[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020031607A1 - 摩擦伝動ベルト - Google Patents

摩擦伝動ベルト Download PDF

Info

Publication number
WO2020031607A1
WO2020031607A1 PCT/JP2019/027440 JP2019027440W WO2020031607A1 WO 2020031607 A1 WO2020031607 A1 WO 2020031607A1 JP 2019027440 W JP2019027440 W JP 2019027440W WO 2020031607 A1 WO2020031607 A1 WO 2020031607A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission belt
friction transmission
short fibers
mass
rubber composition
Prior art date
Application number
PCT/JP2019/027440
Other languages
English (en)
French (fr)
Inventor
勝起 木村
貴幸 大久保
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN201980047837.2A priority Critical patent/CN112513495B/zh
Priority to ES19848170T priority patent/ES2929450T3/es
Priority to JP2019538268A priority patent/JP6739657B2/ja
Priority to EP19848170.7A priority patent/EP3822510B1/en
Publication of WO2020031607A1 publication Critical patent/WO2020031607A1/ja
Priority to US17/169,459 priority patent/US20210156454A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/22V-belts, i.e. belts of tapered cross-section built-up from superimposed layers

Definitions

  • the present invention relates to a friction transmission belt.
  • Patent Literatures 1 and 2 disclose a V-ribbed belt in which a compression rubber layer and an extension rubber layer are formed of a rubber composition in which nylon short fibers and cotton short fibers are dispersed in rubber component EPDM.
  • the present invention is a friction transmission belt having a power transmission surface formed of a rubber composition, wherein the rubber composition comprises a rubber component mainly composed of EPDM having a diene content of 6.0% by mass or more; Short fibers having an aspect ratio of 100 or more dispersed in the rubber component so as to be oriented in the belt width direction are included, and the tensile yield stress in the belt width direction at 25 ° C. is 15.0 MPa or more.
  • FIG. 3 is a cross-sectional view of the cogged V belt according to the embodiment along a belt width direction. It is sectional drawing which followed the belt length direction of the cogged V belt which concerns on embodiment. It is a 1st explanatory view showing how to obtain tensile yield stress. It is a 2nd explanatory view showing how to obtain tensile yield stress. It is a figure showing a pulley layout of a belt running test machine.
  • FIGS. 1 to 3 show a cogged V-belt B according to the embodiment.
  • the cogged V-belt B according to the embodiment is, for example, a rubber endless friction transmission belt used as a power transmission member for speed change in a transmission of a two-wheeled vehicle.
  • the cogged V belt B according to the embodiment has, for example, a belt length of 500 mm to 1200 mm, a maximum belt width of 16 mm to 30 mm, and a maximum belt thickness of 8.0 mm to 12.0 mm.
  • the cogged V-belt B includes a V-belt main body 10, a core wire 20, an inner reinforcing cloth 30, and an outer reinforcing cloth 40.
  • the V-belt body 10 is formed such that its cross-sectional shape along the belt width direction is a trapezoidal shape.
  • the angle between both side surfaces of the V-belt main body 10 is, for example, not less than 24 ° and not more than 36 °.
  • the V-belt main body 10 has a compressed rubber layer 11 provided on the inner peripheral side, an adhesive rubber layer 12 provided on an intermediate portion, and an extended rubber layer 13 provided on the outer peripheral side.
  • lower cog forming portions 11a having a sine curve cross section along the belt length direction are arranged at a constant pitch.
  • the compressed rubber layer 11 is formed of a rubber composition in which a rubber component is crosslinked by heating and pressing an uncrosslinked rubber composition obtained by mixing and kneading various rubber compounding agents with a rubber component. Both side surfaces of the compressed rubber layer 11 constitute a power transmission surface formed of a rubber composition.
  • the rubber composition forming the compressed rubber layer 11 contains a rubber component whose main component is EPDM having a diene content of 6.0% by mass or more.
  • the content of EPDM in the rubber component is 50% by mass or more, but is preferably 80% by mass or more, more preferably 90% by mass or more, from the viewpoint of obtaining excellent wear resistance of the power transmission surface as described later. Preferably it is 100% by mass.
  • the rubber component may contain an ethylene- ⁇ -olefin elastomer other than EPDM, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogenated acrylonitrile rubber (H-NBR), and the like.
  • the ethylene content of EPDM in the rubber component of the rubber composition forming the compressed rubber layer 11 is preferably from 45% by mass to 60% by mass, more preferably 50% by mass, from the viewpoint of obtaining excellent wear resistance of the power transmission surface. % Or more and 55% by mass or less.
  • the rubber component contains a plurality of EPDMs, the ethylene content is calculated as an average value.
  • Examples of the diene component of EPDM in the rubber component of the rubber composition forming the compressed rubber layer 11 include ethylidenenobornene (ENB), dicyclopentadiene, 1,4-hexadiene, and the like. From the viewpoint of obtaining excellent wear resistance of the power transmission surface, ethylidenobornene is preferable among these.
  • the diene content of EPDM is 6.0% by mass or more, but from the viewpoint of obtaining excellent wear resistance of the power transmission surface, preferably 6.5% by mass or more and 12% by mass or less, more preferably 7.0% by mass. Not less than 8.0% by mass.
  • the diene content is calculated as an average value.
  • the Mooney viscosity at 125 ° C. of EPDM in the rubber component of the rubber composition forming the compressed rubber layer 11 is preferably 15 ML 1 + 4 (125 ° C.) or more and 40 ML 1 + 4 (125) from the viewpoint of obtaining excellent wear resistance of the power transmission surface. ° C.) or less, more preferably 15ML 1 + 4 (125 °C) above 30ML 1 + 4 (125 °C) or less, more preferably 25ML 1 + 4 (125 °C) above 30ML 1 + 4 (125 °C) or less. Mooney viscosity is measured based on JISK6300.
  • the rubber composition forming the compressed rubber layer 11 contains short fibers 14 dispersed in a rubber component so as to be oriented in the belt width direction.
  • the short fibers 14 for example, para-aramid short fibers (polyparaphenylene terephthalamide short fibers, copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers), meta-aramid short fibers, nylon 66 short fibers And polyester short fibers, ultrahigh molecular weight polyolefin short fibers, polyparaphenylene benzobisoxazole short fibers, polyarylate short fibers, cotton, short glass fibers, short carbon fibers and the like.
  • the short fiber 14 preferably contains one or more of these, and from the viewpoint of obtaining excellent wear resistance of the power transmission surface, at least one of a para-aramid short fiber and a nylon 66 short fiber.
  • the short fibers 14 may or may not be subjected to an adhesive treatment.
  • the bonding treatment there is a bonding treatment in which the long fiber before cutting is immersed in a base treatment agent containing an epoxy compound or an isocyanate compound and then heated, or a bonding treatment in which the long fiber is heated after immersion in an RFL aqueous solution.
  • the content of the short fibers 14 in the rubber composition is preferably from 10 parts by mass to 30 parts by mass, more preferably 15 parts by mass, based on 100 parts by mass of the rubber component, from the viewpoint of obtaining excellent wear resistance of the power transmission surface. It is not less than 25 parts by mass.
  • the content of para-aramid short fibers in the rubber composition is preferably smaller than the content of nylon 66 short fibers.
  • the content of the para-aramid short fibers in the rubber composition is preferably from 1 part by mass to 10 parts by mass, more preferably from 4 parts by mass to 7 parts by mass, based on 100 parts by mass of the rubber component.
