[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020036362A1 - 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치 - Google Patents

채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020036362A1
WO2020036362A1 PCT/KR2019/009863 KR2019009863W WO2020036362A1 WO 2020036362 A1 WO2020036362 A1 WO 2020036362A1 KR 2019009863 W KR2019009863 W KR 2019009863W WO 2020036362 A1 WO2020036362 A1 WO 2020036362A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
information
terminal
aperiodic
Prior art date
Application number
PCT/KR2019/009863
Other languages
English (en)
French (fr)
Inventor
차현수
박종현
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/268,032 priority Critical patent/US11968138B2/en
Publication of WO2020036362A1 publication Critical patent/WO2020036362A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving a channel state information reference signal resource, and more particularly, to a method and apparatus for transmitting and receiving aperiodic channel state information reference signal (CSI-RS) resources.
  • CSI-RS channel state information reference signal
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system, is required.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability and low-latency communication
  • mMTC massive machine-type communications
  • eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity. (e.g., IoT).
  • the present invention provides a method and apparatus for transmitting and receiving channel state information reference signal resources.
  • period information and first offset information for periodic CSI-RS resources may be provided.
  • the period information may include a specific value.
  • the configuration information may include second offset information, the second offset information is applied to the aperiodic CSI-RS resource set, and the first offset information is applied to each of the at least one aperiodic CSI-RS resource. Can be applied.
  • the at least one aperiodic CSI-RS resource is aperiodic Zero Power (ZP) CSI-RS resource
  • the Physical Downlink Shared Channel (PDSCH) may not be received in the aperiodic ZP CSI-RS resource.
  • ZP Zero Power
  • the PDSCH may be scheduled over a plurality of slots.
  • the terminal may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for receiving an aperiodic Channel State Information-Reference Signal (CSI-RS) resource comprising: at least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • Receive periodic information and first offset information for a CSI-RS resource receive configuration information related to an aperiodic CSI-RS resource set including at least one aperiodic CSI-RS resource, and set the And receiving the at least one aperiodic CSI-RS resource based on the information and the first offset information, wherein the periodic information may not be used for the at least one aperiodic CSI-RS resource.
  • the period information may include a specific value.
  • the configuration information may include second offset information, the second offset information is applied to the aperiodic CSI-RS resource set, and the first offset information is applied to each of the at least one aperiodic CSI-RS resource. Can be applied.
  • the at least one aperiodic CSI-RS resource is aperiodic Zero Power (ZP) CSI-RS resource
  • the Physical Downlink Shared Channel (PDSCH) may not be received in the aperiodic ZP CSI-RS resource.
  • ZP Zero Power
  • the PDSCH may be scheduled over a plurality of slots.
  • the apparatus may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle.
  • a terminal for receiving an aperiodic CSI-RS (CSI-RS) resource comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • CSI-RS aperiodic CSI-RS
  • An aperiodic CSI-RS resource set that receives periodic information and offset information for periodic CSI-RS resources through at least one transceiver and includes at least one aperiodic CSI-RS resource through the at least one transceiver receiving the configuration information related to the resource set, and receiving the at least one aperiodic CSI-RS resource based on the configuration information and the offset information through the at least one transceiver. May not be used for the at least one aperiodic CSI-RS resource.
  • signaling overhead when transmitting the aperiodic CSI-RS, signaling overhead can be reduced by using a configuration related to the periodic CSI-RS.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a view for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • compositions Composition
  • transmission method of the SS / PBCH block 6 to 9 are views for explaining the composition (composition) and transmission method of the SS / PBCH block.
  • FIG. 10 is a diagram for explaining analog beamforming in an NR system.
  • 11 to 15 are diagrams for explaining beam management in an NR system.
  • 16 is a diagram for explaining an example of reporting channel state information.
  • FIG. 17 to 19 are diagrams for explaining a downlink control channel (PDCCH) in an NR system.
  • PDCCH downlink control channel
  • 20 to 22 show an example of a terminal, a base station and a network operation according to the present invention.
  • FIG. 23 is a diagram to describe an example of implementing an antenna structure in carrier aggregation.
  • CSI-IM channel state information-interference measurement
  • FIG. 25 illustrates an example in which a UE receives multiplexed CSI-RS (Channel State Information-Reference Signal) and a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • CSI-RS Channel State Information-Reference Signal
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • FIG. 26 illustrates an example of a reception operation of a terminal when CSI-RSs having different types or different configurations are multiplexed.
  • 27 to 29 are views for explaining an embodiment of transmitting and receiving aperiodic CSI-RS of the present invention.
  • FIGS. 30 to 32 are diagrams for explaining an embodiment in which CSI-RS and PDCCH / PDSCH (Physical Downlink Shared Channel) of the present invention are multiplexed and transmitted.
  • CSI-RS and PDCCH / PDSCH Physical Downlink Shared Channel
  • FIG. 33 is a diagram illustrating an embodiment of setting a bandwidth for CSI-RS resources of the present invention.
  • 34 is a block diagram illustrating components of a wireless device for implementing the present invention.
  • 35 to 37 are diagrams illustrating examples of an AI (artificial intelligence) system and apparatus for implementing embodiments of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the gNB and the UE know each other.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are used as uplink physical channels.
  • a demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Control Format Indicator) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink Means a set of time-frequency resources or a set of resource elements, and also includes PUCCH (Physical Uplink Control CHannel) / PUSCH (Physical Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry Uplink Control Information (UCI) / Uplink Data / Random Access signals, respectively.
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to hereinafter.
  • the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • OFDM symbols / subcarriers / RE to which PSS / SSS is assigned or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are each an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs
  • the antenna ports configured to transmit the CSI-RSs may be distinguished from each other by the positions of the REs occupied by the UE-RS according to the -RS ports, and the CSI-RSs occupy the CSI-RS ports according to the CSI-RS ports.
  • CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • Machine learning refers to the field of researching methodologies to define and solve various problems in the field of artificial intelligence. do.
  • Machine learning is defined as an algorithm that improves the performance of a task through a consistent experience with a task.
  • ANN Artificial Neural Network
  • the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process of updating model parameters, and an activation function generating an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer contains one or more neurons, and the artificial neural network may include synapses that connect neurons to neurons. In an artificial neural network, each neuron may output a function value of an active function for input signals, weights, and deflections input through a synapse.
  • the model parameter refers to a parameter determined through learning and includes weights of synaptic connections and deflection of neurons.
  • the hyperparameter means a parameter to be set before learning in the machine learning algorithm, and includes a learning rate, the number of iterations, the mini batch size, and an initialization function.
  • the purpose of learning artificial neural networks can be seen as determining model parameters that minimize the loss function.
  • the loss function can be used as an index for determining an optimal model parameter in the learning process of an artificial neural network.
  • Machine learning can be categorized into supervised learning, unsupervised learning, and reinforcement learning.
  • Supervised learning refers to a method of learning artificial neural networks with a given label for training data, and a label indicates a correct answer (or result value) that the artificial neural network must infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training artificial neural networks in a state where a label for training data is not given.
  • Reinforcement learning can mean a learning method that allows an agent defined in an environment to learn to choose an action or sequence of actions that maximizes cumulative reward in each state.
  • Machine learning which is implemented as a deep neural network (DNN) including a plurality of hidden layers among artificial neural networks, is called deep learning (Deep Learning), which is part of machine learning.
  • DNN deep neural network
  • Deep Learning Deep Learning
  • machine learning is used to mean deep learning.
  • a robot can mean a machine that automatically handles or operates a given task by its own ability.
  • a robot having a function of recognizing the environment, judging itself, and performing an operation may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, household, military, etc. according to the purpose or field of use.
  • the robot may include a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, and can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving means a technology that drives by itself, and an autonomous vehicle means a vehicle that runs without a user's manipulation or with minimal manipulation of a user.
  • the technology of maintaining a driving lane the technology of automatically adjusting speed such as adaptive cruise control, the technology of automatically driving along a predetermined route, the technology of automatically setting a route when a destination is set, etc. All of these may be included.
  • the vehicle includes a vehicle having only an internal combustion engine, a hybrid vehicle having both an internal combustion engine and an electric motor together, and an electric vehicle having only an electric motor, and may include not only automobiles but also trains and motorcycles.
  • the autonomous vehicle may be viewed as a robot having an autonomous driving function.
  • Extended reality collectively refers to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides real world objects and backgrounds only in CG images
  • AR technology provides virtual CG images on real objects images
  • MR technology mixes and combines virtual objects in the real world.
  • Graphic technology
  • MR technology is similar to AR technology in that it shows both real and virtual objects.
  • virtual objects are used as complementary objects to real objects, whereas in MR technology, virtual objects and real objects are used in an equivalent nature.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc. It can be called.
  • the three key requirements areas for 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be treated as an application simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC.
  • potential IoT devices are expected to reach 20 billion.
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry through ultra-reliable / low latency available links such as remote control of key infrastructure and self-driving vehicles.
  • the level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and higher resolutions (6K, 8K and higher) as well as virtual and augmented reality.
  • Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object.
  • wireless modules enable communication between vehicles, information exchange between the vehicle and the supporting infrastructure, and information exchange between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system guides alternative courses of action to help drivers drive safer, reducing the risk of an accident.
  • the next step will be a remotely controlled or self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real time HD video may be required in certain types of devices for surveillance.
  • Smart grids interconnect these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine, providing clinical care at a distance. This can help reduce barriers to distance and improve access to healthcare services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
  • Logistics and freight tracking are important examples of mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system.
  • the use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • the terminal When the terminal is powered on or enters a new cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the terminal may receive a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station to synchronize with the base station and obtain information such as a cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell. On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and a response message (RAR (Random Access) to the preamble through the PDCCH and the corresponding PDSCH. Response) message
  • PRACH physical random access channel
  • RAR Random Access
  • Response Response
  • a contention resolution procedure may be additionally performed (S206).
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S208) may be performed.
  • the UE may receive downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format may be applied differently according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) May be included.
  • the UE may transmit the above-described control information such as CQI / PMI / RI through PUSCH and / or PUCCH.
  • the NR system considers using a high frequency band, that is, a millimeter frequency band of 6 GHz or more to transmit data while maintaining a high data rate to a large number of users using a wide frequency band.
  • 3GPP uses this as the name NR, which is referred to as NR system in the present invention.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1 ms subframes (SFs).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplarily shows that when CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • 4 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which all of a DL control channel, DL or UL data, UL control channel, etc. may be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • a data region between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink Control Information (DCI), for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink Control Information
  • uplink control information for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, etc. based on the SSB.
  • the SSB is mixed with a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • the SSB is composed of PSS, SSS, and PBCH.
  • the SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS / PBCH, and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS consist of 1 OFDM symbol and 127 subcarriers, respectively, and PBCH consists of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol.
  • DMRS demodulation reference signal
  • the cell search refers to a process in which the UE acquires time / frequency synchronization of a cell and detects a cell ID (eg, physical layer cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal can be summarized as shown in Table 3 below.
  • Type of signals Operations 1 st step PSS * SS / PBCH block (SSB) symbol timing acquisition * Cell ID detection within a cell ID group (3 hypothesis) 2 nd Step SSS Cell ID group detection (336 hypothesis) 3 rd Step PBCH DMRS * SSB index and Half frame (HF) index (Slot and frame boundary detection) 4 th Step PBCH * Time information (80 ms, System Frame Number (SFN), SSB index, HF) * Remaining Minimum System Information (RMSI) Control resource set (CORESET) / Search space configuration 5 th Step PDCCH and PDSCH * Cell access information * RACH configuration
  • SSB SS / PBCH block
  • the 7 illustrates SSB transmission.
  • the SSB is periodically transmitted in accordance with the SSB period.
  • the SSB basic period assumed by the UE in initial cell search is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a network eg, a base station.
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier wave. One slot includes up to two SSBs.
  • the time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
  • the time position of the SSB candidate is indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame) (SSB index).
  • Beam sweeping means that the Transmission Reception Point (TRP) (eg, base station / cell) varies the beam (direction) of the radio signal over time (hereinafter, the beam and beam direction may be mixed).
  • TRP Transmission Reception Point
  • the SSB may be periodically transmitted using beam sweeping.
  • the SSB index is implicitly linked with the SSB beam.
  • the SSB beam may be changed in units of SSB (index) or in units of SSB (index) group. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam reflection of the SSB is repeated in a plurality of consecutive SSBs.
  • the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Accordingly, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
  • the number of SSB beams is one.
  • the terminal may align the beam with the base station based on the SSB. For example, the terminal identifies the best SSB after performing SSB detection. Thereafter, the terminal may transmit the RACH preamble to the base station using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB. SSB may be used to align the beam between the base station and the terminal even after the initial access.
  • FIG. 9 illustrates a method of notifying an SSB (SSB_tx) that is actually transmitted.
  • a maximum of L SSBs may be transmitted in the SSB burst set, and the number / locations of actually transmitting SSBs may vary for each base station / cell.
  • the number / location where the SSB is actually transmitted is used for rate-matching and measurement, and information about the SSB actually transmitted is indicated as follows.
  • rate-matching it may be indicated through terminal-specific RRC signaling or RMSI.
  • UE-specific RRC signaling includes a full (eg, length L) bitmap in both the below 6 GHz and above 6 GHz frequency ranges.
  • the RMSI includes a full bitmap below 6GHz and a compressed bitmap as shown above.
  • information about the SSB actually transmitted using the group-bit map (8 bits) + the intra-group bitmap (8 bits) may be indicated.
  • resources indicated by UE-specific RRC signaling or RMSI eg, RE
  • PDSCH / PUSCH and the like may be rate-matched in consideration of SSB resources.
  • the network When in the RRC connected mode, the network (eg, base station) may indicate the set of SSBs to be measured within the measurement interval.
  • the SSB set may be indicated for each frequency layer. If there is no indication about the SSB set, the default SSB set is used.
  • the default SSB set includes all SSBs within the measurement interval.
  • the SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling.
  • a default SSB set is used.
  • a massive multiple input multiple output (MIMO) environment in which a transmit / receive antenna is greatly increased may be considered. That is, as the large MIMO environment is considered, the number of transmit / receive antennas may increase to tens or hundreds or more.
  • the NR system supports communication in the above 6GHz band, that is, the millimeter frequency band.
  • the millimeter frequency band has a frequency characteristic that the signal attenuation with the distance is very rapid due to the use of a frequency band too high. Therefore, NR systems using bands of at least 6 GHz or more use a beamforming technique that collects and transmits energy in a specific direction instead of omnidirectionally to compensate for a sudden propagation loss characteristic.
  • beamforming weight vectors / precoding vectors are used to reduce the complexity of hardware implementation, increase performance using multiple antennas, flexibility in resource allocation, and ease of frequency-specific beam control. According to the application position, a hybrid beamforming technique requiring an analog beamforming technique and a digital beamforming technique is required.
  • FIG. 10 is a diagram illustrating an example of a block diagram of a transmitter and a receiver for hybrid beamforming.
  • a beamforming method of increasing energy in only a specific direction by transmitting the same signal using a phase difference appropriate to a large number of antennas in a BS or a UE is mainly considered.
  • Such beamforming methods include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that creates a phase difference using a time delay (ie, cyclic shift) in a modulated analog signal, digital beamforming, and an analog beam. Hybrid beamforming using both the forming and the like. If an RF unit (or transceiver unit (TXRU)) is provided to enable transmission power and phase adjustment for each antenna element, independent beamforming is possible for each frequency resource.
  • TXRU transceiver unit
  • the millimeter frequency band should be used by a large number of antennas to compensate for the rapid attenuation characteristics, and the digital beamforming is equivalent to the number of antennas, so that RF components (eg, digital-to-analog converters (DACs), mixers, power Since an amplifier (power amplifier, linear amplifier, etc.) is required, the implementation of digital beamforming in the millimeter frequency band increases the cost of communication equipment. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
  • DACs digital-to-analog converters
  • the analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the beam direction with an analog phase shifter.
  • Such an analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band so that frequency selective beamforming (BF) cannot be performed.
  • BF frequency selective beamforming
  • Hybrid BF is an intermediate form between digital BF and analog BF, with fewer B RF units than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
  • DL BM Downlink Beam Management
  • the BM process consists of a BS (or a transmission and reception point (TRP)) and / or a set of UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception.
  • TRP transmission and reception point
  • DL downlink
  • UL uplink
  • a process for acquiring and maintaining c the following process and terminology may be included.
  • Beam measurement an operation in which a BS or UE measures a characteristic of a received beamforming signal.
  • Beam determination an operation in which the BS or the UE selects its Tx beam / Rx beam.
  • Beam sweeping an operation of covering the spatial domain using transmit and / or receive beams for a predetermined time interval in a predetermined manner.
  • Beam report an operation in which a UE reports information of a beamformed signal based on beam measurement.
  • the BM process may be divided into (1) DL BM process using SSB or CSI-RS, and (2) UL BM process using SRS (sounding reference signal).
  • each BM process may include a Tx beam sweeping for determining the Tx beam and an Rx beam sweeping for determining the Rx beam.
  • the DL BM process may include (1) transmission of beamformed DL RSs (eg, CSI-RS or SSB) by the BS, and (2) beam reporting by the UE.
  • beamformed DL RSs eg, CSI-RS or SSB
  • the beam report may include a preferred DL RS ID (s) and a reference signal received power (RSRP) corresponding thereto.
  • the DL RS ID may be an SSBRI (SSB Resource Indicator) or a CSI-RS Resource Indicator (CRI).
  • FIG. 11 shows an example of beamforming using SSB and CSI-RS.
  • the SSB beam and the CSI-RS beam may be used for beam measurement.
  • the measurement metric is a resource / block RSRP.
  • SSB is used for coarse beam measurement and CSI-RS can be used for fine beam measurement.
  • SSB can be used for both Tx beam sweeping and Rx beam sweeping.
  • Rx beam sweeping using the SSB may be performed by attempting to receive the SSB while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts.
  • one SS burst includes one or more SSBs
  • one SS burst set includes one or more SSB bursts.
  • FIG. 12 is a flowchart illustrating an example of a DL BM process using an SSB.
  • the beam report setting using the SSB is performed when channel state information (CSI) / beam setting is performed in RRC_CONNECTED.
  • CSI channel state information
  • the UE receives the CSI-ResourceConfig IE including the CSI-SSB-ResourceSetList for the SSB resources used for the BM from the BS (S1210).
  • the RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set.
  • the SSB resource set may be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ⁇ .
  • SSB index may be defined from 0 to 63.
  • the UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList (S1220).
  • the UE reports the best SSBRI and the corresponding RSRP to the BS (S1230). For example, when reportQuantity of the CSI-RS reportConfig IE is set to 'ssb-Index-RSRP', the UE reports the best SSBRI and the corresponding RSRP to the BS.
  • the UE When the CSI-RS resource is configured in the same OFDM symbol (s) as the SSB, and the 'QCL-TypeD' is applicable, the UE is similarly co-located in terms of the 'QCL-TypeD' with the CSI-RS and the SSB ( quasi co-located (QCL).
  • QCL-TypeD may mean that QCLs are interposed between antenna ports in terms of spatial Rx parameters.
  • CSI-RS is used for beam management when a repetition parameter is set for a specific CSI-RS resource set and TRS_info is not set. ii) If the repeating parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
  • TRS tracking reference signal
  • RRC parameter When repetition is set to 'ON', it is associated with the Rx beam sweeping process of the UE.
  • the repetition is set to 'ON', when the UE receives the NZP-CSI-RS-ResourceSet, the UE receives signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet with the same downlink spatial domain filter. Can be assumed to be transmitted. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
  • signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols.
  • the repetition is set to 'OFF' is related to the Tx beam sweeping process of the BS.
  • the UE does not assume that signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted to the same downlink spatial domain transport filter. That is, signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted through different Tx beams. 13 shows another example of a DL BM process using CSI-RS.
  • FIG. 13 (a) shows the Rx beam determination (or refinement) process of the UE
  • FIG. 13 (b) shows the Tx beam sweeping process of the BS.
  • 13A is a case where the repetition parameter is set to 'ON'
  • FIG. 13B is a case where the repetition parameter is set to 'OFF'.
  • FIG. 14 (a) is a flowchart illustrating an example of a reception beam determination process of a UE.
  • the UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1410).
  • the RRC parameter 'repetition' is set to 'ON'.
  • the UE repeats the signals on the resource (s) in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'ON' in different OFDM symbols via the same Tx beam (or DL spatial domain transport filter) of the BS It receives (S1420).
  • the UE determines its Rx beam (S1430).
  • the UE skips CSI reporting (S1440). That is, the UE may omit CSI reporting when the mall RRC parameter 'repetition' is set to 'ON'.
  • 14 (b) is a flowchart illustrating an example of a transmission beam determination process of a BS.
  • the UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1450).
  • the RRC parameter 'repetition' is set to 'OFF', and is related to the Tx beam sweeping process of the BS.
  • the UE receives signals on resources in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'OFF' through different Tx beams (DL spatial domain transmission filter) of the BS (S1460).
  • the UE selects (or determines) the best beam (S1470).
  • the UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS (S1480). That is, the UE reports the CRI and its RSRP to the BS when the CSI-RS is transmitted for the BM.
  • ID eg, CRI
  • RSRP related quality information
  • FIG. 15 illustrates an example of resource allocation in the time and frequency domain associated with the operation of FIG. 13.
  • repetition 'ON' is set in the CSI-RS resource set
  • a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam
  • repetition 'OFF' is set in the CSI-RS resource set
  • different CSI-RSs are used. Resources may be transmitted in different transmission beams.
  • the UE may receive, via RRC signaling, a list of at least M candidate transmission configuration indication (TCI) states for at least a quasi co-location (QCL) indication.
  • TCI transmission configuration indication
  • QCL quasi co-location
  • M depends on UE (capability) and may be 64.
  • Each TCI state may be set with one reference signal (RS) set.
  • Table 4 shows an example of the TCI-State IE.
  • the TCI-State IE is associated with one or two DL reference signal (RS) corresponding quasi co-location (QCL) types.
  • 'bwp-Id' indicates the DL BWP where the RS is located
  • 'cell' indicates the carrier on which the RS is located
  • 'referencesignal' indicates the source of pseudo co-location for the target antenna port (s) ( Reference antenna port (s) to be a source or a reference signal including the same.
  • the target antenna port (s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
  • the UE may receive a list containing up to M TCI-status settings for decoding the PDSCH according to the detected PDCCH having an intended DCI for the UE and a given cell.
  • M depends on UE capability.
  • each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and a DM-RS port of PDSCH.
  • the QCL relationship is established with the RRC parameters qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
  • the QCL type corresponding to each DL RS is given by the parameter 'qcl-Type' in QCL-Info, and can take one of the following values:
  • 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the corresponding NZP CSI-RS antenna ports may be indicated / set as a specific TRS in QCL-Type A view and a specific SSB and QCL in QCL-Type D view. have.
  • the UE receiving this indication / setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used to receive the QCL-TypeD SSB to the corresponding NZP CSI-RS reception. can do.
  • CSI-RS channel state information-reference signal
  • RSRP reference signal received power
  • 16 is a flowchart illustrating an example of a CSI related process.
  • the UE receives configuration information related to the CSI from the BS through RRC signaling (S1601).
  • the configuration information related to the CSI includes information related to CSI-IM (interference management) resources, information related to CSI measurement configuration, information related to CSI resource configuration, and information related to CSI-RS resource. Or CSI report configuration related information.
  • CSI-IM interference management
  • CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
  • the CSI-IM resource set is identified by a CSI-IM resource set ID, and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • CSI resource configuration related information may be represented by CSI-ResourceConfig IE.
  • the CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource setting related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of an NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It may include one.
  • the CSI-RS resource set is identified by a CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
  • RRC parameters (eg, BM related 'repetition' parameter and tracking related 'trs-Info' parameter) may be set for each NZP CSI-RS resource set.
  • the CSI report configuration related information includes a report configuration type parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity to report.
  • the time domain behavior can be periodic, aperiodic or semi-persistent.
  • the UE measures the CSI based on the configuration information related to the CSI (S1605).
  • the CSI measurement may include (1) a process of receiving a CSI-RS of a UE (S1603) and (2) a process of calculating a CSI through the received CSI-RS (S1607).
  • CSI-RS resource element (RE) mapping of CSI-RS resources is set in time and frequency domain by RRC parameter CSI-RS-ResourceMapping.
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a process of receiving a CSI-RS and measuring the received CSI-RS to obtain a CSI.
  • CM channel measurement
  • IM interference measurement
  • the CSI-IM based IM resource (IMR) of NR has a design similar to that of CSI-IM of LTE and is set independently of zero power (ZP) CSI-RS resources for PDSCH rate matching.
  • the BS transmits the NZP CSI-RS to the UE on each port of the configured NZP CSI-RS based IMR.
  • the BS or the network indicates a subset of NZP CSI-RS resources via DCI for channel measurement and / or interference measurement.
  • Each CSI resource setting 'CSI-ResourceConfig' includes a setting for S ⁇ 1 CSI resource set (given by the RRC parameter csi-RS-ResourceSetList).
  • the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
  • S represents the number of configured CSI-RS resource set.
  • the configuration for the S ⁇ 1 CSI resource set includes each CSI resource set including CSI-RS resources (configured as NZP CSI-RS or CSI-IM) and SSB resources used for RSRP calculation.
  • Each CSI resource setting is located in the DL bandwidth part (BWP) identified by the RRC parameter bwp-id. And, all the CSI resource settings linked to the CSI reporting setting have the same DL BWP.
  • BWP DL bandwidth part
  • the time domain behavior of the CSI-RS resource in the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the RRC parameter resourceType and may be set to be periodic, aperiodic, or semi-persistent.
  • Channel Measurement Resource may be NZP CSI-RS for CSI acquisition
  • Interference Measurement Resource may be NZP CSI-RS for CSI-IM and IM.
  • CSI-IM or ZP CSI-RS for IM
  • ZP CSI-RS for IM is mainly used for inter-cell interference measurement
  • NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-user.
  • the UE may assume that the CSI-RS resource (s) for channel measurement and the CSI-IM / NZP CSI-RS resource (s) for interference measurement configured for one CSI report are 'QCL-TypeD' for each resource. .
  • the resource setting may mean a list of resource sets.
  • One reporting setting can be linked to up to three resource settings.
  • the resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement for RSRP calculation.
  • the first resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement and the second resource setting (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference). Is for the interference measurement performed on the CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement and the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement.
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
  • the resource setting is for channel measurement for RSRP calculation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by RRC parameter csi-IM-ResourcesForInterference) is the interference performed on the CSI-IM. Used for measurement.
  • each CSI-RS resource for channel measurement is associated with the CSI-IM resource and resource by resource in the order of the CSI-RS resources and the CSI-IM resources in the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is equal to the number of CSI-IM resources.
  • the UE assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to an interference transport layer.
  • All interference transport layers of the NZP CSI-RS port for interference measurements take into account the energy per resource element (EPRE) ratio.
  • EPRE energy per resource element
  • the time and frequency the UE can use is controlled by the BS.
  • the UE For CQI, PMI, CRI, SSBRI, LI, RI, RSRP, the UE is responsible for N ⁇ 1 CSI-ReportConfig report settings, M ⁇ 1 CSI-ResourceConfig resource settings, and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH-TriggerStateList). Receive RRC signaling) (provided by).
  • Each trigger state in the aperiodicTriggerStateList includes an associated CSI-ReportConfigs list indicating the channel and optionally resource set IDs for interference.
  • each trigger state contains one associated CSI-ReportConfig.
  • the UE transmits the CSI report indicated by the CSI-ReportConfigs associated with each CSI-RS resource setting to the BS. For example, as indicated by the CSI-ReportConfigs associated with the corresponding CSI resource setting, at least one of CQI, PMI, CRI, SSBRI, LI, RI, and RSRP may be reported. However, if the CSI-ReportConfigs associated with the CSI resource setting indicates 'none', the UE may not report the CSI or RSRP associated with the CSI resource setting. Meanwhile, the CSI resource setting may include resources for SS / PBCH block.
  • the base station transmits a related signal to a terminal through a downlink channel, which will be described later, and the terminal receives a related signal from the base station through a downlink channel, which will be described later.
  • PDSCH physical downlink shared channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • 64 QAM 64 QAM
  • 256 QAM 256 QAM
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents an RE to which DMRS is mapped
  • DMRS may be mapped to RE # 1, RE # 5, and RE # 9 in the frequency domain direction in one symbol.
  • CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of OCRESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (up to three) constituting the CORESET may be set by higher layer signaling.
  • the precoder granularity in the frequency domain for each CORESET is set to one of the following by higher layer signaling:
  • allContiguousRBs equal to the number of consecutive RBs in the frequency domain inside the CORESET
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, the REGs are numbered sequentially from zero starting from the first OFDM symbol in the lowest-numbered resource block within CORESET.
  • the mapping type from CCE to REG is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • 18 (a) illustrates a non-interleaved CCE-REG mapping type
  • FIG. 18 (b) illustrates an interleaved CCE-REG mapping type.
  • Non-interleaved CCE-REG mapping type (or localized mapping type): 6 REGs for a given CCE constitute one REG bundle, and all REGs for a given CCE are contiguous. One REG bundle corresponds to one CCE
  • Interleaved CCE-REG Mapping Type (or Distributed Mapping Type): 2, 3 or 6 REGs for a given CCE constitute one REG bundle, and the REG bundle is interleaved in CORESET.
  • the REG bundle in CORESET consisting of one OFDM symbol or two OFDM symbols consists of 2 or 6 REGs, and the REG bundle in CORESET consisting of three OFDM symbols consists of 3 or 6 REGs.
  • REG bundle size is set per CORESET
  • FIG. 19 illustrates a block interleaver.
  • the number of rows A of the (block) interleaver for the interleaving operation as described above is set to one of 2, 3, and 6. If the number of interleaving units for a given CORESET is P, the number of columns of the block interleaver is equal to P / A.
  • a write operation on the block interleaver is performed in a row-first direction as shown in FIG. 8, and a read operation is performed in a column-first direction.
  • a cyclic shift (CS) of interleaving units is applied based on an id settable independently of an ID settable for DMRS.
  • the UE performs decoding (aka blind decoding) on the set of PDCCH candidates to obtain a DCI transmitted through the PDCCH.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire the DCI by monitoring PDCCH candidates in one or more sets of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId indicates the control resource set associated with the search space set
  • monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (e.g., indicates the first symbol (s) of the control resource set)
  • Table 5 illustrates features by search space type.
