[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020027333A1 - Packaging material for power storage device, method for manufacturing same, and power storage device - Google Patents

Packaging material for power storage device, method for manufacturing same, and power storage device Download PDF

Info

Publication number
WO2020027333A1
WO2020027333A1 PCT/JP2019/030582 JP2019030582W WO2020027333A1 WO 2020027333 A1 WO2020027333 A1 WO 2020027333A1 JP 2019030582 W JP2019030582 W JP 2019030582W WO 2020027333 A1 WO2020027333 A1 WO 2020027333A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage device
thickness
power storage
exterior material
Prior art date
Application number
PCT/JP2019/030582
Other languages
French (fr)
Japanese (ja)
Inventor
秀仁 畑中
山下 孝典
寛典 上所
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019571092A priority Critical patent/JP6690800B1/en
Publication of WO2020027333A1 publication Critical patent/WO2020027333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage device exterior material, a method for manufacturing the same, and a power storage device.
  • a packaging material (outer packaging material) is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • metal exterior materials have been frequently used as exterior materials for power storage devices.
  • a concave portion is generally formed by cold molding, and an electricity storage device element such as an electrode or an electrolytic solution is arranged in a space formed by the concave portion.
  • an electricity storage device element such as an electrode or an electrolytic solution is arranged in a space formed by the concave portion.
  • the present disclosure provides a technology for suppressing curling due to molding of an exterior material for an electric storage device having a base material layer having a polyamide film, having a predetermined thickness, and having excellent insulating properties.
  • the main purpose is to
  • the present inventors have focused on reducing the molding curl by paying attention to the laminated structure of the power storage device exterior material in the exterior storage material for the power storage device using at least the base layer having a polyamide film.
  • the present inventors have found that it is possible to provide an exterior material for an electric storage device in which molding curl is significantly suppressed as compared with a conventional exterior material for an electric storage device.
  • the thickness of the polyamide film layer is set to a range of 10 ⁇ m to 17 ⁇ m, and By setting the thickness of the layer to be in the range of 36 ⁇ m or more and 44 ⁇ m or less, the thickness of the exterior material for the power storage device is relatively thin, and the curl due to molding is effectively suppressed despite having excellent insulating properties. And found it to be an exterior material for use.
  • the present inventors set the total thickness of the laminate constituting the exterior material for an electricity storage device to a specific range of 83.1 ⁇ m or more and 98 ⁇ m or less, and then increased the thickness of the surface coating layer to 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the polyamide film layer is in the range of 10 ⁇ m to 17 ⁇ m and the thickness of the barrier layer is in the range of 36 ⁇ m to 44 ⁇ m.
  • the present inventors have found that a curling due to molding can be effectively suppressed to provide an exterior material for a power storage device.
  • Item 1 At least, a base layer, a barrier layer, and a heat-fusible resin layer, which is configured from a laminate including in this order,
  • the base material layer has at least a polyamide film layer,
  • the thickness of the polyamide film layer is 10 ⁇ m or more and 17 ⁇ m or less
  • the thickness of the barrier layer is 36 ⁇ m or more and 44 ⁇ m or less
  • the exterior material for an electric storage device wherein the thickness of the laminate is 83 ⁇ m or more and 93 ⁇ m or less.
  • An adhesive layer is provided between the barrier layer and the heat-fusible resin layer, The thickness of the adhesive layer is 8 ⁇ m or more and 22 ⁇ m or less, Item 2.
  • the exterior material for an electric storage device according to Item 1 wherein the thickness of the heat-fusible resin layer is 8 ⁇ m or more and 22 ⁇ m or less.
  • An adhesive layer is provided between the barrier layer and the heat-fusible resin layer, The thickness of the adhesive layer is 1 ⁇ m or more and 5 ⁇ m or less, Item 2.
  • the exterior material for an electric storage device according to Item 1 wherein the thickness of the heat-fusible resin layer is 18 ⁇ m or more and 34 ⁇ m or less.
  • the laminate has a breaking energy per unit width of 1 m in MD and a breaking energy per unit width of 1 m in TD calculated from a curve of “measured load (N / 15 mm) ⁇ displacement” measured by a tensile test.
  • the base material layer has at least a polyamide film layer,
  • the thickness of the polyamide film layer is 10 ⁇ m or more and 17 ⁇ m or less
  • the thickness of the barrier layer is 36 ⁇ m or more and 44 ⁇ m or less
  • the method for manufacturing an exterior material for an electricity storage device, wherein the thickness of the laminate is 83 ⁇ m or more and 93 ⁇ m or less.
  • a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer which is composed of a laminate including in this order
  • the base material layer has at least a polyamide film layer
  • the thickness of the surface coating layer is 0.1 ⁇ m or more and 5 ⁇ m or less
  • the thickness of the polyamide film layer is 10 ⁇ m or more and 17 ⁇ m or less
  • the thickness of the barrier layer is 36 ⁇ m or more and 44 ⁇ m or less
  • the exterior material for an electric storage device wherein the thickness of the laminate is 83.1 ⁇ m or more and 98 ⁇ m or less.
  • the present disclosure it is possible to provide a technology for suppressing curling due to molding of a power storage device packaging material having a base material layer having a polyamide film, having a predetermined thickness, and having excellent insulation properties. Further, according to the present disclosure, it is also possible to provide a method of manufacturing an exterior material for a power storage device, and a power storage device.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • 1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure.
  • FIG. 4 is a schematic diagram for explaining a method of evaluating curl due to molding of an exterior material for a power storage device.
  • FIG. 4 is a schematic diagram for explaining a method of evaluating curl due to molding of an exterior material for a power storage device. It is a schematic diagram of the barrier layer of the test sample after shaping
  • FIG. 5 is a schematic diagram of a measured load (N / 15 mm) -displacement curve (MD) obtained in a tensile test of an exterior material for a power storage device.
  • FIG. 6 is a schematic diagram showing a portion where data of a curve of a measured load (N / 15 mm) -displacement amount is integrated.
  • This disclosure includes the following first disclosure and second disclosure.
  • first disclosure for items that are different between the first disclosure and the second disclosure, it is specified which disclosure is the explanation, and for items that are common to the first disclosure and the second disclosure, The first disclosure and the second disclosure will be described without distinction.
  • An exterior material for a power storage device is configured of a laminate including at least a base layer, a barrier layer, and a heat-fusible resin layer in this order, and the base layer is at least a polyamide film.
  • a thickness of the polyamide film layer is 10 ⁇ m or more and 17 ⁇ m or less
  • a thickness of the barrier layer is 36 ⁇ m or more and 44 ⁇ m or less
  • a thickness of the laminate is 83 ⁇ m or more and 93 ⁇ m or less. It is characterized by.
  • the exterior material for an electricity storage device is configured of a laminate including at least a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order.
  • a laminate including at least a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order.
  • the thickness of the surface coating layer is 0.1 ⁇ m or more and 5 ⁇ m or less
  • the thickness of the polyamide film layer is 10 ⁇ m or more and 17 ⁇ m or less
  • the thickness of the barrier layer is Is not less than 36 ⁇ m and not more than 44 ⁇ m
  • the thickness of the laminate is not less than 83.1 ⁇ m and not more than 98 ⁇ m.
  • a numerical range indicated by “to” means “over” and “below”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the thickness of each layer constituting the laminate is a value rounded off to the first decimal place.
  • the energy storage device exterior material 10 of the first disclosure includes, for example, a base layer 1, a barrier layer 3, and a heat-fusible resin layer 4 in this order, as shown in FIG. It is composed of a laminate.
  • the exterior material 10 for a power storage device according to the second disclosure includes a stack including a surface coating layer 6, a base layer 1, a barrier layer 3, and a heat-fusible resin layer 4 in this order. It is composed of the body.
  • the base material layer 1 is on the outermost layer side
  • the heat-fusible resin layer 4 is on the innermost layer.
  • the peripheral portion is heat-fused with the heat-fusible resin layers 4 of the power storage device exterior material 10 facing each other.
  • the power storage device element is housed in the space formed by the above.
  • the base material layer 1 only needs to have at least the polyamide film layer 11, and may be constituted only by the polyamide film layer 11 as shown in FIG. 1 or as shown in FIGS. For example, it may have a polyamide film layer 11 and a polyester film layer 12. From the viewpoint of more effectively suppressing curling due to molding of the power storage device exterior material of the present disclosure, it is preferable that the base material layer 1 be constituted only by the polyamide film layer 11.
  • any of the polyamide film layer 11 and the polyester film layer 12 may be located on the outermost layer side. It is preferable that the polyamide film layer 11 and the polyester film layer 12 are laminated in order from the barrier layer 3 side, from the viewpoint of enhancing the resistance to the electrolytic solution on the outer surface of the device packaging material.
  • the polyamide film layer 11 and the polyester film layer 12 may be laminated so as to be in contact with each other, or, for example, as shown in FIG.
  • the film layer 12 is adhered by an adhesive, and an adhesive layer 13 may be provided between these layers.
  • the exterior material for a power storage device may include an adhesive layer 2 between a base material layer 1 and a barrier layer 3 for the purpose of enhancing their adhesion. May be provided.
  • an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4 as needed for the purpose of enhancing the adhesiveness between them.
  • the outer surface of the base material layer 1 similarly to the second disclosure, as shown in FIG. 6, may have a surface if necessary.
  • a coating layer 6 or the like may be provided.
  • the thickness of the laminate constituting the exterior material for a power storage device of the first disclosure is set to a specific range of 83 to 93 ⁇ m.
  • the thickness of the laminate is set to the range, and the thickness of the polyamide film layer 11 and the barrier layer 3 described later are set to specific ranges, respectively. Curling due to molding is suppressed, despite the relatively small thickness of the exterior material for a power storage device.
  • the thickness of the laminate is preferably at least 85 ⁇ m, more preferably at least 86 ⁇ m, even more preferably at least 87 ⁇ m.
  • the upper limit is preferably 91 ⁇ m or less, more preferably about 90 ⁇ m or less, and still more preferably about 89 ⁇ m or less.
  • the preferred ranges are about 83 to 91 ⁇ m, about 83 to 90 ⁇ m, and about 83 to 89 ⁇ m.
  • the thickness of the laminate is equal to or more than the lower limit, the moldability and the insulating property can be enhanced, and the curl due to the molding can be more effectively suppressed.
  • the thickness of the laminate is equal to or less than the upper limit, curling due to molding of the power storage device exterior material is suppressed, and while the insulating property is increased, the power storage device exterior material is thinned, and the volume of the power storage device element is reduced. To increase the energy density.
  • the thickness of the laminate constituting the exterior material for a power storage device of the second disclosure is set to a specific range of 83.1 to 98 ⁇ m.
  • the thicknesses of the surface coating layer 6, the polyamide film layer 11, and the barrier layer 3 described later are respectively set to specific ranges.
  • the lower limit of the thickness of the laminate is preferably about 85.1 ⁇ m or more.
  • the upper limit is preferably at most about 96 ⁇ m, more preferably at most about 94 ⁇ m, even more preferably at most about 92 ⁇ m, and the preferred range is 83.
  • the thickness of the laminate is equal to or less than the upper limit, curling due to molding of the power storage device exterior material is suppressed, the power storage device exterior material is thinned, and the volume of the power storage device element is increased, Energy density can be increased.
  • the base material layer 1 and the adhesive layer 2 provided as needed with respect to the thickness (total thickness) of the laminate constituting the power storage device packaging material
  • the ratio of the total thickness of the barrier layer 3, the optional adhesive layer 5, the heat-fusible resin layer 4, and the optional surface coating layer 6 is preferably 90% or more, and more preferably. Is 95% or more, more preferably 98% or more.
  • the exterior material for an electricity storage device of the present disclosure includes the base layer 1, the adhesive layer 2, the barrier layer 3, the adhesive layer 5, and the heat-fusible resin layer 4, the exterior material for the electricity storage device is The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting No.
  • the lamination constituting the power storage device exterior material 10 is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the lamination constituting the power storage device exterior material 10 is also provided.
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the body is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the total thickness of the layers located inside the barrier layer 3 is preferably about 16 ⁇ m or more, It is more preferably about 19 ⁇ m or more, and further preferably about 25 ⁇ m or more. Further, the total thickness is preferably about 44 ⁇ m or less, more preferably about 39 ⁇ m or less, and still more preferably about 33 ⁇ m or less.
  • Preferred ranges of the total thickness are about 16 to 44 ⁇ m, about 16 to 39 ⁇ m, about 16 to 33 ⁇ m, about 19 to 44 ⁇ m, about 19 to 39 ⁇ m, about 19 to 33 ⁇ m, about 25 to 44 ⁇ m, about 25 to 39 ⁇ m, and about 25 to 39 ⁇ m.
  • each layer or the thickness of the laminated body of the power storage device packaging material of the present disclosure is determined by cutting the power storage device packaging material in the thickness direction using, for example, a microtome (manufactured by Daiwa Koki Kogyo Co., Ltd .: REM-710 Retorome). Then, the exterior material for a power storage device is divided into two parts, and the obtained cross section can be measured by observing it with, for example, a laser microscope (manufactured by Keyence: VK-9700).
  • the exterior material for an electricity storage device of the present disclosure has a molding depth at which the thickness of a barrier layer 3 described later is 20 ⁇ m (that is, when the exterior material for an electricity storage device of the present disclosure is used for molding,
  • the molding depth when the thickness of the barrier layer 3 becomes 20 ⁇ m) is preferably 4.5 mm or more, more preferably 5.0 mm or more, and the upper limit is preferably 10.0 mm or less, more preferably Is about 8.0 mm or less, and a preferable range is about 4.5 to 10.0 mm, about 4.5 to 8.0 mm, about 5.0 to 10.0 mm, and about 5.0 to 8.0 mm. .
  • the molding depth is, by the method of cold molding, under the condition that the molding depth is increased from 2.0 mm by 0.5 mm at a time, the exterior material for the electricity storage device is molded sequentially, and the barrier layer of the test sample after molding is formed.
  • the relationship between the thickness a of the corner P (see FIG. 9) and the molding depth is plotted, and an approximate straight line is drawn to create a graph. From the graph, the thickness a of the corner P of the barrier layer 3 is 20 ⁇ m. Is obtained. Specifically, it is a value measured by the method described in the examples.
  • the limit forming depth of the exterior material for an electricity storage device of the present disclosure is preferably 4.0 mm or more, more preferably 5.5 mm or more for the lower limit, and preferably 12.0 mm or less for the upper limit. 10.0 mm or less, and a preferable range is about 4.0 to 12.0 mm, about 4.0 to 10.0 mm, about 5.5 to 12.0 mm, and about 5.5 to 10.0 mm.
  • the limit forming depth is defined as the forming depth of a 0.5 mm unit from a forming depth of 0.5 mm at a holding pressure (surface pressure) of 0.25 MPa using a rectangular forming die for an exterior material for a power storage device.
  • the pinhole was formed in the barrier layer, the deepest forming depth where cracks did not occur in all of the 20 samples was Amm, and the pinhole was formed in the barrier layer.
  • the number of samples in which pinholes and the like have occurred at the shallowest molding depth where B and the like have occurred is B, and the value calculated by the following equation is defined as the limit molding depth of the exterior material for a power storage device.
  • Limit forming depth Amm + (0.5 mm / 20 pieces) ⁇ (20 pieces ⁇ B pieces). Specifically, it is a value measured by the method described in the examples. When the limit forming depth is equal to or more than the lower limit, the exterior material for a power storage device can be applied to a high-capacity power storage device.
  • the laminate constituting the exterior material for a power storage device of the present disclosure has a breaking energy (MD (Machine) per unit width of 1 m calculated from a curve of “measured load (N / 15 mm) ⁇ displacement” measured by a tensile test.
  • MD Machine
  • the sum of the breaking energy per unit width in Direction) and the breaking energy per unit width in TD (Transverse Direction) is preferably 100 J or more, more preferably 150 J or more, from the viewpoint of more excellent moldability. More preferably, it is 260 J or more, more preferably 280 J or more, and the upper limit is preferably 650 J or less, more preferably 450 J or less, further preferably 400 J or less, and still more preferably 380 J or less.
  • the breaking energy is a value measured by the method described in Examples.
  • the tensile test means a test of tensile properties.
  • the breaking energy When the breaking energy is equal to or more than the lower limit, the moldability and the insulating property can be improved while curling due to the molding of the exterior material for a power storage device is suppressed. Further, when the breaking energy is equal to or less than the upper limit, curling due to molding of the exterior material for a power storage device can be more effectively suppressed.
  • the materials and thicknesses of the base material layer 1, the barrier layer 3, and the heat-fusible resin layer 4 constituting the laminate are adjusted.
  • the layer that most contributes to the magnitude of the breaking energy includes the base material layer 1.
  • a material constituting the base material layer 1 a material described later is used.
  • a type of a film forming method and conditions at the time of film forming for example, a film forming temperature, a stretching ratio, The cooling temperature, the cooling rate, and the heat setting temperature after stretching
  • the film forming method include a T-die method, a calendar method, and a tubular method.
  • a heating step of the laminate after laminating each layer (for example, a heating step after obtaining a laminate of a base material layer / adhesive layer / barrier layer, and an adhesive layer / In a heating step after laminating the heat-fusible resin layer, etc.), it is preferable to heat at an appropriate temperature and for an appropriate time.
  • the upper limit of the heating temperature in the heating step is preferably about 185 ° C. or lower, more preferably about 180 ° C. or lower, further preferably 178 ° C. or lower, and the lower limit of the heating temperature is preferably 150 ° C.
  • the preferable range of the heating temperature in the heating step is about 150 to 185 ° C, about 150 to 180 ° C, about 150 to 178 ° C, about 160 to 185 ° C, about 160 to 180 ° C, about 160 to 178 ° C, and about 165 to 185 ° C.
  • the upper limit of the heating time in the heating step is preferably 30 minutes or less, more preferably 15 minutes or less, further preferably 10 minutes or less, and the lower limit is preferably 0.1 minutes or more, more preferably 0.5 minutes or more, more preferably 1 minute or more.
  • the heating temperature and the heating time in the heating step are preferably combined from these.
  • the MD (Machine Direction) and the TD (Transverse Direction) in the manufacturing process of the barrier layer 3 described later can be generally distinguished.
  • the barrier layer 3 is made of an aluminum foil
  • a linear streak called a so-called rolling mark is formed on the surface of the aluminum foil in the rolling direction (RD: Rolling Direction) of the aluminum foil. Since the rolling marks extend along the rolling direction, the rolling direction of the aluminum foil can be grasped by observing the surface of the aluminum foil.
  • the MD of the laminate and the RD of the aluminum foil usually match, the surface of the aluminum foil of the laminate is observed, and the rolling direction (RD) of the aluminum foil is specified. Thereby, the MD of the laminate can be specified.
  • the TD of the stacked body is perpendicular to the MD of the stacked body, the TD of the stacked body can be specified.
  • the base material layer 1 is a layer provided for the purpose of, for example, exerting a function as a base material of the exterior material for a power storage device.
  • the base layer 1 is located on the outer layer side of the power storage device exterior material.
  • the base material layer 1 has at least a polyamide film layer 11. As described above, the base material layer 1 may be composed of only the polyamide film layer 11 or may have the polyamide film layer 11 and the polyester film layer 12.
  • the polyamide film layer 11 and the polyester film layer 12 may each be a resin film or may be formed by applying a resin.
  • the resin may contain additives described below.
  • the resin film may be an unstretched film or a stretched film.
  • the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable.
  • a stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
  • polyamide constituting the polyamide film layer 11 include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; Hexamethylenediamine-isophthalic acid-terephthalic acid copolymers such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid and T represents terephthalic acid) containing structural units derived from an acid and / or isophthalic acid Polyamide containing polyamide such as polyamide, polyamide MXD6 (polymethaxylylene adipamide); alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methane adipamide); lactam component and 4,4′-diphenylmethane -Diiso Polyamides obtained by copolymerizing isocyanate components such as anates, polyesteramide copolymers and polyetheresteramide
  • the polyamide film layer 11 is preferably made of a stretched polyamide film, furthermore, a biaxially stretched polyamide film, particularly a biaxially stretched nylon film.
  • the base material layer 1 may be a single layer or may be composed of two or more layers.
  • the base material layer 1 may be a laminate in which a resin film is laminated with an adhesive or the like, or may be co-extruded with a resin to form two or more layers. It may be a laminated body of a resin film obtained.
  • a laminate of resin films in which two or more layers are formed by co-extrusion of a resin may be used as the base material layer 1 without stretching, or may be used as the base material layer 1 by uniaxial stretching or biaxial stretching.
  • the thickness of the polyamide film layer 11 is set in a specific range of 10 to 17 ⁇ m. From the viewpoint of enhancing the formability and the insulating property while suppressing the curl due to the molding of the exterior material for a power storage device more preferably, the lower limit of the thickness of the polyamide film layer 11 is preferably about 11 ⁇ m or more, more preferably about 12 ⁇ m or more.
  • the upper limit is preferably about 17 ⁇ m or less, more preferably 16 ⁇ m or less, and still more preferably 15 ⁇ m or less
  • the preferred range is about 10 to 16 ⁇ m, about 10 to 15 ⁇ m, About 11 to 17 ⁇ m, about 11 to 16 ⁇ m, about 11 to 15 ⁇ m, about 12 to 17 ⁇ m, about 12 to 16 ⁇ m, about 12 to 15 ⁇ m, about 13 to 17 ⁇ m, about 13 to 16 ⁇ m, and about 13 to 15 ⁇ m.
