WO2020029539A1 - 一种地铁车站智能应急疏散指示系统和方法 - Google Patents
一种地铁车站智能应急疏散指示系统和方法 Download PDFInfo
- Publication number
- WO2020029539A1 WO2020029539A1 PCT/CN2019/070096 CN2019070096W WO2020029539A1 WO 2020029539 A1 WO2020029539 A1 WO 2020029539A1 CN 2019070096 W CN2019070096 W CN 2019070096W WO 2020029539 A1 WO2020029539 A1 WO 2020029539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evacuation
- area
- central control
- station
- smoke
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
- G08B7/06—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
- G08B7/066—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources guiding along a path, e.g. evacuation path lighting strip
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/06—Electric actuation of the alarm, e.g. using a thermally-operated switch
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
Definitions
- the present disclosure relates to the technical field of urban rail transit operation management, and more particularly, to an intelligent emergency evacuation indication system and method for a subway station.
- evacuation indication systems there are mainly two types of evacuation indication systems in existing subway stations: one is to embed evacuation indication signs based on the principle of the shortest path to evacuation, and the other is to conduct evacuation planning based on the initial fire source location through the fire control system.
- the effect of smoke spread on the evacuation route during the process Because the spread of smoke from subway fires is related to the location of the fire, the power of the fire, and the state of the environment, it is difficult to predict the path of smoke spreading in advance. Harm to the human body and reduce evacuation efficiency. When emergencies occur, relying on existing fire protection facilities and evacuation methods is still effective in circumventing and solving the above problems.
- the present disclosure provides an intelligent emergency evacuation indication system and method for a subway station that overcomes the above problems or at least partially solves the problems.
- an intelligent emergency evacuation indication system for a subway station which includes a comprehensive detection module, a central control module, and a multi-information intelligent indication module;
- the comprehensive detection module is used for real-time monitoring of various areas in a subway station, and the obtained environmental data is sent to the central control module in real time;
- the central control module is configured to analyze and process the environmental data, determine whether it is a fire area or a smoke diffusion area according to whether the monitoring data of each area reaches a dangerous threshold, and update the evacuation line in real time according to the judgment result, and Sending an evacuation instruction to the multi-information intelligent instruction module;
- the multi-information intelligent instruction module is configured to guide the evacuation of people in a subway station in real time according to the evacuation instruction.
- an intelligent emergency evacuation indication method for a subway station including:
- the monitoring data of each area reaches the danger threshold, determine the fire area and smoke diffusion area, update the evacuation line in real time according to the judgment results, and send evacuation instructions to guide the evacuation of people in the subway station in real time.
- the disclosure proposes an intelligent emergency evacuation indication system and method for a subway station, which can quickly detect subway fires and intelligently plan evacuation routes in real time.
- the data processing As a result, the evacuation instruction route can be updated in real time, which can effectively avoid the evacuation crowd from entering the fire smoke spreading area during the evacuation process, which greatly improves the evacuation efficiency and evacuation safety.
- FIG. 1 is a schematic structural diagram of an intelligent emergency evacuation indication system for a subway station according to an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of actual installation of an integrated detection module according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of an evacuation indicator according to an embodiment of the present disclosure.
- FIG. 4 is a schematic diagram of dividing a platform area of a station according to an embodiment of the present disclosure
- FIG. 5 is a schematic diagram of a fire evacuation route at a station platform according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of a fire evacuation route of a station hall according to an embodiment of the present disclosure.
- subway fires According to the previous subway fire cases, subway fires have the characteristics of large smoke generation and rapid spread of hot smoke, which have a serious impact on personnel evacuation.
- evacuation indication systems There are two main types of evacuation indication systems in existing subway stations: one is to embed evacuation indications based on the principle of the shortest path to evacuation, and the other is to conduct evacuation planning based on the initial location of the fire source through the fire control system. Both have not considered the fire development process. Impact of smoke spread on evacuation routes. Because the spread of smoke from subway fires is related to the location of the fire, the power of the fire, and the state of the environment, it is difficult to predict the path of smoke spreading in advance. Harm to the human body and reduce evacuation efficiency. Therefore, it is urgent to solve the problem of how to avoid the fire smoke and perform rapid evacuation in a subway station fire environment.
- an intelligent emergency evacuation indication system for a subway station which includes a comprehensive detection module 1, a central control module 2, and a multi-information intelligent indication module 3.
- the comprehensive detection module 1 is used for real-time monitoring of various areas in a subway station, and sends the obtained environmental data to the central control module 2 in real time; the environmental parameters such as temperature, visibility, and smoke particle density are monitored.
- the central control module 2 is configured to analyze and process the fire data, determine whether it is a fire area or a smoke diffusion area according to whether the monitoring data of each area reaches a dangerous threshold, and update the evacuation line in real time according to the judgment result. And sending an evacuation instruction to the multi-information intelligent instruction module 3;
- the multi-information intelligent instruction module 3 is configured to guide the evacuation of people in a subway station in real time according to the evacuation instruction.
- the comprehensive detection module 1 is provided at the subway station platform, hall, and each exit of the station, and is used for fire monitoring and to collect various real-time data of various areas within the subway station in the event of a fire and send it to the central government.
- Control module 2 the central control module 2 receives the real-time fire data sent by the integrated detection module 1 and processes it, and determines whether the fire area and smoke diffusion are based on whether the monitoring data in each area has reached the limit (that is, the danger threshold) that affects human evacuation. region. If the monitoring data sent by the comprehensive detection module 1 to the central control module 2 in a certain area exceeds the preset parameter upper limit value, the area is determined to be a "dangerous area"; otherwise, it is regarded as a "passable area".
- a danger threshold is set in the central control module for various types of data monitored by the integrated detection module 1 in advance as a criterion for determining the status of each area; the central control module 2 updates the evacuation line in real time according to the judgment result, and Sending an evacuation instruction to the multi-information intelligent instruction module 3, because the fire is contagious, in this embodiment, by monitoring the environmental data in real time, determining whether each area can pass, adjusting the evacuation lines in real time, and quickly discovering subway fires And real-time intelligent planning of evacuation routes, through the real-time collection and analysis of the relevant data of subway station platforms, halls and various channels, according to the data processing results, the evacuation instruction routes can be updated in real-time, which can effectively avoid the evacuation crowd during the evacuation Entering the area where fire smoke spreads, the evacuation efficiency and evacuation safety are greatly improved.
- the integrated detection module 1 is arranged at the station platform, hall and station exit.