  • Type Search space RNTI Use case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 6 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used for scheduling TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH. It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. Can be.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the present invention will be described with respect to various embodiments of transmitting and receiving two or more downlink signals having different types or different configurations.
  • 20 to 22 illustrate an example of an implementation of a terminal, a base station, and a network according to embodiments of the present invention.
  • the terminal may receive a setting related to a reception (Rx) beam (S2001).
  • settings related to the reception beam may include settings such as QCL (Quasi Co-Located), Repetition 'on / off', ReportQuantity, and / or TRS-info.
  • QCL Quasi Co-Located
  • Repetition 'on / off' a setting related to the reception beam
  • ReportQuantity a setting related to the reception beam
  • TRS-info a setting related to the reception beam
  • what settings the terminal receives may be based on embodiments described below.
  • the UE may receive two or more downlink signals having different types or different configurations among downlink signals such as SS / PBCH block, CSI-RS, CSI-IM, PDCCH, and PDSCH based on the received configuration ( S2003).
  • two or more downlink signals received may be received by frequency divisional multiplexing (FDM) on the same time domain.
  • the two or more downlink signals may be received through different component carriers (CC).
  • CC component carriers
  • the type and / or configuration of the two or more downlink signals, a transmission form, a reception method, and the like may be based on embodiments described below.
  • the base station may transmit a setting related to a reception (Rx) beam (S2101).
  • settings related to the reception beam may include settings such as QCL (Quasi Co-Located), Repetition 'on / off', ReportQuantity, and / or TRS-info.
  • QCL Quasi Co-Located
  • Repetition 'on / off' a setting related to the reception beam
  • ReportQuantity a setting related to the reception beam
  • TRS-info a setting related to the reception beam
  • what settings are transmitted by the base station may be based on embodiments described below.
  • the base station may transmit two or more downlink signals having different types or different configurations among downlink signals such as SS / PBCH block, CSI-RS, CSI-IM, PDCCH, and PDSCH based on the transmitted configuration (S2103). ).
  • the two or more downlink signals may be transmitted by frequency division multiplexing (FDM) on the same time domain.
  • the two or more downlink signals may be transmitted through different component carriers (CCs).
  • CCs component carriers
  • the type and / or configuration of the two or more downlink signals, a transmission form and / or a method may be based on embodiments to be described later.
  • the base station may transmit a setting related to a reception (Rx) beam to the terminal (S2201).
  • settings related to the reception beam may include settings such as QCL (Quasi Co-Located), Repetition 'on / off', ReportQuantity, and / or TRS-info.
  • QCL Quasi Co-Located
  • Repetition 'on / off' a setting related to the reception beam
  • ReportQuantity / or TRS-info.
  • which setting is transmitted by the base station to the terminal may be based on embodiments described below.
  • the base station may transmit two or more downlink signals having different types or different configurations among the downlink signals such as SS / PBCH block, CSI-RS, CSI-IM, PDCCH, and PDSCH to the terminal based on the transmitted configuration.
  • the two or more downlink signals may be transmitted to a UE by performing frequency divisional multiplexing (FDM) on the same time domain.
  • the two or more downlink signals may be transmitted to the terminal through different component carriers (CC).
  • CC component carriers
  • the type and / or configuration of the two or more downlink signals, a transmission form and / or a method may be based on embodiments to be described later.
  • analog beams generated through different RF (Radio Frequency) chains may be shared based on the antenna structure of the UE. For example, if the terminal includes the antenna structure as shown in FIG. 23, the terminal uses only RF chain # 0 when a single component carrier is configured. However, if an inter-band carrier aggregation (inter-band CA) using a component carrier having a large difference from the configured component carry is configured, the RF chain # 1 may be additionally used. In this case, the RF chain # 1 may share an antenna element with the RF chain # 0, and may also share an analog beam. For example, as shown in FIG. 23, if the RF chain # 1 shares a phase shifter with the RF chain # 0, only a single analog beam may be formed.
  • inter-band CA inter-band CA
  • the operation of the base station and the terminal for transmitting and receiving different reference signals and / or channels simultaneously in consideration of the structural characteristics of the terminal described above.
  • the UE may be defined in the following two types (Type A / Type B).
  • the base station may enable / disabling at least one of operations of the terminal configured differently for each Type A / Type B through higher layer signaling to configure or indicate.
  • the higher layer signaling may be Radio Resource Control (RRC) and / or Medium Access Control Control Element (MAC CE).
  • a type A terminal and a type B terminal for distinguishing UE behavior may mean a terminal corresponding to the following description.
  • Type A terminal A terminal capable of simultaneously receiving a plurality of signals transmitted at the same time in different component carriers or bandwidth parts (BWP) as different (independent) analog beams.
  • BWP bandwidth parts
  • the type A terminal is a combination of component carriers (CC), component carrier group (CC group) that can form an independent analog beam when the inter-band CA and / or intra-band CA is configured
  • Information about the BWP group the combination of the BWPs can be reported to the base station.
  • the terminal may be configured with a combination of component carriers (CCs), a component carrier group (CC group), a combination of BWPs, and a BWP group. Information may be reported to the base station.
  • Type B UE A plurality of signals transmitted simultaneously in different component carriers (CC) or BWP regardless of whether the UE includes only a single TXRU / RF chain or multiple TXRU / RF chains. It means a terminal that can be received only by a single analog beam.
  • CC component carriers
  • BWP component carriers
  • the terminal may report / transmit whether its terminal type is Type A or Type B to the base station.
  • the base station may transmit reference signals and / or channels that are always spatially QCLed when simultaneously transmitting different reference signals and / or channels to the terminal that is reported to be Type B.
  • the base station transmits data in the same transmission beam so that the terminal can receive data in a single reception beam.
  • embodiments described later may be applied / expanded not only when carrier aggregation is set but also when a single component carrier is set.
  • the UE may be configured with two different component carriers and receive an SS / PBCH block and a PDSCH through the respective component carriers. For example, when two component carriers of CC # 0 and CC # 1 are configured in the UE, an SS / PBCH block may be received through CC # 0, and a PDSCH may be received through CC # 1. On the contrary, the PDSCH may be received through CC # 0 and the SS / PBCH block may be received in CC # 1. That is, the SS / PBCH block and the component carrier through which the PDSCH is transmitted may be different.
  • the operation of the terminal for receiving the SS / PBCH block and PDSCH may be different according to the type (Type A and Type B) of the terminal.
  • the base station may enable / disabling at least one of operations of a terminal differently configured for each Type A and Type B to be described later through higher layer signaling, and may configure or indicate the same.
  • the higher layer signaling may be Radio Resource Control (RRC) and / or Medium Access Control Control Element (MAC CE).
  • Type A UE A received analog beam optimized / suitable for receiving an SS / PBCH block transmitted in CC # 0 and a received analog beam optimized / suitable for receiving PDSCH transmitted in CC # 1, respectively. It can form and receive the SS / PBCH block and PDSCH. At this time, the analog beam for receiving the PDSCH is fixed, and the beam for receiving the SS / PBCH block (beam) can be changed by beam sweeping.
  • the UE is a PDSCH transmitted in CC # 1 and SS transmitted in CC # 0 Assuming that the / PBCH block is spatially QCLed, a common receive analog beam may be formed to receive the PDSCH and the SS / PBCH block.
  • PDSCH and SS / PBCH blocks may be received as a reception beam suitable / optimized for a beam in which a PDSCH is transmitted. For example, when the terminal determines that PDSCH reception is more important or the base station instructs the terminal that PDSCH reception is more important, the terminal forms a receiving analog beam to be suitable for PDSCH reception.
  • the base station may instruct / configure not to perform Rx beam sweeping so as to implicitly instruct / set the UE that the priority of PDSCH reception is higher than that of SS / PBCH block reception. Can be.
  • the QCL can be set to long-term. Therefore, when the UE is the SS / PBCH block received with the PDSCH at the present time is SS / PBCH block # 1, the SS / PBCH block # with the spatial QCL reference for the PDSCH is also transmitted at the present time It may be set to the previously transmitted SS / PBCH block # 0 other than 1.
  • the Type B terminal may operate as in the following examples.
  • the base station may set / instruct the terminal to operate according to the examples described below. Meanwhile, the following examples may be applied / expanded not only when carrier aggregation (CA) is applied but also when a single component carrier is applied.
  • CA carrier aggregation
  • the UE gives a higher priority to PDSCH reception than SS / PBCH block # 1 reception. That is, the SS / PBCH block # 1 and the PDSCH may be received based on a preset PDSCH reference QCL. In other words, the SS / PBCH block # 1 and the PDSCH may be received through the reception beam direction for the previously transmitted SS / PBCH block # 0.
  • the UE gives higher priority to SS / PBCH block # 1 reception than PDSCH reception.
  • the UE may ignore the reference QCL of the preset PDSCH.
  • the UE may assume that the difference between the reception beam direction for SS / PBCH block # 1 and the beam direction for receiving PDSCH is not large. In this case, even if the received beam direction for the preset PDSCH reference QCL, that is, the previously transmitted SS / PBCH block # 0 is ignored, there may be no problem in receiving the PDSCH at a predetermined level or more.
  • SS / PBCH block # 1 is included in the resource setting and ReportQuantity associated with the SS / PBCH block # 1 is "SSBRI (SSBRI indicator)", “SSBRI / L1-RSRP” and / or "ssb".
  • -Index-RSRP the UE may receive the SS / PBCH block # 1 and the PDSCH according to the reference QCL for the preset PDSCH. This may be to give a higher priority to PDSCH reception than SS / PBCH block reception.
  • the UE may calculate a CSI-RS resource indicator (CRI) for the SS / PBCH block # 1 using a RX beam used when receiving the SS / PBCH block # 0.
  • CRI CSI-RS resource indicator
  • SS / PBCH block # 1 is included in the resource setting and ReportQuantity associated with SS / PBCH # 1 is "SSBRI (SSBRI indicator)", “SSBRI / L1-RSRP” and / or "ssb-Index".
  • -RSRP the UE may ignore the reference QCL (reference QCL) for the preset PDSCH and give a high priority to the SS / PBCH block # 1 reception. If the terminal and the base station perform a P1 beam management operation, the terminal performs Rx beam sweeping during each of the four OFDM symbols for receiving the SS / PBCH block # 1 and receives the respective received beams.
  • the P1 beam management operation refers to an operation in which the base station performs transmission beam sweeping and the terminal also performs reception beam sweeping. Through the P1 beam management operation, the base station and the terminal can identify the appropriate transmission beam and the reception beam.
  • the UE may perform SS / PBCH block # rather than PDSCH reception. 1 You can give high priority to reception. Therefore, the UE may ignore the spatial QCL reference for the preset PDSCH and perform RX beam sweeping for 4 OFDM symbols for SS / PBCH block # 1. For example, the UE may use different reception filters while receiving 4 OFDM symbols for SS / PBCH block # 1. This may be interpreted as giving priority to RX beam sweeping or P3 beam management operation over PDSCH reception.
  • the P3 beam management operation may mean an operation in which the transmission beam of the base station is fixed and the reception beam of the terminal is swept.
  • a P3 beam management operation may be performed to perform reception beam sweeping at a fine level for four OFDM symbols included in the SS / PBCH block.
  • the UE is PDSCH rather than reception of the SS / PBCH block. It is possible to give high priority to the reception of. Therefore, the reception of the SS / PBCH block # 1 is ignored, and RX beam sweeping is not performed / expected.
  • ReportQuantity is set to "No report" since the UE is not necessarily forced to perform RX beam sweeping, the BS forcibly receives the PDSCH of the UE, thereby forcing the RX beam sweeping of the UE. You can limit the operation.
  • the terminal gives a high priority to the reception of the signal transmitted to the primary component carrier (primary CC). That is, a reception beam suitable / optimized for receiving a signal transmitted on a primary component carrier (primary CC) among PDSCH and SS / PBCH blocks is formed.
  • higher priority may be given to a signal received through a component carrier having the lowest index or the highest index.
  • the base station can instruct / set the index of the component carrier with a high priority to the terminal.
  • Embodiment 1 the reception priority and reception beams of the PDSCH and the SS / PBCH block are described. Or may be extended. However, when interpreting / applying the SS / PBCH block in the above-described embodiment 1 to CSI-RS, "SSBRI" of the above-mentioned ReportQuantity may be interpreted by replacing with "CRI". In addition, the component carrier in Embodiment 1 may be changed to BWP and analyzed / applied / expanded.
  • the UE may receive two different component carriers and receive the PDCCH and the PDSCH through the respective component carriers.
  • the PDCCH may be received through CC # 0 and the PDSCH may be received through CC # 1.
  • PDSCH may be received through CC # 0 and PDCCH may be received in CC # 1. That is, component carriers to which PDCCH and PDSCH are transmitted may be different.
  • the operation of the terminal for receiving the PDCCH and PDSCH may be different according to the type (Type A and Type B) of the terminal.
  • the base station may enable / disabling at least one of operations of a terminal configured differently for each Type A and Type B to be described later through higher layer signaling, and may configure or indicate the same.
  • the higher layer signaling may be Radio Resource Control (RRC) and / or Medium Access Control Control Element (MAC CE).
  • Type A terminal when two component carriers are configured and PDCCH and PDSCH are received through respective component carriers, the operation of a Type A terminal and a Type B terminal will be described.
  • Type A UE PDCCH by forming an optimized / suitable receiving analog beam optimized for receiving PDSCH transmitted in CC # 0 and an optimized / suitable receiving analog beam for receiving PDCCH transmitted in CC # 1, respectively. And PDSCH can be received.
  • the terminal gives a high priority to the reception of the signal transmitted to the primary component carrier (primary CC). That is, a reception beam suitable / optimized for receiving a signal transmitted on a primary component carrier (primary CC) among the PDSCH and the PDCCH is formed.
  • a higher priority may be given to a signal received through a component carrier having the lowest index or the highest index among the component carriers configured for the terminal.
  • the base station can instruct / set the index of the component carrier with a high priority to the terminal.
  • the PDSCH and PDCCH in the first embodiment described above can be applied and extended to the PUSCH and PUCCH.
  • the component carrier in Embodiment 1 may be changed to BWP and analyzed / applied / expanded.
  • the above-described embodiments of the reception between the SS / PBCH block and the PDSCH and the reception between the PDCCH and the PDSCH may be performed in combination with each other.
  • any one of the embodiments described in (4) and (6) Any one of the embodiments described in) may be performed in combination.
  • Embodiment 2 when two downlink signals having different types and / or different configurations are multiplexed, the operation of the terminal and / or the configuration / instruction of the base station will be described.
  • CSI-IM and an SS / PBCH block or a CSI-RS are multiplexed on the basis of a Resource Element (RE) pattern of CSI-IM (Channel State Information-Interference Measurement), operation and / or Look at the settings / instructions of the base station.
  • RE Resource Element
  • FIG. 24 is a diagram for explaining an example of a CSI-IM RE pattern.
  • FIG. 24 (a) is a diagram for explaining (2,2) RE pattern based CSI-IM.
  • the CSI-IM may be mapped to two OFDM symbols and two subcarriers.
  • the terminal receives the OFDM symbol index l CSI - IM and the subcarrier index k CSI-IM from the base station.
  • the CSI-IM (k CSI - IM, l CSI - IM), (k CSI - IM, l CSI - IM +1), (k CSI - IM +1, l CSI-IM) , and (k CSI - IM +1 , l CSI - IM +1) may be received through the RE corresponding to.
  • the RE pattern corresponding to the (2,2) RE pattern based CSI-IM of FIG. 24A may be referred to as a CSI-IM RE pattern '0'.
  • FIG. 24B is a diagram for explaining (4,1) RE pattern based CSI-IM.
  • the CSI-IM may be mapped to one OFDM symbol and four subcarriers.
  • the terminal receives the OFDM symbol index l CSI - IM and the subcarrier index k CSI - IM from the base station.
  • the CSI-IM (k CSI - IM, l CSI - IM), (k CSI - IM +1, l CSI -IM), (k CSI - IM +2, l CSI - IM) and (k CSI - IM +3 , l CSI - IM ).
  • the RE pattern corresponding to the (4,1) RE pattern based CSI-IM of FIG. 24B may be referred to as a CSI-IM RE pattern '1'.
  • the UE may assume / expect that (4,1) RE pattern based CSI-IM may be transmitted / configured together in the OFDM symbols in which the SS / PBCH block is transmitted. In other words, the UE may assume / expect FDM (Frequency Divisional Multiplexing) between the SS / PBCH block and (4,1) RE pattern based CSI-IM in OFDM symbols in which the SS / PBCH block is transmitted.
  • FDM Frequency Divisional Multiplexing
  • the (2,2) RE pattern based CSI-IM is expected / assuming that the SS / PBCH block is not transmitted / configured together. can do.
  • the (2,2) RE pattern based CSI-IM may expect / assume that the SS / PBCH block is TDM (Time Divisional Multiplexing).
  • the BS transmits (4,1) RE pattern based CSI-IM to OFDM symbols in which SS / PBCH blocks are transmitted to the UE. 2,2) RE pattern based CSI-IM may set / indicate that the SS / PBCH block is not transmitted / configured together in OFDM symbols transmitted.
  • the SS / PBCH block for beam management (BM) or the SS / PBCH block for beam error detection may be transmitted / configured in the same OFDM symbol.
  • the (2,2) RE pattern based CSI-IM may be set to be transmitted in the same OFDM symbol as the SS / PBCH block for beam failure detection (BFD).
  • the SS / PBCH block for the RRM, the SS / PBCH block for the RLM, and the SS / PBCH block for the BM may all be assumed / expected as allowing the reception beam sweep of the UE. This is because the SS / PBCH block for the BFD may be suitable to assume / expect to fix the receive beam to determine beam failure.
  • the CSI-RS also has a CSI-RS for CSI acquisition, a CSI-RS for BFD, and a CSI-RS for time-frequency tracking for beam sweeping according to each OFDM symbol. Without receiving the CSI-RS with a fixed reception beam.
  • the UE is a (4,1) RE pattern-based CSI-IM and all types of CSI-RS (eg, CSI-RS for RRM, CSI-RS for CSI acquisition, CSI-RS for beam management, It can be expected / assumed that CSI-RS for time-frequency tracking, etc.) can be transmitted / configured in the same OFDM.
  • the UE may not expect / assuming that the CSI-RS and (2,2) RE pattern based CSI-IM for beam management in which beam sweeping can be performed are set to be transmitted in the same OFDM symbol.
  • the UE is a (2,2) CSI-RS resource included in the CSI-RS resource set in which the RE pattern-based CSI-IM is set to a higher layer parameter "repetition" is "on" and / or "off". It may not be expected / assumed to be set / transmitted in the same OFDM symbol.
  • the UE has a CSI-RS resource in which the (4,1) RE pattern based CSI-IM is included in a CSI-RS resource set in which the upper layer parameter "repetition" is set to "on” and / or "off”. It can be expected / assumed to be set to be transmitted in the same OFDM symbol.
  • FDM of a CSI-RS and an SS / PBCH block for beam management may be allowed. That is, FDM of CSI-RS and SS / PBCH block other than CSI-RS for beam management may not be allowed.
  • the SS / PBCH block and the CSI-RS for CSI acquisition or the CSI- for time-frequency tracking It can be difficult to avoid RS or the like being FDM.
  • the CSI-RS for CSI acquisition is different from each other during RX beam sweeping. Since channel information on the same port transmitted as a symbol is not the same, a problem may occur in the CSI measurement such as orthogonality of an orthogonal cover code (OCC) is not established.
  • OCC orthogonal cover code
  • the UE may operate as follows for multiplexing between the CSI-RS and the SS / PBCH block. And / or the base station may set / instruct the operation of the terminal to be described later.
  • the CSI-RS using 1-port or 2-port is mapped only to a single OFDM symbol, and the UE performs CSI measurement only on a specific OFDM symbol. Even when performing RX beam sweeping, there may not be a big problem in CSI measurement performance. Therefore, in multiplexing between the CSI-RS and the SS / PBCH block for CSI acquisition, the UE is the same OFDM symbol as the SS / PBCH block only for the CSI-RS for CSI acquisition using 1-port and 2-port. It can be assumed / expected to be transmitted in.
  • the CSI-RS may be configured to allow only SS / PBCH block and TDM.
  • the indexes, code divisional multiplexing (CDM) types, and / or CDM lengths of the configured CSI-RS ports are determined.
  • the number / capacity of RX beam sweeping of the UE may be determined / limited based on the UE, and this may be set / instructed by the BS.
  • the terminal is the reception beam sweeping You may not expect to do this.
  • different CDM groups perform the reception beam sweep of the UE between the mapped OFDM symbols. For example, referring to FIGS. 25 (a) to 25 (c), it can be expected that the UE performs reception beam sweeping at a boundary changed from CDM4 group 1 to CDM4 group 2.
  • CDM8 is configured over four OFDM symbols including an SS / PBCH block, the UE may expect not to perform receive beam sweeping while receiving CSI-RS in four OFDM symbols.
  • the UE receives a reception beam at a position indicated by an arrow in FIG. 25 (d).
  • the CDM groups by X-port CSI-RS configuration may be several CDM groups for the same CSI-RS resource, or may be CDM groups for different CSI-RS resources.
  • the operation of the terminal described above may be set / instructed by the base station. That is, in order to accurately measure channel information for a specific port, it is preferable not to change the RX beam while measuring the CSI-RS for a particular port.
  • ports # 0 / # 1 / # 2 / # 3 are configured in CDM4 spanning two OFDM symbols in FIGS. 25 (a) to 25 (c).
  • the channels for RX # 0 and ports # 0 / # 1 / # 2 / # 3 are RX # 1 and port. It may be different from the channel for # 0 / # 1 / # 2 / # 3.
  • orthogonality of the orthogonal cover code (OCC) may not be established. Therefore, in OFDM symbols spanning one CDM group, the terminal may expect not to perform receive beam sweeping. For example, as in FIGS.
  • two frequency domains eg, two subcarriers
  • two time domains eg, two OFDM symbols
  • the UE may not expect to perform RX beam sweeping.
  • the UE when a CSI-RS for beam management is transmitted in an OFDM symbol in which an SS / PBCH block is transmitted, the UE performs RX beam sweeping or RX beam refinement. You can expect to.
  • a CSI-RS for CSI acquisition when a CSI-RS for CSI acquisition is transmitted together in an OFDM symbol in which an SS / PBCH block is transmitted, it may not be assumed that the terminal performs reception beam sweeping. In other words, it is not assumed that the terminal uses different reception filters for each OFDM symbol.
  • the CSI-RS for CSI acquisition may refer to CSI-RS resources included in a CSI-RS resource set in which upper layer parameters “repetition” and “TRS-Info” are not set.
  • This may be interpreted as giving a high priority to CSI-RS reception for CSI acquisition when the SS / PBCH block and CSI-RS for CSI acquisition are received by FDM.
  • the operation of the terminal described above may be instructed or set by the base station.
  • the operation of the terminal and the base station should also be considered.
  • a description will be given of a terminal operation when the CSI-RS for beam management and the CSI-RS for CSI acquisition or the CSI-RS for time-frequency tracking are multiplexed.
  • the operation of the terminal may be based on the configuration and / or the indication by the base station.
  • an RX beam sweeping operation of the UE may be defined or limited in consideration of an orthogonal cover code (OCC).
  • OCC orthogonal cover code
  • the base station may instruct or set such an operation. For example, as shown in FIG. 26, the base station may set or instruct the terminal to change the RX beam at the time when the CDM4 group 1 is changed to the CDM4 group 2.
  • CSI-RS resources included in a CSI-RS resource set in which repetition is set to "off" are FDM with CSI-RS resources for acquiring CSI for which repetition is not set
  • the UE is connected to one CDM group.
  • the UE may use only CSI-RS resources included in the CSI-RS resource set for which repetition is not configured, only when the configured CDM type is FD-CDM2, or only one OFDM symbol like FD-CDM4 (span). ) Can only expect or assume that repetition can be transmitted on the same OFDM symbols as the CSI-RS resources included in the CSI-RS resource set set to "on" or "off" only in the CDM type. have.
  • the base station may set or instruct the operation of the terminal described above.
  • the CSI-RS resources included in the CSI-RS resource set in which Repetition is set to "off" may be used for CSI-RS resources and / or time-frequency tracking for CSI acquisition.
  • the terminal When transmitted through the same OFDM symbols as the CSI-RS resources, the terminal does not expect or assume that the base station will use a different transmission filter for each symbol in the same OFDM symbols. In other words, the terminal does not expect beam sweeping or beam enhancement of the base station to be performed for each symbol in the same OFDM symbols. Meanwhile, the above-described operation of the terminal may be set or indicated by the base station.
  • the base station performs beam sweeping for each OFDM symbol, and if the terminal receives the CSI-RS for CSI acquisition (acquisition), it is set over two or four OFDM symbols This is because CSI measurement problems such as cracking of orthogonal cover codes (OCCs) may occur.
  • OCCs orthogonal cover codes
  • CSI-RS resources included in the CSI-RS resource set set to Repetition "on" may be CSI-RS resources for obtaining CSI and / or CSI for time-frequency tracking.
  • the terminal When transmitted in the same OFDM symbol as the -RS resources, the terminal does not expect, assume, or perform reception beam sweeping or reception beam refinement in the same OFDM symbol. Or, it is not assumed or expected that the terminal uses different reception filters for each symbol in the same OFDM symbols.
  • the above-described operation of the terminal may be set or instructed by the base station. In this case, when the UE performs the reception beam sweep for each symbol and receives the CSI-RS for CSI acquisition, the CSI measurement such as breaking an orthogonal cover code (OCC) set over two or four symbols is broken. measurement) can cause problems.
  • OCC orthogonal cover code
  • the CSI-RS, SS / PBCH block, and PDCCH are transmitted as the PDCCH is transmitted relatively frequently.
  • Three or more reference signals and channels such as may be multiplexed and transmitted in the same OFDM symbol. Therefore, the operation of the terminal in this case will be described based on whether the reception beam sweeping is allowed for each reference signal characteristic mentioned in Embodiment 2 described above.
  • the UE may operate as follows with respect to multiplexing of the CSI-RS, the SS / PBCH block, and the PDCCH. And, the operation of the terminal may be indicated or set by the base station.
  • the UE When the PDCCH is transmitted through CSI-RS, in particular, an OFDM symbol in which the CSI-RS and the SS / PBCH block are transmitted together with the beam management, the UE performs RX beam refinement or RX beam sweeping. You may or may not expect to do it.
  • the base station may set or instruct the terminal not to perform RX beam sweeping.
  • the UE expects PDCCH to be transmitted in an OFDM symbol in which SS / PBCH blocks are transmitted together except for CSI-RS for beam management and SS / PBCH blocks for BFD.
  • SS / PBCH blocks and CSI-RSs for various purposes SS / PBCH blocks for BFDs and CSI-RSs for BFDs, CSI-RSs for CSI acquisition, or time-frequency tracking CSI-RSs are simultaneously transmitted. It can be expected or assumed that the PDCCH is transmitted through an OFDM symbol. In this case, an RX beam sweeping operation in which the UE changes a reception beam for each OFDM symbol may be limited.
  • the UE does not expect or assume that the CSI-RS resources included in the CSI-RS resource set in which repetition is set to "off" are transmitted through an OFDM symbol in which the PDCCH and the SS / PBCH block are transmitted together. Can be. This may be interpreted as a priority for receiving the CSI-RS for beam management is lower than a priority for simultaneously receiving the SS / PBCH and the PDCCH.
  • the UE may not expect or assume that the CSI-RS for beam management is transmitted through an OFDM symbol in which the SS / PBCH block for the PDCCH and the BFD are transmitted together.
  • the UE expects that only CSI-RS for CSI acquisition and / or CSI-RS for time-frequency tracking can be transmitted together through an OFDM symbol in which SS / PBCH blocks for PDCCH and BFD are transmitted together.
  • the terminal is a repetition "like SS / PBCH block for beam management, SS / PBCH block for RRM and SS / PBCH block for RLM, CSI-RS for any one of the SS / PBCH block, It may be assumed or expected that the PDCCH is not transmitted in the OFDM symbol in which the CSI-RS resources included in the CSI-RS resource set set to "on" are transmitted.
  • the priority of PDCCH reception is the SS / PBCH block and the CSI-RS reception. It can be interpreted as being lower than priority. In other words, it may be interpreted as giving higher priority to RX beam sweeping of the UE.
  • the priority of CSI-RS reception for beam management is to receive the SS / PBCH block and PDCCH reception It can be interpreted as lower than the priority for.
  • the base station may set or indicate that the terminal does not perform an RX beam sweeping operation.
  • the UE may not expect or assume that the CSI-RS for beam management is transmitted through an SS / PBCH block for the BFD and an OFDM symbol in which the PDCCH is transmitted. This may be interpreted as giving / setting / indicating a higher priority for receiving the SS / PBCH block and the PDCCH for the BFD than for receiving the CSI-RS for the beam management or the receiving beam sweeping operation of the UE. have.
  • the terminal is CSI-RS for CSI acquisition, CSI-RS for beam management, CSI-RS for time-frequency tracking, CSI-RS for RRM and CSI-RS for BFD, such as all types of CSI-RS For RS and all types of SS / PBCH, one may not expect CSI-RS, SS / PBCH and PDCCH to be transmitted on the same OFDM symbol.
  • the UE may expect or assume that the SS / PBCH block and the CSI-RS are transmitted in the same OFDM symbol.
  • PDCCH, SS / PBCH block, and the like due to non-slot or mini-slot being set / defined / instructed in the same OFDM symbol interval in which the SS / PBCH block and the CSI-RS are transmitted.
  • the UE may not expect / assuming that RX beam sweeping or RX beam refinement is performed on the same OFDM symbols. In other words, the UE may assume or expect to use the same reception filter during the same OFDM symbols.
  • the operation of the terminal described above may be indicated or set by the base station, and in particular, the operation may be important in the case of non-slot. Meanwhile, in the above-described case, the UE may assume / expect that the CSI-RS and the PDCCH and / or the SS / PBCH block and the PDCCH for beam management are also spatially QCLed.
  • the UE may expect or assume that the SS / PBCH block and the CSI-RS are transmitted through the same OFDM symbols.
