[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020031678A1 - Control device for automatic transmission - Google Patents

Control device for automatic transmission Download PDF

Info

Publication number
WO2020031678A1
WO2020031678A1 PCT/JP2019/028736 JP2019028736W WO2020031678A1 WO 2020031678 A1 WO2020031678 A1 WO 2020031678A1 JP 2019028736 W JP2019028736 W JP 2019028736W WO 2020031678 A1 WO2020031678 A1 WO 2020031678A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
clutch
automatic transmission
solenoid
input torque
Prior art date
Application number
PCT/JP2019/028736
Other languages
French (fr)
Japanese (ja)
Inventor
濱野 正宏
邦彦 奥村
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020536433A priority Critical patent/JP6913255B2/en
Publication of WO2020031678A1 publication Critical patent/WO2020031678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a control device for an automatic transmission mounted on a vehicle.
  • a hydraulic control device for a continuously variable transmission that prevents a belt slip at the time of an abnormality and enables the vehicle to travel at a minimum (see Patent Document 1).
  • a solenoid valve generates a duty pressure in which the reducing pressure is corrected by an electric signal using a constant reducing pressure as a base pressure, and the duty pressure acts on a line pressure control valve to control the line pressure.
  • a hydraulic clutch is provided in the oil path of the above-mentioned reducing pressure to detect an abnormality in the line pressure control. Restrict.
  • the present invention has been made in view of the above problem, and when the clutch solenoid of the automatic transmission fails, it is possible to prevent the driving performance from becoming insufficient during limp home traveling while preventing the traveling performance from deteriorating due to future component damage.
  • the purpose is to prevent it.
  • a control device for an automatic transmission includes an automatic transmission, a control valve unit, and a transmission control unit.
  • the hydraulic control circuit of the control valve unit has a clutch solenoid for individually adjusting the hydraulic pressure supplied to the friction element.
  • the transmission control unit includes a solenoid failure diagnosis unit for the clutch solenoid, a driving force calculation unit that calculates the driving force in the solenoid failure mode, and a fail-safe control unit that takes measures against the solenoid failure mode.
  • the solenoid failure diagnosis unit diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid is equal to or greater than a predetermined current.
  • the driving force calculation unit determines the first driving force obtained when the input torque to the automatic transmission is limited, and shifts to a shift speed that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force obtained when is assumed.
  • the fail-safe control unit selects the input torque restriction when the first driving force is equal to or more than the second driving force, and selects the shift restriction when the first driving force is less than the second driving force.
  • the first driving force when the input torque limit is selected is compared with the second driving force when the shift limit is selected, and the driving force is higher.
  • the method of selecting the fail-safe control is adopted.
  • FIG. 1 is an overall system diagram illustrating an engine vehicle equipped with an automatic transmission to which a control device according to a first embodiment is applied.
  • FIG. 2 is a skeleton diagram illustrating an example of an automatic transmission to which the control device according to the first embodiment is applied.
  • FIG. 3 is an engagement table illustrating engagement states of shift friction elements at each shift speed in the automatic transmission to which the control device of the first embodiment is applied.
  • FIG. 3 is a shift map diagram illustrating an example of a shift map in the automatic transmission to which the control device of the first embodiment is applied.
  • FIG. 2 is a control system configuration diagram illustrating a detailed configuration of a control valve unit and an AT control unit according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a flow of a fail-safe control process at the time of clutch solenoid failure diagnosis executed by a solenoid failure diagnosis unit, a driving force calculation unit, and a fail-safe control unit of the AT control unit according to the first embodiment.
  • FIG. 8 is an explanatory diagram of the influence of the occurrence of erroneous release showing the magnitude of the clutch pressure and the possibility of occurrence of erroneous release during clutch engagement by the maximum command pressure.
  • FIG. 9 is a characteristic diagram showing a relationship between an SOL command current and a SOL monitor current, which indicates a failure mode in clutch solenoid failure diagnosis during clutch engagement with a maximum command pressure.
  • FIG. 8 is an explanatory diagram of the influence of the occurrence of erroneous release showing the magnitude of the clutch pressure and the possibility of occurrence of erroneous release during clutch engagement by the maximum command pressure.
  • FIG. 9 is a characteristic diagram showing a relationship between an SOL command current and a SOL monitor
  • FIG. 6 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during the selection of the second speed in the first embodiment.
  • FIG. 7 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during the selection of the third speed in the first embodiment.
  • FIG. 7 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during selection of the fifth speed in the first embodiment.
  • 6 is a time chart showing characteristics explaining a fail-safe control operation at the time of running failure diagnosis (other than contamination) of the third brake solenoid for engaging the third brake at the fifth speed in the first embodiment.
  • the control device is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission having nine forward speeds and one reverse speed.
  • the configuration of the first embodiment is divided into “entire system configuration”, “detailed configuration of the automatic transmission”, “detailed configuration of the hydraulic / electronic control system”, and “fail-safe control processing configuration at the time of clutch solenoid failure diagnosis”. explain.
  • FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied.
  • the overall system configuration will be described with reference to FIG.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5, as shown in FIG.
  • the automatic transmission 3 is provided with a control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like.
  • the actuators (the clutch solenoid 20, the line pressure solenoid 21, the lubrication solenoid 22, and the lock-up solenoid 23) included in the control valve unit 6 operate in response to a control command from the AT control unit 10.
  • a plurality of clutch solenoids 20 are provided for each friction element.
  • the torque converter 2 has a built-in lock-up clutch 2a that directly connects the crankshaft of the engine 1 and the input shaft IN of the automatic transmission 3 by fastening.
  • the control system of the engine vehicle includes an AT control unit 10, an engine control unit 11, and a CAN communication line 12, as shown in FIG.
  • the AT control unit 10 includes a solenoid failure diagnosis unit 10a, a driving force calculation unit 10b, and a fail-safe control unit 10c.
  • the AT control unit 10 which is a control device of the automatic transmission 3 inputs signals from a turbine rotation sensor 13, an output shaft rotation sensor 14, an ATF oil temperature sensor 15, an inhibitor switch 18, an intermediate shaft rotation sensor 19, and the like.
  • ATF oil temperature sensor 15 detects the temperature of ATF (oil for automatic transmission) and sends a signal of ATF oil temperature TATF to AT control unit 10.
  • the inhibitor switch 18 detects a range position selected by a driver's selection operation on a select lever, a select button, or the like, and sends a range position signal to the AT control unit 10.
  • the AT control unit 10 monitors changes in the operating point (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4), 1. Auto upshift (by increasing vehicle speed while maintaining accelerator opening) 2. Release the upshift (by releasing the accelerator) 3. Foot return upshift (by returning the accelerator) 4. Power-on downshift (due to decrease in vehicle speed while maintaining accelerator opening) 5.Small opening sudden downshift (depending on small accelerator operation amount) 6. Large opening rapid downshift (depending on accelerator operation amount: "Kick down") 7. Slow downshift (by slow accelerator operation and increasing vehicle speed) 8. Coast downshift (by lowering the vehicle speed by releasing the accelerator pedal) The shift control is performed according to a basic shift pattern called a basic shift pattern.
  • the engine control unit 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
  • the accelerator opening sensor 16 detects the accelerator opening by the driver's accelerator operation, and sends a signal of the accelerator opening APO to the engine control unit 11.
  • the engine speed sensor 17 detects the speed of the engine 1 and sends a signal of the engine speed Ne to the engine control unit 11.
  • the engine control unit 11 performs engine torque limiting control and the like by cooperative control with the control by the AT control unit 10 in addition to various controls of the engine alone.
  • the AT control unit 10 and the engine control unit 11 are connected via a CAN communication line 12 capable of bidirectional information exchange. Therefore, when an information request is input from the AT control unit 10, the engine control unit 11 sends information of the accelerator opening APO, the engine speed Ne, the engine torque Te, and the turbine torque Tt to the AT control unit 10 in response to the request. Output.
  • engine torque restriction control is performed to limit the engine torque to a torque restricted by the predetermined upper limit torque.
  • FIG. 2 is a skeleton diagram showing an example of the automatic transmission 3 to which the control device of the first embodiment is applied, FIG. 3 is a fastening table for the automatic transmission 3, and FIG. 4 shows an example of a map.
  • FIGS. 1 and 2 show a detailed configuration of the automatic transmission 3 with reference to FIGS.
  • the automatic transmission 3 has the following features.
  • a one-way clutch that mechanically engages and idles is not used as a transmission element.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 during gear shifting. Is controlled.
  • the second clutch K2 and the third clutch K3 have a centrifugal cancel chamber for canceling a centrifugal pressure caused by a centrifugal force acting on the clutch piston oil chamber.
  • the automatic transmission 3 includes, as planet gears constituting a gear train, a first planet gear PG1, a second planet gear PG2, and a third planet gear in order from the input shaft IN to the output shaft OUT.
  • a gear PG3 and a fourth planetary gear PG4 are provided.
  • the first planetary gear PG1 is a single pinion type planetary gear, and includes a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
  • the second planetary gear PG2 is a single pinion type planetary gear, and includes a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
  • the third planetary gear PG3 is a single pinion type planetary gear, and includes a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
  • the fourth planetary gear PG4 is a single pinion type planetary gear, and includes a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
  • the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC, as shown in FIG.
  • a first brake B1, a second brake B2, a third brake B3, a first clutch K1, a second clutch K2, and a third clutch K3 are provided as friction elements to be engaged / released by the shift. I have.
  • the input shaft IN is a shaft to which the driving force from the engine 1 is inputted via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4.
  • the input shaft IN is connected to the first carrier C1 via the second clutch K2 so that the input shaft IN can be connected and disconnected.
  • the output shaft OUT is a shaft that outputs a drive torque shifted to the drive wheels 5 via the propeller shaft 4 and a final gear (not shown), and is always connected to the third carrier C3.
  • the output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be able to connect and disconnect.
  • the first connection member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element.
  • the second connecting member M2 constantly connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. Member.
  • the first brake B1 is a friction element capable of locking the rotation of the first carrier C1 to the transmission case TC.
  • the second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 to the transmission case TC.
  • the third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 to the transmission case TC.
  • the first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT.
  • the second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1.
  • the third clutch K3 is a friction element that selectively connects the first carrier C1 and the second connection member M2.
  • FIG. 3 shows an engagement table that achieves nine forward speeds and one reverse speed in the D range by combining three simultaneous engagements of the six friction elements in the automatic transmission 3.
  • a shift configuration for establishing each shift speed will be described with reference to FIG.
  • the first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3.
  • the second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3.
  • the third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2.
  • the fourth speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1.
  • the fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1, and the second clutch K2.
  • the above-mentioned first to fifth speed stages are underdrive speed stages based on the reduction gear ratio whose gear ratio exceeds 1.
  • the sixth speed (6th) is achieved by simultaneously engaging the first clutch K1, the second clutch K2, and the third clutch K3.
  • the seventh speed (7th) is achieved by simultaneously engaging the third brake B3, the first clutch K1, and the third clutch K3.
  • the eighth speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3.
  • the ninth speed (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1.
  • the above-mentioned seventh to ninth speed stages are overdrive speed stages with a speed increasing gear ratio having a gear ratio of less than one.
  • the shift to the adjacent shift speed is achieved by releasing one friction element and engaging one friction element while maintaining the engagement of two of the three friction elements.
  • the reverse speed (Rev) by selecting the R range position is achieved by simultaneously applying the first brake B1, the second brake B2, and the third brake B3.
  • the N range position and the P range position are selected, all six friction elements B1, B2, B3, K1, K2, K3 are released.
  • a shift map as shown in FIG. 4 is stored and set in the AT control unit 10, and the shift by switching the shift speed from the first gear to the ninth gear on the forward side by selecting the D range is performed. This is performed according to the shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift request is issued. When the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift request is issued.
  • FIG. 5 shows a detailed configuration of the control valve unit 6 and the AT control unit 10 according to the first embodiment.
  • the detailed configuration of the hydraulic / electronic control system will be described with reference to FIG.
  • the control valve unit 6 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic pressure sources.
  • the mechanical oil pump 61 is driven by the engine 1, and the electric oil pump 62 is driven by an electric motor 63.
  • the control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lock-up solenoid 23 as valves provided in the hydraulic control circuit. Further, it includes a lubrication solenoid 22, a lubrication pressure regulating valve 65, a boost switching valve 66, a P-nP switching valve 67, and a cooler 68.
  • the line pressure regulating valve 64 regulates the discharge oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operation signal pressure from the line pressure solenoid 21.
  • the clutch solenoid 20 uses the line pressure PL as the original pressure, and individually controls the engagement pressure, the release pressure, and the like for each of the friction elements B1, B2, B3, K1, K2, and K3.
  • FIG. 5 it is illustrated that one clutch solenoid 20 is provided. However, there are six solenoids (first brake solenoid, second brake solenoid, third brake solenoid, first clutch solenoid, second clutch solenoid, third clutch Solenoid).
  • the lock-up solenoid 23 controls the differential pressure of the lock-up clutch 2a using excess oil when the line pressure PL is regulated by the line pressure regulating valve 64.
  • the lubrication solenoid 22 generates a valve operation signal pressure to the lubrication pressure regulating valve 65, a switching pressure to the boost switching valve 66, and a switching pressure to the P-nP switching valve 67.
  • the lubricating pressure regulating valve 65 can control the lubricating flow supplied to the power train (PT) including the friction element and the gear train via the cooler 68 by the valve operating signal pressure from the lubricating solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
  • the boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chamber of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the supply oil amount is temporarily increased in a scene where the oil amount in the centrifugal cancel chamber is insufficient.
  • the P-nP switching valve 67 switches the oil path of the line pressure supplied to the parking module by the switching pressure from the lubrication solenoid 22, and performs parking lock.
  • control valve unit 6 is characterized in that the shift-by-wire structure is adopted and the manual valve for switching between the D range pressure oil passage and the R range pressure oil passage is eliminated. Further, specific valve elements such as the lubricating solenoid 22, the lubricating pressure regulating valve 65, the boost switching valve 66, and the P-nP switching valve 67 are provided.
  • the AT control unit 10 includes a solenoid failure diagnosis unit 10a for diagnosing a solenoid failure of the clutch solenoid 20, a driving force calculation unit 10b for calculating a driving force in the solenoid failure mode, and a solenoid failure mode. And a fail-safe control unit 10c for taking measures against the above.
  • the solenoid failure diagnosing unit 10a outputs the SOL monitor current (hereinafter, referred to as “actual current”) from the solenoid drive circuit 69 and the SOL instruction current (hereinafter, “instruction current”) output from the AT control unit 10. )).
  • the solenoid drive circuit 69 corrects the current by the current feedback control so that the actual current follows the instruction current.
  • the solenoid failure diagnosis unit 10a diagnoses the failure diagnosis target clutch solenoid 20 as a failure mode when the state in which the current difference obtained by subtracting the actual current from the instruction current to the clutch solenoid 20 is equal to or greater than a predetermined current continues for a predetermined time or more. .
  • the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to.
  • the driving force calculation unit 10b calculates the clutch capacity of the friction element that is hydraulically engaged by the actual current to the abnormal clutch solenoid, and calculates the input torque regulation value to the automatic transmission 3 according to the calculated clutch capacity. Then, the first driving force A is obtained by a driving force calculation assuming full-open acceleration with the input torque regulation value.
  • the driving force calculation unit 10b calculates a shift pattern at a shift speed that does not use the abnormal clutch solenoid. Then, when there are a plurality of shift speeds that do not use the abnormal clutch solenoid, the lowest shift speed is selected by shifting limitation. Then, the second driving force B is obtained by a driving force calculation assuming an upper limit input torque at which clutch slip does not occur at the selected gear position.
  • the fail-safe control unit 10c selects the input torque limit when the first driving force A is equal to or greater than the second driving force B, and selects the shift limit when the first driving force A is less than the second driving force B.
  • the fail-safe control unit 10c When the input torque limitation is selected when the first driving force A is equal to or higher than the second driving force B, the fail-safe control unit 10c receives the signal from the engine 1 (driving drive source) while keeping the automatic transmission 3 at the same speed. An input torque regulation request for limiting the maximum value of the input torque to the input torque regulation value is output.
  • the fail-safe control unit 10c forcibly turns off the abnormal clutch solenoid and changes the gear position of the automatic transmission 3 to the second drive force B. Is switched to the calculated gear.
  • FIG. 6 shows a flow of the fail-safe control process at the time of clutch solenoid failure diagnosis executed by the solenoid failure diagnosis unit 10a, the driving force calculation unit 10b, and the fail-safe control unit 10c of the AT control unit 10 according to the first embodiment.
  • the fail-safe control process is executed for the clutch solenoid 20 that regulates the oil pressure to the engaged friction element while the vehicle is stopped and the vehicle is traveling while the predetermined gear position is selected.
  • the “predetermined current” is a current value set in advance as a current deviation determination threshold value for determining that the clutch solenoid 20 is out of order.
  • the “instruction current” is an instruction current for obtaining the MAX pressure when the friction element is engaged.
  • step S2 following the determination in step S1 that (instruction current ⁇ actual current) ⁇ predetermined current, the timer is counted, and the flow proceeds to step S3.
  • step S3 following the timer count in S2, it is determined whether or not a timer indicating a continuation time in which (instruction current ⁇ actual current) ⁇ predetermined current is equal to or longer than a predetermined time. If YES (timer ⁇ predetermined time), the process proceeds to step S4, and if NO (timer ⁇ predetermined time), the process returns to step S1.
  • the predetermined time is set such that (indicated current ⁇ actual current) ⁇ predetermined current is instantaneously established, thereby preventing the erroneous diagnosis that the clutch solenoid 20 has failed, and the clutch solenoid 20 performs the failure diagnosis with high accuracy. Set to a time when you can.
  • step S4 following the determination in step S3 that the timer is greater than or equal to the predetermined time, the abnormality of the clutch solenoid 20 diagnosed as being in the failure mode is determined, and the process proceeds to step S5.
  • step S5 following the determination of the abnormality in S4, the clutch capacity of the friction element engaged by the abnormal clutch solenoid is calculated from the actual current to the clutch solenoid 20 in which the abnormality has been determined, and the process proceeds to step S6.
  • the engagement hydraulic pressure supplied to the friction element is known from the relationship between the actual current and the hydraulic pressure, and the friction is determined by the engagement hydraulic pressure, the pressure receiving area, the number of clutches, and the like.
  • the clutch capacity of the element can be determined.
  • step S6 following the calculation of the clutch capacity in S5, an input torque regulation value corresponding to the calculated clutch capacity is calculated, and the process proceeds to step S7.
  • the input torque regulation value is calculated by subtracting an error or the like from the calculated clutch capacity because the friction element slips when the input torque exceeds the clutch capacity.
  • step S7 following the calculation of the input torque regulation value, the first driving force A is calculated based on the input torque regulation value, and the process proceeds to step S8.
  • the first driving force A is a starting driving force in the failure mode of the clutch solenoid 20, and is obtained by a driving force calculation assuming full-open acceleration with the input torque regulation value.
  • step S8 following the calculation of the first driving force A in S7, a shift restriction pattern at a shift speed not using the abnormally diagnosed abnormal clutch solenoid is calculated, and the routine proceeds to step S9.
  • the lowest shift speed is selected based on the shift limit.
  • step S9 following the calculation of the shift restriction pattern in S8, the second driving force B due to the shift restriction in the shift speed not using the abnormal clutch solenoid is calculated, and the routine proceeds to step S10.
  • the second driving force B is a starting driving force in the failure mode of the clutch solenoid 20, and is calculated by a driving force calculation assuming an upper limit input torque at which clutch slip does not occur at the selected shift speed.
  • step S10 following the calculation of the second driving force B in S9, the first driving force A and the second driving force B are compared and determined. If the comparison result is A ⁇ B, the process proceeds to step S11. If the comparison result is A ⁇ B, the process proceeds to step S12.
  • step S11 following the determination in S10 that A ⁇ B, a request to regulate the input torque according to the calculated clutch capacity is output to the engine control unit 11, and the routine proceeds to the end.
  • step S13 following the forced OFF of the abnormal clutch solenoid in S12, a shift restriction for selecting a gear position in which the abnormal clutch solenoid is not used is performed, and the process proceeds to the end.
  • step S14 following the determination in step S1 that (instruction current-actual current) ⁇ predetermined current, the timer that has been counted up to that point is reset, and the process proceeds to the end.
  • the automatic transmission unit to which the present invention is applied employs shift-by-wire and eliminates the manual valve.
  • the existing automatic transmission unit provided a manual valve to assure forward / reverse movement, but there is a new failure mode due to the lack of that function.
  • an object of the present invention is to secure the limp home property by selecting one of the input torque limit and the gear shift limit so that the driving force does not become insufficient in the limp home traveling.
  • the AT control unit 10 includes a solenoid failure diagnosis unit 10a for the clutch solenoid 20, a driving force calculation unit 10b for calculating the driving force in the solenoid failure mode, and fail-safe control for taking measures against the solenoid failure mode.
  • the solenoid failure diagnosis unit 10a diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid 20 is equal to or larger than a predetermined current.
  • the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to.
  • the fail-safe control unit 10c selects the input torque limit when the first driving force A is equal to or more than the second driving force B, and selects the gear shift restriction when the first driving force A is less than the second driving force B. It was adopted.
  • the process proceeds to S11, where a request to regulate the input torque according to the calculated clutch capacity is output to the engine control unit 11.
  • the first driving force A when the input torque limit is selected is compared with the second driving force B when the shift limit is selected.
  • the higher failsafe control is selected.
  • FIG. 9 shows the input torque-acceleration characteristics when the shift to the speed stage is limited.
  • the acceleration G When the input torque is limited while the gear position is fixed at the second speed, the acceleration G assuming full-open acceleration with the input torque restriction value is the first acceleration G1 (2nd).
  • the acceleration G becomes the second acceleration G2 (1st).
  • the first acceleration G1 (2nd)> the second acceleration G2 (1st) Since the acceleration G can be replaced by the magnitude of the driving force of the vehicle, the first acceleration G1 (2nd)> the second acceleration G2 (1st) is replaced by the first driving force A> the second driving force B.
  • FIG. 10 shows the input torque-acceleration characteristics at the time of shifting restriction from shifting to the first speed.
  • the acceleration G assuming full-open acceleration with the input torque regulation value is the first acceleration G1 (3rd).
  • the acceleration G becomes the second acceleration G2 (1st).
  • the first acceleration G1 (3rd) is replaced by the magnitude of the driving force of the vehicle.
  • the first acceleration G1 (3rd) ⁇ the second acceleration G2 (1st) is replaced by the first driving force A ⁇ the second driving force B.
  • the shift limitation of the driving force with the higher driving force (the third speed stage is set as the fail-safe control). To the first gear).
  • FIG. 11 shows the input torque-acceleration characteristics when the shift from the first gear to the first gear is restricted.
  • the acceleration G assuming full-open acceleration with the input torque regulation value is the first acceleration G1 (5th).
  • the acceleration G when the upper limit input torque at which there is no clutch slip at the first speed is assumed to be the second acceleration G2 (1st).
  • the first acceleration G1 (5th) ⁇ the second acceleration G2 (1st). Since the acceleration G can be replaced by the magnitude of the driving force of the vehicle, the first acceleration G1 (5th) ⁇ the second acceleration G2 (1st) is replaced by the first driving force A ⁇ the second driving force B.
  • FIG. 12 shows various characteristics for explaining the fail-safe control operation of the third brake solenoid for engaging the third brake B3 at the fifth speed in the first embodiment at the time of failure diagnosis during running (other than contamination).
  • the fail-safe control operation during traveling will be described based on the time chart shown in FIG.
  • the difference between the command current and the actual current (instruction current-actual current) to the third brake solenoid for engaging the third brake B3 at time t1 becomes equal to or greater than the predetermined current, and It is assumed that a 3-brake solenoid failure has occurred.
  • the abnormality determination timer which has been rising from time t1, increases, and at time t2 after a predetermined time has elapsed, the abnormality of the third brake solenoid is determined.
  • the count of the release failure SOL estimation determination timer is started at time t3, and when the release failure SOL estimation determination threshold is reached at time t4, the shift stage of the automatic transmission 3 releases the third brake B3 from the fifth speed.
  • the gear is switched to the sixth speed in which the third clutch K3 is engaged (see FIG. 3). Therefore, at the time t5, the vehicle shifts to the limp home in which the traveling is secured at the sixth speed without using the third brake B3.
  • the limp home property is secured.
  • An automatic transmission 3 that realizes a plurality of shift speeds, a control valve unit 6 that regulates oil pressure to a plurality of friction elements provided in a gear train of the automatic transmission 3, and control of each solenoid included in the control valve unit 6
  • a transmission control unit (AT control unit 10) for performing the control.
  • the hydraulic control circuit of the control valve unit 6 includes a clutch solenoid 20 for individually adjusting the hydraulic pressure supplied to the friction element.
  • the transmission control unit (AT control unit 10) includes a solenoid failure diagnosis unit 10a for the clutch solenoid 20, a driving force calculation unit 10b for calculating the driving force in the solenoid failure mode, and a fail-safe control unit for taking measures against the solenoid failure mode. 10c.
  • the solenoid failure diagnosis unit 10a diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid 20 is equal to or larger than a predetermined current.
  • the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to.
  • the fail-safe control unit 10c selects the input torque restriction when the first driving force A is equal to or greater than the second driving force B, and selects the gear shift restriction when the first driving force A is less than the second driving force B.
  • the clutch solenoid 20 of the automatic transmission 3 breaks down, it is possible to prevent the running performance from deteriorating due to future component damage and to prevent the driving force from becoming insufficient during limp home running. That is, when the actual current to the clutch solenoid 20 is reduced due to a failure, the first driving force A when the input torque limit is selected is compared with the second driving force B when the shift limit is selected. A measure to select the higher fail-safe control is adopted.
  • the driving force calculation unit 10b calculates the clutch capacity of the friction element that is hydraulically engaged by the actual current to the abnormal clutch solenoid, and determines the input torque regulation value to the automatic transmission 3 according to the calculated clutch capacity.
  • the first driving force A is calculated assuming full-open acceleration with the input torque regulation value. Therefore, when the clutch solenoid 20 of the automatic transmission 3 fails, the higher the actual current to the abnormal clutch solenoid is, the higher the first driving force A is calculated, and the possibility of selecting the input torque limit is increased. be able to. That is, the clutch capacity of the friction element hydraulically engaged is determined by the actual current to the abnormal clutch solenoid, the input torque regulation value is determined by the clutch capacity, and the first driving force A is determined by the input torque regulation value.
  • the fail-safe control unit 10c sets the traveling drive source (engine 1 ), An input torque regulation request for limiting the maximum value of the input torque to the input torque regulation value is output. For this reason, when the input torque limitation is selected as the fail-safe control, it is possible to reliably suppress the deterioration of the traveling performance at the time of failure. That is, after shifting to the failure mode in which the input torque limitation is selected as the fail-safe control, the slip of the friction element fastened by the hydraulic pressure from the abnormal clutch solenoid appropriately limits the input torque to the automatic transmission 3. Is surely suppressed. In addition, when the input torque limit is selected, the forced shift is not performed unlike the shift limit, and the uncomfortable feeling given to the occupant can be suppressed.
  • the driving force calculation unit 10b calculates the shift pattern at the shift speed that does not use the abnormal clutch solenoid, and performs the second drive when assuming the upper limit input torque without clutch slip at the shift speed selected by the shift limitation. Calculate the force B. Therefore, when the clutch solenoid 20 of the automatic transmission 3 fails, the second driving force B assuming the upper limit input torque is calculated, thereby increasing the possibility of selecting the input torque limit. . That is, when the second driving force B is calculated without assuming the upper limit input torque, the second driving force B is determined when the speed selected by the speed change restriction is lower than the speed at the time of the clutch solenoid failure diagnosis. Is a large value. That is, when the first driving force A and the second driving force B are compared, the relationship of the first driving force A ⁇ the second driving force B is satisfied, and there is no room for selecting the input torque limitation.
  • the fail-safe control unit 10c forcibly turns off the abnormal clutch solenoid when the first drive force A is less than the second drive force B and the shift restriction is selected.
  • the speed of the automatic transmission 3 is switched to the speed at which the second driving force B has been calculated. For this reason, when the shift restriction is selected as the fail-safe control, it is possible to reliably suppress the deterioration of the traveling performance at the time of failure. That is, when the shift restriction is selected as the fail-safe control, the abnormal clutch solenoid is forcibly turned off, and a shift speed that does not use the abnormal clutch solenoid is selected. As long as the input torque that does not exceed the upper limit input torque is maintained at the shift speed selected by the shift limit, clutch slippage that causes deterioration in running performance can be suppressed.
  • control device for an automatic transmission has been described based on the first embodiment.
  • specific configuration is not limited to the first embodiment, and changes and additions of the design are permitted without departing from the gist of the invention according to each claim of the claims.
  • the failure mode is diagnosed when the current difference obtained by subtracting the actual current from the command current to the clutch solenoid 20 is equal to or more than a predetermined current for a predetermined time.
  • the solenoid failure diagnosis unit divides the current into the selected failure mode and the limited failure mode based on the clutch slip threshold value of the actual current, and the actual current falls in the area of the selected failure mode.
  • an example may be used in which it is determined whether to select the input torque limit or the shift limit based on a comparison between the first driving force and the second driving force.
  • the example of the automatic transmission 3 having nine forward speeds and one reverse speed is described as the automatic transmission.
  • the automatic transmission may be an example of an automatic transmission having a stepped gear other than the forward nine speeds and the reverse first speed.
  • an example of the control device of the automatic transmission mounted on the engine vehicle has been described. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This control device for automatic transmission (3) comprises an AT control unit (10) having a solenoid fault diagnosis unit (10a), a drive force calculation unit (10b) and a failsafe control unit (10c). If the current differential obtained by subtracting the actual current from the command current to a clutch solenoid (20) is equal to or greater than a predetermined current, the solenoid fault diagnosis unit (10a) diagnoses a fault mode. If the fault mode is diagnosed, the drive force calculation unit (10b) calculates a first drive force (A) obtained when an input torque limit is assumed, and a second drive force (B) obtained when a transmission restriction is assumed. If the first drive force (A) is equal to or greater than the second drive force (B), the failsafe control unit (10c) selects an input torque limit, and if the first drive force (A) is less than the second drive force (B), selects transmission restriction.