  • the content of nylon 66 short fibers in the rubber composition is preferably 15 parts by mass or more and 25 parts by mass or less, more preferably 18 parts by mass or more and 22 parts by mass or less based on 100 parts by mass of the rubber component.
  • the fiber length of the short fibers 14 is preferably 1.0 mm or more and 5.0 mm or less, more preferably 2.0 mm or more and 4.0 mm or less, from the viewpoint of obtaining excellent wear resistance of the power transmission surface.
  • the fiber diameter of the short fibers 14 is preferably 5.0 ⁇ m or more and 30.0 ⁇ m or less, more preferably 10.0 ⁇ m or more and 20.0 ⁇ m or less, from the viewpoint of obtaining excellent wear resistance of the power transmission surface.
  • the aspect ratio of the short fibers 14, that is, the ratio of the fiber length to the fiber diameter is 100 or more, and from the viewpoint of obtaining excellent wear resistance of the power transmission surface, is preferably 150 or more, more preferably 200 or more, and , Preferably 300 or less.
  • an organic peroxide is used and the rubber component is crosslinked from the viewpoint of obtaining excellent wear resistance of the power transmission surface.
  • the organic peroxide include dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and the like. .
  • the organic peroxide preferably contains one or more of these.
  • an organic peroxide is compounded in the uncrosslinked rubber composition before crosslinking of the rubber composition, and the compounding amount is, for example, 1 part by mass or more and 8 parts by mass or less based on 100 parts by mass of the rubber component.
  • the rubber composition forming the compressed rubber layer 11 may be such that the rubber component is cross-linked by using sulfur, or the rubber component may be cross-linked by using an organic peroxide and sulfur in combination. .
  • the rubber component of the rubber composition forming the compressed rubber layer 11 is cross-linked by an organic peroxide
  • the rubber component is a co-crosslinking agent from the viewpoint of obtaining excellent wear resistance of the power transmission surface. And may be crosslinked.
  • a co-crosslinking agent include trimethylolpropane trimethacrylate, N, N'-m-phenylenebismaleimide, zinc methacrylate, triallyl isocyanurate, ethylene glycol dimethacrylate, and liquid polybutadiene.
  • the co-crosslinking agent preferably contains one or more of these.
  • the co-crosslinking agent is added to the uncrosslinked rubber composition before crosslinking of the rubber composition, and the amount is preferably 5 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the rubber component.
  • the co-crosslinking agent preferably contains N, N'-m-phenylenebismaleimide from the viewpoint of enhancing the adhesion to short fibers and obtaining excellent wear resistance of the power transmission surface.
  • the amount of the co-crosslinking agent N, N'-m-phenylenebismaleimide in the uncrosslinked rubber composition before crosslinking of the rubber composition is preferably 3 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the rubber component. It is as follows.
  • the co-crosslinking agent preferably contains zinc methacrylate from the viewpoint of improving the elastic modulus.
  • the amount of zinc methacrylate as a co-crosslinking agent in the uncrosslinked rubber composition before crosslinking of the rubber composition is preferably 5 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the rubber component.
  • the co-crosslinking agent preferably contains both N, N'-m-phenylene bismaleimide and zinc methacrylate.
  • N, N'-m-phenylenebismaleimide and zinc methacrylate are used in combination, the amount of N, N'-m-phenylenebismaleimide in the uncrosslinked rubber composition before crosslinking of the rubber composition is zinc methacrylate. Is preferably smaller than the compounding amount.
  • the compounding amount of N, N'-m-phenylenebismaleimide is preferably 3 parts by mass or more and 7 parts by mass or less based on 100 parts by mass of the rubber component.
  • the compounding amount of zinc methacrylate is preferably 10 parts by mass or more and 50 parts by mass or less based on 100 parts by mass of the rubber component.
  • the rubber composition forming the compressed rubber layer 11 contains, as other rubber compounding agents, for example, a vulcanization accelerating aid, a processing aid, an antioxidant, a reinforcing material such as carbon black, a plasticizer, and the like. Is also good.
  • the tensile yield stress in the belt width direction at 25 ° C. of the rubber composition forming the compression rubber layer 11 is 15.0 MPa or more, it is preferably 18.0 MPa from the viewpoint of obtaining excellent wear resistance of the power transmission surface. It is 40.0 MPa or less, more preferably 20.0 MPa or more and 35.0 MPa or less.
  • the tensile yield stress in the present application is determined as follows. First, from the portion of the compressed rubber layer 11 shown by dotted lines in FIGS. 1B and 1C on the outer peripheral side from the position corresponding to the cog bottom of the lower cog forming portion 11a, the length direction as shown in FIG.
  • a strip-shaped rubber sheet S (for example, about 17 mm in width) corresponding to the anti-parallel direction is cut out, and then, as shown by a broken line in FIG.
  • a strip-shaped test piece T (for example, a width of 7 mm) corresponding to the width direction, that is, the grain direction is cut out, and this test piece T is used at an ambient temperature of 25 ° C., as shown in FIG.
  • a tensile test is performed at a speed of 500 mm / min, and the tensile yield stress is determined from the obtained stress-strain curve according to JIS K7161-1: 2014.
  • the adhesive rubber layer 12 and the extended rubber layer 13 are also formed of a rubber composition obtained by mixing and kneading an uncrosslinked rubber composition obtained by mixing various rubber compounding agents into a rubber component and heating and pressurizing the mixture. ing.
  • the adhesive rubber layer 12 and the extension rubber layer 13 may be formed of the same rubber composition as the compressed rubber layer 11 or may be formed of a different rubber composition.
  • the core wire 20 is embedded in the middle part of the adhesive rubber layer 12 of the V-belt main body 10 in the thickness direction so as to form a spiral having a pitch in the belt width direction.
  • the core wire 20 is made of, for example, a twisted yarn.
  • Examples of the fiber material forming the core wire 20 include polyester fiber and aramid fiber.
  • the outer diameter of the core wire 20 is, for example, 0.7 mm or more and 1.3 mm or less.
  • the core wire 20 is subjected to an adhesive treatment in which the core wire is heated before being immersed in a base treatment agent containing an epoxy compound or an isocyanate compound before molding, and after being immersed in an RFL aqueous solution. It is preferable that one or more of an adhesive treatment for heating and an adhesive treatment for immersion in rubber paste and drying after the immersion are performed.
  • the inner reinforcing cloth 30 is provided so as to cover the inner peripheral surface of the compressed rubber layer 11 of the V-belt main body 10.
  • the inner reinforcing cloth 30 is made of, for example, a woven cloth, a knitted cloth, a nonwoven cloth, or the like.
  • Examples of the fiber material forming the inner reinforcing cloth 30 include nylon fiber, polyester fiber, cotton, and aramid fiber.
  • the thickness of the inner reinforcing cloth 30 is, for example, 0.1 mm or more and 1.0 mm or less.
  • the inner reinforcing cloth 30 was immersed in a base treatment agent containing an epoxy compound or an isocyanate compound and then heated before being molded, and was immersed in an RFL aqueous solution.
  • a base treatment agent containing an epoxy compound or an isocyanate compound