  • PDCCH, SS / PBCH block and CSI- due to the same OFDM symbols to which the SS / PBCH block and the CSI-RS are transmitted are set / defined / directed to non-slot or mini-slot.
  • the terminal may not expect or assume that the base station uses different transmission filters in the same OFDM symbols. For example, the terminal may not expect / assume that the base station changes the transmission beam in the same OFDM symbols.
  • the operation may be important in the case of non-slot.
  • the UE may assume / expect that the CSI-RS and the PDCCH and / or the SS / PBCH block and the PDCCH for beam management are also spatially QCLed.
  • the third embodiment described above may be applied and / or extended to the same / similarly for the PDSCH instead of the PDCCH.
  • different reference signals and channels may be transmitted in three or more identical OFDM symbols.
  • the PDCCH, the SS / PBCH block, and the CSI-RS may be FDM and transmitted.
  • the base station is based on the number of reception beams that can be used simultaneously by the terminal, the reference signals according to the type and configuration (for example, CSI-RS for CSI acquisition, CSI-RS for beam management, CSI-RS such as CSI-RS for time-frequency tracking and CSI-RS for RRM, SS / PBCH block for DMRS and RRM, SS / PBCH block for beam management, SS / PBCH block for BFD, etc.)
  • / or spatial QCL may be set for each reference signal group by dividing the channels into one or more reference signal groups.
  • the base station may instruct or set the priority of a specific reference signal group to the terminal.
  • the base station may indicate / set the priority for a specific group to the terminal based on this.
  • the aforementioned reference signal groups may be transmitted in the same component carrier or bandwidth part (BWP) or may be transmitted in different component carriers or BWPs.
  • CSI-RS, SS / PBCH block # 1 and PDCCH are transmitted through the same OFDM symbols
  • CSI-RS and SS / PBCH block # 1 are spatially QCLed
  • the QCL reference may be set to another SS / PBCH block such as SS / PBCH # 0.
  • the UE may receive 14 or more CSI-RS resources through a single CSI-RS resource set.
  • Each CSI-RS resource included in the CSI-RS resource set is set to TDM because the CSI-RS-ResourceRep is set to "on" (for example, the upper layer parameter repetition is set to "on”).
  • Certain 14 or more CSI-RS resources may not be defined / configured in one slot composed of 14 OFDM symbols. Therefore, although an offset setting is required for each CSI-RS resource, an aperiodic CSI-RS currently has a constraint for setting a slot offset for each resource set. Accordingly, the present invention proposes the following embodiments.
  • Periodic period of periodic CSI-RS when the slot time of CSI-RS resources whose time-domain behavior of the configured CSI-RS is “aperiodic” is set.
  • a higher layer parameter "CSI-ResourcePeriodicityAndOffset" for setting a slot offset.
  • a slot offset of aperiodic CSI-RS resources may be set using only the slot offset, ignoring the period among the period and slot offsets set through "CSI-ResourcePeriodicityAndOffset”.
  • the higher layer parameter "CSI-ResourcePeriodicityAndOffset" is described in 3GPP TS 38.331.
  • the terminal may receive information related to a period and an offset for a periodic CSI-RS (S2701).
  • the terminal may receive information related to an aperiodic CSI-RS resource set (S2703).
  • the terminal may receive the aperiodic CSI-RS based on the offset value for the periodic CSI-RS (S2705).
  • the terminal may not use the periodic value for the periodic CSI-RS for aperiodic CSI-RS reception.
  • a detailed method for implementing the terminal operation of FIG. 27 will be described later.
  • the base station may transmit information related to a period and an offset for a periodic CSI-RS (S2801).
  • the base station may transmit information related to the aperiodic CSI-RS resource set (S2803).
  • the base station may transmit the aperiodic CSI-RS based on the offset value for the periodic CSI-RS (S2805).
  • the base station may not use the period value for the periodic CSI-RS for aperiodic CSI-RS transmission.
  • a detailed method for implementing the base station operation of FIG. 28 will be described later.
  • the base station may transmit information related to a period and an offset for the periodic CSI-RS to the terminal (S2901).
  • the base station may transmit information related to the aperiodic CSI-RS resource set to the terminal (S2803). Thereafter, the base station may transmit the aperiodic CSI-RS to the terminal based on the offset value for the periodic CSI-RS (S2805). At this time, the base station may not use the period value for the periodic CSI-RS for aperiodic CSI-RS transmission.
  • a detailed method for implementing the network operation of FIG. 29 will be described later.
  • a slot having a subcarrier spacing of 60 kHZ or less and a normal cyclic prefix (CP) may include 7 or 14 OFDM symbols.
  • a slot with subcarrier spacing exceeding 60 kHz and a general CP may include 14 symbols.
  • slot aggregation is supported, and this slot aggregation may mean that transmission of data may be scheduled over one or a plurality of slots.
  • a multi-slot PDSCH may mean that a PDSCH is scheduled over one or a plurality of slots based on such slot aggregation.
  • the base station may set the "CSI-ResourcePeriodicityAndOffset" for the periodic CSI-RS to the terminal.
  • the base station whether the terminal recognizes the "CSI-ResourcePeriodicityAndOffset" as a valid parameter (valid parameter) and the slot (slot-slot), ignoring the period (periodicity) information set / instructed in the "CSI-ResourcePeriodicityAndOffset” offset) can be defined / set / indicated as to whether to recognize as valid information.
  • the base station may set / instruct the terminal to recognize the parameter as a valid parameter when the "CSI-ResourcePeriodicityAndOffset" satisfies a specific condition.
  • the terminal may transmit information about the period (periodicity). May be recognized as invalid information and only slot offset values may be recognized as valid or meaningful information.
  • This operation may be particularly applicable to " multi-slot PDSCH " scheduling and / or PDSCH rate matching for aperiodic zero-power (ZP) -CSI-RS resources.
  • ZP zero-power
  • the information on the period is not applied in the "CSI-ResourcePeriodicityAndOffset" for the periodic CSI-RS resource, and only the slot offset information is applied per aperiodic CSI-RS resource. Or per aperiodic CSI-RS resource set.
  • a PDSCH scheduled by a particular DL-DCI is scheduled in multiple in two or more slots instead of being transmitted only in a single slot, such as "multi-slot PDSCH" scheduling
  • Locations of resource elements (REs) to which data rate matching should be applied may be determined using the aperiodic CSI-RS configuration.
  • two or more slots that are multiplely scheduled may be adjacent slots.
  • the aperiodic CSI-RS for indicating locations of REs to which the PDSCH rate matching is to be applied may be ZP-CSI-RS for PDSCH rate matching.
  • a single specific slot offset parameter can be set per CSI-RS resource set.
  • an offset may be indicated only in one of the scheduled slots.
  • PDSCH rate matching by aperiodic ZP CSI-RS may be applied to only one specific slot indicated by the offset.
  • a common slot offset parameter may be applied to all CSI-RS resources in the CSI-RS resource set, in the case of multi-slot PDSCH scheduling, an aperiodic ZP CSI is used only in a slot indicated by an offset among scheduled slots. There is a problem that PDSCH rate matching by -RS can be applied.
  • a slot offset parameter that is set at the time of a specific aperiodic ZP CSI-RS resource set is basically applied, and in each aperiodic ZP CSI-RS resource set "Slot offset" of "CSI-ResourcePeriodicityAndOffset" among the setting information of the parameter set for each resource by setting the "CSI-ResourcePeriodicityAndOffset" parameter that can be set for each aperiodic AP CSI-RS resource to be valid. Only information can be further applied. That is, the period information of "CSI-ResourcePeriodicityAndOffset" may be applied to be invalid.
  • the aperiodic ZP The CSI-RS resource set may be regarded as indicated by the DCI to indicate aperiodic PDSCH rate matching operation at a time point according to slot # n + k and / or a specific timeline associated with the CSI-RS resource set.
  • a slot for each CSI-RS resource is additionally provided as shown in Table 7 below for the aperiodic CSI-RS resource aggregation in the aperiodic ZP CSI-RS resource set, four slots consecutively from slot # n + k. Can indicate all rate matching of the multi-slot PDSCH.
  • a slot offset value set for each aperiodic ZP CSI-RS resource set is applied, and a slot included in "CSI-ResourcePeriodicityAndOffset" is common to the aperiodic ZP CSI-RS resources included in the periodic ZP CSI-RS resource set.
  • the offset may be applied to indicate all PDSCH rate matching in multi-slot PDSCH scheduling. At this time, the period information included in the "CSI-ResourcePeriodicityAndOffset" may not be applied.
  • the method of reinterpreting the slot offset included in the "CSI-ResourcePeriodicityAndOffset" parameter for each CSI-RS resource described above is applicable only to the non-jugic ZP CSI-RS resource and / or the aperiodic ZP CSI-RS resource set. Can be defined / set.
  • the "CSI-ResourcePeriodicityAndOffset" parameter may be applied in the form of invalid or ignored.
  • aperiodic ZP CSI-RS resource sets that can be triggered per single bandwidth part (BWP) in the current NR system is limited to a maximum of three, etc., slot aggregation, etc.
  • BWP single bandwidth part
  • the above-described embodiment is extended to a case in which a slot offset set for each CSI-RS resource is additionally set / indicated while using a slot offset set for each aperiodic CSI-RS resource set. Can be applied.
  • a slot offset set for each CSI-RS resource set may be interpreted as a triggering slot offset of an aperiodic CSI-RS resource set.
  • the base station may set "1" as a default value for the slot offset.
  • the slot offset value may be fixed to '1'.
  • the UE sets the configured CSI-RS resource set. It may not be expected / assumed that there are 14 or more CSI-RS resources of the set). If 14 or more CSI-RS resources are configured, the UE may consider only 14 of the smallest CSI-RS resource IDs and ignore the rest. On the other hand, when the aperiodic CSI-RS resource set is set to repetition "on", the maximum number of CSI-RS resources that the base station can set in one CSI-RS resource set is limited to 14. Can be.
  • the UE may select other CSI-RS resources except for the 14 having the smallest CSI-RS resource ID index (for example, CSI-RS resource # 15 / # 16). It may be assumed that the slot is next to the slot in which the 14 RS resources are transmitted, that is, the adjacent CSI-RS resource index is transmitted in the adjacent slot of the slot in which the 14 CSI-RS resources are transmitted.
  • the 14 CSI-RS resources having the smallest CSI-RS resource index are set or not set to a slot offset of 0, but the remaining CSI-RS resources are slot offsets.
  • the terminal may automatically recognize / assume that this is set to 1.
  • the UE may recognize that the slot offset of the remaining CSI-RS resources except for the 14 CSI-RS resources having the smallest CSI-RS resource index is '1', which is a default value.
  • the UE may not expect / assuming 14 or more CSI-RS resources included in the configured CSI-RS resource set. If 14 or more CSI-RS resources are configured, the UE may consider only 14 of the smallest CSI-RS resource IDs and ignore the rest.
  • the time-domain behavior of the CSI-RS is "aperiodic" and the higher layer parameter TRS-Info is When configured, that is, when configuring the CSI-RS resource set for time-frequency tracking (Tracking), a total of four CSI-RS resources may be configured for the terminal.
  • the CSI-RS resource ID index is the most. Two small and two largest are transmitted in different adjacent slots, so that the UE can recognize / assuming / expect.
  • the two largest CSI-RS resource ID indexes are set to "1", which is a slot offset (default value), or the terminal automatically sets the slot offset (slot offset) to 1. Can be recognized / assumed.
  • CSI-ResourcePeriodicityAndOffset for setting a slot offset.
  • a slot offset of aperiodic CSI-RS resources may be set using only the slot offset, ignoring the period among the period and slot offsets set through "CSI-ResourcePeriodicityAndOffset”.
  • the higher layer parameter "CSI-ResourcePeriodicityAndOffset” is described in 3GPP TS 38.331.
  • the UE may detect that at least two CSI-RS resource sets may be triggered at the same time only for a CSI-RS resource set in which the upper layer parameter “TRS-Info” is set. Can expect / assum In other words, only two or more CSI-RS resource sets for time-frequency tracking may be simultaneously triggered. At this time, when two CSI-RS resource sets in which the upper layer parameter "TRS-Info" is set are triggered at the same time, the UE may include CSI-RSs included in two CSI-RS resource sets. Assume / expect all RS resources to use the same antenna port.
  • Embodiment 5 when two downlink signals having different types and / or different configurations in Embodiment 2 are multiplexed, a more specific case regarding operation and / or configuration / instruction of a base station is performed. Let's take a look at. That is, the examples in the fifth embodiment may be implemented in combination with the second embodiment. In addition, the examples in the fifth embodiment are implemented in combination with the third embodiment of the operation of the terminal and / or the configuration / instruction of the base station when three downlink signals having different types and / or different configurations are multiplexed. Can be. Likewise, various embodiments described in the present specification other than Examples 2 and 3 and Example 5 may be combined.
  • the multiplexing method between different CSI-RS resources will be described. If the CSI-RS for CSI acquisition and the CSI-RS for beam management are always transmitted only to different OFDM symbols, the design of the system / hardware can be relatively simple. In other words, if the CSI-RS for CSI acquisition and the CSI-RS for beam management are always Time Division Multiplexed (TDM), the system / hardware design can be relatively simple.
  • TDM Time Division Multiplexed
  • the beam management CSI-RS resource set can be composed of up to 64 resources, and can transmit CSI-RS simultaneously in multiple transmission reception points (TRPs), thereby efficiently wireless.
  • TRPs transmission reception points
  • the CSI-RS resource for CSI acquisition may be set over two or more symbols according to the number of antenna ports. In this case, while performing CSI measurement for a specific CSI-RS resource, it may be desirable for the terminal to use the same reception beam.
  • the CSI-RS resources of the CSI-RS resource set in which the setting of the higher layer parameter "Repetition" is 'on' or 'off' occupy only a single OFDM symbol and each CSI
  • the UE may use different reception beams for the -RS resource.
  • operation of the terminal and / or setting / instruction of the base station between different CSI-RS resources may be performed as follows.
  • two CSI-RS resources may be configured from the base station to be allocated in one specific OFDM symbol.
  • this configuration may be limited to the case where the CSI-RS resource for CSI acquisition and the CSI-RS resource for beam management are set to the same spatial QCL.
  • BM beam management
  • a CSI-RS resource in which repetition "on" is set together with an OFDM symbol in which a CSI-RS resource for CSI acquisition is configured may be set even if there is no spatial QCL configuration.
  • the terminal may be configured / instructed to follow the spatial QCL configuration set in the CSI-RS resource for the CSI-RS resource, or the terminal may automatically recognize the configuration.
  • CSI-RS resources of the CSI-RS resource set (repetition "off” CSI-RS) set to the "repetition” off "while the base station performs TX beam sweeping (TX beam sweeping), It can be assumed that the terminal uses the same reception beam. Therefore, when a CSI-RS resource set to repetition "off" is set together in an OFDM symbol in which a CSI-RS resource for CSI acquisition is set, the UE is spatial QCL of the CSI-RS resource set to repetition "off”. May follow the spatial QCL configuration of the CSI-RS resource for CSI acquisition transmitted in the same OFDM symbol. In addition, the operation can be set / instructed by the base station to the terminal or the terminal can be automatically recognized.
  • the above-described embodiment has no spatial QCL setting in the repetition "off" CSI-RS resource and the spatial of the CSI-RS resource and the repetition "off” CSI-RS resource for CSI acquisition. The same can be applied to the case where the QCL setting is different.
  • the CSI-RS in which the higher layer parameter "repetition” is set to "on” and the CSI-RS in which "repetition” is set to “off” are set / instructed to be transmitted together in one or more OFDM symbols, Since the UE has one reception panel or the number of beams that can be simultaneously received, the CSI-RS in which "repetition” is set to "on” and the CSI-RS in which "repetition” is set to “off” are the same.
  • the reset request may be sent to the base station so that the OFDM symbol is not set.
  • the terminal may transmit a CSI-RS in which "repetition” is set to “on” and a CSI- in which "repetition” is set to "off”.
  • the RS may request to be transmitted in different OFDM symbols.
  • [Table 8] shows a rule for simultaneously transmitting and receiving the SS / PBCH block and PDSCH or PDCCH in FR 2.
  • QCL-D is an OFDM symbol of SSB-BFD when SS / PBCH block-BFD (Beam Failure Detection) and PDSCH / PDCCH are configured with the same spatial QCL in case of carrier aggregation. May mean that no scheduling restrictions apply, which may be inferred in section 8.5.7.3 of the standard document 3GPP TS 38.133.
  • the scheduling restriction in Table 8 may be applied even within the SMTC (SS / PBCH block Measurement Timing Configuration) window.
  • SS / PBCH block-based Radio Link Monitoring (RLM) SS / PBCH block-based Beam Failure Detection (BFD), and SS / PBCH block-based L1-RSRP (Reference Signal Received Power) measurements
  • RLM Radio Link Monitoring
  • BFD Beam Failure Detection
  • L1-RSRP Reference Signal Received Power
  • the OFDM symbol for the PDSCH may be dynamically scheduled by Downlink Control Information (DCI) so as not to partially overlap or completely overlap with the OFDM symbol for the SS / PBCH block in the slot.
  • DCI Downlink Control Information
  • the network is configured so that the PDCCH is configured so that the SS / PBCH block is not overlapped with one or more OFDM symbols received in the slot. Guaranteeing can be difficult.
  • a PDCCH RE resource element
  • the PDCCH may not be mapped to the OFDM symbol for which the SS / PBCH block is configured.
  • 30 to 32 are diagrams for describing an operation implementation example of a terminal, a base station, and a network when a CSI-RS and a PDCCH / PDSCH are multiplexed and transmitted.
  • the terminal may receive a parameter related to CSI-RS configuration from a base station (S3001). Meanwhile, the parameter may include a 'Repetition' parameter and / or a 'TRS-info' parameter for setting the use of the CSI-RS.
  • the terminal may receive a transmission configuration indicator (TCI) including at least one CSI-RS resource identification from the base station (S3003).
  • TCI transmission configuration indicator
  • DCI downlink control information
  • the UE may then receive the CSI-RS and the PDCCH / PDSCH based on the TCI (S3005).
  • the CSI-RS and the PDCCH / PDSCH may be multiplexed in the same time domain.
  • a specific reception method of the CSI-RS and the PDCCH / PDSCH for the steps S3001 to S3005 may be based on the following embodiments.
  • 31 illustrates an operation implementation example of a base station according to an embodiment of the present invention.
  • the base station may transmit a parameter related to CSI-RS configuration (S3101). Meanwhile, the parameter may include a 'Repetition' parameter and / or a 'TRS-info' parameter for setting the use of the CSI-RS.
  • the base station may transmit a transmission configuration indicator (TCI) including at least one CSI-RS resource identification (S3103).
  • TCI transmission configuration indicator
  • the TCI may be included in downlink control information (DCI). That is, the base station may transmit a TCI including at least one CSI-RS resource ID through the DCI.
  • the base station may transmit the CSI-RS and the PDCCH / PDSCH based on the TCI (S3105).
  • the CSI-RS and the PDCCH / PDSCH may be multiplexed and transmitted in the same time domain. That is, the CSI-RS and the PDCCH / PDSCH may be FMD and transmitted.
  • a detailed transmission scheme of the CSI-RS and the PDCCH / PDSCH for the steps S3101 to S3105 may be based on the following embodiment.
  • the base station may transmit a parameter related to CSI-RS configuration to the terminal (S3201). Meanwhile, the parameter may include a 'Repetition' parameter and / or a 'TRS-info' parameter for setting the use of the CSI-RS.
  • the base station may transmit a transmission configuration indicator (TCI) including at least one CSI-RS resource identification to the terminal (S3203).
  • TCI transmission configuration indicator
  • the TCI may be included in downlink control information (DCI). That is, the base station may transmit a TCI including at least one CSI-RS resource ID to the terminal through the DCI.
  • the base station may transmit the CSI-RS and the PDCCH / PDSCH to the terminal based on the TCI (S3205).
  • the CSI-RS and the PDCCH / PDSCH may be multiplexed in the same time domain and transmitted to the UE. That is, the CSI-RS and the PDCCH / PDSCH may be FMD and transmitted.
  • a detailed transmission scheme of the CSI-RS and the PDCCH / PDSCH for the steps S3201 to S3205 may be based on the following embodiment.
  • FIGS. 30 to 32 Now, a detailed operation method of a terminal, a base station, and a network based on FIGS. 30 to 32 will be described.
  • the UE may be configured such that the CSI-RS and the PDCCH are received on the same OFDM symbol.
  • the UE may freely select a reception beam for the CSI-RS resource.
  • the UE may freely select a reception beam for the CSI-RS resource.
  • the UE may freely select a reception beam for the CSI-RS resource.
  • the CSI-RS and the PDCCH are received on the same OFDM symbol, and the spatial QCL is not configured in the CSI-RS, but the UE receives the CSI-RS and the PDCCH according to the spatial QCL of the PDCCH, Since the reception beam for the CSI-RS resource and the reception beam for the PDCCH are different from each other, a collision may occur between the reception of the CSI-RS resource and the reception of the PDCCH.
  • the FDM of the CSI-RS and the PDCCH may be supported only when the spatial QCL reference to the explicitly indicated PDCCH is the same as the spatial QCL reference of the CSI-RS.
  • the network since the PDSCH can be dynamically scheduled by the DCI, the network has a CSI-RS of the CSI-RS resource set in which the Repetition 'ON' is set.
  • PDSCH may be scheduled so as not to overlap with RS resources. In such a situation, it may be difficult to find the necessity of introducing a symbol level PDSCH rate matching while increasing the complexity of the UE. Accordingly, the UE may not expect that PDSCH overlaps with one or more OFDM symbols for the CSI-RS set to Repetition 'ON'.
  • the UE since the UE maintains a single reception beam in a slot set to the Repetition 'OFF', it is preferable to allow the CSI-RS resource and the FDM of the PDSCH. can do.
  • the TCI for the PDSCH may include at least one CSI-RS resource ID among CSI-RS resources included in the CSI-RS resource set.
  • the base station may indicate to the terminal the CSI-RS resource having the same reception beam as the PDSCH scheduled through the TCI included in the DCI scheduling the PDSCH.
  • the UE may recognize the CSI-RS resource having the same reception beam as the PDSCH scheduled by the DCI based on the TCI state, and corresponds to the CSI-RS resource indicated through the TCI to receive the PDSCH. Receive beams may be used.
  • the minimum bandwidth for the CSI-RS resource is determined as the minimum of 24 RBs (Resource Blocks) and the corresponding BWP size. That is, the minimum bandwidth for the CSI-RS resource may be determined as min (24, N size BWP ).
  • the CSI-RS bandwidth may be occupied by CSI-RS resources and configured as an initial RB index (ie, StartingRB ) and the number of RBs (nofRBs).
  • N BW CSI - RS has a value smaller than min (24, N size BWP ).
  • N BW CSI - RS is the CSI-RS bandwidth
  • N start BWP is the start RB index of the BWP
  • N size BWP is the size of the BWP.
  • the CSI-RS bandwidth may be set excessively small.
  • the BWP size (N size BWP ) can be allocated in units of 1 RB, N size BWP, N start BWP, and startingRB Depending on the value, N BW CSI - RS may be set to a fairly small value. However, for accurate CSI measurement and reporting, a CSI-RS bandwidth of a specific size or more needs to be set.
  • the UE may determine the CSI-RS bandwidth based on the values of the BWP size, the BWP starting RB index, and the startingRB .
  • the starting point is the same as the BWP starting point. In addition, this may be limited to the case where the size of the BWP is smaller than a specific value in consideration of the determined BWP size.
  • first to sixth embodiments may be implemented alone, two or more embodiments of the first to sixth embodiments may be combined and implemented. That is, the first to sixth embodiments of the present invention are merely provided for convenience of description, and the invention according to the present specification is not limited to any one embodiment and is implemented as a combination of a plurality of embodiments. Can be implemented.
  • 34 is a view illustrating a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described with reference to FIG. 34 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 34 is not necessarily limited to a terminal and / or a base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like.
  • the apparatus includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), and artificial intelligence (AI).
  • UAV unmanned aerial vehicle
  • AI artificial intelligence
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the MTC device and the IoT device are devices that do not require human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, various sensors, and the like.
  • a medical device is a device used for the purpose of inspecting, replacing, or modifying a device, structure, or function used for diagnosing, treating, alleviating, treating, or preventing a disease.
  • the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like.
  • the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device or a point of sales (POS).
  • the climate / environmental device may mean a device for monitoring and predicting the climate / environment.
  • the transmitting terminal and the receiving terminal are mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants, portable multimedia players, navigation, slate PCs. , Tablet PC, ultrabook, wearable device (e.g., smartwatch, glass glass, head mounted display), foldable ( foldable) devices and the like.
  • the HMD is a display device of a head type, and may be used to implement VR or AR.
  • a terminal and / or a base station may include at least one processor 10, a transceiver 35, such as a digital signal processor (DSP) or a microprocessor, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like.
  • the terminal and / or base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as an RF module.
  • Processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. In at least some of the embodiments described in FIGS. 1 to 33, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
  • layers of a radio interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user may enter various types of information (eg, indication information such as a telephone number) by pressing a button on the keypad 20 or by various techniques such as voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information.
  • the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data.
  • Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting.
  • Antenna 40 facilitates the transmission and reception of wireless signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
  • the senor may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like.
  • the processor 10 receives and processes sensor information obtained from the sensor such as proximity, position, and image, thereby performing various functions such as collision avoidance and autonomous driving.
  • various components such as a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, which may be used for various services such as autonomous driving, vehicle safety service, and the like.
  • FIG. 34 is only an embodiment of devices configuring the terminal and / or the base station, but is not limited thereto.
  • some components such as keypad 20, Global Positioning System (GPS) chip, sensor, speaker 45 and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
  • GPS Global Positioning System
  • the operation of the wireless communication device illustrated in FIG. 34 is a terminal according to an embodiment of the present invention.
  • the processor 10 may control the transceiver 35 to receive information related to a period and an offset for a periodic CSI-RS.
  • the processor 10 may control the transceiver 35 to receive information related to an aperiodic CSI-RS resource set. Thereafter, the processor 10 may control the transceiver 35 to receive the aperiodic CSI-RS based on the offset value for the periodic CSI-RS.
  • the processor 10 may not use the periodic value for the periodic CSI-RS for aperiodic CSI-RS reception. Meanwhile, a specific method for implementing the above-described operation of the processor 10 may be based on the fourth embodiment.
  • the processor 10 may provide information related to a period and an offset for a periodic CSI-RS.
  • the transceiver 35 may be controlled to transmit.
  • the processor 10 may control the transceiver 35 to transmit information related to an aperiodic CSI-RS resource set.
  • the processor 10 may control the transceiver 35 to transmit the aperiodic CSI-RS based on the offset value for the periodic CSI-RS.
  • the processor 10 may not use the periodic value for the periodic CSI-RS for aperiodic CSI-RS transmission.
  • a detailed method for implementing the above-described operation of the processor 10 may be based on the fourth embodiment.
  • 35 illustrates an AI device 100 that may implement embodiments of the present invention.
  • the AI device 100 is a TV, a projector, a mobile phone, a smartphone, a desktop computer, a notebook, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation device, a tablet PC, a wearable device, and a set-top box (STB). ), A DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, and the like, or a fixed device or a mobile device.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • STB set-top box
  • the terminal 100 connects the communication unit 110, the input unit 120, the running processor 130, the sensing unit 140, the output unit 150, the memory 170, the processor 180, and the like. It may include.
  • the communicator 110 may transmit / receive data to / from external devices such as the other AI devices 100a to 100e or the AI server 200 using wired or wireless communication technology.
  • the communicator 110 may transmit / receive sensor information, a user input, a learning model, a control signal, and the like with external devices.
  • the communication technology used by the communication unit 110 may include Global System for Mobile Communication (GSM), Code Division Multi Access (CDMA), Long Term Evolution (LTE), 5G, Wireless LAN (WLAN), and Wireless-Fidelity (Wi-Fi). ), Bluetooth (Bluetooth®), Radio Frequency Identification (RFID), Infrared Data Association (IrDA), ZigBee, Near Field Communication (NFC), and the like.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multi Access
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • Wi-Fi Wireless-Fidelity
  • Bluetooth Bluetooth
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the input unit 120 may acquire various types of data.
  • the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
  • a signal obtained from the camera or microphone may be referred to as sensing data or sensor information by treating the camera or microphone as a sensor.
  • the input unit 120 may acquire input data to be used when acquiring an output using training data and a training model for model training.
  • the input unit 120 may obtain raw input data, and in this case, the processor 180 or the running processor 130 may extract input feature points as preprocessing on the input data.
  • the learning processor 130 may train a model composed of artificial neural networks using the training data.
  • the learned artificial neural network may be referred to as a learning model.
  • the learning model may be used to infer result values for new input data other than the training data, and the inferred values may be used as a basis for judgment to perform an operation.
  • the running processor 130 may perform AI processing together with the running processor 240 of the AI server 200.
  • the running processor 130 may include a memory integrated with or implemented in the AI device 100.
  • the running processor 130 may be implemented using the memory 170, an external memory directly coupled to the AI device 100, or a memory held in the external device.
  • the sensing unit 140 may acquire at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors.
  • the sensors included in the sensing unit 140 include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint sensor, an ultrasonic sensor, an optical sensor, a microphone, and a li. , Radar and so on.
  • the output unit 150 may generate an output related to visual, auditory, or tactile.
  • the output unit 150 may include a display unit for outputting visual information, a speaker for outputting auditory information, and a haptic module for outputting tactile information.
  • the memory 170 may store data supporting various functions of the AI device 100.
  • the memory 170 may store input data, training data, training model, training history, and the like acquired by the input unit 120.
  • the processor 180 may determine at least one executable operation of the AI device 100 based on the information determined or generated using the data analysis algorithm or the machine learning algorithm. In addition, the processor 180 may control the components of the AI device 100 to perform a determined operation.
  • the processor 180 may request, search for, receive, or utilize data of the running processor 130 or the memory 170, and may perform an operation predicted or determined to be preferable among the at least one executable operation.
  • the components of the AI device 100 may be controlled to execute.
  • the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
  • the processor 180 may obtain intention information about the user input, and determine the user's requirements based on the obtained intention information.
