filler and a silane coupling agent are blended.
  • a rubber composition for a tire is disclosed.
  • a guanidine compound having a guanidine skeleton in a rubber composition improves the affinity between the inorganic filler and the rubber, and contributes to the low heat build-up and reinforcement of the rubber composition.
  • a guanidine compound having a strong basicity promotes various reactions of the components in the rubber composition, so that the processability of the rubber composition is reduced.
  • An object of the present invention is to provide a rubber composition having excellent rubber composition and a tire including the rubber composition.
  • a rubber composition comprising a guanidine fatty acid salt (A) which is a salt of guanidine and a fatty acid, a natural rubber and / or a synthetic rubber (B), and an inorganic filler (C).
  • a guanidine fatty acid salt (A) which is a salt of guanidine and a fatty acid
  • B natural rubber and / or a synthetic rubber
  • C inorganic filler
  • a rubber composition excellent in low heat build-up and reinforcing properties and a tire containing the rubber composition are provided. Can be provided.
  • the present embodiment an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail, but the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. It is.
  • the rubber composition of the present embodiment includes the guanidine fatty acid salt (A), which is a salt of guanidine and a fatty acid, a natural rubber and / or a synthetic rubber (B) (hereinafter, also referred to as a “rubber component (B)”). , And an inorganic filler (C).
  • A guanidine fatty acid salt
  • B a natural rubber and / or a synthetic rubber
  • C an inorganic filler
  • the guanidine fatty acid salt (A) is a salt composed of guanidine and a fatty acid.
  • the rubber composition of the present embodiment, by containing the guanidine fatty acid salt (A), is excellent in low heat build-up and reinforcement while maintaining excellent workability related to productivity. The reason is presumed as follows (however, the factor is not limited to this).
  • the guanidine fatty acid salt (A) acts as an internal lubricant, adsorbs on the inorganic filler (C), and lowers the polarity of the surface of the inorganic filler (C), thereby reducing the inorganic content.
  • the affinity between the filler (C) and the rubber component (B) and the dispersibility of the inorganic filler (C) are improved.
  • a reaction involving hydrolysis of a polar group (particularly, in the case of silica, a silanol group on the silica surface) that the inorganic filler (C) may have, and a silane coupling agent (D), It is promoted by the basic catalytic effect of the guanidine fatty acid salt (A). From the above, it is inferred that the rubber composition of the present embodiment is excellent in low heat build-up and reinforcing properties.
  • the basicity of the guanidine fatty acid salt (A) itself is weakened by the strong basicity of guanidine forming a salt with a fatty acid, and the guanidine fatty acid salt (A) and the rubber component ( Various reactions between B) and the inorganic filler (C), particularly when the composition of the present embodiment contains a silane coupling agent (D), the guanidine fatty acid salt (A) and the silane coupling agent (D) And the excessive crosslinking reaction between the rubber component (B) and the silane coupling agent (D) during kneading are suppressed. Due to this, the rubber composition of the present embodiment is also excellent in processability.
  • the fatty acid of the guanidine fatty acid salt (A) is not particularly limited as long as it is a monovalent carboxylic acid to which a chain hydrocarbon which may be branched is bonded, and has the same structure as known saturated fatty acids and unsaturated fatty acids. Can be provided. Further, the fatty acid of the guanidine fatty acid salt (A) is preferably a fatty acid having 3 or more carbon atoms, more preferably a fatty acid having 6 to 22 carbon atoms, further preferably a fatty acid having 8 to 22 carbon atoms. And even more preferably a fatty acid having 12 to 18 carbon atoms.
  • the fatty acid has 3 or more carbon atoms
  • the decomposition of the guanidine fatty acid salt (A) due to the volatilization of the fatty acid during kneading is suppressed, and the effects of the present invention can be reliably achieved.
  • the fatty acid has 6 to 22 carbon atoms
  • the compatibility of the rubber component (B) with the interface of the inorganic filler (C) with the rubber component (B) is improved, and the inorganic filler (C) Is promoted, and the effects of the present invention can be more reliably achieved.
  • the "carbon number" in the fatty acid is the total number of carbon atoms of the carboxylic acid and the carbon atoms of the chain hydrocarbon, and when the chain hydrocarbon is branched, the branched portion also include the carbon atoms of the above hydrocarbons.
  • fatty acids examples include saturated fatty acids and unsaturated fatty acids, such as acetic acid, propionic acid, butyric acid, hexanoic acid, caproic acid, octylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and isostearin.
  • Straight-chain saturated and branched-chain saturated fatty acids of acids, arachidic acid, and ariaic acid; Saturated fatty acids and branched unsaturated fatty acids are included.
  • Fatty acids include palm oil (which contains a large amount of palmitic acid and oleic acid, and also includes linoleic acid, stearic acid, and myristic acid.
  • palmitic acid accounts for 35 to 55%
  • oleic acid accounts for 30 to 50%.
  • Beef tallow rich in palmitic acid, oleic acid, and stearic acid, including linoleic acid and myristic acid
  • coconut oil rich in lauric acid and myristic acid, and also contains palmitic acid.
  • Lauric acid is preferably 35 to 55% and myristic acid is 10 to 30%
  • palm kernel oil rich in lauric acid and myristic acid and also contains palmitic acid.
  • lauric acid is 35 to 55%).
  • a mixed fatty acid derived from fats and oils containing a plurality of types of saturated fatty acids, such as 55% and myristic acid is preferably 10 to 30%. That.
  • the mixed fatty acid should just contain 50% or more of saturated fatty acids, and may further contain unsaturated fatty acids. These fatty acids may be used alone or in combination of two or more.
  • the fatty acid may include a hydroxyl group such as lactic acid, 12-hydroxystearic acid, and ricinoleic acid.
  • saturated fatty acids and mixed fatty acids are more preferable, and among the saturated fatty acids, lauric acid, myristic acid, palmitic acid and stearic acid are further preferable, and lauric acid is particularly preferable.
  • palm oil and coconut oil are preferable, and it is also preferable to use fatty acids contained in fats and oils as they are.
  • the guanidine contained in the guanidine fatty acid salt (A) is not particularly limited, but has a structure similar to that of known guanidine.
  • the guanidine fatty acid salt (A) is not particularly limited, but is obtained, for example, by reacting a guanidine salt with a fatty acid. More specifically, a guanidine carbonate and a fatty acid are mixed in a polar solvent such as water or alcohol at normal pressure at 0 ° C. to 100 ° C., preferably at room temperature (20 ° C.) to 80 ° C. for about 10 minutes to 24 hours. It is obtained by stirring and reacting. After the reaction, the target substance may be purified by a known method. More specifically, the guanidine fatty acid salt (A) can be obtained by the methods described in Synthesis Examples 1 to 4 in Examples described later.
  • the guanidine fatty acid salt (A) can be produced by a known production method (for example, the method described in MELVIN Z. POLIAKOFF1 AND GILBERT B. L. SMITH, GUANIDINE SOAPS. IND. ENG. CHEM., 40, 335-337 (1948)). You can also get. More specifically, it can be obtained as follows.
  • the fatty acid is dissolved in about 10 times its mass of a solvent (eg, ethyl alcohol or acetone) and a slight excess of 1: 1 molar equivalent to the fatty acid of the ground guanidine carbonate is added, followed by The mixture of fatty acid and guanidine carbonate can be gently refluxed for about 2 hours to react the fatty acid with guanidine carbonate to obtain a reaction product.
  • the obtained reaction product may be purified by a known method such as filtering the whole amount, removing the solvent, and drying the residue in the reaction vessel under vacuum.
  • the guanidine fatty acid salt (A) may be used alone or in combination of two or more.
  • the content of the guanidine fatty acid salt (A) in the rubber composition of the present embodiment is preferably 0.2 to 5.0 parts by mass, more preferably 100 parts by mass of the rubber component (B) described below.
  • the amount is 0.3 to 3.0 parts by mass, and more preferably 0.5 to 3.0 parts by mass.
  • the natural rubber and / or the synthetic rubber (B) is not particularly limited, and includes, for example, natural rubber obtained from a rubber tree and / or synthetic rubber industrially produced from petroleum and the like.
  • the raw material of the natural rubber is not particularly limited, and examples thereof include natural rubber latex and those having the shape of sheet rubber and block rubber obtained by coagulating and drying natural rubber latex. These natural rubbers may be used alone or in a combination of two or more. As a main component of the natural rubber, for example, polyisoprene can be mentioned.
  • Sheet rubber is not particularly limited, and examples thereof include those described in “International Quality Packaging Standards for Various Grades of Natural Rubber” (commonly known as Green Book). More specifically, a ribbed smoked sheet (RSS) dried while smoking the sheet with smoke, an air dried sheet (ADS) obtained by drying the sheet with hot air, and a coagulated product are sufficiently washed with hot air. Dried crepe, TC rubber (Technically Classified Rubber), SP rubber (Super Processing Rubber), MG rubber, PP crepe, softener, rubber with added peptizer and the like.
  • RSS ribbed smoked sheet
  • ADS air dried sheet
  • a coagulated product are sufficiently washed with hot air.
  • Dried crepe TC rubber (Technically Classified Rubber), SP rubber (Super Processing Rubber), MG rubber, PP crepe, softener, rubber with added peptizer and the like.
  • block rubber examples include, but are not limited to, Standard Malayasian Rubber (SMR) from Malaysia, Standard Indian Rubber (SIR) from Indonesia, Thai Tested Rubber (TTR) from Thailand, and Singapore Rubber (TTR) from Singapore. Singapore Rubber (SSR), Standard Vietnamese Rubber (SVR) from Vietnam, Standard Indiananese Rubber (SIR) from Indonesia, and Standard China Rubber from China (SCR).
  • SMR Standard Malayasian Rubber
  • SIR Standard Indian Rubber
  • TSR Thai Tested Rubber
  • SSR Standard Vietnamese Rubber
  • SVR Standard Indiananese Rubber
  • SCR Standard China Rubber from China
  • Synthetic rubber examples include, but are not limited to, 1,4-polybutadiene, 1,2-polybutadiene, 1,4-polyisoprene, 3,4-polyisoprene, isobutylene rubber, isoprene-isobutylene rubber, and styrene-butadiene rubber.
  • diene rubbers having a double bond in the molecule such as styrene-isoprene rubber, chloroprene rubber, nitrile rubber, propylene-butylene rubber, and ethylene-propylene-diene rubber.
  • the synthetic rubber may be a modified diene rubber obtained by introducing an amino group, an alkoxysilane group, a hydroxy group, an epoxy group, a carboxyl group, a cyano group, a halogen or the like into the diene rubber, if necessary.
  • These synthetic rubbers may be used alone or in combination of two or more.
  • the rubber component (B) may be used alone or in combination of two or more.
  • the content of the rubber component (B) in the rubber composition of the present embodiment is preferably from 40 to 80% by mass, more preferably from 45 to 75% by mass, based on the total amount (100% by mass) of the rubber composition. And more preferably 50 to 70% by mass.
  • the content of the rubber component (B) is within the above range, there is a tendency that the heat generation and the breaking strength are more excellent.
  • the inorganic filler (C) is not particularly limited as long as it is an inorganic filler used in the art.
  • an oxide of silicon, a typical metal, or a transition metal A hydrate thereof; a carbonate of silicon, a typical metal, or a transition metal; one or more selected from the group consisting of carbon black and the like.
  • the inorganic filler (C) is a reinforcing filler mainly used for the purpose of enhancing the reinforcing property; a non-reinforcing property mainly used for the purpose of increasing the amount or improving the workability such as the rolling property, mainly the extrudability. They can also be classified as fillers.
  • the reinforcing filler include, but are not particularly limited to, silica having an active surface, surface-treated clay, carbon black, mica, calcium carbonate, aluminum hydroxide, aluminum oxide, and titanium oxide.
  • the non-reinforcing filler is not particularly limited, for example, calcium carbonate, clay, talc, diatomaceous earth, crushed quartz, fused quartz, aluminosilicate, organic acid surface-treated calcium carbonate, magnesium carbonate, zinc carbonate, Examples include calcium silicate and ferric oxide.
  • reinforcing fillers are preferred, and silica is more preferred.
  • the silica is not particularly limited.
  • wet silica hydrous silicic acid
  • dry silica silicic anhydride
  • colloidal silica can be used.
  • BET specific surface area of silica is preferably 40 ⁇ 350m 2 / g, more preferably 100 ⁇ 300m 2 / g, more preferably from 150 ⁇ 250m 2 / g.
  • the particle diameter of the silica becomes appropriate, the tensile strength of the molded article obtained by molding the rubber composition is further improved, and the hysteresis loss tends to be further reduced.
  • Commercially available silica products include, for example, trade names “Ultrasil 7000GR” and “Ultrasil VN3” manufactured by Evonik.
  • examples of commercially available carbon black include “SEAST 9” and “SEAST 7HM” (trade names, manufactured by Tokai Carbon Co., Ltd.) and “Asahi # 70” (trade name, manufactured by Asahi Carbon Co., Ltd.).