- the integrated detection module 1 includes a smoke sensing unit 101 and a temperature sensing unit 103 located in various areas of a subway station. And visibility detection unit 102;
- the smoke sensing unit 101 is configured to monitor a smoke concentration in a corresponding area
- the temperature sensing unit 103 is configured to monitor a flue gas temperature in a corresponding area
- the visibility detection unit 102 is configured to measure the visibility of a corresponding area.
- the integrated detection module 1 is provided at the subway station platform, hall, and each exit of the station, and is used for fire monitoring and to collect various real-time data of various areas within the subway station in the event of a fire and send it to the central control.
- Module 2 Specifically, by setting the smoke sensing unit 101 for real-time monitoring, it is found that the fire area is identified, and the smoke concentration at the subway station platform, hall and exits of the station is monitored, and the measured data is sent to the central control module 2;
- the temperature sensing unit 103 is set to monitor the real-time temperature of the subway station platform, various parts of the hall and the exits of the station, and the measured data is sent to the central control module 2;
- the visibility detection unit 102 is set to measure the subway station platform, hall And the visibility at the dangerous heights at the exits of the station, and send the measured data to the central control module 2.
- the smoke sensing unit 101 includes an upper smoke sensing unit 101 and a lower smoke sensing unit 101.
- the upper smoke sensing unit 101 is provided at the top of the station platform, the top of the station hall, and the top of the station exit.
- the lower smoke sensing unit 101 is arranged at a dangerous height from the ground.
- the smoke sensing unit 101 is arranged in two levels.
- the upper smoke sensing unit 101 is arranged on the station platform, the hall and the top of each exit of the station, and is used to find and identify the fire area.
- the unit 101 is arranged at a dangerous height, and is used to monitor the smoke concentration at a set dangerous height at the subway station platform, hall and exits of the station, and send the measured data to the central control module 2; specifically, the setting The dangerous height is set according to the height of the person, and the range is 1.8 ⁇ 2m.
- the integrated detection module 1 is installed on a support pillar of a subway station. Since the integrated detection module 1 has a built-in visibility detection unit 102 and a temperature sensing unit 103 to monitor the height and temperature of the flue gas layer, The comprehensive detection module 1 is installed at a distance of 2m from the ground, and is used to monitor the spread of smoke. At the same time, a smoke detection unit 101 is installed on the subway station platform and the ceiling of the hall to detect and determine the location of the fire.
- the upper smoke sensing unit 101 of the smoke sensing unit 101 is arranged at a certain interval on the top of the station platform, the hall and the exits of the station, and is used to find and identify the fire area; the lower smoke sensing unit 101 and the visibility detection
- the unit 102 and the temperature sensing unit 103 are arranged at certain intervals at the set dangerous heights of the station platform pillars, hall pillars and station exits, and are used to monitor the subway station platforms, halls and station exits at the set dangerous heights.
- Smoke concentration; smoke sensing unit 101, visibility detection unit 102, and temperature sensing unit 103 interact with central control module 2 through communication unit 201.
- a human flow detection unit is further included, which is configured to detect the human flow on the evacuation line. Because the subway station has a large flow of people, if it is evacuated in the same direction, it is easy to cause congestion and stamping on the evacuation channel, which will cause a secondary man-made disaster. The maximum pedestrian flow limit is also used as a reference for the evacuation line, and the evacuation crowd will be shunted and evacuated.
- the central control module 2 includes a central control host 203, a control interface 202, a power management unit 204, and a communication unit 201;
- the central control host 203 is used for analyzing and processing the environmental data, judging whether the fire area or the smoke diffusion area is based on whether the monitoring data of each area reaches the danger threshold, and based on not crossing the fire area, and not spreading to the dangerous area or smoke.
- the control interface 202 is used to view the evacuation lines and measured environmental data graphs of the central control host 203, including smoke concentration graphs, smoke temperature graphs, and visibility graphs for each area, and to the central The control host 203 performs control;
- the power management unit 204 is configured to provide power to the central control host 203;
- the communication unit 201 is used for a communication connection between the comprehensive detection module 1, the central control module 2 and the multi-information intelligent instruction module 3.
- the central control host 203 of the central control module 2 analyzes and processes the environmental data, and determines the real-time status of the environment according to the processing result.
- the worker can view the processing result of the central control host 203 through the control interface 202, and can operate the central control host 203 through the control interface 202, such as parameter setting, automatic / manual mode switching, and the like.
- the control interface 202 is also used for information interaction between the relevant staff and the central control host 203, and the staff can import the subway station layout map to the central control host 203 through the control interface 202. Enter the relevant parameters, set the relevant settings, and divide the area of the subway station. At the same time, you can view the evacuation instruction route map and measured data curve plan planned by the central control host 203 through the control interface 202.
- the staff can The control interface 202 described above performs manual / automatic switching of the central control module 2.
- the central control host 203 determines the smoke diffusion area and the smoke diffusion trend according to the monitoring values of all the smoke sensing units and their changes at each time.
- the smoke sensing unit A, the smoke sensing unit B, and the smoke sensing unit C are vertically arranged in three adjacent areas (area B is located in the middle of areas A and C, and the three areas are around There are no other areas), where the monitoring value of the smoking unit B exceeds the set threshold, then the area B is judged to be a dangerous area; at time t1, the monitoring values of the smoking unit A and the smoking unit B both exceed the set threshold, and If the monitoring value of B is greater than the monitoring value of A, it can be judged that the smoke diffusion direction is from the B area to the A area.
- the smoke diffusion area can be determined based on the monitoring value, and secondly, according to each time Changes in the situation, we can infer the trend of smoke diffusion and make a prediction.
- the fire area is an area where the monitoring data of the upper smoke sensing unit 101 exceeds a preset smoke threshold
- the dangerous area is any one of the data monitored by the integrated detection module that exceeds the preset Set the threshold area.
- the multi-information intelligent indication module 3 includes an evacuation indication mark 304, an evacuation information indication screen 303, a voice broadcast device 302, and an indicator light 301;
- the evacuation instruction mark 304 is provided on the ground in the platform of the station, the hall and the passages of the station, and is used to update the direction in real time according to the evacuation instructions of the central control module 2 to guide the evacuation crowd according to the latest evacuation line
- the installation interval of the indicator 304 is 5-10m;
- the evacuation information indication screen 303 is used to release fire information to the evacuation crowd, and instruct the crowd to evacuate;
- the voice broadcasting device 302 is configured to broadcast an evacuation-related notification to an evacuated crowd, and guide the evacuated crowd to evacuate;
- the indicator light 301 is provided at the top of the entrance and exit of the station, and is used to change the color according to the control of the central control module 2 for early warning of fire evacuation.