Description

自動変速機の制御装置Control device for automatic transmission
 本発明は、車両に搭載される自動変速機の制御装置に関する。 The present invention relates to a control device for an automatic transmission mounted on a vehicle.
 従来、異常時にベルトスリップを防止すると共に、車両の最小限走行を可能とする無段変速機の油圧制御装置が知られている(特許文献1参照)。この装置は、常に一定のレデューシング圧をベース圧として電気信号によりソレノイド弁が該レデューシング圧を補正したデューティ圧を生じ、該デューティ圧をライン圧制御弁に作用してライン圧制御する油圧制御系において、上記レデューシング圧の油路中に油圧クラッチを設けて、ライン圧制御の異常を検出し、異常時にはライン圧制御弁のスプリング力でのみ決まる最低ライン圧で伝達可能なトルク以下に、クラッチトルクを制限する。 Conventionally, there has been known a hydraulic control device for a continuously variable transmission that prevents a belt slip at the time of an abnormality and enables the vehicle to travel at a minimum (see Patent Document 1). In this hydraulic control system, a solenoid valve generates a duty pressure in which the reducing pressure is corrected by an electric signal using a constant reducing pressure as a base pressure, and the duty pressure acts on a line pressure control valve to control the line pressure. A hydraulic clutch is provided in the oil path of the above-mentioned reducing pressure to detect an abnormality in the line pressure control. Restrict.
 しかしながら、上記従来装置にあっては、ライン圧制御の異常検出時には、最低ライン圧でクラッチトルクを制限していた。このため、駆動輪へ伝達されるトルクが最低ライン圧で決まるトルクに制限されることになり、駆動力不足が生じ、運転者に違和感を与える場合がある、という問題があった。 However, in the above-described conventional device, when an abnormality in the line pressure control is detected, the clutch torque is limited by the minimum line pressure. For this reason, the torque transmitted to the drive wheels is limited to the torque determined by the minimum line pressure, and there is a problem that the driving force is insufficient and the driver may feel uncomfortable.
特開昭62-52260号公報JP-A-62-52260
 本発明は、上記問題に着目してなされたもので、自動変速機のクラッチソレノイドが故障した際、将来的な部品破損による走行性能悪化を防止しながらリンプホーム走行で駆動力不足になるのを防止することを目的とする。 The present invention has been made in view of the above problem, and when the clutch solenoid of the automatic transmission fails, it is possible to prevent the driving performance from becoming insufficient during limp home traveling while preventing the traveling performance from deteriorating due to future component damage. The purpose is to prevent it.
 上記目的を達成するため、本発明の自動変速機の制御装置は、自動変速機と、コントロールバルブユニットと、変速機コントロールユニットと、を備える。
コントロールバルブユニットの油圧制御回路に、摩擦要素へ供給する油圧を個別に調圧するクラッチソレノイドを有する。
変速機コントロールユニットに、クラッチソレノイドのソレノイド故障診断部と、ソレノイド故障モードでの駆動力を演算する駆動力演算部と、ソレノイド故障モードを対策するフェールセーフ制御部とを有する。
ソレノイド故障診断部は、クラッチソレノイドへの指示電流から実電流を差し引いた電流差が所定電流以上であるとき故障モードと診断する。
駆動力演算部は、故障モードと診断された場合、自動変速機への入力トルク制限を想定したときに得られる第1駆動力と、故障診断された異常クラッチソレノイドを使用しない変速段への移行を想定したときに得られる第2駆動力とを演算する。
フェールセーフ制御部は、第1駆動力が第2駆動力以上であると入力トルク制限を選択し、第1駆動力が第2駆動力未満であると変速制限を選択する。
In order to achieve the above object, a control device for an automatic transmission according to the present invention includes an automatic transmission, a control valve unit, and a transmission control unit.
The hydraulic control circuit of the control valve unit has a clutch solenoid for individually adjusting the hydraulic pressure supplied to the friction element.
The transmission control unit includes a solenoid failure diagnosis unit for the clutch solenoid, a driving force calculation unit that calculates the driving force in the solenoid failure mode, and a fail-safe control unit that takes measures against the solenoid failure mode.
The solenoid failure diagnosis unit diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid is equal to or greater than a predetermined current.
When the failure mode is diagnosed, the driving force calculation unit determines the first driving force obtained when the input torque to the automatic transmission is limited, and shifts to a shift speed that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force obtained when is assumed.
The fail-safe control unit selects the input torque restriction when the first driving force is equal to or more than the second driving force, and selects the shift restriction when the first driving force is less than the second driving force.
 このように、クラッチソレノイドへの実電流が故障により低下した際、入力トルク制限を選択したときの第1駆動力と、変速制限を選択したときの第2駆動力を比較し、駆動力が高い方のフェールセーフ制御を選択する方策を採用している。この結果、自動変速機のクラッチソレノイドが故障した際、将来的な部品破損による走行性能悪化を防止しながらリンプホーム走行で駆動力不足になるのを防止することができる。 As described above, when the actual current to the clutch solenoid is reduced due to a failure, the first driving force when the input torque limit is selected is compared with the second driving force when the shift limit is selected, and the driving force is higher. The method of selecting the fail-safe control is adopted. As a result, when the clutch solenoid of the automatic transmission breaks down, it is possible to prevent the running performance from deteriorating due to future component damage and prevent the driving force from becoming insufficient during limp home running.
実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。1 is an overall system diagram illustrating an engine vehicle equipped with an automatic transmission to which a control device according to a first embodiment is applied. 実施例1の制御装置が適用された自動変速機の一例を示すスケルトン図である。FIG. 2 is a skeleton diagram illustrating an example of an automatic transmission to which the control device according to the first embodiment is applied. 実施例1の制御装置が適用された自動変速機での変速用の摩擦要素の各変速段での締結状態を示す締結表図である。FIG. 3 is an engagement table illustrating engagement states of shift friction elements at each shift speed in the automatic transmission to which the control device of the first embodiment is applied. 実施例1の制御装置が適用された自動変速機での変速マップの一例を示す変速マップ図である。FIG. 3 is a shift map diagram illustrating an example of a shift map in the automatic transmission to which the control device of the first embodiment is applied. 実施例1のコントロールバルブユニットとATコントロールユニットの詳細構成を示す制御系構成図である。FIG. 2 is a control system configuration diagram illustrating a detailed configuration of a control valve unit and an AT control unit according to the first embodiment. 実施例1のATコントロールユニットのソレノイド故障診断部、駆動力演算部及びフェールセーフ制御部にて実行されるクラッチソレノイド故障診断時フェールセーフ制御処理の流れを示すフローチャートである。5 is a flowchart illustrating a flow of a fail-safe control process at the time of clutch solenoid failure diagnosis executed by a solenoid failure diagnosis unit, a driving force calculation unit, and a fail-safe control unit of the AT control unit according to the first embodiment. 最大指示圧によるクラッチ締結中におけるクラッチ圧の大きさと誤解放の発生可能性の影響を示す誤解放発生影響説明図である。FIG. 8 is an explanatory diagram of the influence of the occurrence of erroneous release showing the magnitude of the clutch pressure and the possibility of occurrence of erroneous release during clutch engagement by the maximum command pressure. 最大指示圧によるクラッチ締結中におけるクラッチソレノイド故障診断での故障モードを示すSOL指示電流に対するSOLモニタ電流の関係特性図である。FIG. 9 is a characteristic diagram showing a relationship between an SOL command current and a SOL monitor current, which indicates a failure mode in clutch solenoid failure diagnosis during clutch engagement with a maximum command pressure. 実施例1において2速段選択中に第2クラッチを締結する第2クラッチソレノイドが故障診断された場合の第1加速度と第2加速度の比較を示す入力トルク-加速度特性図である。FIG. 6 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during the selection of the second speed in the first embodiment. 実施例1において3速段選択中に第2クラッチを締結する第2クラッチソレノイドが故障診断された場合の第1加速度と第2加速度の比較を示す入力トルク-加速度特性図である。FIG. 7 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during the selection of the third speed in the first embodiment. 実施例1において5速段選択中に第2クラッチを締結する第2クラッチソレノイドが故障診断された場合の第1加速度と第2加速度の比較を示す入力トルク-加速度特性図である。FIG. 7 is an input torque-acceleration characteristic diagram showing a comparison between the first acceleration and the second acceleration when a failure diagnosis is performed on the second clutch solenoid that engages the second clutch during selection of the fifth speed in the first embodiment. 実施例1において5速段で第3ブレーキを締結する第3ブレーキソレノイドの走行中故障診断時(コンタミスティック以外)におけるフェールセーフ制御作用を説明する各特性を示すタイムチャートである。6 is a time chart showing characteristics explaining a fail-safe control operation at the time of running failure diagnosis (other than contamination) of the third brake solenoid for engaging the third brake at the fifth speed in the first embodiment.
 以下、本発明の自動変速機の制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, an embodiment of a control device for an automatic transmission according to the present invention will be described based on a first embodiment shown in the drawings.
 実施例1における制御装置は、前進9速・後退1速の変速段を有する自動変速機を搭載したエンジン車(車両の一例)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「自動変速機の詳細構成」、「油圧/電子制御系の詳細構成」、「クラッチソレノイド故障診断時フェールセーフ制御処理構成」に分けて説明する。 The control device according to the first embodiment is applied to an engine vehicle (an example of a vehicle) equipped with an automatic transmission having nine forward speeds and one reverse speed. Hereinafter, the configuration of the first embodiment is divided into “entire system configuration”, “detailed configuration of the automatic transmission”, “detailed configuration of the hydraulic / electronic control system”, and “fail-safe control processing configuration at the time of clutch solenoid failure diagnosis”. explain.
 [全体システム構成]
 図1は実施例1の制御装置が適用された自動変速機を搭載するエンジン車を示す全体システム図である。以下、図1に基づき、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 is an overall system diagram showing an engine vehicle equipped with an automatic transmission to which the control device of the first embodiment is applied. Hereinafter, the overall system configuration will be described with reference to FIG.
 エンジン車の駆動系には、図1に示すように、エンジン1と、トルクコンバータ2と、自動変速機3と、プロペラシャフト4と、駆動輪5と、を備える。自動変速機3には、変速のためのスプールバルブや油圧制御回路やソレノイドバルブ等によるコントロールバルブユニット6が取り付けられている。このコントロールバルブユニット6に有するアクチュエータ(クラッチソレノイド20、ライン圧ソレノイド21、潤滑ソレノイド22、ロックアップソレノイド23)は、ATコントロールユニット10からの制御指令を受けて作動する。ここで、クラッチソレノイド20は、摩擦要素毎に複数個設けられている。なお、トルクコンバータ2は、締結によりエンジン1のクランク軸と自動変速機3の入力軸INを直結するロックアップクラッチ2aを内蔵する。 (1) The drive system of the engine vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a propeller shaft 4, and drive wheels 5, as shown in FIG. The automatic transmission 3 is provided with a control valve unit 6 including a spool valve for shifting, a hydraulic control circuit, a solenoid valve, and the like. The actuators (the clutch solenoid 20, the line pressure solenoid 21, the lubrication solenoid 22, and the lock-up solenoid 23) included in the control valve unit 6 operate in response to a control command from the AT control unit 10. Here, a plurality of clutch solenoids 20 are provided for each friction element. The torque converter 2 has a built-in lock-up clutch 2a that directly connects the crankshaft of the engine 1 and the input shaft IN of the automatic transmission 3 by fastening.
 エンジン車の制御系には、図1に示すように、ATコントロールユニット10と、エンジンコントロールユニット11と、CAN通信線12と、を備える。なお、ATコントロールユニット10には、ソレノイド故障診断部10aと駆動力演算部10bとフェールセーフ制御部10cを有する。 (1) The control system of the engine vehicle includes an AT control unit 10, an engine control unit 11, and a CAN communication line 12, as shown in FIG. The AT control unit 10 includes a solenoid failure diagnosis unit 10a, a driving force calculation unit 10b, and a fail-safe control unit 10c.
 自動変速機3の制御装置であるATコントロールユニット10は、タービン回転センサ13、出力軸回転センサ14、ATF油温センサ15、インヒビタースイッチ18、中間軸回転センサ19、等からの信号を入力する。 The AT control unit 10 which is a control device of the automatic transmission 3 inputs signals from a turbine rotation sensor 13, an output shaft rotation sensor 14, an ATF oil temperature sensor 15, an inhibitor switch 18, an intermediate shaft rotation sensor 19, and the like.
 タービン回転センサ13は、トルクコンバータ2のタービン回転数(=変速機入力軸回転数)を検出し、タービン回転数Ntの信号をATコントロールユニット10に送出する。出力軸回転センサ14は、自動変速機3の出力軸回転数(=車速)を検出し、出力軸回転数No(車速VSP)の信号をATコントロールユニット10に送出する。ATF油温センサ15は、ATF(自動変速機用オイル)の温度を検出し、ATF油温TATFの信号をATコントロールユニット10に送出する。インヒビタースイッチ18は、運転者によるセレクトレバーやセレクトボタン等へのセレクト操作により選択されたレンジ位置を検出し、レンジ位置信号をATコントロールユニット10に送出する。中間軸回転センサ19は、中間軸(インターミディエイトシャフト=第1キャリアC1に連結される回転メンバ)の回転数を検出し、中間軸回転数Nintの信号をATコントロールユニット10に送出する。 The turbine rotation sensor 13 detects the turbine speed of the torque converter 2 (= transmission input shaft speed) and sends a signal of the turbine speed Nt to the AT control unit 10. The output shaft rotation sensor 14 detects the output shaft rotation speed (= vehicle speed) of the automatic transmission 3 and sends a signal of the output shaft rotation speed No (vehicle speed VSP) to the AT control unit 10. ATF oil temperature sensor 15 detects the temperature of ATF (oil for automatic transmission) and sends a signal of ATF oil temperature TATF to AT control unit 10. The inhibitor switch 18 detects a range position selected by a driver's selection operation on a select lever, a select button, or the like, and sends a range position signal to the AT control unit 10. The intermediate shaft rotation sensor 19 detects the rotation speed of the intermediate shaft (the intermediate shaft = the rotation member connected to the first carrier C1) and sends a signal of the intermediate shaft rotation speed Nint to the AT control unit 10.
 ATコントロールユニット10では、変速マップ(図4参照)上での車速VSPとアクセル開度APOによる運転点(VSP,APO)の変化を監視することで、
1.オートアップシフト(アクセル開度を保った状態での車速上昇による)
2.足離しアップシフト(アクセル足離し操作による)
3.足戻しアップシフト(アクセル戻し操作による)
4.パワーオンダウンシフト(アクセル開度を保っての車速低下による)
5.小開度急踏みダウンシフト(アクセル操作量小による)
6.大開度急踏みダウンシフト(アクセル操作量大による:「キックダウン」)
7.緩踏みダウンシフト(アクセル緩踏み操作と車速上昇による)
8.コーストダウンシフト(アクセル足離し操作での車速低下による)
と呼ばれる基本変速パターンによる変速制御を行う。
The AT control unit 10 monitors changes in the operating point (VSP, APO) due to the vehicle speed VSP and the accelerator opening APO on the shift map (see FIG. 4),
1. Auto upshift (by increasing vehicle speed while maintaining accelerator opening)
2. Release the upshift (by releasing the accelerator)
3. Foot return upshift (by returning the accelerator)
4. Power-on downshift (due to decrease in vehicle speed while maintaining accelerator opening)
5.Small opening sudden downshift (depending on small accelerator operation amount)
6. Large opening rapid downshift (depending on accelerator operation amount: "Kick down")
7. Slow downshift (by slow accelerator operation and increasing vehicle speed)
8. Coast downshift (by lowering the vehicle speed by releasing the accelerator pedal)
The shift control is performed according to a basic shift pattern called a basic shift pattern.
 エンジンコントロールユニット11は、アクセル開度センサ16、エンジン回転センサ17、等からの信号を入力する。 (4) The engine control unit 11 inputs signals from the accelerator opening sensor 16, the engine rotation sensor 17, and the like.
 アクセル開度センサ16は、ドライバーのアクセル操作によるアクセル開度を検出し、アクセル開度APOの信号をエンジンコントロールユニット11に送出する。エンジン回転センサ17は、エンジン1の回転数を検出し、エンジン回転数Neの信号をエンジンコントロールユニット11に送出する。 The accelerator opening sensor 16 detects the accelerator opening by the driver's accelerator operation, and sends a signal of the accelerator opening APO to the engine control unit 11. The engine speed sensor 17 detects the speed of the engine 1 and sends a signal of the engine speed Ne to the engine control unit 11.