  • the inorganic filler (C) may be used alone or in combination of two or more.
  • the content of the inorganic filler (C) in the rubber composition of the present embodiment is preferably from 10 to 150 parts by mass, more preferably from 20 to 125 parts by mass, per 100 parts by mass of the rubber component (B). And more preferably 30 to 100 parts by mass.
  • the content of the inorganic filler (C) is within the above range, the processability and the reinforcing property of the rubber composition are more improved, and the obtained rubber molded article tends to have more excellent low-loss property.
  • the rubber composition of the present embodiment preferably further contains a silane coupling agent (D).
  • a silane coupling agent D
  • the rubber component (silanization) is caused by a reaction (silanization) between the inorganic filler (C), particularly silica, and the silane coupling agent (D).
  • the affinity between B) and the inorganic filler (C) is further improved, and the rubber composition tends to be more excellent in low heat generation and reinforcement.
  • the silane coupling agent (D) is not particularly limited.
  • silane coupling agents (D) include, for example, trade names “Si69” and “Si75” manufactured by Evonik.
  • the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
  • the silane coupling agent (D) may be used alone or in combination of two or more.
  • the content of the silane coupling agent (D) in the rubber composition of the present embodiment is preferably 1 to 25 parts by mass, more preferably 2 to 20 parts by mass, based on 100 parts by mass of the inorganic filler (C). And more preferably 3 to 15 parts by mass.
  • the content of the silane coupling agent (D) is within the above range, the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
  • the rubber composition of the present embodiment may further contain a vulcanizing agent (E).
  • the vulcanizing agent (E) is not particularly limited as long as it is generally used in the art as a vulcanizing agent used for a rubber composition.
  • various types of sulfur commonly used as a vulcanizing agent are used.
  • powdered sulfur, precipitated sulfur and insoluble sulfur are used.
  • Examples of a commercially available vulcanizing agent (E) include “HK200-1” manufactured by Hosoi Chemical Industry Co., Ltd. These vulcanizing agents (E) may be used alone or in a combination of two or more.
  • the content of the vulcanizing agent (E) in the rubber composition of the present embodiment is preferably from 0.1 to 5 parts by mass, more preferably from 0.5 to 5 parts by mass, per 100 parts by mass of the rubber component (B). 3 parts by mass.
  • the content of the vulcanizing agent (E) is 0.1 parts by mass or more, vulcanization proceeds sufficiently. Further, when the content of the vulcanizing agent (E) is 5 parts by mass or less, there is a tendency that the occurrence of rubber burn during kneading can be suppressed.
  • the rubber composition of the present embodiment may further contain a vulcanization accelerator (F) in addition to the vulcanizing agent (E). Thereby, the vulcanization rate of the rubber composition can be sufficiently high when vulcanizing.
  • the vulcanization accelerator (F) is not particularly restricted but includes, for example, thiazole compounds such as mercaptobenzothiazole and di-2-benzothiazolyl disulfide; N-cyclohexyl-2-benzothiazolyl Sulfenamide compounds such as rusulfenamide, N, N'-dicyclohexyl-2-benzothiazolylsulfenamide, N'-tert-butyl-2-benzothiazolylsulfenamide; diphenylguanidine, 1,3- Guanidine compounds such as di-o-tolylguanidine and 1-o-tolylbiguanide; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide and tetrakis (2-ethylhexyl) thiuram disulfide; N, N'-diphenylthiourea , Trimethylthiourea, N
  • vulcanization accelerator (F) examples include, for example, trade names “Noxeller CZ” and “Noxeller D” manufactured by Ouchi Shinko Chemical Co., Ltd.
  • the vulcanization accelerator (F) may be used alone or in combination of two or more.
  • the content of the vulcanization accelerator (F) in the rubber composition of the present embodiment is preferably 0.1 to 10 parts by mass based on 100 parts by mass of the rubber component (B).
  • the rubber composition of the present embodiment may further contain, if necessary, a compounding agent usually used in the rubber industry, in addition to the above components.
  • a compounding agent usually used in the rubber industry, in addition to the above components.
  • a compounding agent include, but are not particularly limited to, an antioxidant, a processing aid (for example, a mixture of non-zinc soap and a saturated fatty acid ester, a vulcanization aid (for example, stearic acid, zinc oxide, and the like), a lubricant ( Examples thereof include waxes, for example, a product name of “Sunnock” manufactured by Ouchi Shinko Chemical Co., Ltd.), a plastic resin, an oil, etc.
  • these compounding agents commercially available products can be suitably used.
  • the type of the antioxidant is not particularly limited, but examples thereof include naphthylamine, p-phenylenediamine, hydroquinone derivatives, bis, tris, polyphenol, diphenylamine, quinoline, monophenol, thiobisphenol, and hindered. Phenols and the like can be mentioned, and from the viewpoint of a further anti-aging effect, p-phenylenediamine-based and diphenylamine-based amine-based anti-aging agents are preferable.
  • diphenylamine-based antioxidant examples include, but are not particularly limited to, 4,4'-bis ( ⁇ -methylbenzyl) diphenylamine, 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenesulfonyl) Amido) diphenylamine, di (4-octylphenyl) amine, and the like.
  • 4,4′-bis ( ⁇ -methylbenzyl) diphenylamine is more preferable from the viewpoint of a higher anti-aging effect.
  • p-phenylenediamine antioxidant examples include, but are not particularly limited to, N, N'-diphenyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N, N'-di -2-naphthyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, N-phenyl-N '-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, N, N'-bis (1-methylheptyl) -p-phenylenediamine, N, N'-bis (1,4-dimethylpentyl) -p-phenylenediamine, N, N'-bis (1-ethyl-3-methyl Pentyl) -p-phenylenediamine, N- (1,3-dimethylbutyl) -
  • Examples of commercially available antiaging agents include, for example, trade names “Nocrack 6C” and “Nocrack 224” manufactured by Ouchi Shinko Chemical Industry Co., Ltd., and “Antage 6C” manufactured by Kawaguchi Chemical Industry Co., Ltd.
  • the content of the antioxidant in the rubber composition of the present embodiment is preferably 0.1 to 5.0 parts by mass based on 100 parts by mass of the rubber component (B).
  • the type of the oil is not particularly limited, and examples thereof include mineral oils derived from petroleum and coal tar, fatty oils, vegetable oils derived from pine trees, and synthetic resin oils. Commercially available oils include, for example, "Elamic 30" manufactured by JX Energy.
  • the rubber composition of the present embodiment has at least a step of mixing a guanidine fatty acid salt (A), a natural rubber and / or a synthetic rubber (B), and an inorganic filler (C).
  • a method generally used in the art can be used.
  • a mastication step for adjusting the plasticity of the rubber component (B) (hereinafter, also referred to as a “mastication step”), an inorganic material, and the like.
  • Non-professional kneading step of mixing the filler (C) and the like (hereinafter, also referred to as “non-professional kneading step”), and professional mixing step of mixing a vulcanizing compounding agent (hereinafter, also referred to as “professional kneading step”).
  • natural rubber and / or synthetic rubber (B) are added to other compounding agents (guanidine fatty acid salt (A), inorganic filler (C), vulcanizing agent (E), vulcanizing Accelerator (F), other components, etc.) can be added and mixed in an appropriate step.
  • the mastication step can be omitted.
  • the mastication step, the non-pro kneading step and the professional kneading step are preferably performed in this order, but these steps may be exchanged as necessary.
  • the guanidine fatty acid salt (A) may be added in any of a mastication step, a non-pro kneading step, and a professional kneading step, but is preferably added in a non-pro kneading manner in which the inorganic filler (C) is added and mixed.
  • the method of addition is not particularly limited, but includes, for example, a method of adding guanidine fatty acid salt (A) powder as it is, a method of dispersing guanidine fatty acid salt (A) in a dispersion medium and adding it as a suspension, and a method of guanidine. Examples thereof include a method in which the fatty acid salt (A) is dissolved in a solvent and added as a solution or an emulsion.
  • the tire of the present embodiment includes the rubber composition of the present embodiment, particularly preferably the rubber composition of the present embodiment in a tread.
  • the tire containing the rubber composition of the present embodiment in the tread is excellent in fuel economy.
  • the tire of the present embodiment is not particularly limited except that the rubber composition of the present embodiment is included in any of the tire members, and can be manufactured according to a conventional method.
  • an inert gas such as nitrogen, argon, helium or the like, in addition to normal or air having adjusted oxygen partial pressure.
  • the molar yield was 96%.
  • the result of measurement of the obtained solid by gas chromatography “GC6890” (trade name, manufactured by Agilent) was obtained because the retention time (18.2 minutes) of the standard stearic acid coincided with that of the standard.
  • the solid was confirmed to be guanidine stearate.
  • the molar yield was 95%.
  • the obtained solid was subjected to elemental analysis using a carbon / hydrogen / nitrogen simultaneous quantification apparatus “CHN Coder MT-6” (trade name, manufactured by Yanaco Technical Science Co., Ltd.), and the calculated value of fatty acid salt of guanidine palm oil C, 65.41. H, 11.93; N, 12.87, found C, 64.55; H, 11.92; N, 12.66, so that the obtained solid was a guanidine palm oil fatty acid salt. It was confirmed. The molar yield was about 99%.
  • the obtained solid was subjected to elemental analysis using a simultaneous carbon / hydrogen / nitrogen quantification apparatus “CHN coder MT-6” (trade name, manufactured by Yanaco Technical Science Co., Ltd.), and the calculated value C of guanidine palm oil fatty acid salt was 60.90. H, 11.38; N, 15.74, found C, 59.29; H, 11.46; N, 15.17; thus, the obtained solid was a guanidine coconut oil fatty acid salt. It was confirmed. The molar yield was about 99%.
  • Rubber component 137.5 parts by mass, synthetic rubber, manufactured by Asahi Kasei Corporation, trade name “Toughden E581” (37.5% oil exhibition)
  • Antioxidant 2 parts by mass, N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name “Nocrack 6C” : 1 part by mass, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Nocrack 224"
  • Carbon black 5 parts by mass, SAF, manufactured by Tokai Carbon Co., Ltd., trade name "SEAST 9"
  • Oil 5 parts by mass, T-DAE oil, silane coupling agent manufactured by H & R: 6 parts by mass, bis (3- (triethoxysilyl) propyl) te
  • aminoguanidine carbonate 0.5 part by mass; Tokyo Chemical Industry Co., Ltd. fatty acid zinc: 2.0 parts by mass; zinc soap of unsaturated fatty acid (trade name: "STRACK") Toll A50P ”, Lubricant manufactured by Sil + Seirach: 2 parts by mass, selected special wax, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name“ SANNOC ” : 2 parts by mass, non-zinc soap & saturated fatty acid ester mixture, manufactured by Syl + Seirach, trade name "Struktol HT207” Vulcanization aid: 2 parts by mass, zinc oxide, 2 types, manufactured by Hakusui Tech: 1 part by mass, stearic acid, vulcanizing agent manufactured by Nippon Seika: 1.6 parts by mass, sulfur, vulcanized by Hosoi Chemical Industry Accelerator: 2.5 parts by mass, N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name
  • Example 1 An unvulcanized rubber composition and a vulcanized rubber composition were prepared according to the following preparation procedure. First kneading: The rubber component was charged using a Banbury mixer (600 mL Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), and kneading was started at a rotation speed of 100 rpm. After 30 seconds, a vulcanization aid, an antioxidant, carbon black and a lubricant were added.
  • Banbury mixer 600 mL Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.
  • Second kneading After the kneaded material obtained in the first kneading is cooled to room temperature, it is charged into a Banbury mixer (600 mL Labo Plast Mill, manufactured by Toyo Seiki Co., Ltd.), and kneaded at a rotation speed of 100 rpm for 4 minutes to obtain an unvulcanized rubber. A composition was obtained.
  • Third kneading A vulcanizing agent and a vulcanization accelerator are added to the kneaded product obtained in the second kneading using a 6-inch two-roll kneader at a roll temperature of 50 ° C. and a rotation speed of 25 rpm, and kneading is performed.
  • Press vulcanization A non-vulcanized rubber composition was vulcanized at 160 ° C. and 10 MPa for 14 minutes using a hydraulic press machine (manufactured by Oji Machine Co., Ltd.) to obtain a vulcanized rubber composition.
  • Example 2 Comparative Examples 1 to 4, Reference Example 1
  • Table 1 According to the composition of Table 1 below, various unvulcanized rubber compositions and vulcanized rubbers were operated in the same manner as in Example 1 except that the compound species and the amount of 1.0 part by mass of guanidine laurate were changed. A composition was obtained.
  • Rubber component 100 parts by mass, natural rubber, trade name "RSS # 1", silica manufactured by Kato Sansho Co., Ltd .: 30 parts by mass, manufactured by Evonik, trade name "Ultrasil 7000GR” Silane coupling agent: 2.4 parts by mass, bis (3- (triethoxysilyl) propyl) tetrasulfide, manufactured by Evonik, trade name "Si69" Guanidine laurate: 1 part by mass, Synthesis Example 1 Guanidine stearate: 1 part by mass, Synthesis Example 2 Diphenylguanidine: 1 part by mass, aminoguanidine carbonate manufactured by Tokyo Chemical Industry: 1 part by mass, antioxidant manufactured by Tokyo Chemical Industry: 2 parts by mass, N-phenyl-N '-(1,3-dimethylbutyl)- p-phenylenediamine, manufactured by Kawaguchi Chemical Co., Ltd., trade name