- the evacuation indication signs 304 are arranged on the ground at the platform, station hall and each exit of the station at intervals of 5-10m, and are used to perform evacuation according to the evacuation instruction route planned by the central control module 2. For guidance, the direction can be changed according to the instruction sent by the central control module 2.
- the evacuation indication mark 304 can indicate 8 directions. As shown in FIG. 3, (a) in FIG. 3 is the state of the evacuation indication mark 304 in a normal state. Figure (b) shows the state of the path indication in the case of a fire. The black arrow in the figure indicates the direction of evacuation. In the specific implementation process, the color of the arrow is green.
- the indicator light 301 can change two different colors, red and green, and display corresponding colors according to the information sent by the central control module 2.
- the indicator light 301 displays red, indicating that this entrance is not available for evacuation; when the monitoring data of the comprehensive detection module 1 at the entrance of the station is not
- the indicator light 301 displays green, indicating that this entrance can be used for evacuation.
- the indicator light 301 is provided on the top of the entrance and exit of each channel of the station, and it can change two different colors of red and green.
- the monitoring data of the integrated detection module 1 at the entrance and exit of each station of the station exceeds the preset parameter upper limit value
- the indicator 301 is red, it means that this entrance is not available for evacuation.
- the indicator 301 is green, indicating that this entrance can be used for evacuation. evacuation.
- the central control module 2 will issue evacuation information through the evacuation information indication screen 303 and the voice broadcast device 302.
- the evacuation information indication screen 303 may be replaced by the urban rail transit PIS system screen, and the central control module 2 is linked with the urban rail transit PIS system; the voice broadcast equipment 302 may use existing broadcast equipment at subway stations.
- the evacuation instruction method is based on not traversing the fire area, evacuating to dangerous areas, smoke diffusion areas, and the shortest path principle to evacuate the crowd, and can indicate the evacuation route. Live Update.
- the evacuation instruction method is as follows:
- the subway station is divided into regions and each area is numbered. Each area contains only one integrated detection module 1.
- the division result is input to the central control module 2 and the indicator 301 and the evacuation indicator 304 are associated with the number of the area where the indicator is located, so that the central control module 2 can quickly locate the fire area and accurately indicate the indicator 301 and the evacuation indicator 304. Issue a command signal.
- the comprehensive detection module 1 transmits the monitoring data of each area to the central control module 2 in real time;
- the integrated detection module 1 Since the integrated detection module 1 only covers the area outside its area, if the monitoring data sent by the integrated detection module 1 to the central control host 203 in an area exceeds the preset parameter upper limit, the area is determined as " Dangerous area ", otherwise it is considered as” accessible area ". Areas identified as “dangerous areas” will be prohibited from evacuation, and “accessible areas” will be accessible normally.
- the monitoring data sent by the integrated detection module 1 in the area 12 to the central control host 203 exceeds the preset parameter upper limit value, and the monitoring data of the integrated detection module 1 in other regions is normal. It can be considered that the area is a fire, and it is determined that the area is a "dangerous area”. Subsequently, the detection data sent by the integrated detection module 1 in the adjacent No. 10 area to the central control host 203 also exceeded the upper limit of the preset parameter. It can be considered that the fire smoke has spread from No. 12 area to No. 10 Area, area 10 is also identified as a "dangerous area";
- the above determination process is a parallel operation, and the determination of the area where all the integrated detection modules 1 are located in the same time period is performed simultaneously.
- the evacuation route formulation method is as follows:
- the evacuation route planning should be based on the principle that the evacuation route to the safety exit is the shortest and the evacuation route is relatively simple (reducing tortuous routes) through the "passable area” and avoiding the "dangerous area". Because area 20 is judged as a "dangerous area”, pedestrians in area 22 cannot be evacuated to escalator B through area 20, and must be transferred to area 19 through area 21 and then evacuated to escalator B. Pedestrians in other “accessible areas” also follow the principle of evacuation to the nearest “accessible area” nearest to the safety exit and then evacuate to the safety exit to plan the evacuation route; pedestrians located in “dangerous areas” first evacuate Evacuate to the “accessible area” closest to your area and conducive to subsequent evacuation. For pedestrians located in area 18, there are areas 16 and 17 in the adjacent "accessible area". Relatively speaking, area 16 is closest to the safety exit, so you choose to evacuate to area 16 first and then to safety Export.
- the central control host 203 sends a signal to the evacuation indicator 304, and the evacuation indicator 304 located in the "dangerous area” points to the nearest accessible area ;
- the evacuation indicator 304 located in the "accessible area” points to the adjacent accessible area closest to the safety exit.
- the comprehensive detection module 1 continues to detect each area and sends the monitoring data to the central control module 203.
- the central control module 2 repeats steps 1), 2), and 3) to adjust and update the evacuation route in real time to Avoid the harm of fire smoke to evacuees during the evacuation process.
- the central control module 203 will use the monitoring data sent back by the comprehensive detection module 1 to number 4, 7, 10, 11, 13, and 16 in the figure.
- the area was determined to be a "dangerous area". Since the entrance of the A-port was located in the No. 4 area, the A-port was determined to be impassable.
- the central control host 203 plans the evacuation route according to the real-time judgment results, and sends signals to the evacuation indication signs 304 and the indicator lights 301.
- the evacuation indication signs 304 and the indicator lights 301 act according to the signal instructions, and the evacuation indication signs located in the "dangerous area” 304 points to the nearest accessible area; the evacuation indicator 304 located in the "accessible area” points to the adjacent accessible area closest to the safety exit. Because port A is forbidden to pass, the indicator light 301 in front of port A lights up red, and the other exits pass normally, and the corresponding indicator light 301 lights up in green.
- the integrated detection module 1 continues to detect each area during the evacuation process and sends monitoring data to the central control module 203. The central control module 203 will adjust and update the evacuation route in real time according to the monitoring data.
- This embodiment also provides an intelligent emergency evacuation indication method for a subway station. Based on the subway station intelligent emergency evacuation instruction system in the foregoing embodiments, the method includes:
- the integrated detection module performs real-time monitoring of various areas within the subway station, and immediately sends the acquired environmental data to the central control module;
- the central control module analyzes and processes the environmental data, judges the fire area and the smoke diffusion area according to whether the monitoring data of each area reaches the danger threshold, and updates the evacuation line in real time according to the judgment result, and sends an evacuation instruction to all
- the multi-information intelligent instruction module
- the multi-information intelligent instruction module guides the evacuation of people in a subway station in real time according to the evacuation instructions.