  • the thickness of the polyamide film layer 11 is equal to or greater than the lower limit, the moldability can be improved while curling due to molding of the exterior material for an electricity storage device can be improved. Curling due to molding can be effectively suppressed while reducing the thickness of the device exterior material.
  • polyester constituting the polyester film layer 12 examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolymerized polyester examples include a copolymerized polyester mainly composed of ethylene terephthalate as a repeating unit.
  • a copolymer polyester (hereinafter abbreviated to polyethylene (terephthalate / isophthalate)) which is polymerized with ethylene isophthalate with ethylene terephthalate as a main repeating unit, polyethylene (terephthalate / adipate), polyethylene (terephthalate / Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decanedicarboxylate) and the like.
  • These polyesters may be used alone or in a combination of two or more.
  • the polyester film layer 12 is preferably made of a biaxially stretched polyester film, particularly a biaxially stretched polyethylene terephthalate film.
  • the thickness of the polyester film layer 12 may be, for example, the thickness of the laminate constituting the exterior material for an electric storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3.
  • the thickness is not particularly limited as long as it is set within the above-mentioned predetermined range of the present disclosure, and may be, for example, about 17 ⁇ m or less, preferably about 17 to 8 ⁇ m, and more preferably about 17 to 10 ⁇ m.
  • the thickness of the polyester film layer 12 is equal to or more than the above lower limit value, it is possible to increase the insulation while suppressing curling due to the molding of the exterior material for a power storage device.
  • the thickness of the polyester film layer 12 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for an electric storage device.
  • the lamination order of the polyamide film layer 11 and the polyester film layer 12 is not particularly limited, but from the viewpoint of improving the electrolytic solution resistance of the exterior material for a power storage device, from the barrier layer 3 side described later. It is preferable that the polyamide film layer 11 and the polyester film layer 12 are laminated in this order.
  • the polyamide film layer 11 and the polyester film layer 12 may be laminated so as to be in contact with each other, or for example, as shown in FIG. And an adhesive layer 13 may be provided between these layers.
  • an adhesive layer 13 may be provided between these layers.
  • a method of bonding in a hot melt state such as a co-extrusion method, a sand laminating method, and a thermal laminating method may be mentioned.
  • the adhesive used may be a two-part curable adhesive or a one-part curable adhesive.
  • the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, an ultraviolet curable type, and an electron beam curable type.
  • the thickness of the adhesive layer 13 located between the polyamide film layer 11 and the polyester film layer 12 is preferably about 0.1 to 5 ⁇ m, more preferably about 0.5 to 3 ⁇ m.
  • the adhesive layer 13 may contain the same coloring agent as the adhesive layer 2 described later.
  • the base material layer 1 may further include another layer in addition to the polyamide film layer 11 and the polyester film layer 12 provided as needed.
  • the material forming the other layers is not particularly limited as long as it has insulating properties.
  • a material for forming another layer for example, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, polyetherimide, polyimide, and mixtures and copolymers thereof And the like.
  • the thickness of the other layer is preferably about 1 to 20 ⁇ m, more preferably about 1 to 10 ⁇ m.
  • additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
  • a lubricant is present on the surface of the base material layer 1 from the viewpoint of enhancing the moldability of the exterior material for an electric storage device.
  • the lubricant is not particularly limited, but preferably includes an amide-based lubricant exemplified in the heat-fusible resin layer 4 described below.
  • the amount thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and still more preferably 5 to 14 mg / m 2. / M 2 .
  • the lubricant present on the surface of the base material layer 1 may be obtained by oozing out the lubricant contained in the resin constituting the base material layer 1 or by applying the lubricant to the surface of the base material layer 1. You may.
  • the overall thickness of the base material layer 1 may be reduced, while reducing the total thickness of the power storage device packaging material, suppressing curl due to molding, improving moldability and insulating properties, and further improving the insulating properties.
  • the lower limit is preferably at least 10 ⁇ m, more preferably at least 12 ⁇ m or at least 13 ⁇ m
  • the upper limit is preferably at most about 20 ⁇ m, more preferably at most 19 ⁇ m, further preferably at most 17 ⁇ m.
  • Preferred ranges are about 10 to 20 ⁇ m, about 10 to 19 ⁇ m, about 10 to 17 ⁇ m, about 12 to 20 ⁇ m, about 12 to 19 ⁇ m, about 12 to 17 ⁇ m, about 13 to 20 ⁇ m, about 13 to 19 ⁇ m, and about 13 to 19 ⁇ m.
  • the overall thickness of the base material layer 1 is equal to or greater than the lower limit, curling due to molding of the exterior material for a power storage device can be suppressed, and insulation can be improved.
  • the overall thickness of the base material layer 1 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for an electric storage device.
  • the base material layer 1 is composed of two or more layers and these layers are bonded by an adhesive layer such as the adhesive layer 13, the entire thickness of the base material layer 1 Does not include the thickness of the adhesive layer.
  • the adhesive layer 2 is a layer provided between the base layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesion between the base layer 1 and the barrier layer 3. .
  • the adhesive layer 2 is formed of an adhesive capable of adhering the base material layer 1 and the barrier layer 3.
  • the adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, and the like. Further, it may be a two-part curable adhesive (two-part adhesive), a one-part curable adhesive (one-part adhesive), or a resin that does not involve a curing reaction. Further, the adhesive used for forming the adhesive layer 2 may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, and the like.
  • the adhesive layer 2 may be a single layer or a multilayer.
  • the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyether; polyurethane; epoxy resin; Phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin-based resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; Polyimide; Polycarbonate; Amino resin such as urea resin and melamine resin; Rubber such as chloroprene rubber, nitrile rubber, styrene-butadiene rubber; Silicone resin It is.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene
  • these adhesive components may be used alone, or two or more thereof may be used in combination.
  • a polyurethane adhesive is preferable.
  • these adhesive resins can be used together with an appropriate curing agent to increase the adhesive strength.
  • an appropriate one is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like according to the functional group of the adhesive component.
  • the polyurethane adhesive examples include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound.
  • a two-component curing type polyurethane adhesive containing a polyol such as a polyester polyol, a polyether polyol, or an acrylic polyol as a main component and a curing agent of an aromatic or aliphatic polyisocyanate is used.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit. Since the adhesive layer 2 is formed of the polyurethane adhesive, the outer material for an electric storage device has excellent electrolyte resistance, and the base layer 1 is prevented from peeling even when the electrolyte adheres to the side surface. .
  • the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, and the like.
  • the adhesive layer 2 contains a coloring agent
  • the exterior material for an electric storage device can be colored.
  • Known coloring agents such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as the adhesiveness of the adhesive layer 2 is not impaired.
  • the organic pigments include azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigothioindigo, perinone-perylene, isoindolenin, and benzimidazolone pigments.
  • the pigment include carbon black pigments, titanium oxide pigments, cadmium pigments, lead pigments, chromium oxide pigments, iron pigments, and the like, and mica (mica) fine powder, fish scale foil and the like.
  • coloring agents for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
  • the average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is a median size measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for an electric storage device is colored, and is, for example, about 5 to 60% by mass, and preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 2 is such that the base layer 1 and the barrier layer 3 are adhered to each other, and the thickness of the laminate constituting the exterior material for the electric storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are determined.
  • the lower limit is, for example, about 1 ⁇ m or more, about 2 ⁇ m or more
  • the upper limit is about 10 ⁇ m or less, about 5 ⁇ m or less
  • a preferred range is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the thickness of the adhesive layer 2 is equal to or more than the above lower limit, the adhesiveness between the base material layer 1 and the barrier layer 3 can be effectively increased.
  • the thickness of the adhesive layer 2 is equal to or less than the above upper limit, curling due to molding is suppressed while thinning the exterior material for an electric storage device, and drying and curing can be performed in a shorter time. Excellent.
  • the coloring layer is a layer provided as needed between the base material layer 1 and the barrier layer 3 (not shown).
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided outside the base material layer 1.
  • the exterior material for a power storage device can be colored.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1, the surface of the adhesive layer 2, or the surface of the barrier layer 3.
  • a colorant such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • coloring agent contained in the coloring layer are the same as those exemplified in the section of [Adhesive Layer 2].
  • the barrier layer 3 is a layer that suppresses at least intrusion of moisture.
  • Examples of the barrier layer 3 include a metal foil having a barrier property, a vapor-deposited film, and a resin layer.
  • Examples of the deposited film include a metal deposited film, an inorganic oxide deposited film, and a carbon-containing inorganic oxide deposited film, and examples of the resin layer include polyvinylidene chloride.
  • Examples of the barrier layer 3 include a resin film provided with at least one of these deposited films and resin layers.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material forming the barrier layer 3 include an aluminum alloy, stainless steel, and titanium steel. When the metal material is used as the metal foil, it may include at least one of an aluminum alloy foil and a stainless steel foil. preferable.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, from the viewpoint of improving the formability of the exterior material for the power storage device, and further improving the formability. Therefore, it is preferable to use an aluminum alloy foil containing iron.
  • the iron content is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, a packaging material for an electric storage device having more excellent moldability can be obtained. When the iron content is 9.0% by mass or less, a packaging material for a power storage device having higher flexibility can be obtained.
  • soft aluminum alloy foil examples include, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8079PO. Foil.
  • the stainless steel foil examples include austenitic, ferritic, austenitic / ferritic, martensitic, and precipitation hardening stainless steel foils. It is preferable that the stainless steel foil is made of austenitic stainless steel from the viewpoint of providing an exterior material for a power storage device having excellent moldability.
  • austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L and the like, among which SUS304 is particularly preferred.
  • the thickness of the barrier layer 3 is set to a specific range of 36 to 44 ⁇ m.
  • the lower limit of the thickness of the barrier layer 3 is preferably 38 ⁇ m or more, more preferably about 39 ⁇ m or more
  • the upper limit is preferably Is about 42 ⁇ m or less, more preferably about 41 ⁇ m or less.
  • Preferred ranges are about 36 to 42 ⁇ m, about 36 to 41 ⁇ m, about 38 to 44 ⁇ m, about 38 to 42 ⁇ m, about 38 to 41 ⁇ m, about 39 to 44 ⁇ m, and about 39 to 44 ⁇ m.
  • the thickness of the barrier layer 3 is equal to or more than the above lower limit, the moldability of the exterior material for a power storage device can be improved. In addition, when the thickness of the barrier layer 3 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for the power storage device.
  • the barrier layer 3 is a metal foil, it is preferable to provide a corrosion-resistant coating on at least the surface opposite to the base material layer 1 in order to prevent dissolution and corrosion.
  • the barrier layer 3 may have a corrosion resistant film on both sides.
  • the corrosion-resistant film refers to, for example, a hot-water conversion treatment such as a boehmite treatment, a chemical conversion treatment, an anodic oxidation treatment, and a corrosion prevention treatment of applying a coating agent on the surface of the barrier layer 3.
  • a thin film having corrosion resistance As the treatment for forming the corrosion resistant film, one kind may be performed, or two or more kinds may be combined.
  • the hydrothermal alteration treatment and the anodic oxidation treatment are treatments in which the surface of the metal foil is dissolved by a treating agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of the chemical conversion process.
  • the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
  • the anti-corrosion film prevents delamination between the barrier layer 3 (for example, aluminum alloy foil) and the base material layer 1 during the formation of the exterior material for an electricity storage device, and the fluoride generated by the reaction between the electrolyte and moisture. Dissolution and corrosion of the surface of the barrier layer 3 by hydrogen, particularly, dissolution and corrosion of aluminum oxide present on the surface of the barrier layer 3 when the barrier layer 3 is an aluminum alloy foil, are prevented. It shows an effect of improving adhesion (wetting), preventing delamination between the base layer 1 and the barrier layer 3 during heat sealing, and preventing delamination between the base layer 1 and the barrier layer 3 during molding.
  • the barrier layer 3 for example, aluminum alloy foil
  • the corrosion-resistant film formed by the chemical conversion treatment various types are known, and at least one of a phosphate, a chromate, a fluoride, a triazine thiol compound, and a rare earth oxide is mainly used. And a corrosion-resistant film containing.
  • a rare earth oxide a cerium compound is preferable, and among them, cerium oxide is preferable.
  • Examples of the chemical conversion treatment using phosphate or chromate include chromate chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, chromate treatment, and the like.
  • Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, acetyl chromate, chromium chloride, potassium chromium sulfate, and the like.
  • Examples of the phosphorus compound used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid.
  • Examples of the chromate treatment include an etching chromate treatment, an electrolytic chromate treatment, and a coating type chromate treatment, and a coating type chromate treatment is preferable.
  • the inner layer side of the barrier layer 3 (for example, an aluminum alloy foil) is first coated with a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, and an acid activation method.
  • a phosphoric acid such as a Cr (chromium) salt, a Ti (titanium) phosphate, a Zr (zirconium) phosphate, or a Zn (zinc) salt is applied to the degreasing surface.
  • a treatment liquid mainly containing a metal salt and a mixture of these metal salts, or a treatment liquid mainly containing a non-metallic phosphate and a mixture of these non-metal salts, or a synthetic resin and the like is a process of applying a treatment liquid comprising a mixture of the above by a well-known coating method such as a roll coating method, a gravure printing method, and a dipping method, and drying.
  • Various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents and ether solvents can be used as the treatment liquid, and water is preferred.
  • Examples of the resin component used at this time include polymers such as a phenolic resin and an acrylic resin, and an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4).
  • the used chromate treatment is exemplified.
  • the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. Is also good.
  • the acrylic resin must be polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or a derivative thereof such as a sodium salt, an ammonium salt, or an amine salt. Is preferred.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is also preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, ammonium salt, sodium salt of a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, Or it is also preferably an amine salt.
  • acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, A straight-chain or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group is exemplified.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, A straight or branched chain having 1 to 4 carbon atoms, in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group is substituted And an alkyl group.
  • the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulas (1) to (4) is preferably, for example, about 500 to 1,000,000, and is preferably about 1,000 to 20,000. More preferred.
  • the aminated phenol polymer is produced, for example, by subjecting a phenol compound or a naphthol compound to formaldehyde to polycondensation to produce a polymer comprising a repeating unit represented by the above general formula (I) or (III), And an amine (R 1 R 2 NH) to introduce a water-soluble functional group (—CH 2 NR 1 R 2 ) into the polymer obtained above.
  • the aminated phenolic polymer is used alone or in combination of two or more.
  • the corrosion resistant film is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth oxide sol, an anionic polymer and a cationic polymer is applied. Thin film to be formed.
  • the coating agent may further contain a phosphoric acid or a phosphate, and a crosslinking agent for crosslinking the polymer.
  • fine particles of the rare earth oxide for example, particles having an average particle diameter of 100 nm or less
  • the rare earth element oxide include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide.
  • Cerium oxide is preferable from the viewpoint of further improving the adhesion.
  • the rare earth element oxides contained in the corrosion resistant film can be used alone or in combination of two or more.
  • various solvents such as water, an alcohol solvent, a hydrocarbon solvent, a ketone solvent, an ester solvent, and an ether solvent can be used, and water is preferable.
  • the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is graft-polymerized on an acrylic main skeleton, polyallylamine or a derivative thereof.
  • the anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the crosslinking agent is at least one selected from the group consisting of a compound having any functional group of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
  • a dispersion of fine particles of a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide or barium sulfate in phosphoric acid is applied to the surface of the barrier layer 3, Those formed by performing a baking treatment at 150 ° C. or more are exemplified.
  • the corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary.
  • a cationic polymer and an anionic polymer include those described above.
  • composition of the corrosion-resistant coating can be performed, for example, using a time-of-flight secondary ion mass spectrometry.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited.
  • a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 is used.
  • the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of phosphorus
  • the thickness of the corrosion-resistant coating if the thickness of the laminate constituting the exterior material for the power storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are set within the above-described predetermined range of the present disclosure, although not particularly limited, it is preferably about 1 nm to 20 ⁇ m, more preferably about 1 nm to 100 nm, and still more preferably about 1 nm to 50 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the heat-fusible resin layer. Is mentioned.
  • the thickness of the corrosion resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy.
  • the time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
  • a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer 3 by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the barrier layer 3 is coated. This is performed by heating so that the temperature is about 70 to 200 ° C.
  • the barrier layer 3 may be subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like in advance. By performing the degreasing treatment in this manner, the chemical conversion treatment of the surface of the barrier layer 3 can be performed more efficiently.
  • the heat-fusible resin layer 4 corresponds to the innermost layer and has a function of heat-sealing the heat-fusible resin layers together during assembly of the power storage device to seal the power storage device element. (Sealant layer).
  • the resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but a resin containing a polyolefin skeleton such as a polyolefin or an acid-modified polyolefin is preferable.
  • the fact that the resin constituting the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography / mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected by infrared spectroscopy.
  • the degree of acid modification is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; homopolypropylene, block copolymers of polypropylene (for example, propylene and Polypropylene, such as a block copolymer of ethylene) and a random copolymer of polypropylene (eg, a random copolymer of propylene and ethylene); a propylene- ⁇ -olefin copolymer; and a terpolymer of ethylene-butene-propylene.
  • polypropylene is preferable.
  • the polyolefin resin may be a block copolymer or a random copolymer.
  • One of these polyolefin resins may be used alone, or two or more thereof may be used in combination.
  • the polyolefin may be a cyclic polyolefin.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer.
  • Examples of the olefin constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, isoprene and the like.
  • cyclic monomer that is a constituent monomer of the cyclic polyolefin examples include a cyclic alkene such as norbornene; and a cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Of these, preferred are cyclic alkenes, and more preferred are norbornenes.
  • the acid-modified polyolefin is a polymer obtained by modifying a polyolefin by block polymerization or graft polymerization with an acid component.
  • the polyolefin to be acid-modified the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a cross-linked polyolefin can also be used.
  • the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, and anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • the acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin instead of the acid component, or by subjecting the cyclic polyolefin to block polymerization or graft polymerization of the acid component. is there.
  • the cyclic polyolefin to be acid-modified is the same as described above.
  • the acid component used for the acid modification is the same as the acid component used for the above-mentioned polyolefin modification.
  • Preferred examples of the acid-modified polyolefin include a polyolefin modified with a carboxylic acid or its anhydride, a polypropylene modified with a carboxylic acid or its anhydride, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene.
  • the heat-fusible resin layer 4 may be formed of one kind of resin alone, or may be formed of a blend polymer obtained by combining two or more kinds of resins. Further, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
  • a lubricant is preferably present on the surface of the heat-fusible resin layer 4 from the viewpoint of improving the moldability of the exterior material for an electric storage device.
  • a lubricant is present on the surface of the heat-fusible resin layer 4, and by forming the lubricant layer, curl due to molding of the power storage device exterior material is suppressed and moldability of the power storage device exterior material is improved.
  • the lubricant is not particularly limited, and a known lubricant can be used.
  • a lubricant may be used alone or in combination of two or more.
  • the thickness of the lubricant layer is also included in the thickness of the laminate constituting the exterior material for a power storage device of the present disclosure.
  • the lubricant is not particularly limited, but preferably includes an amide lubricant.
  • the amide-based lubricant include, for example, saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, fatty acid ester amide, aromatic bisamide and the like.
  • Specific examples of the saturated fatty acid amide include lauric amide, palmitic amide, stearic amide, behenic amide, and hydroxystearic amide.
  • Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide.
  • substituted amide examples include N-oleyl palmitic amide, N-stearyl stearamide, N-stearyl oleamide, N-oleyl stearamide, N-stearyl erucamide, and the like.
  • methylolamide examples include methylol stearamide.
  • saturated fatty acid bisamide examples include methylene bisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearin Acid amide, hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N, N'-distearyladipamide, N, N'-distearylsebacic amide and the like.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipamide, N, N'-dioleyl sebacic amide And the like.
  • Specific examples of the fatty acid ester amide include stearoamidoethyl stearate.
  • Specific examples of the aromatic bisamide include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, N, N'-distearylisophthalic acid amide, and the like.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for an electric storage device. And more preferably about 15 to 40 mg / m 2 .
  • the lubricant present on the surface of the heat-fusible resin layer 4 may be formed by exuding the lubricant contained in the resin constituting the heat-fusible resin layer 4, The surface may be coated with a lubricant.
  • the thickness of the heat-fusible resin layer 4 the thickness of the laminate constituting the exterior material for the electricity storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are within the above-mentioned predetermined ranges of the present disclosure. While setting, it can be set according to the presence or absence of the adhesive layer 5, the thickness of the adhesive layer 5, and the like.
  • the upper limit of the thickness of the heat-fusible resin layer 4 is, for example, about 34 ⁇ m or less, preferably about 33 ⁇ m or less, more preferably 32 ⁇ m or less, and the lower limit is about 8 ⁇ m or more, preferably 10 ⁇ m or more, more preferably Is about 12 ⁇ m or more, and a preferable range is about 8 to 34 ⁇ m, about 8 to 33 ⁇ m, about 8 to 32 ⁇ m, about 10 to 34 ⁇ m, about 10 to 33 ⁇ m, about 10 to 32 ⁇ m, about 12 to 34 ⁇ m, or about 12 to 33 ⁇ m About 12 to 32 ⁇ m.