  • Example 3 An unvulcanized rubber composition and a vulcanized rubber composition were prepared according to the following preparation procedure.
  • Mastication Using a Banbury mixer (manufactured by Toyo Seiki Co., Ltd., 250 mL Labo Plastmill), the rubber component was introduced, the initial rotation speed was set to 20 rpm, and the mixture was kneaded for 5 minutes by increasing the rotation speed by 20 rpm every minute to 60 rpm.
  • First kneading Using a Banbury mixer (250 mL Labo Plast Mill, manufactured by Toyo Seiki Co., Ltd.), the rubber component was charged and kneading was started at a rotation speed of 100 rpm.
  • Second kneading Using a 6-inch two-roll kneader (a 6-inch high-temperature roll manufactured by Ikeda Machine Industry Co., Ltd.), the kneaded product obtained in the first kneading is vulcanized at a roll temperature of 30 ° C. and a rotation speed of 25 rpm. A kneading agent and a vulcanization accelerator were added and kneading was performed.
  • Press vulcanization vulcanization is performed by vulcanizing an unvulcanized rubber composition at 150 ° C. using a hydraulic press (Electric Heat Press manufactured by Ohtake Machine Industry Co., Ltd.) for 1.5 times the t90 of the vulcanization test. A vulcanized rubber composition was obtained.
  • Example 4 Comparative Examples 5 and 6, Reference Example 2
  • Various unvulcanized rubber compositions and vulcanized rubber compositions were obtained in the same manner as in Example 3 except that the compound type of guanidine laurate was changed according to the composition shown in Table 2 below.
  • Rubber component 100 parts by mass, synthetic rubber, manufactured by Asahi Kasei Corporation, trade name "Tuffden 2000R” (no oil exhibition) Carbon black: 20 parts by mass, HAF, manufactured by Asahi Carbon Co., trade name "Asahi # 70" Guanidine laurate: 1 part by mass, Synthesis Example 1 Guanidine stearate: 1 part by mass, Synthesis Example 2 Diphenylguanidine: 1 part by mass, Tokyo Chemical Industry Co., Ltd. aminoguanidine carbonate: 1 part by mass, Tokyo Chemical Industry Co., Ltd.
  • silane coupling agent 4 parts by mass, bis (3- (triethoxysilyl) propyl) tetrasulfide, Evonik Product name “Si69” Oil: 25 parts by mass, T-DAE oil, manufactured by JX Energy Co., Ltd., trade name "Eramic 30" Silica: 50 parts by mass, manufactured by Evonik, trade name "Ultrasil 7000GR”
  • Antioxidant 2 parts by mass, N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Kawaguchi Chemical Co., Ltd., trade name "ANTAGE 6C” Vulcanization aid: 2 parts by mass, zinc oxide 2 types, Nippon Chemical Industries: 2 parts by mass, stearic acid (special grade reagent), Fuji Film Wako Pure Chemical Co., Ltd.
  • vulcanizing agent 1.6 parts by mass, sulfur, Product name "HK200-1” manufactured by Hosoi Chemical Industry Vulcanization accelerator: 2.5 parts by mass, N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller CZ” : 1 part by mass, 1,3-diphenylguanidine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller D"
  • Example 5 An unvulcanized rubber composition and a vulcanized rubber composition were prepared according to the following preparation procedure. First kneading: Using a Banbury mixer (250 mL Labo Plastmill manufactured by Toyo Seiki Co., Ltd.), the rubber component was charged and kneading was started at a rotation speed of 100 rpm. Thirty seconds later, carbon black and 1 part by mass of guanidine laurate (Synthesis Example 1) were added, and 30 seconds later, a half amount of silica coated with a silane coupling agent and oil was added. After 60 seconds, half of the remaining silica covered with oil was charged, and when the rubber temperature reached 140 ° C., the cylinder was opened for 1 minute.
  • First kneading Using a Banbury mixer (250 mL Labo Plastmill manufactured by Toyo Seiki Co., Ltd.), the rubber component was charged and kneading was started at a rotation speed of 100 rpm.
  • Second kneading After the kneaded material obtained in the first kneading was cooled to room temperature, it was put into a Banbury mixer (250 mL Labo Plastmill manufactured by Toyo Seiki), and kneading was started at a rotation speed of 100 rpm. After 30 seconds, half of the vulcanization aid and antioxidant were charged, and 15 seconds later, the rest was charged. Kneading was performed until the rubber temperature reached 140 ° C.
  • Third kneading Using a 6-inch two-roll kneader (6-inch high-temperature roll manufactured by Ikeda Machinery Co., Ltd.), the kneaded product obtained in the second kneading is vulcanized at a roll temperature of 50 ° C. and a rotation speed of 25 rpm. A kneading agent and a vulcanization accelerator were added and kneading was performed.
  • Press vulcanization vulcanization is performed by vulcanizing an unvulcanized rubber composition at 160 ° C. and 10 MPa using a hydraulic press (Electric Heat Press manufactured by Ohtake Machine Industry Co., Ltd.) for 1.1 times the t90 of the vulcanization test. A vulcanized rubber composition was obtained.
  • Example 6 Comparative Examples 7, 8, Reference Example 3
  • Various unvulcanized rubber compositions and vulcanized rubber compositions were obtained in the same manner as in Example 5 except that the compound type of guanidine laurate was changed according to the composition shown in Table 3 below.
  • Rubber component 100 parts by mass, synthetic rubber, manufactured by Asahi Kasei Corporation, trade name "Toughden 2000R” (no oil exhibition) Carbon black: 5 parts by mass, ISAF-HS, manufactured by Tokai Carbon Co., Ltd., trade name "SEIST 7HM” Guanidine palm oil fatty acid salt: 1 part by mass, Synthesis Example 3 Diphenylguanidine: 1 part by mass, Tokyo Chemical Industry Co., Ltd. aminoguanidine carbonate: 0.5 part by mass, Tokyo Chemical Industry Co., Ltd.
  • silane coupling agent 4 parts by mass, bis (3- (triethoxysilyl) propyl) disulfide, Product name "Si75” manufactured by Evonik Oil: 25 parts by mass, T-DAE oil, manufactured by JX Energy, trade name "Eramic 30" Silica: 50 parts by mass, manufactured by Evonik, trade name "Ultrasil 7000GR”
  • Antioxidant 2 parts by mass, N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name “Nocrack 6C” Vulcanization aid: 2 parts by mass, zinc oxide 2 types, Nippon Chemical Industries: 2 parts by mass, stearic acid (special grade reagent), Fuji Film Wako Pure Chemical Co., Ltd.
  • vulcanizing agent 1.6 parts by mass, sulfur, Vulcanization accelerator manufactured by Tokyo Kasei Kogyo Co., Ltd .: 2.5 parts by mass, N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller CZ” : 1 part by mass, 1,3-diphenylguanidine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller D"
  • Example 7 An unvulcanized rubber composition and a vulcanized rubber composition were prepared according to the following preparation procedure. First kneading: Using a Banbury mixer (manufactured by Toyo Seiki Co., Ltd., 600 mL Labo Plast Mill), the rubber component was charged and kneading was started at a rotation speed of 100 rpm. Thirty seconds later, carbon black and 1 part by mass of guanidine palm oil fatty acid salt (Synthesis Example 3) were added. Sixty seconds later, a silane coupling agent and half of silica covered with half of oil were added.
  • Second kneading After the kneaded material obtained in the first kneading was cooled to room temperature, it was charged into a Banbury mixer (600 mL Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), and kneading was started at a rotation speed of 100 rpm. After 30 seconds, half of the vulcanization aid and antioxidant were charged, and 15 seconds later, the rest was charged.
  • Kneading was performed until the kneading time reached 3 minutes.
  • Third kneading Using a 6-inch two-roll kneader (6-inch high-temperature roll manufactured by Ikeda Kikai Kogyo Co., Ltd.), the kneaded material obtained in the second kneading was used at a roll temperature of 30 ° C. and a rotation speed of 25 rpm. A vulcanizing agent and a vulcanization accelerator were added and kneading was performed.
  • Press vulcanization Vulcanization of an unvulcanized rubber composition at 160 ° C. and 10 MPa using a hydraulic press (Electric Heat Press manufactured by Otake Machine Industry Co., Ltd.) for 1.1 times as long as t90 in the vulcanization test. Thus, a vulcanized rubber composition was obtained.
  • Rubber component 100 parts by mass, synthetic rubber, manufactured by Asahi Kasei Corporation, trade name "Toughden 2000R” (no oil exhibition) Carbon black: 5 parts by mass, ISAF-HS, manufactured by Tokai Carbon Co., Ltd., trade name "SEIST 7HM” Guanidine coconut oil fatty acid salt: 1 part by mass, Synthesis Example 4 Guanidine laurate: 1 part by mass, Synthesis Example 1 Diphenylguanidine: 1 part by mass, Tokyo Chemical Industry Co., Ltd. aminoguanidine carbonate: 1 part by mass, Tokyo Chemical Industry Co., Ltd.
  • silane coupling agent 4.8 parts by mass, bis (3- (triethoxysilyl) propyl) disulfide, Product name "Si75” manufactured by Evonik Oil: 25 parts by mass, T-DAE oil, manufactured by JX Energy, trade name "Eramic 30" Silica: 60 parts by mass, manufactured by Evonik, trade name "Ultrasil VN3"
  • Antioxidant 2 parts by mass, N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name “Nocrack 6C” Vulcanization aid: 2 parts by mass, zinc oxide 2 types, Nippon Chemical Industries: 2 parts by mass, stearic acid (special grade reagent), Fuji Film Wako Pure Chemical Co., Ltd.
  • vulcanizing agent 1.6 parts by mass, sulfur, Vulcanization accelerator manufactured by Tokyo Kasei Kogyo Co., Ltd .: 2.5 parts by mass, N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller CZ” : 1 part by mass, 1,3-diphenylguanidine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller D"
  • Example 8 An unvulcanized rubber composition and a vulcanized rubber composition were prepared according to the following preparation procedure. First kneading: Using a Banbury mixer (manufactured by Toyo Seiki Co., Ltd., 600 mL Labo Plast Mill), the rubber component was charged and kneading was started at a rotation speed of 100 rpm. Thirty seconds later, carbon black and 1 part by weight of guanidine coconut oil fatty acid salt (Synthesis Example 4) were charged, and 60 seconds later, a silane coupling agent and half of silica coated with half of oil were charged.
  • a Banbury mixer manufactured by Toyo Seiki Co., Ltd., 600 mL Labo Plast Mill
  • Second kneading After the kneaded material obtained in the first kneading was cooled to room temperature, it was charged into a Banbury mixer (600 mL Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), and kneading was started at a rotation speed of 100 rpm. After 30 seconds, half of the vulcanization aid and antioxidant were charged, and 15 seconds later, the rest was charged.
  • Kneading was performed until the kneading time reached 3 minutes.
  • Third kneading Using a 6-inch two-roll kneader (6-inch high-temperature roll manufactured by Ikeda Kikai Kogyo Co., Ltd.), the kneaded material obtained in the second kneading was used at a roll temperature of 30 ° C. and a rotation speed of 25 rpm. A vulcanizing agent and a vulcanization accelerator were added and kneading was performed.
  • Press vulcanization Vulcanization of an unvulcanized rubber composition at 160 ° C. and 10 MPa using a hydraulic press (Electric Heat Press manufactured by Otake Machine Industry Co., Ltd.) for 1.1 times as long as t90 in the vulcanization test. Thus, a vulcanized rubber composition was obtained.
  • Example 9 Comparative Examples 11 and 12, Reference Example 5
  • Various unvulcanized rubber compositions and vulcanized rubber compositions were obtained in the same manner as in Example 8, except that the compound type of the guanidine coconut oil fatty acid salt was changed according to the composition shown in Table 5.
  • the processability of the obtained unvulcanized rubber composition was defined as the Mooney viscosity ML1 + 4 [M] in the other Examples and Comparative Examples in Table 1 where the value of Mooney viscosity ML1 + 4 [M] in Reference Example 1 in Table 1 was 100. ] was calculated as a relative value. The lower the Mooney viscosity ML1 + 4 [M], the better the workability.
  • the Mooney viscometer (trade name “AM-4” manufactured by Toyo Seiki Seisaku-sho, Ltd.) is used, and JIS K 6300-1: 2013 “Unvulcanized rubber—Physical properties—Part 1: Mooney Determination of Viscosity and Scorch Time Using Viscometer ", Mooney viscosity ML1 + 4 [M] of unvulcanized rubber composition at 100 ° C. and scorch time at 125 ° C. using an L-type rotor. T5 [min] was measured.
  • the processability of the obtained unvulcanized rubber composition was determined by comparing the values of the Mooney viscosity ML1 + 4 [M] and the scorch time T5 [min] of each reference example in each table to 100, respectively, with the other examples in the table.
  • the value of Mooney viscosity ML1 + 4 [M] and the value of scorch time T5 [min] in the comparative example were calculated as relative values. The lower the value of Mooney viscosity ML1 + 4 [M] and the higher the value of scorch time T5 [min], the better the processability.
  • the numerical value of each component in the compounding formulation indicates parts by mass. In the table, the numerical value of each component in the compounding formulation indicates parts by mass.
  • the rubber composition containing the guanidine fatty acid salt (A) in the examples was excellent in productivity at least as high as the comparative example not containing the guanidine fatty acid salt (A). It has been confirmed that at least it is excellent in low heat generation and reinforcement while maintaining workability, that is, excellent in balance between workability, low heat generation and reinforcement.
  • the rubber composition according to the present invention can be used as a material for various tire members including a tread.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