- the embodiment of the present disclosure proposes an intelligent emergency evacuation indication system and method for a subway station, which can quickly detect subway fires and intelligently plan evacuation routes in real time, by performing real-time data on subway station platforms, halls, and various channels. Collection and analysis, real-time update of the evacuation instruction route according to the results of data processing, can effectively avoid evacuation crowds from entering the fire smoke spreading area during the evacuation process, and greatly improve evacuation efficiency and evacuation safety.
- test device and the like of the display device are merely schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical Units can be located in one place or distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative labor.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Alarm Systems (AREA)
- Fire Alarms (AREA)
Abstract
一种地铁车站智能应急疏散指示系统和方法,包括综合探测模块(1)、中央控制模块(2)和多信息智能指示模块(3);综合探测模块(1),对地铁车站内各区域进行实时监测,并将获取的环境数据即时发送至中央控制模块(2);中央控制模块(2),对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断起火区域、烟气扩散区域,并根据判断结果对疏散线路进行实时更新,发送疏散指令至多信息智能指示模块(3);多信息智能指示模块(3),根据疏散指令,对地铁车站内人群疏散进行实时引导。实现了能快速发现地铁火灾并实时智能规划疏散路线,有效避免疏散人群在疏散过程中误入火灾烟气蔓延区域,极大地提高了疏散效率和疏散安全度。
Description
交叉引用
本申请引用于2018年08月08日提交的专利名称为“一种地铁车站智能应急疏散指示系统和方法”的第2018108979117号中国专利申请,其通过引用被全部并入本申请。
本公开涉及城市轨道交通运营管理技术领域,更具体地,涉及一种地铁车站智能应急疏散指示系统和方法。
随着我国经济的逐年稳步发展,城市化水平的逐年提高,越来越多城市开通地铁线路。但地铁车站作为一种典型的地下建筑,地铁站的突发事件很多,火灾只是最常见的一种,一旦发生火灾,人员疏散将是一个重要的问题。
由于疏散不及时引起的踩踏事件在最近几年的新闻中多有发生。火灾发生时能在短时间内扩大,允许逃生的时间短。而地铁站人员密集,容易因为毫不相干的事情引发群体恐慌拥挤,人群乱跑发生踩踏事件,造成人员伤亡。
目前,现有地铁车站疏散指示系统主要有两种:一是以疏散最短路径为原则预埋疏散指示标志,二是通过消防控制系统根据初期火源位置进行疏散规划,两者皆未考虑火灾发展过程中烟气蔓延对疏散路线的影响。由于地铁火灾烟气蔓延与火灾位置与火灾功率以及环境状态有关,很难事先预测烟气蔓延路径,一旦火灾烟气蔓延方向与疏散方向相同,甚至蔓延到疏散通道内,将极易导致高温烟气对人体的伤害并降低疏散效率。在突发事件发生时,依靠现有的消防设施和疏散方法还是有效规避和解决上述问题。
发明内容
本公开提供一种克服上述问题或者至少部分地解决上述问题的一种 地铁车站智能应急疏散指示系统和方法。
根据本公开的一个方面,提供一种地铁车站智能应急疏散指示系统,包括综合探测模块、中央控制模块和多信息智能指示模块;
所述综合探测模块,用于对地铁车站内各区域进行实时监测,并将获取的环境数据即时发送至所述中央控制模块;
所述中央控制模块,用于对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断是否为起火区域、烟气扩散区域,并根据判断结果对疏散线路进行实时更新,并发送疏散指令至所述多信息智能指示模块;
所述多信息智能指示模块,用于根据所述疏散指令,对地铁车站内人群疏散进行实时引导。
根据本公开的二个方面,提供一种地铁车站智能应急疏散指示方法,包括:
获取地铁车站内各区域进行实时环境数据;
根据各区域监测数据是否达到危险阈值,判断起火区域、烟气扩散区域,根据判断结果对疏散线路进行实时更新,并发送疏散指令,对地铁车站内人群疏散进行实时引导。
本公开提出一种地铁车站智能应急疏散指示系统和方法,能快速发现地铁火灾并实时智能规划疏散路线,通过对地铁车站站台、站厅以及各通道的相关数据进行实时采集和分析,根据数据处理结果对疏散指示路线能进行实时更新,能有效避免疏散人群在疏散过程中误入火灾烟气蔓延区域,极大地提高了疏散效率和疏散安全度。
图1为根据本公开实施例的地铁车站智能应急疏散指示系统结构示意图;
图2为根据本公开实施例的综合探测模块实际安装示意图;
图3为根据本公开实施例的疏散指示标志示意图;
图4为根据本公开实施例的车站站台区域划分示意图;
图5为根据本公开实施例的车站站台火灾疏散路线示意图;
图6为根据本公开实施例的车站站厅火灾疏散路线示意图。
下面结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
根据以往地铁火灾案例,地铁火灾具有发烟量大且热烟气扩散迅速等特点,对人员疏散具有严重影响。现有地铁车站疏散指示系统主要有两种:一是以疏散最短路径为原则预埋疏散指示标志,二是通过消防控制系统根据初期火源位置进行疏散规划,两者皆未考虑火灾发展过程中烟气蔓延对疏散路线的影响。由于地铁火灾烟气蔓延与火灾位置与火灾功率以及环境状态有关,很难事先预测烟气蔓延路径,一旦火灾烟气蔓延方向与疏散方向相同,甚至蔓延到疏散通道内,将极易导致高温烟气对人体的伤害并降低疏散效率。因此,解决如何在地铁车站火灾环境下避开火灾烟气进行快速疏散的问题刻不容缓。
为了解决上述问题,在本实施例中,如图1所示,提供了一种地铁车站智能应急疏散指示系统,包括综合探测模块1、中央控制模块2和多信息智能指示模块3;
所述综合探测模块1,用于对地铁车站内各区域进行实时监测,并将获取的环境数据即时发送至所述中央控制模块2;监测的是温度,能见度,烟颗粒密度等这些环境参数。
所述中央控制模块2,用于对所述火灾数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断是否为起火区域、烟气扩散区域,并根据判断结果对疏散线路进行实时更新,并发送疏散指令至所述多信息智能指示模块3;