  • the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 22 ⁇ m or less, more preferably about 21 ⁇ m or less. More preferably, the thickness is about 20 ⁇ m or less, and the lower limit is preferably about 8 ⁇ m or more, more preferably about 9 ⁇ m or more, and still more preferably about 10 ⁇ m or more, and the preferred range is about 8 to 22 ⁇ m or 8 to 22 ⁇ m.
  • the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 34 ⁇ m or less, more preferably about 33 ⁇ m or less.
  • the thickness is about 32 ⁇ m or less, and the lower limit is preferably about 18 ⁇ m or more, more preferably about 19 ⁇ m or more, and still more preferably about 20 ⁇ m or more, and the preferred range is about 18 to 34 ⁇ m, 18 to 34 ⁇ m.
  • the lower limit is preferably about 18 ⁇ m or more, more preferably about 19 ⁇ m or more, and still more preferably about 20 ⁇ m or more, and the preferred range is about 18 to 34 ⁇ m, 18 to 34 ⁇ m.
  • the adhesive layer 5 is a layer provided as necessary between the barrier layer 3 and the heat-fusible resin layer 4 in order to firmly adhere the layer.
  • the adhesive layer 5 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4.
  • resin used for forming the adhesive layer 5 polyolefin resins such as the polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin exemplified in the heat-fusible resin layer 4 described above can be suitably used.
  • polyolefin resin polypropylene resins such as polypropylene, cyclic polypropylene, acid-modified polypropylene, and acid-modified cyclic polypropylene can be preferably used.
  • the heat-fusible resin layer 4 and the adhesive layer 5 can be suitably formed by extrusion.
  • the same resin as the adhesive exemplified in the adhesive layer 2 can be used.
  • the polyolefin resin is preferably a polyolefin or an acid-modified polyolefin, and particularly preferably a polypropylene or an acid-modified polypropylene. That is, the resin constituting the adhesive layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton.
  • the fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy or gas chromatography / mass spectrometry, and the analysis method is not particularly limited.
  • a peak derived from maleic anhydride is detected.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • the acid-modified polyolefin is a polymer obtained by modifying a polyolefin by block polymerization or graft polymerization with an acid component such as carboxylic acid.
  • the acid component used for the modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, and anhydrides thereof.
  • polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; homopolypropylene, block copolymers of polypropylene (for example, block copolymers of propylene and ethylene), and polypropylenes.
  • Polypropylene such as a random copolymer (for example, a random copolymer of propylene and ethylene); and a terpolymer of ethylene-butene-propylene.
  • polyethylene and polypropylene are preferred.
  • a maleic anhydride-modified polyolefin particularly, a maleic anhydride-modified polypropylene is preferable.
  • the adhesive layer 5 is made of a resin composition containing an acid-modified polyolefin and a curing agent. More preferably, the cured product is Preferred examples of the acid-modified polyolefin include those described above.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group.
  • the cured product is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group.
  • the adhesive layer 5 preferably includes at least one selected from the group consisting of a urethane resin, an ester resin, and an epoxy resin, and more preferably includes a urethane resin and an epoxy resin.
  • the ester resin for example, an amide ester resin is preferable.
  • the amide ester resin is generally formed by a reaction between a carboxyl group and an oxazoline group.
  • the adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin.
  • the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like.
  • the presence of the unreacted product is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the curing agent having a heterocyclic ring include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the curing agent having a C—O—C bond examples include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin.
  • the fact that the adhesive layer 5 is a cured product of the resin composition containing these curing agents may be determined, for example, by gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF) SIMS) and X-ray photoelectron spectroscopy (XPS).
  • GCMS gas chromatography mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively improving the adhesion between the acid-resistant film (corrosion-resistant film) and the adhesive layer 5, a polyfunctional isocyanate compound is preferably used.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • polyfunctional isocyanate-based curing agent examples include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), And a mixture thereof, a copolymer with another polymer, and the like.
  • PDI pentane diisocyanate
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably, it is within the range.
  • the compound having an oxazoline group is not particularly limited as long as it has a oxazoline skeleton.
  • Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Examples of commercially available products include Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. Thereby, the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)) and the adhesive layer 5 can be effectively increased.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group present in the molecule, and a known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2,000, more preferably about 100 to 1,000, and further preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions using polystyrene as a standard sample.
  • epoxy resin examples include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and more preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferred. Thereby, the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)) and the adhesive layer 5 can be effectively increased.
  • the adhesive layer 5 is a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
  • a polycarbodiimide compound having at least two or more carbodiimide groups is preferable.
  • the curing agent may be composed of two or more compounds.
  • the content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass. More preferably, it is in the range of about 0.1 to 10% by mass.
  • the adhesive layer 5 can be suitably formed using, for example, an adhesive.
  • the adhesive include a non-crystalline polyolefin resin (A) having a carboxyl group, a polyfunctional isocyanate compound (B), and a tertiary amine having no functional group that reacts with the polyfunctional isocyanate compound (B) ( C) and the polyfunctional isocyanate compound (B) in an amount of 0.3 to 10 mol based on 1 mol of the carboxyl group, based on 1 mol of the carboxyl group.
  • those formed from an adhesive composition containing the tertiary amine (C) in a range of 1 to 10 mol are examples of the adhesive.
  • the adhesive contains a styrene-based thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and contains a styrene-based thermoplastic elastomer (A) and a tackifier (B). ),
  • the styrene-based thermoplastic elastomer (A) is contained in an amount of 20 to 90% by weight, and the tackifier (B) is contained in an amount of 10 to 80% by weight in 100% by weight of the styrene-based thermoplastic elastomer (A).
  • the tackifier (B) based on 1 mol of the active hydrogen derived from the styrene thermoplastic elastomer (A).
  • the active hydrogen derived from the functional group is 0 to 15 mol
  • the polyisocyanate (C) is composed of the active hydrogen derived from the styrene-based thermoplastic elastomer (A) and the active hydrogen derived from the tackifier (B).
  • the total one mole of the sexual hydrogen may also be mentioned such as those isocyanate groups is formed by three-adhesive composition consisting of those that are included in a range of 150 mol.
  • the thickness of the adhesive layer 5 while the thickness of the laminate constituting the exterior material for the electricity storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are set within the above-mentioned predetermined range of the present disclosure, It can be set according to the thickness of the heat-fusible resin layer 4 and the like.
  • the upper limit of the thickness of the adhesive layer 5 is, for example, about 22 ⁇ m or less, preferably about 21 ⁇ m or less, more preferably 20 ⁇ m or less, and the lower limit is, for example, about 1 ⁇ m or more, preferably 2 ⁇ m or more. Is about 1 to 22 ⁇ m, about 1 to 21 ⁇ m, about 1 to 20 ⁇ m, about 2 to 22 ⁇ m, about 2 to 21 ⁇ m, about 2 to 20 ⁇ m.
  • the lower limit of the thickness of the adhesive layer 5 is preferably about 8 ⁇ m or more, more preferably about 9 ⁇ m or more
  • the upper limit is preferably about 22 ⁇ m or less, more preferably about 21 ⁇ m or less
  • the preferred range is about 8 to 22 ⁇ m, about 8 to 21 ⁇ m, about 9 to 22 ⁇ m, or about 9 to 21 ⁇ m.
  • the adhesive layer 5 it is preferable to use a polyolefin-based resin such as the polyolefin resin exemplified in the heat-fusible resin layer 4 and the acid-modified polyolefin resin.
  • the lower limit of the thickness of the adhesive layer 5 is preferably about 1 ⁇ m or more, more preferably about 2 ⁇ m or more.
  • the upper limit is preferably about 5 ⁇ m or less, more preferably about 4 ⁇ m or less, and the preferred range is about 1 to 5 ⁇ m, about 1 to 4 ⁇ m, about 2 to 5 ⁇ m, or about 2 to 4 ⁇ m.
  • the adhesive layer 5 it is preferable to use a cured product of an acid-modified polyolefin and a curing agent, or the same adhesive as the adhesive exemplified in the adhesive layer 2.
  • the exterior material for a power storage device according to the first disclosure may be provided on the base layer 1 (of the base layer 1 if necessary) for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like.
  • a surface coating layer 6 may be provided on the side opposite to the barrier layer 3).
  • the exterior material for a power storage device according to the second disclosure includes a surface coating layer 6.
  • the surface coating layer 6 is a layer located on the outermost layer side of the power storage device when the power storage device is assembled using the power storage device exterior material.
  • the surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
  • the resin forming the surface coating layer 6 is a curable resin
  • the resin may be either a one-part curable type or a two-part curable type, but is preferably a two-part curable type.
  • the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin.
  • the surface coating layer 6 may contain an additive.
  • the additive include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the additive is not particularly limited, and may be any of an inorganic substance and an organic substance.
  • the shape of the additive is not particularly limited, and examples thereof include a sphere, a fiber, a plate, an irregular shape, and a balloon.
  • the thickness of the surface coating layer 6 the thickness of the laminate, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 that exhibit the above-described function as the surface coating layer 6 and that constitute the exterior material for an electric storage device are described. Is not particularly limited as long as it is set to the predetermined range of the present disclosure, but preferable lower limit is about 0.1 ⁇ m or more, about 0.5 ⁇ m or more, about 1 ⁇ m or more, about 2 ⁇ m or more, and preferable upper limit is About 5 ⁇ m or less, about 4 ⁇ m or less, about 3 ⁇ m or less.
  • Preferred ranges are about 0.1 to 5 ⁇ m, about 0.1 to 4 ⁇ m, about 0.1 to 3 ⁇ m, about 0.5 to 5 ⁇ m, and about 0.5 to 5 ⁇ m.
  • additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, and oxide.
  • the additives may be used alone or in a combination of two or more.
  • silica, barium sulfate and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • various surface treatments such as an insulation treatment and a high dispersibility treatment may be applied to the surface of the additive.
  • at least one of the surface and the inside of the surface coating layer 6 may be provided with a lubricant, an anti-blocking agent, a matting agent, if necessary, depending on the surface coating layer 6 and the functionality to be provided on the surface.
  • It may contain additives such as a flame retardant, an antioxidant, a light stabilizer, a tackifier, an antistatic agent, and an elastomer resin.
  • Specific examples of the lubricant include, for example, the above-mentioned lubricant.
  • the fine particles described above may function as a lubricant, an anti-blocking agent, and a matting agent.
  • the method for forming the surface coating layer 6 is not particularly limited, and includes, for example, a method of applying a resin for forming the surface coating layer 6.
  • a resin mixed with the additive may be applied.
  • the method of manufacturing the exterior material for power storage device of the present disclosure is not particularly limited as long as a laminate in which each layer having a predetermined composition is laminated can be obtained. That is, in the method for manufacturing an exterior material for a power storage device according to the first disclosure, at least the base layer 1, the barrier layer 3, and the heat-fusible resin layer 4 are laminated in this order to form a laminate.
  • the substrate layer 1 has at least the polyamide film layer 11, the polyamide film layer 11 has a thickness of 10 to 17 ⁇ m, the barrier layer 3 has a thickness of 36 to 44 ⁇ m, The thickness of the laminate is 83 to 93 ⁇ m.
  • the surface coating layer 6, the base layer 1, the barrier layer 3, and the heat-fusible resin layer 4 are laminated in this order.
  • the base layer 1 has at least a polyamide film layer 11, the thickness of the surface coating layer is 0.1 to 5 ⁇ m, and the thickness of the polyamide film layer 11 is Is 10 to 17 ⁇ m, the thickness of the barrier layer 3 is 36 to 44 ⁇ m, and the thickness of the laminate is 83.1 to 98 ⁇ m.
  • a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are sequentially laminated (hereinafter, sometimes referred to as “laminate A”) is formed.
  • the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or on the barrier layer 3 whose surface is subjected to a chemical conversion treatment, if necessary, by a gravure coating method, After coating and drying by a coating method such as a roll coating method, the coating can be performed by a dry lamination method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured.
  • the adhesive layer 5 and the heat-fusible resin layer 4 are laminated on the barrier layer 3 of the laminate A in this order.
  • the adhesive for forming the layer 5 is laminated by an extrusion method or solution coating, dried at a high temperature, or baked, or the like, and the heat-fusible resin layer 4 previously formed into a sheet is formed on the adhesive layer 5.
  • Laminate A and heat-fusible resin layer 4 are pasted through layer 5
  • the method (sandwich lamination method), and the like to match.
  • the surface coating layer 6 is laminated on the surface of the base material layer 1 on the side opposite to the barrier layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above-described resin forming the surface coating layer 6 to the surface of the base material layer 1.
  • the order of the step of laminating the barrier layer 3 on the surface of the substrate layer 1 and the step of laminating the surface coating layer 6 on the surface of the substrate layer 1 are not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
  • it may be further subjected to a heat treatment such as a hot roll contact type, a hot air type, a near infrared type or a far infrared type. The conditions for such a heat treatment are as described above.
  • each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing of secondary products (pouching, embossing), and the like, as necessary.
  • a surface activation treatment such as a corona treatment, a blast treatment, an oxidation treatment, and an ozone treatment may be performed.
  • the exterior material for power storage device of the present disclosure is used for a package for hermetically containing a power storage device element such as a positive electrode, a negative electrode, and an electrolyte. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed by the power storage device exterior material of the present disclosure, and can be used as a power storage device.
  • a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed by the power storage device exterior material of the present disclosure, and can be used as a power storage device.
  • At least the positive electrode, the negative electrode, and the power storage device element including the electrolyte in a state where the metal terminals connected to each of the positive electrode and the negative electrode protrude outward with the power storage device exterior material of the present disclosure. Covering the periphery of the power storage device element so that a flange portion (a region where the heat-fusible resin layers contact each other) can be formed, and heat-sealing and sealing the heat-fusible resin layers of the flange portion. Accordingly, a power storage device using the power storage device exterior material is provided.
  • the heat-fusible resin portion of the power storage device exterior material of the present disclosure is on the inner side (the surface in contact with the power storage device element). ) To form a package.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor and a capacitor). Further, the exterior material for a power storage device of the present disclosure may be used for any of a primary battery and a secondary battery, but is preferably a secondary battery.
  • the type of the secondary battery to which the power storage device packaging material of the present disclosure is applied is not particularly limited.
  • the lithium-ion battery and the lithium-ion polymer battery are preferable examples of the application of the exterior material for a power storage device according to the present disclosure.
  • Example 1 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a lubricant layer was formed on both surfaces of the obtained exterior material for an electricity storage device by allowing erucamide to be present as a lubricant.
  • Example 2 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 12 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a maleic anhydride-modified polypropylene (18 ⁇ m in thickness) as an adhesive layer and a polypropylene (15 ⁇ m in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate.
  • the adhesive layer / heat-fusible resin layer was laminated on the barrier layer.
  • the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (12 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (18 ⁇ m) / heat-fusible resin
  • An exterior material for an electric storage device (total thickness: 88 ⁇ m) in which layers (15 ⁇ m) were laminated in this order was obtained.
  • Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Example 3 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 12 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a two-component curable urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer side of the obtained laminate to form an adhesive layer (thickness after curing of 3 ⁇ m) on an aluminum foil.
  • an unstretched polypropylene film (CPP, thickness 30 ⁇ m) as a heat-fusible resin layer was laminated on the adhesive layer by a dry lamination method.
  • the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (12 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (3 ⁇ m) / heat-fusible resin
  • An exterior material for an electric storage device (total thickness: 88 ⁇ m) in which layers (30 ⁇ m) were laminated in this order was obtained.
  • Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Example 4 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a two-component curable urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer side of the obtained laminate to form an adhesive layer (thickness after curing of 3 ⁇ m) on an aluminum foil.
  • an unstretched polypropylene film (CPP, thickness 30 ⁇ m) as a heat-fusible resin layer was laminated on the adhesive layer by a dry lamination method.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Example 5 In Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) that bonds the base layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment (A biaxially stretched nylon film (15 ⁇ m) / adhesive layer (black, 3 ⁇ m) / barrier layer (40 ⁇ m) / same as in Example 1 except that a black pigment, a polyol compound and an aromatic isocyanate compound) were used. A laminate (total thickness: 88 ⁇ m) in which an adhesive layer (15 ⁇ m) / a heat-fusible resin layer (15 ⁇ m) was laminated in this order was obtained.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • sedimentable barium sulfate having an average particle diameter of 1 ⁇ m as a filler, erucamide, and an acrylate resin having an average particle diameter of 2 ⁇ m were used.
  • the resulting resin composition (thickness after curing was 3 ⁇ m) was applied to form a mat-like surface coating layer to obtain an exterior material for an electric storage device (total thickness 91 ⁇ m).
  • the average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Example 6 In Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) that bonds the base layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment (A biaxially stretched nylon film (15 ⁇ m) / adhesive layer (black, 3 ⁇ m) / barrier layer (40 ⁇ m) / same as in Example 1 except that a black pigment, a polyol compound and an aromatic isocyanate compound) were used. A laminate (total thickness: 88 ⁇ m) in which an adhesive layer (15 ⁇ m) / a heat-fusible resin layer (15 ⁇ m) was laminated in this order was obtained.
  • silica having an average particle size of 1.5 ⁇ m as a filler, erucamide, and an acrylate resin having an average particle size of 2.5 ⁇ m were used.
  • the average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Comparative Example 1 A barrier layer composed of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 35 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Comparative Example 2 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 35 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a maleic anhydride-modified polypropylene (14 ⁇ m in thickness) as an adhesive layer and a polypropylene (10 ⁇ m in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate.
  • the adhesive layer / heat-fusible resin layer was laminated on the barrier layer.
  • the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (25 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (35 ⁇ m) / adhesive layer (14 ⁇ m) / heat-fusible resin
  • An exterior material for an electric storage device (total thickness: 87 ⁇ m) in which layers (10 ⁇ m) were laminated in this order was obtained.
  • Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • a barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 ⁇ m) as a base material layer is dry-laminated.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • an adhesive layer after curing is applied on the aluminum foil.
  • an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a maleic anhydride-modified polypropylene (22.5 ⁇ m in thickness) as an adhesive layer and a polypropylene (22.5 ⁇ m in thickness) as a heat-fusible resin layer were formed on the barrier layer of the obtained laminate.
  • a maleic anhydride-modified polypropylene (22.5 ⁇ m in thickness) as an adhesive layer and a polypropylene (22.5 ⁇ m in thickness) as a heat-fusible resin layer were formed on the barrier layer of the obtained laminate.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Comparative Example 4 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 ⁇ m) as a base material layer is dry-laminated. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. 2 ⁇ m thick). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a maleic anhydride-modified polypropylene (14 ⁇ m in thickness) as an adhesive layer and a polypropylene (10 ⁇ m in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate.
  • the adhesive layer / heat-fusible resin layer was laminated on the barrier layer.
  • the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (25 ⁇ m) / adhesive layer (2 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (14 ⁇ m) / heat-fusible resin
  • An exterior material for an electric storage device (total thickness: 91 ⁇ m) in which layers (10 ⁇ m) were laminated in this order was obtained.
  • Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Comparative Example 5 A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 ⁇ m) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 ⁇ m) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 ⁇ m). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
  • a two-component curable urethane adhesive polyol compound and aromatic isocyanate compound
  • a maleic anhydride-modified polypropylene (14 ⁇ m in thickness) as an adhesive layer and a polypropylene (10 ⁇ m in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate.
  • the adhesive layer / heat-fusible resin layer was laminated on the barrier layer.
  • the obtained laminate is aged and heated, so that a biaxially stretched nylon film (15 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (40 ⁇ m) / adhesive layer (14 ⁇ m) / heat-fusible resin
  • An exterior material for an electric storage device (total thickness: 82 ⁇ m) in which layers (10 ⁇ m) were laminated in this order was obtained.
  • Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • Comparative Example 6 In Comparative Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) for bonding the base material layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment ( Biaxially stretched nylon film (15 ⁇ m) / adhesive layer (black, 3 ⁇ m) / barrier layer (35 ⁇ m) / same as in Comparative Example 1 except that black pigment, polyol compound and aromatic isocyanate compound were used. A laminate (total thickness: 88 ⁇ m) in which an adhesive layer (20 ⁇ m) / a heat-fusible resin layer (15 ⁇ m) was laminated in this order was obtained.
  • a black pigment Biaxially stretched nylon film (15 ⁇ m) / adhesive layer (black, 3 ⁇ m) / barrier layer (35 ⁇ m) / same as in Comparative Example 1 except that black pigment, polyol compound and aromatic isocyanate compound were used.
  • sedimentable barium sulfate having an average particle diameter of 1 ⁇ m as a filler, erucamide, and an acrylate resin having an average particle diameter of 2 ⁇ m were used.
  • the resulting resin composition (thickness after curing was 3 ⁇ m) was applied to form a mat-like surface coating layer to obtain an exterior material for an electric storage device (total thickness 91 ⁇ m).
  • the average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
  • erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
  • the breaking energy per unit width of 1 m in MD and the breaking energy per unit width of 1 m in TD were totaled.
  • five exterior materials for power storage devices to be measured were prepared, and among the fracture energy values of the five samples, the average of three values excluding the maximum value and the minimum value was calculated as the fracture energy of the laminate.
  • Table 2 shows the results.
  • the values of the breaking energy of the laminate shown in Table 2 are values obtained by rounding off the second decimal place of the obtained average value. (Test condition) ⁇ Tensile tester: Shimadzu AGS-XPlus ⁇ Test speed: 50mm / min -Width of test piece: 15mm ⁇ Test piece length: 100mm ⁇ Distance between gauges: 30mm
  • FIG. 10 shows a schematic diagram of a curve of a measured load (N / 15 mm) -displacement obtained in a tensile test (MD) of the exterior material for an electricity storage device.