本発明は、グアニジンと脂肪酸との塩であるグアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)、並びに無機充填材(C)を含有する、ゴム組成物、を提供する。

Description

ゴム組成物及びタイヤ
 本発明は、ゴム組成物及び当該ゴム組成物を含むタイヤに関する。
 充填材は、それをゴムに混合して、ゴムの補強、増量や特殊機能を付与する等の目的で用いられる配合剤である。代表的な充填材であるカ-ボンブラックは、ゴムの弾性率、破断強度等の力学特性の向上(補強効果)に寄与しているのみならず、導電性を付与する等の機能も有する。
 カ-ボンブラックと同様にゴムの補強効果が得られ、発熱性の低いゴム組成物を得ることができる方法として、シリカ等の無機充填材を使用する方法が知られている。また、その方法は環境性に配慮した低燃費タイヤ向けのゴム組成物等に応用されている。
 無機充填材を配合するゴム組成物において無機充填材を配合する際、無機充填材は、特に表面にシラノ-ル基を有する親水性のシリカは、疎水性のゴムとの親和性が低く、ゴム組成物中で凝集してしまう。よって、シリカによる補強性を高め、さらに低発熱化効果を得るためには、シリカとゴムの親和性を高める必要がある。そのための方法として、シランカップリング剤を配合する技術が開発されている。また、かかるシリカ配合ゴム組成物の特性を改良するために、シリカとシランカップリング剤の反応性を向上させる物質を配合することが知られている。例えば、特許文献1には、シリカとシランカップリング剤との反応促進化合物として、ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジエチルチオウレア、ジカテコールボレートのジ-o-トリルグアニジン塩等の塩基性加硫促進剤が開示されている。
 また、特許文献2~4には、アミノグアニジン、アルキリデンアミノグアニジン、ジアミノグアニジンの強い塩基性を有する化合物によって変性させることにより得られる変性ゴムと、無機充填物及びシランカップリング剤と、を配合したタイヤ用ゴム組成物が開示されている。
国際公開第2008/123306号パンプレット 国際公開第2015/190519号パンフレット 国際公開第2015/190504号パンフレット 国際公開第2016/039276号パンフレット
 しかしながら、グアニジン骨格を有するグアニジン化合物のゴム組成物への使用は、無機充填材とゴムとの親和性を向上させて、ゴム組成物の低発熱性及び補強性の向上に寄与する。一方、強い塩基性を有するグアニジン化合物は、ゴム組成物中の成分の各種反応を促進することに起因して、ゴム組成物の加工性が低下してしまう。
 今後、大気中の二酸化炭素濃度、大気汚染等の環境問題に対する世の中の関心はますます高くなることが予想される。そのため、シリカ等の無機充填材をゴム組成物に添加しても生産性に関わる優れた加工性を維持しつつ、低発熱性及び補強性に優れるゴム組成物及びタイヤを提供できる技術が求められている。
 そこで、本発明は、上記従来技術の問題に鑑みてなされたものであり、無機充填材を含有するゴム組成物において、生産性に関わる優れた加工性を維持しつつ、低発熱性及び補強性に優れるゴム組成物及び当該ゴム組成物を含むタイヤを提供することを目的とする。
 本発明者らは、鋭意検討した結果、グアニジンと脂肪酸との塩であるグアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)、並びに無機充填材(C)を含有するゴム組成物が、上記課題を解決することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 グアニジンと脂肪酸との塩であるグアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)、並びに無機充填材(C)を含有する、ゴム組成物。
[2]
 グアニジン脂肪酸塩(A)における脂肪酸の炭素数が、3以上である、[1]に記載のゴム組成物。
[3]
 グアニジン脂肪酸塩(A)における脂肪酸が、炭素数6~22の脂肪酸を含む、[1]に記載のゴム組成物。
[4]
 グアニジン脂肪酸塩(A)の含有量が、天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.2~5.0質量部である、[1]~[3]のいずれかに記載のゴム組成物。
[5]
 グアニジン脂肪酸塩(A)の含有量が、天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.5~3.0質量部である、[4]に記載のゴム組成物。
[6]
 無機充填材(C)が、シリカを含む、[1]~[5]のいずれかに記載のゴム組成物。
[7]
 シランカップリング剤(D)をさらに含有する、[1]~[6]のいずれかに記載のゴム組成物。
[8]
 加硫剤(E)をさらに含有する、[1]~[7]のいずれかに記載のゴム組成物。
[9]
 [1]~[8]のいずれかに記載のゴム組成物を含む、タイヤ。
 本発明によれば、無機充填材を含有するゴム組成物において、生産性に関わる優れた加工性を維持しつつ、低発熱性及び補強性に優れるゴム組成物及び当該ゴム組成物を含むタイヤを提供することができる。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔ゴム組成物〕
 本実施形態のゴム組成物は、上述したグアニジンと脂肪酸との塩であるグアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)(以下、「ゴム成分(B)」ともいう。)、並びに無機充填材(C)を含有する。
〔グアニジン脂肪酸塩(A)〕
 グアニジン脂肪酸塩(A)は、グアニジンと脂肪酸とからなる塩である。本実施形態のゴム組成物は、グアニジン脂肪酸塩(A)を含有することにより、生産性に関わる優れた加工性を維持しつつ、低発熱性及び補強性に優れる。この理由は次のように推察される(ただし、要因はこれに限定されない。)。
 本実施形態のゴム組成物において、グアニジン脂肪酸塩(A)が、内部滑剤として作用して無機充填材(C)に吸着し、該無機充填材(C)の表面の極性を下げることにより、無機充填材(C)とゴム成分(B)との親和性及び無機充填剤(C)の分散性を向上させる。特に、無機充填材(C)が有し得る極性基(特にシリカの場合はシリカ表面のシラノ-ル基)とシランカップリング剤(D)の加水分解を伴う反応(シラニゼ―ション反応)が、グアニジン脂肪酸塩(A)の有する塩基性触媒効果により促進される。以上のことから、本実施形態のゴム組成物が低発熱性及び補強性に優れると推察される。
 また、グアニジン脂肪酸塩(A)自体の塩基性は、グアニジンの強い塩基性が脂肪酸との塩を形成していることによって弱まっており、ゴム組成物中のグアニジン脂肪酸塩(A)、ゴム成分(B)及び無機充填材(C)の間における各種反応、特にシランカップリング剤(D)を本実施形態の組成物が含有する場合における、グアニジン脂肪酸塩(A)とシランカップリング剤(D)との過剰な反応や、混練中のゴム成分(B)とシランカップリング剤(D)間での過剰な架橋反応、を抑制する。これに起因して、本実施形態のゴム組成物は加工性にも優れる。
 グアニジン脂肪酸塩(A)が有する脂肪酸は、分岐していてもよい鎖状の炭化水素が結合した1価のカルボン酸であれば特に限定されないが、公知の飽和脂肪酸及び不飽和脂肪酸と同様の構造を有することができる。また、グアニジン脂肪酸塩(A)の脂肪酸は、好ましくは炭素数が3以上の脂肪酸であり、より好ましくは炭素数が6~22の脂肪酸であり、さらに好ましくは炭素数が8~22の脂肪酸であり、よりさらに好ましくは炭素数が12~18の脂肪酸である。炭素数が3以上の脂肪酸であることにより、混練中の脂肪酸の揮発によるグアニジン脂肪酸塩(A)の分解が抑制され、本発明の作用効果を確実に奏することが可能である。また、炭素数が6~22の範囲の脂肪酸であることにより、ゴム成分(B)及びゴム成分(B)に対する無機充填材(C)界面との相溶性が向上し、無機充填材(C)の分散が促進され、本発明の作用効果をより確実に奏することが可能である。
 ここで、脂肪酸における「炭素数」は、カルボン酸の炭素原子と鎖状の炭化水素の炭素原子との総数であり、鎖状の炭化水素が分岐している場合には、分岐している部分の炭化水素の炭素原子も含んだものである。
 脂肪酸としては、飽和脂肪酸不飽和脂肪酸が挙げられ、例えば、酢酸、プロピオン酸、酪酸、ヘキサン酸、カプロン酸、オクチル酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、アラキジン酸、へベン酸の直鎖飽和脂肪酸及び分岐鎖飽和脂肪酸;アクリル酸、メタクリル酸、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸の直鎖不飽和脂肪酸及び分岐鎖不飽和脂肪酸が挙げられる。また、脂肪酸としては、パーム油(パルミチン酸とオレイン酸を多く含み、リノール酸、ステアリン酸、ミリスチン酸も含む。その中でも、パルミチン酸が35~55%であり、オレイン酸が30~50%であるものが好ましい。)や牛脂(パルミチン酸とオレイン酸、ステアリン酸を多く含み、リノール酸、ミリスチン酸も含む。)、ヤシ油(ラウリン酸とミリスチン酸を多く含み、パルミチン酸も含む。その中でも、ラウリン酸が35~55%、ミリスチン酸が10~30%であるものが好ましい。)、パーム核油(ラウリン酸とミリスチン酸を多く含み、パルミチン酸も含む。その中でも、ラウリン酸が35~55%、ミリスチン酸が10~30%であるものが好ましい。)等の飽和脂肪酸を複数種含む油脂由来の混合脂肪酸も挙げられる。ここで、混合脂肪酸は、飽和脂肪酸を50%以上含むものであればよく、不飽和脂肪酸をさらに含むものであってもよい。これら脂肪酸は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、脂肪酸は、乳酸、12-ヒドロキシステアリン酸、リシノール酸のように水酸基を含んでいてもよい。これらの中でも、飽和脂肪酸及び混合脂肪酸がより好ましく、飽和脂肪酸の中でも、ラウリン酸、ミリスチン酸、パルミチン酸及びステアリン酸がさらに好ましく、ラウリン酸が特に好ましい。また、混合脂肪酸の中でも、パーム油及びヤシ油が好ましく、油脂に含まれる脂肪酸をそのまま使うことも好ましい。
 グアニジン脂肪酸塩(A)が有するグアニジンは、特に限定されないが、公知のグアニジンと同様の構造を有する。
 グアニジン脂肪酸塩(A)は、特に限定されないが、例えばグアニジン塩と脂肪酸とを反応させて得られる。より具体的には、グアニジン炭酸塩と脂肪酸とを、水、アルコール等の極性溶媒中、常圧で、0℃~100℃、好ましくは室温(20℃)~80℃で10分~24時間程度撹拌して反応させることにより、得られる。反応後、公知の方法により目的物を精製するとよい。より具体的には、後述する実施例の合成例1~4に挙げる方法によって、グアニジン脂肪酸塩(A)を得ることができる。
 グアニジン脂肪酸塩(A)は、公知の製造方法(例えばMELVIN Z. POLIAKOFF1 AND GILBERT B. L. SMITH, GUANIDINE SOAPS. IND. ENG. CHEM., 40, 335-337 (1948)に記載の方法)で得ることもできる。より具体的には、次のとおりにして得ることができる。脂肪酸を、その質量の約10倍量の溶媒(例えばエチルアルコール又はアセトン)に溶解し、脂肪酸に対して1:1のモル等量よりもわずかに過剰の粉砕したグアニジン炭酸塩を添加し、その後、脂肪酸とグアニジン炭酸塩との混合物を約2時間穏やかに還流して、脂肪酸とグアニジン炭酸塩とを反応させて、反応物を得ることができる。得られた反応物を、その全量をろ過し、溶媒を除去し、反応容器内の残留物を真空下で乾燥させる等の公知の方法により精製すればよい。
 上記の反応において、反応が完了したか否かは、得られた反応物を過剰のグアニジン炭酸塩を除去するためにろ過し、適宜標準的な酸又は塩基で滴定することによって確認することができる。用いた脂肪酸の種類にもよるが、上記のとおり約2時間程度穏やかに還流して反応させれば、脂肪酸を全てグアニジン炭酸塩と反応させることができる傾向にある。
 グアニジン脂肪酸塩(A)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物におけるグアニジン脂肪酸塩(A)の含有量は、後述するゴム成分(B)100質量部に対して、好ましくは0.2~5.0質量部であり、より好ましくは0.3~3.0質量部であり、更に好ましくは0.5~3.0質量部である。グアニジン脂肪酸塩(A)の含有量が上記範囲であることにより、優れた低発熱性及び補強性を損なうことなく、ゴム組成物の加工性を向上させることができる傾向にある。
〔天然ゴム及び/又は合成ゴム(B)〕
 天然ゴム及び/又は合成ゴム(B)としては、特に限定されないが、例えばゴムの樹から得られる天然ゴム及び/又は石油等から工業的に製造される合成ゴムが挙げられる。
(天然ゴム)