 エンジンコントロールユニット11では、エンジン単体の様々な制御に加え、ATコントロールユニット10での制御との協調制御によりエンジントルク制限制御等を行う。ATコントロールユニット10とエンジンコントロールユニット11は、双方向に情報交換可能なCAN通信線12を介して接続されている。よって、エンジンコントロールユニット11は、ATコントロールユニット10から情報リクエストが入力されると、リクエストに応じてアクセル開度APOやエンジン回転数NeやエンジントルクTeやタービントルクTtの情報をATコントロールユニット10に出力する。また、ATコントロールユニット10から上限トルクによるエンジントルク制限要求が入力されると、エンジントルクを所定の上限トルクにより制限したトルクとするエンジントルク制限制御が実行される。 The engine control unit 11 performs engine torque limiting control and the like by cooperative control with the control by the AT control unit 10 in addition to various controls of the engine alone. The AT control unit 10 and the engine control unit 11 are connected via a CAN communication line 12 capable of bidirectional information exchange. Therefore, when an information request is input from the AT control unit 10, the engine control unit 11 sends information of the accelerator opening APO, the engine speed Ne, the engine torque Te, and the turbine torque Tt to the AT control unit 10 in response to the request. Output. When an engine torque restriction request based on the upper limit torque is input from the AT control unit 10, engine torque restriction control is performed to limit the engine torque to a torque restricted by the predetermined upper limit torque.
 [自動変速機の詳細構成]
 図2は実施例1の制御装置が適用された自動変速機3の一例を示すスケルトン図であり、図3は自動変速機3での締結表であり、図4は自動変速機3での変速マップの一例を示す。以下、図2~図4に基づいて自動変速機3の詳細構成を説明する。
[Detailed configuration of automatic transmission]
FIG. 2 is a skeleton diagram showing an example of the automatic transmission 3 to which the control device of the first embodiment is applied, FIG. 3 is a fastening table for the automatic transmission 3, and FIG. 4 shows an example of a map. Hereinafter, a detailed configuration of the automatic transmission 3 will be described with reference to FIGS.
 自動変速機3は、下記の点を特徴とする。
(a) 変速要素として、機械的に係合/空転するワンウェイクラッチを用いていない。
(b) 摩擦要素である第1ブレーキB1、第2ブレーキB2、第3ブレーキB3、第1クラッチK1、第2クラッチK2、第3クラッチK3は、変速時にクラッチソレノイド20によってそれぞれ独立に締結/解放が制御される。
(b) 第2クラッチK2と第3クラッチK3は、クラッチピストン油室に作用する遠心力による遠心圧を相殺する遠心キャンセル室を有する。
The automatic transmission 3 has the following features.
(a) A one-way clutch that mechanically engages and idles is not used as a transmission element.
(b) The first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3, which are friction elements, are independently engaged / released by the clutch solenoid 20 during gear shifting. Is controlled.
(b) The second clutch K2 and the third clutch K3 have a centrifugal cancel chamber for canceling a centrifugal pressure caused by a centrifugal force acting on the clutch piston oil chamber.
 自動変速機3は、図2に示すように、ギヤトレーンを構成する遊星歯車として、入力軸INから出力軸OUTに向けて順に、第1遊星歯車PG1と、第2遊星歯車PG2と、第3遊星歯車PG3と、第4遊星歯車PG4と、を備えている。 As shown in FIG. 2, the automatic transmission 3 includes, as planet gears constituting a gear train, a first planet gear PG1, a second planet gear PG2, and a third planet gear in order from the input shaft IN to the output shaft OUT. A gear PG3 and a fourth planetary gear PG4 are provided.
 第1遊星歯車PG1は、シングルピニオン型遊星歯車であり、第1サンギヤS1と、第1サンギヤS1に噛み合うピニオンを支持する第1キャリアC1と、ピニオンに噛み合う第1リングギヤR1と、を有する。 The first planetary gear PG1 is a single pinion type planetary gear, and includes a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
 第2遊星歯車PG2は、シングルピニオン型遊星歯車であり、第2サンギヤS2と、第2サンギヤS2に噛み合うピニオンを支持する第2キャリアC2と、ピニオンに噛み合う第2リングギヤR2と、を有する。 The second planetary gear PG2 is a single pinion type planetary gear, and includes a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
 第3遊星歯車PG3は、シングルピニオン型遊星歯車であり、第3サンギヤS3と、第3サンギヤS3に噛み合うピニオンを支持する第3キャリアC3と、ピニオンに噛み合う第3リングギヤR3と、を有する。 The third planetary gear PG3 is a single pinion type planetary gear, and includes a third sun gear S3, a third carrier C3 that supports a pinion that meshes with the third sun gear S3, and a third ring gear R3 that meshes with the pinion.
 第4遊星歯車PG4は、シングルピニオン型遊星歯車であり、第4サンギヤS4と、第4サンギヤS4に噛み合うピニオンを支持する第4キャリアC4と、ピニオンに噛み合う第4リングギヤR4と、を有する。 The fourth planetary gear PG4 is a single pinion type planetary gear, and includes a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
 自動変速機3は、図2に示すように、入力軸INと、出力軸OUTと、第1連結メンバM1と、第2連結メンバM2と、トランスミッションケースTCと、を備えている。変速により締結/解放される摩擦要素として、第1ブレーキB1と、第2ブレーキB2と、第3ブレーキB3と、第1クラッチK1と、第2クラッチK2と、第3クラッチK3と、を備えている。 2, the automatic transmission 3 includes an input shaft IN, an output shaft OUT, a first connecting member M1, a second connecting member M2, and a transmission case TC, as shown in FIG. A first brake B1, a second brake B2, a third brake B3, a first clutch K1, a second clutch K2, and a third clutch K3 are provided as friction elements to be engaged / released by the shift. I have.
 入力軸INは、エンジン1からの駆動力がトルクコンバータ2を介して入力される軸で、第1サンギヤS1と第4キャリアC4に常時連結している。そして、入力軸INは、第2クラッチK2を介して第1キャリアC1に断接可能に連結している。 The input shaft IN is a shaft to which the driving force from the engine 1 is inputted via the torque converter 2, and is always connected to the first sun gear S1 and the fourth carrier C4. The input shaft IN is connected to the first carrier C1 via the second clutch K2 so that the input shaft IN can be connected and disconnected.
 出力軸OUTは、プロペラシャフト4及び図外のファイナルギヤ等を介して駆動輪5へ変速した駆動トルクを出力する軸であり、第3キャリアC3に常時連結している。そして、出力軸OUTは、第1クラッチK1を介して第4リングギヤR4に断接可能に連結している。 The output shaft OUT is a shaft that outputs a drive torque shifted to the drive wheels 5 via the propeller shaft 4 and a final gear (not shown), and is always connected to the third carrier C3. The output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be able to connect and disconnect.
 第1連結メンバM1は、第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2を、摩擦要素を介在させることなく常時連結するメンバである。第2連結メンバM2は、第2遊星歯車PG2の第2リングギヤR2と第3遊星歯車PG3の第3サンギヤS3と第4遊星歯車PG4の第4サンギヤS4を、摩擦要素を介在させることなく常時連結するメンバである。 The first connection member M1 is a member that constantly connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element. The second connecting member M2 constantly connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element. Member.
 第1ブレーキB1は、第1キャリアC1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第2ブレーキB2は、第3リングギヤR3の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。第3ブレーキB3は、第2サンギヤS2の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。 The first brake B1 is a friction element capable of locking the rotation of the first carrier C1 to the transmission case TC. The second brake B2 is a friction element capable of locking the rotation of the third ring gear R3 to the transmission case TC. The third brake B3 is a friction element capable of locking the rotation of the second sun gear S2 to the transmission case TC.
 第1クラッチK1は、第4リングギヤR4と出力軸OUTの間を選択的に連結する摩擦要素である。第2クラッチK2は、入力軸INと第1キャリアC1の間を選択的に連結する摩擦要素である。第3クラッチK3は、第1キャリアC1と第2連結メンバM2の間を選択的に連結する摩擦要素である。 The first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT. The second clutch K2 is a friction element that selectively connects the input shaft IN and the first carrier C1. The third clutch K3 is a friction element that selectively connects the first carrier C1 and the second connection member M2.
 図3は、自動変速機3において6つの摩擦要素のうち三つの同時締結の組み合わせによりDレンジにて前進9速後退1速を達成する締結表を示す。以下、図3に基づいて、各変速段を成立させる変速構成を説明する。 FIG. 3 shows an engagement table that achieves nine forward speeds and one reverse speed in the D range by combining three simultaneous engagements of the six friction elements in the automatic transmission 3. Hereinafter, a shift configuration for establishing each shift speed will be described with reference to FIG.
 1速段(1st)は、第2ブレーキB2と第3ブレーキB3と第3クラッチK3の同時締結により達成する。2速段(2nd)は、第2ブレーキB2と第2クラッチK2と第3クラッチK3の同時締結により達成する。3速段(3rd)は、第2ブレーキB2と第3ブレーキB3と第2クラッチK2の同時締結により達成する。4速段(4th)は、第2ブレーキB2と第3ブレーキB3と第1クラッチK1の同時締結により達成する。5速段(5th)は、第3ブレーキB3と第1クラッチK1と第2クラッチK2の同時締結により達成する。以上の1速段~5速段が、ギヤ比が1を超えている減速ギヤ比によるアンダードライブ変速段である。 The first speed (1st) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3. The second speed (2nd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3. The third speed (3rd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the second clutch K2. The fourth speed (4th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1. The fifth speed (5th) is achieved by simultaneously engaging the third brake B3, the first clutch K1, and the second clutch K2. The above-mentioned first to fifth speed stages are underdrive speed stages based on the reduction gear ratio whose gear ratio exceeds 1.
 6速段(6th)は、第1クラッチK1と第2クラッチK2と第3クラッチK3の同時締結により達成する。この第6速段は、ギヤ比=1の直結段である。 The sixth speed (6th) is achieved by simultaneously engaging the first clutch K1, the second clutch K2, and the third clutch K3. The sixth speed is a directly connected stage with a gear ratio = 1.
 7速段(7th)は、第3ブレーキB3と第1クラッチK1と第3クラッチK3の同時締結により達成する。8速段(8th)は、第1ブレーキB1と第1クラッチK1と第3クラッチK3の同時締結により達成する。9速段(9th)は、第1ブレーキB1と第3ブレーキB3と第1クラッチK1の同時締結により達成する。以上の7速段~9速段は、ギヤ比が1未満の増速ギヤ比によるオーバードライブ変速段である。 The seventh speed (7th) is achieved by simultaneously engaging the third brake B3, the first clutch K1, and the third clutch K3. The eighth speed (8th) is achieved by simultaneously engaging the first brake B1, the first clutch K1, and the third clutch K3. The ninth speed (9th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1. The above-mentioned seventh to ninth speed stages are overdrive speed stages with a speed increasing gear ratio having a gear ratio of less than one.
 さらに、1速段から9速段までの変速段のうち、隣接する変速段へのアップ変速を行う際、或いは、ダウン変速を行う際、図3に示すように、掛け替え変速により行う構成としている。即ち、隣接する変速段への変速は、三つの摩擦要素のうち、二つの摩擦要素の締結は維持したままで、一つの摩擦要素の解放と一つの摩擦要素の締結を行うことで達成される。 Further, when performing an upshift or an downshift to an adjacent speed, from among the first to ninth speeds, as shown in FIG. . That is, the shift to the adjacent shift speed is achieved by releasing one friction element and engaging one friction element while maintaining the engagement of two of the three friction elements. .
 Rレンジ位置の選択による後退速段(Rev)は、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3の同時締結により達成する。なお、Nレンジ位置及びPレンジ位置を選択したときは、6つの摩擦要素B1,B2,B3,K1,K2,K3の全てが解放状態とされる。 後 The reverse speed (Rev) by selecting the R range position is achieved by simultaneously applying the first brake B1, the second brake B2, and the third brake B3. When the N range position and the P range position are selected, all six friction elements B1, B2, B3, K1, K2, K3 are released.
 そして、ATコントロールユニット10には、図4に示すような変速マップが記憶設定されていて、Dレンジの選択により前進側の1速段から9速段までの変速段の切り替えによる変速は、この変速マップに従って行われる。即ち、そのときの運転点(VSP,APO)が図4の実線で示すアップシフト線を横切るとアップシフト変速要求が出される。又、運転点(VSP,APO)が図4の破線で示すダウンシフト線を横切るとダウンシフト変速要求が出される。 A shift map as shown in FIG. 4 is stored and set in the AT control unit 10, and the shift by switching the shift speed from the first gear to the ninth gear on the forward side by selecting the D range is performed. This is performed according to the shift map. That is, when the operating point (VSP, APO) at that time crosses the upshift line shown by the solid line in FIG. 4, an upshift request is issued. When the operating point (VSP, APO) crosses the downshift line shown by the broken line in FIG. 4, a downshift request is issued.
 [油圧/電子制御系の詳細構成]
 図5は、実施例1のコントロールバルブユニット6とATコントロールユニット10の詳細構成を示す。以下、図5に基づいていて油圧/電子制御系の詳細構成を説明する。
[Detailed configuration of hydraulic / electronic control system]
FIG. 5 shows a detailed configuration of the control valve unit 6 and the AT control unit 10 according to the first embodiment. Hereinafter, the detailed configuration of the hydraulic / electronic control system will be described with reference to FIG.
 コントロールバルブユニット6は、油圧源としてメカオイルポンプ61と電動オイルポンプ62を備える。メカオイルポンプ61は、エンジン1によりポンプ駆動され、電動オイルポンプ62は、電動モータ63によりポンプ駆動される。 The control valve unit 6 includes a mechanical oil pump 61 and an electric oil pump 62 as hydraulic pressure sources. The mechanical oil pump 61 is driven by the engine 1, and the electric oil pump 62 is driven by an electric motor 63.
 コントロールバルブユニット6は、油圧制御回路に設けられる弁としてライン圧ソレノイド21とライン圧調圧弁64とクラッチソレノイド20とロックアップソレノイド23を備える。さらに、潤滑ソレノイド22と潤滑調圧弁65とブースト切換弁66とP-nP切換弁67とクーラー68を備える。 The control valve unit 6 includes a line pressure solenoid 21, a line pressure regulating valve 64, a clutch solenoid 20, and a lock-up solenoid 23 as valves provided in the hydraulic control circuit. Further, it includes a lubrication solenoid 22, a lubrication pressure regulating valve 65, a boost switching valve 66, a P-nP switching valve 67, and a cooler 68.
 ライン圧調圧弁64は、メカオイルポンプ61と電動オイルポンプ62の少なくとも一方からの吐出油を、ライン圧ソレノイド21からのバルブ作動信号圧に基づいてライン圧PLに調圧する。 The line pressure regulating valve 64 regulates the discharge oil from at least one of the mechanical oil pump 61 and the electric oil pump 62 to the line pressure PL based on the valve operation signal pressure from the line pressure solenoid 21.
 クラッチソレノイド20は、ライン圧PLを元圧とし、摩擦要素B1,B2,B3,K1,K2,K3のそれぞれについて個別に締結圧や解放圧等を制御する。なお、図5において、クラッチソレノイド20が1個あるように記載している。しかし、摩擦要素B1,B2,B3,K1,K2,K3毎に6個のソレノイド(第1ブレーキソレノイド、第2ブレーキソレノイド、第3ブレーキソレノイド、第1クラッチソレノイド、第2クラッチソレノイド、第3クラッチソレノイド)を有する。 The clutch solenoid 20 uses the line pressure PL as the original pressure, and individually controls the engagement pressure, the release pressure, and the like for each of the friction elements B1, B2, B3, K1, K2, and K3. In FIG. 5, it is illustrated that one clutch solenoid 20 is provided. However, there are six solenoids (first brake solenoid, second brake solenoid, third brake solenoid, first clutch solenoid, second clutch solenoid, third clutch Solenoid).
 ロックアップソレノイド23は、ライン圧調圧弁64によるライン圧PLの調圧時における余剰油を用いてロックアップクラッチ2aの差圧を制御する。 The lock-up solenoid 23 controls the differential pressure of the lock-up clutch 2a using excess oil when the line pressure PL is regulated by the line pressure regulating valve 64.
 潤滑ソレノイド22は、潤滑調圧弁65へのバルブ作動信号圧と、ブースト切換弁66への切換圧と、P-nP切換弁67へ切換圧とを作り出す。 The lubrication solenoid 22 generates a valve operation signal pressure to the lubrication pressure regulating valve 65, a switching pressure to the boost switching valve 66, and a switching pressure to the P-nP switching valve 67.
 潤滑調圧弁65は、潤滑ソレノイド22からのバルブ作動信号圧によって、摩擦要素とギヤトレーンを含むパワートレーン(PT)へクーラー68を介して供給する潤滑流量をコントロールすることができる。そして、潤滑調圧弁65によってPT供給潤滑流量を適正化することでフリクションを低減する。 The lubricating pressure regulating valve 65 can control the lubricating flow supplied to the power train (PT) including the friction element and the gear train via the cooler 68 by the valve operating signal pressure from the lubricating solenoid 22. Then, friction is reduced by optimizing the PT supply lubrication flow rate by the lubrication pressure regulating valve 65.
 ブースト切換弁66は、潤滑ソレノイド22からの切換圧によって、第2クラッチK2と第3クラッチK3の遠心キャンセル室の供給油量を増加する。このブースト切換弁66は、遠心キャンセル室の油量が不足しているシーンで一時的に供給油量を増やすときに使用する。 (4) The boost switching valve 66 increases the amount of oil supplied to the centrifugal cancel chamber of the second clutch K2 and the third clutch K3 by the switching pressure from the lubrication solenoid 22. This boost switching valve 66 is used when the supply oil amount is temporarily increased in a scene where the oil amount in the centrifugal cancel chamber is insufficient.
 P-nP切換弁67は、潤滑ソレノイド22からの切換圧によって、パーキングモジュールへ供給するライン圧の油路を切り換え、パークロックを行う。 The P-nP switching valve 67 switches the oil path of the line pressure supplied to the parking module by the switching pressure from the lubrication solenoid 22, and performs parking lock.