  • the part where the data of the curve of the measured load (N / 15 mm) -displacement amount was integrated is, for example, as shown in the schematic diagram of FIG. 11, the integral from the start of the tensile test (displacement amount 0) to the breaking point of the laminate. This value corresponds to the area of the hatched portion in FIG.
  • the molding curl (mm) shown in Table 1 is a value obtained by rounding off the second decimal place of the maximum value t.
  • Each power storage device exterior material was cut into a rectangle having a length (MD) of 90 mm and a width (TD) of 150 mm to obtain a test sample.
  • a rectangular mold having a diameter of 32 mm (MD) ⁇ 54 mm (TD) female mold, surface is JIS B 0659-1: 2002, Appendix 1 (reference)
  • the maximum height roughness (nominal value of Rz) specified in Table 2 is 3.2 ⁇ m) and the corresponding molding die (male mold, surface is JIS B 0659-1: 2002 Annex 1) (Reference)
  • a pressing pressure (surface pressure) of 0.25 MPa was set to 0.
  • the forming depth was changed in increments of 0.5 mm from the forming depth of 0.5 mm, and each of the 20 samples was subjected to cold forming (drawing one-step forming). At this time, the test sample was placed on the female mold and molded so that the heat-fusible resin layer side was positioned on the male mold side. The clearance between the male and female molds was 0.5 mm. The sample after cold forming was irradiated with light with a penlight in a dark room, and it was confirmed whether or not pinholes or cracks were generated in the barrier layer due to light transmission.
  • Amm is the deepest molding depth at which pinholes and cracks do not occur in all of the 20 samples in the barrier layer
  • B is the number of samples where pinholes and the like occur at the shallowest molding depth at which the pinholes and the like occur in the barrier layer.
  • the value calculated by the following formula was defined as the critical forming depth of the exterior material for an electricity storage device. Table 1 shows the results.
  • the critical forming depth (mm) shown in Table 1 is a value obtained by rounding off the calculated value to the second decimal place.
  • Limit forming depth Amm + (0.5mm / 20 pieces) x (20 pieces-B pieces)
  • Each power storage device exterior material was cut to produce a strip having a length (MD) of 90 mm and a width (TD) of 150 mm, which was used as a test sample.
  • the specified maximum height roughness (nominal value of Rz) is 1.6 ⁇ m, a corner R2.0 mm, a ridgeline R1.0 mm) and a female mold having a clearance of 0.3 mm from the male mold (surface is: JIS B 0659-1: 2002 Annex 1 (Reference)
  • the maximum height roughness (nominal value of Rz) is 3.2 ⁇ m, as defined in Table 2 of the comparative surface roughness standard piece.
  • test sample was placed on a female mold using a straight mold having a ridge line (1.0 mm) with the heat-fusible resin layer side of the test sample positioned on the male mold side. Pressing with 25MPa pressing pressure (surface pressure), cold forming ( 1-stage molding) was included come.
  • forming is sequentially performed under the condition that the forming depth is increased by 0.5 mm from 2.0 mm, and the thickness a of the corner P of the barrier layer of the test sample after forming (see FIG. 9) ) And the molding depth were plotted, and an approximate straight line was drawn to create a graph. From the graph, the molding depth at which the thickness a of the corner P of the barrier layer was 20 ⁇ m was determined.
  • the molding depth (mm) at which the thickness of the barrier layer is 20 ⁇ m shown in Table 1 is a value obtained by rounding off the calculated value to the second decimal place.
  • the thickness a of the barrier layer of the test sample after molding is such that, when the test sample is viewed in plan from the base material layer side, the microtome (Yamato The package is cut in the thickness direction by Komiki Kogyo Co., Ltd .: REM-710 Retorome, and the exterior material for a power storage device is divided into two parts. -9700).
  • One of the divided test samples had two corners, and the thickness a of the barrier layer was an average value of the thickness a of the barrier layer at these corners.
  • FIG. 9 shows a schematic view of the barrier layer of the test sample after molding.
  • the position of the thickness of the corner P is where the radius of curvature is the smallest in the corner P (curved portion) formed by molding, and usually means a central portion from the start to the end of bending.
  • the positive electrode of the tester was connected to the aluminum plate, and the negative electrode was connected to the exterior material for the electricity storage device.
  • the alligator clip was sandwiched so as to reach the barrier layer from the base material layer side of the power storage device exterior material, and the negative electrode of the tester was electrically connected to the barrier layer.
  • the tester was prepared to generate a conduction (short circuit) signal when the applied voltage became 100 V and the resistance became 200 M ⁇ or less.
  • a voltage of 100 V is applied between the testers, and in this state, at a temperature of 190 ° C., 1 MPa, and a width of 7 mm, the stainless steel wire is interposed between the aluminum plate and the exterior material for the power storage device so as to be orthogonal to the wire.
  • Heat sealing was performed, and the time until a short circuit signal was generated was measured. The measurement was performed five times, and the average value of three points excluding the longest and shortest points was defined as the time until a short circuit.
  • a case where the time until the short circuit was 40.0 seconds or more was determined as A
  • a case where it was less than 40.0 seconds and 13.0 seconds or more was determined as C. If the evaluation is A or B, the insulation is excellent, and the evaluation A is particularly excellent in insulation.
  • ONy is a biaxially stretched nylon film
  • DL is an adhesive layer or an adhesive layer formed by a dry lamination method
  • ALM is an aluminum foil
  • PPa is an adhesive layer formed of maleic anhydride-modified polypropylene
  • PP is polypropylene.
  • CPP mean a heat-fusible resin layer formed of unstretched polypropylene (CPP).
  • SC means a surface coating layer.
  • the numerical value in the laminated structure means the thickness ( ⁇ m).
  • the notation “ONy15” means a biaxially stretched nylon film having a thickness of 15 ⁇ m.
  • the exterior materials for power storage devices of Examples 1 to 6 had a base material layer having a polyamide film layer, and the thickness of the polyamide film layer was 10 ⁇ m or more and 17 ⁇ m or less, The thickness of the barrier layer is not less than 36 ⁇ m and not more than 44 ⁇ m, and the thickness of the laminate is set to not less than 83 ⁇ m and not more than 93 ⁇ m. It can be seen that the molding curl is effectively suppressed.
  • the outer layer materials for power storage devices of Examples 1 to 5 were also excellent in moldability. It can be seen that the outer layer materials for power storage devices of Examples 1, 4, and 5 have a large forming depth at which the thickness of the barrier layer is 20 ⁇ m and a large limit forming depth, and particularly high formability.
  • the power storage device exterior materials of Comparative Examples 1 to 4 and Comparative Example 6 had large curls.
  • the power storage device exterior material of Comparative Example 5 was thinner than 83 ⁇ m, had insufficient insulation, and was not suitable as a power storage device exterior material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a feature for suppressing molding-induced curling of a packaging material for a power storage device, in which a base material layer includes a polyamide film and which has a predetermined thickness and excellent insulating properties. The packaging material for a power storage device according to the first disclosure is configured of a laminate including at least a base material layer, a barrier layer, and a heat-fusible resin layer in this order, the base material layer including at least a polyamide film layer. The polyamide film layer has a thickness of 10-17 μm inclusive, the barrier layer having a thickness of 36-44 μm inclusive, and the laminate having a thickness of 83-93 μm inclusive.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior material for power storage device, method for manufacturing the same, and power storage device
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 The present disclosure relates to a power storage device exterior material, a method for manufacturing the same, and a power storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質等の蓄電デバイス素子を封止するために包装材料(外装材)が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Conventionally, various types of power storage devices have been developed, but in all power storage devices, a packaging material (outer packaging material) is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, metal exterior materials have been frequently used as exterior materials for power storage devices.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, as the performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, and the like has increased, various shapes have been required for the power storage devices, and thinner and lighter weights have been required. However, a metal exterior material for a power storage device, which has been frequently used in the past, has a drawback that it is difficult to keep up with diversification of shapes and there is a limit in weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材/アルミニウム箔層/熱融着性樹脂層が順次積層されたフィルム状の外装材が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, as a packaging material for an electricity storage device that can be easily processed into various shapes and can be made thinner and lighter, a film-like material in which a base material / aluminum foil layer / heat-fusible resin layer is sequentially laminated is used. An exterior material has been proposed (for example, see Patent Document 1).
 このようなフィルム状の外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層同士を熱融着させることにより、外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such a film-like exterior material, a concave portion is generally formed by cold molding, and an electricity storage device element such as an electrode or an electrolytic solution is arranged in a space formed by the concave portion. By heat-sealing the layers, an electricity storage device in which the electricity storage device element is accommodated inside the exterior material is obtained.
特開2008-287971号公報JP 2008-287971 A
 近年、フィルム状の外装材には、さらなる薄型化が求められている。また、蓄電デバイスのエネルギー密度をより一層高める観点などから、外装材により深い凹部を形成することも求められている。 In recent years, further reduction in the thickness of film-shaped exterior materials has been required. Further, from the viewpoint of further increasing the energy density of the power storage device, it is also required to form a deep recess in the exterior material.
 フィルム状の外装材の成形性を高めるために、例えば、成形性に優れるポリアミドフィルムを基材層に用いることが考えられる。 In order to enhance the moldability of the film-like exterior material, for example, it is conceivable to use a polyamide film having excellent moldability for the base layer.
 ところが、本開示者らが検討したところ、ポリアミドフィルムを基材層に用いて、基材層、バリア層、及び熱融着性樹脂層を順に積層した蓄電デバイス用外装材とし、これを成形して蓄電デバイス素子を収容する凹部を形成する場合に、蓄電デバイス用外装材の厚みが薄くなると、当該凹部の周縁部が、成形によってカール(湾曲)して、蓄電デバイス素子の収容や熱融着性樹脂層の熱融着を阻害し、蓄電デバイスの生産効率を低下させる場合があることが見出された。 However, when the present inventors examined, using a polyamide film as a base layer, a base material layer, a barrier layer, and a heat-fusible resin layer were sequentially laminated to form an exterior material for an electric storage device, which was molded. In the case where the recess for accommodating the electricity storage device element is formed by thinning, if the thickness of the exterior material for the electricity storage device is reduced, the peripheral edge of the recess is curled (curved) by molding, and the accommodation or heat fusion of the electricity storage device element is performed. It has been found that heat fusion of the conductive resin layer may be hindered and the production efficiency of the electric storage device may be reduced.
 特に、パソコン、カメラ、携帯電話等の小型機器に使用される蓄電デバイスでは、薄い外装材に対して、面積が小さく、かつ、深い凹部を形成することが求められており、成形によるカールが顕著となり得る。 In particular, in power storage devices used for small devices such as personal computers, cameras, and mobile phones, it is required that a thin outer material be formed with a small area and a deep concave portion, and curling due to molding is remarkable. Can be
 このような状況下、本開示は、基材層がポリアミドフィルムを有しており、所定の厚みを備え、優れた絶縁性を有する蓄電デバイス用外装材の、成形によるカールを抑制する技術を提供することを主な目的とする。 Under such circumstances, the present disclosure provides a technology for suppressing curling due to molding of an exterior material for an electric storage device having a base material layer having a polyamide film, having a predetermined thickness, and having excellent insulating properties. The main purpose is to
 本開示者らは、前記課題を解決すべく、少なくともポリアミドフィルムを有する基材層を用いた蓄電デバイス用外装材において、蓄電デバイス用外装材の積層構成に着目して成形カールを低減することについて鋭意検討を行った。その結果、従来の蓄電デバイス用外装材と比較して、成形カールが格段に抑制された蓄電デバイス用外装材を提供できることを見出した。具体的には、蓄電デバイス用外装材を構成する積層体の総厚みを83μm以上93μm以下という特定の範囲に設定した上で、ポリアミドフィルム層の厚みを10μm以上17μm以下の範囲とし、かつ、バリア層の厚みを36μm以上44μm以下の範囲とすることによって、蓄電デバイス用外装材の厚みが比較的薄く、優れた絶縁性を有するにも拘わらず、成形によるカールが効果的に抑制された蓄電デバイス用外装材となることを見出した。 In order to solve the above-mentioned problems, the present inventors have focused on reducing the molding curl by paying attention to the laminated structure of the power storage device exterior material in the exterior storage material for the power storage device using at least the base layer having a polyamide film. We worked diligently. As a result, the present inventors have found that it is possible to provide an exterior material for an electric storage device in which molding curl is significantly suppressed as compared with a conventional exterior material for an electric storage device. Specifically, after setting the total thickness of the laminate constituting the exterior material for an electric storage device to a specific range of 83 μm to 93 μm, the thickness of the polyamide film layer is set to a range of 10 μm to 17 μm, and By setting the thickness of the layer to be in the range of 36 μm or more and 44 μm or less, the thickness of the exterior material for the power storage device is relatively thin, and the curl due to molding is effectively suppressed despite having excellent insulating properties. And found it to be an exterior material for use.
 また、本開示者らは、蓄電デバイス用外装材を構成する積層体の総厚みを83.1μm以上98μm以下という特定の範囲に設定した上で、表面被覆層の厚みを0.1μm以上5μm以下の範囲、ポリアミドフィルム層の厚みを10μm以上17μm以下の範囲とし、さらに、バリア層の厚みを36μm以上44μm以下の範囲とすることによっても、蓄電デバイス用外装材の厚みが比較的薄いにも拘わらず、成形によるカールが効果的に抑制された蓄電デバイス用外装材となることを見出した。 In addition, the present inventors set the total thickness of the laminate constituting the exterior material for an electricity storage device to a specific range of 83.1 μm or more and 98 μm or less, and then increased the thickness of the surface coating layer to 0.1 μm or more and 5 μm or less. And the thickness of the polyamide film layer is in the range of 10 μm to 17 μm and the thickness of the barrier layer is in the range of 36 μm to 44 μm. In addition, the present inventors have found that a curling due to molding can be effectively suppressed to provide an exterior material for a power storage device.
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
 前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
 前記バリア層の厚みは、36μm以上44μm以下であり、
 前記積層体の厚みは、83μm以上93μm以下である、蓄電デバイス用外装材。
項2. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
 前記接着層の厚みは、8μm以上22μm以下であり、
 前記熱融着性樹脂層の厚みは、8μm以上22μm以下である、項1に記載の蓄電デバイス用外装材。
項3. 前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
 前記接着層の厚みは、1μm以上5μm以下であり、
 前記熱融着性樹脂層の厚みは、18μm以上34μm以下である、項1に記載の蓄電デバイス用外装材。
項4. 前記積層体は、引張試験によって測定される「測定荷重(N/15mm)-変位量」の曲線から算出される、MDにおける単位幅1m当りの破断エネルギーと、TDにおける単位幅1m当りの破断エネルギーとの合計が、100J以上である、項1~3のいずれかに記載の蓄電デバイス用外装材。
項5. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~4のいずれかに記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項6. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
 前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
 前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
 前記バリア層の厚みは、36μm以上44μm以下であり、
 前記積層体の厚みは、83μm以上93μm以下である、蓄電デバイス用外装材の製造方法。
項7. 少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
 前記表面被覆層の厚みは、0.1μm以上5μm以下であり、
 前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
 前記バリア層の厚みは、36μm以上44μm以下であり、
 前記積層体の厚みは、83.1μm以上98μm以下である、蓄電デバイス用外装材。
The present disclosure has been completed through further studies based on these findings. That is, the present disclosure provides the following aspects of the invention.
Item 1. At least, a base layer, a barrier layer, and a heat-fusible resin layer, which is configured from a laminate including in this order,
The base material layer has at least a polyamide film layer,
The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
The thickness of the barrier layer is 36 μm or more and 44 μm or less,
The exterior material for an electric storage device, wherein the thickness of the laminate is 83 μm or more and 93 μm or less.
Item 2. An adhesive layer is provided between the barrier layer and the heat-fusible resin layer,
The thickness of the adhesive layer is 8 μm or more and 22 μm or less,
Item 2. The exterior material for an electric storage device according to Item 1, wherein the thickness of the heat-fusible resin layer is 8 μm or more and 22 μm or less.
Item 3. An adhesive layer is provided between the barrier layer and the heat-fusible resin layer,
The thickness of the adhesive layer is 1 μm or more and 5 μm or less,
Item 2. The exterior material for an electric storage device according to Item 1, wherein the thickness of the heat-fusible resin layer is 18 μm or more and 34 μm or less.
Item 4. The laminate has a breaking energy per unit width of 1 m in MD and a breaking energy per unit width of 1 m in TD calculated from a curve of “measured load (N / 15 mm) −displacement” measured by a tensile test. The exterior material for an electricity storage device according to any one of Items 1 to 3, wherein the total of the above is 100 J or more.
Item 5. 5. An electricity storage device, wherein an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for an electricity storage device according to any one of Items 1 to 4.
Item 6. At least, a substrate layer, a barrier layer, and a step of obtaining a laminate by laminating the heat-fusible resin layer in this order,
The base material layer has at least a polyamide film layer,
The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
The thickness of the barrier layer is 36 μm or more and 44 μm or less,
The method for manufacturing an exterior material for an electricity storage device, wherein the thickness of the laminate is 83 μm or more and 93 μm or less.
Item 7. At least, a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer, which is composed of a laminate including in this order,
The base material layer has at least a polyamide film layer,
The thickness of the surface coating layer is 0.1 μm or more and 5 μm or less,
The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
The thickness of the barrier layer is 36 μm or more and 44 μm or less,
The exterior material for an electric storage device, wherein the thickness of the laminate is 83.1 μm or more and 98 μm or less.
 本開示によれば、基材層がポリアミドフィルムを有しており、所定の厚みを備え、優れた絶縁性を有する蓄電デバイス用外装材の、成形によるカールを抑制する技術を提供することができる。また、本開示によれば、蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。 According to the present disclosure, it is possible to provide a technology for suppressing curling due to molding of a power storage device packaging material having a base material layer having a polyamide film, having a predetermined thickness, and having excellent insulation properties. . Further, according to the present disclosure, it is also possible to provide a method of manufacturing an exterior material for a power storage device, and a power storage device.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。1 is a schematic diagram illustrating an example of a cross-sectional structure of a power storage device exterior material of the present disclosure. 蓄電デバイス用外装材の成形によるカールの評価方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method of evaluating curl due to molding of an exterior material for a power storage device. 蓄電デバイス用外装材の成形によるカールの評価方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method of evaluating curl due to molding of an exterior material for a power storage device. 実施例における成形後の試験サンプルのバリア層の模式図である。It is a schematic diagram of the barrier layer of the test sample after shaping | molding in an Example. 蓄電デバイス用外装材の引張試験で得られる測定荷重(N/15mm)-変位量の曲線(MD)の模式図である。FIG. 5 is a schematic diagram of a measured load (N / 15 mm) -displacement curve (MD) obtained in a tensile test of an exterior material for a power storage device. 測定荷重(N/15mm)-変位量の曲線のデータの積分を行った部分を示した模式図である。FIG. 6 is a schematic diagram showing a portion where data of a curve of a measured load (N / 15 mm) -displacement amount is integrated.
 本開示には、以下の第1の開示及び第2の開示が包含される。以下の説明において、第1の開示と第2の開示とで異なる事項については、何れの開示についての説明であるかを明示し、第1の開示及び第2の開示に共通する事項については、第1の開示と第2の開示を区別せずに説明する。 This disclosure includes the following first disclosure and second disclosure. In the following description, for items that are different between the first disclosure and the second disclosure, it is specified which disclosure is the explanation, and for items that are common to the first disclosure and the second disclosure, The first disclosure and the second disclosure will be described without distinction.
 第1の開示の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記基材層は、少なくとも、ポリアミドフィルム層を有しており、前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、前記バリア層の厚みは、36μm以上44μm以下であり、前記積層体の厚みは、83μm以上93μm以下であることを特徴とする。 An exterior material for a power storage device according to the first disclosure is configured of a laminate including at least a base layer, a barrier layer, and a heat-fusible resin layer in this order, and the base layer is at least a polyamide film. A thickness of the polyamide film layer is 10 μm or more and 17 μm or less, a thickness of the barrier layer is 36 μm or more and 44 μm or less, and a thickness of the laminate is 83 μm or more and 93 μm or less. It is characterized by.
 また、第2の開示の蓄電デバイス用外装材は、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記基材層は、少なくとも、ポリアミドフィルム層を有しており、前記表面被覆層の厚みは、0.1μm以上5μm以下であり、前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、前記バリア層の厚みは、36μm以上44μm以下であり、前記積層体の厚みは、83.1μm以上98μm以下であることを特徴とする。 The exterior material for an electricity storage device according to the second disclosure is configured of a laminate including at least a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer in this order. Has at least a polyamide film layer, the thickness of the surface coating layer is 0.1 μm or more and 5 μm or less, the thickness of the polyamide film layer is 10 μm or more and 17 μm or less, and the thickness of the barrier layer is Is not less than 36 μm and not more than 44 μm, and the thickness of the laminate is not less than 83.1 μm and not more than 98 μm.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。また、本明細書において、積層体を構成する各層の厚みは、小数点第一位を四捨五入した値とする。 Hereinafter, the exterior material for a power storage device of the present disclosure will be described in detail. In this specification, a numerical range indicated by “to” means “over” and “below”. For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less. In the present specification, the thickness of each layer constituting the laminate is a value rounded off to the first decimal place.