 天然ゴムの原料としては、特に限定されないが、例えば、天然ゴムラテックス並びに天然ゴムラテックスを凝固及び乾燥して得られるシ-トゴム及びブロックゴムの形状を有するものが挙げられる。これら天然ゴムは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。天然ゴムの主成分としては、例えばポリイソプレンが挙げられる。
 シ-トゴムとしては、特に限定されないが、例えば、「天然ゴム各種等級品の国際品質包装基準」(通称グリ-ンブック)に記載されたものが挙げられる。より具体的には、シ-トを煙で燻しながら乾燥させたリブドスモ-クドシ-ト(RSS)、シ-トを熱風乾燥させたエアドライシ-ト(ADS)、凝固物を充分に水洗し熱風で乾燥させたクレ-プ、TCラバ-(Technically Classified Rubber)、SPラバ-(Super Processing Rubber)、MGラバ-、PPクレ-プ、軟化剤、しゃく解剤添加ゴム等が挙げられる。
 ブロックゴムとしては、特に限定されないが、例えば、マレ-シア産のStandard Malaysian Rubber(SMR)、インドネシア産のStandard Indonesian Rubber(SIR)、タイ産のThai Tested Rubber(TTR)、シンガポ-ル産のStandard Singapore Rubber(SSR)、ベトナム産のStandard Vietnamese Rubber(SVR)、インドネシア産のStandard Indonesian Rubber(SIR)、中国産のStandard China Rubber(SCR)等が挙げられる。
 天然ゴムの市販品としては、例えば加藤産商社製の商品名「RSS#1」が挙げられる。
(合成ゴム)
 合成ゴムとしては、特に限定されないが、例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、1,4-ポリイソプレン、3,4-ポリイソプレン、イソブチレンゴム、イソプレン-イソブチレンゴム、スチレン-ブタジエンゴム、スチレン-イソプレンゴム、クロロプレンゴム、ニトリルゴム、プロピレン-ブチレンゴム、エチレン-プロピレン-ジエンゴム等の分子内に二重結合を有するジエン系ゴムが挙げられる。合成ゴムは、必要に応じて、上記ジエン系ゴムに対してアミノ基、アルコキシシラン基、ヒドロキシ基、エポキシ基、カルボキシル基、シアノ基、ハロゲン等を導入した変性ジエン系ゴムであってもよい。これら合成ゴムは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 合成ゴムの市販品としては、例えば旭化成社製の商品名「タフデンE581」、「タフデン2000R」が挙げられる。
 ゴム成分(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物におけるゴム成分(B)の含有量は、ゴム組成物の総量(100質量%)に対して、好ましくは40~80質量%であり、より好ましくは45~75質量%であり、更に好ましくは50~70質量%である。ゴム成分(B)の含有量が上記範囲内であることにより、低発熱性及び破断強度により優れる傾向にある。
〔無機充填材(C)〕
 無機充填材(C)としては、当業界で用いられる無機充填材であれば特に限定されないが、例えば、ケイ素、典型金属、又は遷移金属の酸化物;ケイ素、典型金属、又は遷移金属の水酸化物;それらの水和物;ケイ素、典型金属、又は遷移金属の炭酸塩;カ-ボンブラック等からなる群より選択される一種以上が挙げられる。
 また、無機充填材(C)は、主として補強性を高める目的で使用される補強性充填材;増量の目的や圧延性、主として押出性等の加工性を改善する目的で使用される非補強性充填材に分類することもできる。補強性充填材としては、特に限定されないが、例えば、表面が活性なシリカ、表面処理クレー、カーボンブラック、マイカ、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等が挙げられる。また、非補強性充填材としては、特に限定されないが、例えば、炭酸カルシウム、クレー、タルク、けいそう土、粉砕石英、溶融石英、アルミノケイ酸、有機酸表面処理炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ケイ酸カルシウム、酸化第二鉄等が挙げられる。上記のなかでも、補強性充填材が好ましく、その中でもシリカがより好ましい。このような無機充填材(C)を用いることにより、ゴム組成物の補強性がより向上するとともに、ゴム成分(B)と無機充填材(C)との親和性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。
 シリカとしては、特に限定されないが、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)及びコロイダルシリカを使用することができる。また、シリカのBET比表面積は、好ましくは40~350m/gであり、より好ましくは100~300m/gであり、更に好ましくは150~250m/gである。シリカのBET表面積が上記範囲であることにより、シリカの粒子径が適切となり、ゴム組成物を成形した成形体の引張り強度がより向上し、ヒステリシスロスがより低下する傾向にある。シリカの市販品としては、例えばエボニック社製の商品名「Ultrasil 7000GR」や「Ultrasil VN3」が挙げられる。
 またカーボンブラックの市販品としては、例えば、東海カーボン社製の商品名「シースト9」、「シースト7HM」、旭カーボン社製の商品名「旭#70」が挙げられる。
 無機充填材(C)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物における無機充填材(C)の含有量は、ゴム成分(B)100質量部に対して、好ましくは10~150質量部であり、より好ましくは20~125質量部であり、さらに好ましくは30~100質量部である。無機充填材(C)の含有量が上記範囲内であることにより、ゴム組成物の加工性及び補強性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。
〔シランカップリング剤(D)〕
 本実施形態のゴム組成物は、好ましくはシランカップリング剤(D)をさらに含有する。本実施形態のゴム組成物において、シランカップリング剤をさらに含有することにより、無機充填材(C)、特にシリカとシランカップリング剤(D)との反応(シラニゼーション)によって、ゴム成分(B)と無機充填材(C)との親和性をより向上させ、ゴム組成物が低発熱性及び補強性により優れる傾向にある。
 シランカップリング剤(D)としては、特に限定されないが、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリメトキシシリルプロピルメタクリロイルモノスルフィド等のスルフィド系シランカップリング剤;3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等のチオ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノシラン系シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン系シランカップリング剤等が挙げられる。このなかでも、スルフィド系シランカップリング剤が好ましい。
 シランカップリング剤(D)の市販品としては、例えばエボニック社製の商品名「Si69」、「Si75」が挙げられる。
 シランカップリング剤(D)を用いることにより、ゴム成分(B)と無機充填材(C)との親和性がより向上する傾向にある。シランカップリング剤(D)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物におけるシランカップリング剤(D)の含有量は、無機充填材(C)100質量部に対して、好ましくは1~25質量部であり、より好ましくは2~20質量部であり、さらに好ましくは3~15質量部である。シランカップリング剤(D)の含有量が上記範囲内であることにより、ゴム成分(B)と無機充填材(C)との親和性がより向上する傾向にある。
〔加硫剤(E)〕
 本実施形態のゴム組成物は、加硫剤(E)をさらに含有してもよい。
 加硫剤(E)としては、ゴム組成物に用いる加硫剤として通常当業界で用いられるものであれば特に限定されないが、例えば、加硫剤として一般的に使用される種々のタイプの硫黄、また例えば粉末硫黄、沈降硫黄及び不溶性硫黄が挙げられる。加硫剤(E)の市販品としては、例えば細井化学工業社製の商品名「HK200-1」が挙げられる。これら加硫剤(E)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物における加硫剤(E)の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~5質量部であり、より好ましくは0.5~3質量部である。加硫剤(E)の含有量が0.1質量部以上であることにより、十分に加硫が進行する。また、加硫剤(E)の含有量が5質量部以下であることにより、混練り中にゴムやけを起こしてしまうことを抑制できる傾向にある。
〔加硫促進剤(F)〕
 本実施形態のゴム組成物は、加硫剤(E)に加えて加硫促進剤(F)をさらに含有してもよい。これにより、ゴム組成物は加硫する際に充分に速い加硫速度を得ることができる。加硫促進剤(F)としては、特に限定されないが、例えば、メルカプトベンゾチアゾ-ル、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾ-ル系化合物;N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N’-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド等のスルフェンアミド系化合物;ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド等のグアニジン系化合物;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド等のチウラム系化合物;N,N'-ジフェニルチオ尿素、トリメチルチオ尿素、N,N’-ジエチルチオ尿素等のチオウレア系化合物等が挙げられる。このなかでも、加硫反応の速度を容易に調整できることから、チアゾ-ル系化合物及び/又はスルフェンアミド系化合物が好ましく、スルフェンアミド系化合物がより好ましい。
 加硫促進剤(F)の市販品としては、例えば大内新興化学工業社製の商品名「ノクセラーCZ」、「ノクセラーD」が挙げられる。
 加硫促進剤(F)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態のゴム組成物における加硫促進剤(F)の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~10質量部である。
〔その他の成分〕
 本実施形態のゴム組成物は、上記成分の他に、必要に応じて、ゴム工業界で通常使用される配合剤を更に含有してもよい。このような配合剤としては、特に限定されないが、例えば、老化防止剤、加工助剤(例えば非亜鉛せっけん&飽和脂肪酸エステル混合物、加硫助剤(例えば、ステアリン酸、酸化亜鉛等)、滑剤(ワックスともいう。例えば大内新興化学工業社製の商品名「サンノック」)、可塑性樹脂、オイル等が挙げられる。これらの配合剤は、市販品を好適に使用することができる。
 老化防止剤の種類としては、特に限定されないが、例えば、ナフチルアミン系、p-フェニレンジアミン系、ヒドロキノン誘導体、ビス,トリス,ポリフェノール系、ジフェニルアミン系、キノリン系、モノフェノール系、チオビスフェノール系、ヒンダードフェノール系等を挙げることができ、更なる老化防止効果の点で、p-フェニレンジアミン系、ジフェニルアミン系のアミン系老化防止剤が好ましい。ジフェニルアミン系老化防止剤としては、特に限定されないが、4,4′-ビス(α-メチルベンジル)ジフェニルアミン、4,4′-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、ジ(4-オクチルフェニル)アミン等が挙げられ、これらの中で、更に高い老化防止効果の点で、4,4′-ビス(α-メチルベンジル)ジフェニルアミンがより好ましい。また、p-フェニレンジアミン系老化防止剤としては、特に限定されないが、N,N′-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N′-フェニル-p-フェニレンジアミン、N-フェニル-N′-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン、N,N′-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N′-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N′-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン等が挙げられ、これらの中で、更に高い老化防止効果及びコスト面から、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン及び2,2,4-トリメチル-1,2-ジヒドロキノリン重合体がより好ましく、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミンがさらに好ましくい。また、老化防止剤の市販品としては、例えば大内新興化学工業社製の商品名「ノクラック6C」、「ノクラック224」、川口化学工業社製の商品名「アンテージ6C」が挙げられる。本実施形態のゴム組成物における老化防止剤の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~5.0質量部である。