所述多信息智能指示模块3,用于根据所述疏散指令,对地铁车站内人群疏散进行实时引导。
在本实施例中,通过将综合探测模块1设置在地铁车站站台、站厅以及车站各出口处,用于火灾监测以及火灾情况下采集地铁车站内各区域的各种实时数据,并发送给中央控制模块2;中央控制模块2接收综合探测模块1发送的实时火灾数据并对其进行处理,根据各区域监测数据是否达到影响人员疏散的限值(即危险阈值),判断起火区域、烟气扩散区域。若某区域内的综合探测模块1发送至中央控制模块2的监测数据超过预先 设定的参数上限值,则判定该区域为“危险区域”,否则,则视为“可通行区域”。在本实施例中,事先在中央控制模块中为综合探测模块1监测的各类数据设定危险阈值,作为判断各区域状况的标准;中央控制模块2根据判断结果对疏散线路进行实时更新,并发送疏散指令至所述多信息智能指示模块3,由于火灾具有蔓延性,在本实施例中,通过对环境数据进行实时监控,判断各区域能否通行,实时调整疏散线路,能快速发现地铁火灾并实时智能规划疏散路线,通过对地铁车站站台、站厅以及各通道的相关数据进行实时采集和分析,根据数据处理结果对疏散指示路线能进行实时更新,能有效避免疏散人群在疏散过程中误入火灾烟气蔓延区域,极大地提高了疏散效率和疏散安全度。
在上述实施例的基础上,所述综合探测模块1布置于车站站台、站厅及车站出口处,所述综合探测模块1包括设于地铁车站各区域内的感烟单元101、感温单元103和能见度检测单元102;
所述感烟单元101用于监测对应区域内的烟气浓度;
所述感温单元103用于监测对应区域内的烟气温度;
所述能见度检测单元102用于测量对应区域的能见度。
在本实施例中,综合探测模块1,设置在地铁车站站台、站厅以及车站各出口处,用于火灾监测以及火灾情况下采集地铁车站内各区域的各种实时数据,并发送给中央控制模块2;具体的,通过设置感烟单元101进行实时监测,发现判别起火区域,以及监测地铁车站站台、站厅以及车站各出口处的烟气浓度,并将实测数据发送到中央控制模块2;通过设置感温单元103,监测地铁车站站台、站厅各处以及车站各出口处的实时温度,并将实测数据发送到中央控制模块2;通过设置能见度检测单元102,测量地铁车站站台、站厅以及车站各出口处在危险高度处的能见度,并将实测数据发送到中央控制模块2。
在上述各实施例的基础上,所述感烟单元101包括上层感烟单元101和下层感烟单元101,所述上层感烟单元101设于车站站台顶部、站厅顶部及车站出口顶部,所述下层感烟单元101布置于距离地面设定危险高度处。
在本实施例中,所述感烟单元101,分为上下两层布置,上层感烟单 元101布置于车站站台、站厅以及车站各出口处的顶部,用于发现判别起火区域;下层感烟单元101布置于危险高度,用于监测地铁车站站台、站厅以及车站各出口处在设定危险高度处的烟气浓度,并将实测数据发送到中央控制模块2;具体的,所述设定危险高度根据人的身高进行设定,范围为1.8~2m。
在本实施例中,如图2所示,综合探测模块1安装在地铁车站支撑柱上,由于所述综合探测模块1内置能见度检测单元102和感温单元103监测烟气层高度和温度,将所述综合探测模块1安装在距地面2m处,用于监测烟气蔓延情况,同时,在地铁车站站台和站厅天花板上装有感烟单元101,用于发现判别起火位置。
在本实施例中,感烟单元101中的上层感烟单元101以一定间隔布置于车站站台、站厅以及车站各出口处的顶部,用于发现判别起火区域;下层感烟单元101、能见度检测单元102、感温单元103以一定间隔布置于车站站台柱、站厅柱以及车站各出口的设定危险高度处,用于监测地铁车站站台、站厅以及车站各出口处在设定危险高度处的烟气浓度;感烟单元101、能见度检测单元102、感温单元103通过通信单元201与中央控制模块2交互。
在上述各实施例的基础上,还包括人流量检测单元,用于检测疏散线路上的人流量。由于地铁车站人流量大,若都往同一方向疏散,很容易造成疏散通道拥堵、踩踏,造成人为的二次灾难,因此在本实施例中,可以通过检测人流量,将人流量和疏散通道的最大人流限值同样作为疏散线路的参考依据,对疏散人群进行分流疏散。
在上述各实施例的基础上,所述中央控制模块2包括中央控制主机203、控制界面202、电源管理单元204和通信单元201;
所述中央控制主机203用于对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断起火区域、烟气扩散区域,依据不穿越起火区域,不向危险区域、烟气扩散区域疏散,以及最短路径原则对疏散线路进行实时更新;
所述控制界面202用于查看所述中央控制主机203的疏散线路和实测的环境数据曲线图,包括各区域的烟气浓度曲线图、烟气温度曲线图、能 见度曲线图,并对所述中央控制主机203进行控制;
所述电源管理单元204用于为所述中央控制主机203提供电源;
所述通信单元201用于所述综合探测模块1、所述中央控制模块2和所述多信息智能指示模块3之间的通信连接。
在本实施例中,中央控制模块2的中央控制主机203对环境数据进行分析处理,根据处理结果判断环境实时状况。工作人员可通过控制界面202查看中央控制主机203的处理结果,并可通过控制界面202对中央控制主机203进行操作,如参数设定、自动/手动模式切换等。在本实施例中,控制界面202还用于相关工作人员与所述中央控制主机203之间进行信息交互,工作人员可通过所述控制界面202向所述中央控制主机203导入地铁车站布局图,输入相关参数,设定相关设置、对地铁车站进行区域划分等操作,同时可通过所述控制界面202查看所述中央控制主机203规划的疏散指示路线图及实测数据曲线图,工作人员可通过所述控制界面202进行中央控制模块2的手动/自动切换。
在上述各实施例的基础上,所述中央控制主机203根据各时刻所有感烟单元的监测值及其变化情况来判断烟气扩散区域及烟气扩散趋势。在本实施例中,在t0时刻,若纵向排列的三个相邻区域的感烟单元A、感烟单元B、感烟单元C(区域B位于区域A、C中间,且该三个区域周围不存在其他区域),其中感烟单元B监测值超过设定的阈值,则判断B区域为危险区域;在t1时刻,感烟单元A和感烟单元B监测值均超过设定的阈值,且B监测值大于A监测值,则可判断烟气扩散方向为B区域到A区域。
比如,t0时刻,10个感烟单元测了10个数据,t1时刻,又有10个数据,接着t2,t3……,首先根据监测值,可以判断出烟气扩散区域,其次,根据各时刻的变化情况,可以推测出烟气扩散的趋势,进行一种预判。
在上述各实施例的基础上,所述起火区域为上层感烟单元101的监测数据超过预先设定烟气阈值的区域,所述危险区域为综合探测模块所监测的数据中任意一项超过预先设定阈值的区域。
在上述各实施例的基础上,所述多信息智能指示模块3包括疏散指示标志304、疏散信息指示屏303、语音播报设备302和指示灯301;
所述疏散指示标志304设于车站站台、站厅及车站各通道内的地面上,用于根据中央控制模块2的疏散指令实时更新指示方向,以根据最新的疏散线路对疏散人群进行引导,疏散指示标志304安装间隔为5-10m;
所述疏散信息指示屏303用于向疏散人群发布火灾信息,指示人群进行疏散;
所述语音播报设备302用于向疏散人群播报疏散相关通知,引导疏散人群进行疏散;
所述指示灯301设于车站出入口顶部,用于根据中央控制模块2的控制变换颜色,进行火灾疏散预警。