 このように、コントロールバルブユニット6は、シフト・バイ・ワイヤ構造が採用され、Dレンジ圧油路やRレンジ圧油路等を切り換えるマニュアルバルブを廃止していること特徴とする。そして、潤滑ソレノイド22と、潤滑調圧弁65と、ブースト切換弁66と、P-nP切換弁67という特有のバルブ要素を備える。 As described above, the control valve unit 6 is characterized in that the shift-by-wire structure is adopted and the manual valve for switching between the D range pressure oil passage and the R range pressure oil passage is eliminated. Further, specific valve elements such as the lubricating solenoid 22, the lubricating pressure regulating valve 65, the boost switching valve 66, and the P-nP switching valve 67 are provided.
 ATコントロールユニット10には、図5に示すように、クラッチソレノイド20のソレノイド故障を診断するソレノイド故障診断部10aと、ソレノイド故障モードでの駆動力を演算する駆動力演算部10bと、ソレノイド故障モードを対策するフェールセーフ制御部10cとを有する。ここで、ソレノイド故障診断部10aは、ソレノイド駆動回路69からのSOLモニタ電流(以下、「実電流」という。)と、ATコントロールユニット10から出力されるSOL指示電流(以下、「指示電流」という。)と、を入力する。なお、ソレノイド駆動回路69は、実電流が指示電流に追従するように、電流フィードバック制御により電流補正する。 As shown in FIG. 5, the AT control unit 10 includes a solenoid failure diagnosis unit 10a for diagnosing a solenoid failure of the clutch solenoid 20, a driving force calculation unit 10b for calculating a driving force in the solenoid failure mode, and a solenoid failure mode. And a fail-safe control unit 10c for taking measures against the above. Here, the solenoid failure diagnosing unit 10a outputs the SOL monitor current (hereinafter, referred to as “actual current”) from the solenoid drive circuit 69 and the SOL instruction current (hereinafter, “instruction current”) output from the AT control unit 10. )). The solenoid drive circuit 69 corrects the current by the current feedback control so that the actual current follows the instruction current.
 ソレノイド故障診断部10aは、クラッチソレノイド20への指示電流から実電流を差し引いた電流差が所定電流以上である状態が所定時間以上継続したとき、故障診断対象のクラッチソレノイド20が故障モードと診断する。 The solenoid failure diagnosis unit 10a diagnoses the failure diagnosis target clutch solenoid 20 as a failure mode when the state in which the current difference obtained by subtracting the actual current from the instruction current to the clutch solenoid 20 is equal to or greater than a predetermined current continues for a predetermined time or more. .
 駆動力演算部10bは、故障モードと診断された場合、自動変速機3への入力トルク制限を想定したときに得られる第1駆動力Aと、故障診断された異常クラッチソレノイドを使用しない変速段への移行を想定したときに得られる第2駆動力Bとを演算する。 When the failure mode is diagnosed, the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to.
 駆動力演算部10bは、異常クラッチソレノイドへの実電流によって油圧締結される摩擦要素のクラッチ容量を演算し、演算されたクラッチ容量に応じて自動変速機3への入力トルク規制値を演算する。そして、第1駆動力Aは、入力トルク規制値で全開加速を想定したときの駆動力演算により求める。なお、「入力トルク規制値で全開加速を想定したときの駆動力」とは、全開加速をしても自動変速機3の入力トルクは入力トルク規制値となるというように、上限トルク(=入力トルク規制値)を想定したときの駆動力と言い換えることができる。 The driving force calculation unit 10b calculates the clutch capacity of the friction element that is hydraulically engaged by the actual current to the abnormal clutch solenoid, and calculates the input torque regulation value to the automatic transmission 3 according to the calculated clutch capacity. Then, the first driving force A is obtained by a driving force calculation assuming full-open acceleration with the input torque regulation value. The “driving force assuming full-open acceleration with the input torque regulation value” refers to the upper limit torque (= input torque) such that the input torque of the automatic transmission 3 becomes the input torque regulation value even when the full-open acceleration is performed. In other words, it can be rephrased as a driving force when a torque regulation value is assumed.
 駆動力演算部10bは、異常クラッチソレノイドを使用しない変速段での変速パターンを算出する。そして、異常クラッチソレノイドを使用しない変速段が複数存在するときは最ロー側の変速段を変速制限により選択する。そして、第2駆動力Bは、選択された変速段でクラッチ滑りがない上限入力トルクを想定したときの駆動力演算により求める。 The driving force calculation unit 10b calculates a shift pattern at a shift speed that does not use the abnormal clutch solenoid. Then, when there are a plurality of shift speeds that do not use the abnormal clutch solenoid, the lowest shift speed is selected by shifting limitation. Then, the second driving force B is obtained by a driving force calculation assuming an upper limit input torque at which clutch slip does not occur at the selected gear position.
 フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B以上であると入力トルク制限を選択し、第1駆動力Aが第2駆動力B未満であると変速制限を選択する。 The fail-safe control unit 10c selects the input torque limit when the first driving force A is equal to or greater than the second driving force B, and selects the shift limit when the first driving force A is less than the second driving force B.
 フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B以上で入力トルク制限が選択される場合、自動変速機3の変速段はそのままで、エンジン1(走行用駆動源)からの入力トルクの最大値を、入力トルク規制値に制限する入力トルク規制要求を出力する。 When the input torque limitation is selected when the first driving force A is equal to or higher than the second driving force B, the fail-safe control unit 10c receives the signal from the engine 1 (driving drive source) while keeping the automatic transmission 3 at the same speed. An input torque regulation request for limiting the maximum value of the input torque to the input torque regulation value is output.
 フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B未満で変速制限が選択される場合、異常クラッチソレノイドを強制オフとし、自動変速機3の変速段を、第2駆動力Bが演算された変速段へ切り替える。 When the first drive force A is less than the second drive force B and the shift restriction is selected, the fail-safe control unit 10c forcibly turns off the abnormal clutch solenoid and changes the gear position of the automatic transmission 3 to the second drive force B. Is switched to the calculated gear.
 [クラッチソレノイド故障診断時フェールセーフ制御処理構成]
 図6は、実施例1のATコントロールユニット10のソレノイド故障診断部10a、駆動力演算部10b及びフェールセーフ制御部10cにて実行されるクラッチソレノイド故障診断時フェールセーフ制御処理の流れを示す。以下、図6の各ステップについて説明する。なお、フェールセーフ制御処理は、所定の変速段が選択されている停車中及び走行中において、締結中の摩擦要素への油圧を調圧するクラッチソレノイド20について実行される。
[Fail-safe control processing configuration at clutch solenoid failure diagnosis]
FIG. 6 shows a flow of the fail-safe control process at the time of clutch solenoid failure diagnosis executed by the solenoid failure diagnosis unit 10a, the driving force calculation unit 10b, and the fail-safe control unit 10c of the AT control unit 10 according to the first embodiment. Hereinafter, each step of FIG. 6 will be described. Note that the fail-safe control process is executed for the clutch solenoid 20 that regulates the oil pressure to the engaged friction element while the vehicle is stopped and the vehicle is traveling while the predetermined gear position is selected.
 ステップS1では、スタート、或いは、S4又はS9でのNOとの判断に続き、クラッチソレノイド20(=変速SOL)の(指示電流-実電流)≧所定電流であるか否かを判断する。YES{(指示電流-実電流)≧所定電流}の場合はステップS2へ進み、NO{(指示電流-実電流)<所定電流}の場合はステップS14へ進む。 In step S1, following the start or determination of NO in S4 or S9, it is determined whether or not (instruction current−actual current) of clutch solenoid 20 (= shift SOL) ≧ predetermined current. If YES {(instruction current−actual current) ≧ predetermined current}, proceed to step S2. If NO {(instruction current−actual current) <predetermined current}, proceed to step S14.
 ここで、「所定電流」は、クラッチソレノイド20が故障であることを判定する電流乖離判定閾値として予め設定された電流値である。また、「指示電流」は、摩擦要素が締結中の場合、MAX圧を得る指示電流である。 Here, the “predetermined current” is a current value set in advance as a current deviation determination threshold value for determining that the clutch solenoid 20 is out of order. The "instruction current" is an instruction current for obtaining the MAX pressure when the friction element is engaged.
 ステップS2では、S1での(指示電流-実電流)≧所定電流であるとの判断に続き、タイマーをカウントし、ステップS3へ進む。 In step S2, following the determination in step S1 that (instruction current−actual current) ≧ predetermined current, the timer is counted, and the flow proceeds to step S3.
 ステップS3では、S2でのタイマーカウントに続き、(指示電流-実電流)≧所定電流が成立する継続時間を示すタイマーが、所定時間以上であるか否かを判断する。YES(タイマー≧所定時間)の場合はステップS4へ進み、NO(タイマー<所定時間)の場合はステップS1へ戻る。 In step S3, following the timer count in S2, it is determined whether or not a timer indicating a continuation time in which (instruction current−actual current) ≧ predetermined current is equal to or longer than a predetermined time. If YES (timer ≧ predetermined time), the process proceeds to step S4, and if NO (timer <predetermined time), the process returns to step S1.
 ここで、所定時間は、(指示電流-実電流)≧所定電流が瞬間的に成立するときにクラッチソレノイド20が故障したと誤診断するのを防止し、精度良くクラッチソレノイド20が故障診断を行うことができる時間に設定される。 Here, the predetermined time is set such that (indicated current−actual current) ≧ predetermined current is instantaneously established, thereby preventing the erroneous diagnosis that the clutch solenoid 20 has failed, and the clutch solenoid 20 performs the failure diagnosis with high accuracy. Set to a time when you can.
 ステップS4では、S3でのタイマー≧所定時間であるとの判断に続き、故障モードであると診断されたクラッチソレノイド20の異常を確定し、ステップS5へ進む。 In step S4, following the determination in step S3 that the timer is greater than or equal to the predetermined time, the abnormality of the clutch solenoid 20 diagnosed as being in the failure mode is determined, and the process proceeds to step S5.
 ステップS5では、S4での異常確定に続き、異常が確定したクラッチソレノイド20への実電流から異常クラッチソレノイドによって締結される摩擦要素のクラッチ容量を演算し、ステップS6へ進む。 In step S5, following the determination of the abnormality in S4, the clutch capacity of the friction element engaged by the abnormal clutch solenoid is calculated from the actual current to the clutch solenoid 20 in which the abnormality has been determined, and the process proceeds to step S6.
 ここで、異常が確定したクラッチソレノイド20への実電流が検出されると、実電流と油圧の関係から摩擦要素に供給されている締結油圧が分かり、締結油圧と受圧面積とクラッチ枚数等により摩擦要素のクラッチ容量を求めることができる。 Here, when the actual current to the clutch solenoid 20 in which the abnormality is determined is detected, the engagement hydraulic pressure supplied to the friction element is known from the relationship between the actual current and the hydraulic pressure, and the friction is determined by the engagement hydraulic pressure, the pressure receiving area, the number of clutches, and the like. The clutch capacity of the element can be determined.
 ステップS6では、S5でのクラッチ容量の演算に続き、演算されたクラッチ容量に応じた入力トルク規制値を演算し、ステップS7へ進む。 In step S6, following the calculation of the clutch capacity in S5, an input torque regulation value corresponding to the calculated clutch capacity is calculated, and the process proceeds to step S7.
 ここで、入力トルク規制値は、入力トルクがクラッチ容量を超えると摩擦要素の滑りになるため、演算されたクラッチ容量から誤差分等を差し引くことで演算される。 Here, the input torque regulation value is calculated by subtracting an error or the like from the calculated clutch capacity because the friction element slips when the input torque exceeds the clutch capacity.
 ステップS7では、入力トルク規制値の演算に続き、入力トルク規制値に基づいて第1駆動力Aを演算し、ステップS8へ進む。 In step S7, following the calculation of the input torque regulation value, the first driving force A is calculated based on the input torque regulation value, and the process proceeds to step S8.
 ここで、第1駆動力Aは、クラッチソレノイド20の故障モードにおける発進駆動力であり、入力トルク規制値で全開加速を想定したときの駆動力演算により求められる。 Here, the first driving force A is a starting driving force in the failure mode of the clutch solenoid 20, and is obtained by a driving force calculation assuming full-open acceleration with the input torque regulation value.
 ステップS8では、S7での第1駆動力Aの演算に続き、故障診断された異常クラッチソレノイドを使用しない変速段での変速制限パターンを算出し、ステップS9へ進む。 In step S8, following the calculation of the first driving force A in S7, a shift restriction pattern at a shift speed not using the abnormally diagnosed abnormal clutch solenoid is calculated, and the routine proceeds to step S9.
 ここで、異常クラッチソレノイドを使用しない変速段が複数存在するときは最ロー側の変速段を変速制限により選択する。 Here, when there are a plurality of shift speeds that do not use the abnormal clutch solenoid, the lowest shift speed is selected based on the shift limit.
 ステップS9では、S8での変速制限パターンの算出に続き、異常クラッチソレノイドを使用しない変速段での変速制限による第2駆動力Bを演算し、ステップS10へ進む。 In step S9, following the calculation of the shift restriction pattern in S8, the second driving force B due to the shift restriction in the shift speed not using the abnormal clutch solenoid is calculated, and the routine proceeds to step S10.
 ここで、第2駆動力Bは、クラッチソレノイド20の故障モードにおける発進駆動力であり、選択された変速段でクラッチ滑りがない上限入力トルクを想定したときの駆動力演算により求められる。 Here, the second driving force B is a starting driving force in the failure mode of the clutch solenoid 20, and is calculated by a driving force calculation assuming an upper limit input torque at which clutch slip does not occur at the selected shift speed.
 ステップS10では、S9での第2駆動力Bの演算に続き、第1駆動力Aと第2駆動力Bとが比較判断される。比較判断結果がA≧Bである場合はステップS11へ進み、比較判断結果がA<Bである場合はステップS12へ進む。 In step S10, following the calculation of the second driving force B in S9, the first driving force A and the second driving force B are compared and determined. If the comparison result is A ≧ B, the process proceeds to step S11. If the comparison result is A <B, the process proceeds to step S12.
 ステップS11では、S10でのA≧Bであるとの判断に続き、演算されたクラッチ容量に応じた入力トルクに規制する要求をエンジンコントロールユニット11に出力し、エンドへ進む。 In step S11, following the determination in S10 that A ≧ B, a request to regulate the input torque according to the calculated clutch capacity is output to the engine control unit 11, and the routine proceeds to the end.
 ステップS12では、S10でのA<Bであるとの判断に続き、異常クラッチソレノイドに対して強制OFFとし、指示電流(=0mA)を出力し、ステップS13へ進む。 In step S12, following the determination of A <B in S10, the abnormal clutch solenoid is forcibly turned off, an instruction current (= 0 mA) is output, and the process proceeds to step S13.
 ステップS13では、S12での異常クラッチソレノイドの強制OFFに続き、異常クラッチソレノイドを使用しない変速段を選択する変速制限を行い、エンドへ進む。 In step S13, following the forced OFF of the abnormal clutch solenoid in S12, a shift restriction for selecting a gear position in which the abnormal clutch solenoid is not used is performed, and the process proceeds to the end.
 ステップS14では、S1での(指示電流-実電流)<所定電流であるとの判断に続き、それまでカウントされていたタイマーをリセットし、エンドへ進む。 In step S14, following the determination in step S1 that (instruction current-actual current) <predetermined current, the timer that has been counted up to that point is reset, and the process proceeds to the end.
 次に、実施例1の作用を、「背景技術」、「クラッチソレノイド故障診断時フェールセーフ制御作用」、「停車中のフェールセーフ制御作用」、「走行中のフェールセーフ制御作用」に分けて説明する。 Next, the operation of the first embodiment will be described by dividing it into "background technology", "fail-safe control operation at the time of clutch solenoid failure diagnosis", "fail-safe control operation during stop", and "fail-safe control operation during running". I do.
 [背景技術]
 本発明が対象とする自動変速機ユニットは、変速に関与する摩擦要素のそれぞれをクラッチソレノイドで変速をさせており、故障時対応の検討が必要である。既存の自動変速機ユニットにおいてもクラッチソレノイドの機能異常診断は行っていたが、機能安全要求やシステム差異によって、新規課題があるため、併せて検討する。
[Background Art]
In the automatic transmission unit to which the present invention is applied, each of the friction elements involved in the shift is shifted by a clutch solenoid, and it is necessary to consider a failure response. Diagnosis of malfunctions of clutch solenoids was also performed for existing automatic transmission units, but there are new issues due to functional safety requirements and system differences.