  • the lower cog 15 is configured by covering the lower cog forming portion 11a of the compressed rubber layer 11 with the inner reinforcing cloth 30.
  • the lower cog 15 has, for example, a height of 3.4 mm or more and 5.0 mm or less, a width of 3.0 mm or more and 6.0 mm or less, and an arrangement pitch of 7.0 mm or more and 11.0 mm or less.
  • the outer reinforcing cloth 40 is provided so as to cover the outer peripheral surface of the stretched rubber layer 13 of the V-belt main body 10.
  • the outer reinforcing cloth 40 is made of, for example, a woven cloth, a knitted cloth, a nonwoven cloth, or the like. Examples of the fiber material forming the outer reinforcing cloth 40 include nylon fiber, polyester fiber, cotton, and aramid fiber.
  • the thickness of the outer reinforcing cloth 40 is, for example, 0.1 mm or more and 1.0 mm or less.
  • the outer reinforcing cloth 40 was immersed in an RFL aqueous solution before being molded, immersed in a base treatment agent containing an epoxy compound or an isocyanate compound, and then heated in order to impart adhesiveness to the stretched rubber layer 13. One or two or more of an adhesive treatment of heating later, an adhesive treatment of dipping in rubber paste and then drying, and an adhesive treatment of coating and drying a high-viscosity rubber paste on the surface serving as the V-belt body 10 side
  • the cogged V belt B according to the above embodiment can be manufactured by a known method.
  • the cogged V belt B having only the lower cog 15 is used.
  • the friction transmission belt having a power transmission surface formed of a rubber composition is not particularly limited thereto.
  • a double cogged V belt, a low edge V belt having no cog, a V-ribbed belt, a flat belt, or the like may be used.
  • EPDM-1 as a rubber component (ethylene content 52% by mass, ENB content 7.7% by mass, Mooney viscosity 27ML 1 + 4 (125 ° C.) manufactured by T7241 JSR) was charged into a chamber of a closed Banbury mixer and masticated.
  • this rubber component 5 parts by mass of zinc oxide as a vulcanization accelerator (3 types of zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd.) and 1 stearic acid as a processing agent (Lunac Kao Corporation) Parts by mass, 50 parts by mass of FEF carbon black (manufactured by SEAST SO Tokai Carbon Co., Ltd.) as a reinforcing material, 5 parts by mass of oil as a plasticizer (manufactured by Nippon Sun Oil Co., Ltd.) and N, N'-m-phenylene as a co-crosslinking agent 7.4 parts by mass of bismaleimide (Barnock PM manufactured by Ouchi Shinko Chemical Co., Ltd.) and organic peroxide as a crosslinking agent (Perhexa 25B-40 manufactured by NOF Corporation, purity: 40% by mass) Active ingredient 2.96 parts by mass) and polyparaphenylene terephthalamide short fiber of short fiber para-aramid short fiber (manunac Kao Corporation) Parts by mass, 50
  • the adhesive rubber layer and the extension rubber layer were formed of different EPDM rubber compositions.
  • the core wire was composed of a twisted yarn made of polyester fiber.
  • the inner reinforcing cloth and the outer reinforcing cloth were made of a woven cloth made of nylon 66 fiber.
  • the cogged V belt according to the first embodiment has a belt length (core wire center circumference) of 717.5 mm, a maximum width of the outer circumference side belt of 19.4 mm, a minimum width of the inner circumference side belt of 14.7 mm, and a maximum belt thickness.
  • a belt length (core wire center circumference) of 717.5 mm
  • a maximum width of the outer circumference side belt of 19.4 mm
  • a minimum width of the inner circumference side belt of 14.7 mm and a maximum belt thickness.
  • the thickness of the adhesive rubber layer was 1.5 mm
  • the outer diameter of the core wire was 1.0 mm
  • the pitch in the width direction of the core wire was 1.15 mm
  • the thickness of the outer reinforcing cloth and the inner reinforcing cloth was 0.66 mm.
  • the lower cog had a height of 4.1 mm, an arrangement pitch of 7.5 mm, a curvature of the cog tip of 2.2 mm, and a curvature of the cog bottom
  • Example 2 About the rubber composition which forms a compression rubber layer, as a short fiber, para-aramid short fiber copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fiber (Technola Teijin Limited, fiber length 3.0 mm, fiber A cogged V belt having the same configuration as in Example 1 was prepared except that 22 parts by mass of 12.5 ⁇ m in diameter and an aspect ratio of 240) were blended with respect to 100 parts by mass of the rubber component. . For the cogged V belt of Example 2, the rubber composition forming the compressed rubber layer had a tensile yield stress in the belt width direction at 25 ° C. of 30.3 MPa.
  • Example 5 With respect to the rubber composition forming the compressed rubber layer, zinc methacrylate (Actor ZMA, manufactured by Kawaguchi Chemical Industry Co., Ltd.) is further compounded as a co-crosslinking agent in an amount of 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • Aramid short fiber copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fiber is 5.8 parts by weight based on 100 parts by weight of rubber component, and nylon 66 short fiber is based on 100 parts by weight of rubber component.
  • a cogged V-belt having the same structure as in Example 1 was prepared except that each was mixed with 19.1 parts by mass. For the cogged V belt of Example 5, the tensile yield stress in the belt width direction at 25 ° C. of the rubber composition forming the compression rubber layer was 30.1 MPa.
  • ⁇ Comparative Example 1> Regarding the rubber composition for forming the compressed rubber layer, a coged V belt having the same configuration as that of Example 3 except that a fiber diameter of 36.4 ⁇ m was used as the meta-aramid short fiber, and therefore the aspect ratio was set to 82. Was prepared, and this was designated as Comparative Example 1.
  • the tensile yield stress in the belt width direction at 25 ° C. of the rubber composition forming the compression rubber layer was 9.2 MPa.
  • ⁇ Comparative Example 2> Regarding the rubber composition for forming the compressed rubber layer, a cogged V belt having the same configuration as that of Example 4 except that the nylon 66 short fiber having a fiber length of 1.0 mm was used. It was manufactured as Comparative Example 2. For the cogged V belt of Comparative Example 2, the tensile yield stress in the belt width direction at 25 ° C. of the rubber composition forming the compression rubber layer was 10.7 MPa.
  • FIG. 5 shows a pulley layout of the belt running tester 50.
  • the belt running tester 50 has a drive pulley 51 having a pulley diameter of 52 mm, and a driven pulley 52 having a pulley diameter of 125 mm movably provided on the right side thereof.
  • the drive pulley 51 and the driven pulley were made of an aluminum alloy (ADC12), had an arithmetic surface roughness (Ra) of 0.5 mm, and a V-angle of 28 °.
  • Each of the cogged V-belts B of Examples 1 to 5 and Comparative Examples 1 to 4 was wound around a driving pulley 51 and a driven pulley 52, and a lateral load of 1176 N was applied to the driven pulley 52.
  • Table 1 shows the test results.
  • the rubber composition forming the power transmission surface is oriented to the rubber component mainly composed of EPDM having a diene content of 6.0% by mass or more with an aspect ratio of 100 or more so as to be oriented in the belt width direction.
  • the aspect ratio of the short fibers is less than 100 and the belt width direction at 25 ° C.
  • Comparative Examples 1 and 2 having a tensile yield stress of less than 15.0 MPa and Comparative Example 3 having a diene content of less than 6.0% by mass and a tensile yield stress in the belt width direction at 25 ° C.
  • the present invention relates to a friction transmission belt.
  • V belt (friction transmission belt) S Rubber sheet T Test piece 10 V-belt main body 11 Compressed rubber layer 11a Lower cog forming part 12 Adhesive rubber layer 13 Extension rubber layer 14 Short fiber 15 Lower cog 20 Core wire 30 Inner reinforcing cloth 40 Outer reinforcing cloth 50 Belt running tester 51 Drive pulley 52 Follower pulley