1.蓄電デバイス用外装材の積層構造
 第1の開示の蓄電デバイス用外装材10は、例えば図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。また、第2の開示の蓄電デバイス用外装材10は、例えば図6に示すように、表面被覆層6、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。本開示の蓄電デバイス用外装材において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。
1. Laminated Structure of Energy Storage Device Exterior Material The energy storage device exterior material 10 of the first disclosure includes, for example, a base layer 1, a barrier layer 3, and a heat-fusible resin layer 4 in this order, as shown in FIG. It is composed of a laminate. In addition, for example, as illustrated in FIG. 6, the exterior material 10 for a power storage device according to the second disclosure includes a stack including a surface coating layer 6, a base layer 1, a barrier layer 3, and a heat-fusible resin layer 4 in this order. It is composed of the body. In the packaging material for a power storage device of the present disclosure, the base material layer 1 is on the outermost layer side, and the heat-fusible resin layer 4 is on the innermost layer. When assembling a power storage device using the power storage device exterior material 10 and the power storage device element, the peripheral portion is heat-fused with the heat-fusible resin layers 4 of the power storage device exterior material 10 facing each other. The power storage device element is housed in the space formed by the above.
 基材層1は、少なくとも、ポリアミドフィルム層11を有していればよく、図1に示されるようにポリアミドフィルム層11のみによって構成されていてもよいし、図2,3に示されるように、例えば、ポリアミドフィルム層11及びポリエステルフィルム層12を有していてもよい。本開示の蓄電デバイス用外装材の成形によるカールをより一層効果的に抑制する観点から、基材層1は、ポリアミドフィルム層11のみによって構成されていることが好ましい。 The base material layer 1 only needs to have at least the polyamide film layer 11, and may be constituted only by the polyamide film layer 11 as shown in FIG. 1 or as shown in FIGS. For example, it may have a polyamide film layer 11 and a polyester film layer 12. From the viewpoint of more effectively suppressing curling due to molding of the power storage device exterior material of the present disclosure, it is preferable that the base material layer 1 be constituted only by the polyamide film layer 11.
 なお、基材層1が、後述の通り、ポリアミドフィルム層11及びポリエステルフィルム層12を有する場合、ポリアミドフィルム層11及びポリエステルフィルム層12のいずれが最外層側に位置していてもよいが、蓄電デバイス用外装材の外表面における耐電解液性を高める観点などからは、バリア層3側から順に、ポリアミドフィルム層11及びポリエステルフィルム層12が積層されていることが好ましい。 In addition, when the base material layer 1 has the polyamide film layer 11 and the polyester film layer 12 as described later, any of the polyamide film layer 11 and the polyester film layer 12 may be located on the outermost layer side. It is preferable that the polyamide film layer 11 and the polyester film layer 12 are laminated in order from the barrier layer 3 side, from the viewpoint of enhancing the resistance to the electrolytic solution on the outer surface of the device packaging material.
 例えば図2に示されるように、ポリアミドフィルム層11とポリエステルフィルム層12とは、互いに接面するように積層されていてもよいし、例えば図3に示されるように、ポリアミドフィルム層11とポリエステルフィルム層12とが接着剤により接着されており、これらの層間に接着剤層13を備えていてもよい。 For example, as shown in FIG. 2, the polyamide film layer 11 and the polyester film layer 12 may be laminated so as to be in contact with each other, or, for example, as shown in FIG. The film layer 12 is adhered by an adhesive, and an adhesive layer 13 may be provided between these layers.
 本開示の蓄電デバイス用外装材は、例えば図4~6に示すように、基材層1とバリア層3との間に、これらの接着性を高める目的で、必要に応じて接着剤層2を有していてもよい。また、図5,6に示すように、バリア層3と熱融着性樹脂層4との間に、これらの接着性を高める目的で、必要に応じて接着層5を設けてもよい。また、第1の開示においても、第2の開示と同じく、図6に示すように、基材層1の外側(熱融着性樹脂層4とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。 As shown in FIGS. 4 to 6, for example, the exterior material for a power storage device according to the present disclosure may include an adhesive layer 2 between a base material layer 1 and a barrier layer 3 for the purpose of enhancing their adhesion. May be provided. As shown in FIGS. 5 and 6, an adhesive layer 5 may be provided between the barrier layer 3 and the heat-fusible resin layer 4 as needed for the purpose of enhancing the adhesiveness between them. Also, in the first disclosure, similarly to the second disclosure, as shown in FIG. 6, the outer surface of the base material layer 1 (the side opposite to the heat-fusible resin layer 4) may have a surface if necessary. A coating layer 6 or the like may be provided.
 第1の開示の蓄電デバイス用外装材を構成する積層体の厚みは、83~93μmという特定の範囲に設定されている。第1の開示の蓄電デバイス用外装材においては、積層体の厚みを当該範囲に設定した上で、後述のポリアミドフィルム層11及びバリア層3の厚みを、それぞれ特定の範囲に設定することにより、蓄電デバイス用外装材の厚みが比較的薄いにも拘わらず、成形によるカールが抑制されている。積層体の厚みを可能な限り薄くしつつ、成形によるカールを効果的に抑制する観点からは、積層体の厚みは、下限については、好ましくは85μm以上、より好ましくは86μm以上、さらに好ましくは87μm以上が挙げられ、上限については、好ましくは91μm以下、より好ましくは約90μm以下、さらに好ましくは約89μm以下が挙げられ、好ましい範囲としては、83~91μm程度、83~90μm程度、83~89μm程度、85~93μm程度、85~91μm程度、85~90μm程度、85~89μm程度、86~93μm程度、86~91μm程度、86~90μm程度、86~89μm程度、87~93μm程度、87~91μm程度、87~90μm程度、87~89μm程度が挙げられる。積層体の厚みが前記の下限値以上であることにより、成形性及び絶縁性を高め、さらに、成形によるカールをより一層効果的に抑制し得る。また、積層体の厚みがこれらの上限値以下であることにより、蓄電デバイス用外装材の成形によるカールを抑制し、絶縁性を高めつつ、蓄電デバイス用外装材を薄くし、蓄電デバイス素子の体積を増加させて、エネルギー密度を高めることができる。 厚 み The thickness of the laminate constituting the exterior material for a power storage device of the first disclosure is set to a specific range of 83 to 93 μm. In the exterior material for a power storage device of the first disclosure, the thickness of the laminate is set to the range, and the thickness of the polyamide film layer 11 and the barrier layer 3 described later are set to specific ranges, respectively. Curling due to molding is suppressed, despite the relatively small thickness of the exterior material for a power storage device. From the viewpoint of effectively suppressing curling due to molding while making the thickness of the laminate as thin as possible, the thickness of the laminate is preferably at least 85 μm, more preferably at least 86 μm, even more preferably at least 87 μm. The upper limit is preferably 91 μm or less, more preferably about 90 μm or less, and still more preferably about 89 μm or less. The preferred ranges are about 83 to 91 μm, about 83 to 90 μm, and about 83 to 89 μm. About 85 to 93 μm, about 85 to 91 μm, about 85 to 90 μm, about 85 to 89 μm, about 86 to 93 μm, about 86 to 91 μm, about 86 to 90 μm, about 86 to 89 μm, about 87 to 93 μm, about 87 to 91 μm , About 87 to 90 μm, and about 87 to 89 μm. When the thickness of the laminate is equal to or more than the lower limit, the moldability and the insulating property can be enhanced, and the curl due to the molding can be more effectively suppressed. In addition, since the thickness of the laminate is equal to or less than the upper limit, curling due to molding of the power storage device exterior material is suppressed, and while the insulating property is increased, the power storage device exterior material is thinned, and the volume of the power storage device element is reduced. To increase the energy density.
 また、第2の開示の蓄電デバイス用外装材を構成する積層体の厚みは、83.1~98μmという特定の範囲に設定されている。第2の開示の蓄電デバイス用外装材においては、積層体の厚みを当該範囲に設定した上で、後述の表面被覆層6、ポリアミドフィルム層11及びバリア層3の厚みを、それぞれ特定の範囲に設定することにより、蓄電デバイス用外装材の厚みが比較的薄いにも拘わらず、優れた絶縁性を有し、成形によるカールが抑制されている。積層体の厚みを可能な限り薄くしつつ、優れた絶縁性を発揮し、成形によるカールを効果的に抑制する観点からは、積層体の厚みは、下限については、好ましくは約85.1μm以上、より好ましくは87μm以上、さらに好ましくは89μm以上が挙げられ、上限については、好ましくは約96μm以下、より好ましくは約94μm以下、さらに好ましくは約92μm以下が挙げられ、好ましい範囲としては、83.1~96μm程度、83.1~94μm程度、83.1~92μm程度、85.1~96μm程度、85.1~94μm程度、85.1~92μm程度、87~98μm程度、87~96μm程度、87~94μm程度、87~92μm程度、89~98μm程度、89~96μm程度、89~94μm程度、89~92μm程度が挙げられる。積層体の厚みが前記の下限値以上であることにより、成形性及び絶縁性を高め、さらに、成形によるカールをより一層効果的に抑制し得る。また、積層体の厚みがこれらの上限値以下であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、蓄電デバイス用外装材を薄くし、蓄電デバイス素子の体積を増加させて、エネルギー密度を高めることができる。 厚 み The thickness of the laminate constituting the exterior material for a power storage device of the second disclosure is set to a specific range of 83.1 to 98 μm. In the exterior material for a power storage device according to the second disclosure, after setting the thickness of the laminate to the range, the thicknesses of the surface coating layer 6, the polyamide film layer 11, and the barrier layer 3 described later are respectively set to specific ranges. By setting, the curling due to molding is suppressed despite having a relatively small thickness of the exterior material for an electric storage device. From the viewpoint of exhibiting excellent insulating properties while minimizing the thickness of the laminate as much as possible and effectively suppressing curling due to molding, the lower limit of the thickness of the laminate is preferably about 85.1 μm or more. , More preferably at least 87 μm, even more preferably at least 89 μm, and the upper limit is preferably at most about 96 μm, more preferably at most about 94 μm, even more preferably at most about 92 μm, and the preferred range is 83. About 1 to 96 μm, about 83.1 to 94 μm, about 83.1 to 92 μm, about 85.1 to 96 μm, about 85.1 to 94 μm, about 85.1 to 92 μm, about 87 to 98 μm, about 87 to 96 μm, About 87 to 94 μm, about 87 to 92 μm, about 89 to 98 μm, about 89 to 96 μm, about 89 to 94 μm, about 89 to 92 μm. It is. When the thickness of the laminate is equal to or more than the lower limit, the moldability and the insulating property can be enhanced, and the curl due to the molding can be more effectively suppressed. In addition, since the thickness of the laminate is equal to or less than the upper limit, curling due to molding of the power storage device exterior material is suppressed, the power storage device exterior material is thinned, and the volume of the power storage device element is increased, Energy density can be increased.
 第1の開示及び第2の開示の蓄電デバイス用外装材において、蓄電デバイス用外装材を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む場合についても、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。 In the power storage device packaging material according to the first disclosure and the second disclosure, the base material layer 1 and the adhesive layer 2 provided as needed with respect to the thickness (total thickness) of the laminate constituting the power storage device packaging material The ratio of the total thickness of the barrier layer 3, the optional adhesive layer 5, the heat-fusible resin layer 4, and the optional surface coating layer 6 is preferably 90% or more, and more preferably. Is 95% or more, more preferably 98% or more. As a specific example, when the exterior material for an electricity storage device of the present disclosure includes the base layer 1, the adhesive layer 2, the barrier layer 3, the adhesive layer 5, and the heat-fusible resin layer 4, the exterior material for the electricity storage device is The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting No. 10 is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more. In addition, even when the exterior material for a power storage device of the present disclosure includes the base material layer 1, the adhesive layer 2, the barrier layer 3, and the heat-fusible resin layer 4, the lamination constituting the power storage device exterior material 10 is also provided. The ratio of the total thickness of each of these layers to the thickness (total thickness) of the body is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
 また、第1の開示及び第2の開示の蓄電デバイス用外装材において、バリア層3よりも内側(熱融着性樹脂層4側)に位置する層の合計厚みは、好ましくは約16μm以上、より好ましくは約19μm以上、さらに好ましくは約25μm以上である。また、当該合計厚みは、好ましくは約44μm以下、より好ましくは約39μm以下、さらに好ましくは約33μm以下である。当該合計厚みの好ましい範囲としては、16~44μm程度、16~39μm程度、16~33μm程度、19~44μm程度、19~39μm程度、19~33μm程度、25~44μm程度、25~39μm程度、25~33μm程度が挙げられる。 In addition, in the exterior material for a power storage device according to the first disclosure and the second disclosure, the total thickness of the layers located inside the barrier layer 3 (on the side of the heat-fusible resin layer 4) is preferably about 16 μm or more, It is more preferably about 19 μm or more, and further preferably about 25 μm or more. Further, the total thickness is preferably about 44 μm or less, more preferably about 39 μm or less, and still more preferably about 33 μm or less. Preferred ranges of the total thickness are about 16 to 44 μm, about 16 to 39 μm, about 16 to 33 μm, about 19 to 44 μm, about 19 to 39 μm, about 19 to 33 μm, about 25 to 44 μm, about 25 to 39 μm, and about 25 to 39 μm. About 33 μm.
 なお、本開示の蓄電デバイス用外装材の各層の厚み又は積層体の厚みは、それぞれ、例えばミクロトーム(大和光機工業製:REM-710リトラトーム)を用いて蓄電デバイス用外装材を厚み方向に裁断し、蓄電デバイス用外装材を2分割し、得られた断面を例えばレーザー顕微鏡(キーエンス製:VK-9700)で観察して計測することができる。 The thickness of each layer or the thickness of the laminated body of the power storage device packaging material of the present disclosure is determined by cutting the power storage device packaging material in the thickness direction using, for example, a microtome (manufactured by Daiwa Koki Kogyo Co., Ltd .: REM-710 Retorome). Then, the exterior material for a power storage device is divided into two parts, and the obtained cross section can be measured by observing it with, for example, a laser microscope (manufactured by Keyence: VK-9700).
 また、本開示の蓄電デバイス用外装材は、後述のバリア層3の厚みが20μmとなる成形深さ(すなわち、本開示の蓄電デバイス用外装材を成形に供した場合に、蓄電デバイス用外装材のバリア層3の厚みが20μmになる時の成形深さ)が、下限については好ましくは4.5mm以上、より好ましくは5.0mm以上であり、上限については好ましくは10.0mm以下、より好ましくは8.0mm以下であり、好ましい範囲については4.5~10.0mm程度、4.5~8.0mm程度、5.0~10.0mm程度、5.0~8.0mm程度が挙げられる。当該成形深さは、冷間成形の方法によって、成形深さを2.0mmから0.5mmずつ増加させた条件で蓄電デバイス用外装材の成形を順次行い、成形後の試験サンプルのバリア層の角部Pの厚みa(図9を参照)と、成形深さとの関係をプロットして、近似直線を引いてグラフを作成し、当該グラフから、バリア層3の角部Pの厚みaが20μmとなる成形深さを求めたものである。具体的には、実施例に記載の方法により測定される値である。当該成形深さが前記の下限値以上であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、成形によるピンホールを低減することができる。 The exterior material for an electricity storage device of the present disclosure has a molding depth at which the thickness of a barrier layer 3 described later is 20 μm (that is, when the exterior material for an electricity storage device of the present disclosure is used for molding, The molding depth when the thickness of the barrier layer 3 becomes 20 μm) is preferably 4.5 mm or more, more preferably 5.0 mm or more, and the upper limit is preferably 10.0 mm or less, more preferably Is about 8.0 mm or less, and a preferable range is about 4.5 to 10.0 mm, about 4.5 to 8.0 mm, about 5.0 to 10.0 mm, and about 5.0 to 8.0 mm. . The molding depth is, by the method of cold molding, under the condition that the molding depth is increased from 2.0 mm by 0.5 mm at a time, the exterior material for the electricity storage device is molded sequentially, and the barrier layer of the test sample after molding is formed. The relationship between the thickness a of the corner P (see FIG. 9) and the molding depth is plotted, and an approximate straight line is drawn to create a graph. From the graph, the thickness a of the corner P of the barrier layer 3 is 20 μm. Is obtained. Specifically, it is a value measured by the method described in the examples. When the molding depth is equal to or more than the lower limit, curling due to molding of the exterior material for an electric storage device can be suppressed, and pinholes due to molding can be reduced.
 また、本開示の蓄電デバイス用外装材の限界成形深さは、下限については好ましくは4.0mm以上、より好ましくは5.5mm以上であり、上限については好ましくは12.0mm以下、より好ましくは10.0mm以下であり、好ましい範囲については4.0~12.0mm程度、4.0~10.0mm程度、5.5~12.0mm程度、5.5~10.0mm程度が挙げられる。当該限界成形深さは、蓄電デバイス用外装材を矩形状の成形金型を用いて、押さえ圧(面圧)0.25MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ20個のサンプルについて冷間成形(引き込み1段成形)を行い、バリア層にピンホール、クラックが20個のサンプル全てにおいて発生しない最も深い成形深さをAmm、バリア層にピンホール等が発生した最も浅い成形深さにおいてピンホール等が発生したサンプルの数をB個とし、以下の式により算出される値を蓄電デバイス用外装材の限界成形深さとしたものである。限界成形深さ=Amm+(0.5mm/20個)×(20個-B個)。具体的には、実施例に記載の方法により測定される値である。当該限界成形深さが前記の下限値以上であることにより、蓄電デバイス用外装材を高容量の蓄電デバイスに適用し得る。 Further, the limit forming depth of the exterior material for an electricity storage device of the present disclosure is preferably 4.0 mm or more, more preferably 5.5 mm or more for the lower limit, and preferably 12.0 mm or less for the upper limit. 10.0 mm or less, and a preferable range is about 4.0 to 12.0 mm, about 4.0 to 10.0 mm, about 5.5 to 12.0 mm, and about 5.5 to 10.0 mm. The limit forming depth is defined as the forming depth of a 0.5 mm unit from a forming depth of 0.5 mm at a holding pressure (surface pressure) of 0.25 MPa using a rectangular forming die for an exterior material for a power storage device. Alternatively, cold forming (drawing one-step forming) was performed on each of 20 samples, the pinhole was formed in the barrier layer, the deepest forming depth where cracks did not occur in all of the 20 samples was Amm, and the pinhole was formed in the barrier layer. The number of samples in which pinholes and the like have occurred at the shallowest molding depth where B and the like have occurred is B, and the value calculated by the following equation is defined as the limit molding depth of the exterior material for a power storage device. Limit forming depth = Amm + (0.5 mm / 20 pieces) × (20 pieces−B pieces). Specifically, it is a value measured by the method described in the examples. When the limit forming depth is equal to or more than the lower limit, the exterior material for a power storage device can be applied to a high-capacity power storage device.
 本開示の蓄電デバイス用外装材を構成する積層体は、引張試験によって測定される「測定荷重(N/15mm)-変位量」の曲線から算出される単位幅1m当りの破断エネルギー(MD(Machine Direction)における単位幅1m当りの破断エネルギーとTD(Transverse Direction)における単位幅1m当りの破断エネルギーを合計)が、下限については好ましくは100J以上、より好ましくは150J以上、より成形性に優れる観点からさらに好ましくは260J以上、さらに好ましくは280J以上であり、上限については好ましくは650J以下、より好ましくは450J以下、さらに好ましくは400J以下、さらに好ましくは380J以下であり、好ましい範囲については100~650J程度、100~450J程度、100~400J程度、100~380J程度、150~650J程度、150~450J程度、150~400J程度、150~380J程度、260~650J程度、260~450J程度、260~400J程度、260~380J程度、280~650J程度、280~450J程度、280~400J程度、280~380J程度が挙げられる。当該破断エネルギーは、具体的には、実施例に記載の方法により測定される値である。なお、本開示において、引張試験とは、引張特性の試験を意味する。当該破断エネルギーが前記の下限値以上であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、成形性及び絶縁性を高めることができる。また、当該破断エネルギーが前記の上限値以下であることにより、蓄電デバイス用外装材の成形によるカールをより一層効果的に抑制することができる。 The laminate constituting the exterior material for a power storage device of the present disclosure has a breaking energy (MD (Machine) per unit width of 1 m calculated from a curve of “measured load (N / 15 mm) −displacement” measured by a tensile test. (The sum of the breaking energy per unit width in Direction) and the breaking energy per unit width in TD (Transverse Direction) is preferably 100 J or more, more preferably 150 J or more, from the viewpoint of more excellent moldability. More preferably, it is 260 J or more, more preferably 280 J or more, and the upper limit is preferably 650 J or less, more preferably 450 J or less, further preferably 400 J or less, and still more preferably 380 J or less. About 0J, about 100-450J, about 100-400J, about 100-380J, about 150-650J, about 150-450J, about 150-400J, about 150-380J, about 260-650J, about 260-450J, about 260-450 About 400 J, about 260 to 380 J, about 280 to 650 J, about 280 to 450 J, about 280 to 400 J, and about 280 to 380 J. Specifically, the breaking energy is a value measured by the method described in Examples. In the present disclosure, the tensile test means a test of tensile properties. When the breaking energy is equal to or more than the lower limit, the moldability and the insulating property can be improved while curling due to the molding of the exterior material for a power storage device is suppressed. Further, when the breaking energy is equal to or less than the upper limit, curling due to molding of the exterior material for a power storage device can be more effectively suppressed.