在本实施例中,疏散指示标志304以5-10m的间隔设置在车站站台、站厅及车站各出口处的地面上,用于根据所述中央控制模块2规划的疏散指示路线对疏散人群进行引导,可根据所述中央控制模块2发送的指令变换指示方向,疏散指示标志304可指示8个方向,如图3所示,图3中(a)图为正常状态下的疏散指示标志304状态图,(b)图为火灾情况下的路径指示状态图,图中黑色箭头表示疏散方向,再具体实施过程中,箭头颜色为绿色。
在上述各实施例的基础上,指示灯301可变换红绿两种不同的颜色,根据所述中央控制模块2发送的信息,显示相应的颜色。当车站各通道出入口处的综合探测模块1监测数据超过预先设定的参数上限值时,指示灯301显示红色,表示此出入口不可用于疏散;当车站出入口处的综合探测模块1监测数据未超过预先设定的参数上限值时,指示灯301显示绿色,表示此出入口可用于疏散。
在本实施例中,指示灯301设置在车站各通道出入口处顶部,可变换红绿两种不同的颜色,当车站各通道出入口处的综合探测模块1监测数据超过预先设定的参数上限值时,指示灯301显示红色,表示此出入口不可用于疏散;当车站出入口处的综合探测模块1监测数据未超过预先设定的参数上限值时,指示灯301显示绿色,表示此出入口可用于疏散。与以上过程同时,所述中央控制模块2将通过所述疏散信息指示屏303和所述语音播报设备302发布疏散信息。疏散信息指示屏303可用城市轨道交通PIS系统屏幕代替,中央控制模块2与城市轨道交通PIS系统联动;语音播报 设备302可采用地铁车站现有广播设备。
在上述实施例的基础上,在本实施例中,疏散指示方法依据不穿越起火区域,不向危险区域、烟气扩散区域疏散,以及最短路径原则对人群进行疏散指示,并能对疏散指示路线实时更新。
如图4所示,以某地铁站台为实施例,疏散指示方法如下:
1、如图4(a)所示,根据所述综合探测模块1的布置位置对该地铁站台进行区域划分变对每个区域进行编号,每个区域仅包含1个综合探测模块1,并将区域划分结果输入中央控制模块2,同时将指示灯301和疏散指示标志304与其所在区域编号进行关联,以便于所述中央控制模块2对起火区域快速定位并准确向指示灯301和疏散指示标志304发布指令信号。
2、综合探测模块1对各区域的监测数据实时传输至中央控制模块2;
3、由于综合探测模块1仅覆盖其所在区域外,因此,若某区域内的综合探测模块1发送至中央控制主机203的监测数据超过预先设定的参数上限值,则判定该区域为“危险区域”,否则,则视为“可通行区域”。被判定为“危险区域”的区域将被禁止用于疏散,“可通行区域”则可正常通行。
4、如图4(b)所示,12号区域内的综合探测模块1发送至中央控制主机203的监测数据超过预先设定的参数上限值,而其他区域综合探测模块1监测数据正常,则可认为该区域为发生火灾,判定该区域为“危险区域”。随后,其相邻的10号区域内的综合探测模块1发送至中央控制主机203的检测数据也超过预先设定的参数上限值,则可认为火灾烟气已由12号区域蔓延至10号区域,亦将10号区域判定为“危险区域”;
5、以上判定过程为并行运算,对同一时间段内的所有综合探测模块1所在区域的判定同时进行。
如图5(a)所示,某地铁站台18号、20号被中央控制模块2判定为“危险区域”,需对人员疏散路线进行规划时,疏散路线制定方法如下:
1)判定可用安全出口。工作人员需先通过控制界面202对于安全出口位置进行设定,即将安全出口与其所在区域编号进行关联。若在实时监测过程中,中央控制主机203将某安全出口所在区域判定为“危险区域”,则同时将该安全出口视作不可通行。图中由于楼扶梯A的入口位于18号 区域,则将楼扶梯A判定为非安全出口,禁止人群通过楼扶梯A进行疏散,则人群仅能通过楼扶梯B疏散至站厅;
2)按照通过“可通行区域”并避开“危险区域”向安全出口疏散路径最短且疏散路线相对简单(减少曲折路线)的原则进行疏散路线的规划。由于20号区域被判定为“危险区域”,故22号区域内的行人不能通过20号区域向楼扶梯B进行疏散,需依次通过21号区域转移至19号区域再向楼扶梯B进行疏散,其他“可通行区域”内的行人同样遵循先疏散至离安全出口最近的相邻“可通行区域”再向安全出口进行疏散的原则进行疏散路线规划;位于“危险区域”内的行人则先疏散至离所在区域最近且有利于后续疏散的“可通行区域”再进行疏散。如位于18号区域内的行人,相邻的“可通行区域”有16号区域和17号区域,相对而言,16号区域离安全出口最近,故选择先疏散至16号区域再疏散至安全出口。
3)如图5(b)所示,中央控制主机203根据实时判定结果对疏散路线进行规划后,向疏散指示标志304发送信号,位于“危险区域”内的疏散指示标志304指向最近可通行区域;位于“可通行区域”内的疏散指示标志304指向离安全出口最近的相邻可通行区域。安全出口及通道口两侧设置指示灯301,若中央控制主机203判定安全出口及通道口所在区域为“危险区域”,则其两侧指示灯301亮红灯;若为“可通行区域”,则亮绿灯。
4)综合探测模块1在疏散过程中继续对各区域进行检测并将监测数据发送给中央控制模块203,中央控制模块2重复步骤1)、2)、3)对疏散路线进行实时调整更新,以避免在疏散过程中火灾烟气对疏散人群的伤害。
如图6所示,某地铁车站站厅安检区发生火灾,中央控制模块203根据综合探测模块1发回的监测数据将图中4号、7号、10号、11号、13号、16号区域判定为“危险区域”,由于A口的入口位于4号区域内,因此将A口判定为不可通行。中央控制主机203根据实时判定结果对疏散路线进行规划,并向疏散指示标志304和指示灯301发送信号,疏散指示标志304和指示灯301根据信号指令动作,位于“危险区域”内的疏散指示标志304指向最近可通行区域;位于“可通行区域”内的疏散指示标志304指向离安全出口最近的相邻可通行区域。由于A口禁止通行,故A口 前方指示灯301亮红灯,其余出口正常通行,相应指示灯301亮绿灯。综合探测模块1在疏散过程中继续对各区域进行检测并将监测数据发送给中央控制模块203,中央控制模块203将根据监测数据对疏散路线进行实时调整更新。
本实施例中还提供了提供一种地铁车站智能应急疏散指示方法,基于上述各实施例中的地铁车站智能应急疏散指示系统,包括:
所述综合探测模块对地铁车站内各区域进行实时监测,并将获取的环境数据即时发送至所述中央控制模块;
所述中央控制模块对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断起火区域、烟气扩散区域,并根据判断结果对疏散线路进行实时更新,并发送疏散指令至所述多信息智能指示模块;
所述多信息智能指示模块根据所述疏散指令,对地铁车站内人群疏散进行实时引导。
综上所述,本公开实施例提出一种地铁车站智能应急疏散指示系统和方法,能快速发现地铁火灾并实时智能规划疏散路线,通过对地铁车站站台、站厅以及各通道的相关数据进行实时采集和分析,根据数据处理结果对疏散指示路线能进行实时更新,能有效避免疏散人群在疏散过程中误入火灾烟气蔓延区域,极大地提高了疏散效率和疏散安全度。
以上所描述的显示装置的测试设备等实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本公开的实施例的技术方案,而非对其限制;尽管参照前述各实施例对本公开的实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开的实施 例各实施例技术方案的范围。
Claims (10)