  • the processor 180 uses at least one of a speech to text (STT) engine for converting a voice input into a string or a natural language processing (NLP) engine for obtaining intention information of a natural language. Intent information corresponding to the input can be obtained.
  • STT speech to text
  • NLP natural language processing
  • At least one or more of the STT engine or the NLP engine may be configured as an artificial neural network, at least partly learned according to a machine learning algorithm. At least one of the STT engine or the NLP engine may be learned by the running processor 130, may be learned by the running processor 240 of the AI server 200, or may be learned by distributed processing thereof. It may be.
  • the processor 180 collects history information including operation contents of the AI device 100 or feedback of a user about the operation, and stores the information in the memory 170 or the running processor 130, or the AI server 200. Can transmit to external device. The collected historical information can be used to update the learning model.
  • the processor 180 may control at least some of the components of the AI device 100 to drive an application program stored in the memory 170. In addition, the processor 180 may operate by combining two or more of the components included in the AI device 100 to drive the application program.
  • FIG 36 shows an AI server 200 that can implement embodiments of the present invention.
  • the AI server 200 may refer to an apparatus for learning an artificial neural network using a machine learning algorithm or using an learned artificial neural network.
  • the AI server 200 may be composed of a plurality of servers to perform distributed processing, or may be defined as a 5G network.
  • the AI server 200 may be included as a part of the AI device 100 to perform at least some of the AI processing together.
  • the AI server 200 may include a communication unit 210, a memory 230, a running processor 240, a processor 260, and the like.
  • the communication unit 210 may transmit / receive data with an external device such as the AI device 100.
  • the memory 230 may include a model storage unit 231.
  • the model storage unit 231 may store a trained model or a trained model (or artificial neural network 231a) through the running processor 240.
  • the learning processor 240 may train the artificial neural network 231a using the training data.
  • the learning model may be used while mounted in the AI server 200 of the artificial neural network, or may be mounted and used in an external device such as the AI device 100.
  • the learning model can be implemented in hardware, software or a combination of hardware and software. When some or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230.
  • the processor 260 may infer a result value with respect to the new input data using the learning model, and generate a response or control command based on the inferred result value.
  • FIG 37 shows an AI system 1 according to which embodiments of the present invention can be implemented.
  • the AI system 1 may include at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
  • This cloud network 10 is connected.
  • the robot 100a to which the AI technology is applied, the autonomous vehicle 100b, the XR device 100c, the smartphone 100d or the home appliance 100e may be referred to as the AI devices 100a to 100e.
  • the cloud network 10 may refer to a network that forms part of the cloud computing infrastructure or exists in the cloud computing infrastructure.
  • the cloud network 10 may be configured using a 3G network, 4G or Long Term Evolution (LTE) network or a 5G network.
  • LTE Long Term Evolution
  • the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10.
  • the devices 100a to 100e and 200 may communicate with each other through the base station, but may communicate with each other directly without passing through the base station.
  • the AI server 200 may include a server that performs AI processing and a server that performs operations on big data.
  • the AI server 200 includes at least one or more of the AI devices constituting the AI system 1, such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. Connected via the cloud network 10, the AI processing of the connected AI devices 100a to 100e may help at least a part.
  • the AI devices constituting the AI system 1 such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
  • the AI processing of the connected AI devices 100a to 100e may help at least a part.
  • the AI server 200 may train the artificial neural network according to the machine learning algorithm in place of the AI devices 100a to 100e and directly store the learning model or transmit the training model to the AI devices 100a to 100e.
  • the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value with respect to the received input data using a learning model, and generates a response or control command based on the inferred result value. Can be generated and transmitted to the AI device (100a to 100e).
  • the AI devices 100a to 100e may infer a result value from input data using a direct learning model and generate a response or control command based on the inferred result value.
  • the AI devices 100a to 100e to which the above-described technology is applied will be described.
  • the AI devices 100a to 100e illustrated in FIG. 37 may be viewed as specific embodiments of the AI device 100 illustrated in FIG. 35.
  • the robot 100a may be applied to an AI technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • the robot 100a may include a robot control module for controlling an operation, and the robot control module may refer to a software module or a chip implemented in hardware.
  • the robot 100a acquires state information of the robot 100a by using sensor information obtained from various types of sensors, detects (recognizes) the surrounding environment and an object, generates map data, or moves a route and travels. You can decide on a plan, determine a response to a user interaction, or determine an action.
  • the robot 100a may use sensor information acquired from at least one sensor among a rider, a radar, and a camera to determine a movement route and a travel plan.
  • the robot 100a may perform the above operations by using a learning model composed of at least one artificial neural network.
  • the robot 100a may recognize the surrounding environment and the object using the learning model, and determine the operation using the recognized surrounding environment information or the object information.
  • the learning model may be directly learned by the robot 100a or may be learned by an external device such as the AI server 200.
  • the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform an operation. You may.
  • the robot 100a determines a movement route and a travel plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the movement path and the travel plan. Accordingly, the robot 100a may be driven.
  • the map data may include object identification information for various objects arranged in a space in which the robot 100a moves.
  • the map data may include object identification information about fixed objects such as walls and doors and movable objects such as flower pots and desks.
  • the object identification information may include a name, type, distance, location, and the like.
  • the robot 100a may control the driving unit based on the control / interaction of the user, thereby performing an operation or driving.
  • the robot 100a may acquire the intention information of the interaction according to the user's motion or voice utterance and determine the response based on the acquired intention information to perform the operation.
  • the autonomous vehicle 100b may be implemented by an AI technology and implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, or the like.
  • the autonomous vehicle 100b may include an autonomous driving control module for controlling the autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implemented in hardware. Although the autonomous driving control module may be included inside as a configuration of the autonomous driving vehicle 100b, the autonomous driving control module may be configured and connected to the outside of the autonomous driving vehicle 100b.
  • the autonomous vehicle 100b acquires state information of the autonomous vehicle 100b by using sensor information obtained from various types of sensors, detects (recognizes) the surrounding environment and an object, generates map data, A travel route and a travel plan can be determined, or an action can be determined.
  • the autonomous vehicle 100b may use sensor information acquired from at least one sensor among a lidar, a radar, and a camera, similarly to the robot 100a, to determine a movement route and a travel plan.
  • the autonomous vehicle 100b may receive or recognize sensor information from external devices or receive information directly recognized from external devices. .
  • the autonomous vehicle 100b may perform the above operations by using a learning model composed of at least one artificial neural network.
  • the autonomous vehicle 100b may recognize a surrounding environment and an object using a learning model, and determine a driving line using the recognized surrounding environment information or object information.
  • the learning model may be learned directly from the autonomous vehicle 100b or may be learned from an external device such as the AI server 200.
  • the autonomous vehicle 100b may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. You can also do
  • the autonomous vehicle 100b determines a moving route and a driving plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the moving route and the driving plan. According to the plan, the autonomous vehicle 100b can be driven.
  • the map data may include object identification information for various objects arranged in a space (eg, a road) on which the autonomous vehicle 100b travels.
  • the map data may include object identification information about fixed objects such as street lights, rocks, buildings, and movable objects such as vehicles and pedestrians.
  • the object identification information may include a name, type, distance, location, and the like.
  • the autonomous vehicle 100b may perform an operation or drive by controlling the driving unit based on the user's control / interaction.
  • the autonomous vehicle 100b may acquire the intention information of the interaction according to the user's motion or voice utterance, and determine the response based on the obtained intention information to perform the operation.
  • AI technology is applied to the XR device 100c, and a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smartphone, a computer, a wearable device, a home appliance, and a digital signage It may be implemented as a vehicle, a fixed robot or a mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • the XR apparatus 100c analyzes three-dimensional point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for three-dimensional points, thereby providing information on the surrounding space or reality object. It can obtain and render XR object to output. For example, the XR apparatus 100c may output an XR object including additional information about the recognized object in correspondence with the recognized object.
  • the XR apparatus 100c may perform the above-described operations using a learning model composed of at least one artificial neural network.
  • the XR apparatus 100c may recognize a reality object in 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized reality object.
  • the learning model may be learned directly from the XR device 100c or learned from an external device such as the AI server 200.
  • the XR apparatus 100c may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. It can also be done.
  • the robot 100a may be implemented using an AI technology and an autonomous driving technology, such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • an autonomous driving technology such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • the robot 100a to which the AI technology and the autonomous driving technology are applied may mean a robot itself having an autonomous driving function, a robot 100a interacting with the autonomous vehicle 100b, and the like.
  • the robot 100a having an autonomous driving function may collectively move devices according to a given copper line or determine a copper line by itself without controlling the user.
  • the robot 100a and the autonomous vehicle 100b having the autonomous driving function may use a common sensing method to determine one or more of a movement route or a driving plan.
  • the robot 100a and the autonomous vehicle 100b having the autonomous driving function may determine one or more of the movement route or the driving plan by using information sensed through the lidar, the radar, and the camera.
  • the robot 100a which interacts with the autonomous vehicle 100b, is present separately from the autonomous vehicle 100b and is linked to the autonomous driving function inside or outside the autonomous vehicle 100b, or the autonomous vehicle 100b. ) May perform an operation associated with the user who boarded.
  • the robot 100a interacting with the autonomous vehicle 100b acquires sensor information on behalf of the autonomous vehicle 100b and provides the sensor information to the autonomous vehicle 100b or obtains sensor information, By generating object information and providing the object information to the autonomous vehicle 100b, the autonomous vehicle function of the autonomous vehicle 100b can be controlled or assisted.
  • the robot 100a interacting with the autonomous vehicle 100b may monitor a user in the autonomous vehicle 100b or control a function of the autonomous vehicle 100b through interaction with the user. .
  • the robot 100a may activate the autonomous driving function of the autonomous vehicle 100b or assist the control of the driver of the autonomous vehicle 100b.
  • the function of the autonomous vehicle 100b controlled by the robot 100a may include not only an autonomous vehicle function but also a function provided by a navigation system or an audio system provided in the autonomous vehicle 100b.
  • the robot 100a interacting with the autonomous vehicle 100b may provide information or assist a function to the autonomous vehicle 100b outside the autonomous vehicle 100b.
  • the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart signal light, or may interact with the autonomous vehicle 100b, such as an automatic electric charger of an electric vehicle. You can also automatically connect an electric charger to the charging port.
  • the robot 100a may be applied to an AI technology and an XR technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, or the like.
  • the robot 100a to which the XR technology is applied may mean a robot that is the object of control / interaction in the XR image.
  • the robot 100a may be distinguished from the XR apparatus 100c and interlocked with each other.
  • the robot 100a When the robot 100a that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera, the robot 100a or the XR apparatus 100c generates an XR image based on the sensor information. In addition, the XR apparatus 100c may output the generated XR image. The robot 100a may operate based on a control signal input through the XR apparatus 100c or user interaction.
  • the user may check an XR image corresponding to the viewpoint of the robot 100a that is remotely linked through an external device such as the XR device 100c, and may adjust the autonomous driving path of the robot 100a through interaction. You can control the movement or driving, or check the information of the surrounding objects.
  • the autonomous vehicle 100b may be implemented by an AI technology and an XR technology, such as a mobile robot, a vehicle, an unmanned aerial vehicle, and the like.
  • the autonomous vehicle 100b to which the XR technology is applied may mean an autonomous vehicle having a means for providing an XR image, or an autonomous vehicle that is the object of control / interaction in the XR image.
  • the autonomous vehicle 100b, which is the object of control / interaction in the XR image is distinguished from the XR apparatus 100c and may be linked with each other.
  • the autonomous vehicle 100b having means for providing an XR image may acquire sensor information from sensors including a camera and output an XR image generated based on the obtained sensor information.
  • the autonomous vehicle 100b may provide a passenger with an XR object corresponding to a real object or an object in a screen by outputting an XR image with a HUD.
  • the XR object when the XR object is output to the HUD, at least a part of the XR object may be output to overlap the actual object to which the occupant's eyes are directed.
  • the XR object when the XR object is output on the display provided inside the autonomous vehicle 100b, at least a portion of the XR object may be output to overlap the object in the screen.
  • the autonomous vehicle 100b may output XR objects corresponding to objects such as a road, another vehicle, a traffic light, a traffic sign, a motorcycle, a pedestrian, a building, and the like.
  • the autonomous vehicle 100b that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera
  • the autonomous vehicle 100b or the XR apparatus 100c may be based on the sensor information.
  • the XR image may be generated, and the XR apparatus 100c may output the generated XR image.
  • the autonomous vehicle 100b may operate based on a user's interaction or a control signal input through an external device such as the XR apparatus 100c.
  • Certain operations described in this document as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method for transmitting and receiving the channel state information reference signal as described above and an apparatus therefor have been described with reference to the example applied to the fifth generation NewRAT system.
  • the present invention may be applied to various wireless communication systems in addition to the fifth generation NewRAT system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서, 단말이 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하는 방법을 개시한다. 특히, 상기 방법은 주기적 CSI-RS 자원을 위한 주기 정보 및 제 1 오프셋 정보를 수신하고, 적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고, 상기 설정 정보 및 제 1 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고, 상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않는 것을 특징으로 한다.

Description

채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치
본 발명은 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 비주기적 CSI-RS(Channel State Information-Reference Signal) 자원을 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 단말이 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하는 방법에 있어서, 주기적 CSI-RS 자원을 위한 주기 정보 및 제 1 오프셋 정보를 수신하고, 적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고, 상기 설정 정보 및 제 1 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고, 상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않을 수 있다.
이 때, 상기 주기 정보는, 특정 값을 포함할 수 있다.
또한, 상기 설정 정보는 제 2 오프셋 정보를 포함하고, 상기 비주기적 CSI-RS 자원 집합에 상기 제 2 오프셋 정보가 적용되고, 상기 적어도 하나의 비주기적 CSI-RS 자원 각각에 상기 제 1 오프셋 정보가 적용될 수 있다.
또한, 상기 적어도 하나의 비주기적 CSI-RS 자원은, 비주기적 ZP(Zero Power) CSI-RS 자원이고, 상기 비주기적 ZP CSI-RS 자원에서는 PDSCH(Physical Downlink Shared Channel)가 수신되지 않을 수 있다.
또한, 상기 PDSCH는 복수의 슬롯들에 걸쳐 스케줄링될 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 주기적 CSI-RS 자원을 위한 주기 정보 및 제 1 오프셋 정보를 수신하고, 적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고, 상기 설정 정보 및 제 1 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고, 상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않을 수 있다.
이 때, 상기 주기 정보는, 특정 값을 포함할 수 있다.
또한, 상기 설정 정보는 제 2 오프셋 정보를 포함하고, 상기 비주기적 CSI-RS 자원 집합에 상기 제 2 오프셋 정보가 적용되고, 상기 적어도 하나의 비주기적 CSI-RS 자원 각각에 상기 제 1 오프셋 정보가 적용될 수 있다.
또한, 상기 적어도 하나의 비주기적 CSI-RS 자원은, 비주기적 ZP(Zero Power) CSI-RS 자원이고, 상기 비주기적 ZP CSI-RS 자원에서는 PDSCH(Physical Downlink Shared Channel)가 수신되지 않을 수 있다.
또한, 상기 PDSCH는 복수의 슬롯들에 걸쳐 스케줄링될 수 있다.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하기 위한 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 트랜시버를 통해, 주기적 CSI-RS 자원을 위한 주기 정보 및 오프셋 정보를 수신하고, 상기 적어도 하나의 트랜시버를 통해, 적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고, 상기 적어도 하나의 트랜시버를 통해, 상기 설정 정보 및 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고, 상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않을 수 있다.
본 발명에 따르면, 비주기적 CSI-RS를 전송할 때에, 주기적 CSI-RS에 관한 설정을 이용함으로써, 시그널링 오버헤드를 줄일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 6 내지 도 9는 SS/PBCH 블록의 구성(Composition) 및 전송 방법을 설명하기 위한 도면이다.
도 10은 NR 시스템에서의 아날로그 빔포밍(Analog Beamforming)을 설명하기 위한 도면이다.
도 11 내지 도 15는 NR 시스템에서의 빔 관리(Beam Management)를 설명하기 위한 도면이다.
도 16은 채널 상태 정보를 보고하는 예시를 설명하기 위한 도면이다.
도 17 내지 도 19는 NR 시스템에서 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH)에 대해 설명하기 위한 도면이다.
도 20 내지 도 22는 본 발명에 따른 단말, 기지국 및 네트워크 동작의 일례를 나타낸다.
도 23은 반송파 집성(Carrier Aggregation) 에서의 안테나 구조 구현 예를 설명하기 위한 도면이다.
도 24는 CSI-IM (Channel State Information - Interference Measurement)의 자원 요소 맵핑 패턴의 예시를 나타낸다.
도 25는 멀티플렉싱(Multiplexing)된 CSI-RS (Channel State Information - Reference Signal) 및 SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 단말이 수신하는 예시를 나타낸다.
도 26은 서로 다른 타입 또는 서로 다른 설정을 갖는 CSI-RS들이 멀티플렉싱된 경우의 단말의 수신 동작 예를 나타낸다.
도 27 내지 도 29는 본 발명의 비주기적 CSI-RS를 송수신하는 실시 예를 설명하기 위한 도면이다.
도 30 내지 도 32는 본 발명의 CSI-RS 및 PDCCH/PDSCH(Physical Downlink Shared Channel)이 멀티플렉싱되어 전송되는 실시 예를 설명하기 위한 도면이다.
도 33은 본 발명의 CSI-RS 자원을 위한 대역폭(Bandwidth)를 설정하는 실시 예를 설명하기 위한 도면이다.
도 34은 본 발명을 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.
도 35 내지 도 37는 본 발명의 실시 예들을 구현하기 위한 AI (Artificial Intelligence) 시스템 및 장치의 예시를 나타내는 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 복수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 복수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S203 내지 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S206).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
도 6은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 6을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 3과 같이 정리될 수 있다.
Type of Signals Operations
1 st step PSS * SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group(3 hypothesis)
2 nd Step SSS * Cell ID group detection (336 hypothesis)
3 rd Step PBCH DMRS * SSB index and Half frame (HF) index(Slot and frame boundary detection)
4 th Step PBCH * Time information (80 ms, System Frame Number (SFN), SSB index, HF)* Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration
5 th Step PDCCH and PDSCH * Cell access information* RACH configuration
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
도 7은 SSB 전송을 예시한다. 도 7을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
도 8은 SSB의 멀티-빔 전송을 예시한다.
빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다 (이하에서, 빔과 빔 방향은 혼용될 수 있다). 도 8을 참조하면, SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경되거나, SSB (인덱스) 그룹 단위로 변경될 수 있다. 후자의 경우, SSB 빔은 SSB (인덱스) 그룹 내에서 동일하게 유지된다. 즉, SSB의 전송 빔 반향이 복수의 연속된 SSB에서 반복된다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.
- For frequency range up to 3 GHz, Max number of beams = 4
- For frequency range from 3GHz to 6 GHz, Max number of beams = 8
- For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64
다만, 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.
단말이 기지국에 초기 접속을 시도하는 경우, 단말은 SSB에 기반하여 기지국과 빔을 정렬할 수 있다. 예를 들어, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블을 기지국에게 전송할 수 있다. SSB는 초기 접속 이후에도 기지국과 단말간에 빔을 정렬하는데 사용될 수 있다.
도 9는 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
SSB 버스트 세트 내에서 SSB는 최대 L개가 전송될 수 있으며, SSB가 실제로 전송되는 개수/위치는 기지국/셀 별로 달라질 수 있다. SSB가 실제로 전송되는 개수/위치는 레이트-매칭과 측정을 위해 사용되며, 실제로 전송된 SSB에 관한 정보는 다음과 같이 지시된다.
- 레이트-매칭과 관련된 경우: 단말-특정(specific) RRC 시그널링이나 RMSI를 통해 지시될 수 있다. 단말-특정 RRC 시그널링은 below 6GHz 및 above 6GHz 주파수 범위에서 모두 풀(full)(예, 길이 L) 비트맵을 포함한다. 반편, RMSI는 below 6GHz에서 풀 비트맵을 포함하고, above 6GHz에서는 도시된 바와 같이 압축 형태의 비트맵을 포함한다. 구체적으로, 그룹-비트 맵(8비트) + 그룹-내 비트맵(8비트)을 이용하여 실제로 전송된 SSB에 관한 정보가 지시될 수 있다. 여기서, 단말-특정 RRC 시그널링이나 RMSI를 통해 지시된 자원(예, RE)은 SSB 전송을 위해 예약되고, PDSCH/PUSCH 등은 SSB 자원을 고려하여 레이트-매칭될 수 있다.
- 측정과 관련된 경우: RRC 연결(connected) 모드에 있는 경우, 네트워크(예, 기지국)는 측정 구간 내에서 측정될 SSB 세트를 지시할 수 있다. SSB 세트는 주파수 레이어(frequency layer) 별로 지시될 수 있다. SSB 세트에 관한 지시가 없는 경우, 디폴트 SSB 세트가 사용된다. 디폴트 SSB 세트는 측정 구간 내의 모든 SSB를 포함한다. SSB 세트는 RRC 시그널링의 풀(full)(예, 길이 L) 비트맵을 이용하여 지시될 수 있다. RRC 아이들(idle) 모드에 있는 경우, 디폴트 SSB 세트가 사용된다.
한편, NR 시스템의 경우, 전송/수신 안테나가 크게 증가하는 거대(massive) 다중 입력 다중 출력(multiple input multiple output, MIMO) 환경이 고려될 수 있다. 즉, 거대 MIMO 환경이 고려됨에 따라, 전송/수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다. 한편, NR 시스템에서는 above 6GHz 대역, 즉, 밀리미터 주파수 대역에서의 통신을 지원한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송하는 빔포밍 기법을 사용한다. 거대 MIMO 환경에서는 하드웨어 구현의 복잡도를 줄이고, 다수의 안테나들을 이용한 성능 증가, 자원 할당의 유연성, 주파수별 빔 제어의 용이를 위해, 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔포밍(analog beamforming) 기법과 디지털 빔포밍(digital beamforming) 기법이 결합된 하이브리드(hybrid) 형태의 빔포밍 기법이 요구된다.
도 10은 하이브리드 빔포밍(hybrid beamforming)을 위한 전송단 및 수신단의 블록도의 일례를 나타낸 도이다.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, BS나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려되고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 RF 유닛(혹은 트랜시버 유닛(transceiver unit, TXRU))을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 RF 유닛를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 RF 유닛을 갖는 방식이다. 하이브리드 BF의 경우, B개의 RF 유닛과 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
하향링크 빔 관리(Downlink Beam Management, DL BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): BS 또는 UE가 자신의 전송 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
이 때, DL BM 과정은 (1) BS에 의한 빔포밍된 DL RS들(예, CSI-RS 또는 SSB) 전송과, (2) UE에 의한 빔 보고(beam reporting)를 포함할 수 있다.
여기서, 빔 보고는 선호하는(preferred) DL RS ID(들) 및 이에 대응하는 참조 신호 수신 전력(reference signal received power, RSRP)를 포함할 수 있다. DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
도 11은 SSB와 CSI-RS를 이용한 빔포밍의 일례를 나타낸다.
도 11과 같이, SSB 빔과 CSI-RS 빔이 빔 측정(beam measurement)을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 RSRP이다. SSB는 듬성한(coarse) 빔 측정을 위해 사용되며, CSI-RS는 미세한(fine) 빔 측정을 위해 사용될 수 있다. SSB는 Tx 빔 스위핑과 Rx 빔 스위핑 모두에 사용될 수 있다. SSB를 이용한 Rx 빔 스위핑은 다수의 SSB 버스트들에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx 빔을 변경하면서 SSB의 수신을 시도함으로써 수행될 수 있다. 여기서, 하나의 SS 버스트는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS 버스트 세트는 하나 또는 그 이상의 SSB 버스트들을 포함한다.
1. SSB를 이용한 DL BM
도 12는 SSB를 이용한 DL BM 과정의 일례를 나타낸 흐름도이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다(S1210). RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고를 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다(S1220).
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다(S1230). 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
2. CSI-RS를 이용한 DL BM
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS 자원 세트에 대해 반복(repetition) 파라미터가 설정되고 TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) 반복 파라미터가 설정되지 않고 TRS_info가 설정된 경우, CSI-RS는 트랙킹 참조 신호(tracking reference signal, TRS)을 위해 사용된다. iii) 반복 파라미터가 설정되지 않고 TRS_info가 설정되지 않은 경우, CSI-RS는 CSI 획득(acquisition)을 위해 사용된다.
(RRC 파라미터) 반복이 'ON'으로 설정된 경우, UE의 Rx 빔 스위핑 과정과 관련된다. 반복이 'ON'으로 설정된 경우, UE가 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 UE는 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 동일한 하향링크 공간 도메인 필터로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원은 동일한 Tx 빔을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 OFDM 심볼로 전송될 수 있다.
반면, 반복이 'OFF'로 설정된 경우는 BS의 Tx 빔 스위핑 과정과 관련된다. 반복이 'OFF'로 설정된 경우, UE는 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들이 동일한 하향링크 공간 도메인 전송 필터로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 Tx 빔을 통해 전송된다. 도 13은 CSI-RS를 이용한 DL BM 과정의 또 다른 일례를 나타낸다.
도 13(a)는 UE의 Rx 빔 결정(또는 정제(refinement)) 과정을 나타내며, 도 13(b)는 BS의 Tx 빔 스위핑 과정을 나타낸다. 또한, 도 13(a)는, 반복 파라미터가 'ON'으로 설정된 경우이고, 도 13(b)는, 반복 파라미터가 'OFF'로 설정된 경우이다.
도 13(a) 및 도 14(a)를 참고하여, UE의 Rx 빔 결정 과정에 대해 살펴본다.
도 14(a)는 UE의 수신 빔 결정 과정의 일례를 나타낸 흐름도이다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1410). 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S1420).
- UE는 자신의 Rx 빔을 결정한다(S1430).
- UE는 CSI 보고를 생략한다(S1440). 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
도 13(b) 및 도 14(b)를 참고하여, BS의 Tx 빔 결정 과정에 대해 살펴본다.
도 14(b)는 BS의 전송 빔 결정 과정의 일례를 나타낸 흐름도이다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1450). 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다(S1460).
- UE는 최상의(best) 빔을 선택(또는 결정)한다(S1470)
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다(S1480). 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
도 15는 도 13의 동작과 관련된 시간 및 주파수 도메인에서의 자원 할당의 일례를 나타낸다.
CSI-RS 자원 세트에 repetition 'ON'이 설정된 경우, 복수의 CSI-RS resource들이 동일한 전송 빔을 적용하여 반복하여 사용되고, CSI-RS 자원 세트에 repetition 'OFF'가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 전송 빔으로 전송될 수 있다.
3. DL BM 관련 빔 지시(beam indication)
UE는 적어도 QCL(Quasi Co-location) 지시를 위한 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 시그널링을 통해 수신할 수 있다. 여기서, M은 UE (capability)에 의존하며, 64일 수 있다.
각 TCI 상태는 하나의 참조 신호(reference signal, RS) 세트를 가지고 설정될 수 있다. 표 4는 TCI-State IE의 일례를 나타낸다. TCI-State IE는 하나 또는 두 개의 DL 참조 신호(reference signal, RS) 대응하는 유사 공동-위치(quasi co-location, QCL) 타입과 연관된다.
Figure PCTKR2019009863-appb-img-000001
표 4에서, 'bwp-Id'는 RS가 위치되는 DL BWP를 나타내며, 'cell'은 RS가 위치되는 반송파를 나타내며, 'referencesignal'은 타겟 안테나 포트(들)에 대해 유사 공동-위치의 소스(source)가 되는 참조 안테나 포트(들) 혹은 이를 포함하는 참조 신호를 나타낸다. 상기 타겟 안테나 포트(들)은 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다.
4. QCL(Quasi-Co Location)
UE는 상기 UE 및 주어진 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.
표 4에 예시된 바와 같이, 각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다.
각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
CSI 관련 동작
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI 계산은 CSI 획득(acquisition)과 관련되며, RSRP 계산은 빔 관리(beam management, BM)와 관련된다.
도 16은 CSI 관련 과정의 일례를 나타낸 흐름도이다.
- 상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, UE은 CSI와 관련된 설정(configuration) 정보를 RRC 시그널링을 통해 BS로부터 수신한다(S1601).
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
i) CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM 자원 세트는 CSI-IM 자원 세트 ID에 의해 식별되며, 하나의 자원 세트는 적어도 하나의 CSI-IM 자원를 포함한다. 각각의 CSI-IM 자원은 CSI-IM 자원 ID에 의해 식별된다.
ii) CSI 자원 설정 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI 자원 설정 관련 정보는 NZP(non zero power) CSI-RS 자원 세트, CSI-IM 자원 세트 또는 CSI-SSB 자원 세트 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI 자원 설정 관련 정보는 CSI-RS 자원 세트 리스트를 포함하며, 상기 CSI-RS 자원 세트 리스트는 NZP CSI-RS 자원 세트 리스트, CSI-IM 자원 세트 리스트 또는 CSI-SSB 자원 세트 리스트 중 적어도 하나를 포함할 수 있다. CSI-RS 자원 세트는 CSI-RS 자원 세트 ID에 의해 식별되고, 하나의 자원 세트는 적어도 하나의 CSI-RS 자원을 포함한다. 각각의 CSI-RS 자원은 CSI-RS 자원 ID에 의해 식별된다.
NZP CSI-RS 자원 세트 별로 CSI-RS의 용도를 나타내는 RRC 파라미터들(예, BM 관련 'repetition' 파라미터, 트랙킹 관련 'trs-Info' 파라미터)이 설정될 수 있다.
iii) CSI 보고 설정(report configuration) 관련 정보는 시간 도메인 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) 파라미터 및 보고하기 위한 CSI 관련 양(quantity)를 나타내는 보고량(reportQuantity) 파라미터를 포함한다. 상기 시간 도메인 행동(time domain behavior)은 주기적, 비주기적 또는 준-지속적(semi-persistent)일 수 있다.
- UE는 상기 CSI와 관련된 설정 정보에 기초하여 CSI를 측정(measurement)한다(S1605). 상기 CSI 측정은 (1) UE의 CSI-RS 수신 과정(S1603)과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정(S1607)을 포함할 수 있다. CSI-RS는 RRC 파라미터 CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 도메인에서 CSI-RS 자원의 RE(resource element) 매핑이 설정된다.
- UE는 상기 측정된 CSI를 BS으로 보고(report)한다(S1609).