 前記破断エネルギーを前記の値とする方法としては、積層体を構成する基材層1、バリア層3、及び熱融着性樹脂層4の材料及び厚みなどを調整する。当該破断エネルギーの大きさに最も寄与する層としては、基材層1が挙げられる。基材層1を構成する素材として、後述のものを用い、さらに、基材層1の製造過程において、例えば、製膜法の種類や製膜時の条件(例えば、製膜温度、延伸倍率、冷却温度、冷却速度、延伸後の熱固定温度)を適宜調整する。製膜法としては、例えば、Tダイ法、カレンダー法、チューブラー法などが挙げられる。また、各層を積層した後の積層体の加熱工程(例えば、基材層/接着剤層/バリア層の積層体を得た後の加熱工程や、さらに当該積層体のバリア層上に接着層/熱融着性樹脂層を積層した後の加熱工程など)において、適切な温度、適切な時間の条件で加熱することが好ましい。適切な温度、時間を採用することにより、積層体の特に基材層へのダメージを抑制しつつ各層の密着性を向上することができる。加熱工程における加熱温度の上限としては、好ましくは約185℃以下、より好ましくは約180℃以下、さらに好ましくは178℃以下が挙げられ、加熱温度の下限としては、好ましくは150℃以上、より好ましくは160℃以上、さらに好ましくは165℃以上が挙げられる。加熱工程における加熱温度の好ましい範囲としては、150~185℃程度、150~180℃程度、150~178℃程度、160~185℃程度、160~180℃程度、160~178℃程度、165~185℃程度、160~180℃程度、160~178℃程度が挙げられる。また、加熱工程における加熱時間の上限としては、好ましくは30分以下、より好ましくは15分以下、さらに好ましくは10分以下が挙げられ、下限としては、好ましくは0.1分以上、より好ましくは0.5分以上、さらに好ましくは1分以上が挙げられる。加熱工程における加熱温度と加熱時間は、これらの中から組み合わせることが好ましい。 (4) As a method of setting the breaking energy to the above value, the materials and thicknesses of the base material layer 1, the barrier layer 3, and the heat-fusible resin layer 4 constituting the laminate are adjusted. The layer that most contributes to the magnitude of the breaking energy includes the base material layer 1. As a material constituting the base material layer 1, a material described later is used. Further, in the manufacturing process of the base material layer 1, for example, a type of a film forming method and conditions at the time of film forming (for example, a film forming temperature, a stretching ratio, The cooling temperature, the cooling rate, and the heat setting temperature after stretching) are appropriately adjusted. Examples of the film forming method include a T-die method, a calendar method, and a tubular method. In addition, a heating step of the laminate after laminating each layer (for example, a heating step after obtaining a laminate of a base material layer / adhesive layer / barrier layer, and an adhesive layer / In a heating step after laminating the heat-fusible resin layer, etc.), it is preferable to heat at an appropriate temperature and for an appropriate time. By adopting an appropriate temperature and time, it is possible to improve the adhesion of each layer while suppressing damage to the laminate, particularly to the base layer. The upper limit of the heating temperature in the heating step is preferably about 185 ° C. or lower, more preferably about 180 ° C. or lower, further preferably 178 ° C. or lower, and the lower limit of the heating temperature is preferably 150 ° C. or higher, more preferably Is 160 ° C. or higher, more preferably 165 ° C. or higher. The preferable range of the heating temperature in the heating step is about 150 to 185 ° C, about 150 to 180 ° C, about 150 to 178 ° C, about 160 to 185 ° C, about 160 to 180 ° C, about 160 to 178 ° C, and about 165 to 185 ° C. About 160 ° C., about 160 to 180 ° C., and about 160 to 178 ° C. Further, the upper limit of the heating time in the heating step is preferably 30 minutes or less, more preferably 15 minutes or less, further preferably 10 minutes or less, and the lower limit is preferably 0.1 minutes or more, more preferably 0.5 minutes or more, more preferably 1 minute or more. The heating temperature and the heating time in the heating step are preferably combined from these.
 なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層3がアルミニウム箔により構成されている場合、アルミニウム箔の圧延方向(RD:Rolling Direction)には、アルミニウム箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、アルミニウム箔の表面を観察することによって、アルミニウム箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、アルミニウム箔のRDとが一致するため、積層体のアルミニウム箔の表面を観察し、アルミニウム箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。 In the case of the power storage device packaging material, the MD (Machine Direction) and the TD (Transverse Direction) in the manufacturing process of the barrier layer 3 described later can be generally distinguished. For example, when the barrier layer 3 is made of an aluminum foil, a linear streak called a so-called rolling mark is formed on the surface of the aluminum foil in the rolling direction (RD: Rolling Direction) of the aluminum foil. Since the rolling marks extend along the rolling direction, the rolling direction of the aluminum foil can be grasped by observing the surface of the aluminum foil. In the manufacturing process of the laminate, since the MD of the laminate and the RD of the aluminum foil usually match, the surface of the aluminum foil of the laminate is observed, and the rolling direction (RD) of the aluminum foil is specified. Thereby, the MD of the laminate can be specified. Further, since the TD of the stacked body is perpendicular to the MD of the stacked body, the TD of the stacked body can be specified.
2.蓄電デバイス用外装材を形成する各層
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。基材層1は、少なくとも、ポリアミドフィルム層11を有している。前記の通り、基材層1は、ポリアミドフィルム層11のみによって構成されていてもよいし、ポリアミドフィルム層11及びポリエステルフィルム層12を有していてもよい。
2. Each layer forming the exterior material for a power storage device [base layer 1]
In the present disclosure, the base material layer 1 is a layer provided for the purpose of, for example, exerting a function as a base material of the exterior material for a power storage device. The base layer 1 is located on the outer layer side of the power storage device exterior material. The base material layer 1 has at least a polyamide film layer 11. As described above, the base material layer 1 may be composed of only the polyamide film layer 11 or may have the polyamide film layer 11 and the polyester film layer 12.
 基材層1において、ポリアミドフィルム層11、ポリエステルフィルム層12としては、それぞれ、樹脂フィルムを用いてもよいし、樹脂を塗布して形成してもよい。樹脂には後述の添加剤が含まれていてもよい。 に お い て In the base material layer 1, the polyamide film layer 11 and the polyester film layer 12 may each be a resin film or may be formed by applying a resin. The resin may contain additives described below.
 樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。 The resin film may be an unstretched film or a stretched film. Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable. Examples of a stretching method for forming a biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
 ポリアミドフィルム層11を構成しているポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyamide constituting the polyamide film layer 11 include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; Hexamethylenediamine-isophthalic acid-terephthalic acid copolymers such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid and T represents terephthalic acid) containing structural units derived from an acid and / or isophthalic acid Polyamide containing polyamide such as polyamide, polyamide MXD6 (polymethaxylylene adipamide); alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methane adipamide); lactam component and 4,4′-diphenylmethane -Diiso Polyamides obtained by copolymerizing isocyanate components such as anates, polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters and polyalkylene ether glycols; Polyamides. These polyamides may be used alone or in a combination of two or more.
 ポリアミドフィルム層11は、延伸ポリアミドフィルム、さらには二軸延伸ポリアミドフィルム、特に二軸延伸ナイロンフィルムにより構成されていることが好ましい。 The polyamide film layer 11 is preferably made of a stretched polyamide film, furthermore, a biaxially stretched polyamide film, particularly a biaxially stretched nylon film.
 基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 The base material layer 1 may be a single layer or may be composed of two or more layers. When the base material layer 1 is composed of two or more layers, the base material layer 1 may be a laminate in which a resin film is laminated with an adhesive or the like, or may be co-extruded with a resin to form two or more layers. It may be a laminated body of a resin film obtained. In addition, a laminate of resin films in which two or more layers are formed by co-extrusion of a resin may be used as the base material layer 1 without stretching, or may be used as the base material layer 1 by uniaxial stretching or biaxial stretching.
 本開示の蓄電デバイス用外装材においては、ポリアミドフィルム層11の厚みが、10~17μmという特定の範囲に設定されていることを特徴の1つとしている。蓄電デバイス用外装材の成形によるカールをより一層好適に抑制しつつ成形性及び絶縁性を高める観点から、ポリアミドフィルム層11の厚みの下限としては、好ましくは約11μm以上、より好ましくは約12μm以上、または約13μm以上が挙げられ、上限値としては、好ましくは約17μm以下、より好ましくは16μm以下、さらに好ましくは15μm以下が挙げられ、好ましい範囲としては、10~16μm程度、10~15μm程度、11~17μm程度、11~16μm程度、11~15μm程度、12~17μm程度、12~16μm程度、12~15μm程度、13~17μm程度、13~16μm程度、13~15μm程度が挙げられる。ポリアミドフィルム層11の厚みが前記の下限値以上であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、成形性を高めることができ、前記の上限値以下であることにより、蓄電デバイス用外装材を薄くしつつ、成形によるカールを効果的に抑制することができる。 外 装 One feature of the exterior material for a power storage device of the present disclosure is that the thickness of the polyamide film layer 11 is set in a specific range of 10 to 17 μm. From the viewpoint of enhancing the formability and the insulating property while suppressing the curl due to the molding of the exterior material for a power storage device more preferably, the lower limit of the thickness of the polyamide film layer 11 is preferably about 11 μm or more, more preferably about 12 μm or more. Or about 13 μm or more, and the upper limit is preferably about 17 μm or less, more preferably 16 μm or less, and still more preferably 15 μm or less, and the preferred range is about 10 to 16 μm, about 10 to 15 μm, About 11 to 17 μm, about 11 to 16 μm, about 11 to 15 μm, about 12 to 17 μm, about 12 to 16 μm, about 12 to 15 μm, about 13 to 17 μm, about 13 to 16 μm, and about 13 to 15 μm. When the thickness of the polyamide film layer 11 is equal to or greater than the lower limit, the moldability can be improved while curling due to molding of the exterior material for an electricity storage device can be improved. Curling due to molding can be effectively suppressed while reducing the thickness of the device exterior material.
 また、ポリエステルフィルム層12を構成しているポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 ポ リ エ ス テ ル Specific examples of the polyester constituting the polyester film layer 12 include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Examples of the copolymerized polyester include a copolymerized polyester mainly composed of ethylene terephthalate as a repeating unit. Specifically, a copolymer polyester (hereinafter abbreviated to polyethylene (terephthalate / isophthalate)) which is polymerized with ethylene isophthalate with ethylene terephthalate as a main repeating unit, polyethylene (terephthalate / adipate), polyethylene (terephthalate / Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decanedicarboxylate) and the like. These polyesters may be used alone or in a combination of two or more.
 ポリエステルフィルム層12は、二軸延伸ポリエステルフィルム、特に二軸延伸ポリエチレンテレフタレートフィルムにより構成されていることが好ましい。 The polyester film layer 12 is preferably made of a biaxially stretched polyester film, particularly a biaxially stretched polyethylene terephthalate film.
 基材層1がポリエステルフィルム層12をさらに有する場合、ポリエステルフィルム層12の厚みとしては、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、さらにはバリア層3の厚みが本開示の前記所定範囲に設定されれば、特に制限されず、例えば、約17μm以下、好ましくは17~8μm程度、より好ましくは17~10μm程度が挙げられる。ポリエステルフィルム層12の厚みが前記の下限値以上であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、絶縁性を高めることができる。また、ポリエステルフィルム層12の厚みが前記の上限値以下であることにより、蓄電デバイス用外装材を薄くしつつ、成形によるカールを効果的に抑制することができる。 When the base material layer 1 further has a polyester film layer 12, the thickness of the polyester film layer 12 may be, for example, the thickness of the laminate constituting the exterior material for an electric storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3. The thickness is not particularly limited as long as it is set within the above-mentioned predetermined range of the present disclosure, and may be, for example, about 17 μm or less, preferably about 17 to 8 μm, and more preferably about 17 to 10 μm. When the thickness of the polyester film layer 12 is equal to or more than the above lower limit value, it is possible to increase the insulation while suppressing curling due to the molding of the exterior material for a power storage device. In addition, when the thickness of the polyester film layer 12 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for an electric storage device.
 基材層1において、ポリアミドフィルム層11とポリエステルフィルム層12の積層順としては、特に制限されないが、蓄電デバイス用外装材の耐電解液性を向上させる観点からは、後述のバリア層3側から順に、ポリアミドフィルム層11及びポリエステルフィルム層12がこの順に積層されていることが好ましい。 In the base layer 1, the lamination order of the polyamide film layer 11 and the polyester film layer 12 is not particularly limited, but from the viewpoint of improving the electrolytic solution resistance of the exterior material for a power storage device, from the barrier layer 3 side described later. It is preferable that the polyamide film layer 11 and the polyester film layer 12 are laminated in this order.
 前述の通り、例えば図2に示されるように、ポリアミドフィルム層11とポリエステルフィルム層12とは、互いに接面するように積層されていてもよいし、例えば図3に示されるように、接着剤により接着され、これらの層の間に接着剤層13を備えていてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミネート法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。また、接着剤を介して接着させる場合、使用する接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型、紫外線硬化型や電子線硬化型等のいずれであってもよい。 As described above, for example, as shown in FIG. 2, the polyamide film layer 11 and the polyester film layer 12 may be laminated so as to be in contact with each other, or for example, as shown in FIG. And an adhesive layer 13 may be provided between these layers. In the case of bonding without using an adhesive, for example, a method of bonding in a hot melt state such as a co-extrusion method, a sand laminating method, and a thermal laminating method may be mentioned. In the case of bonding via an adhesive, the adhesive used may be a two-part curable adhesive or a one-part curable adhesive. Further, the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, an ultraviolet curable type, and an electron beam curable type.
 ポリアミドフィルム層11及びポリエステルフィルム層12の間に位置する接着剤層13の厚みとしては、好ましくは0.1~5μm程度、より好ましくは0.5~3μm程度が挙げられる。 (4) The thickness of the adhesive layer 13 located between the polyamide film layer 11 and the polyester film layer 12 is preferably about 0.1 to 5 μm, more preferably about 0.5 to 3 μm.
 なお、接着剤層13には、後述の接着剤層2と同様の着色剤を含んでいてもよい。 The adhesive layer 13 may contain the same coloring agent as the adhesive layer 2 described later.
 基材層1は、ポリアミドフィルム層11、必要に応じて設けられるポリエステルフィルム層12に加えて、さらに他の層を備えていてもよい。他の層を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。他の層を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ系樹脂、アクリル系樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール系樹脂、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。他の層を備える場合、他の層の厚みとしては、好ましくは1~20μm程度、より好ましくは1~10μm程度が挙げられる。 The base material layer 1 may further include another layer in addition to the polyamide film layer 11 and the polyester film layer 12 provided as needed. The material forming the other layers is not particularly limited as long as it has insulating properties. As a material for forming another layer, for example, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, polyetherimide, polyimide, and mixtures and copolymers thereof And the like. When another layer is provided, the thickness of the other layer is preferably about 1 to 20 μm, more preferably about 1 to 10 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, even if additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくは後述の熱融着性樹脂層4において例示するアミド系滑剤が挙げられる。 に お い て In the present disclosure, it is preferable that a lubricant is present on the surface of the base material layer 1 from the viewpoint of enhancing the moldability of the exterior material for an electric storage device. The lubricant is not particularly limited, but preferably includes an amide-based lubricant exemplified in the heat-fusible resin layer 4 described below.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When a lubricant is present on the surface of the base material layer 1, the amount thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and still more preferably 5 to 14 mg / m 2. / M 2 .
 基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the base material layer 1 may be obtained by oozing out the lubricant contained in the resin constituting the base material layer 1 or by applying the lubricant to the surface of the base material layer 1. You may.
 基材層1の全体の厚さとしては、蓄電デバイス用外装材の総厚みを薄くしつつ、成形によるカールを抑制しつつ成形性及び絶縁性を高め、さらに絶縁性に優れた蓄電デバイス用外装材とする観点からは、下限については、好ましくは10μm以上、さらに好ましくは12μm以上または13μm以上が挙げられ、上限については、好ましくは約20μm以下、より好ましくは19μm以下、さらに好ましくは17μm以下が挙げられ、好ましい範囲としては、10~20μm程度、10~19μm程度、10~17μm程度、12~20μm程度、12~19μm程度、12~17μm程度、13~20μm程度、13~19μm程度、13~17μm程度が挙げられる。基材層1の全体の厚さが前記の下限値以上であることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、絶縁性を高めることができる。また、基材層1の全体の厚さが前記の上限値以下であることにより、蓄電デバイス用外装材を薄くしつつ、成形によるカールを効果的に抑制することができる。なお、本開示において、基材層1が2層以上により構成されており、これらの層間が接着剤層13などの接着剤の層で接着されている場合、基材層1の全体の厚さには、当該接着剤の層の厚みは含まれないものとする。 The overall thickness of the base material layer 1 may be reduced, while reducing the total thickness of the power storage device packaging material, suppressing curl due to molding, improving moldability and insulating properties, and further improving the insulating properties. From the viewpoint of the material, the lower limit is preferably at least 10 μm, more preferably at least 12 μm or at least 13 μm, and the upper limit is preferably at most about 20 μm, more preferably at most 19 μm, further preferably at most 17 μm. Preferred ranges are about 10 to 20 μm, about 10 to 19 μm, about 10 to 17 μm, about 12 to 20 μm, about 12 to 19 μm, about 12 to 17 μm, about 13 to 20 μm, about 13 to 19 μm, and about 13 to 19 μm. About 17 μm. When the overall thickness of the base material layer 1 is equal to or greater than the lower limit, curling due to molding of the exterior material for a power storage device can be suppressed, and insulation can be improved. In addition, when the overall thickness of the base material layer 1 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for an electric storage device. In the present disclosure, when the base material layer 1 is composed of two or more layers and these layers are bonded by an adhesive layer such as the adhesive layer 13, the entire thickness of the base material layer 1 Does not include the thickness of the adhesive layer.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることなどを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 2 is a layer provided between the base layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesion between the base layer 1 and the barrier layer 3. .
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、また1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。更に、接着剤層2の形成に使用される接着剤は、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is formed of an adhesive capable of adhering the base material layer 1 and the barrier layer 3. The adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, and the like. Further, it may be a two-part curable adhesive (two-part adhesive), a one-part curable adhesive (one-part adhesive), or a resin that does not involve a curing reaction. Further, the adhesive used for forming the adhesive layer 2 may be any of a chemical reaction type, a solvent volatilization type, a hot-melt type, a hot pressure type, and the like. The adhesive layer 2 may be a single layer or a multilayer.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolyester; polyether; polyurethane; epoxy resin; Phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin-based resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; Polyimide; Polycarbonate; Amino resin such as urea resin and melamine resin; Rubber such as chloroprene rubber, nitrile rubber, styrene-butadiene rubber; Silicone resin It is. One of these adhesive components may be used alone, or two or more thereof may be used in combination. Among these adhesive components, a polyurethane adhesive is preferable. In addition, these adhesive resins can be used together with an appropriate curing agent to increase the adhesive strength. As the curing agent, an appropriate one is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like according to the functional group of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 Examples of the polyurethane adhesive include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound. Preferably, a two-component curing type polyurethane adhesive containing a polyol such as a polyester polyol, a polyether polyol, or an acrylic polyol as a main component and a curing agent of an aromatic or aliphatic polyisocyanate is used. In addition, as the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit. Since the adhesive layer 2 is formed of the polyurethane adhesive, the outer material for an electric storage device has excellent electrolyte resistance, and the base layer 1 is prevented from peeling even when the electrolyte adheres to the side surface. .
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 接着 Additionally, other components may be added to the adhesive layer 2 as long as the adhesion is not impaired, and the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, and the like. When the adhesive layer 2 contains a coloring agent, the exterior material for an electric storage device can be colored. Known coloring agents such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 種類 The type of pigment is not particularly limited as long as the adhesiveness of the adhesive layer 2 is not impaired. Examples of the organic pigments include azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigothioindigo, perinone-perylene, isoindolenin, and benzimidazolone pigments. Examples of the pigment include carbon black pigments, titanium oxide pigments, cadmium pigments, lead pigments, chromium oxide pigments, iron pigments, and the like, and mica (mica) fine powder, fish scale foil and the like.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the coloring agents, for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 平均 The average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is a median size measured by a laser diffraction / scattering type particle size distribution measuring device.
 接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 顔料 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for an electric storage device is colored, and is, for example, about 5 to 60% by mass, and preferably 10 to 40% by mass.