 そこで、クラッチソレノイドへの指示電流と実電流が乖離しているとき、入力トルク制限を想定した駆動力と変速制限を想定した駆動力のうち、大きい方の駆動力を選択するソレノイド故障診断とフェールセーフ処理を織り込むことにした。以下、(1) システム概要、(2) 指示電流に対する中間ずれの影響分析、(3) 課題明確化、について説明する。 Therefore, when the command current to the clutch solenoid deviates from the actual current, the solenoid failure diagnosis and the failure to select the larger one of the driving force assuming the input torque limitation and the driving force assuming the gear shifting limitation are performed. We decided to incorporate safe processing. The following describes (1) {system outline, (2) analysis of the influence of intermediate deviation on command current, and (3) {clarification of issues.
 (1) システム概要(既存ユニットとの差異)
 本発明が対象とする自動変速機ユニットは、シフト・バイ・ワイヤが採用され、マニュアルバルブが廃止されている。これに対し、既存の自動変速機ユニットは前進/後進をマニュアルバルブでハード保証していたが、その機能がないため新規の故障モードがある。
(1) System overview (difference from existing units)
The automatic transmission unit to which the present invention is applied employs shift-by-wire and eliminates the manual valve. On the other hand, the existing automatic transmission unit provided a manual valve to assure forward / reverse movement, but there is a new failure mode due to the lack of that function.
 (2) 指示電流に対する中間ずれの影響分析
 クラッチソレノイドへの指示電流に対して実電流がHIGH側に中間ずれとなる場合は、クラッチ解放中、クラッチ圧としてクラッチが接触し出す以上の圧力になると、誤締結が発生する。よって、複数要素同時締結による急減速が発生するリスクがあるため、直ちに故障診断に基づいて退避先の変速段へ移行する等の対策が必要になる。
(2) Analysis of the effect of intermediate deviation on the command currentIf the actual current is intermediate deviation toward the HIGH side with respect to the instruction current to the clutch solenoid, if the clutch pressure becomes higher than the clutch pressure during clutch disengagement Erroneous fastening occurs. Therefore, there is a risk that sudden deceleration may occur due to simultaneous engagement of a plurality of elements, and it is necessary to take measures such as immediately shifting to the gear position of the evacuation destination based on the failure diagnosis.
 一方、クラッチソレノイドへの指示電流に対して実電流がLOW側に中間ずれとなる場合は、実電流がHIGH側に中間ずれとなる場合とは異なり、図7に示すように、実電流の大きさによって影響が変化する。
即ち、MAX圧指示によりクラッチ締結中、図7に示すように、クラッチ圧が安全率1.0に相当する実圧以上である間は誤解放に至らない。しかし、クラッチ圧が安全率1.0に相当する実圧未満からクラッチ接触できなくなるまでの間は誤解放が発生する(走行可能であるが、クラッチ滑りにより駆動力不足の状態)。さらに、クラッチ圧がクラッチ接触できなくなる圧未満になると、完全誤解放になる(走行不能)。
On the other hand, when the actual current has an intermediate deviation toward the LOW side with respect to the command current to the clutch solenoid, unlike the case where the actual current has an intermediate deviation toward the HIGH side, as shown in FIG. The effect changes depending on the situation.
That is, during clutch engagement according to the MAX pressure instruction, erroneous release does not occur as long as the clutch pressure is equal to or higher than the actual pressure corresponding to the safety factor of 1.0, as shown in FIG. However, erroneous release occurs from the time when the clutch pressure becomes less than the actual pressure corresponding to the safety factor of 1.0 to the time when the clutch cannot be brought into contact (the vehicle can run, but the driving force is insufficient due to clutch slip). Further, when the clutch pressure becomes less than the pressure at which the clutch cannot be brought into contact, complete erroneous release occurs (running is impossible).
 (3) 課題明確化
 上記指示電流に対する中間ずれの影響分析から次のことが明らかになった。クラッチ締結中のクラッチソレノイドへの指示電流(MAX)に対して実電流がLOW側に中間ずれとなる場合、安全率1.0を下回ればクラッチ滑りが発生するが、安全率1.0以上であるとクラッチ滑りが発生しない。よって、影響分析結果から、クラッチソレノイド20への指示電流から実電流を差し引いた電流差が所定電流以上である故障モードを、実電流がクラッチ滑り閾値以下であるか否かにより2つの故障モードに分けることができる。
(3) Clarification of the problem The following was clarified from the analysis of the influence of the intermediate deviation on the indicated current. If the actual current deviates to the LOW side with respect to the command current (MAX) to the clutch solenoid during clutch engagement, clutch slippage will occur if the safety factor is less than 1.0. Does not occur. Therefore, from the result of the influence analysis, the failure mode in which the current difference obtained by subtracting the actual current from the command current to the clutch solenoid 20 is equal to or greater than the predetermined current is switched to two failure modes depending on whether the actual current is equal to or less than the clutch slip threshold. Can be divided.
 つまり、図8に示すように、実電流がクラッチ滑り閾値未満であり、安全率1.0を下回る故障モードであるときは、故障時の走行性能悪化を防止するため、異常クラッチソレノイドを使用しない変速制限とする“限定故障モード”になる。しかし、実電流がクラッチ滑り閾値以上であり、安全率1.0以上の故障モードであるときは、クラッチ滑りによる将来的な部品破損による走行性能悪化が防止されるため、入力トルク制限と変速制限から何れかを選択することが可能な“選択故障モード”になる。 That is, as shown in FIG. 8, when the actual current is less than the clutch slip threshold and the failure mode is lower than the safety factor 1.0, in order to prevent the running performance from deteriorating at the time of failure, the shift restriction without using the abnormal clutch solenoid is performed. "Limited failure mode". However, when the actual current is equal to or higher than the clutch slip threshold and the failure mode is a safety factor of 1.0 or higher, deterioration of traveling performance due to future component damage due to clutch slip is prevented. It becomes the "selection failure mode" in which it is possible to select either.
 上記分析結果から課題を抽出すると、実電流がクラッチ滑り閾値以上の“選択故障モード”の領域にあるときは、フェールセーフ制御の選択自由度を活用することができる。そこで、リンプホーム走行で駆動力不足にならないように、入力トルク制限と変速制限から何れかを選択することで、リンプホーム性を確保することにある。 課題 When the problem is extracted from the above analysis result, when the actual current is in the “selection failure mode” region equal to or higher than the clutch slip threshold, the degree of freedom of the fail-safe control can be utilized. In view of the above, an object of the present invention is to secure the limp home property by selecting one of the input torque limit and the gear shift limit so that the driving force does not become insufficient in the limp home traveling.
 [クラッチソレノイド故障診断時フェールセーフ制御作用]
 本発明は、上記(3)課題明確化で抽出した課題に着目してなされたものである。課題を解決する手段として、ATコントロールユニット10に、クラッチソレノイド20のソレノイド故障診断部10aと、ソレノイド故障モードでの駆動力を演算する駆動力演算部10bと、ソレノイド故障モードを対策するフェールセーフ制御部10cとを有する。ソレノイド故障診断部10aは、クラッチソレノイド20への指示電流から実電流を差し引いた電流差が所定電流以上であるとき故障モードと診断する。駆動力演算部10bは、故障モードと診断された場合、自動変速機3への入力トルク制限を想定したときに得られる第1駆動力Aと、故障診断された異常クラッチソレノイドを使用しない変速段への移行を想定したときに得られる第2駆動力Bとを演算する。フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B以上であると入力トルク制限を選択し、第1駆動力Aが第2駆動力B未満であると変速制限を選択する手段を採用した。
[Fail-safe control at clutch solenoid failure diagnosis]
The present invention has been made by focusing on the problem extracted in the above (3) Problem clarification. As means for solving the problem, the AT control unit 10 includes a solenoid failure diagnosis unit 10a for the clutch solenoid 20, a driving force calculation unit 10b for calculating the driving force in the solenoid failure mode, and fail-safe control for taking measures against the solenoid failure mode. A portion 10c. The solenoid failure diagnosis unit 10a diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid 20 is equal to or larger than a predetermined current. When the failure mode is diagnosed, the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to. The fail-safe control unit 10c selects the input torque limit when the first driving force A is equal to or more than the second driving force B, and selects the gear shift restriction when the first driving force A is less than the second driving force B. It was adopted.
 つまり、(指示電流-実電流)≧所定電流という条件が成立したままで所定時間を経過すると、図6のフローチャートにおいて、S1→S2→S3→S4→S5→S6→S7→S8→S9へと進む。S7では、入力トルク制限を行うことを想定し、入力トルク規制値に基づいて第1駆動力Aが演算される。S9では、変速制限を行うことを想定し、異常クラッチソレノイドを使用しない変速段に基づいて第2駆動力Bが演算される。 That is, when the predetermined time has elapsed while the condition of (instruction current−actual current) ≧ predetermined current is satisfied, in the flowchart of FIG. 6, S1 → S2 → S3 → S4 → S5 → S6 → S7 → S8 → S9. move on. In S7, assuming that the input torque is limited, the first driving force A is calculated based on the input torque regulation value. In S9, the second driving force B is calculated based on the gear position where the abnormal clutch solenoid is not used, assuming that the gear change is to be restricted.
 次のS10では、第1駆動力Aと第2駆動力Bとが比較判断される。そして、比較判断結果がA≧Bである場合はS11へ進み、S11では、演算されたクラッチ容量に応じた入力トルクに規制する要求がエンジンコントロールユニット11に出力される。 In the next S10, the first driving force A and the second driving force B are compared and determined. If the result of the comparison is A ≧ B, the process proceeds to S11, where a request to regulate the input torque according to the calculated clutch capacity is output to the engine control unit 11.
 一方、S10での比較判断結果がA<Bである場合はS12→S13へ進み、S12では、異常クラッチソレノイドが強制OFFとされ、S13では、異常クラッチソレノイドを使用しない変速段を選択する変速制限が行われる。 On the other hand, if the result of the comparison determination in S10 is A <B, the process proceeds to S12 → S13. In S12, the abnormal clutch solenoid is forcibly turned off. In S13, the shift restriction for selecting a gear position that does not use the abnormal clutch solenoid. Is performed.
 この結果、自動変速機3のクラッチソレノイド20が故障した際、将来的な部品破損による走行性能悪化を防止しながらリンプホーム走行で駆動力不足になるのを防止することができる。 As a result, when the clutch solenoid 20 of the automatic transmission 3 breaks down, it is possible to prevent the running performance from being degraded due to the damage of parts in the future and to prevent the driving force from becoming insufficient during limp home running.
 即ち、クラッチソレノイド20への実電流が故障により低下した際、入力トルク制限を選択したときの第1駆動力Aと、変速制限を選択したときの第2駆動力Bを比較し、駆動力が高い方のフェールセーフ制御が選択される。このように、駆動力を優先するという技術思想に基づいて入力トルク制限と変装制限の何れかを選択することで、クラッチソレノイド20の故障診断後のリンプホーム走行で駆動力不足になるのが防止される。 That is, when the actual current to the clutch solenoid 20 is reduced due to a failure, the first driving force A when the input torque limit is selected is compared with the second driving force B when the shift limit is selected. The higher failsafe control is selected. In this way, by selecting either the input torque limit or the disguise limit based on the technical idea of giving priority to the driving force, it is possible to prevent the driving force from becoming insufficient during limp home traveling after the failure diagnosis of the clutch solenoid 20. Is done.
 以下、図9~図11に示す具体例に基づいて、第1駆動力Aと第2駆動力Bとの比較判断を説明する。 Hereinafter, a comparison judgment between the first driving force A and the second driving force B will be described based on specific examples shown in FIGS.
 2速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断された場合、変速段を2速段に固定したままでの入力トルク制限時と、変速段を2速段から1速段へ移行する変速制限時との入力トルク-加速度特性は、図9に示すようになる。 When the failure of the second clutch solenoid that engages the second clutch K2 is determined during the selection of the second speed, when the input torque is limited while the speed is fixed to the second speed, and when the speed is changed from the second speed to the first speed. FIG. 9 shows the input torque-acceleration characteristics when the shift to the speed stage is limited.
 変速段を2速段に固定したままでの入力トルク制限時には、入力トルク規制値で全開加速を想定したときの加速度Gは、第1加速度G1(2nd)になる。一方、変速段を2速段から変速制限により選択された1速段に移行し、1速段でクラッチ滑りがない上限入力トルクを想定したときの加速度Gは、第2加速度G2(1st)になる。よって、第1加速度G1(2nd)と第2加速度G2(1st)を比較すると、第1加速度G1(2nd)>第2加速度G2(1st)になる。なお、加速度Gは、車両の駆動力の大きさに置き換えることができるため、第1加速度G1(2nd)>第2加速度G2(1st)は、第1駆動力A>第2駆動力Bに置き換えられる。 When the input torque is limited while the gear position is fixed at the second speed, the acceleration G assuming full-open acceleration with the input torque restriction value is the first acceleration G1 (2nd). On the other hand, when the shift stage is shifted from the second shift stage to the first shift stage selected by the shift limit, and the upper limit input torque at which there is no clutch slip at the first shift stage, the acceleration G becomes the second acceleration G2 (1st). Become. Therefore, comparing the first acceleration G1 (2nd) with the second acceleration G2 (1st), the first acceleration G1 (2nd)> the second acceleration G2 (1st). Since the acceleration G can be replaced by the magnitude of the driving force of the vehicle, the first acceleration G1 (2nd)> the second acceleration G2 (1st) is replaced by the first driving force A> the second driving force B. Can be
 よって、図9に示す2速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断される場合、フェールセーフ制御として、駆動力が高い方の入力トルク制限(変速段は2速段固定)が選択されることになる。 Therefore, when the failure of the second clutch solenoid that engages the second clutch K2 is diagnosed during the selection of the second speed stage shown in FIG. 9, the input torque limitation of the driving force with the higher driving force (the second speed stage is selected as the fail-safe control) Step fixed) will be selected.
 3速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断された場合には、変速段を3速段に固定したままでの入力トルク制限時と、変速段を3速段から1速段へ移行する変速制限時との入力トルク-加速度特性は、図10に示すようになる。 When the failure of the second clutch solenoid that engages the second clutch K2 is determined during the selection of the third speed, when the input torque is limited while the speed is fixed to the third speed, and when the speed is changed to the third speed, FIG. 10 shows the input torque-acceleration characteristics at the time of shifting restriction from shifting to the first speed.
 変速段を3速段に固定したままでの入力トルク制限時には、入力トルク規制値で全開加速を想定したときの加速度Gは、第1加速度G1(3rd)になる。一方、変速段を3速段から変速制限により選択された1速段に移行し、1速段でクラッチ滑りがない上限入力トルクを想定したときの加速度Gは、第2加速度G2(1st)になる。よって、第1加速度G1(3rd)と第2加速度G2(1st)を比較すると、第1加速度G1(3rd)<第2加速度G2(1st)になる。なお、加速度Gは、車両の駆動力の大きさに置き換えることができるため、第1加速度G1(3rd)<第2加速度G2(1st)は、第1駆動力A<第2駆動力Bに置き換えられる。 入 力 When the input torque is limited while the shift speed is fixed at the third speed, the acceleration G assuming full-open acceleration with the input torque regulation value is the first acceleration G1 (3rd). On the other hand, when the shift stage is shifted from the third shift stage to the first shift stage selected by the shift limit, and the upper limit input torque at which there is no clutch slip at the first shift stage, the acceleration G becomes the second acceleration G2 (1st). Become. Therefore, comparing the first acceleration G1 (3rd) with the second acceleration G2 (1st), the first acceleration G1 (3rd) <the second acceleration G2 (1st). Since the acceleration G can be replaced by the magnitude of the driving force of the vehicle, the first acceleration G1 (3rd) <the second acceleration G2 (1st) is replaced by the first driving force A <the second driving force B. Can be
 よって、図10に示す3速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断される場合、フェールセーフ制御として、駆動力が高い方の変速制限(変速段を3速段から1速段へ移行)が選択されることになる。 Therefore, when the failure of the second clutch solenoid that engages the second clutch K2 is diagnosed during the selection of the third speed stage shown in FIG. 10, the shift limitation of the driving force with the higher driving force (the third speed stage is set as the fail-safe control). To the first gear).
 5速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断された場合には、変速段を5速段に固定したままでの入力トルク制限時と、変速段を5速段から1速段へ移行する変速制限時との入力トルク-加速度特性は、図11に示すようになる。 If the second clutch solenoid that engages the second clutch K2 is diagnosed for failure while selecting the fifth speed, when the input torque is limited while the speed is fixed to the fifth speed, and when the speed is changed to the fifth speed, FIG. 11 shows the input torque-acceleration characteristics when the shift from the first gear to the first gear is restricted.