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

摩擦伝動ベルト(B)は、ゴム組成物で形成された動力伝達面を有する。ゴム組成物は、ジエン含量が6.0質量%以上のEPDMを主成分とするゴム成分と、ゴム成分にベルト幅方向に配向するように分散したアスペクト比が100以上の短繊維14とを含有し、且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa以上である。

Description

摩擦伝動ベルト
 本発明は、摩擦伝動ベルトに関する。
 ゴム成分のEPDM(エチレンプロピレンジエンモノマー)に短繊維が分散したゴム組成物で形成された摩擦伝動ベルトが知られている。例えば、特許文献1及び2には、ゴム成分のEPDMにナイロン短繊維及び綿短繊維が分散したゴム組成物で圧縮ゴム層及び伸張ゴム層が形成されたVリブドベルトが開示されている。
特開2013-127278号公報 特開2014-9749号公報
 本発明は、ゴム組成物で形成された動力伝達面を有する摩擦伝動ベルトであって、前記ゴム組成物は、ジエン含量が6.0質量%以上のEPDMを主成分とするゴム成分と、前記ゴム成分にベルト幅方向に配向するように分散したアスペクト比が100以上の短繊維とを含有し、且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa以上である。
実施形態に係るコグドVベルトの一片の斜視図である。 実施形態に係るコグドVベルトのベルト幅方向に沿った断面図である。 実施形態に係るコグドVベルトのベルト長さ方向に沿った断面図である。 引張降伏応力の求め方を示す第1の説明図である。 引張降伏応力の求め方を示す第2の説明図である。 ベルト走行試験機のプーリレイアウトを示す図である。
 以下、実施形態について詳細に説明する。
 図1~3は、実施形態に係るコグドVベルトBを示す。実施形態に係るコグドVベルトBは、例えば、2輪車の変速装置における変速用の動力伝達部材として用いられるゴム製のエンドレスの摩擦伝動ベルトである。実施形態に係るコグドVベルトBは、例えば、ベルト長さが500mm以上1200mm以下、ベルト最大幅が16mm以上30mm以下、及びベルト最大厚さが8.0mm以上12.0mm以下である。
 実施形態に係るコグドVベルトBは、Vベルト本体10と、心線20と、内側補強布30と、外側補強布40とを備えている。
 Vベルト本体10は、ベルト幅方向に沿った断面形状が等脚台形に形成されている。Vベルト本体10の両側面のなす角度は、例えば24°以上36°以下である。Vベルト本体10は、内周側に設けられた圧縮ゴム層11と、中間部に設けられた接着ゴム層12と、外周側に設けられた伸張ゴム層13とを有する。圧縮ゴム層11の内周には、ベルト長さ方向に沿った断面形状がサインカーブ状に形成された下コグ形成部11aが一定ピッチで配設されている。
 圧縮ゴム層11は、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されてゴム成分が架橋したゴム組成物で形成されている。この圧縮ゴム層11が有する両側面が、ゴム組成物で形成された動力伝達面を構成している。
 圧縮ゴム層11を形成するゴム組成物は、ジエン含量が6.0質量%以上のEPDMを主成分とするゴム成分を含有する。ゴム成分におけるEPDMの含有量は50質量%以上であるが、後述するように動力伝達面の優れた耐摩耗性を得る観点から、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは100質量%である。なお、ゴム成分は、EPDM以外のエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等を含んでいてもよい。
 圧縮ゴム層11を形成するゴム組成物のゴム成分におけるEPDMのエチレン含量は、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは45質量%以上60質量%以下、より好ましくは50質量%以上55質量%以下である。なお、ゴム成分が複数のEPDMを含む場合、エチレン含量は平均値として算出される。
 圧縮ゴム層11を形成するゴム組成物のゴム成分におけるEPDMのジエン成分としては、例えば、エチリデンノボルネン(ENB)、ジシクロペンタジエン、1,4-ヘキサジエン等が挙げられる。動力伝達面の優れた耐摩耗性を得る観点からは、これらのうちエチリデンノボルネンが好ましい。EPDMのジエン含量は6.0質量%以上であるが、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは6.5質量%以上12質量%以下、より好ましくは7.0質量%以上8.0質量%以下である。なお、ゴム成分が複数のEPDMを含む場合、ジエン含量は平均値として算出される。
 圧縮ゴム層11を形成するゴム組成物のゴム成分におけるEPDMの125℃におけるムーニー粘度は、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは15ML1+4(125℃)以上40ML1+4(125℃)以下、より好ましくは15ML1+4(125℃)以上30ML1+4(125℃)以下、更に好ましくは25ML1+4(125℃)以上30ML1+4(125℃)以下である。ムーニー粘度は、JISK6300に基づいて測定される。
 圧縮ゴム層11を形成するゴム組成物は、ゴム成分にベルト幅方向に配向するように分散した短繊維14を含有する。
 短繊維14としては、例えば、パラ系アラミド短繊維(ポリパラフェニレンテレフタルアミド短繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維)、メタ系アラミド短繊維、ナイロン66短繊維、ポリエステル短繊維、超高分子量ポリオレフィン短繊維、ポリパラフェニレンベンゾビスオキサゾール短繊維、ポリアリレート短繊維、綿、ガラス短繊維、炭素短繊維等が挙げられる。短繊維14は、これらのうちの1種又は2種以上を含むことが好ましく、動力伝達面の優れた耐摩耗性を得る観点から、パラ系アラミド短繊維及びナイロン66短繊維のうちの少なくとも一方を含むことがより好ましく、パラ系アラミド短繊維のコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維を含むことが更に好ましい。短繊維14には、接着処理が施されていても、また、施されていなくても、どちらでもよい。なお、接着処理としては、切断前の長繊維を、エポキシ化合物又はイソシアネート化合物を含有する下地処理剤に浸漬した後に加熱する接着処理やRFL水溶液に浸漬した後に加熱する接着処理が挙げられる。
 ゴム組成物における短繊維14の含有量は、動力伝達面の優れた耐摩耗性を得る観点から、ゴム成分100質量部に対して、好ましくは10質量部以上30質量部以下、より好ましくは15質量部以上25質量部以下である。短繊維14がパラ系アラミド短繊維及びナイロン66短繊維の両方を含有する場合、ゴム組成物におけるパラ系アラミド短繊維の含有量は、ナイロン66短繊維の含有量よりも少ないことが好ましい。ゴム組成物におけるパラ系アラミド短繊維の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上10質量部以下、より好ましくは4質量部以上7質量部以下である。ゴム組成物におけるナイロン66短繊維の含有量は、ゴム成分100質量部に対して、好ましくは15質量部以上25質量部以下、より好ましくは18質量部以上22質量部以下である。
 短繊維14の繊維長は、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは1.0mm以上5.0mm以下、より好ましくは2.0mm以上4.0mm以下である。短繊維14の繊維径は、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは5.0μm以上30.0μm以下、より好ましくは10.0μm以上20.0μm以下である。短繊維14のアスペクト比、すなわち、繊維長の繊維径に対する比は100以上であり、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは150以上、より好ましくは200以上であり、また、好ましくは300以下である。