 接着剤層2の厚みは、基材層1とバリア層3とを接着し、さらに、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、バリア層3の厚みが本開示の前記所定範囲に設定されれば、特に制限されず、下限については、例えば、約1μm以上、約2μm以上が挙げられ、上限については、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。接着剤層2の厚みが前記の下限値以上であることにより、基材層1とバリア層3との接着性を効果的に高めることができる。また、接着剤層2の厚みが前記の上限値以下であることにより、蓄電デバイス用外装材を薄くしつつ、成形によるカールを抑制し、さらに短い時間での乾燥や硬化が可能となり生産性に優れる。また、接着剤層2の厚みが大きくなりすぎてクラックが入ることによる接着性の低下を効果的に抑制することができる。 The thickness of the adhesive layer 2 is such that the base layer 1 and the barrier layer 3 are adhered to each other, and the thickness of the laminate constituting the exterior material for the electric storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are determined. Is not particularly limited as long as it is set to the predetermined range of the present disclosure, and the lower limit is, for example, about 1 μm or more, about 2 μm or more, and the upper limit is about 10 μm or less, about 5 μm or less, A preferred range is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm. When the thickness of the adhesive layer 2 is equal to or more than the above lower limit, the adhesiveness between the base material layer 1 and the barrier layer 3 can be effectively increased. In addition, since the thickness of the adhesive layer 2 is equal to or less than the above upper limit, curling due to molding is suppressed while thinning the exterior material for an electric storage device, and drying and curing can be performed in a shorter time. Excellent. In addition, it is possible to effectively suppress a decrease in adhesiveness due to cracks caused by an excessively large thickness of the adhesive layer 2.
[着色層]
 着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
[Coloring layer]
The coloring layer is a layer provided as needed between the base material layer 1 and the barrier layer 3 (not shown). When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided outside the base material layer 1. By providing the coloring layer, the exterior material for a power storage device can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1, the surface of the adhesive layer 2, or the surface of the barrier layer 3. Known coloring agents such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 具体 Specific examples of the coloring agent contained in the coloring layer are the same as those exemplified in the section of [Adhesive Layer 2].
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 3]
In the exterior material for a power storage device, the barrier layer 3 is a layer that suppresses at least intrusion of moisture.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデンなどが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil having a barrier property, a vapor-deposited film, and a resin layer. Examples of the deposited film include a metal deposited film, an inorganic oxide deposited film, and a carbon-containing inorganic oxide deposited film, and examples of the resin layer include polyvinylidene chloride. Examples of the barrier layer 3 include a resin film provided with at least one of these deposited films and resin layers. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material forming the barrier layer 3 include an aluminum alloy, stainless steel, and titanium steel. When the metal material is used as the metal foil, it may include at least one of an aluminum alloy foil and a stainless steel foil. preferable.
 アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。 The aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, from the viewpoint of improving the formability of the exterior material for the power storage device, and further improving the formability. Therefore, it is preferable to use an aluminum alloy foil containing iron. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, a packaging material for an electric storage device having more excellent moldability can be obtained. When the iron content is 9.0% by mass or less, a packaging material for a power storage device having higher flexibility can be obtained. Examples of the soft aluminum alloy foil include, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8079PO. Foil.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 ス テ ン レ ス Examples of the stainless steel foil include austenitic, ferritic, austenitic / ferritic, martensitic, and precipitation hardening stainless steel foils. It is preferable that the stainless steel foil is made of austenitic stainless steel from the viewpoint of providing an exterior material for a power storage device having excellent moldability.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 具体 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, SUS316L and the like, among which SUS304 is particularly preferred.
 本開示の蓄電デバイス用外装材においては、バリア層3の厚みが36~44μmという特定の範囲に設定されていることを特徴の1つとしている。蓄電デバイス用外装材の成形によるカールをより一層好適に抑制する観点から、バリア層3の厚みの下限としては、好ましくは38μm以上、より好ましくは約39μm以上が挙げられ、上限値としては、好ましくは42μm以下、より好ましくは41μm以下が挙げられ、好ましい範囲としては、36~42μm程度、36~41μm程度、38~44μm程度、38~42μm程度、38~41μm程度、39~44μm程度、39~42μm程度、39~41μm程度が挙げられる。バリア層3の厚みが前記の下限値以上であることにより、蓄電デバイス用外装材の成形性を高めることができる。また、バリア層3の厚みが前記の上限値以下であることにより、蓄電デバイス用外装材を薄くしつつ、成形によるカールを効果的に抑制することができる。 外 装 One of the features of the packaging material for a power storage device of the present disclosure is that the thickness of the barrier layer 3 is set to a specific range of 36 to 44 μm. From the viewpoint of more appropriately suppressing curling due to the molding of the exterior material for the power storage device, the lower limit of the thickness of the barrier layer 3 is preferably 38 μm or more, more preferably about 39 μm or more, and the upper limit is preferably Is about 42 μm or less, more preferably about 41 μm or less. Preferred ranges are about 36 to 42 μm, about 36 to 41 μm, about 38 to 44 μm, about 38 to 42 μm, about 38 to 41 μm, about 39 to 44 μm, and about 39 to 44 μm. About 42 μm and about 39 to 41 μm. When the thickness of the barrier layer 3 is equal to or more than the above lower limit, the moldability of the exterior material for a power storage device can be improved. In addition, when the thickness of the barrier layer 3 is equal to or less than the upper limit, curling due to molding can be effectively suppressed while reducing the thickness of the exterior material for the power storage device.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層1と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、コーティング剤を塗工する腐食防止処理をバリア層3の表面に行い、バリア層3に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 In the case where the barrier layer 3 is a metal foil, it is preferable to provide a corrosion-resistant coating on at least the surface opposite to the base material layer 1 in order to prevent dissolution and corrosion. The barrier layer 3 may have a corrosion resistant film on both sides. Here, the corrosion-resistant film refers to, for example, a hot-water conversion treatment such as a boehmite treatment, a chemical conversion treatment, an anodic oxidation treatment, and a corrosion prevention treatment of applying a coating agent on the surface of the barrier layer 3. Refers to a thin film having corrosion resistance. As the treatment for forming the corrosion resistant film, one kind may be performed, or two or more kinds may be combined. Among these treatments, the hydrothermal alteration treatment and the anodic oxidation treatment are treatments in which the surface of the metal foil is dissolved by a treating agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of the chemical conversion process. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層3(例えば、アルミニウム合金箔)と基材層1との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層3表面の溶解、腐食、特にバリア層3がアルミニウム合金箔である場合にバリア層3表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層3表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層1とバリア層3とのデラミネーション防止、成形時の基材層1とバリア層3とのデラミネーション防止の効果を示す。 The anti-corrosion film prevents delamination between the barrier layer 3 (for example, aluminum alloy foil) and the base material layer 1 during the formation of the exterior material for an electricity storage device, and the fluoride generated by the reaction between the electrolyte and moisture. Dissolution and corrosion of the surface of the barrier layer 3 by hydrogen, particularly, dissolution and corrosion of aluminum oxide present on the surface of the barrier layer 3 when the barrier layer 3 is an aluminum alloy foil, are prevented. It shows an effect of improving adhesion (wetting), preventing delamination between the base layer 1 and the barrier layer 3 during heat sealing, and preventing delamination between the base layer 1 and the barrier layer 3 during molding.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。希土類酸化物としては、セリウム化合物が好ましく、中でも酸化セリウムが好ましい。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層3(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 As the corrosion-resistant film formed by the chemical conversion treatment, various types are known, and at least one of a phosphate, a chromate, a fluoride, a triazine thiol compound, and a rare earth oxide is mainly used. And a corrosion-resistant film containing. As the rare earth oxide, a cerium compound is preferable, and among them, cerium oxide is preferable. Examples of the chemical conversion treatment using phosphate or chromate include chromate chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, chromate treatment, and the like. Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, acetyl chromate, chromium chloride, potassium chromium sulfate, and the like. Examples of the phosphorus compound used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, and polyphosphoric acid. Examples of the chromate treatment include an etching chromate treatment, an electrolytic chromate treatment, and a coating type chromate treatment, and a coating type chromate treatment is preferable. In this coating type chromate treatment, at least the inner layer side of the barrier layer 3 (for example, an aluminum alloy foil) is first coated with a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, and an acid activation method. After the degreasing treatment is performed, a phosphoric acid such as a Cr (chromium) salt, a Ti (titanium) phosphate, a Zr (zirconium) phosphate, or a Zn (zinc) salt is applied to the degreasing surface. A treatment liquid mainly containing a metal salt and a mixture of these metal salts, or a treatment liquid mainly containing a non-metallic phosphate and a mixture of these non-metal salts, or a synthetic resin and the like. This is a process of applying a treatment liquid comprising a mixture of the above by a well-known coating method such as a roll coating method, a gravure printing method, and a dipping method, and drying. Various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents and ether solvents can be used as the treatment liquid, and water is preferred. Examples of the resin component used at this time include polymers such as a phenolic resin and an acrylic resin, and an aminated phenol polymer having a repeating unit represented by the following general formulas (1) to (4). The used chromate treatment is exemplified. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. Is also good. The acrylic resin must be polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or a derivative thereof such as a sodium salt, an ammonium salt, or an amine salt. Is preferred. In particular, a derivative of polyacrylic acid such as an ammonium salt, a sodium salt, or an amine salt of polyacrylic acid is preferable. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is also preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, ammonium salt, sodium salt of a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, Or it is also preferably an amine salt. One type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(I)又は一般式(III)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて水溶性官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and each represents a hydroxy group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, A straight-chain or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group is exemplified. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, A straight or branched chain having 1 to 4 carbon atoms, in which one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group is substituted And an alkyl group. In the general formulas (1) to (4), the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having the repeating units represented by the general formulas (1) to (4) is preferably, for example, about 500 to 1,000,000, and is preferably about 1,000 to 20,000. More preferred. The aminated phenol polymer is produced, for example, by subjecting a phenol compound or a naphthol compound to formaldehyde to polycondensation to produce a polymer comprising a repeating unit represented by the above general formula (I) or (III), And an amine (R 1 R 2 NH) to introduce a water-soluble functional group (—CH 2 NR 1 R 2 ) into the polymer obtained above. The aminated phenolic polymer is used alone or in combination of two or more.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Another example of the corrosion resistant film is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth oxide sol, an anionic polymer and a cationic polymer is applied. Thin film to be formed. The coating agent may further contain a phosphoric acid or a phosphate, and a crosslinking agent for crosslinking the polymer. In the rare earth oxide sol, fine particles of the rare earth oxide (for example, particles having an average particle diameter of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of the rare earth element oxide include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide. Cerium oxide is preferable from the viewpoint of further improving the adhesion. The rare earth element oxides contained in the corrosion resistant film can be used alone or in combination of two or more. As the liquid dispersion medium of the rare earth element oxide sol, for example, various solvents such as water, an alcohol solvent, a hydrocarbon solvent, a ketone solvent, an ester solvent, and an ether solvent can be used, and water is preferable. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is graft-polymerized on an acrylic main skeleton, polyallylamine or a derivative thereof. And aminated phenols are preferred. The anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Further, it is preferable that the crosslinking agent is at least one selected from the group consisting of a compound having any functional group of an isocyanate group, a glycidyl group, a carboxyl group, and an oxazoline group, and a silane coupling agent. Further, the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層3の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion resistant film, a dispersion of fine particles of a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide or barium sulfate in phosphoric acid is applied to the surface of the barrier layer 3, Those formed by performing a baking treatment at 150 ° C. or more are exemplified.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 (4) The corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary. Examples of the cationic polymer and the anionic polymer include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 組成 The analysis of the composition of the corrosion-resistant coating can be performed, for example, using a time-of-flight secondary ion mass spectrometry.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. For example, in the case of performing a coating type chromate treatment, a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 is used. Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg, in terms of phosphorus, and an aminated phenol polymer Is desirably contained at a ratio of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、さらにバリア層3の厚みが本開示の前記所定範囲に設定されれば、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 As the thickness of the corrosion-resistant coating, if the thickness of the laminate constituting the exterior material for the power storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are set within the above-described predetermined range of the present disclosure, Although not particularly limited, it is preferably about 1 nm to 20 μm, more preferably about 1 nm to 100 nm, and still more preferably about 1 nm to 50 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the heat-fusible resin layer. Is mentioned. The thickness of the corrosion resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy. The time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層3の表面に塗布した後に、バリア層3の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層3に化成処理を施す前に、予めバリア層3を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層3の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 In the chemical conversion treatment, a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer 3 by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the barrier layer 3 is coated. This is performed by heating so that the temperature is about 70 to 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer 3, the barrier layer 3 may be subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like in advance. By performing the degreasing treatment in this manner, the chemical conversion treatment of the surface of the barrier layer 3 can be performed more efficiently. In addition, by using an acid degreaser obtained by dissolving a fluorine-containing compound with an inorganic acid for the degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also a passivated metal fluoride. In such a case, only the degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Heat-fusible resin layer 4]
In the exterior material for a power storage device of the present disclosure, the heat-fusible resin layer 4 corresponds to the innermost layer and has a function of heat-sealing the heat-fusible resin layers together during assembly of the power storage device to seal the power storage device element. (Sealant layer).
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but a resin containing a polyolefin skeleton such as a polyolefin or an acid-modified polyolefin is preferable. The fact that the resin constituting the heat-fusible resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography / mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. When the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected by infrared spectroscopy. However, if the degree of acid modification is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the polyolefin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; homopolypropylene, block copolymers of polypropylene (for example, propylene and Polypropylene, such as a block copolymer of ethylene) and a random copolymer of polypropylene (eg, a random copolymer of propylene and ethylene); a propylene-α-olefin copolymer; and a terpolymer of ethylene-butene-propylene. Among them, polypropylene is preferable. When it is a copolymer, the polyolefin resin may be a block copolymer or a random copolymer. One of these polyolefin resins may be used alone, or two or more thereof may be used in combination.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 ポ リ Also, the polyolefin may be a cyclic polyolefin. The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer. Examples of the olefin constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, isoprene and the like. Can be Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include a cyclic alkene such as norbornene; and a cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Of these, preferred are cyclic alkenes, and more preferred are norbornenes.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 The acid-modified polyolefin is a polymer obtained by modifying a polyolefin by block polymerization or graft polymerization with an acid component. As the polyolefin to be acid-modified, the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a cross-linked polyolefin can also be used. Examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, and anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. The acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin instead of the acid component, or by subjecting the cyclic polyolefin to block polymerization or graft polymerization of the acid component. is there. The cyclic polyolefin to be acid-modified is the same as described above. The acid component used for the acid modification is the same as the acid component used for the above-mentioned polyolefin modification.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred examples of the acid-modified polyolefin include a polyolefin modified with a carboxylic acid or its anhydride, a polypropylene modified with a carboxylic acid or its anhydride, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 (4) The heat-fusible resin layer 4 may be formed of one kind of resin alone, or may be formed of a blend polymer obtained by combining two or more kinds of resins. Further, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、熱融着性樹脂層4の表面には、滑剤が存在していることが好ましい。熱融着性樹脂層4の表面に滑剤が存在し、滑剤層を形成していることにより、蓄電デバイス用外装材の成形によるカールを抑制しつつ、蓄電デバイス用外装材の成形性を高めることができる。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。なお、滑剤層の厚みについても、本開示の蓄電デバイス用外装材を構成する積層体の厚みに含まれる。 に お い て In the present disclosure, a lubricant is preferably present on the surface of the heat-fusible resin layer 4 from the viewpoint of improving the moldability of the exterior material for an electric storage device. A lubricant is present on the surface of the heat-fusible resin layer 4, and by forming the lubricant layer, curl due to molding of the power storage device exterior material is suppressed and moldability of the power storage device exterior material is improved. Can be. The lubricant is not particularly limited, and a known lubricant can be used. A lubricant may be used alone or in combination of two or more. In addition, the thickness of the lubricant layer is also included in the thickness of the laminate constituting the exterior material for a power storage device of the present disclosure.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The lubricant is not particularly limited, but preferably includes an amide lubricant. Specific examples of the amide-based lubricant include, for example, saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylolamide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, fatty acid ester amide, aromatic bisamide and the like. Specific examples of the saturated fatty acid amide include lauric amide, palmitic amide, stearic amide, behenic amide, and hydroxystearic amide. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic amide, N-stearyl stearamide, N-stearyl oleamide, N-oleyl stearamide, N-stearyl erucamide, and the like. Specific examples of methylolamide include methylol stearamide. Specific examples of the saturated fatty acid bisamide include methylene bisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearin Acid amide, hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N, N'-distearyladipamide, N, N'-distearylsebacic amide and the like. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl adipamide, N, N'-dioleyl sebacic amide And the like. Specific examples of the fatty acid ester amide include stearoamidoethyl stearate. Specific examples of the aromatic bisamide include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, N, N'-distearylisophthalic acid amide, and the like. One type of lubricant may be used alone, or two or more types may be used in combination.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。 When a lubricant is present on the surface of the heat-fusible resin layer 4, the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for an electric storage device. And more preferably about 15 to 40 mg / m 2 .
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the heat-fusible resin layer 4 may be formed by exuding the lubricant contained in the resin constituting the heat-fusible resin layer 4, The surface may be coated with a lubricant.
 また、熱融着性樹脂層4の厚みとしては、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、さらにバリア層3の厚みを本開示の前記所定範囲に設定しつつ、接着層5の有無や、接着層5の厚みなどに応じて設定することができる。熱融着性樹脂層4の厚みの上限については、例えば約34μm以下、好ましくは約33μm以下、より好ましくは32μm以下が挙げられ、下限については、例えば約8μm以上、好ましくは10μm以上、より好ましくは12μm以上が挙げられ、好ましい範囲としては、8~34μm程度、8~33μm程度、8~32μm程度、10~34μm程度、10~33μm程度、10~32μm程度、12~34μm程度、12~33μm程度、12~32μm程度が挙げられる。 Further, as the thickness of the heat-fusible resin layer 4, the thickness of the laminate constituting the exterior material for the electricity storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are within the above-mentioned predetermined ranges of the present disclosure. While setting, it can be set according to the presence or absence of the adhesive layer 5, the thickness of the adhesive layer 5, and the like. The upper limit of the thickness of the heat-fusible resin layer 4 is, for example, about 34 μm or less, preferably about 33 μm or less, more preferably 32 μm or less, and the lower limit is about 8 μm or more, preferably 10 μm or more, more preferably Is about 12 μm or more, and a preferable range is about 8 to 34 μm, about 8 to 33 μm, about 8 to 32 μm, about 10 to 34 μm, about 10 to 33 μm, about 10 to 32 μm, about 12 to 34 μm, or about 12 to 33 μm About 12 to 32 μm.
 とりわけ、後述の接着層5の厚みが8~22μmの範囲内である場合には、熱融着性樹脂層4の厚みとしては、上限については、好ましくは約22μm以下、より好ましくは約21μm以下、さらに好ましくは約20μm以下が挙げられ、下限については、好ましくは約8μm以上、より好ましくは約9μm以上、さらに好ましくは約10μm以上が挙げられ、好ましい範囲としては、8~22μm程度、8~21μm程度、8~20μm程度、9~22μm程度、9~21μm程度、9~20μm程度、10~22μm程度、10~21μm程度、10~20μm程度が挙げられる。また、後述の接着層5の厚みが1~5μmの範囲内である場合には、熱融着性樹脂層4の厚みとしては、上限については、好ましくは約34μm以下、より好ましくは約33μm以下、さらに好ましくは約32μm以下が挙げられ、下限については、好ましくは約18μm以上、より好ましくは約19μm以上、さらに好ましくは約20μm以上が挙げられ、好ましい範囲としては、18~34μm程度、18~33μm程度、18~32μm程度、19~34μm程度、19~33μm程度、19~32μm程度、20~34μm程度、20~33μm程度、20~32μm程度が挙げられる。 In particular, when the thickness of the adhesive layer 5 described later is in the range of 8 to 22 μm, the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 22 μm or less, more preferably about 21 μm or less. More preferably, the thickness is about 20 μm or less, and the lower limit is preferably about 8 μm or more, more preferably about 9 μm or more, and still more preferably about 10 μm or more, and the preferred range is about 8 to 22 μm or 8 to 22 μm. About 21 μm, about 8 to 20 μm, about 9 to 22 μm, about 9 to 21 μm, about 9 to 20 μm, about 10 to 22 μm, about 10 to 21 μm, and about 10 to 20 μm. When the thickness of the adhesive layer 5 described later is in the range of 1 to 5 μm, the upper limit of the thickness of the heat-fusible resin layer 4 is preferably about 34 μm or less, more preferably about 33 μm or less. More preferably, the thickness is about 32 μm or less, and the lower limit is preferably about 18 μm or more, more preferably about 19 μm or more, and still more preferably about 20 μm or more, and the preferred range is about 18 to 34 μm, 18 to 34 μm. About 33 μm, about 18 to 32 μm, about 19 to 34 μm, about 19 to 33 μm, about 19 to 32 μm, about 20 to 34 μm, about 20 to 33 μm, about 20 to 32 μm.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、バリア層3と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the packaging material for a power storage device according to the present disclosure, the adhesive layer 5 is a layer provided as necessary between the barrier layer 3 and the heat-fusible resin layer 4 in order to firmly adhere the layer.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、前述の熱融着性樹脂層4で例示したポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂が好適に使用できる。ポリオレフィン系樹脂としては、ポリプロピレン、環状ポリプロピレン、酸変性ポリプロピレン、酸変性環状ポリプロピレンなどのポリプロピレン系樹脂が好適に使用できる。この場合、熱融着性樹脂層4と接着層5とは、押出成形により好適に形成することができる。 The adhesive layer 5 is formed of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4. As the resin used for forming the adhesive layer 5, polyolefin resins such as the polyolefin, cyclic polyolefin, acid-modified polyolefin, and acid-modified cyclic polyolefin exemplified in the heat-fusible resin layer 4 described above can be suitably used. As the polyolefin resin, polypropylene resins such as polypropylene, cyclic polypropylene, acid-modified polypropylene, and acid-modified cyclic polypropylene can be preferably used. In this case, the heat-fusible resin layer 4 and the adhesive layer 5 can be suitably formed by extrusion.