1. CSI 측정
NR 시스템은 보다 유연하고 동적인 CSI 측정 및 보고를 지원한다. 여기서, 상기 CSI 측정은 CSI-RS를 수신하고, 수신된 CSI-RS를 측정하여 CSI를 획득하는 과정을 포함할 수 있다.
CSI 측정 및 보고의 시간 도메인 행동으로서, CM(channel measurement) 및 IM(interference measurement)이 지원된다.
NR의 CSI-IM 기반 IM 자원(IMR)은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH 레이트 매칭을 위한 제로 전력(zero power, ZP) CSI-RS 자원들과는 독립적으로 설정된다.
BS는 설정된 NZP CSI-RS 기반 IMR의 각 포트 상에서 NZP CSI-RS를 UE로 전송한다.
채널에 대해, 어떤 PMI 및 RI 피드백도 없는 경우, 다수의 자원들이 세트에서 설정되며, BS 또는 네트워크는 채널 측정 및/또는 간섭 측정에 대해 NZP CSI-RS 자원들의 서브셋을 DCI를 통해 지시한다.
자원 세팅 및 자원 세팅 설정에 대해 보다 구체적으로 살펴본다.
1. 1. 자원 세팅(resource setting)
각각의 CSI 자원 세팅 'CSI-ResourceConfig'는 (RRC 파라미터 csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI 자원 세트에 대한 설정을 포함한다. CSI 자원 세팅은 CSI-RS- resourcesetlist에 대응한다. 여기서, S는 설정된 CSI-RS 자원 세트의 수를 나타낸다. 여기서, S≥1 CSI 자원 세트에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS 자원들을 포함하는 각각의 CSI 자원 세트와 RSRP 계산에 사용되는 SSB 자원을 포함한다.
각 CSI 자원 세팅은 RRC 파라미터 bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다. 그리고, CSI 보고 세팅(CSI reporting setting)에 링크된 모든 CSI 자원 세팅들은 동일한 DL BWP를 갖는다.
CSI-ResourceConfig IE에 포함되는 CSI 자원 세팅 내에서 CSI-RS 자원의 시간 도메인 행동은 RRC 파라미터 resourceType에 의해 지시되며, 주기적, 비주기적 또는 준-지속적(semi-persistent)인 것으로 설정될 수 있다.
채널 측정(channel measurement, CM) 및 간섭 측정(interference measurement, IM)을 위한 하나 또는 그 이상의 CSI 자원 세팅들은 RRC 시그널링을 통해 설정된다. CMR(Channel Measurement Resource)는 CSI 획득을 위한 NZP CSI-RS일 수 있으며, IMR(Interference Measurement Resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다. 여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 인터-셀 간섭 측정에 대해 사용된다. IM을 위한 NZP CSI-RS는 주로 다중-사용자(multi-user)로부터의 인트라-셀 간섭 측정을 위해 사용된다.
UE는 채널 측정을 위한 CSI-RS 자원(들) 및 하나의 CSI 보고를 위해 설정된 간섭 측정을 위한 CSI-IM / NZP CSI-RS 자원(들)이 자원별로 'QCL-TypeD'라고 가정할 수 있다.
1. 2. 자원 세팅 설정(resource setting configuration)
자원 세팅은 자원 세트 목록을 의미할 수 있다. 하나의 보고 세팅은 최대 3개까지의 자원 세팅과 연결될 수 있다.
- 하나의 자원 세팅이 설정되면, (RRC 파라미터 resourcesForChannelMeasurement에 의해 주어지는) 자원 세팅은 RSRP 계산을 위한 채널 측정에 대한 것이다.
- 두 개의 자원 세팅들이 설정되면, (RRC 파라미터 resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 간섭 측정을 위한 것이다.
- 세 개의 자원 세팅들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 기반 간섭 측정을 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 자원 세팅은 NZP CSI-RS 기반 간섭 측정을 위한 것이다.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 자원 세팅 이 설정되면, 상기 자원 세팅은 RSRP 계산을 위한 채널 측정에 대한 것이다.
- 두 개의 자원 세팅들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이며, (RRC 파라미터 csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 상에서 수행되는 간섭 측정을 위해 사용된다.
1. 3. CSI 계산(computation)
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS 자원은 대응하는 자원 세트 내에서 CSI-RS 자원들 및 CSI-IM 자원들의 순서에 의해 CSI-IM 자원과 자원별로 연관된다. 채널 측정을 위한 CSI-RS 자원의 수는 CSI-IM 자원의 수와 동일하다.
CSI 측정을 위해, UE는 아래 사항을 가정한다.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS 포트는 간섭 전송 레이어에 해당한다.
- 간섭 측정을 위한 NZP CSI-RS 포트의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.
- 채널 측정을 위한 NZP CSI-RS 자원, 간섭 측정을 위한 NZP CSI-RS 자원 또는 간섭 측정을 위한 CSI-IM 자원의 RE(들) 상에서 다른 간섭 신호를 가정한다.
2. CSI 보고
CSI 보고를 위해, UE가 사용할 수 있는 시간 및 주파수은 BS에 의해 제어된다.
CQI, PMI, CRI, SSBRI, LI, RI, RSRP에 대해, UE는 N≥1 CSI-ReportConfig 보고 세팅, M≥1 CSI-ResourceConfig 자원 세팅 및 하나 또는 두 개의 트리거 상태들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)를 포함하는 RRC 시그널링을 수신한다. aperiodicTriggerStateList에서 각 트리거 상태는 채널 및 선택적으로 간섭에 대한 자원 세트 ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. semiPersistentOnPUSCH-TriggerStateList에서 각 트리거 상태는 하나의 연관된 CSI-ReportConfig를 포함된다.
즉, 단말은 각각의 CSI-RS 자원 셋팅은 해당 CSI 자원 셋팅과 연관된 CSI-ReportConfigs에의해 지시되는 CSI 보고를 BS에 전송한다. 예를 들어, 해당 CSI 자원 셋팅과 연관된 CSI-ReportConfigs가 지시하는 바에 따라, CQI, PMI, CRI, SSBRI, LI, RI, RSRP 중 적어도 하나를 보고 할 수 있다. 다만, 해당 CSI 자원 셋팅과 연관된 CSI-ReportConfigs가 'none'을 지시하면, 단말은 해당 CSI 자원 셋팅과 연관된 CSI 또는 RSRP를 보고하지 않을 수 있다. 한편, 상기 CSI 자원 셋팅에는 SS/PBCH 블록을 위한 자원이 포함될 수 있다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 17은 하나의 REG 구조를 예시한다. 도 17에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 RE #1, RE #5, RE #9에 매핑될 수 있다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정된다:
- sameAsREG-bundle: 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs: CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다. 도 18(a)는 비-인터리빙된 CCE-REG 매핑 타입을 예시하고, 도 18(b)는 인터리빙된 CCE-REG 매핑 타입을 예시한다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 19는 블록 인터리버를 예시한다. 위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 8과 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 5는 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 6은 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
본 발명은 서로 다른 타입 또는 서로 다른 설정을 가지는 둘 이상의 하향링크 신호를 송수신하는 다양한 실시 예들에 대해서 설명하고자 한다.
도 20 내지 도 22는 본 발명의 실시 예들에 따른 단말, 기지국 및 네트워크의 구현에 대한 일례를 나타낸다.
도 20을 참조하면, 단말은 수신(Reception; Rx) 빔(beam)과 관련된 설정을 수신할 수 있다(S2001). 예를 들어, 수신 빔과 관련된 설정에는 QCL (Quasi Co-Located), Repetition 'on/off', ReportQuantity 및/또는 TRS-info 등의 설정이 있을 수 있다. 구체적으로 어떠한 설정을 단말이 수신하는지는, 후술하는 실시 예들을 기반으로 할 수 있다.
단말은 수신된 설정을 기반으로 SS/PBCH 블록, CSI-RS, CSI-IM, PDCCH 및 PDSCH 등의 하향링크 신호 중 서로 다른 타입 또는 서로 다른 설정을 갖는 둘 이상의 하향링크 신호들을 수신할 수 있다(S2003). 예를 들어, 수신되는 둘 이상의 하향링크 신호는 동일한 시간 영역 상에서 FDM (Frequency Divisional Multiplexing) 되어 수신될 수 있다. 또한, 상기 둘 이상의 하향링크 신호는 서로 다른 컴포넌트 캐리어(Component Carrier; CC)를 통해 수신될 수 있다. 이 때, 상기 둘 이상의 하향링크 신호들의 타입 및/또는 설정, 전송 형태, 수신 방법 등은 후술하는 실시 예들을 기반으로 할 수 있다.
도 21을 참조하면 기지국은 수신(Reception; Rx) 빔(beam)과 관련된 설정을 전송할 수 있다(S2101). 예를 들어, 수신 빔과 관련된 설정에는 QCL (Quasi Co-Located), Repetition 'on/off', ReportQuantity 및/또는 TRS-info 등의 설정이 있을 수 있다. 구체적으로 어떠한 설정을 기지국이 전송하는지는, 후술하는 실시 예들을 기반으로 할 수 있다.
기지국은 전송된 설정을 기반으로 SS/PBCH 블록, CSI-RS, CSI-IM, PDCCH 및 PDSCH 등의 하향링크 신호 중 서로 다른 타입 또는 서로 다른 설정을 갖는 둘 이상의 하향링크 신호들을 전송할 수 있다(S2103). 예를 들어, 상기 둘 이상의 하향링크 신호는 동일한 시간 영역 상에서 FDM (Frequency Divisional Multiplexing) 되어 전송될 수 있다. 또한, 상기 둘 이상의 하향링크 신호는 서로 다른 컴포넌트 캐리어(Component Carrier; CC)를 통해 전송될 수 있다. 이 때, 상기 둘 이상의 하향링크 신호들의 타입 및/또는 설정, 전송 형태 및/또는 방법 등은 후술하는 실시 예들을 기반으로 할 수 있다.
도 22는 본 발명에 따른 네트워크의 구현 예를 나타낸다. 도 22를 참조하면, 기지국은 수신(Reception; Rx) 빔(beam)과 관련된 설정을 단말에게 전송할 수 있다(S2201). 예를 들어, 수신 빔과 관련된 설정에는 QCL (Quasi Co-Located), Repetition 'on/off', ReportQuantity 및/또는 TRS-info 등의 설정이 있을 수 있다. 구체적으로 어떠한 설정을 기지국이 단말에게 전송하는지는, 후술하는 실시 예들을 기반으로 할 수 있다.
기지국은 전송된 설정을 기반으로 SS/PBCH 블록, CSI-RS, CSI-IM, PDCCH 및 PDSCH 등의 하향링크 신호 중 서로 다른 타입 또는 서로 다른 설정을 갖는 둘 이상의 하향링크 신호들을 단말에게 전송할 수 있다(S2203). 예를 들어, 상기 둘 이상의 하향링크 신호는 동일한 시간 영역 상에서 FDM (Frequency Divisional Multiplexing) 되어 단말에게 전송될 수 있다. 또한, 상기 둘 이상의 하향링크 신호는 서로 다른 컴포넌트 캐리어(Component Carrier; CC)를 통해 단말에게 전송될 수 있다. 이 때, 상기 둘 이상의 하향링크 신호들의 타입 및/또는 설정, 전송 형태 및/또는 방법 등은 후술하는 실시 예들을 기반으로 할 수 있다.
실시 예 1:
반송파 집성(Carrier Aggregation; CA)이 설정되면, 단말의 안테나 구조를 기반으로 서로 다른 RF(Radio Frequency) 체인(chain)을 통해 생성되는 아날로그 빔을 공유할 수 있다. 예를 들어, 단말이 도 23과 같은 안테나 구조를 포함한다면, 상기 단말은 단일 컴포넌트 캐리어(single component carrier)가 설정된 경우에는 RF 체인 #0만 사용한다. 그런데, 설정된 컴포넌트 캐리리와 차이가 큰 컴포넌트 캐리어(component carrier)를 더 사용하는 inter-band 반송파 집성 (inter-band CA)가 설정되면 RF 체인 #1이 추가적으로 사용될 수 있다. 이러한 경우, RF 체인 #1은 RF 체인 #0과 안테나 요소(antenna element)를 공유하고, 아날로그 빔 또한 공유할 수 있다. 예를 들어, 도 23과 같이, RF 체인 #1이 RF 체인 #0과 위상 천이기(phase shifter)를 공유하면 단일 아날로그 빔만 형성할 수 있다.
본 발명에서는 상술한 단말의 구조적인 특성을 고려하여, 서로 다른 참조 신호 및/또는 채널들을 동시에 송수신하기 위한 기지국 및 단말의 동작을 제안하도록 한다.
단말의 성능(UE capability)에 따라서 단말은 아래의 두 가지 타입(Type A/Type B)으로 정의될 수 있다. 또한, 기지국은 Type A/Type B 별로 상이하게 설정되는 단말의 동작들 중 적어도 하나를 상위 계층 시그널링을 통해 enabling/disabling하여, 설정하거나 지시할 수 있다. 이 때, 상위 계층 시그널링은 RRC (Radio Resource Control) 및/또는 MAC CE (Medium Access Control Control Element)일 수 있다.
본 발명에서의 단말 동작(UE behavior)을 구별하기 위한 Type A의 단말 및 Type B의 단말은 아래의 설명에 해당하는 단말을 의미할 수 있다.
(1) Type A의 단말: 서로 다른 컴포넌트 캐리어(component carriers) 또는 BWP (Bandwidth Part)에서 동일 시점에 전송되는 복수의 신호들을 동시에 서로 다른 (독립적인) 아날로그 빔으로 수신할 수 있는 단말을 의미한다.
또한, Type A의 단말은 inter-band CA 및/또는 intra-band CA가 설정될 때, 독립적인 아날로그 빔을 형성할 수 있는 컴포넌트 캐리어(component carrier; CC)들의 조합, 컴포넌트 캐리어 그룹(CC group), BWP들의 조합, BWP 그룹에 대한 정보를 기지국에 보고할 수 있다. 또한, 단말은 inter-band CA 및/또는 intra-band CA를가 설정되면, 아날로그 빔을 공유하는 컴포넌트 캐리어(component carrier; CC)들의 조합, 컴포넌트 캐리어 그룹(CC group), BWP들의 조합, BWP 그룹에 대한 정보를 기지국에 보고할 수 있다.
(2) Type B의 단말: 단말이 단일 TXRU/RF 체인만 포함하는지 다수의 TXRU/RF 체인들을 포함하는지에 관계 없이 서로 다른 컴포넌트 캐리어(component carriers; CC) 또는 BWP에서 동시에 전송되는 복수의 신호들을 단일 아날로그 빔으로만 수신할 수 있는 단말을 의미한다.
한편, 단말은 기지국에 자신의 단말 타입이 Type A인지 Type B인지를 보고/전송할 수 있다. 또한, 기지국은 Type B인 것으로 보고받은 단말에게는 서로 다른 참조 신호 및/또는 채널을 동시에 전송 할 때, 항상 공간적으로(spatially) QCL되어 있는 참조 신호들 및/도는 채널들을 전송할 수 있다. 다시 말해, 기지국은 데이터들을 동일한 송신 빔으로 전송하여 단말이 단일 수신 빔으로 데이터들을 수신할 수 있게 한다.
이제 상술한 단말의 Type을 기반으로 각 Type을 가지는 단말이 둘 이상의 컴포넌트 캐리어들을 통해 하향링크 신호를 수신하는 방법을 설명한다.
다만, 후술하는 실시 예들은 반송파 집성이 설정되는 경우만 아니라, 단일 컴포넌트 캐리어가 설정되는 경우에도 동일하게 적용/확장될 수 있다.
단말은 서로 다른 두 개의 컴포넌트 캐리어들(component carrier)을 설정 받고, 각각의 컴포넌트 캐리어들 통해 SS/PBCH 블록과 PDSCH를 수신할 수 있다. 예를 들어, 단말에게 CC#0과 CC#1의 두 개의 컴포넌트 캐리어들이 설정된 경우, CC#0을 통해 SS/PBCH 블록이 수신되고, CC#1을 통해 PDSCH가 수신될 수 있다. 반대로, CC#0을 통해 PDSCH가 수신되고, CC#1에서 SS/PBCH 블록이 수신될 수도 있다 즉, SS/PBCH 블록과 PDSCH가 전송되는 컴포넌트 캐리어가 상이할 수 있다.
이 때, SS/PBCH 블록 및 PDSCH 수신을 위한 단말 동작은 단말의 타입(Type A 및 Type B)에 따라서 상이할 수 있다. 또한, 기지국은 후술하는 Type A 및 Type B 별로 상이하게 설정되는 단말의 동작들 중 적어도 하나를 상위 계층 시그널링을 통해 enabling/disabling하여, 설정하거나 지시할 수 있다. 이 때, 상위 계층 시그널링은 RRC (Radio Resource Control) 및/또는 MAC CE (Medium Access Control Control Element)일 수 있다.
이하, 두 개의 컴포넌트 캐리어들(component carrier)을 설정 받고, 각각의 컴포넌트 캐리어들 통해 SS/PBCH 블록과 PDSCH를 수신하는 경우, 본 발명에서의 Type A의 단말 및 Type B의 단말의 동작을 살펴보도록 한다.
(3) Type A의 단말: CC#0에서 전송된 SS/PBCH 블록의 수신을 위해 최적화된/적합한 수신 아날로그 빔과 CC#1에서 전송된 PDSCH를 수신을 위해 최적화된/적합한 수신 아날로그 빔을 각각 형성하여 SS/PBCH 블록과 PDSCH를 수신할 수 있다. 이 때, PDSCH를 수신 하는 아날로그 빔은 고정되어있고, SS/PBCH 블록을 수신하는 빔(beam)은 빔 스위핑(beam sweeping)에 의해 변경될 수 있다.
한편, CC#1에서 전송되는 PDSCH에 대한 공간 QCL 참조(spatial QCL reference)가 CC#0에서 전송되는 SS/PBCH 블록인 경우, 단말은 CC#1에서 전송되는 PDSCH와 CC#0에서 전송되는 SS/PBCH 블록이 공간적으로(spatially) QCL되었다고 가정하고 공통의 수신 아날로그 빔을 형성하여 PDSCH와 SS/PBCH 블록을 수신할 수 있다.
(4) Type B의 단말:
1) PDSCH가 전송되는 빔에 적합한/최적화된 수신 빔으로 PDSCH 및 SS/PBCH 블록을 수신할 수 있다. 예를 들어, 단말이 PDSCH 수신이 더 중요하다고 판단하거나 기지국이 단말에 PDSCH 수신이 더 중요하다고 지시하면, 단말은 PDSCH 수신에 적합하도록 수신 아날로그 빔을 형성한다.
예를 들어, 기지국은 수신 빔 스위핑(Rx beam sweeping)을 수행하지 않도록 지시/설정함으로써 PDSCH 수신의 우선순위가 SS/PBCH 블록 수신의 우선 순위보다 높음을 단말에 암묵적으로(implicitly) 지시/설정 할 수 있다.
또한, QCL은 long-term으로 설정될 수 있다. 따라서, 단말이 현 시점에 PDSCH와 함께 수신되는 SS/PBCH 블록이 SS/PBCH 블록#1이라고 할 때, PDSCH에 대한 공간 QCL 참조(spatial QCL reference)가 현 시점에 함께 전송되는 SS/PBCH 블록#1이 아닌 기 전송된 SS/PBCH 블록#0로 설정될 수 있다. 이러한 경우, Type B의 단말은 후술하는 예시들과 같이 동작할 수 있다. 또한, 기지국은 단말이 후술하는 예시들에 따라 동작하도록 단말에게 설정/지시할 수 있다. 한편, 후술하는 예시들은 반송파 집성(Carrier Aggregation; CA)가 적용되는 경우뿐만 아니라, 단일 컴포넌트 캐리어(single component carrier)가 적용되는 경우에도 동일하게 적용/확장될 수 있다.
단말은 SS/PBCH 블록#1 수신보다 PDSCH 수신에 높은 우선순위를 둔다. 즉, 기 설정된 PDSCH 참조 QCL(reference QCL)을 기반으로 SS/PBCH 블록#1 및 PDSCH를 수신할 수 있다. 다시 말해, 기 전송된 SS/PBCH 블록 #0을 위한 수신 빔 방향을 통해 SS/PBCH 블록#1 및 PDSCH를 수신할 수 있다.
또는, 단말은 PDSCH 수신보다 SS/PBCH 블록 #1 수신에 높은 우선순위를 둔다. 예를 들어, 단말은 기 설정된 PDSCH의 참조 QCL(reference QCL)을 무시할 수 있다. 예를 들어, 단말은 SS/PBCH 블록 #1를 위한 수신 빔 방향과 PDSCH를 수신하기 위한 빔 방향 간의 차이가 크지 않다고 가정할 수 있다. 이러한 경우, 기 설정된 PDSCH 참조 QCL, 즉, 기 전송된 SS/PBCH 블록 #0을 위한 수신 빔 방향을 무시해도, PDSCH를 일정 수준 이상으로 수신하는데 문제가 없을 수 있다.
또는, SS/PBCH 블록#1이 자원 셋팅(resource setting)에 포함되고 상기 SS/PBCH 블록 #1과 연관된 ReportQuantity가 "SSBRI(SSB resource indicator)","SSBRI/L1-RSRP"및/또는 "ssb-Index-RSRP"인 경우, 단말은 기 설정된 PDSCH에 대한 참조 QCL에 따라 SS/PBCH 블록 #1과 PDSCH를 수신할 수 있다. 이는, SS/PBCH블록 수신 보다 PDSCH 수신에 높은 우선순위를 부여하기 위한 것일 수 있다. 또한, 단말은 SS/PBCH 블록 #0를 수신할 때 사용한 수신 빔(RX beam)으로 SS/PBCH 블록#1에 대한 CRI(CSI-RS resource indicator)를 계산할 수 있다.
또는, SS/PBCH 블록#1이 자원 셋팅(resource setting)에 포함되고 SS/PBCH#1과 연관된 ReportQuantity가 "SSBRI(SSB resource indicator)","SSBRI/L1-RSRP"및/또는 "ssb-Index-RSRP"인 경우, 단말은 기 설정된 PDSCH에 대한 참조 QCL(reference QCL)을 무시하고 SS/PBCH 블록#1 수신에 높은 우선순위를 둘 수 있다. 만약, 단말과 기지국이 P1 빔 관리 (beam management) 동작을 수행한다면, 단말은 SS/PBCH 블록#1을 수신하는 네 개의 OFDM 심볼들 동안 수신 빔 스위핑(Rx beam sweeping)을 수행하면서 각각의 수신 빔(Rx beam)에 대한 SSBRI 및 L1-RSRP를 계산할 수 있다. 여기서, P1 빔 관리 동작이란, 기지국이 전송 빔 스위핑을 수행하고, 단말도 수신 빔 스위핑을 수행하는 동작을 의미한다. P1 빔 관리 동작을 통해 기지국과 단말은 적절한 전송 빔 및 수신 빔을 파악할 수 있다.
또는, SS/PBCH 블록#1이 자원 셋팅(resource setting)에 포함되고, 상기 SS/PBCH 블록#1과 연관된 ReportQuantity가 "No report" 혹은 "none"이면, 단말은 PDSCH 수신 보다 SS/PBCH 블록#1 수신에 높은 우선순위를 둘 수 있다. 그러므로, 단말은 기 설정된 PDSCH에 대한 공간 QCL 참조(spatial QCL reference)를 무시하고, SS/PBCH 블록#1을 위한 4 OFDM 심볼들 동안 수신 빔 스위핑(RX beam sweeping)을 수행할 수 있다. 예를 들어, 단말은 SS/PBCH 블록#1을 위한 4 OFDM 심볼들을 수신하는 동안 서로 다른 수신 필터를 사용할 수 있다. 이는, PDSCH 수신보다 수신 빔 스위핑 (RX beam sweeping) 또는 P3 빔 관리 동작에 우선순위를 둔다고 해석할 수 있다. 여기서, P3 빔 관리 동작이란, 기지국의 전송 빔은 고정되고, 단말의 수신 빔이 스위핑되는 동작을 의미할 수 있다. 예를 들어, SS/PBCH 블록에 포함되는 4개의 OFDM 심볼들에 대해 세밀한 레벨에서의 수신 빔 스위핑을 수행하기 위해 P3 빔 관리 동작이 수행될 수 있다.
또는, SS/PBCH 블록#1이 자원 셋팅(resource setting)에 포함되고, 상기 SS/PBCH 블록#1과 연관된 ReportQuantity가 "No report" 혹은 "none"이면, 단말은 SS/PBCH 블록의 수신보다 PDSCH의 수신에 높은 우선순위를 둘 수 있다. 그러므로, SS/PBCH 블록#1의 수신을 무시하고, 수신 빔 스위핑(RX beam sweeping)을 수행/기대하지 않는다. 한편, ReportQuantity가 "No report"로 설정된 경우, 단말이 반드시 수신 빔 스위핑(RX beam sweeping)을 수행해야 하는 강제성은 없으므로, 기지국이 단말의 PDSCH 수신을 강제하여 단말의 수신 빔 스위핑(RX beam sweeping) 동작에 제한을 가할 수 있다.
2) SS/PBCH 블록이 전송되는 빔에 적합한/최적화된 수신 빔으로 SS/PBCH 블록 및 PDSCH를 수신한다. 즉, 기지국이 SS/PBCH 블록 수신을 통한 RRM 등의 측정(measurement) 및/또는 수신 빔 개선(RX beam refinement)이 더 중요한 것으로 단말에 지시/설정하면, 단말은 SS/PBCH 블록 수신에 적합하도록 수신 아날로그 빔을 형성할 수 있다. 또는, 단말이 SS/PBCH 블록 수신을 통한 RRM 등의 측정(measurement) 및/또는 수신 빔 개선(RX beam refinement)이 더 중요한 것으로 인지한다면, 단말은 SS/PBCH 블록 수신에 적합하도록 수신 아날로그 빔을 형성할 수 있다. 이 때, 기지국은 단말에게 수신 빔 스위핑(RX beam sweeping)이 가능하도록 설정/지시함으로써 PDSCH 수신 보다 SS/PBCH 블록 수신의 우선순위가 높음을 암묵적(implicitly)으로 지시/설정 할 수 있다.
3) 단말은 프라이머리 컴포넌트 캐리어(primary CC)로 전송되는 신호의 수신에 높은 우선순위를 둔다. 즉, PDSCH와 SS/PBCH 블록 중에서 프라이머리 컴포넌트 캐리어(primary CC)로 전송되는 신호를 수신하는데 적합한/최적화된 수신 빔을 형성한다.
4) 단말에게 설정된 컴포넌트 캐리어들 중, 가장 낮은 인덱스 또는 가장 높은 인덱스를 갖는 컴포넌트 캐리어를 통해 수신되는 신호에 더 높은 우선 순위를 둘 수 있다. 또는, 기지국이 우선 순위가 높은 컴포넌트 캐리어의 인덱스를 단말에게 지시/설정할 수 있다.
한편, 상술한 실시 예 1에서는 PDSCH와 SS/PBCH 블록의 수신 우선 순위 및 수신 빔에 대해서 기재하였지만, PDCCH와 SS/PBCH 블록, PDSCH와 CSI-RS, PDCCH와 CSI-RS에도 유사하게 적용 및/또는 확장될 수 있다. 다만, 상술한 실시 예 1 에서의 SS/PBCH 블록을 CSI-RS로 해석/적용하는 경우, 위에서 언급한 ReportQuantity의 "SSBRI"는 "CRI"로 대체하여 해석할 수 있다. 또한, 실시 예 1에서의 컴포넌트 캐리어는 BWP로 변경하여 해석/적용/확대할 수 있다.
한편, 단말이 서로 다른 두 개의 컴포넌트 캐리어들(component carrier)을 설정 받고, 각각의 컴포넌트 캐리어들 통해 PDCCH와 PDSCH를 수신할 수 있다. 예를 들어, 단말에게 CC#0과 CC#1의 두 개의 컴포넌트 캐리어들이 설정된 경우, CC#0을 통해 PDCCH가 수신되고, CC#1을 통해 PDSCH가 수신될 수 있다. 반대로, CC#0을 통해 PDSCH가 수신되고, CC#1에서 PDCCH가 수신될 수도 있다 즉, PDCCH 와 PDSCH가 전송되는 컴포넌트 캐리어가 상이할 수 있다.
이 때, PDCCH 및 PDSCH 수신을 위한 단말 동작은 단말의 타입(Type A 및 Type B)에 따라서 상이할 수 있다. 또한, 기지국은 후술하는 Type A 및 Type B 별로 상이하게 설정되는 단말의 동작들 중 적어도 하나를 상위 계층 시그널링을 통해 enabling/disabling하여, 설정하거나 지시할 수 있다. 이 때, 상위 계층 시그널링은 RRC (Radio Resource Control) 및/또는 MAC CE (Medium Access Control Control Element)일 수 있다.
이하, 두 개의 컴포넌트 캐리어들(component carrier)을 설정 받고, 각각의 컴포넌트 캐리어들 통해 PDCCH와 PDSCH를 수신하는 경우, 본 발명에서의 Type A의 단말 및 Type B의 단말의 동작을 살펴보도록 한다.
(5) Type A의 단말: CC#0에서 전송된 PDSCH를 수신하기 위해 최적화된/적합한 수신 아날로그 빔과 CC#1에서 전송된 PDCCH를 수신하기 위해 최적화된/적합한 수신 아날로그 빔을 각각 형성하여 PDCCH와 PDSCH를 수신할 수 있다.
(6) Type B의 단말:
1) PDSCH가 전송되는 빔에 적합한/최적화된 수신 빔으로 PDSCH 및 PDCCH를 수신한다. 즉, PDCCH 수신 보다 PDSCH 수신에 높은 우선순위를 둔다. 이 때, 우선순위는 기지국이 단말에게 지시/설정 할 수도 있고 단말이 판단할 수도 있다.
2) PDCCH가 전송되는 빔에 적합한/최적화된 수신 빔으로 PDCCH 및 PDSCH를 수신한다. 즉, PDSCH 수신 보다 PDCCH 수신에 높은 우선순위를 둔다. 이 때, 우선순위는 기지국이 단말에게 지시/설정 할 수도 있고 단말이 판단할 수도 있다.