- 一种地铁车站智能应急疏散指示系统,其特征在于,包括综合探测模块、中央控制模块和多信息智能指示模块;所述综合探测模块,用于对地铁车站内各区域进行实时监测,并将获取的环境数据即时发送至所述中央控制模块;所述中央控制模块,用于对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断是否为起火区域、烟气扩散区域,并根据判断结果对疏散线路进行实时更新,并发送疏散指令至所述多信息智能指示模块;所述多信息智能指示模块,用于根据所述疏散指令,对地铁车站内人群疏散进行实时引导。
- 根据权利要求1所述的地铁车站智能应急疏散指示系统,其特征在于,所述综合探测模块布置于车站站台、站厅及车站出口处,所述综合探测模块包括设于地铁车站各区域内的感烟单元、感温单元和能见度检测单元;所述感烟单元用于监测对应区域内的烟气浓度;所述感温单元用于监测对应区域内的烟气温度;所述能见度检测单元用于测量对应区域内的能见度。
- 根据权利要求2所述的地铁车站智能应急疏散指示系统,其特征在于,所述感烟单元包括上层感烟单元和下层感烟单元,所述上层感烟单元设于车站站台顶部、站厅顶部及车站出口顶部,所述下层感烟单元布置于距离地面设定危险高度处。
- 根据权利要求2所述的地铁车站智能应急疏散指示系统,其特征在于,所述感温单元和所述能见度检测单元布置于距离地面设定危险高度处。
- 根据权利要求2所述的地铁车站智能应急疏散指示系统,其特征在于,所述中央控制模块包括中央控制主机、控制界面、电源管理单元和通信单元;所述中央控制主机用于对所述环境数据进行分析处理,根据各区域监测数据是否达到危险阈值,判断是否为起火区域、烟气扩散区域,根据不 穿越起火区域,不向危险区域、烟气扩散区域疏散,以及最短路径原则对疏散线路进行实时更新;所述控制界面用于查看所述中央控制主机的疏散线路和环境数据曲线图,并对所述中央控制主机进行控制;所述电源管理单元用于为所述中央控制主机提供电源;所述通信单元用于所述综合探测模块、所述中央控制模块和所述多信息智能指示模块之间的通信连接。
- 根据权利要求5所述的地铁车站智能应急疏散指示系统,其特征在于,所述中央控制主机根据各时刻所有感烟单元的监测值及其变化情况来判断烟气扩散区域及烟气扩散趋势。
- 根据权利要求5所述的地铁车站智能应急疏散指示系统,其特征在于,所述起火区域为上层感烟单元的监测数据最先超过预先设定烟气阈值的区域,所述危险区域为综合探测模块所监测的数据中任意一项超过预先设定阈值的区域。
- 根据权利要求1所述的地铁车站智能应急疏散指示系统,其特征在于,所述多信息智能指示模块包括疏散指示标志、疏散信息指示屏、语音播报设备和指示灯;所述疏散指示标志设于车站站台、站厅及车站各通道内的地面上,用于根据中央控制模块的疏散指令实时更新指示方向,以根据最新的疏散线路对疏散人群进行引导;所述疏散信息指示屏用于向疏散人群发布火灾信息,指示人群进行疏散;所述语音播报设备用于向疏散人群播报疏散通知,引导疏散人群进行疏散;所述指示灯设于车站各通道出入口顶部,用于根据中央控制模块的指令变换颜色,进行火灾疏散预警。
- 根据权利要求8所述的地铁车站智能应急疏散指示系统,其特征在于,所述指示灯可变换为红色和绿色,当车站各通道出入口的综合探测模块的监测数据超过预先设定阈值,则指示灯显示红色,当车站各通道出入口的综合探测模块的监测数据未超过预先设定阈值,则指示灯显示绿色。
- 一种地铁车站智能应急疏散指示方法,其特征在于,包括:获取地铁车站内各区域进行实时环境数据;根据各区域监测数据是否达到危险阈值,判断起火区域、烟气扩散区域,根据判断结果对疏散线路进行实时更新,并发送疏散指令,对地铁车站内人群疏散进行实时引导。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810897911.7 | 2018-08-08 | ||
CN201810897911.7A CN108961631A (zh) | 2018-08-08 | 2018-08-08 | 一种地铁车站智能应急疏散指示系统和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020029539A1 true WO2020029539A1 (zh) | 2020-02-13 |
Family
ID=64467946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/070096 WO2020029539A1 (zh) | 2018-08-08 | 2019-01-02 | 一种地铁车站智能应急疏散指示系统和方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108961631A (zh) |
LU (1) | LU101335B1 (zh) |
WO (1) | WO2020029539A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108961631A (zh) * | 2018-08-08 | 2018-12-07 | 中国安全生产科学研究院 | 一种地铁车站智能应急疏散指示系统和方法 |
CN110687254B (zh) * | 2019-10-14 | 2021-11-05 | 浙江大华技术股份有限公司 | 一种可扩散物体的扩散趋势确定方法及系统 |
CN111402538B (zh) * | 2020-03-25 | 2021-02-09 | 深圳市瑞邦世纪科技有限公司 | 具备火灾警情预测的方法、系统、智能终端及存储介质 |
CN111640280B (zh) * | 2020-04-21 | 2022-11-01 | 北京北大千方科技有限公司 | 一种基于多源信息融合的地铁站污染物预警方法 |
CN112542011A (zh) * | 2020-11-19 | 2021-03-23 | 华南理工大学 | 一种化工园区事故自适应智能应急疏散引导系统和方法 |
CN113409527A (zh) * | 2021-07-07 | 2021-09-17 | 重庆工程职业技术学院 | 一种用于建筑物的火灾疏散路径规划系统及控制方法 |
CN114120575B (zh) * | 2021-11-16 | 2023-11-17 | 广东力安测控科技有限公司 | 一种基于大数据的智慧楼宇消防安全控制方法及系统 |
CN116110175A (zh) * | 2022-11-30 | 2023-05-12 | 中铁电气化局集团北京建筑工程有限公司 | 一种用于地铁车站火灾疏散的智能控制方法及系统 |
CN116579453A (zh) * | 2023-03-15 | 2023-08-11 | 中科海慧(北京)科技有限公司 | 一种基于时空大数据的应对突发状况的应急疏散辅助系统 |
CN116542408B (zh) * | 2023-03-27 | 2023-11-28 | 青岛理工大学 | 毒气泄漏情况下地下交通设施内乘客疏散路径规划方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5121344A (en) * | 1989-07-03 | 1992-06-09 | The United States Of America As Represented By The Secretary Of The Interior | Method of locating underground mines fires |