 変速段を5速段に固定したままでの入力トルク制限時には、入力トルク規制値で全開加速を想定したときの加速度Gは、第1加速度G1(5th)になる。一方、変速段を5速段から変速制限により選択された1速段に移行し、1速段でクラッチ滑りがない上限入力トルクを想定したときの加速度Gは、第2加速度G2(1st)になる。よって、第1加速度G1(5th)と第2加速度G2(1st)を比較すると、第1加速度G1(5th)<第2加速度G2(1st)になる。なお、加速度Gは、車両の駆動力の大きさに置き換えることができるため、第1加速度G1(5th)<第2加速度G2(1st)は、第1駆動力A<第2駆動力Bに置き換えられる。 (4) When the input torque is limited while the shift speed is fixed at the fifth speed, the acceleration G assuming full-open acceleration with the input torque regulation value is the first acceleration G1 (5th). On the other hand, when the shift speed is shifted from the fifth speed to the first speed selected by the speed limit, the acceleration G when the upper limit input torque at which there is no clutch slip at the first speed is assumed to be the second acceleration G2 (1st). Become. Therefore, comparing the first acceleration G1 (5th) with the second acceleration G2 (1st), the first acceleration G1 (5th) <the second acceleration G2 (1st). Since the acceleration G can be replaced by the magnitude of the driving force of the vehicle, the first acceleration G1 (5th) <the second acceleration G2 (1st) is replaced by the first driving force A <the second driving force B. Can be
 よって、図11に示す5速段選択中に第2クラッチK2を締結する第2クラッチソレノイドが故障診断される場合、フェールセーフ制御として、駆動力が高い方の変速制限(変速段を5速段から1速段へ移行)が選択されることになる。 Therefore, if the failure of the second clutch solenoid that engages the second clutch K2 is diagnosed during the selection of the fifth gear shown in FIG. To 1st gear).
 [走行中のフェールセーフ制御作用]
 図12は、実施例1において5速段で第3ブレーキB3を締結する第3ブレーキソレノイドの走行中故障診断時(コンタミスティック以外)におけるフェールセーフ制御作用を説明する各特性を示す。以下、図12に示すタイムチャートに基づいて走行中のフェールセーフ制御作用を説明する。
[Fail-safe control during running]
FIG. 12 shows various characteristics for explaining the fail-safe control operation of the third brake solenoid for engaging the third brake B3 at the fifth speed in the first embodiment at the time of failure diagnosis during running (other than contamination). Hereinafter, the fail-safe control operation during traveling will be described based on the time chart shown in FIG.
 5速段を選択しての走行中、時刻t1にて第3ブレーキB3を締結する第3ブレーキソレノイドへの指示電流と実電流の差(指示電流-実電流)が所定電流以上となって第3ブレーキソレノイド故障が発生したとする。 During traveling with the fifth speed selected, the difference between the command current and the actual current (instruction current-actual current) to the third brake solenoid for engaging the third brake B3 at time t1 becomes equal to or greater than the predetermined current, and It is assumed that a 3-brake solenoid failure has occurred.
 時刻t1から上昇していた異常確定タイマーが上昇し、所定時間を経過した時刻t2になると第3ブレーキソレノイドの異常が確定する。 異常 The abnormality determination timer, which has been rising from time t1, increases, and at time t2 after a predetermined time has elapsed, the abnormality of the third brake solenoid is determined.
 そして、時刻t3から解放故障SOL推定判定タイマーのカウントが開始され、時刻t4にて解放故障SOL推定判定閾値に到達すると、自動変速機3の変速段が5速段から第3ブレーキB3を解放し第3クラッチK3を締結する6速段に切り替えられる(図3参照)。よって、時刻t5になると、第3ブレーキB3を使用しない6速段により走行を確保するリンプホームへ移行する。 Then, the count of the release failure SOL estimation determination timer is started at time t3, and when the release failure SOL estimation determination threshold is reached at time t4, the shift stage of the automatic transmission 3 releases the third brake B3 from the fifth speed. The gear is switched to the sixth speed in which the third clutch K3 is engaged (see FIG. 3). Therefore, at the time t5, the vehicle shifts to the limp home in which the traveling is secured at the sixth speed without using the third brake B3.
 このように、5速段で第3ブレーキB3を締結する第3ブレーキソレノイドの走行中故障診断時には、第3ブレーキソレノイドの異常が確定し、且つ、解放故障SOL推定判定される時刻t4のタイミングで第3ブレーキB3を使用しない6速段に移行する。このフェールセーフ制御が行われることでリンプホーム性が確保される。 As described above, at the time of the time t4 at which the abnormality of the third brake solenoid is determined and the release failure SOL is estimated and determined at the time of the traveling failure diagnosis of the third brake solenoid that engages the third brake B3 at the fifth speed. Shift to the 6th speed stage where the third brake B3 is not used. By performing the fail-safe control, the limp home property is secured.
 以上述べたように、実施例1の自動変速機3の制御装置にあっては、下記に列挙する効果が得られる。 As described above, in the control device for the automatic transmission 3 according to the first embodiment, the following effects can be obtained.
 (1) 複数の変速段を実現する自動変速機3と、自動変速機3のギヤトレーンに有する複数の摩擦要素への油圧を調圧するコントロールバルブユニット6と、コントロールバルブユニット6に有する各ソレノイドの制御を行う変速機コントロールユニット(ATコントロールユニット10)と、を備える。
この自動変速機3の制御装置であって、コントロールバルブユニット6の油圧制御回路に、摩擦要素へ供給する油圧を個別に調圧するクラッチソレノイド20を有する。
変速機コントロールユニット(ATコントロールユニット10)に、クラッチソレノイド20のソレノイド故障診断部10aと、ソレノイド故障モードでの駆動力を演算する駆動力演算部10bと、ソレノイド故障モードを対策するフェールセーフ制御部10cとを有する。
ソレノイド故障診断部10aは、クラッチソレノイド20への指示電流から実電流を差し引いた電流差が所定電流以上であるとき故障モードと診断する。
駆動力演算部10bは、故障モードと診断された場合、自動変速機3への入力トルク制限を想定したときに得られる第1駆動力Aと、故障診断された異常クラッチソレノイドを使用しない変速段への移行を想定したときに得られる第2駆動力Bとを演算する。
フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B以上であると入力トルク制限を選択し、第1駆動力Aが第2駆動力B未満であると変速制限を選択する。
 このため、自動変速機3のクラッチソレノイド20が故障した際、将来的な部品破損による走行性能悪化を防止しながらリンプホーム走行で駆動力不足になるのを防止することができる。
即ち、クラッチソレノイド20への実電流が故障により低下した際、入力トルク制限を選択したときの第1駆動力Aと、変速制限を選択したときの第2駆動力Bを比較し、駆動力が高い方のフェールセーフ制御を選択する方策を採用している。
(1) An automatic transmission 3 that realizes a plurality of shift speeds, a control valve unit 6 that regulates oil pressure to a plurality of friction elements provided in a gear train of the automatic transmission 3, and control of each solenoid included in the control valve unit 6 And a transmission control unit (AT control unit 10) for performing the control.
In the control device of the automatic transmission 3, the hydraulic control circuit of the control valve unit 6 includes a clutch solenoid 20 for individually adjusting the hydraulic pressure supplied to the friction element.
The transmission control unit (AT control unit 10) includes a solenoid failure diagnosis unit 10a for the clutch solenoid 20, a driving force calculation unit 10b for calculating the driving force in the solenoid failure mode, and a fail-safe control unit for taking measures against the solenoid failure mode. 10c.
The solenoid failure diagnosis unit 10a diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid 20 is equal to or larger than a predetermined current.
When the failure mode is diagnosed, the driving force calculation unit 10b calculates a first driving force A that is obtained when the input torque to the automatic transmission 3 is limited and a gear position that does not use the abnormally diagnosed abnormal clutch solenoid. And the second driving force B obtained when assuming the transition to.
The fail-safe control unit 10c selects the input torque restriction when the first driving force A is equal to or greater than the second driving force B, and selects the gear shift restriction when the first driving force A is less than the second driving force B.
For this reason, when the clutch solenoid 20 of the automatic transmission 3 breaks down, it is possible to prevent the running performance from deteriorating due to future component damage and to prevent the driving force from becoming insufficient during limp home running.
That is, when the actual current to the clutch solenoid 20 is reduced due to a failure, the first driving force A when the input torque limit is selected is compared with the second driving force B when the shift limit is selected. A measure to select the higher fail-safe control is adopted.
 (2) 駆動力演算部10bは、異常クラッチソレノイドへの実電流によって油圧締結される摩擦要素のクラッチ容量を演算し、演算されたクラッチ容量に応じて自動変速機3への入力トルク規制値を演算し、入力トルク規制値で全開加速を想定したときの第1駆動力Aを演算する。
 このため、自動変速機3のクラッチソレノイド20が故障した際、異常クラッチソレノイドへの実電流が高い側であるほど高い第1駆動力Aが演算され、入力トルク制限が選択される可能性を高めることができる。
即ち、異常クラッチソレノイドへの実電流によって油圧締結される摩擦要素のクラッチ容量が決まり、クラッチ容量によって入力トルク規制値が決まり、入力トルク規制値によって第1駆動力Aが決まる。
(2) The driving force calculation unit 10b calculates the clutch capacity of the friction element that is hydraulically engaged by the actual current to the abnormal clutch solenoid, and determines the input torque regulation value to the automatic transmission 3 according to the calculated clutch capacity. The first driving force A is calculated assuming full-open acceleration with the input torque regulation value.
Therefore, when the clutch solenoid 20 of the automatic transmission 3 fails, the higher the actual current to the abnormal clutch solenoid is, the higher the first driving force A is calculated, and the possibility of selecting the input torque limit is increased. be able to.
That is, the clutch capacity of the friction element hydraulically engaged is determined by the actual current to the abnormal clutch solenoid, the input torque regulation value is determined by the clutch capacity, and the first driving force A is determined by the input torque regulation value.
 (3) フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B以上で入力トルク制限が選択される場合、自動変速機3の変速段はそのままで、走行用駆動源(エンジン1)からの入力トルクの最大値を、入力トルク規制値に制限する入力トルク規制要求を出力する。
 このため、フェールセーフ制御として入力トルク制限が選択される場合、故障時の走行性能が悪化することを確実に抑えることができる。
即ち、フェールセーフ制御として入力トルク制限が選択される故障モードに移行した後、異常クラッチソレノイドからの油圧により締結される摩擦要素の滑りが、自動変速機3への入力トルクを適切に制限することで確実に抑えられる。また、入力トルク制限が選択される場合、変速制限のように強制変速が行われることがなく、乗員に与える違和感を抑えることができる。
(3) When the input torque limitation is selected when the first driving force A is equal to or greater than the second driving force B, the fail-safe control unit 10c sets the traveling drive source (engine 1 ), An input torque regulation request for limiting the maximum value of the input torque to the input torque regulation value is output.
For this reason, when the input torque limitation is selected as the fail-safe control, it is possible to reliably suppress the deterioration of the traveling performance at the time of failure.
That is, after shifting to the failure mode in which the input torque limitation is selected as the fail-safe control, the slip of the friction element fastened by the hydraulic pressure from the abnormal clutch solenoid appropriately limits the input torque to the automatic transmission 3. Is surely suppressed. In addition, when the input torque limit is selected, the forced shift is not performed unlike the shift limit, and the uncomfortable feeling given to the occupant can be suppressed.
 (4) 駆動力演算部10bは、異常クラッチソレノイドを使用しない変速段での変速パターンを算出し、変速制限により選択された変速段でクラッチ滑りがない上限入力トルクを想定したときの第2駆動力Bを演算する。
 このため、自動変速機3のクラッチソレノイド20が故障した際、上限入力トルクを想定したときの第2駆動力Bが演算されることで、入力トルク制限が選択される可能性を高めることができる。
即ち、上限入力トルクを想定しないで第2駆動力Bを演算すると、変速制限により選択された変速段がクラッチソレノイド故障診断時の変速段よりロー側の変速段である場合、第2駆動力Bが大きな値となる。つまり、第1駆動力Aと第2駆動力Bを比較すると、第1駆動力A<第2駆動力Bの関係になり、入力トルク制限が選択される余地が無くなる。
(4) The driving force calculation unit 10b calculates the shift pattern at the shift speed that does not use the abnormal clutch solenoid, and performs the second drive when assuming the upper limit input torque without clutch slip at the shift speed selected by the shift limitation. Calculate the force B.
Therefore, when the clutch solenoid 20 of the automatic transmission 3 fails, the second driving force B assuming the upper limit input torque is calculated, thereby increasing the possibility of selecting the input torque limit. .
That is, when the second driving force B is calculated without assuming the upper limit input torque, the second driving force B is determined when the speed selected by the speed change restriction is lower than the speed at the time of the clutch solenoid failure diagnosis. Is a large value. That is, when the first driving force A and the second driving force B are compared, the relationship of the first driving force A <the second driving force B is satisfied, and there is no room for selecting the input torque limitation.
 (5) フェールセーフ制御部10cは、第1駆動力Aが第2駆動力B未満で変速制限が選択される場合、異常クラッチソレノイドを強制オフとする。
自動変速機3の変速段を、第2駆動力Bが演算された変速段へ切り替える。
 このため、フェールセーフ制御として変速制限が選択される場合、故障時の走行性能悪化を確実に抑えることができる。
即ち、フェールセーフ制御として変速制限が選択されると、異常クラッチソレノイドを強制オフとし、異常クラッチソレノイドを使用しない変速段が選択される。そして、変速制限により選択された変速段において、上限入力トルクを超えない入力トルクに維持している限り、走行性能悪化に至る原因となるクラッチ滑りを抑えることができる。
(5) The fail-safe control unit 10c forcibly turns off the abnormal clutch solenoid when the first drive force A is less than the second drive force B and the shift restriction is selected.
The speed of the automatic transmission 3 is switched to the speed at which the second driving force B has been calculated.
For this reason, when the shift restriction is selected as the fail-safe control, it is possible to reliably suppress the deterioration of the traveling performance at the time of failure.
That is, when the shift restriction is selected as the fail-safe control, the abnormal clutch solenoid is forcibly turned off, and a shift speed that does not use the abnormal clutch solenoid is selected. As long as the input torque that does not exceed the upper limit input torque is maintained at the shift speed selected by the shift limit, clutch slippage that causes deterioration in running performance can be suppressed.
 以上、本発明の自動変速機の制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control device for an automatic transmission according to the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and changes and additions of the design are permitted without departing from the gist of the invention according to each claim of the claims.
 実施例1では、ソレノイド故障診断部10aとして、クラッチソレノイド20への指示電流から実電流を差し引いた電流差が所定電流以上であることが所定時間継続すると故障モードと診断する例を示した。しかし、ソレノイド故障診断部としては、クラッチソレノイドが故障モードと診断されると、実電流のクラッチ滑り閾値に基づいて選択故障モードと限定故障モードとに区分し、実電流が選択故障モードの領域にあるとき、第1駆動力と第2駆動力の比較に基づいて入力トルク制限を選択するか変速制限を選択するかを決める例としても良い。 In the first embodiment, as the solenoid failure diagnosis unit 10a, the failure mode is diagnosed when the current difference obtained by subtracting the actual current from the command current to the clutch solenoid 20 is equal to or more than a predetermined current for a predetermined time. However, when the clutch solenoid is diagnosed in the failure mode, the solenoid failure diagnosis unit divides the current into the selected failure mode and the limited failure mode based on the clutch slip threshold value of the actual current, and the actual current falls in the area of the selected failure mode. At some point, an example may be used in which it is determined whether to select the input torque limit or the shift limit based on a comparison between the first driving force and the second driving force.
 実施例1では、自動変速機として、前進9速後退1速の自動変速機3の例を示した。しかし、自動変速機としては、前進9速後退1速以外の有段変速段を持つ自動変速機の例としても良い。また、実施例1では、エンジン車に搭載される自動変速機の制御装置の例を示したが、エンジン車に限らず、ハイブリッド車や電気自動車等の自動変速機の制御装置としても適用することが可能である。 In the first embodiment, the example of the automatic transmission 3 having nine forward speeds and one reverse speed is described as the automatic transmission. However, the automatic transmission may be an example of an automatic transmission having a stepped gear other than the forward nine speeds and the reverse first speed. Further, in the first embodiment, an example of the control device of the automatic transmission mounted on the engine vehicle has been described. Is possible.