3) 단말은 프라이머리 컴포넌트 캐리어(primary CC)로 전송되는 신호의 수신에 높은 우선순위를 둔다. 즉, PDSCH와 PDCCH 중에서 프라이머리 컴포넌트 캐리어(primary CC)로 전송되는 신호를 수신하는데 적합한/최적화된 수신 빔을 형성한다.
4) 단말에게 설정된 컴포넌트 캐리어들 중, 가장 낮은 인덱스 또는 가장 높은 인덱스를 갖는 컴포넌트 캐리어를 통해 수신되는 신호에 더 높은 우선 순위를 둘 수 있다. 또는, 기지국이 우선 순위가 높은 컴포넌트 캐리어의 인덱스를 단말에게 지시/설정할 수 있다.
5) PDSCH 및 PDCCH가 QCL되어 있다고 가정하고 두 신호를 공통의 단일 아날로그 빔으로 수신한다.
한편, 상술한 실시 예 1에서의 PDSCH와 PDCCH는 PUSCH와 PUCCH에 대한 것으로 적용 및 확장할 수 있다. 실시 예 1에서의 컴포넌트 캐리어는 BWP로 변경하여 해석/적용/확대할 수 있다.
또한, 상술한 SS/PBCH 블록과 PDSCH 간의 수신에 관한 실시 예와 PDCCH와 PDSCH 간의 수신에 관한 실시 예는 서로 조합되어 수행될 수 있다. 예를 들어, Type B의 단말에 3개 이상의 컴포넌트 캐리어가 설정되고, 서로 다른 컴포넌트 캐리어를 통해 SS/PBCH 블록, PDSCH 및 PDCCH가 수신되는 경우, (4)에서 기재된 실시 예들 중 어느 하나와 (6)에서 기재된 실시 예들 중 어느 하나가 조합되어 수행될 수 있다.
실시 예 2:
실시 예 2에서는, 서로 다른 타입 및/또는 서로 다른 설정을 가지는 2개의 하향링크 신호가 멀티플렉싱될 때, 단말의 동작 및/또는 기지국의 설정/지시를 살펴보도록 한다.
우선, CSI-IM(Channel State Information - Interference Measurement)의 자원 요소 (Resource Element; RE) 패턴을 기반으로, CSI-IM과 SS/PBCH 블록 또는 CSI-RS이 멀티플렉싱될 때, 단말의 동작 및/또는 기지국의 설정/지시를 살펴보도록 한다.
도 24는 CSI-IM RE 패턴의 예시를 설명하기 위한 도면이다. 도 24(a)는 (2,2) RE 패턴 기반 CSI-IM을 설명하기 위한 도면이다. 도 24(a)를 참조하면, (2,2) RE 패턴 기반 CSI-IM은 CSI-IM이 2개의 OFDM 심볼들 및 2개의 부반송파에 맵핑될 수 있다. 단말은 기지국으로부터 OFDM 심볼 인덱스 l CSI - IM와 부반송파 인덱스 k CSI-IM을 설정받는다. 그리고, CSI-IM은 (k CSI - IM , l CSI - IM), (k CSI - IM , l CSI - IM+1), (k CSI - IM+1 , l CSI-IM) 및 (k CSI - IM+1 , l CSI - IM+1)에 해당하는 RE를 통해 수신될 수 있다. 한편, 도 24(a)의 (2,2) RE 패턴 기반 CSI-IM에 해당하는 RE 패턴은 CSI-IM RE 패턴 '0'으로 명칭될 수도 있다.
도 24(b)는 (4,1) RE 패턴 기반 CSI-IM을 설명하기 위한 도면이다. 도 24(b)를 참조하면, (4,1) RE 패턴 기반 CSI-IM은 CSI-IM이 1개의 OFDM 심볼 및 4개의 부반송파에 맵핑될 수 있다. 단말은 기지국으로부터 OFDM 심볼 인덱스 l CSI - IM와 부반송파 인덱스 k CSI - IM을 설정 받는다. 그리고, CSI-IM은 (k CSI - IM , l CSI - IM), (k CSI - IM+1 , l CSI -IM), (k CSI - IM+2 , l CSI - IM) 및 (k CSI - IM+3 , l CSI - IM)에 해당하는 RE를 통해 수신될 수 있다. 한편, 도 24(b)의 (4,1) RE 패턴 기반 CSI-IM에 해당하는 RE 패턴은 CSI-IM RE 패턴 '1'로 명칭될 수도 있다.
단말이 수신 빔 스위핑(RX beam sweeping)을 수행하는 경우, 간섭 측정(interference measurement)이 심볼 별로 상이해질 수 있다. 이를 기반으로, 단말은 SS/PBCH 블록이 전송되는 OFDM 심볼들에 (4,1) RE 패턴 기반 CSI-IM이 함께 전송/설정될 수 있음을 가정/기대할 수 있다. 다시 말해, 단말은 (즉, SS/PBCH 블록이 전송되는 OFDM 심볼들에서 SS/PBCH 블록과 (4,1) RE 패턴 기반 CSI-IM이 FDM (Frequency Divisional Multiplexing)되는 것을 가정/기대할 수 있다.
반면, 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하는 경우, (2,2) RE 패턴 기반 CSI-IM은 SS/PBCH 블록이 전송되는 OFDM 심볼들에 함께 전송/설정되지 않음을 기대/가정할 수 있다. 다시 말해, 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하는 경우, (2,2) RE 패턴 기반 CSI-IM은 SS/PBCH 블록과 TDM(Time Divisional Multiplexing)되는 것을 기대/가정할 수 있다. 또한, 기지국은 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하는 것으로 예측되는 경우, 단말에게 SS/PBCH 블록이 전송되는 OFDM 심볼들에 (4,1) RE 패턴 기반 CSI-IM이 함께 전송/설정될 수 있음을 설정/지시 할 수 있으며, 2,2) RE 패턴 기반 CSI-IM은 SS/PBCH 블록이 전송되는 OFDM 심볼들에 함께 전송/설정되지 않음을 설정/지시할 수 있다.
한편, (4,1) RE 패턴 기반 CSI-IM과 무선 자원 관리(radio resource measurement; RRM)를 위한 SS/PBCH 블록, 무선 연결 모니터링(radio link monitoring; RLM)을 위한 SS/PBCH 블록, 빔 관리(beam management; BM)을 위한 SS/PBCH 블록 또는 빔 오류 감지를 위한 SS/PBCH 블록은 동일한 OFDM 심볼에 전송/설정할 수 있다. 반면, (2,2) RE 패턴 기반 CSI-IM은 빔 오류 감지(beam failure detection; BFD)를 위한 SS/PBCH 블록과 동일한 OFDM 심볼에서 전송되도록 설정할 수 있다.
이는, SS/PBCH 블록의 특성에 따라서 RRM을 위한 SS/PBCH 블록, RLM을 위한 SS/PBCH 블록, BM을 위한 SS/PBCH 블록은 모두 단말의 수신 빔 스위핑을 허용하는 것으로 가정/기대할 수 있고, BFD를 위한 SS/PBCH 블록은 빔 오류(beam failure)를 판정하기 위해서 수신 빔을 고정하는 것으로 가정/기대하는 것이 적합할 수 있기 때문이다. 또한, 서로 다른 간섭 신호를 측정하기 위한 것이 아니라면, 간섭 측정(interference measurement)을 수행하는 동안에는 동일한 수신 빔을 사용하는 것이 바람직하다. 따라서 (2,2) RE 패턴 기반 CSI-IM의 경우, 간섭 측정(interference measurement)을 수행하는 동안 OFDM 심볼 별로 수신 빔을 스위핑(sweeping)하지 않는 것이 바람직할 수 있다.
한편, 상술한 바와 유사하게, CSI-RS도 CSI 획득(acquisition)을 위한 CSI-RS, BFD를 위한 CSI-RS, 시간-주파수 추적(Tracking)을 위한 CSI-RS는 각 OFDM 심볼에 따른 빔 스위핑 없이, 고정된 수신 빔으로 CSI-RS를 수신할 수 있다.
그러므로, 단말은 (4,1) RE 패턴 기반 CSI-IM과 모든 타입의 CSI-RS (예를 들어, RRM을 위한 CSI-RS, CSI 획득을 위한 CSI-RS, 빔 관리를 위한 CSI-RS, 시간-주파수 추적을 위한 CSI-RS 등)가 동일한 OFDM에 전송/설정될 수 있음을 기대/가정할 수 있다. 반면, 단말은 빔 스위핑이 수행될 수 있는 빔 관리를 위한 CSI-RS와 (2,2) RE 패턴 기반 CSI-IM가 동일한 OFDM 심볼에 서 전송되도록 설정되는 것을 기대/가정하지 않을 수 있다.
또한, 단말은 (2,2) RE 패턴 기반 CSI-IM이 상위 계층 파라미터 "repetition"이 "on" 및/또는 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들과 동일한 OFDM 심볼에 설정/전송되는 것을 기대/가정하지 않을 수 있다. 반면, 단말은 (4,1) RE 패턴 기반 CSI-IM이 상위 계층 파라미터 "repetition"이 "on"및/또는 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들과 동일한 OFDM 심볼에 전송되도록 설정되는 것을 기대/가정할 수 있다.
한편, 14 OFDM 심볼들로 구성된 슬롯에서는 빔 관리를 위한 CSI-RS와 SS/PBCH 블록의 FDM이 허용될 수 있다. 즉, 빔 관리를 위한 CSI-RS 이외의 CSI-RS와 SS/PBCH 블록의 FDM은 허용되지 않을 수 있다.
하지만, 2/4/7 OFDM 심볼들로 구성된 미니 슬롯(mini-slot) 또는 넌-슬롯(non-slot)에서는 SS/PBCH 블록과 CSI 획득을 위한 CSI-RS 또는 시간-주파수 추적을 위한 CSI-RS 등이 FDM되는 것을 피하기 어려울 수 있다. 이 때, SS/PBCH 블록과 CSI-RS가 FDM될 때의 수신 빔 스위핑(RX beam sweeping) 동작을 고려하면, CSI 획득을 위한 CSI-RS는 수신 빔 스위핑(RX beam sweeping) 시, 서로 다른 OFDM 심볼로 전송되는 동일 포트(port)에 대한 채널 정보가 동일하지 않아서 OCC (Orthogonal Cover Code)의 직교성이 성립하지 않는 등의 CSI 측정에 문제가 발생할 수 있다.
그러므로, CSI-RS와 SS/PBCH 블록 간 멀티플렉싱(Multiplexing)에 대하여 다음과 같이 단말이 동작할 수 있다. 그리고/또는 기지국이 후술하는 단말의 동작을 설정/지시할 수 있다.
CSI 획득을 위한 CSI-RS 중, 1-port 또는 2-port를 사용하는 CSI-RS는 단일 OFDM 심볼에만 맵핑되고, 단말이 특정 OFDM 심볼에서만 CSI 측정(measurement)을 수행하므로, OFDM 심볼 별로 수신 빔 스위핑(RX beam sweeping)을 수행하더라도 CSI 측정(measurement) 성능에 큰 문제가 없을 수 있다. 따라서, CSI 획득(acquisition)을 위한 CSI-RS와 SS/PBCH 블록과의 멀티플렉싱에서, 단말은 1-port 및 2-port를 사용하는 CSI 획득을 위한 CSI-RS 만 SS/PBCH 블록과 동일한 OFDM 심볼에서 전송될 수 있다고 가정/기대할 수 있다. 추가적으로, 3GPP TS 38.211 Table 7.4.1.5.3-1의 4번째 행(row)의 경우와 같이, 4-port를 사용하는 CSI-RS가 단일 OFDM 심볼에 맵핑되는 경우에도 SS/PBCH 블록과 동일한 OFDM 심볼에서 전송될 수 있음을 가정/기대할 수 있다. 즉, 단일 OFDM 심볼에만 맵핑되는 X-port (X<=4) CSI-RS는 SS/PBCH 블록과의 FDM이 허용되도록 설정되고, 두 개 이상의 OFDM 심볼을 차지하는 X-port (X>=4) CSI-RS는 SS/PBCH 블록과 TDM만 허용되도록 설정될 수 있다.
한편, CSI 획득(acquisition)을 위한 CSI-RS와 SS/PBCH 블록이 여러 OFDM 심볼들에 걸쳐서 함께 전송 될 때, 설정된 CSI-RS 포트들의 인덱스, CDM (Code Divisional Multiplexing) 타입 및/또는 CDM 길이를 기반으로 단말의 수신 빔 스위핑(RX beam sweeping)의 횟수/능력이 결정/제한될 수 있고, 이를 기지국이 설정/지시할 수도 있다.
구체적으로, SS/PBCH 블록이 전송되는 4개의 OFDM 심볼에서 CSI-RS가 함께 전송될 때, X-port CSI-RS의 특정 CDM 그룹이 걸쳐(span)지는 OFDM 심볼들에서, 단말은 수신 빔 스위핑을 수행할 것을 기대하지 않을 수 있다. 다시 말해, 상이한 CDM 그룹들이 맵핑된 OFDM 심볼들 간에는 단말의 수신 빔 스위핑을 수행할 것을 기대할 수 있다. 예를 들어, 도 25(a) 내지 도 25(c)를 참조하면, CDM4 그룹 1에서 CDM4 그룹 2로 변경되는 경계에서 단말이 수신 빔 스위핑을 수행할 것을 기대할 수 있다. 또 다른 예로, SS/PBCH 블록을 포함하는 4개의 OFDM 심볼들에 걸쳐서 CDM8이 설정되면, 단말은 4 OFDM 심볼들에서 CSI-RS가 함께 수신되는 동안에는 수신 빔 스위핑을 수행하지 않을 것을 기대할 수 있다.
유사한 원리로, 도 25(d)와 같이 서로 다른 CSI-RS CDM 그룹이 시간 도메인(time-domain)에서 연속(consecutive)하지 않는 경우, 도 25(d)에 화살표로 표시된 위치에서 단말이 수신 빔 스위핑(RX beam sweeping)을 수행할 것을 기대할 수 있다. 한편, X-port CSI-RS 설정에 의한 상기 CDM 그룹들은 동일한 CSI-RS 자원을 위한 여러 CDM 그룹들일 수도 있고, 각각 서로 다른 CSI-RS 자원을 위한 CDM 그룹들일 수도 있다. 한편, 상술한 단말의 동작은 기지국이 설정/지시할 수 있다. 즉, 특정 포트(port)에 대한 채널 정보를 정확하게 측정하기 위하여, 특정 포트(port)에 대한 CSI-RS를 측정하는 동안 수신 빔(RX beam)을 변경하지 않는 것이 바람직하다. 예를 들어, 도 25(a) 내지 도 25(c)에서 2개의 OFDM 심볼들에 걸쳐 있는 CDM4에 포트 #0/#1/#2/#3이 설정되어 있다고 가정하자. 두 OFDM 심볼들에서 서로 다른 수신 빔을 (예를 들어, RX#0 및 RX#1) 사용하면 RX#0와 포트 #0/#1/#2/#3에 대한 채널은 RX#1과 포트 #0/#1/#2/#3에 대한 채널과 상이할 수 있다. 또한, 이러한 경우, 직교 커버 코드(orthogonal cover code; OCC)의 직교성(orthogonality)가 성립하지 않을 수 있다. 그러므로, 하나의 CDM 그룹이 걸치는(span) OFDM 심볼들에서, 단말은 수신 빔 스위핑을 수행하지 않을 것을 기대할 수 있다. 예를 들어, 도 25(a) 내지 도 25(c)에서와 같이, 2개의 주파수 도메인(예를 들어, 2개의 부반송파들) 및 2개의 시간 도메인 (예를 들어, 2개의 OFDM 심볼들)을 점유하는 CDM4 그룹 2개가 SS/PBCH 블록과 FDM되는 경우, 하나의 CDM 4 그룹에 대응하는 OFDM 심볼들에서는 단말이 빔 스위핑을 수행하는 것을 기대하지 않을 수 있다.
또는, CSI 획득(acquisition)을 위한 CSI-RS와 SS/PBCH 블록 간의 FDM을 고려하였을 때, 단말은 FD-CDM2가 설정된 X-port(X>=2) CSI-RS만 SS/PBCH 블록이 전송되는 OFDM 심볼에서 함께 전송될 수 있는 것으로 기대/가정할 수 있다. 이는, 단말이 4 OFDM 심볼들로 구성된 SS/PBCH 블록에서 수신 빔 스위핑(RX beam sweeping)을 자유롭게 수행할 수 있도록 설정한 것일 수 있다.
또는, CSI 획득을 위한 CSI-RS와 SS/PBCH 블록이 함께 전송되는 OFDM 심볼에서는, 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하는 것을 기대하지 않을 수 있다.
한편, SS/PBCH 블록이 전송되는 OFDM 심볼에서 빔 관리(beam management)를 위한 CSI-RS가 전송될 때, 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하거나 수신 빔을 개선(RX beam refinement)하는 것을 기대할 수 있다. 반면, SS/PBCH 블록이 전송되는 OFDM 심볼에 CSI 획득을 위한 CSI-RS가 함께 전송되는 경우, 단말이 수신 빔 스위핑을 수행하는 것을 가정하지 않을 수 있다. 다시 말해, 단말이 OFDM 심볼 별로 서로 다른 수신 필더를 사용하는 것을 가정하지 않는다. 이 때, CSI 획득을 위한 CSI-RS는 상위 계층 파라미터인 "repetition" 및 "TRS-Info"가 설정되지 않은 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들을 의미할 수 있다. 이는, SS/PBCH 블록과 CSI 획득을 위한 CSI-RS가 FDM되어 수신될 때, CSI 획득을 위한 CSI-RS 수신에 높은 우선순위를 두는 것으로 해석할 수 있다. 한편, 상술한 단말의 동작은 기지국이 지시하거나 설정할 수 있다.
한편, 서로 다른 타입 또는 서로 다른 설정을 가지는 CSI-RS들이 멀티플렉싱되는 경우의 단말 및 기지국의 동작도 고려되어야 한다. 이하에서는, 빔 관리를 위한 CSI-RS 및 CSI 획득을 위한 CSI-RS 또는 시간-주파수 추적을 위한 CSI-RS가 멀티플렝싱되는 경우의 단말 동작에 대해 살펴보도록 한다. 이러한 단말의 동작은 기지국이 설정 및/또는 지시에 기반할 수 있다.
Repetition "on"으로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 repetition이 설정되지 않은 CSI 획득을 위한 CSI-RS 자원들과 FDM 될 때, CSI 획득(acquisition) 성능을 보장하기 위해서 OCC(Orthogonal cover code)를 고려하여 단말의 수신 빔 스위핑 (RX beam sweeping) 동작이 정의되거나 제한될 수 있다. 예를 들어, Repetition "on"으로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 repetition이 설정되지 않은 CSI 획득을 위한 CSI-RS 자원들과 FDM 될 때, 하나의 CDM 그룹이 걸치는(span) N(N=1,2,4,8,쪋)개의 OFDM 심볼들 동안에는 단말이 수신 빔 스위핑(RX beam sweeping) 또는 수신 빔 개선 (RX beam refinement) 수행을 기대/가정하지 않을 수 있다. 또한, 기지국이 이러한 동작을 지시하거나 설정할 수 있다. 예를 들면, 도 26과 같이 CDM4 그룹 1에서 CDM4 그룹 2로 변경되는 시점에 단말이 수신 빔(RX beam)을 변경할 수 있도록 기지국이 설정하거나 지시 할 수 있다.
Repetition이 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 repetition이 설정되지 않은 CSI 획득을 위한 CSI-RS 자원들과 FDM 될 때, 단말은 하나의 CDM 그룹이 걸치(span)는 N(N=1,2,4,8,쪋) 개의 OFDM 심볼들 동안 기지국이 서로 다른 송신 필터를 사용할 것 이라고 기대하지 않는다. 즉, 단말은 기지국이 하나의 CDM 그룹에 대응하는 OFDM 심볼들에서 송신 필터를 변경 할 것을 기대하지 않는다. 다시 말해, 단말은 기지국이 하나의 CDM 그룹에 대응하는 OFDM 심볼들에서 송신 빔을 변경 할 것을 기대하지 않는다.
또는, 단말은 repetition이 설정되지 않은 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들은 설정된 CDM type이 FD-CDM2인 경우에만, 또는 FD-CDM4와 같이 OFDM 심볼을 하나만 걸치(span)는 CDM type에서만, repetition이 "on"또는 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들과 동일한 OFDM 심볼들을 통해 전송될 수 있음을 기대하거나 가정할 수 있다. 한편, 상술한 단말의 동작을 기지국이 설정하거나 지시할 수 있다.
또는, Repetition이 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 CSI 획득을 위한 CSI-RS 자원들 및/또는 시간-주파수 추적(time-frequency tracking)을 위한 CSI-RS 자원들과 동일한 OFDM 심볼들을 통해 전송되면, 단말은 상기 동일한 OFDM 심볼들에서는 기지국이 심볼 별로 서로 다른 송신 필터를 사용할 것이라고 기대하거나 가정하지 않는다. 다시 말해, 단말은 상기 동일한 OFDM 심볼들에서는 심볼 별로 기지국의 빔 스위핑 또는 빔 개선이 수행되는 것을 기대하지 않는다. 한편, 상술한 단말의 동작은 기지국에 의해 설정되거나 지시될 수 있다. 왜냐하면, 상술한 경우, 기지국이 OFDM 심볼 별로 빔 스위핑(beam sweeping)을 수행하고, 이를 통해 단말이 CSI 획득(acquisition)을 위한 CSI-RS를 수신하면, 2개 혹은 4개 OFDM 심볼들에 걸쳐서 설정되는 OCC(Orthogonal cover code)가 깨지는 등의 CSI 측정(measurement) 문제가 발생할 수 있기 때문이다.
또는, Repetition "on"으로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 CSI 획득을 위한 CSI-RS 자원들 및/또는 시간-주파수 추적(time-frequency tracking)을 위한 CSI-RS 자원들과 동일한 OFDM 심볼에 전송되면, 단말은 상기 동일한 OFDM 심볼에서 수신 빔 스위핑 또는 수신 빔 개선(refinement)을 기대하거나 가정하거나 수행하지 않는다. 또는, 단말이 상기 동일한 OFDM 심볼들에서 심볼 별로 서로 다른 수신 필터를 사용하는 것을 가정하거나 기대하지 않는다. 한편, 상술한 단말의 동작은 기지국이 설정하거나 지시할 수 있다. 왜냐하면, 이러한 경우, 단말이 심볼 별로 수신 빔 스위핑을 수행하고, CSI 획득을 위한 CSI-RS를 수신하면 2개 혹은 4개 심볼들에 걸쳐서 설정되는 OCC(Orthogonal cover code)가 깨지는 등의 CSI 측정(measurement) 문제가 발생할 수 있기 때문이다.
실시 예 3:
2/4/7 개의 OFDM 심볼들로 구성되는 넌-슬롯(non-slot) 또는 미니 슬롯(mini-slot) 등의 경우, 비교적 빈번하게 PDCCH가 전송됨에 따라서 CSI-RS, SS/PBCH 블록, PDCCH 등의 세가지 이상의 참조 신호들 및 채널들이 동일 OFDM 심볼에서 멀티플렉싱되어 전송될 수 있다. 따라서, 이러한 경우의 단말의 동작을 상술한 실시 예 2에서 언급한 참조 신호 특성 별 수신 빔 스위핑 허용 유무를 기반으로 살펴보도록 한다. 실시 예 3에서 단말은 CSI-RS, SS/PBCH 블록 및 PDCCH의 멀티플렉싱에 대해서 아래와 같이 동작할 수 있다. 그리고, 이러한 단말의 동작은 기지국에 의해 지시되거나 설정될 수 있다.
CSI-RS, 특히, 빔 관리를 위한 CSI-RS와 SS/PBCH 블록이 함께 전송되는 OFDM 심볼을 통해 PDCCH가 전송되는 경우, 단말은 수신 빔 개선(RX beam refinement)을 수행하거나 수신 빔 스위핑을 수행하는 것을 기대하거나 가정하지 않을 수 있다. 또한, 기지국이 단말에게 수신 빔 스위핑(RX beam sweeping)을 수행하지 않도록 설정하거나 지시할 수 있다.
또는, 수신 빔 스위핑(RX beam sweeping)이 중요한 경우, 단말은 빔 관리를 위한 CSI-RS와 BFD를 위한 SS/PBCH 블록을 제외한 SS/PBCH 블록이 함께 전송되는 OFDM 심볼에서는 PDCCH가 전송될 것을 기대하거나 가정하지 않을 수 있다. 즉, PDCCH는 빔 관리를 위한 CSI-RS 및 BFD를 위한 SS/PBCH 블록을 제외한 SS/PBCH 블록과 TDM된다고 가정할 수 있다. 이는, PDCCH 수신보다 CSI-RS 및 SS/PBCH 블록의 동시 수신에 높은 우선순위를 두는 것으로 해석할 수 있고, PDCCH 수신보다 단말의 수신 빔 스위핑(RX beam sweeping)에 우선순위를 두는 것으로 해석할 수 있다.
또는, 여러 목적을 위한 SS/PBCH 블록 및 CSI-RS 중에서, BFD를 위한 SS/PBCH 블록 및 BFD를 위한 CSI-RS, CSI 획득을 위한 CSI-RS 또는 시간-주파수 추적 CSI-RS가 동시에 전송되는 OFDM 심볼을 통해 PDCCH가 전송되는 것을 기대하거나 가정할 수 있다. 이러한 경우, 단말이 OFDM 심볼 별로 수신 빔을 변경하는 수신 빔 스위핑(RX beam sweeping) 동작이 제한될 수 있다.
또는, 단말은 PDCCH와 SS/PBCH 블록이 함께 전송되는 OFDM 심볼을 통해 repetition이 "off"로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원이 전송되는 것을 기대하거나 가정하지 않을 수 있다. 이는, 빔 관리를 위한 CSI-RS의 수신에 대한 우선순위가 SS/PBCH 및 PDCCH를 동시에 수신하는 것에 대한 우선 순위보다 낮은 것으로 해석할 수 있다.
또는, 단말은 PDCCH와 BFD를 위한 SS/PBCH 블록이 함께 전송되는 OFDM 심볼을 통해 빔 관리를 위한 CSI-RS가 전송되는 것을 기대하거나 가정하지 않을 수 있다. 예를 들어, 단말은 PDCCH 및 BFD를 위한 SS/PBCH 블록이 함께 전송되는 OFDM 심볼을 통해 CSI 획득을 위한 CSI-RS 및/또는 시간-주파수 추적을 위한 CSI-RS만 함께 전송될 수 있다고 기대하거나 가정할 수 있다.
또는, 단말은 빔 관리를 위한 SS/PBCH 블록, RRM을 위한 SS/PBCH 블록 및 RLM을 위한 SS/PBCH 블록 중, 어느 하나의 SS/PBCH 블록과 빔 관리를 위한 CSI-RS와 같이, repetition "on" 으로 설정된 CSI-RS 자원 집합(resource set)에 포함되는 CSI-RS 자원들이 전송되는 OFDM 심볼에서는 PDCCH가 전송되지 않는다고 가정하거나 기대할 수 있다.
다시 말해, 빔 관리를 위한 SS/PBCH 블록, RRM을 위한 SS/PBCH 블록, RLM을 위한 SS/PBCH 블록 중, 어느 하나의 SS/PBCH 블록과 빔 관리를 위한 CSI-RS와 같이, repetition "on" 으로 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들 및 PDCCH가 동일한 OFDM 심볼을 통해 전송되도록 설정되는 경우, PDCCH 수신의 우선순위는 SS/PBCH 블록 및 CSI-RS 수신의 우선순위보다 낮은 것으로 해석될 수 있다. 다시 말해, 단말의 수신 빔 스위핑(RX beam sweeping)에 더 높은 우선순위를 두는 것으로 해석할 수 있다.
또는, BFD를 위한 SS/PBCH 블록, 빔 관리를 위한 CSI-RS 및 PDCCH가 동일한 OFDM 심볼에 전송되도록 설정되는 경우, 빔 관리를 위한 CSI-RS 수신의 우선 순위는 SS/PBCH 블록 및 PDCCH 수신을 위한 우선 순위보다 낮은 것으로 해석될 수 있다. 예를 들면, 기지국은 단말이 수신 빔 스위핑(RX beam sweeping) 동작을 하지 않도록 설정하거나 지시할 수 있다.
또는, 단말은 BFD를 위한 SS/PBCH 블록 및 PDCCH가 전송되는 OFDM 심볼을 통해 빔 관리를 위한 CSI-RS가 전송되는 것을 기대하거나 가정하지 않을 수 있다. 이는, 빔 관리를 위한 CSI-RS를 수신하는 것 또는 단말의 수신 빔 스위핑 동작의 우선순위보다 BFD를 위한 SS/PBCH 블록 및 PDCCH 수신을 위한 우선 순위를 높게 부여/설정/지시하는 것으로 해석할 수 있다.
또는, 단말은 CSI 획득을 위한 CSI-RS, 빔 관리를 위한 CSI-RS, 시간-주파수 추적을 위한 CSI-RS, RRM을 위한 CSI-RS 및 BFD를 위한 CSI-RS와 같은 모든 타입의 CSI-RS와 모든 타입의 SS/PBCH에 대해서, CSI-RS, SS/PBCH 및 PDCCH가 동일한 OFDM 심볼을 통해 전송될 것을 기대하지 않을 수 있다.
또는, SS/PBCH 블록과 빔 관리를 위한 CSI-RS가 공간적(spatially)으로 QCLed된 경우, 단말은 SS/PBCH 블록과 CSI-RS가 동일한 OFDM 심볼에 전송될 것을 기대하거나 가정할 수 있다. SS/PBCH 블록 및 CSI-RS가 전송되는 동일한 OFDM 심볼들 구간에 넌-슬롯(non-slot) 또는 미니 슬롯(mini-slot)이 설정/정의/지시되는 등으로 인하여 PDCCH, SS/PBCH 블록 및 CSI-RS가 모두 함께 전송되는 경우, 단말은 상기 동일한 OFDM 심볼들에서 수신 빔 스위핑(RX beam sweeping) 또는 수신 빔 개선(RX beam refinement)이 수행될 것을 기대/가정하지 않을 수 있다. 다시 말해, 단말은 상기 동일한 OFDM 심볼들 동안 동일한 수신 필터를 사용할 것을 가정하거나 기대할 수 있다. 상술한 단말의 동작은 기지국이 지시하거나 설정할 수 있으며, 특히, 넌-슬롯(non-slot)인 경우에 상기 동작이 중요할 수 있다. 한편, 상술한 경우, 빔 관리를 위한 CSI-RS와 PDCCH 및/또는 SS/PBCH 블록과 PDCCH 또한 공간적으로 QCL 된 것으로 단말이 가정/기대할 수 있다.