 上記オイルの種類としては、特に限定されないが、石油やコールタール由来の鉱物油系オイル、脂肪油や松樹由来の植物油系オイル、合成樹脂系オイル等が挙げられる。オイルの市販品としては、例えばJXエネルギー社製の商品名「エラミック30」が挙げられる。
〔ゴム組成物の製造方法〕
 次に、本実施形態のゴム組成物の製造方法について述べる。本実施形態のゴム組成物は、少なくとも、グアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)、並びに無機充填材(C)を混合する工程を有する。混合する工程は、当業界において一般的な方法を利用することが可能であり、例えば、ゴム成分(B)の可塑性を調整する素練り工程(以下、「素練り工程」ともいう。)、無機充填剤(C)等を混合するノンプロ練り工程(以下、「ノンプロ練り工程」ともいう。)、加硫用配合剤を混合するプロ練り工程(以下、「プロ練り工程」ともいう。)の3つの工程を含み、それらの工程で、天然ゴム及び/又は合成ゴム(B)に、他の配合剤(グアニジン脂肪酸塩(A)、無機充填材(C)、加硫剤(E)、加硫促進剤(F)、その他の成分等)を適切な工程で添加し混合することができる。なお、合成ゴム等のゴム成分(B)の重合度の調整が不要な場合には、素練り工程は省略できる。素練り工程、ノンプロ練り工程、プロ練り工程は、その順に行われることが好ましいが、必要に応じてこれらの工程を入れ替えて行ってもよい。
 グアニジン脂肪酸塩(A)は素練り工程又はノンプロ練り工程、プロ練り工程のいずれの添加でもよいが、無機充填材(C)を添加混合するノンプロ練りでの添加が好ましい。添加する方法としては、特に限定されないが、例えば、グアニジン脂肪酸塩(A)の粉体をそのまま添加する方法、グアニジン脂肪酸塩(A)を分散媒に分散させて懸濁液として添加する方法、グアニジン脂肪酸塩(A)を溶媒に溶解させて溶液又は乳濁液として添加する方法等が挙げられる。
〔タイヤ〕
 本実施形態のタイヤは、本実施形態のゴム組成物を含む、特に好ましくは本実施形態のゴム組成物をトレッドに含む。本実施形態のゴム組成物をトレッドに含むタイヤは、低燃費性に優れる。尚、本実施形態のタイヤは、本実施形態のゴム組成物をタイヤ部材の何れかに含む以外特に制限はなく、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
 以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。
(合成例1)グアニジンラウリン酸塩の合成
 1Lナス型フラスコに、グアニジン炭酸塩52.09g(289.1mmol)、エタノール400mL、ラウリン酸115.1g(578.3mmol)を加え、磁気撹拌子を用いて室温で撹拌した。2時間撹拌したのち、エタノールを減圧留去した。得られた固体を40℃でアセトンに溶解したのち、室温まで冷却し、これを濾取、洗浄後、50℃で5時間真空乾燥して、白色固体を143.5g(553.2mmol)得た。得られた固体をH-NMRで分析し、得られた固体がグアニジンラウリン酸塩であることを確認した(H-NMR(DMSO-d6,500MHz,δ;ppm)=0.9(t;3H)、1.1-1.5(br)、1.9(t;2H)、7.0-8.6(br))。モル収率は96%であった。
(合成例2)グアニジンステアリン酸塩の合成
 1Lナス型フラスコに、グアニジン炭酸塩39.33g(218.3mmol)、エタノール400mL、ステアリン酸124.2g(436.6mmol)を加え、磁気撹拌子を用いて50℃で撹拌した。2時間撹拌したのち、エタノールを減圧留去した。得られた固体を40℃でアセトンに溶解したのち、室温まで冷却し、これを濾取、洗浄後、50℃で5時間真空乾燥して、白色固体を143.1g(416.5mmol)得た。得られた固体をH-NMRで分析し、グアニジンステアリン酸塩であることを確認した(H-NMR(CDCl,500MHz,δ;ppm)=0.9(t;3H)、1.2-1.4(br)、2.2-2.3(br)、7.3-7.7(br))。また、得られた固体をガスクロマトグラフィー「GC6890」(Agilent社製商品名)により測定した結果が、標品であるステアリン酸とリテンションタイム(18.2分)が一致したことから、得られた固体がグアニジンステアリン酸塩であることを確認した。モル収率は95%であった。
(合成例3)グアニジンパーム油脂肪酸塩の合成
 500mLナス型フラスコに、グアニジン炭酸塩5.51g(30.6mmol)、エタノール40mL、パーム油の脂肪酸(パルミチン酸52%、オレイン酸31%を含む)16.38g(61.2mmol)を加え磁気撹拌子を用いて50℃で撹拌した。2時間撹拌したのち、エタノールを減圧留去した。得られた固体を、100℃で5時間真空乾燥して、褐色固体を20.0g(74.7mmol)得た。得られた固体を炭素・水素・窒素同時定量装置「CHNコーダーMT-6」(ヤナコテクニカルサイエンス社製商品名)を用いて元素分析したところ、グアニジンパーム油脂肪酸塩の計算値C,65.41;H,11.93;N,12.87に対し、実測値C,64.55;H,11.92;N,12.66であったため、得られた固体がグアニジンパーム油脂肪酸塩であることを確認した。モル収率は約99%であった。
(合成例4)グアニジンヤシ油脂肪酸塩の合成
 500mLナス型フラスコに、グアニジン炭酸塩33.76g(187.3mmol)、2-イソプロパノール105mL、ヤシ油の脂肪酸(ラウリン酸49%、ミリスチン酸17%を含む)77.94g(374.6mmol)を加え磁気撹拌子を用いて50℃で撹拌した。2時間撹拌したのち、2-イソプロパノールを減圧留去した。得られた固体を、100℃で5時間真空乾燥して、褐色固体を100g(374.6mmol)得た。得られた固体を炭素・水素・窒素同時定量装置「CHNコーダーMT-6」(ヤナコテクニカルサイエンス社製商品名)を用いて元素分析したところ、グアニジンヤシ油脂肪酸塩の計算値C,60.90;H,11.38;N,15.74に対し、実測値C,59.29;H,11.46;N,15.17であったため、得られた固体がグアニジンヤシ油脂肪酸塩であることを確認した。モル収率は約99%であった。
 以下の実施例1、2、比較例1~4、参考例1で用いた各成分の詳細を下に示す。
ゴム成分:137.5質量部、合成ゴム、旭化成社製、商品名「タフデンE581」(37.5%油展)
老化防止剤:2質量部、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
     :1質量部、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、大内新興化学工業社製、商品名「ノクラック224」
カーボンブラック:5質量部、SAF、東海カーボン社製、商品名「シースト9」
オイル:5質量部、T-DAEオイル、H&R社製
シランカップリング剤:6質量部、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、エボニック社製、商品名「Si69」
シリカ:75質量部、エボニック社製、商品名「Ultrasil 7000GR」
グアニジンラウリン酸塩:1.0質量部、合成例1
グアニジンステアリン酸塩:1.0質量部、合成例2
ジフェニルグアニジン:1.0質量部、東京化成工業社製
アミノグアニジン炭酸塩:0.5質量部、東京化成工業社製
脂肪酸亜鉛:2.0質量部、不飽和脂肪酸の亜鉛せっけん(商品名「ストラクトール A50P」、シル+ザイラッハ社製
滑剤:2質量部、精選特殊ワックス、大内新興化学工業社製、商品名「サンノック」
  :2質量部、非亜鉛せっけん&飽和脂肪酸エステル混合物、シル+ザイラッハ社製、商品名「Struktol HT207」
加硫助剤:2質量部、酸化亜鉛、2種、ハクスイテック社製
    :1質量部、ステアリン酸、日本精化社製
加硫剤:1.6質量部、硫黄、細井化学工業社製
加硫促進剤:2.5質量部、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
     :1質量部、1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
〔実施例1〕
 以下の作成手順にて未加硫ゴム組成物及び加硫ゴム組成物を作製した。
第一混練:バンバリーミキサー(東洋精機社製600mLラボプラストミル)を用いて、ゴム成分を投入し回転数100rpmで混練を開始した。30秒後に加硫助剤及び老化防止剤、カーボンブラック及び滑剤を添加した。その30秒後にシランカップリング剤をまぶしたシリカ半量を投入し、その60秒後にオイルをまぶしたシリカの残る半量、滑剤、グアニジンラウリン酸塩1.0質量部(合成例1)を添加した。その後、ゴム温度が140℃に達した時点でシリンダーを1分間開放した。再度密閉した後、ゴム温度が145℃に達するまで混練した。
第二混練:第一混練で得られた混練物を室温まで冷却した後、バンバリーミキサー(東洋精機社製600mLラボプラストミル)に投入し、回転数100rpmで4分間混練を行い、未加硫ゴム組成物を得た。
第三混練:6インチ二本ロール混練機を用いて、ロール温度50℃、回転数25rpmの条件で、第二混練で得られた混練物に加硫剤及び加硫促進剤を添加し、混練を実施した。
プレス加硫:油圧プレス機(王子機械社製)を用いて160℃、10MPaで未加硫ゴム組成物を14分間加硫することにより加硫ゴム組成物を得た。
〔実施例2、比較例1~4、参考例1〕
 下記表1の組成に従って、グアニジンラウリン酸塩1.0質量部の化合物種及びその量を変更した以外は、実施例1と同様に操作して、各種の未加硫ゴム組成物及び加硫ゴム組成物を得た。
 以下の実施例3、4、比較例5、6、参考例2で用いた各成分の詳細を下に示す。
ゴム成分:100質量部、天然ゴム、商品名「RSS#1」、加藤産商社製
シリカ:30質量部、エボニック社製、商品名「Ultrasil 7000GR」
シランカップリング剤:2.4質量部、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、エボニック社製、商品名「Si69」
グアニジンラウリン酸塩:1質量部、合成例1
グアニジンステアリン酸塩:1質量部、合成例2
ジフェニルグアニジン:1質量部、東京化成工業社製
アミノグアニジン炭酸塩:1質量部、東京化成工業社製
老化防止剤:2質量部、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、川口化学工業社製、商品名「アンテージ6C」
加硫助剤:3質量部、酸化亜鉛2種、日本化学工業社製
    :2質量部、ステアリン酸(試薬特級)、富士フィルム和光純薬社製
カーボンブラック:30質量部、HAF、旭カーボン社製、商品名「旭#70」
加硫剤:1.75質量部、硫黄、細井化学工業社製、商品名「HK200-1」
加硫促進剤:1質量部、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
     :0.5質量部、1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
〔実施例3〕
 以下の作成手順にて未加硫ゴム組成物及び加硫ゴム組成物を作製した。
素練り:バンバリーミキサー(東洋精機製250mLラボプラストミル)を用いて、ゴム成分を投入し初期回転数を20rpmとして、1分ごとに20rpmずつ60rpmまで上昇させ、5分間混練した。
第一混練:バンバリーミキサー(東洋精機社製250mLラボプラストミル)を用いて、ゴム成分を投入し回転数100rpmで混練を開始した。30秒後に半量のシリカ、及びシランカップリング剤、グアニジンラウリン酸塩1質量部(合成例1)を添加した。30秒後に残る半量のシリカ、加硫助剤及び老化防止剤を投入した。カーボンブラックを添加後、ゴム温度が140℃に達した時点でシリンダーを1分間開放した。再度密閉した後、ゴム温度が145℃に達するまで混練した。
第二混練:6インチ二本ロール混練機(池田機械工業社製6インチ高温ロール)を用いて、ロール温度30℃、回転数25rpmの条件で、第一混練で得られた混練物に加硫剤及び加硫促進剤を添加し、混練を実施した。