Claims (5)

  1.  複数の変速段を実現する自動変速機と、前記自動変速機のギヤトレーンに有する複数の摩擦要素への油圧を調圧するコントロールバルブユニットと、前記コントロールバルブユニットに有する各ソレノイドの制御を行う変速機コントロールユニットと、を備える自動変速機の制御装置であって、
     前記コントロールバルブユニットの油圧制御回路に、前記摩擦要素へ供給する油圧を個別に調圧するクラッチソレノイドを有し、
     前記変速機コントロールユニットに、前記クラッチソレノイドのソレノイド故障診断部と、ソレノイド故障モードでの駆動力を演算する駆動力演算部と、ソレノイド故障モードを対策するフェールセーフ制御部とを有し、
     前記ソレノイド故障診断部は、前記クラッチソレノイドへの指示電流から実電流を差し引いた電流差が所定電流以上であるとき故障モードと診断し、
     前記駆動力演算部は、前記故障モードと診断された場合、前記自動変速機への入力トルク制限を想定したときに得られる第1駆動力と、故障診断された異常クラッチソレノイドを使用しない変速段への移行を想定したときに得られる第2駆動力とを演算し、
     前記フェールセーフ制御部は、前記第1駆動力が前記第2駆動力以上であると入力トルク制限を選択し、前記第1駆動力が前記第2駆動力未満であると変速制限を選択する、
     自動変速機の制御装置。
    An automatic transmission for realizing a plurality of shift speeds, a control valve unit for adjusting hydraulic pressure to a plurality of friction elements provided in a gear train of the automatic transmission, and a transmission control for controlling each solenoid included in the control valve unit A control device for an automatic transmission, comprising:
    The hydraulic control circuit of the control valve unit has a clutch solenoid that individually adjusts a hydraulic pressure supplied to the friction element,
    The transmission control unit includes a solenoid failure diagnosis unit for the clutch solenoid, a driving force calculation unit that calculates a driving force in a solenoid failure mode, and a fail-safe control unit that measures the solenoid failure mode.
    The solenoid failure diagnosis unit diagnoses a failure mode when a current difference obtained by subtracting an actual current from a command current to the clutch solenoid is equal to or greater than a predetermined current,
    When the drive mode is diagnosed as the failure mode, a first drive force obtained when the input torque to the automatic transmission is assumed to be limited, and a shift speed that does not use the abnormal clutch solenoid diagnosed for failure. And the second driving force obtained when assuming the shift to
    The fail-safe control unit selects an input torque limit when the first driving force is equal to or greater than the second driving force, and selects a shift limit when the first driving force is less than the second driving force.
    Control device for automatic transmission.
  2.  請求項1に記載された自動変速機の制御装置において、
     前記駆動力演算部は、前記異常クラッチソレノイドへの実電流によって油圧締結される前記摩擦要素のクラッチ容量を演算し、演算されたクラッチ容量に応じて前記自動変速機への入力トルク規制値を演算し、前記入力トルク規制値で全開加速を想定したときの前記第1駆動力を演算する、
     自動変速機の制御装置。
    The control device for an automatic transmission according to claim 1,
    The driving force calculation unit calculates a clutch capacity of the friction element that is hydraulically engaged by an actual current to the abnormal clutch solenoid, and calculates an input torque regulation value to the automatic transmission according to the calculated clutch capacity. And calculating the first driving force assuming full-open acceleration with the input torque regulation value.
    Control device for automatic transmission.
  3.  請求項2に記載された自動変速機の制御装置において、
     前記フェールセーフ制御部は、前記第1駆動力が前記第2駆動力以上で前記入力トルク制限が選択される場合、前記自動変速機の変速段はそのままで、走行用駆動源からの入力トルクの最大値を、前記入力トルク規制値に制限する入力トルク規制要求を出力する、
     自動変速機の制御装置。
    The control device for an automatic transmission according to claim 2,
    When the input torque limitation is selected when the first driving force is equal to or greater than the second driving force, the fail-safe control unit may control the input torque from the driving source for traveling while keeping the speed of the automatic transmission unchanged. Outputting an input torque regulation request for limiting the maximum value to the input torque regulation value,
    Control device for automatic transmission.
  4.  請求項1から3までの何れか一項に記載された自動変速機の制御装置において、
     前記駆動力演算部は、前記異常クラッチソレノイドを使用しない変速段での変速パターンを算出し、変速制限により選択された変速段でクラッチ滑りがない上限入力トルクを想定したときの前記第2駆動力を演算する、
     自動変速機の制御装置。
    The control device for an automatic transmission according to any one of claims 1 to 3,
    The driving force calculation unit calculates a shift pattern at a shift speed that does not use the abnormal clutch solenoid, and calculates the second drive force at an upper limit input torque at which a clutch slip does not occur at a shift speed selected by shift limitation. To calculate,
    Control device for automatic transmission.
  5.  請求項4に記載された自動変速機の制御装置において、
     前記フェールセーフ制御部は、前記第1駆動力が前記第2駆動力未満で前記変速制限が選択される場合、前記異常クラッチソレノイドを強制オフとし、
     前記自動変速機の変速段を、前記第2駆動力が演算された変速段へ切り替える、
     自動変速機の制御装置。
    The control device for an automatic transmission according to claim 4,
    The failsafe control unit forcibly turns off the abnormal clutch solenoid when the first drive force is less than the second drive force and the shift restriction is selected,
    Switching the gear position of the automatic transmission to a gear position at which the second driving force is calculated;
    Control device for automatic transmission.
PCT/JP2019/028736 2018-08-07 2019-07-23 Control device for automatic transmission WO2020031678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536433A JP6913255B2 (en) 2018-08-07 2019-07-23 Control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-148265 2018-08-07
JP2018148265 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020031678A1 true WO2020031678A1 (en) 2020-02-13