CN104717291A (zh) * | 2015-03-20 | 2015-06-17 | 武汉大学 | 基于传感器实时监测网络的地铁火灾逃生系统及方法 |
CN104881942A (zh) * | 2015-05-19 | 2015-09-02 | 上海大学 | 一种地铁站火灾人员智能疏散指示系统 |
US9373014B1 (en) * | 2015-06-10 | 2016-06-21 | Parachute Systems, Inc. | Systems and methods for event monitoring using aerial drones |
CN106530543A (zh) * | 2017-01-12 | 2017-03-22 | 西南交通大学 | 地铁车站火灾逃生指示系统 |
CN107618534A (zh) * | 2017-09-29 | 2018-01-23 | 白家豪 | 地铁智能疏散系统 |
CN108961631A (zh) * | 2018-08-08 | 2018-12-07 | 中国安全生产科学研究院 | 一种地铁车站智能应急疏散指示系统和方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103854425A (zh) * | 2012-11-30 | 2014-06-11 | 西安奥赛福科技有限公司 | 地铁用消防自动报警控制系统 |
CN206388288U (zh) * | 2017-01-12 | 2017-08-08 | 西南交通大学 | 地铁车站火灾逃生指示系统 |
-
2018
- 2018-08-08 CN CN201810897911.7A patent/CN108961631A/zh active Pending
-
2019
- 2019-01-02 LU LU101335A patent/LU101335B1/en active IP Right Grant
- 2019-01-02 WO PCT/CN2019/070096 patent/WO2020029539A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5121344A (en) * | 1989-07-03 | 1992-06-09 | The United States Of America As Represented By The Secretary Of The Interior | Method of locating underground mines fires |
CN104717291A (zh) * | 2015-03-20 | 2015-06-17 | 武汉大学 | 基于传感器实时监测网络的地铁火灾逃生系统及方法 |
CN104881942A (zh) * | 2015-05-19 | 2015-09-02 | 上海大学 | 一种地铁站火灾人员智能疏散指示系统 |
US9373014B1 (en) * | 2015-06-10 | 2016-06-21 | Parachute Systems, Inc. | Systems and methods for event monitoring using aerial drones |
CN106530543A (zh) * | 2017-01-12 | 2017-03-22 | 西南交通大学 | 地铁车站火灾逃生指示系统 |
CN107618534A (zh) * | 2017-09-29 | 2018-01-23 | 白家豪 | 地铁智能疏散系统 |
CN108961631A (zh) * | 2018-08-08 | 2018-12-07 | 中国安全生产科学研究院 | 一种地铁车站智能应急疏散指示系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
LU101335B1 (en) | 2020-02-17 |
CN108961631A (zh) | 2018-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020029539A1 (zh) | 一种地铁车站智能应急疏散指示系统和方法 | |
CN208706019U (zh) | 一种地铁车站智能应急疏散指示系统 | |
CN104157147B (zh) | 交通信号机、隧道内交通异常事件的检测控制方法及系统 | |
CN102815324B (zh) | 轨道交通应急疏散路线的生成方法及系统 | |
CN105763853A (zh) | 一种公共区域拥挤、踩踏事件应急预警方法 | |
CN103617699A (zh) | 一种电力作业现场安全智能监护系统 | |
CN102908727A (zh) | 一种楼宇火灾逃生安全路径计算系统及其方法 | |
CN109903490B (zh) | 一种火灾撤离路径的计算方法和指示系统 | |
CN114330877A (zh) | 火灾逃生用建筑智能疏散系统及其应用方法 | |
CN112817261A (zh) | 隧道内多元联动的人员疏散系统、方法及存储介质 | |
CN103247125A (zh) | 一种高速公路隧道消防联动系统及控制方法 | |
TW201337848A (zh) | 路燈系統以及應用該路燈系統進行避難的方法 | |
CN115482507A (zh) | 基于人工智能的人群聚集消防预警方法及系统 | |
CN102624934B (zh) | 轨道交通地震灾害应对方法 | |
CN111915823A (zh) | 消防系统、服务器及移动终端设备 | |
CN117998711A (zh) | 一种逃生指示的智慧照明系统 | |
CN113741258A (zh) | 基于物联网的轨道交通车站火灾监控系统及其优化方法 | |
Wu et al. | A framework of intelligent evacuation guidance system for large building | |
CN208360164U (zh) | 一种城市轨道交通的紧急诱导联动系统 | |
CN115662027A (zh) | 铁路车站应急事件的处理方法、装置和电子设备 | |
CN105894686A (zh) | 一种疏散指示系统和疏散照明导向装置 | |
CN112053550B (zh) | 一种组网式行人监控与引导系统 | |
CN114723161A (zh) | 一种用于隧道管廊的地图路线规划管理系统 | |
CN114067065A (zh) | 一种逃生路线可视化系统及逃生方法 | |
Bryant et al. | The GETAWAY project–improving passenger evacuation techniques in railway stations (and other transport hubs) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19847079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19847079 Country of ref document: EP Kind code of ref document: A1 |