プレス加硫:油圧プレス機(大竹機械工業(株)製電熱プレス)を用いて150℃で未加硫ゴム組成物を加硫試験のt90の1.5倍の時間で加硫することにより加硫ゴム組成物を得た。
〔実施例4、比較例5、6、参考例2〕
 下記表2の組成に従って、グアニジンラウリン酸塩の化合物種を変更した以外は、実施例3と同様に操作して、各種の未加硫ゴム組成物及び加硫ゴム組成物を得た。
 以下の実施例5、6、比較例7、8、参考例3で用いた各成分の詳細を示す。
ゴム成分:100質量部、合成ゴム、旭化成社製、商品名「タフデン2000R」(油展なし)
カーボンブラック:20質量部、HAF、旭カーボン社製、商品名「旭#70」
グアニジンラウリン酸塩:1質量部、合成例1
グアニジンステアリン酸塩:1質量部、合成例2
ジフェニルグアニジン:1質量部、東京化成工業社製
アミノグアニジン炭酸塩:1質量部、東京化成工業社製
シランカップリング剤:4質量部、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、エボニック社製、商品名「Si69」
オイル:25質量部、T-DAEオイル、JXエネルギー(株)製、商品名「エラミック30」
シリカ:50質量部、エボニック社製、商品名「Ultrasil 7000GR」
老化防止剤:2質量部、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、川口化学工業社製、商品名「アンテージ6C」
加硫助剤:2質量部、酸化亜鉛2種、日本化学工業社製
    :2質量部、ステアリン酸(試薬特級)、富士フィルム和光純薬社製
加硫剤:1.6質量部、硫黄、細井化学工業製、商品名「HK200-1」
加硫促進剤:2.5質量部、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
     :1質量部、1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
〔実施例5〕
 以下の作成手順にて未加硫ゴム組成物及び加硫ゴム組成物を作製した。
第一混練:バンバリーミキサー(東洋精機製250mLラボプラストミル)を用いて、ゴム成分を投入し回転数100rpmで混練を開始した。30秒後にカーボンブラック及びグアニジンラウリン酸塩1質量部(合成例1)を投入し、その30秒後にシランカップリング剤及びオイルをまぶしたシリカ半量を投入した。60秒後にオイルをまぶした残るシリカ半量を投入し、ゴム温度が140℃に達した時点でシリンダーを1分間開放した。再度密閉した後、ゴム温度が145℃に達するまで混練した。
第二混練:第一混練で得られた混練物を室温まで冷却した後、バンバリーミキサー(東洋精機製250mLラボプラストミル)に投入し、回転数100rpmで混練を開始した。30秒後に加硫助剤及び老化防止剤を半量投入し、その15秒後に残りを投入した。ゴム温度が140℃に達するまで混練した。
第三混練:6インチ二本ロール混練機(池田機械工業社製6インチ高温ロール)を用いて、ロール温度50℃、回転数25rpmの条件で、第二混練で得られた混練物に加硫剤及び加硫促進剤を添加し、混練を実施した。
プレス加硫:油圧プレス機(大竹機械工業社製電熱プレス)を用いて160℃、10MPaで未加硫ゴム組成物を加硫試験のt90の1.1倍の時間で加硫することにより加硫ゴム組成物を得た。
〔実施例6、比較例7、8、参考例3〕
 下記表3の組成に従って、グアニジンラウリン酸塩の化合物種を変更した以外は、実施例5と同様に操作して、各種の未加硫ゴム組成物及び加硫ゴム組成物を得た。
 以下の実施例7、比較例9、10、参考例4で用いた各成分の詳細を下に示す。
ゴム成分:100質量部、合成ゴム、旭化成株式会社製、商品名「タフデン2000R」(油展なし)
カーボンブラック:5質量部、ISAF-HS、東海カーボン社製、商品名「シースト7HM」
グアニジンパーム油脂肪酸塩:1質量部、合成例3
ジフェニルグアニジン:1質量部、東京化成工業社製
アミノグアニジン炭酸塩:0.5質量部、東京化成工業社製
シランカップリング剤:4質量部、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、エボニック社製、商品名「Si75」
オイル:25質量部、T-DAEオイル、JXエネルギー社製、商品名「エラミック30」
シリカ:50質量部、エボニック社製、商品名「Ultrasil 7000GR」
老化防止剤:2質量部、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
加硫助剤:2質量部、酸化亜鉛2種、日本化学工業社製
    :2質量部、ステアリン酸(試薬特級)、富士フィルム和光純薬社製
加硫剤:1.6質量部、硫黄、東京化成工業社製
加硫促進剤:2.5質量部、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
     :1質量部、1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
〔実施例7〕
 以下の作成手順にて未加硫ゴム組成物及び加硫ゴム組成物を作製した。
第一混練:バンバリーミキサー(東洋精機製600mLラボプラストミル)を用いて、ゴム成分を投入し回転数100rpmで混練を開始した。30秒後にカーボンブラック及びグアニジンパーム油脂肪酸塩1質量部(合成例3)を投入し、その60秒後にシランカップリング剤及び半量のオイルをまぶした半量のシリカを投入した。その後、残る半量のオイルをまぶした残る半量のシリカを投入し、ゴム温度が140℃に達した時点でシリンダーを1分間開放した。再度密閉した後、ゴム温度が160℃に達するまで混練した。
第二混練:第一混練で得られた混練物を室温まで冷却した後、バンバリーミキサー(東洋精機社製600mLラボプラストミル)に投入し、回転数100rpmで混練を開始した。30秒後に加硫助剤及び老化防止剤を半量投入し、その15秒後に残りを投入した。混練時間が3分に達するまで混練した。
第三混練:6インチ二本ロール混練機(池田機械工業(株)製6インチ高温ロール)を用いて、ロール温度30℃、回転数25rpmの条件で、第二混練で得られた混練物に加硫剤及び加硫促進剤を添加し、混練を実施した。
プレス加硫:油圧プレス機(大竹機械工業(株)製電熱プレス)を用いて160℃、10MPaで未加硫ゴム組成物を加硫試験のt90の1.1倍の時間で加硫することにより加硫ゴム組成物を得た。
〔比較例9、10、参考例4〕
 表4の組成に従ってグアニジンパーム油脂肪酸塩の化合物種を変更した以外は、実施例5と同様に操作して、各種の未加硫ゴム組成物及び加硫ゴム組成物を得た。
 以下の実施例8、9、比較例11、12、参考例5で用いた各成分の詳細を下に示す。
ゴム成分:100質量部、合成ゴム、旭化成株式会社製、商品名「タフデン2000R」(油展なし)
カーボンブラック:5質量部、ISAF-HS、東海カーボン社製、商品名「シースト7HM」
グアニジンヤシ油脂肪酸塩:1質量部、合成例4
グアニジンラウリン酸塩:1質量部、合成例1
ジフェニルグアニジン:1質量部、東京化成工業社製
アミノグアニジン炭酸塩:1質量部、東京化成工業社製
シランカップリング剤:4.8質量部、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、エボニック社製、商品名「Si75」
オイル:25質量部、T-DAEオイル、JXエネルギー社製、商品名「エラミック30」
シリカ:60質量部、エボニック社製、商品名「Ultrasil VN3」
老化防止剤:2質量部、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
加硫助剤:2質量部、酸化亜鉛2種、日本化学工業社製
    :2質量部、ステアリン酸(試薬特級)、富士フィルム和光純薬社製
加硫剤:1.6質量部、硫黄、東京化成工業社製
加硫促進剤:2.5質量部、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
     :1質量部、1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
〔実施例8〕
 以下の作成手順にて未加硫ゴム組成物及び加硫ゴム組成物を作製した。
第一混練:バンバリーミキサー(東洋精機製600mLラボプラストミル)を用いて、ゴム成分を投入し回転数100rpmで混練を開始した。30秒後にカーボンブラック及びグアニジンヤシ油脂肪酸塩1質量部(合成例4)を投入し、その60秒後にシランカップリング剤及び半量のオイルをまぶした半量のシリカを投入した。その後、残る半量のオイルをまぶした残る半量のシリカを投入し、ゴム温度が140℃に達した時点でシリンダーを1分間開放した。再度密閉した後、ゴム温度が160℃に達するまで混練した。
第二混練:第一混練で得られた混練物を室温まで冷却した後、バンバリーミキサー(東洋精機社製600mLラボプラストミル)に投入し、回転数100rpmで混練を開始した。30秒後に加硫助剤及び老化防止剤を半量投入し、その15秒後に残りを投入した。混練時間が3分に達するまで混練した。
第三混練:6インチ二本ロール混練機(池田機械工業(株)製6インチ高温ロール)を用いて、ロール温度30℃、回転数25rpmの条件で、第二混練で得られた混練物に加硫剤及び加硫促進剤を添加し、混練を実施した。
プレス加硫:油圧プレス機(大竹機械工業(株)製電熱プレス)を用いて160℃、10MPaで未加硫ゴム組成物を加硫試験のt90の1.1倍の時間で加硫することにより加硫ゴム組成物を得た。
〔実施例9、比較例11、12、参考例5〕
 表5の組成に従ってグアニジンヤシ油脂肪酸塩の化合物種を変更した以外は、実施例8と同様に操作して、各種の未加硫ゴム組成物及び加硫ゴム組成物を得た。
 得られた実施例1~9、比較例1~12、参考例1~5の未加硫ゴム組成物及び加硫ゴム組成物に対して、下記の方法で加工性、低発熱性、及び補強性を評価した。結果を下記表1~5に示す。
(1)加工性
 上記未加硫ゴム組成物に対し、表1における例では、ムーニービスコメータ(東洋精機製作所社製、商品名「AM-4」)を用い、JIS K 6300-1:2013「未加硫ゴム-物理特性-第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準拠して、L形ローターを用い、125℃の条件下で、未加硫ゴム組成物のムーニー粘度ML1+4[M]を測定した。得られた未加硫ゴム組成物の加工性を、表1の参考例1のムーニー粘度ML1+4[M]の値を100として、その表中の他の実施例と比較例におけるムーニー粘度ML1+4[M]の値を相対値として算出した。ムーニー粘度ML1+4[M]は値が低い程、加工性が良好であることを示す。
 表2~5における例では、ムーニービスコメータ(東洋精機製作所社製、商品名「AM-4」)を用い、JIS K 6300-1:2013「未加硫ゴム-物理特性-第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」に準拠して、L型ローターを用い、100℃の条件下で未加硫ゴム組成物のムーニー粘度ML1+4[M]、125℃の条件下でスコーチタイムT5[分]を測定した。得られた未加硫ゴム組成物の加工性を、各表の各参考例のムーニー粘度ML1+4[M]、スコーチタイムT5[分]の値をそれぞれ100として、その表中の他の実施例と比較例におけるムーニー粘度ML1+4[M]の値及びスコーチタイムT5[分]の値をそれぞれ相対値として算出した。加工性ムーニー粘度ML1+4[M]のは値が低い程、スコーチタイムT5[分]は値が大きい程、加工性が良好であることを示す。
(2)低発熱性
 上記加硫ゴム組成物に対し、動的粘弾性測定装置(セイコ-インスツル(株)製、商品名「DMS6100」)を用い、温度60℃、歪み0.5%、周波数10Hzで損失正接(tanδ)を測定した。得られた加硫ゴム組成物の低発熱性は、各表において、各参考例の損失正接(tanδ)の値を100として、その表中の他の実施例と比較例における損失正接(tanδ)の値を相対値として算出した。低発熱性の値が小さい程、低発熱性が良好であることを示す。
(3)補強性
 上記加硫ゴム組成物に対し、JIS K6251:2010に準拠して引張り試験を行い、引張り破断強度を測定した。得られた加硫ゴム組成物の補強性を、各表において、各参考例の引張り破断強度の値「M300」の値を100として、その表中の他の実施例と比較例における引張り破断強度の値「M300」の値を相対値として算出した。補強性の値が大きい程、補強性が良好であることを示す。
Figure JPOXMLDOC01-appb-T000001
表中、配合処方の各成分の数値は質量部を示す。
Figure JPOXMLDOC01-appb-T000002
表中、配合処方の各成分の数値は質量部を示す。
Figure JPOXMLDOC01-appb-T000003
表中、配合処方の各成分の数値は質量部を示す。
Figure JPOXMLDOC01-appb-T000004
表中、配合処方の各成分の数値は質量部を示す。
Figure JPOXMLDOC01-appb-T000005
 