Family

ID=69414111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028736 WO2020031678A1 (en) 2018-08-07 2019-07-23 Control device for automatic transmission

Country Status (2)

Country Link
JP (1) JP6913255B2 (en)
WO (1) WO2020031678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260869B2 (en) * 2018-06-14 2022-03-01 Jatco Ltd Control device for automatic transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094707A (en) * 1995-06-16 1997-01-07 Toyota Motor Corp Control device for automatic transmission
JP2008038998A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Diagnosis device for automatic transmission
JP2013053732A (en) * 2011-09-06 2013-03-21 Aisin Ai Co Ltd Automatic transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094707A (en) * 1995-06-16 1997-01-07 Toyota Motor Corp Control device for automatic transmission
JP2008038998A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Diagnosis device for automatic transmission
JP2013053732A (en) * 2011-09-06 2013-03-21 Aisin Ai Co Ltd Automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260869B2 (en) * 2018-06-14 2022-03-01 Jatco Ltd Control device for automatic transmission

Also Published As

Publication number Publication date
JP6913255B2 (en) 2021-08-04
JPWO2020031678A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
KR101386866B1 (en) Control apparatus of automatic transmission
US8725343B2 (en) Control device for automatic transmission
JP7269345B2 (en) Diagnosis device and control device for automatic transmission
KR20080018955A (en) Hydraulic control apparatus and hydraulic control method of vehicular automatic transmission
US8522946B2 (en) Hydraulic control device
WO2020031677A1 (en) Control device for automatic transmission
WO2020031678A1 (en) Control device for automatic transmission
JP4577138B2 (en) Hydraulic control device for automatic transmission for vehicle
JP7185790B2 (en) AUTOMATIC TRANSMISSION CONTROL DEVICE AND CONTROL METHOD
JP6895592B2 (en) Control device for automatic transmission and control method for automatic transmission
JP7219349B2 (en) AUTOMATIC TRANSMISSION CONTROL DEVICE, CONTROL METHOD AND PROGRAM
JP7207843B2 (en) Automatic transmission diagnostic device
JP7055932B2 (en) Temperature sensor diagnostic device for automatic transmission and diagnostic method
WO2012086092A1 (en) Control device for automatic transmission for vehicle
JP6942268B2 (en) Control device for automatic transmission
WO2021106774A1 (en) Automatic transmission control device and control method
WO2021106759A1 (en) Control device and control method for automatic transmission
CN114302836A (en) Vehicle control device and control method
JPH09317876A (en) Hydraulic control device for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846480

Country of ref document: EP

Kind code of ref document: A1