또는, SS/PBCH 블록과 빔 관리를 위한 CSI-RS가 공간적(spatially)으로 QCLed된 경우, 단말은 SS/PBCH 블록 및 CSI-RS가 동일한 OFDM 심볼들을 통해 전송될 것을 기대하거나 가정할 수 있다. SS/PBCH 블록 및 CSI-RS가 전송되는 동일한 OFDM 심볼들이 넌-슬롯(non-slot) 또는 미니 슬롯(mini-slot)으로 설정/정의/지시되는 등으로 인하여 PDCCH, SS/PBCH 블록 및 CSI-RS가 모두 함께 전송되는 경우, 단말은 기지국이 상기 동일한 OFDM 심볼들에서 서로 다른 송신 필터를 사용할 것을 기대하거나 가정하지 않을 수 있다. 예를 들어, 단말은 기지국이 상기 동일한 OFDM 심볼들에서 송신 빔을 변경하는 것을 기대/가정하지 않을 수 있다. 특히, 넌-슬롯(non-slot)인 경우에 상기 동작이 중요할 수 있다. 한편, 상술한 경우, 빔 관리를 위한 CSI-RS와 PDCCH 및/또는 SS/PBCH 블록과 PDCCH 또한 공간적으로 QCL 된 것으로 단말이 가정/기대할 수 있다.
한편, 상술한 실시 예 3는 PDCCH 대신 PDSCH에 대해서도 동일/유사하게 적용 및/또는 확장될 수 있다.
한편, 서로 다른 참조 신호 및 채널들이 세 개 이상의 동일한 OFDM 심볼들에서 전송될 수 있다. 예를 들어, 넌-슬롯(non-slot) 등이 설정되는 경우, PDCCH, SS/PBCH 블록 및 CSI-RS가 FDM되어 전송될 수 있다. 이 때, 기지국은 단말이 동시에 사용할 수 있는 수신 빔의 개수를 기반으로 동시에 전송되는 타입 및 설정에 따른 참조 신호들(예를 들어, CSI 획득을 위한 CSI-RS, 빔 관리를 위한 CSI-RS, 시간-주파수 추적을 위한 CSI-RS 및 RRM을 위한 CSI-RS 등과 같은 CSI-RS, DMRS 및 RRM을 위한 SS/PBCH 블록, 빔 관리를 위한 SS/PBCH 블록, BFD를 위한 SS/PBCH 블록 등) 및/또는 채널들에 대해 하나 이상의 참조 신호 그룹으로 구분하여 참조 신호 그룹 별로 공간(spatial) QCL을 설정할 수 있다.
또한, 이러한 동작은 기지국이 특정 참조 신호 그룹에 대한 우선 순위를 단말에게 지시하거나 설정할 수 있다. 특히, 설정/지시된 참조 신호 그룹의 개수보다 단말이 수신할 수 있는 빔의 개수가 작은 경우에는 이를 기반으로 기지국이 특정 그룹에 대한 우선 순위를 단말에 지시/설정 할 수 있다. 한편, 상술한 참조 신호 그룹들은 동일한 컴포넌트 캐리어 또는 BWP(Bandwidth part)에서 전송될 수 있고, 서로 다른 컴포넌트 캐리어 또는 BWP에서 전송될 수도 있다. 예를 들어, CSI-RS, SS/PBCH 블록#1 및 PDCCH가 동일한 OFDM 심볼들을 통해 전송되는 경우, CSI-RS와 SS/PBCH 블록#1은 공간적으로(spatially) QCL되어있고, PDCCH의 공간(spatial) QCL 참조(reference)는 SS/PBCH#0 등의 다른 SS/PBCH 블록으로 설정될 수 있다.
실시 예 4:
(1) 비주기적(Aperiodic) CSI-RS 설정 시, 단말은 단일 CSI-RS 자원 집합(resource set)을 통해 14개 이상의 CSI-RS 자원들을 설정 받을 수 있다. CSI-RS-ResourceRep이 "on"으로 설정된 (예를 들어, 상위 계층 파라미터인 repetition이 "on"로 설정) CSI-RS 자원 집합(resource set)에 포함된 각각의 CSI-RS 자원은 TDM되기 때문에 특정 14개 이상의 CSI-RS 자원들이 14개의 OFDM 심볼들로 구성된 하나의 슬롯(slot)에 정의/설정될 수 없다. 따라서, CSI-RS 자원 별로 오프셋(offset) 설정이 필요하지만, 현재 비주기적(Aperiodic) CSI-RS는 자원 집합(resource set)별로 슬롯 오프셋(slot offset)을 설정해야만 하는 제한조건이 있다. 따라서, 본 발명에서는 아래와 같은 실시 예들을 제안한다.
설정된 CSI-RS의 시간 도메인 행동(time-domain behavior)이 "비주기적(aperiodic)"인 CSI-RS 자원들의 슬롯 오프셋(slot offset)을 설정하는 경우, 주기적(periodic) CSI-RS의 주기(periodicity) 및 슬롯 오프셋(slot offset)을 설정하는 상위 계층 파라미터(higher layer parameter) "CSI-ResourcePeriodicityAndOffset"을 사용할 수 있다. 예를 들어, "CSI-ResourcePeriodicityAndOffset"을 통해 설정된 주기와 슬롯 오프셋 중에서 주기(periodicity)는 무시하고, 슬롯 오프셋만 사용하여 비주기적 CSI-RS 자원들의 슬롯 오프셋을 설정할 수 있다. 한편, 상위 계층 파라미터(higher layer parameter) "CSI-ResourcePeriodicityAndOffset" 는 3GPP TS 38.331에 기재되어 있다.
도 27 내지 도 29를 참조하여 상술한 내용을 좀 더 구체적으로 살펴보도록 한다.
도 27은 실시 예 4에 따른 단말의 동작을 나타낸다. 도 27을 참조하면, 단말은 주기적 CSI-RS을 위한 주기 및 오프셋에 관련된 정보를 수신할 수 있다(S2701). 그리고, 단말은 비주기적 CSI-RS 자원 집합(resource set)에 관련된 정보를 수신할 수 있다(S2703). 그 후, 단말은 비주기적 CSI-RS를 상기 주기적 CSI-RS를 위한 오프셋 값을 기반으로 수신할 수 있다(S2705). 이 때, 단말은 주기적 CSI-RS를 위한 주기 값은 비주기적 CSI-RS 수신을 위해 사용하지 않을 수 있다. 도 27의 단말 동작을 구현하기 위한 구체적인 방법은 후술하도록 한다.
도 28은 실시 예 4에 따른 기지국의 동작을 나타낸다. 도 28을 참조하면, 기지국은 주기적 CSI-RS을 위한 주기 및 오프셋에 관련된 정보를 전송할 수 있다(S2801). 그리고, 기지국은 비주기적 CSI-RS 자원 집합(resource set)에 관련된 정보를 전송할 수 있다(S2803). 그 후, 기지국은 비주기적 CSI-RS를 상기 주기적 CSI-RS를 위한 오프셋 값을 기반으로 전송할 수 있다(S2805). 이 때, 기지국은 주기적 CSI-RS를 위한 주기 값은 비주기적 CSI-RS 전송을 위해 사용하지 않을 수 있다. 도 28의 기지국 동작을 구현하기 위한 구체적인 방법은 후술하도록 한다.
도 29는 실시 예 4에 따른 네트워크의 동작을 나타낸다. 도 29를 참조하면, 기지국은 단말에게 주기적 CSI-RS을 위한 주기 및 오프셋에 관련된 정보를 전송할 수 있다(S2901). 그리고, 기지국은 단말에게 비주기적 CSI-RS 자원 집합(resource set)에 관련된 정보를 전송할 수 있다(S2803). 그 후, 기지국은 단말에게 비주기적 CSI-RS를 상기 주기적 CSI-RS를 위한 오프셋 값을 기반으로 전송할 수 있다(S2805). 이 때, 기지국은 주기적 CSI-RS를 위한 주기 값은 비주기적 CSI-RS 전송을 위해 사용하지 않을 수 있다. 도 29의 네트워크 동작을 구현하기 위한 구체적인 방법은 후술하도록 한다.
이제 도 27 내지 도 29의 단말, 기지국 및 네트워크가 동작하는 구체적인 방법에 대해서 살펴보도록 한다.
NR 시스템에서 60kHZ 이하의 부반송파 간격 및 일반 CP (Normal Cyclic Prefix)를 가지는 슬롯은 7개 또는 14개의 OFDM 심볼들을 포함할 수 있다. 또한, 60kHz를 초과하는 부반송파 간격 및 일반 CP를 가지는 슬롯은 14개의 심볼들을 포함할 수 있다.
한편, NR 시스템에서는 슬롯 집성(Slot Aggregation)이 지원되며, 이러한 슬롯 집성은 데이터의 전송이 하나 또는 복수의 슬롯들에 걸쳐서 스케줄링될 수 있는 것을 의미할 수 있다. 후술하는 본 발명의 설명에서 다중 슬롯 PDSCH(multi-slot PDSCH)는, 이러한 슬롯 집성을 기반으로 PDSCH가 하나 또는 복수의 슬롯들에 걸쳐서 스케줄링 되는 것을 의미할 수 있다.
기지국은 주기적 CSI-RS를 위한 "CSI-ResourcePeriodicityAndOffset"를 단말에게 설정할 수 있다. 이 때, 기지국은 단말은 상기 "CSI-ResourcePeriodicityAndOffset"을 유효한 파라미터(valid parameter)로 인지할 것인지 여부 및 상기 "CSI-ResourcePeriodicityAndOffset"에서 설정/지시된 주기 (periodicity) 정보는 무시하고 슬롯 오프셋(slot-offset)만 유효한 정보로 인지할 것인지에 관한 동작을 정의/설정/지시할 수 있다. 이 때, 기지국은 단말에게 상기 "CSI-ResourcePeriodicityAndOffset"가 특정 조건을 만족하는 경우에 유요한 파라미터로 인지할 것을 설정/지시할 수 있다.
또한, "CSI-ResourcePeriodicityAndOffset"에서 주기(Periodicity)를 나타내는 필드(field)가 기본(default) 값(예를 들어, '0'등의 상수)으로 설정/지시되면 단말은 주기(periodicity)에 관한 정보는 유효하지 않은 정보로 인지하고 슬롯 오프셋(slot-offset) 값만 유효하거나 의미있는 정보로 인지할 수 있다.
이러한 동작은 특히 "다중 슬롯(multi-slot) PDSCH"스케줄링 및/또는 비주기적 ZP(Zero-power)-CSI-RS 자원에 대한 PDSCH 레이트 매칭 등에 적용될 수 있다. 다시 말해, 다중 슬롯 PDSCH 및/또는 PDSCH 레이트 매칭에 있어서, 주기적 CSI-RS 자원을 위한 "CSI-ResourcePeriodicityAndOffset"에서 주기에 대한 정보는 적용하지 않고, 오직 슬롯 오프셋 정보만을 비주기적 CSI-RS 자원 별로 적용하거나 비주기적 CSI-RS 자원 집합(resource set) 별로 적용할 수 있다.
예를 들어, "다중 슬롯(multi-slot) PDSCH"스케줄링 등과 같이, 특정 DL-DCI에 의해서 스케줄링 되는 PDSCH가 단일 슬롯에서만 전송되는 것이 아닌 두 개 이상의 슬롯들에서 다중으로 스케줄링 될 때, 해당 PDSCH의 데이터 레이트 매칭을 적용해야 하는 RE(Resource Element)들의 위치를 상기 비주기적 CSI-RS 설정을 이용하여 결정할 수 있다. 이 때, 다중으로 스케줄링되는 두 개 이상의 슬롯들은 인접한 슬롯들일 수 있다. 또한, 상기 PDSCH 레이트 매칭을 적용해야 하는 RE들의 위치들을 알리기 위한 비주기적 CSI-RS는 PDSCH 레이트 매칭을 위한 ZP-CSI-RS일 수 있다.
이 때, 비주기적 ZP-CSI-RS 또는 비주기적 NZP(non zero power) CSI-RS의 경우, CSI-RS 자원 집합(resource set) 당 단일의 특정 슬롯 오프셋(slot offset) 파라미터를 설정할 수 있기 때문에 위와 같은 다중 슬롯 PDSCH 스케줄링의 경우, 스케줄링된 슬롯들 중 특정 하나의 슬롯에만 오프셋이 지시될 수 있다. 또한, 상기 오프셋이 지시된 특정 하나의 슬롯에만 비주기적 ZP CSI-RS에 의한 PDSCH 레이트 매칭이 적용될 수 있는 문제점이 있을 수 있다.
다시 말해, CSI-RS 자원 집합 내의 모든 CSI-RS 자원들에 모두 공통의 슬롯 오프셋 파라미터가 적용될 수 있기 때문에, 다중 슬롯 PDSCH 스케줄링의 경우, 스케줄링된 슬롯들 중 오프셋이 지시된 슬롯에만 비주기적 ZP CSI-RS에 의한 PDSCH 레이트 매칭이 적용될 수 있는 문제점이 있다.
이에 따라, 특정 비주기적(aperiodic) ZP CSI-RS 자원 집합(resource set) 설정 시에 함께 설정되는 슬롯 오프셋(slot offset) 파라미터를 기본적으로 적용함과 동시에 해당 비주기적 ZP CSI-RS 자원 집합 내의 각 비주기적 AP CSI-RS 자원 별로 설정될 수 있는 "CSI-ResourcePeriodicityAndOffset"파라미터를 적어도 일부가 유효한 것으로 설정하여 자원 별로 설정되는 파라미터의 설정 정보 중, "CSI-ResourcePeriodicityAndOffset"의 "슬롯 오프셋(slot offset)"정보만 유효하게 추가 적용할 수 있다. 즉, "CSI-ResourcePeriodicityAndOffset"의 주기 정보는 유효하지 않을 것으로 적용할 수 있다.
예를 들어, 비주기적 ZP CSI-RS 자원 집합 별 슬롯 오프셋 파라미터가 k이고 해당 비주기적 ZP CSI-RS 자원 집합을 트리거링(triggering)하는 DCI가 슬롯(slot) #n에서 수신되면, 해당 비주기적 ZP CSI-RS 자원 집합은 슬롯 #n+k 및/또는 연계된 특정 타임라인에 따른 시점에서의 비주기적 PDSCH 레이트 매칭 동작을 상기 DCI가 지시한 것으로 볼 수 있다.
그런데, 상기 비주기적 ZP CSI-RS 자원 집합 내의 비주기적 CSI-RS 자원 잡합에 대하여 CSI-RS 자원 별 슬롯이 아래의 [표 7] 같이 추가 제공된다면, 슬롯 #n+k부터 연속적으로 4개의 슬롯들에 다중 슬롯 PDSCH의 레이트 매칭을 모두 지시할 수 있다.
비주기적 CSI-RS 자원 #1에 대한 CSI-RS 자원 별 추가 슬롯 오프셋 =0
비주기적 CSI-RS 자원 #2에 대한 CSI-RS 자원 별 추가 슬롯 오프셋 =1
비주기적 CSI-RS 자원 #3에 대한 CSI-RS 자원 별 추가 슬롯 오프셋 =2
비주기적 CSI-RS 자원 #4에 대한 CSI-RS 자원 별 추가 슬롯 오프셋 =3
즉, 비주기적 ZP CSI-RS 자원 집합 별로 설정된 슬롯 오프셋 값을 적용하고, 상기 주기적 ZP CSI-RS 자원 집합에 포함된 비주기적 ZP CSI-RS 자원들에 공통적으로 "CSI-ResourcePeriodicityAndOffset"에 포함된 슬롯 오프셋을 적용하여 다중 슬롯 PDSCH 스케줄링에 있어서의 PDSCH 레이트 매칭을 모두 지시할 수 있다. 이 때, "CSI-ResourcePeriodicityAndOffset"에 포함된 주기 정보는 적용하지 않을 수 있다.
상술한 CSI-RS 자원 별로 "CSI-ResourcePeriodicityAndOffset"파라미터에 포함된 슬롯 오프셋을 재해석하는 방법은 비주긱적 ZP CSI-RS 자원 및/또는 비주기적 ZP CSI-RS 자원 집합에 관해서만 적용되는 것으로 한정/정의/설정될 수 있다.
다시 마래, 비주기적 NZP-CSI-RS 자원 및/또는 비주기적 NZP-CSI-RS 자원 집합에서는 "CSI-ResourcePeriodicityAndOffset" 파라미터를 유효하지 않거나 무시하는 등의 형태로 적용될 수 있다.
특히, 현재 NR 시스템에서 단일 BWP(bandwidth part) 당 트리거(trigger) 가능한 비주기적 ZP CSI-RS 자원 집합(resource set)의 개수가 최대 3개 등으로 제한적이기 때문에, 슬롯 집성(slot aggregation) 등의 다중 슬롯 PDSCH를 비주기적 ZP CSI-RS를 활용하여 레이트 매칭하기 위해서 상술한 실시 예를 적용할 필요가 있을 수 있다. 여기서, 상술한 실시 예는 비주기적 CSI-RS 자원 집합(resource set) 별로 설정된 슬롯 오프셋을 사용하면서, 추가적으로 CSI-RS 자원(resource) 별로 슬롯 오프셋(slot-offset)을 설정/지시하는 경우로 확장하여 적용될 수 있다. 또한, CSI-RS 자원 집합(resource set) 별로 설정되는 슬롯 오프셋(slot-offset)은 비주기적 CSI-RS 자원 집합(resource set)의 트리거링 슬롯 오프셋(triggering slot-offset)으로 해석될 수 있다.
또는, 시간 도메인 행동(Time-domain behavior)이 "비주기적(aperiodic)"인 경우, CSI-RS 자원의 슬롯 오프셋(slot offset) 설정을 하지 않으면 슬롯 오프셋(slot offset)은 '0'이지만, 슬롯 오프셋(slot offset)을 설정하면 기지국이 슬롯 오프셋에 대한 기본(default) 값으로 "1"을 설정할 수 있다. 또한, 비주기적 CSI-RS 자원들의 슬롯 오프셋(slot offset)을 설정하는 경우, 슬롯 오프셋 값은 기본 (default) 값은 '1'로 고정될 수 있다.
또는, 비주기적 CSI-RS 자원 집합(resource set)이 Repetition "on"으로 설정될 때, 시간 도메인 행동(time-domain behavior)이 비주기적(aperiodic)이면, 단말은 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원(resource)이 14개 이상일 것을 기대/가정하지 않을 수 있다. 만약, CSI-RS 자원이 14개 이상 설정된 경우, 단말은 CSI-RS 자원 ID가 가장 작은 14개만 고려하고 나머지는 무시할 수 있다. 한편, 비주기적 CSI-RS 자원 집합(resource set)을 repetition "on"으로 설정할 때, 기지국이 하나의 CSI-RS 자원 집합(resource set) 내에서 설정 가능한 CSI-RS 자원의 최대 개수는 14개로 제한될 수 있다.
또는, 비주기적 CSI-RS 자원 집합(resource set)이 Repetition "on"으로 설정될 때, 시간 도메인 행동 (time-domain behavior)이 '비주기적(aperiodic)'이고, CSI-RS 자원들의 개수가 14개 이상인 경우, 단말은 CSI-RS 자원 ID 인덱스가 가장 작은 14개를 제외한 다른 CSI-RS 자원들은 (예를 들어, CSI-RS 자원 #15 / #16) CSI-RS 자원 인덱스가 가장 작은 CSI-RS 자원 14개가 전송되는 슬롯의 바로 다음 슬롯, 즉, CSI-RS 자원 인덱스가 가장 작은 CSI-RS 자원 14개가 전송되는 슬롯의 인접한 슬롯에서 전송되는 것으로 가정할 수 있다. 또는, CSI-RS 자원 인덱스(resource index)가 가장 작은 14개의 CSI-RS 자원은 슬롯 오프셋(slot-offset)이 0으로 설정되거나 설정되지 않지만, 나머지 CSI-RS 자원은 슬롯 오프셋(slot-offset)이 1로 설정되었음을 단말이 자동으로 인지/가정할 수 있다. 예를 들어, 단말은 CSI-RS 자원 인덱스가 가장 작은 14개의 CSI-RS 자원을 제외한 나머지 CSI-RS 자원의 슬롯 오프셋이 기본(default)값인 '1'인 것으로 인지할 수 있다.
한편, 단말은 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들이 14개 이상일 것을 기대/가정하지 않을 수 있다. 만약, CSI-RS 자원이 14개 이상 설정된다면, 단말은 CSI-RS 자원 ID가 가장 작은 14개만 고려하고 나머지는 무시할 수 있다.
(2) CSI-RS 자원 집합(resource set)을 설정할 때, CSI-RS의 시간 도메인 행동(time-domain behavior)이 "비주기적(aperiodic)"이고 상위 계층 파라미터(higher layer parameter) TRS-Info가 설정되는 경우, 즉, 시간-주파수 추적(Tracking)을 위한 CSI-RS 자원 집합을 설정하는 경우, 단말에게 총 4개의 CSI-RS 자원들이 설정될 수 있다.
이 때, 만약, 상위 계층 파라미터(Higher layer parameter) "TRS-Info"가 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원의 수가 4개이면, CSI-RS 자원 ID 인덱스가 가장 작은 두 개와 가장 큰 두 개는 서로 다른 인접한 슬롯에서 전송되는 것으로 단말이 인지/가정/기대할 수 있다.
이 때, CSI-RS 자원 ID 인덱스가 가장 큰 두 개는 슬롯 오프셋(slot-offset)이 기본 값(default value)인 "1"로 설정되거나, 슬롯 오프셋(slot-offset)이 1임을 단말이 자동으로 인지/가정할 수 있다.
또는, 설정된 CSI-RS의 시간 도메인 행동(time-domain behavior)이 "비주기적"인 CSI-RS 자원들의 슬롯 오프셋(slot offset)을 설정하는 경우, 주기적(periodic) CSI-RS의 주기(periodicity) 및 슬롯 오프셋(slot offset)을 설정하는 상위 계층 파라미터인 "CSI-ResourcePeriodicityAndOffset"을 사용할 수 있다. 예를 들어, "CSI-ResourcePeriodicityAndOffset"을 통해 설정된 주기와 슬롯 오프셋 중에서 주기(periodicity)는 무시하고, 슬롯 오프셋만 사용하여 비주기적 CSI-RS 자원들의 슬롯 오프셋을 설정할 수 있다. 한편, 상위 계층 파라미터(higher layer parameter) "CSI-ResourcePeriodicityAndOffset" 는 3GPP TS 38.331에 기재되어 있다.
또는, 상위 계층 파라미터인 "TRS-Info"가 설정된 CSI-RS 자원 집합(resource set)에 대해서만, 최대 2개 이상의 CSI-RS 자원 집합(resource set)이 동시에 트리거(trigger) 될 수 있음을 단말이 기대/가정할 수 있다. 다시 말해, 시간-주파수 추적(Tracking)을 위한 CSI-RS 자원 집합만이 최대 2 개 이상 동시에 트리거될 수 있다. 이 때, 상위 계층 파라미터 "TRS-Info"가 설정된 CSI-RS 자원 집합(resource set) 2개가 동시에 트리거(trigger)된 경우, 단말은 두 개의 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들을 모두 동일 안테나 포트를 사용하는 것으로 가정/기대한다.
실시 예 5:
실시 예 5에서는 실시 예 2에서의 서로 다른 타입 및/또는 서로 다른 설정을 가지는 2개의 하향링크 신호가 멀티플렉싱될 때, 단말의 동작 및/또는 기지국의 설정/지시에 대한 좀 더 구체적인 케이스(Case)에 대해서 살펴보도록 한다. 즉, 실시 예 5에서의 예시들은 실시 예 2와 결합하여 구현될 수 있다. 또한, 실시 예 5에서의 예시들은 서로 다른 타입 및/또는 서로 다른 설정을 가지는 3 개의 하향링크 신호가 멀티플렉싱되는 경우의 단말의 동작 및/또는 기지국의 설정/지시에 대한 실시 예 3과도 결합하여 구현될 수 있다. 마찬가지로, 실시 예 2, 3 이외의 본 명세서에 기재된 여러 실시 예들과 실시 예 5는 결합될 수 있다.
우선, 서로 다른 CSI-RS 자원들 간의 멀티플렉싱 방법에 대해 살펴보도록 한다. CSI 획득(acquisition)을 위한 CSI-RS와 빔 관리(beam management)를 위한 CSI-RS가 항상 서로 다른 OFDM 심볼에만 전송된다면 시스템/하드웨어의 설계는 비교적 단순해질 수 있다. 다시 말해, CSI 획득(acquisition)을 위한 CSI-RS와 빔 관리(beam management)를 위한 CSI-RS가 항상 TDM (Time Division Multiplex) 된다면 시스템/하드웨어의 설계는 비교적 단순해질 수 있다.
하지만 빔 관리(beam management) CSI-RS 자원 집합(resource set)이 최대 64개의 자원들(resources)로 구성될 수 있고, 여러 TRP(Transmission Reception Point)에서 동시에 CSI-RS를 전송할 수 있으므로, 효율적인 무선 자원의 활용을 위하여 단말이 빔 관리(beam management) 동작과 CSI 획득(acquisition) 동작을 함께 수행할 수 있도록 지원하는 것이 필요할 수 있다.
CSI 획득(acquisition)을 위한 CSI-RS 자원(resource)은 안테나 포트(antenna port) 개수에 따라서, 두 개 이상의 심볼에 걸쳐서 설정될 수 있다. 이 때, 특정 CSI-RS 자원(resource)에 대한 CSI 측정(measurement)을 수행하는 동안에는 단말이 동일한 수신 빔을 사용하는 것이 바람직할 수 있다. 반면, 상위 계층 파라미터(higher layer parameter) "Repetition"의 설정이 'on' 또는 'off'인 CSI-RS 자원 집합(CSI-RS resource set)의 CSI-RS 자원은 단일 OFDM 심볼만 차지하며 각 CSI-RS 자원(resource)에 대해서 단말이 서로 다른 수신 빔을 사용할 수 있다. 상술한 바를 고려하여 서로 다른 CSI-RS 자원들 간의 단말의 동작 및/또는 기지국의 설정/지시는 아래와 같이 수행될 수 있다.
1) 기지국이 CSI 획득(acquisition)을 위한 특정 CSI-RS 자원(resource)과 repetition='On'인 빔 관리(Beam Management) 용 CSI-RS 자원 집합(resource set)을 동일한 슬롯(slot)에서 단말에게 설정할 때, 두 CSI-RS 자원들이 특정 하나의 OFDM 심볼에서 할당되도록 기지국으로부터 설정 받을 수 있다. 또한, 이러한 설정은 CSI 획득(acquisition) 용 CSI-RS 자원(resource)과 빔 관리 용 CSI-RS 자원이 동일한 공간(spatial) QCL로 설정된 경우로 한정될 수 있다.
보다 일반적으로, repetition='On'인 CSI-RS 자원 집합(resource set)의 CSI-RS 자원들과 CSI 획득(acquisition)을 위한 CSI-RS 자원들이 동일한 공간 QCL 설정(same spatial QCL configuration)을 가진 경우에만 동일한 OFDM 심볼 상에 전송되도록 단말은 설정 받을 수 있다.
2) CSI 획득(acquisition)을 위한 CSI-RS 자원들과 repetition “on”으로 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원들, 즉, 수신 빔 스위핑(RX beam sweeping) 목적으로 설정된 빔 관리(beam management; BM) 용 CSI-RS 자원들이 여러 OFDM 심볼들을 통해 함께 전송되는 경우, CSI 획득(acquisition)을 위한 CSI-RS 자원이 설정된 N(>=2)개의 OFDM 심볼 동안 단말이 수신 빔 스위핑(RX beam sweeping)을 수행하지 않도록 기지국으로부터 설정/지시될 수 있다.
예를 들어, CSI 획득(acquisition)을 위한 CSI-RS 자원(resource)이 설정되는 OFDM 심볼에 함께 설정되는 repetition "on"이 설정된 CSI-RS 자원은 공간(spatial) QCL 설정이 없더라도 CSI 획득(acquisition)을 위한 CSI-RS 자원에 설정된 공간(spatial) QCL 설정을 따르도록 설정/지시되거나 단말이 이러한 설정을 자동으로 인지할 수 있다.
3) Repetition "off"로 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원은 (즉, repetition "off"인 CSI-RS) 기지국이 전송 빔 스위핑(TX beam sweeping)을 수행하는 동안, 단말이 동일한 수신 빔을 사용할 것으로 생각할 수 있다. 따라서, CSI 획득(acquisition)을 위한 CSI-RS 자원이 설정되는 OFDM 심볼에 repetition "off"로 설정된 CSI-RS 자원이 함께 설정되는 경우, 단말은 repetition "off"로 설정된 CSI-RS 자원의 공간 QCL은 동일한 OFDM 심볼에서 전송되는 CSI 획득(acquisition)을 위한 CSI-RS 자원(resource)의 공간(spatial) QCL 설정을 따를 수 있다. 또한, 이러한 동작을 기지국이 단말에게 설정/지시하거나 단말이 자동으로 인지할 수 있다.
또한, 상술한 실시 예는 repetition "off" CSI-RS 자원에 공간(Spatial) QCL 설정이 없는 경우 및 CSI 획득(acquisition) 용 CSI-RS 자원과 repetition "off" CSI-RS 자원의 공간 (spatial) QCL 설정이 다른 경우에도 동일하게 적용될 수 있다.
4) 추가적으로, 상위 계층 파라미터(Higher layer parameter) "repetition"이 "on"으로 설정된 CSI-RS와 "repetition"이 "off"로 설정된 CSI-RS가 하나 이상의 OFDM 심볼에서 함께 전송되도록 설정/지시되면, 단말은 자신의 수신 패널(panel) 또는 동시 수신 가능한 빔의 개수가 1 개인 것을 감안하여 "repetition"이 "on"으로 설정된 CSI-RS와 "repetition"이 "off"로 설정된 CSI-RS가 동일한 OFDM 심볼에 설정되지 않도록 기지국에 재설정을 요청을 전송할 수 있다. 다시 말해, 단말의 수신 패널(panel) 또는 동시 수신 가능한 빔의 개수가 1 개라면, 단말은 기지국에게 "repetition"이 "on"으로 설정된 CSI-RS와 "repetition"이 "off"로 설정된 CSI-RS가 서로 다른 OFDM 심볼에서 전송되도록 요청할 수 있다.