表中、配合処方の各成分の数値は質量部を示す。
 表1~5に示される結果から、実施例におけるグアニジン脂肪酸塩(A)を含有するゴム組成物は、グアニジン脂肪酸塩(A)を含有していない比較例と同等以上に生産性に関わる優れた加工性を維持しつつ、低発熱性及び補強性に優れること、すなわち加工性、低発熱性及び補強性のバランスに優れていることが少なくとも確認された。
 本出願は、2018年8月24日に日本国特許庁へ出願された日本特許出願(特願2018-157531号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明に係るゴム組成物は、トレッドをはじめとする種々のタイヤ部材の材料等として利用することができる。
 

Claims (9)

  1.  グアニジンと脂肪酸との塩であるグアニジン脂肪酸塩(A)、天然ゴム及び/又は合成ゴム(B)、並びに無機充填材(C)を含有する、ゴム組成物。
  2.  グアニジン脂肪酸塩(A)における脂肪酸の炭素数が、3以上である、請求項1に記載のゴム組成物。
  3.  グアニジン脂肪酸塩(A)における脂肪酸が、炭素数6~22の脂肪酸を含む、請求項1に記載のゴム組成物。
  4.  グアニジン脂肪酸塩(A)の含有量が、天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.2~5.0質量部である、請求項1~3のいずれか一項に記載のゴム組成物。
  5.  グアニジン脂肪酸塩(A)の含有量が、天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.5~3.0質量部である、請求項4に記載のゴム組成物。
  6.  無機充填材(C)が、シリカを含む、請求項1~5のいずれか一項に記載のゴム組成物。
  7.  シランカップリング剤(D)をさらに含有する、請求項1~6のいずれか一項に記載のゴム組成物。
  8.  加硫剤(E)をさらに含有する、請求項1~7のいずれか一項に記載のゴム組成物。
  9.  請求項1~8のいずれか一項に記載のゴム組成物を含む、タイヤ。
     
PCT/JP2019/027528 2018-08-24 2019-07-11 ゴム組成物及びタイヤ WO2020039788A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980054297.0A CN112585207B (zh) 2018-08-24 2019-07-11 橡胶组合物及轮胎
US17/270,625 US11905391B2 (en) 2018-08-24 2019-07-11 Rubber composition and tire
EP19852554.5A EP3842486A4 (en) 2018-08-24 2019-07-11 RUBBER COMPOSITION AND TIRES
JP2019567386A JP6702517B1 (ja) 2018-08-24 2019-07-11 ゴム組成物及びタイヤ
KR1020207035079A KR20210049715A (ko) 2018-08-24 2019-07-11 고무 조성물 및 타이어

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157531 2018-08-24
JP2018157531 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039788A1 true WO2020039788A1 (ja) 2020-02-27

Family

ID=69593134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027528 WO2020039788A1 (ja) 2018-08-24 2019-07-11 ゴム組成物及びタイヤ

Country Status (7)

Country Link
US (1) US11905391B2 (ja)
EP (1) EP3842486A4 (ja)
JP (1) JP6702517B1 (ja)
KR (1) KR20210049715A (ja)
CN (1) CN112585207B (ja)
TW (1) TWI808216B (ja)
WO (1) WO2020039788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045163A1 (ja) * 2020-08-26 2022-03-03 三菱瓦斯化学株式会社 グアニジン脂肪酸塩の製造方法及びその組成物
JP7195477B1 (ja) 2022-10-28 2022-12-23 Toyo Tire株式会社 タイヤ用ゴム組成物および空気入りタイヤ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192490A (en) * 1981-05-09 1982-11-26 Nitrochemie Gmbh Hydrogenation of heavy oil
JPH10507231A (ja) * 1994-10-14 1998-07-14 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 腐食抑制剤としての不飽和脂肪酸のグアニジン塩の使用
WO2008123306A1 (ja) 2007-03-27 2008-10-16 Bridgestone Corporation タイヤトレッド用ゴム組成物の製造方法
JP2013144797A (ja) * 2011-12-20 2013-07-25 Goodyear Tire & Rubber Co:The ゴムトレッドを有するトラックタイヤ
WO2015190519A1 (ja) 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 タイヤ用変性ゴム、それを用いたタイヤ用ゴム組成物及びタイヤ
WO2015190504A1 (ja) 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 アルキリデンアミノグアニジン及びその塩、変性用組成物、タイヤ用変性ゴム、タイヤ用ゴム組成物並びにタイヤ
WO2016039276A1 (ja) 2014-09-12 2016-03-17 三菱瓦斯化学株式会社 変性ゴム、ゴム組成物、及びタイヤ
JP2016525168A (ja) * 2013-07-18 2016-08-22 株式会社ブリヂストン ゴムタイヤ配合物の製造方法
JP2017203071A (ja) * 2016-05-10 2017-11-16 横浜ゴム株式会社 ゴム組成物、加硫ゴム製品、及び空気入りタイヤ
JP2018157531A (ja) 2017-03-15 2018-10-04 致伸科技股▲ふん▼有限公司 マルチレンズ光学装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172712A (ja) * 2016-08-23 2019-10-10 三菱瓦斯化学株式会社 ゴム組成物及びタイヤ
JP6772681B2 (ja) * 2016-09-02 2020-10-21 三菱瓦斯化学株式会社 ゴム組成物
JP6323801B1 (ja) * 2016-09-02 2018-05-16 三菱瓦斯化学株式会社 加硫ゴム組成物及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192490A (en) * 1981-05-09 1982-11-26 Nitrochemie Gmbh Hydrogenation of heavy oil
JPH10507231A (ja) * 1994-10-14 1998-07-14 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 腐食抑制剤としての不飽和脂肪酸のグアニジン塩の使用
WO2008123306A1 (ja) 2007-03-27 2008-10-16 Bridgestone Corporation タイヤトレッド用ゴム組成物の製造方法
JP2013144797A (ja) * 2011-12-20 2013-07-25 Goodyear Tire & Rubber Co:The ゴムトレッドを有するトラックタイヤ
JP2016525168A (ja) * 2013-07-18 2016-08-22 株式会社ブリヂストン ゴムタイヤ配合物の製造方法
WO2015190519A1 (ja) 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 タイヤ用変性ゴム、それを用いたタイヤ用ゴム組成物及びタイヤ
WO2015190504A1 (ja) 2014-06-10 2015-12-17 三菱瓦斯化学株式会社 アルキリデンアミノグアニジン及びその塩、変性用組成物、タイヤ用変性ゴム、タイヤ用ゴム組成物並びにタイヤ
WO2016039276A1 (ja) 2014-09-12 2016-03-17 三菱瓦斯化学株式会社 変性ゴム、ゴム組成物、及びタイヤ
JP2017203071A (ja) * 2016-05-10 2017-11-16 横浜ゴム株式会社 ゴム組成物、加硫ゴム製品、及び空気入りタイヤ
JP2018157531A (ja) 2017-03-15 2018-10-04 致伸科技股▲ふん▼有限公司 マルチレンズ光学装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rubber, unvulcanized-Physical property-Part 1: Determination of Mooney viscosity and pre-vulcanization characteristics with Mooney viscometer", JIS K 6300-1, 2013
MELVIN Z. POLIAKOFF1GILBERT B. L. SMITH: "GUANIDINE SOAPS", IND. ENG. CHEM., vol. 40, 1948, pages 335 - 337

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045163A1 (ja) * 2020-08-26 2022-03-03 三菱瓦斯化学株式会社 グアニジン脂肪酸塩の製造方法及びその組成物
JP7195477B1 (ja) 2022-10-28 2022-12-23 Toyo Tire株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP2024064340A (ja) * 2022-10-28 2024-05-14 Toyo Tire株式会社 タイヤ用ゴム組成物および空気入りタイヤ

Also Published As

Publication number Publication date
EP3842486A4 (en) 2021-07-21
KR20210049715A (ko) 2021-05-06
US20210179810A1 (en) 2021-06-17
US11905391B2 (en) 2024-02-20
JPWO2020039788A1 (ja) 2020-08-27
CN112585207A (zh) 2021-03-30
TWI808216B (zh) 2023-07-11
CN112585207B (zh) 2023-05-26
EP3842486A1 (en) 2021-06-30
JP6702517B1 (ja) 2020-06-03
TW202020033A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
KR102368120B1 (ko) 타이어용 변성 고무, 그것을 사용한 타이어용 고무 조성물 및 타이어
JP5876829B2 (ja) ゴム組成物の製造方法
JP5975369B2 (ja) ゴム変性用組成物及びその製造方法、タイヤ用変性ゴム、タイヤ用ゴム組成物並びにタイヤ
JP5418141B2 (ja) ゴム組成物
JP5904430B1 (ja) 変性ゴム及びその製造方法、ゴム組成物、並びにタイヤ
TW201714940A (zh) 橡膠組成物及輪胎
JP6702517B1 (ja) ゴム組成物及びタイヤ
WO2018037882A1 (ja) ゴム組成物及びタイヤ
JP5954504B1 (ja) 変性ゴム及びその製造方法、ゴム組成物、並びにタイヤ
TW201716486A (zh) 橡膠組成物及輪胎
JP2018035326A (ja) ゴム組成物
JP2016065186A (ja) ゴム組成物及びタイヤ
JP2019131653A (ja) 組成物及びタイヤ
JP2016065185A (ja) ゴム組成物及びタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567386

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019852554

Country of ref document: EP

Effective date: 20210324