 圧縮ゴム層11を形成するゴム組成物は、動力伝達面の優れた耐摩耗性を得る観点から、有機過酸化物が用いられてゴム成分が架橋していることが好ましい。有機過酸化物としては、例えば、ジクミルパーオキサイド、1,3-ビス(t-ブチルペロキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルペロキシ)ヘキサン等が挙げられる。有機過酸化物は、これらのうちの1種又は2種以上を含むことが好ましい。この場合、ゴム組成物の架橋前の未架橋ゴム組成物に有機過酸化物が配合されるが、その配合量は、ゴム成分100質量部に対して例えば1質量部以上8質量部以下である。なお、圧縮ゴム層11を形成するゴム組成物は、硫黄が用いられてゴム成分が架橋していてもよく、また、有機過酸化物及び硫黄が併用されてゴム成分が架橋していてもよい。
 圧縮ゴム層11を形成するゴム組成物のゴム成分が有機過酸化物により架橋している場合、ゴム組成物は、動力伝達面の優れた耐摩耗性を得る観点から、ゴム成分が共架橋剤によっても架橋していてもよい。かかる共架橋剤としては、例えば、トリメチロールプロパントリメタクリレート、N,N’-m-フェニレンビスマレイミド、メタクリル酸亜鉛、トリアリルイソシアヌレート、エチレングリコールジメタクリレート、液状ポリブタジェエン等が挙げられる。共架橋剤は、これらのうちの1種又は2種以上を含むことが好ましい。ゴム組成物の架橋前の未架橋ゴム組成物に共架橋剤が配合されるが、その配合量は、ゴム成分100質量部に対して、好ましくは5質量部以上50質量部以下である。
 共架橋剤は、短繊維との接着性を高めて動力伝達面の優れた耐摩耗性を得る観点から、N,N’-m-フェニレンビスマレイミドを含むことが好ましい。ゴム組成物の架橋前の未架橋ゴム組成物における共架橋剤のN,N’-m-フェニレンビスマレイミドの配合量は、ゴム成分100質量部に対して、好ましくは3質量部以上10質量部以下である。
 共架橋剤は、弾性率を向上させる観点から、メタクリル酸亜鉛を含むことが好ましい。ゴム組成物の架橋前の未架橋ゴム組成物における共架橋剤のメタクリル酸亜鉛の配合量は、ゴム成分100質量部に対して、好ましくは5質量部以上10質量部以下である。
 共架橋剤は、N,N’-m-フェニレンビスマレイミド及びメタクリル酸亜鉛の両方を含むことが好ましい。N,N’-m-フェニレンビスマレイミド及びメタクリル酸亜鉛を併用する場合、ゴム組成物の架橋前の未架橋ゴム組成物におけるN,N’-m-フェニレンビスマレイミドの配合量が、メタクリル酸亜鉛の配合量よりも少ないことが好ましい。N,N’-m-フェニレンビスマレイミドの配合量は、ゴム成分100質量部に対して、好ましくは3質量部以上7質量部以下である。メタクリル酸亜鉛の配合量は、ゴム成分100質量部に対して、好ましくは10質量部以上50質量部以下である。
 圧縮ゴム層11を形成するゴム組成物は、その他のゴム配合剤として、例えば、加硫促進助剤、加工助剤、老化防止剤、カーボンブラックなどの補強材、可塑剤等を含有していてもよい。
 圧縮ゴム層11を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は15.0MPa以上であるが、動力伝達面の優れた耐摩耗性を得る観点から、好ましくは18.0MPa以上40.0MPa以下、より好ましくは20.0MPa以上35.0MPa以下である。本出願における引張降伏応力は、次のようにして求めるものである。まず、図1B及びCに点線で示す圧縮ゴム層11における下コグ形成部11aのコグ底に対応する位置よりも外周側の部分から、図4Aに示すような長さ方向がベルト長さ方向、したがって、反列理方向に対応する短冊状のゴムシートS(例えば幅約17mm)を切り出し、次に、この短冊状のゴムシートSから、図4Aに破線で示すように、長さ方向がベルト幅方向、したがって、列理方向に対応する短冊状の試験片T(例えば幅7mm)を切り出し、この試験片Tを用い、25℃の雰囲気温度下において、図4Bに示すように、長さ方向に500mm/minの速度で引張試験を行い、JISK7161-1:2014に準じ、得られた応力-ひずみ曲線から引張降伏応力を求める。
 接着ゴム層12及び伸張ゴム層13もまた、ゴム成分に種々のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。接着ゴム層12及び伸張ゴム層13は、圧縮ゴム層11と同一のゴム組成物で形成されていても、また、異なるゴム組成物で形成されていても、どちらでもよい。
 心線20は、Vベルト本体10の接着ゴム層12の厚さ方向の中間部に、ベルト幅方向にピッチを有する螺旋を形成するように埋設されている。心線20は、例えば撚り糸で構成されている。心線20を形成する繊維材料としては、例えば、ポリエステル繊維、アラミド繊維等が挙げられる。心線20の外径は、例えば0.7mm以上1.3mm以下である。心線20には、接着ゴム層12に対する接着性を付与するために、成形加工前に、エポキシ化合物又はイソシアネート化合物を含有する下地処理剤に浸漬した後に加熱する接着処理、RFL水溶液に浸漬した後に加熱する接着処理、及びゴム糊に浸漬した後に乾燥させる接着処理のうちの1つ又は2つ以上が施されていることが好ましい。
 内側補強布30は、Vベルト本体10の圧縮ゴム層11の内周面を被覆するように設けられている。内側補強布30は、例えば、織布、編布、不織布等で構成されている。内側補強布30を形成する繊維材料としては、例えば、ナイロン繊維、ポリエステル繊維、綿、アラミド繊維等が挙げられる。内側補強布30の厚さは、例えば0.1mm以上1.0mm以下である。内側補強布30には、圧縮ゴム層11に対する接着性を付与するために、成形加工前に、エポキシ化合物又はイソシアネート化合物を含有する下地処理剤に浸漬した後に加熱する接着処理、RFL水溶液に浸漬した後に加熱する接着処理、ゴム糊に浸漬した後に乾燥させる接着処理、及びVベルト本体10側となる面上に高粘度のゴム糊をコーティングして乾燥させる接着処理のうちの1つ又は2つ以上が施されていることが好ましい。この内側補強布30で圧縮ゴム層11の下コグ形成部11aが被覆されることにより下コグ15が構成されている。下コグ15は、例えば、高さが3.4mm以上5.0mm以下、幅が3.0mm以上6.0mm以下、及び配設ピッチが7.0mm以上11.0mm以下である。
 外側補強布40は、Vベルト本体10の伸張ゴム層13の外周面を被覆するように設けられている。外側補強布40は、例えば、織布、編布、不織布等で構成されている。外側補強布40を形成する繊維材料としては、例えば、ナイロン繊維、ポリエステル繊維、綿、アラミド繊維等が挙げられる。外側補強布40の厚さは、例えば0.1mm以上1.0mm以下である。外側補強布40には、伸張ゴム層13に対する接着性を付与するために、成形加工前に、エポキシ化合物又はイソシアネート化合物を含有する下地処理剤に浸漬した後に加熱する接着処理、RFL水溶液に浸漬した後に加熱する接着処理、ゴム糊に浸漬した後に乾燥させる接着処理、及びVベルト本体10側となる面上に高粘度のゴム糊をコーティングして乾燥させる接着処理のうちの1つ又は2つ以上が施されていることが好ましい。
 以上の実施形態に係るコグドVベルトBは、公知の方法によって製造することができる。
 なお、上記実施形態では、下コグ15のみを有するコグドVベルトBとしたが、ゴム組成物で形成された動力伝達面を有する摩擦伝動ベルトであれば、特にこれに限定されるものではなく、例えば、ダブルコグドVベルト、コグを有さないローエッジVベルト、Vリブドベルト、平ベルト等であってもよい。
 (コグドVベルト)
 以下の実施例1~5及び比較例1~4のコグドVベルトを作製した。なお、それぞれで用いたゴム配合については表1に示す。
 <実施例1>