이제, SS/PBCH 블록과 PDSCH 또는 PDCCH의 멀티플렉싱 방법에 대해서 살펴보도록 한다.
[표 8]은 FR 2에서 SS/PBCH 블록과 PDSCH 또는 PDCCH가 동시에 송수신되기 위한 규칙을 나타낸다.
SS/PBCH block-RRM SS/PBCH block-RLM SS/PBCH block-BFD SS/PBCH block-BM
PDSCH scheduling restriction (no rate matching) scheduling restriction scheduling restriction / QCL-D (CA) scheduling restriction
PDCCH Scheduling restriction(no rate matching) scheduling restriction scheduling restriction / QCL-D (CA) scheduling restriction
여기서, QCL-D (CA)는 반송파 집성(Carrier Aggregation)의 경우 SS/PBCH block-BFD(Beam Failure Detection)와 PDSCH/PDCCH가 동일한 공간 QCL로 설정(Configure)될 때, SSB-BFD의 OFDM 심볼에 스케쥴링 제한이 적용되지 않는다는 것을 의미할 수 있고, 이는 표준 문서 3GPP TS 38.133의 섹션 8.5.7.3에서 유추될 수 있다.
한편, [표 8]에서의 스케줄링 제한은 SMTC (SS/PBCH block Measurement Timing Configuration) 윈도우 내에서도 적용될 수 있다. 또한, SMTC 윈도우 외부에서도 SS/PBCH 블록 기반 RLM(Radio Link Monitoring), SS/PBCH 블록 기반 BFD (Beam Failure Detection) 및 SS/PBCH 블록 기반 L1-RSRP(Reference Signal Received Power) 측정을 수행할 때 SS/PBCH 블록의 OFDM 심볼에 스케줄링 제한이 적용될 수 있다. 그러므로, SS/PBCH block-RLM, SS/PBCH block-BFD 및 SS/PBCH block-BM(Beam Management)를 위한 심볼에 대한 레이트 매칭 동작을 정의할 것인지에 대해 논의할 필요가 있다.
PDCCH와 비교하여 PDSCH을 위한 OFDM 심볼은 슬롯 내의 SS/PBCH 블록을 위한 OFDM 심볼과 부분적으로 중첩되지 않거나 완전히 중첩되지 않도록 DCI(Downlink Control Information)에 의해 동적으로 스케줄링 될 수 있다. 그러나, PDCCH는 반-정적(semi-statically)으로 설정(configured)되므로, 네트워크는 슬롯 내에서 SS/PBCH 블록이 수신되는 하나 이상의 OFDM 심볼들에 중첩(overlap)되지 않게 PDCCH가 설정(configured)되도록 보장하는 것은 어려울 수 있다.
또한, PDCCH를 위한 OFDM 심볼과 SS/PBCH 블록을 위한 OFDM 심볼이 중첩되는 경우에, 단말이 PDCCH를 디코딩하지 않는다면, 결과적으로 자원 활용의 비효율성을 가져오고, PDSCH 스케줄링 기회가 손실 될 수 있다. 그러므로 PDCCH의 경우, RLM과 L1-RSRP 측정을 위해 SS/PBCH 블록이 설정된(configured) OFDM 심볼에 PDCCH RE(resource element)가 맵핑되지 않아야 할 것이다. 다시 말해, FR 2를 위한 SMTC 윈도우 밖에서 전송되는 SS/PBCH 블록이 RLM과 L1-RSRP 측정을 위한 것이라면, 상기 SS/PBCH 블록이 설정된(configured) OFDM 심볼에는 PDCCH가 맵핑되지 않을 수 있다.
도 30 내지 도 32는 CSI-RS와 PDCCH/PDSCH가 멀티플렝싱되어 전송되는 경우의 단말, 기지국 및 네트워크의 동작 구현 예를 설명하기 위한 도면이다.
도 30을 참조하여, 본 발명의 실시 예에 따른 단말의 동작 구현 예를 살펴보면, 단말은 기지국으로부터 CSI-RS 설정(Configuration)에 관련된 파라미터를 수신할 수 있다(S3001). 한편, 상기 파라미터에는 CSI-RS의 용도를 설정하기 위한 'Repetition' 파라미터 및/또는 'TRS-info' 파라미터가 포함될 수 있다.
그리고, 단말은 기지국으로부터 적어도 하나의 CSI-RS 자원 ID(identification)이 포함된 TCI(Transmission Configuration Indicator)를 수신할 수 있다(S3003). 이 때, 상기 TCI는 DCI(Downlink Control Information)에 포함될 수 있다.
단말은 그 후, 상기 TCI를 기반으로 CSI-RS 및 PDCCH/PDSCH를 수신할 수 있다(S3005). 이 때, CSI-RS 및 PDCCH/PDSCH는 동일한 시간 영역에서 멀티플렉싱 될 수 있다. 한편, S3001~S3005 단계를 위한 CSI-RS 및 PDCCH/PDSCH의 구체적인 수신 방안은 후술하는 실시 예에 기반할 수 있다.
도 31을 통해 본 발명의 실시 예에 따른 기지국의 동작 구현 예를 살펴보도록 한다.
도 31을 참조하면, 기지국은 CSI-RS 설정(Configuration)에 관련된 파라미터를 전송할 수 있다(S3101). 한편, 상기 파라미터에는 CSI-RS의 용도를 설정하기 위한 'Repetition' 파라미터 및/또는 'TRS-info' 파라미터가 포함될 수 있다. 그리고, 기지국은 적어도 하나의 CSI-RS 자원 ID(identification)이 포함된 TCI(Transmission Configuration Indicator)를 전송할 수 있다(S3103). 이 때, 상기 TCI는 DCI(Downlink Control Information)에 포함될 수 있다. 즉, 기지국은 DCI를 통해 적어도 하나의 CSI-RS 자원 ID를 포함하는 TCI를 전송할 수 있다.
기지국은 상기 TCI를 기반으로 CSI-RS 및 PDCCH/PDSCH를 전송할 수 있다(S3105). 이 때, CSI-RS 및 PDCCH/PDSCH는 동일한 시간 영역에서 멀티플렉싱 되어 전송될 수 있다. 즉, CSI-RS 및 PDCCH/PDSCH는 FMD되어 전송될 수 있다. 한편, S3101~S3105 단계를 위한 CSI-RS 및 PDCCH/PDSCH의 구체적인 전송 방안은 후술하는 실시 예에 기반할 수 있다.
도 32는 본 발명의 실시 예에 따른 네트워크의 동작 구현 예를 나타낸다. 도 32를 참조하면, 기지국은 단말에게 CSI-RS 설정(Configuration)에 관련된 파라미터를 전송할 수 있다(S3201). 한편, 상기 파라미터에는 CSI-RS의 용도를 설정하기 위한 'Repetition' 파라미터 및/또는 'TRS-info' 파라미터가 포함될 수 있다. 그리고, 기지국은 적어도 하나의 CSI-RS 자원 ID(identification)이 포함된 TCI(Transmission Configuration Indicator)를 단말에게 전송할 수 있다(S3203). 이 때, 상기 TCI는 DCI(Downlink Control Information)에 포함될 수 있다. 즉, 기지국은 DCI를 통해 적어도 하나의 CSI-RS 자원 ID를 포함하는 TCI를 단말에게 전송할 수 있다.
기지국은 상기 TCI를 기반으로 CSI-RS 및 PDCCH/PDSCH를 단말에게 전송할 수 있다(S3205). 이 때, CSI-RS 및 PDCCH/PDSCH는 동일한 시간 영역에서 멀티플렉싱 되어 단말에게 전송될 수 있다. 즉, CSI-RS 및 PDCCH/PDSCH는 FMD되어 전송될 수 있다. 한편, S3201~S3205 단계를 위한 CSI-RS 및 PDCCH/PDSCH의 구체적인 전송 방안은 후술하는 실시 예에 기반할 수 있다.
이제, 도 30 내지 도 32를 기반으로 한 단말, 기지국 및 네트워크의 구체적인 동작 방법에 대해서 설명하도록 한다.
우선, FR 2 에서의 CSI-RS 와 PDCCH/PDSCH 간의 동시 송수신에 대한 규칙은 아래의 [표 9]와 같다.
CSIRS-BM( repetition "on") CSIRS-BM( repetition "off") CSIRS-CSI CSIRS-tracking
PDSCH scheduling restriction(details are FFS) FFS FFS FFS
PDCCH Not configured QCL-D QCL-D QCL-D
상기 [표 9]를 참조하면, 만약, CORESET과 CSI-RS가 공간 (spatial) QCL 관계에 있다면, 단말은 CSI-RS와 PDCCH가 동일 OFDM 심볼을 상에서 수신되도록 설정(Configured)받을 수 있다.
만약, CSI-RS 자원에 대해 어떠한 공간 QCL이 설정되지 않는다면, 단말은 CSI-RS 자원에 대한 수신 빔을 자유롭게 선택할 수 있다. 이러한 경우, 만약에 CSI-RS와 PDCCH가 동일한 OFDM 심볼 상에서 수신되고, CSI-RS에 공간 QCL이 설정(Configured)되지 않았는데, 단말이 PDCCH의 공간 QCL에 따라 CSI-RS 및 PDCCH를 수신하게 된다면, CSI-RS 자원을 위한 수신 빔과 PDCCH를 위한 수신 빔이 서로 상이하여 CSI-RS 자원 수신과 PDCCH 수신에 충돌이 발생할 수 있다.
따라서, 단말의 동작을 단순화하기 위해, CSI-RS와 PDCCH가 공간적으로 QCL된 경우에만 FDM(Frequency Division Multiplexing)될 수 있어야 한다. 다시 말해, 명시적으로 지시된 PDCCH에 대한 공간 QCL 참조가 CSI-RS의 공간 QCL 참고와 동일한 경우에만 CSI-RS 및 PDCCH의 FDM을 지원할 수 있다.
한편, Repetition 'ON'인 CSI-RS와 PDSCH가 FDM되어 전송될 수 있는지에 대해서 살펴보면, CSI-RS 자원 집합(resource set)의 Repetition이 'ON'인 경우, 서빙 셀의 FR2에서의 L1-RSRP 측정 기반 CSI-RS가 전송되는 동안, 수신 빔포밍을 단말이 수행할 것으로 예상되는 바, PDSCH의 스케줄링은 제한된다.
따라서, SS/PBCH 블록과 PDSCH가 FDM되어 전송되는 것과 유사하게, PDSCH는 DCI에 의해 동적으로 스케줄링될 수 있기 때문에, 네트워크는 Repetition 'ON'이 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원들과 중첩되지 않도록 PDSCH를 스케줄링 할 수 있다. 이러한 상황에서 단말의 복잡성을 증가시키면서까지 심볼 레벨의 PDSCH 레이트 매칭을 도입할 필요성을 찾기는 어려울 수 있다. 따라서, 단말은 Repetition 'ON'으로 설정된 CSI-RS를 위한 하나 이상의 OFDM 심볼들과 PDSCH가 중첩되어 수신될 것을 기대하지 않을 수 있다.
한편, Repetition 'OFF'인 CSI-RS 및 PDSCH의 멀티플렉싱에 대해서 살펴보면, 일반적으로 Repetition 'OFF'로 설정된 슬롯에서 단말은 단일 수신 빔을 유지하므로, CSI-RS 자원과 PDSCH의 FDM을 허용하는 것이 바람직할 수 있다.
다만, 이러한 경우, PDSCH를 위한 수신 빔이 CSI-RS를 위한 수신 빔과 동일한 것을 보장하기 위하여, CSI-RS 자원 집합(resource set) 중 적어도 하나의 CSI-RS 자원 ID가 PDSCH를 위한 TCI 상태에 의해 지시될 수 있다. 다시 말해, PDSCH를 위한 TCI는 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들 중, 적어도 하나의 CSI-RS 자원 ID를 포함할 수 있다.
예를 들어, 기지국은 PDSCH를 스케줄링 하는 DCI에 포함되는 TCI를 통해 스케줄링 되는 PDSCH와 동일한 수신 빔을 가지는 CSI-RS 자원을 단말에게 지시할 수 있다. 또한, 단말은 상기 TCI 상태를 기반으로 DCI에 의해 스케줄링되는 PDSCH와 동일한 수신 빔을 가지는 CSI-RS 자원을 인지할 수 있고, PDSCH를 수신하기 위해 상기 TCI를 통해 지시된 CSI-RS 자원에 해당하는 수신 빔을 이용할 수 있다.
실시 예 6:
CSI-RS 자원을 위한 최소 대역폭은 24 RBs (Resource Blocks) 및 해당 BWP 사이즈 중 최소 값으로 정해진다. 즉, CSI-RS 자원을 위한 최소 대역폭은 min (24, N size BWP)로 정해질 수 있다. CSI-RS 대역폭은 CSI-RS 자원이 점유하고 초기 RB 인덱스(즉, StartingRB)와 RB의 수(nofRBs)로 설정될(Configured) 수 있다.
이를 표준에서는 다음의 [표 10]과 같이 정의하고 있다.
Figure PCTKR2019009863-appb-img-000002
[표 10] 에 따르면, startingRB > N start BWP이고, N size BWP+N start BWP- startingRB < 24이면, N BW CSI - RS는 min(24, N size BWP)보다 작은 값을 가진다. 여기서, N BW CSI - RS는 CSI-RS 대역폭이고, N start BWP는 BWP의 시작 RB 인덱스이며, N size BWP는 BWP의 크기이다. 도 30은 startingRB = 8, nofRBs = 24, N start BWP = 4, N size BWP = 24으로 상위 계층 파라미터가 설정된 경우를 가정한다. 도 30을 참조하면, 초기 RB 인덱스인 N initial RB = 8인 바, CSI-RS 대역폭은 N BW CSI - RS = N size BWP + N start BWP - N initial RB = 20 RBs로 설정될 수 있다. 따라서, 이는 min (24, N size BWP)보다 CSI-RS 대역폭이 명백하게 작게 설정될 수 있다.
즉, [표 10] 에 따르면, CSI-RS 대역폭이 시작하는 RB 인덱스( startingRB)가 BWP가 시작되는 RB 인덱스 (N start BWP)보다 큰 경우, CSI-RS 대역폭이 과도하게 작게 설정될 수 있다. 또한, BWP 크기(N size BWP)가 1 RB단위로 할당될 수 있기 때문에 N size BWP, N start BWPstartingRB 값에 따라서 N BW CSI - RS가 상당히 작은 값으로 설정될 수도 있다. 하지만, 정확한 CSI 측정(measurement) 및 보고(reporting)를 위해서는 특정 크기 이상의 CSI-RS 대역폭이 설정될 필요가 있다.
따라서 startingRB > N start BWP이고, N size BWP+N start BWP- startingRB < 24 인 경우에는, 단말이 특정 CSI-RS 자원이 걸쳐지는(span) CSI-RS 대역폭의 시작 RB 인덱스를 설정된 BWP가 시작되는 RB로 설정되는 것을 자동으로 인지할 수 있어야 한다. 이러한 상황을 반영하면 상기의 [표 10]은 아래의 [표 11]과 같이 수정될 수 있다.
Figure PCTKR2019009863-appb-img-000003
다시 말해, RRC로 특정 CSI-RS 자원을 위한 CSI-RS 대역폭의 시작 RB 인덱스( startingRB)가 BWP 내에서 설정되어도 단말은 BWP 크기, BWP 시작 RB 인덱스, startingRB의 값을 기반으로 CSI-RS 대역폭의 시작점을 BWP 시작점과 동일한 것으로 가정할 수 있다. 또한, 이는 결정되는 BWP 크기를 고려하여 특정 값 보다 BWP의 크기가 작은 경우 등으로 한정될 수도 있다.
한편, 상술한 실시 예 1 내지 실시 예 6은 단독으로 구현될 수도 있으나, 실시 예 1 내지 실시 예 6 중, 2가지 이상의 실시 예가 결합되어 구현될 수도 있다. 즉, 본 발명에서의 실시 예 1 내지 실시 예 6은 설명의 편의를 위해 구분해 놓을 것일 뿐이고, 본 명세서에 의한 발명이 어느 하나의 실시 예에 한정되어 구현되지 않으며, 복수의 실시 예들의 조합으로 구현될 수 있다.
도 34는 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.
도 34에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 34의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다. 좀 더 구체적으로, 상기 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.
또한, 전송 단말 및 수신 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 폴더블(foldable) 디바이스 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. 
도 34를 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.
프로세서(10)는 도 1 내지 33에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 33에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.
이와 같이, 도 34는 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 34에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 주기적 CSI-RS을 위한 주기 및 오프셋에 관련된 정보를 수신하도록 트랜시버(35)를 제어할 수 있다. 그리고, 프로세서(10)는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 정보를 수신하도록 트랜시버(35)를 제어할 수 있다. 그 후, 프로세서(10)는 비주기적 CSI-RS를 상기 주기적 CSI-RS를 위한 오프셋 값을 기반으로 수신하도록 트랜시버(35)를 제어할 수 있다. 이 때, 프로세서(10)는 주기적 CSI-RS를 위한 주기 값은 비주기적 CSI-RS 수신을 위해 사용하지 않을 수 있다. 한편, 상술한 프로세서(10)의 동작을 구현하기 위한 구체적인 방법은 실시 예 4를 기반으로 할 수 있다.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 34에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 주기적 CSI-RS을 위한 주기 및 오프셋에 관련된 정보를 전송하도록 트랜시버(35)를 제어할 수 있다. 그리고, 프로세서(10)는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 정보를 전송하도록 트랜시버(35)를 제어할 수 있다. 그 후, 프로세서(10)는 비주기적 CSI-RS를 상기 주기적 CSI-RS를 위한 오프셋 값을 기반으로 전송하도록 트랜시버(35)를 제어할 수 있다. 이 때, 프로세서(10)는 주기적 CSI-RS를 위한 주기 값은 비주기적 CSI-RS 전송을 위해 사용하지 않을 수 있다. 상술한 프로세서(10)의 동작을 구현하기 위한 구체적인 방법은 실시 예 4를 기반으로 할 수 있다.
도 35는 본 발명의 실시 예들을 구현할 수 있는 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 35를 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 36은 본 발명의 실시 예들을 구현할 수 있는 AI 서버(200)를 나타낸다.
도 36을 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 37은 본 발명의 실시 예들을 구현할 수 있는 따른 AI 시스템(1)을 나타낸다.
도 37을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 37에 도시된 AI 장치(100a 내지 100e)는 도 35에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (13)

  1. 무선 통신 시스템에서, 단말이 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하는 방법에 있어서,
    주기적 CSI-RS 자원을 위한 주기 정보 및 제 1 오프셋 정보를 수신하고,
    적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고,
    상기 설정 정보 및 제 1 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고,
    상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않는,
    비주기적 CSI-RS 자원 수신 방법.
  2. 제 1 항에 있어서,
    상기 주기 정보는, 특정 값을 포함하는,
    비주기적 CSI-RS 자원 수신 방법.
  3. 제 1 항에 있어서,
    상기 설정 정보는 제 2 오프셋 정보를 포함하고,
    상기 비주기적 CSI-RS 자원 집합에 상기 제 2 오프셋 정보가 적용되고, 상기 적어도 하나의 비주기적 CSI-RS 자원 각각에 상기 제 1 오프셋 정보가 적용되는,
    비주기적 CSI-RS 자원 수신 방법.
  4. 제 1 항에 있어서,
    상기 적어도 하나의 비주기적 CSI-RS 자원은, 비주기적 ZP(Zero Power) CSI-RS 자원이고, 상기 비주기적 ZP CSI-RS 자원에서는 PDSCH(Physical Downlink Shared Channel)가 수신되지 않는,
    비주기적 CSI-RS 자원 수신 방법.
  5. 제 4 항에 있어서,
    상기 PDSCH는 복수의 슬롯들에 걸쳐 스케줄링되는,
    비주기적 CSI-RS 자원 수신 방법.
  6. 제 1 항에 있어서,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    비주기적 CSI-RS 자원 수신 방법.
  7. 무선 통신 시스템에서, 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하기 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    주기적 CSI-RS 자원을 위한 주기 정보 및 제 1 오프셋 정보를 수신하고,
    적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고,
    상기 설정 정보 및 제 1 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고,
    상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않는,
    장치.
  8. 제 7 항에 있어서,
    상기 주기 정보는, 특정 값을 포함하는,
    장치.
  9. 제 7 항에 있어서,
    상기 설정 정보는 제 2 오프셋 정보를 포함하고,
    상기 비주기적 CSI-RS 자원 집합에 상기 제 2 오프셋 정보가 적용되고, 상기 적어도 하나의 비주기적 CSI-RS 자원 각각에 상기 제 1 오프셋 정보가 적용되는,
    장치.
  10. 제 7 항에 있어서,
    상기 적어도 하나의 비주기적 CSI-RS 자원은, 비주기적 ZP(Zero Power) CSI-RS 자원이고, 상기 비주기적 ZP CSI-RS 자원에서는 PDSCH(Physical Downlink Shared Channel)가 수신되지 않는,
    장치.
  11. 제 10 항에 있어서,
    상기 PDSCH는 복수의 슬롯들에 걸쳐 스케줄링되는,
    장치.
  12. 제 7 항에 있어서,
    상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    장치.
  13. 무선 통신 시스템에서, 비주기적 CSI-RS(Channel State Information - Reference Signal) 자원을 수신하기 위한 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    상기 적어도 하나의 트랜시버를 통해, 주기적 CSI-RS 자원을 위한 주기 정보 및 오프셋 정보를 수신하고,
    상기 적어도 하나의 트랜시버를 통해, 적어도 하나의 비주기적 CSI-RS 자원을 포함하는 비주기적 CSI-RS 자원 집합(resource set)에 관련된 설정 정보를 수신하고,
    상기 적어도 하나의 트랜시버를 통해, 상기 설정 정보 및 오프셋 정보를 기반으로 상기 적어도 하나의 비주기적 CSI-RS 자원을 수신하는 것을 특징으로 하고,
    상기 주기 정보는 상기 적어도 하나의 비주기적 CSI-RS 자원에 사용되지 않는,
    단말.
PCT/KR2019/009863 2018-08-16 2019-08-07 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치 WO2020036362A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/268,032 US11968138B2 (en) 2018-08-16 2019-08-07 Method for transmitting and receiving channel state information reference signal resource and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862719131P 2018-08-16 2018-08-16
US62/719,131 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020036362A1 true WO2020036362A1 (ko) 2020-02-20

Family

ID=69525600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009863 WO2020036362A1 (ko) 2018-08-16 2019-08-07 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11968138B2 (ko)
WO (1) WO2020036362A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3893422A1 (en) * 2020-04-09 2021-10-13 Panasonic Intellectual Property Corporation of America Communication apparatus and base station
WO2022000296A1 (en) 2020-06-30 2022-01-06 Qualcomm Incorporated Channel state information (csi) reference signal (rs) (csi-rs) repetition configurations for high doppler systems
CN115023913A (zh) * 2020-02-27 2022-09-06 联想(北京)有限公司 用于无线通信的方法及设备
US12040876B2 (en) 2020-03-31 2024-07-16 Sony Group Corporation Beam management for device-to-device communication
WO2024160086A1 (zh) * 2023-01-30 2024-08-08 维沃移动通信有限公司 通信处理方法、装置、设备及可读存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104145B2 (ja) * 2018-05-10 2022-07-20 株式会社Nttドコモ ユーザ端末
WO2020036362A1 (ko) * 2018-08-16 2020-02-20 엘지전자 주식회사 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치
US11166269B2 (en) 2019-03-28 2021-11-02 Ofinno, Llc Interaction between power saving adaptation and bandwidth part adaptation
US11729759B2 (en) * 2019-03-29 2023-08-15 Qualcomm Incorporated Group reference signal triggering for contention-based systems
CN112448875B (zh) * 2019-08-28 2023-10-20 华为技术有限公司 通信处理方法、通信处理装置以及系统
US11743889B2 (en) * 2020-02-14 2023-08-29 Qualcomm Incorporated Channel state information (CSI) reference signal (RS) configuration with cross-component carrier CSI prediction algorithm
US11870720B2 (en) * 2020-02-26 2024-01-09 Qualcomm Incorporated Channel state information reference signal configuration
US11652589B2 (en) * 2020-05-22 2023-05-16 Qualcomm Incorporated Techniques for coherent joint transmission for a multi-transmit and receive point (TRP) with a different physical cell identifier (PCID) by using a type-II port selection codebook
US11757519B2 (en) * 2020-06-26 2023-09-12 Qualcomm Incorporated Beam failure handling
CN113890715B (zh) * 2021-10-21 2023-10-13 中信科移动通信技术股份有限公司 一种信道状态信息参考信号的分配方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227519A1 (en) * 2015-01-30 2016-08-04 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation
US20170195031A1 (en) * 2015-12-30 2017-07-06 Samsung Electronics Co., Ltd Method and apparatus for channel state information reference signal (csi-rs)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014KN02949A (ko) * 2012-07-02 2015-05-08 Lg Electronics Inc
ES2690361T3 (es) * 2012-11-12 2018-11-20 Huawei Technologies Co., Ltd. Procedimiento para la notificación de información de estado del canal, equipo de usuario y estación base del mismo
JP7040617B2 (ja) * 2018-01-10 2022-03-23 富士通株式会社 シグナリング指示及び受信方法、装置及び通信システム
CN112753194B (zh) * 2018-08-08 2024-05-07 交互数字专利控股公司 无线发射/接收单元和在其中实施的方法
WO2020036362A1 (ko) * 2018-08-16 2020-02-20 엘지전자 주식회사 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160227519A1 (en) * 2015-01-30 2016-08-04 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation
US20170195031A1 (en) * 2015-12-30 2017-07-06 Samsung Electronics Co., Ltd Method and apparatus for channel state information reference signal (csi-rs)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP TS 38.214 V15.2.0, 29 June 2018 (2018-06-29), pages 1 - 95, XP051454110 *
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 15)", 3GPP TS 38.331 V15.2.1, 21 June 2018 (2018-06-21), pages 1 - 303, XP051453204 *
FUJITSU: "Ambiguities about beam indication and aperiodic CSI-RS triggering offset configuration in some cases", 3GPP TSG RAN WG1 MEETING #92 R1-1801892, 16 February 2018 (2018-02-16), Athens, Greece, XP051397050 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023913A (zh) * 2020-02-27 2022-09-06 联想(北京)有限公司 用于无线通信的方法及设备
US12040876B2 (en) 2020-03-31 2024-07-16 Sony Group Corporation Beam management for device-to-device communication
EP3893422A1 (en) * 2020-04-09 2021-10-13 Panasonic Intellectual Property Corporation of America Communication apparatus and base station
WO2021204443A1 (en) * 2020-04-09 2021-10-14 Panasonic Intellectual Property Corporation Of America Communication apparatus and base station
CN115606141A (zh) * 2020-04-09 2023-01-13 松下电器(美国)知识产权公司(Us) 通信装置和基站
WO2022000296A1 (en) 2020-06-30 2022-01-06 Qualcomm Incorporated Channel state information (csi) reference signal (rs) (csi-rs) repetition configurations for high doppler systems
CN116171548A (zh) * 2020-06-30 2023-05-26 高通股份有限公司 用于高多普勒系统的信道状态信息(csi)参考信号(csi-rs)重复配置
EP4173203A4 (en) * 2020-06-30 2024-03-27 Qualcomm Incorporated REPEAT CONFIGURATIONS FOR CHANNEL STATE INFORMATION (CSI-RS) REFERENCE SIGNALS (RS) FOR HIGH-DOPPLER SYSTEMS
WO2024160086A1 (zh) * 2023-01-30 2024-08-08 维沃移动通信有限公司 通信处理方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
US20210167920A1 (en) 2021-06-03
US11968138B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2020036362A1 (ko) 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치
WO2020032569A1 (ko) 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
WO2020040572A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2020027601A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2020009510A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치
WO2020027473A1 (ko) 무선 통신 시스템에서, 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2019221553A1 (ko) 무선 통신 시스템에서 단말의 전송 설정 지시자 결정 방법 및 상기 방법을 이용하는 장치
WO2020032706A1 (ko) 무선 통신 시스템에서 비면허 대역 내에서 lbt 타입에 따른 동작을 수행하는 방법 및 상기 방법을 이용하는 단말
WO2020032773A1 (ko) 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2020027472A1 (ko) 공통 자원 블록 그리드에 관계 없는 기준점을 설정하는 방법 및 이를 위한 장치
WO2020032685A1 (ko) 무선 통신 시스템에서 빔 실패 검출을 수행하는 방법 및 이에 대한 장치
WO2019235906A1 (ko) 무선 통신 시스템에서 참조 신호 패턴을 적응적으로 설정하는 방법 및 이를 위한 장치
WO2019226016A1 (ko) 무선 통신 시스템에서 노드에 의해 수행되는 감지 방법 및 상기 방법을 이용하는 노드
WO2019245234A1 (ko) 무선 통신 시스템에서 위치 결정을 위한 측정 결과 보고 방법 및 그 장치
WO2020032703A1 (ko) 무선 통신 시스템에서 비면허 대역 내에서 이니셜 액세스 절차 수행 방법 및 상기 방법을 이용하는 단말
WO2020060379A1 (ko) Comp 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2020027471A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020162735A1 (ko) 무선 통신 시스템에서 물리 샹항링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2020080916A1 (ko) 무선 통신 시스템에서 복수의 물리 하향링크 공유 채널들을 송수신하는 방법 및 이를 위한 장치
WO2020226394A1 (ko) 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 검색 공간 모니터링 방법 및 이에 대한 장치
WO2020027503A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2020032731A1 (ko) 무선 통신 시스템에서 단말이 채널을 추정하는 방법 및 이를 위한 장치
WO2020022748A1 (ko) 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2020231189A1 (ko) 무선 통신 시스템에서 빔 정보를 보고 하는 방법 및 이를 위한 장치
WO2020032737A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849821

Country of ref document: EP

Kind code of ref document: A1