  密閉式のバンバリーミキサーのチャンバーに、ゴム成分としてのEPDM-1(T7241 JSR社製  エチレン含量52質量%、ENB含量7.7質量%、ムーニー粘度27ML1+4(125℃))を投入して素練りし、次いで、このゴム成分100質量部に対して、加硫促進助剤の酸化亜鉛(酸化亜鉛3種 堺化学工業社製)5質量部、加工助剤のステアリン酸(ルナック 花王社製)1質量部、補強材のFEFカーボンブラック(シーストSO 東海カーボン社製)50質量部、可塑剤のオイル(サンパー2280 日本サン石油社製)5質量部、共架橋剤のN,N’-m-フェニレンビスマレイミド(バルノックPM 大内新興化学社製)、架橋剤の有機過酸化物(パーヘキサ25B-40 日本油脂社製、純度40質量%)7.4質量部(有効成分2.96質量部)、及び短繊維のパラ系アラミド短繊維のポリパラフェニレンテレフタルアミド短繊維(ケブラー デュポン社製、繊維長3.5mm、繊維径12.0μm、アスペクト比=292)22.5質量部を投入配合して混練した。そして、得られた未架橋ゴム組成物を用いて圧縮ゴム層を形成したコグドVベルトを作製し、それを実施例1とした。実施例1のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は22.8MPaであった。
 なお、接着ゴム層及び伸張ゴム層は、別のEPDMゴム組成物で形成した。心線は、ポリエステル繊維製の撚り糸で構成した。内側補強布及び外側補強布は、ナイロン66繊維製の織布で構成した。
 実施例1のコグドVベルトは、ベルト長さ(心線中心周長)が717.5mm、外周側のベルト最大幅が19.4mm及び内周側のベルト最小幅が14.7mm、ベルト最大厚さが9.5mm(心線中心から外周側が2.0mm及び内周側が7.5mm)、両側面のなす角度が30°であった。接着ゴム層の厚さが1.5mm、心線の外径が1.0mm、心線の幅方向のピッチが1.15mm、並びに外側補強布及び内側補強布の厚さが0.66mmであった。下コグは、高さが4.1mm、配設ピッチが7.5mm、コグ先の曲率が2.2mm、及びコグ底の曲率が1.0mmであった。
 <実施例2>
 圧縮ゴム層を形成するゴム組成物について、短繊維として、パラ系アラミド短繊維のコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維(テクノーラ 帝人社製、繊維長3.0mm、繊維径12.5μm、アスペクト比=240)を、ゴム成分100質量部に対して22質量部配合したことを除いて実施例1と同一構成のコグドVベルトを作製し、それを実施例2とした。実施例2のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は30.3MPaであった。
 <実施例3>
 圧縮ゴム層を形成するゴム組成物について、短繊維として、メタ系アラミド短繊維(コーネックス 帝人社製、繊維長3.0mm、繊維径14.2μm、アスペクト比=211)を、ゴム成分100質量部に対して22質量部配合したことを除いて実施例1と同一構成のコグドVベルトを作製し、それを実施例3とした。実施例3のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は24.2MPaであった。
 <実施例4>
 圧縮ゴム層を形成するゴム組成物について、短繊維として、ナイロン66短繊維(レオナ66 旭化成社製、繊維長3.0mm、繊維径27.3μm、アスペクト比=110)を、ゴム成分100質量部に対して18質量部配合したことを除いて実施例1と同一構成のコグドVベルトを作製し、それを実施例4とした。実施例4のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は24.1MPaであった。
 <実施例5>
 圧縮ゴム層を形成するゴム組成物について、共架橋剤として、メタクリル酸亜鉛(アクターZMA 川口化学工業社製)を、ゴム成分100質量部に対して20質量部更に配合し、短繊維として、パラ系アラミド短繊維のコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維をゴム成分100質量部に対して5.8質量部、及びナイロン66短繊維をゴム成分100質量部に対して19.1質量部それぞれ配合したことを除いて実施例1と同一構成のコグドVベルトを作製し、それを実施例5とした。実施例5のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は30.1MPaであった。
 <比較例1>
 圧縮ゴム層を形成するゴム組成物について、メタ系アラミド短繊維として繊維径が36.4μmのものを用い、したがって、アスペクト比=82としたことを除いて実施例3と同一構成のコグドVベルトを作製し、それを比較例1とした。比較例1のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は9.2MPaであった。
 <比較例2>
 圧縮ゴム層を形成するゴム組成物について、ナイロン66短繊維として繊維長が1.0mmのものを用い、したがって、アスペクト比=37としたことを除いて実施例4と同一構成のコグドVベルトを作製し、それを比較例2とした。比較例2のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は10.7MPaであった。
 <比較例3>
 圧縮ゴム層を形成するゴム組成物について、ゴム成分としてEPDM-2(EP123 JSR社製  エチレン含量58質量%、ENB含量4.5質量%、ムーニー粘度19.5ML1+4(125℃))を用い、メタ系アラミド短繊維の配合量を、ゴム成分100質量部に対して16質量部としたことを除いて実施例3と同一構成のコグドVベルトを作製し、それを比較例3とした。比較例3のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は14.3MPaであった。
 <比較例4>
 圧縮ゴム層を形成するゴム組成物について、共架橋剤のN,N’-m-フェニレンビスマレイミドを配合せず、メタ系アラミド短繊維の配合量を、ゴム成分100質量部に対して21質量部としたことを除いて実施例3と同一構成のコグドVベルトを作製し、それを比較例4とした。比較例4のコグドVベルトについて、圧縮ゴム層を形成するゴム組成物の25℃でのベルト幅方向の引張降伏応力は14.6MPaであった。
Figure JPOXMLDOC01-appb-T000001
 (ベルト走行試験)
  図5は、ベルト走行試験機50のプーリレイアウトを示す。
 このベルト走行試験機50は、プーリ径52mmの駆動プーリ51と、その右側方に左右に可動に設けられたプーリ径125mmの従動プーリ52とを有する。なお、駆動プーリ51及び従動プーリは、アルミニウム合金(ADC12)製であって、算術表面粗さ(Ra)が0.5mm、及びV角度が28°であった。
 実施例1~5及び比較例1~4のそれぞれのコグドVベルトBについて、駆動プーリ51及び従動プーリ52に巻き掛け、従動プーリ52に側方に1176Nの軸荷重を負荷した後、駆動プーリ51を6400rpmで回転させ、コグドVベルトBを48時間走行させた。そして、ベルト走行前後のベルト質量変化量のベルト走行前のベルト質量に対する質量変化率を算出した。
 (試験結果)
 試験結果を表1に示す。
 表1によれば、動力伝達面を形成するゴム組成物が、ジエン含量が6.0質量%以上のEPDMを主成分とするゴム成分に、ベルト幅方向に配向するようにアスペクト比が100以上の短繊維が分散し、且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa以上である実施例1~5は、短繊維のアスペクト比が100未満で且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa未満である比較例1及び2、並びにジエン含量が6.0質量%未満で且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa未満である比較例3、更には25℃でのベルト幅方向の引張降伏応力が15.0MPa未満である比較例4と比較して、ベルト走行前後の質量変化率が低く、したがって、動力伝動面の耐摩耗性が優れることが分かる。
 本発明は、摩擦伝動ベルトに関する。
B コグドVベルト(摩擦伝動ベルト)
S ゴムシート
T 試験片
10 Vベルト本体
11 圧縮ゴム層
11a 下コグ形成部
12 接着ゴム層
13 伸張ゴム層
14 短繊維
15 下コグ
20 心線
30 内側補強布
40 外側補強布
50 ベルト走行試験機
51 駆動プーリ
52 従動プーリ

Claims (12)

  1.  ゴム組成物で形成された動力伝達面を有する摩擦伝動ベルトであって、
     前記ゴム組成物は、ジエン含量が6.0質量%以上のEPDMを主成分とするゴム成分と、前記ゴム成分にベルト幅方向に配向するように分散したアスペクト比が100以上の短繊維とを含有し、且つ25℃でのベルト幅方向の引張降伏応力が15.0MPa以上である摩擦伝動ベルト。
  2.  請求項1に記載された摩擦伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量が、前記ゴム成分100質量部に対して10質量部以上30質量部以下である摩擦伝動ベルト。
  3.  請求項1又は2に記載された摩擦伝動ベルトにおいて、
     前記短繊維が、パラ系アラミド短繊維、メタ系アラミド短繊維、ナイロン66短繊維、ポリエステル短繊維、超高分子量ポリオレフィン短繊維、ポリパラフェニレンベンゾビスオキサゾール短繊維、ポリアリレート短繊維、綿、ガラス短繊維、炭素短繊維のうちの1種又は2種以上を含む摩擦伝動ベルト。
  4.  請求項3に記載された摩擦伝動ベルトにおいて、
     前記短繊維が、パラ系アラミド短繊維及びナイロン66短繊維を含み、前記ゴム組成物における前記パラ系アラミド短繊維の含有量が、前記ナイロン66短繊維の含有量よりも少ない摩擦伝動ベルト。
  5.  請求項1乃至4のいずれかに記載された摩擦伝動ベルトにおいて、
     前記短繊維の繊維長が1.0mm以上5.0mm以下である摩擦伝動ベルト。
  6.  請求項1乃至5のいずれかに記載された摩擦伝動ベルトにおいて、
     前記短繊維の繊維径が5.0μm以上30.0μm以下である摩擦伝動ベルト。
  7.  請求項1乃至6のいずれかに記載された摩擦伝動ベルトにおいて、
     前記ゴム組成物は、有機過酸化物が用いられて前記ゴム成分が架橋している摩擦伝動ベルト。
  8.  請求項7に記載された摩擦伝動ベルトにおいて、
     前記ゴム組成物は、前記ゴム成分が共架橋剤によっても架橋している摩擦伝動ベルト。
  9.  請求項8に記載された摩擦伝動ベルトにおいて、
     前記ゴム組成物の架橋前の未架橋ゴム組成物における前記共架橋剤の配合量が、前記ゴム成分100質量部に対して5質量部以上50質量部以下である摩擦伝動ベルト。
  10.  請求項8又は9に記載された摩擦伝動ベルトにおいて、
     前記共架橋剤がN,N’-m-フェニレンビスマレイミド及びメタクリル酸亜鉛のうちの少なくとも一方を含む摩擦伝動ベルト。
  11.  請求項10に記載された摩擦伝動ベルトにおいて、
     前記共架橋剤が、N,N’-m-フェニレンビスマレイミド及びメタクリル酸亜鉛を含み、前記ゴム組成物の架橋前の未架橋ゴム組成物における前記N,N’-m-フェニレンビスマレイミドの配合量が、前記メタクリル酸亜鉛の配合量よりも少ない摩擦伝動ベルト。
  12.  請求項1乃至11のいずれかに記載された摩擦伝動ベルトにおいて、
     前記EPDMのエチレン含量が45質量%以上60質量%以下である摩擦伝動ベルト。
PCT/JP2019/027440 2018-08-08 2019-07-11 摩擦伝動ベルト WO2020031607A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980047837.2A CN112513495B (zh) 2018-08-08 2019-07-11 摩擦传动带
ES19848170T ES2929450T3 (es) 2018-08-08 2019-07-11 Correa de transmisión de fricción
JP2019538268A JP6739657B2 (ja) 2018-08-08 2019-07-11 摩擦伝動ベルト
EP19848170.7A EP3822510B1 (en) 2018-08-08 2019-07-11 Friction transmission belt
US17/169,459 US20210156454A1 (en) 2018-08-08 2021-02-06 Friction transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-149567 2018-08-08
JP2018149567 2018-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,459 Continuation US20210156454A1 (en) 2018-08-08 2021-02-06 Friction transmission belt

Publications (1)

Publication Number Publication Date
WO2020031607A1 true WO2020031607A1 (ja) 2020-02-13

Family

ID=69415561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027440 WO2020031607A1 (ja) 2018-08-08 2019-07-11 摩擦伝動ベルト

Country Status (6)

Country Link
US (1) US20210156454A1 (ja)
EP (1) EP3822510B1 (ja)
JP (1) JP6739657B2 (ja)
CN (1) CN112513495B (ja)
ES (1) ES2929450T3 (ja)
WO (1) WO2020031607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125005A (ja) * 2021-02-16 2022-08-26 三ツ星ベルト株式会社 伝動用vベルト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348542B (zh) * 2021-07-07 2023-12-15 阪东化学株式会社 交联橡胶组合物及使用该交联橡胶组合物的摩擦传动带
CN114151509A (zh) * 2021-12-06 2022-03-08 浙江三特科技股份有限公司 一种11m型的圆弧齿同步带

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125341B2 (ja) * 2006-11-10 2008-07-30 バンドー化学株式会社 伝動ベルト及びその製造方法
JP4951574B2 (ja) * 2008-04-01 2012-06-13 バンドー化学株式会社 ダブルvリブドベルト
JP2013127278A (ja) 2011-12-16 2013-06-27 Mitsuboshi Belting Ltd 伝動ベルト
JP2014009749A (ja) 2012-06-29 2014-01-20 Mitsuboshi Belting Ltd 伝動ベルト
WO2016017765A1 (ja) * 2014-07-31 2016-02-04 バンドー化学株式会社 エラストマーヒータ
JP6145170B2 (ja) * 2013-09-26 2017-06-07 バンドー化学株式会社 Vベルト及びその製造方法
JP6161711B2 (ja) * 2013-09-30 2017-07-12 バンドー化学株式会社 平ベルト及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153059A (ja) * 2004-11-25 2006-06-15 Bando Chem Ind Ltd 伝動ベルト
DE112009002575T5 (de) * 2008-10-23 2012-08-30 Bando Chemical Industries, Ltd. Friktionsantriebsriemen
CA2985190C (en) * 2015-05-11 2019-10-01 Gates Corporation Cvt belt
JP6480392B2 (ja) * 2015-09-29 2019-03-06 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
JP6158465B1 (ja) * 2016-07-08 2017-07-05 バンドー化学株式会社 歯付ベルト及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125341B2 (ja) * 2006-11-10 2008-07-30 バンドー化学株式会社 伝動ベルト及びその製造方法
JP4951574B2 (ja) * 2008-04-01 2012-06-13 バンドー化学株式会社 ダブルvリブドベルト
JP2013127278A (ja) 2011-12-16 2013-06-27 Mitsuboshi Belting Ltd 伝動ベルト
JP2014009749A (ja) 2012-06-29 2014-01-20 Mitsuboshi Belting Ltd 伝動ベルト
JP6145170B2 (ja) * 2013-09-26 2017-06-07 バンドー化学株式会社 Vベルト及びその製造方法
JP6161711B2 (ja) * 2013-09-30 2017-07-12 バンドー化学株式会社 平ベルト及びその製造方法
WO2016017765A1 (ja) * 2014-07-31 2016-02-04 バンドー化学株式会社 エラストマーヒータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822510A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125005A (ja) * 2021-02-16 2022-08-26 三ツ星ベルト株式会社 伝動用vベルト
JP7189381B2 (ja) 2021-02-16 2022-12-13 三ツ星ベルト株式会社 伝動用vベルト

Also Published As

Publication number Publication date
JP6739657B2 (ja) 2020-08-12
EP3822510A1 (en) 2021-05-19
US20210156454A1 (en) 2021-05-27
CN112513495A (zh) 2021-03-16
JPWO2020031607A1 (ja) 2020-08-20
ES2929450T3 (es) 2022-11-29
CN112513495B (zh) 2021-10-26
EP3822510A4 (en) 2021-07-28
EP3822510B1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
KR101598509B1 (ko) 마찰전동벨트
US8944948B2 (en) Flat belt
US7927243B2 (en) Transmission belt
US20210156454A1 (en) Friction transmission belt
US11345805B2 (en) Rubber composition and transmission belt using same
KR102559434B1 (ko) 마찰 전동 벨트
US6177202B1 (en) Power transmission belt
US8845468B2 (en) Friction drive belt and belt transmission system using the same
JP3734915B2 (ja) 伝動用vベルト
US6361462B1 (en) V-ribbed power transmission belt
JP6159883B2 (ja) ゴム繊維複合体
US20190128372A1 (en) Friction Transmission Belt
KR101199284B1 (ko) 전동 벨트
US20220243786A1 (en) Friction transmission belt
JP4820107B2 (ja) 伝動ベルト
JP6082853B1 (ja) 摩擦伝動ベルト
JP7146040B2 (ja) ローエッジvベルト
TWI790927B (zh) 切邊v型帶
JP6598777B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにベルト伝動装置
JP7487145B2 (ja) 伝動用vベルト
JP2022152634A (ja) 伝動ベルト
JP2022152628A (ja) 伝動ベルト
JP2022152626A (ja) 伝動ベルト
JP2024129804A (ja) ゴム組成物および伝動ベルト
JP2001082548A (ja) 動力伝動用ベルト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538268

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848170

Country of ref document: EP

Effective date: 20210211