 また、接着層5の形成に使用される樹脂として、接着剤層2で例示した接着剤と同様のものも使用できる。 樹脂 Further, as the resin used for forming the adhesive layer 5, the same resin as the adhesive exemplified in the adhesive layer 2 can be used.
 バリア層3と熱融着性樹脂層4との密着性に優れる観点から、ポリオレフィン系樹脂としては、ポリオレフィン及び酸変性ポリオレフィンが好ましく、ポリプロピレン及び酸変性ポリプロピレンが特に好ましい。すなわち、接着層5を構成している樹脂は、ポリオレフィン骨格を含んでいても含んでいなくてもよく、ポリオレフィン骨格を含んでいることが好ましい。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 From the viewpoint of excellent adhesion between the barrier layer 3 and the heat-fusible resin layer 4, the polyolefin resin is preferably a polyolefin or an acid-modified polyolefin, and particularly preferably a polypropylene or an acid-modified polypropylene. That is, the resin constituting the adhesive layer 5 may or may not contain a polyolefin skeleton, and preferably contains a polyolefin skeleton. The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy or gas chromatography / mass spectrometry, and the analysis method is not particularly limited. Further, when the resin constituting the adhesive layer 5 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the degree of acid modification is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 バリア層3(又は耐酸性皮膜(耐腐食性皮膜))と熱融着性樹脂層4との密着性を向上させる観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンは、ポリオレフィンをカルボン酸などの酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸などのカルボン酸又はその無水物が挙げられる。また、変性されるポリオレフィンとしては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)などのポリプロピレン;エチレン-ブテン-プロピレンのターポリマーなどが挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 From the viewpoint of improving the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)) and the heat-fusible resin layer 4, the adhesive layer 5 preferably contains an acid-modified polyolefin. The acid-modified polyolefin is a polymer obtained by modifying a polyolefin by block polymerization or graft polymerization with an acid component such as carboxylic acid. Examples of the acid component used for the modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, and anhydrides thereof. Examples of the polyolefin to be modified include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; homopolypropylene, block copolymers of polypropylene (for example, block copolymers of propylene and ethylene), and polypropylenes. Polypropylene such as a random copolymer (for example, a random copolymer of propylene and ethylene); and a terpolymer of ethylene-butene-propylene. Among these polyolefins, polyethylene and polypropylene are preferred.
 接着層5において、酸変性ポリオレフィンの中でも、特に無水マレイン酸変性ポリオレフィン、さらには無水マレイン酸変性ポリプロピレンが好ましい。 In the adhesive layer 5, among the acid-modified polyolefins, a maleic anhydride-modified polyolefin, particularly, a maleic anhydride-modified polypropylene is preferable.
 さらに、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Further, from the viewpoint of reducing the thickness of the exterior material for an electric storage device and making the exterior material for an electric storage device excellent in shape stability after molding, the adhesive layer 5 is made of a resin composition containing an acid-modified polyolefin and a curing agent. More preferably, the cured product is Preferred examples of the acid-modified polyolefin include those described above.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ウレタン樹脂、エステル樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ウレタン樹脂及びエポキシ樹脂を含むことがより好ましい。エステル樹脂としては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。接着層5が酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. Preferably, the cured product is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably includes at least one selected from the group consisting of a urethane resin, an ester resin, and an epoxy resin, and more preferably includes a urethane resin and an epoxy resin. As the ester resin, for example, an amide ester resin is preferable. The amide ester resin is generally formed by a reaction between a carboxyl group and an oxazoline group. The adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin. When the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, the adhesive layer 5 can be formed by applying the resin composition and curing it by heating or the like. In the case where an unreacted product of a compound having an isocyanate group, a compound having an oxazoline group, and a curing agent such as an epoxy resin remains in the adhesive layer 5, the presence of the unreacted product is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3(又は耐酸性皮膜(耐腐食性皮膜))と熱融着性樹脂層4と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ウレタン樹脂などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 In addition, from the viewpoint of further improving the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)), the heat-fusible resin layer 4 and the adhesive layer 5, the adhesive layer 5 includes an oxygen atom, a heterocyclic ring, It is preferably a cured product of a resin composition containing a curing agent having at least one selected from the group consisting of C = N bonds and C—O—C bonds. Examples of the curing agent having a heterocyclic ring include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C = N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—O—C bond include a curing agent having an oxazoline group, a curing agent having an epoxy group, and a urethane resin. The fact that the adhesive layer 5 is a cured product of the resin composition containing these curing agents may be determined, for example, by gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF) SIMS) and X-ray photoelectron spectroscopy (XPS).
 イソシアネート基を有する化合物としては、特に制限されないが、耐酸性皮膜(耐腐食性皮膜)と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively improving the adhesion between the acid-resistant film (corrosion-resistant film) and the adhesive layer 5, a polyfunctional isocyanate compound is preferably used. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), And a mixture thereof, a copolymer with another polymer, and the like.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably, it is within the range.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it has a oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Examples of commercially available products include Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3(又は耐酸性皮膜(耐腐食性皮膜))と接着層5との密着性を効果的に高めることができる。 The proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. Thereby, the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)) and the adhesive layer 5 can be effectively increased.
 エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group present in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2,000, more preferably about 100 to 1,000, and further preferably about 200 to 800. In the present disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions using polystyrene as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolak glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3(又は耐酸性皮膜(耐腐食性皮膜))と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and more preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferred. Thereby, the adhesion between the barrier layer 3 (or the acid-resistant film (corrosion-resistant film)) and the adhesive layer 5 can be effectively increased.
 なお、本開示において、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂は、それぞれ、硬化剤として機能する。 In the present disclosure, the adhesive layer 5 is a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. In the case of a product, the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the epoxy resin each function as a curing agent.
 カルボジイミド系硬化剤は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド系硬化剤としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。 The carbodiimide-based curing agent is not particularly limited as long as it is a compound having at least one carbodiimide group (-N = C = N-). As the carbodiimide-based curing agent, a polycarbodiimide compound having at least two or more carbodiimide groups is preferable.
 接着層5によるバリア層3と熱融着性樹脂層4との密着性を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。 硬化 From the viewpoint of enhancing the adhesion between the barrier layer 3 and the heat-fusible resin layer 4 by the adhesive layer 5, the curing agent may be composed of two or more compounds.
 接着層5を形成する樹脂組成物における硬化剤の含有量は、0.1~50質量%程度の範囲にあることが好ましく、0.1~30質量%程度の範囲にあることがより好ましく、0.1~10質量%程度の範囲にあることがさらに好ましい。 The content of the curing agent in the resin composition forming the adhesive layer 5 is preferably in the range of about 0.1 to 50% by mass, more preferably in the range of about 0.1 to 30% by mass. More preferably, it is in the range of about 0.1 to 10% by mass.
 さらに、接着層5は、例えば、接着剤を用いて好適に形成することもできる。接着剤としては、例えば、カルボキシル基を有する非結晶性ポリオレフィン樹脂(A)と、多官能イソシアネート化合物(B)と、多官能イソシアネート化合物(B)と反応する官能基を有さない3級アミン(C)を含有し、カルボキシル基の合計1モルに対して、イソシアネート基の量が0.3~10モルとなる範囲で多官能イソシアネート化合物(B)を含有し、カルボキシル基の合計1モルに対して、3級アミン(C)を1~10モルとなる範囲で含有する、接着剤組成物から形成されたものが挙げられる。また、接着剤としては、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)と、ポリイソシアネート(C)とを含有し、スチレン系熱可塑性エラストマー(A)と、粘着付与剤(B)との合計100重量%中に、前記スチレン系熱可塑性エラストマー(A)を20~90重量%、前記粘着付与剤(B)を10~80重量%含み、スチレン系熱可塑性エラストマー(A)は、0.003~0.04mmol/gのアミノ基または水酸基に由来する活性水素を有し、スチレン系熱可塑性エラストマー(A)由来の前記活性水素1モルに対して、前記粘着付与剤(B)の官能基由来の活性水素が0~15モルであり、ポリイソシアネート(C)は、前記スチレン系熱可塑性エラストマー(A)由来の活性水素と、粘着付与剤(B)由来の活性水素との合計1モルに対して、イソシアネート基が3~150モルとなる範囲で含まれているものからなる接着剤組成物により形成されたものなども挙げられる。 Furthermore, the adhesive layer 5 can be suitably formed using, for example, an adhesive. Examples of the adhesive include a non-crystalline polyolefin resin (A) having a carboxyl group, a polyfunctional isocyanate compound (B), and a tertiary amine having no functional group that reacts with the polyfunctional isocyanate compound (B) ( C) and the polyfunctional isocyanate compound (B) in an amount of 0.3 to 10 mol based on 1 mol of the carboxyl group, based on 1 mol of the carboxyl group. And those formed from an adhesive composition containing the tertiary amine (C) in a range of 1 to 10 mol. The adhesive contains a styrene-based thermoplastic elastomer (A), a tackifier (B), and a polyisocyanate (C), and contains a styrene-based thermoplastic elastomer (A) and a tackifier (B). ), The styrene-based thermoplastic elastomer (A) is contained in an amount of 20 to 90% by weight, and the tackifier (B) is contained in an amount of 10 to 80% by weight in 100% by weight of the styrene-based thermoplastic elastomer (A). Having an active hydrogen derived from an amino group or a hydroxyl group of 0.003 to 0.04 mmol / g, and the tackifier (B) based on 1 mol of the active hydrogen derived from the styrene thermoplastic elastomer (A). The active hydrogen derived from the functional group is 0 to 15 mol, and the polyisocyanate (C) is composed of the active hydrogen derived from the styrene-based thermoplastic elastomer (A) and the active hydrogen derived from the tackifier (B). The total one mole of the sexual hydrogen, may also be mentioned such as those isocyanate groups is formed by three-adhesive composition consisting of those that are included in a range of 150 mol.
 また、接着層5の厚みとしては、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、さらにバリア層3の厚みが本開示の前記所定範囲に設定しつつ、熱融着性樹脂層4の厚みなどに応じて設定することができる。接着層5の厚みの上限については、例えば約22μm以下、好ましくは約21μm以下、より好ましくは20μm以下が挙げられ、下限については、例えば約1μm以上、好ましくは2μm以上が挙げられ、好ましい範囲としては、1~22μm程度、1~21μm程度、1~20μm程度、2~22μm程度、2~21μm程度、2~20μm程度が挙げられる。 Further, as the thickness of the adhesive layer 5, while the thickness of the laminate constituting the exterior material for the electricity storage device, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 are set within the above-mentioned predetermined range of the present disclosure, It can be set according to the thickness of the heat-fusible resin layer 4 and the like. The upper limit of the thickness of the adhesive layer 5 is, for example, about 22 μm or less, preferably about 21 μm or less, more preferably 20 μm or less, and the lower limit is, for example, about 1 μm or more, preferably 2 μm or more. Is about 1 to 22 μm, about 1 to 21 μm, about 1 to 20 μm, about 2 to 22 μm, about 2 to 21 μm, about 2 to 20 μm.
 とりわけ、前述の熱融着性樹脂層4の厚みが8~22μmである場合には、接着層5の厚みは、下限については、好ましくは約8μm以上、より好ましくは約9μm以上が挙げられ、上限については、好ましくは約22μm以下、より好ましくは約21μm以下が挙げられ、好ましい範囲としては、8~22μm程度、8~21μm程度、9~22μm程度、9~21μm程度が挙げられる。この場合、接着層5としては、熱融着性樹脂層4で例示したポリオレフィン樹脂、酸変性ポリオレフィン樹脂などのポリオレフィン系樹脂を用いることが好ましい。また、前述の熱融着性樹脂層4の厚みが18~34μmである場合には、接着層5の厚みは、下限については、好ましくは約1μm以上、より好ましくは約2μm以上が挙げられ、上限については、好ましくは約5μm以下、より好ましくは約4μm以下が挙げられ、好ましい範囲としては、1~5μm程度、1~4μm程度、2~5μm程度、2~4μm程度が挙げられる。この場合、接着層5としては、酸変性ポリオレフィンと硬化剤との硬化物や、接着剤層2で例示した接着剤と同様のものを用いることが好ましい。 In particular, when the thickness of the heat-fusible resin layer 4 is 8 to 22 μm, the lower limit of the thickness of the adhesive layer 5 is preferably about 8 μm or more, more preferably about 9 μm or more, The upper limit is preferably about 22 μm or less, more preferably about 21 μm or less, and the preferred range is about 8 to 22 μm, about 8 to 21 μm, about 9 to 22 μm, or about 9 to 21 μm. In this case, as the adhesive layer 5, it is preferable to use a polyolefin-based resin such as the polyolefin resin exemplified in the heat-fusible resin layer 4 and the acid-modified polyolefin resin. When the thickness of the heat-fusible resin layer 4 is 18 to 34 μm, the lower limit of the thickness of the adhesive layer 5 is preferably about 1 μm or more, more preferably about 2 μm or more. The upper limit is preferably about 5 μm or less, more preferably about 4 μm or less, and the preferred range is about 1 to 5 μm, about 1 to 4 μm, about 2 to 5 μm, or about 2 to 4 μm. In this case, as the adhesive layer 5, it is preferable to use a cured product of an acid-modified polyolefin and a curing agent, or the same adhesive as the adhesive exemplified in the adhesive layer 2.
[表面被覆層6]
 第1の開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐擦過性、成形性などの向上を目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。また、第2の開示の蓄電デバイス用外装材は、表面被覆層6を備えている。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイスの最外層側に位置する層である。
[Surface coating layer 6]
The exterior material for a power storage device according to the first disclosure may be provided on the base layer 1 (of the base layer 1 if necessary) for the purpose of improving design properties, electrolytic solution resistance, scratch resistance, moldability, and the like. A surface coating layer 6 may be provided on the side opposite to the barrier layer 3). The exterior material for a power storage device according to the second disclosure includes a surface coating layer 6. The surface coating layer 6 is a layer located on the outermost layer side of the power storage device when the power storage device is assembled using the power storage device exterior material.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。 The surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
 表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。 (4) When the resin forming the surface coating layer 6 is a curable resin, the resin may be either a one-part curable type or a two-part curable type, but is preferably a two-part curable type. Examples of the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin.
 表面被覆層6は、添加剤を含んでいてもよい。添加剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。 The surface coating layer 6 may contain an additive. Examples of the additive include fine particles having a particle size of about 0.5 nm to 5 μm.
 添加剤の材質については、特に制限されず、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、バルーン状などが挙げられる。 材質 The material of the additive is not particularly limited, and may be any of an inorganic substance and an organic substance. Also, the shape of the additive is not particularly limited, and examples thereof include a sphere, a fiber, a plate, an irregular shape, and a balloon.
 表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮し、蓄電デバイス用外装材を構成している積層体の厚み、ポリアミドフィルム層11の厚み、さらにバリア層3の厚みが本開示の前記所定範囲に設定されれば特に制限されないが、好ましい下限としては、約0.1μm以上、約0.5μm以上、約1μm以上、約2μm以上が挙げられ、好ましい上限としては、約5μm以下、約4μm以下、約3μm以下が挙げられ、好ましい範囲としては、0.1~5μm程度、0.1~4μm程度、0.1~3μm程度、0.5~5μm程度、0.5~4μm程度、0.5~3μm程度、1~5μm程度、1~4μm程度、1~3μm程度、2~5μm程度、2~4μm程度、2~3μm程度が挙げられる。 As the thickness of the surface coating layer 6, the thickness of the laminate, the thickness of the polyamide film layer 11, and the thickness of the barrier layer 3 that exhibit the above-described function as the surface coating layer 6 and that constitute the exterior material for an electric storage device are described. Is not particularly limited as long as it is set to the predetermined range of the present disclosure, but preferable lower limit is about 0.1 μm or more, about 0.5 μm or more, about 1 μm or more, about 2 μm or more, and preferable upper limit is About 5 μm or less, about 4 μm or less, about 3 μm or less. Preferred ranges are about 0.1 to 5 μm, about 0.1 to 4 μm, about 0.1 to 3 μm, about 0.5 to 5 μm, and about 0.5 to 5 μm. About 5 to 4 μm, about 0.5 to 3 μm, about 1 to 5 μm, about 1 to 4 μm, about 1 to 3 μm, about 2 to 5 μm, about 2 to 4 μm, about 2 to 3 μm.
 添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施しておいてもよい。また、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、滑剤、アンチブロッキング剤、マット化剤、難燃剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤、エラストマー樹脂等の添加剤を含んでいてもよい。滑剤の具体例としては、例えば前述した滑剤が挙げられる。また、上述した微粒子は滑剤、アンチブロッキング剤、マット化剤として機能してもよい。 Specific examples of the additives include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, and oxide. Neodymium, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotube, high melting point nylon Acrylate resin, crosslinked acryl, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel and the like. The additives may be used alone or in a combination of two or more. Among these additives, silica, barium sulfate and titanium oxide are preferable from the viewpoint of dispersion stability and cost. In addition, various surface treatments such as an insulation treatment and a high dispersibility treatment may be applied to the surface of the additive. Further, at least one of the surface and the inside of the surface coating layer 6 may be provided with a lubricant, an anti-blocking agent, a matting agent, if necessary, depending on the surface coating layer 6 and the functionality to be provided on the surface. It may contain additives such as a flame retardant, an antioxidant, a light stabilizer, a tackifier, an antistatic agent, and an elastomer resin. Specific examples of the lubricant include, for example, the above-mentioned lubricant. Further, the fine particles described above may function as a lubricant, an anti-blocking agent, and a matting agent.
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method for forming the surface coating layer 6 is not particularly limited, and includes, for example, a method of applying a resin for forming the surface coating layer 6. When an additive is blended in the surface coating layer 6, a resin mixed with the additive may be applied.
3.蓄電デバイス用外装材の製造方法
 本開示の蓄電デバイス用外装材の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されない。すなわち、第1の開示の蓄電デバイス用外装材の製造方法においては、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層して積層体を得る工程を備えており、基材層1が、少なくとも、ポリアミドフィルム層11を有しており、ポリアミドフィルム層11の厚みが10~17μmであり、バリア層3の厚みが36~44μmであり、積層体の厚みが83~93μmである。また、第2の開示の蓄電デバイス用外装材の製造方法においては、少なくとも、表面被覆層6、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層して積層体を得る工程を備えており、基材層1が、少なくとも、ポリアミドフィルム層11を有しており、表面被覆層の厚みが0.1~5μmであり、ポリアミドフィルム層11の厚みが10~17μmであり、バリア層3の厚みが36~44μmであり、積層体の厚みが83.1~98μmである。
3. Manufacturing method of exterior material for power storage device The method of manufacturing the exterior material for power storage device of the present disclosure is not particularly limited as long as a laminate in which each layer having a predetermined composition is laminated can be obtained. That is, in the method for manufacturing an exterior material for a power storage device according to the first disclosure, at least the base layer 1, the barrier layer 3, and the heat-fusible resin layer 4 are laminated in this order to form a laminate. The substrate layer 1 has at least the polyamide film layer 11, the polyamide film layer 11 has a thickness of 10 to 17 μm, the barrier layer 3 has a thickness of 36 to 44 μm, The thickness of the laminate is 83 to 93 μm. Further, in the method for manufacturing an exterior material for a power storage device according to the second disclosure, at least the surface coating layer 6, the base layer 1, the barrier layer 3, and the heat-fusible resin layer 4 are laminated in this order. Wherein the base layer 1 has at least a polyamide film layer 11, the thickness of the surface coating layer is 0.1 to 5 μm, and the thickness of the polyamide film layer 11 is Is 10 to 17 μm, the thickness of the barrier layer 3 is 36 to 44 μm, and the thickness of the laminate is 83.1 to 98 μm.
 本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 の 一 An example of the method for manufacturing the exterior material for a power storage device of the present disclosure is as follows. First, a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are sequentially laminated (hereinafter, sometimes referred to as “laminate A”) is formed. Specifically, the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or on the barrier layer 3 whose surface is subjected to a chemical conversion treatment, if necessary, by a gravure coating method, After coating and drying by a coating method such as a roll coating method, the coating can be performed by a dry lamination method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured.
 次いで、積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4をこの順になるように積層させる。例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を共押出しすることにより積層する方法(共押出しラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングし、高温で乾燥さらには焼き付ける方法等により積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4をサーマルラミネート法により積層する方法、(4)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)等が挙げられる。 Next, the adhesive layer 5 and the heat-fusible resin layer 4 are laminated on the barrier layer 3 of the laminate A in this order. For example, (1) a method in which the adhesive layer 5 and the heat-fusible resin layer 4 are laminated by co-extrusion on the barrier layer 3 of the laminate A (co-extrusion laminating method); A laminate formed by laminating the heat-fusible resin layer 4 and the heat-fusible resin layer 4 and laminating the laminate on the barrier layer 3 of the laminate A by a thermal laminating method; (3) bonding the laminate on the barrier layer 3 of the laminate A The adhesive for forming the layer 5 is laminated by an extrusion method or solution coating, dried at a high temperature, or baked, or the like, and the heat-fusible resin layer 4 previously formed into a sheet is formed on the adhesive layer 5. A method of laminating by a thermal lamination method, (4) bonding while laminating the melted adhesive layer 5 between the barrier layer 3 of the laminate A and the heat-fusible resin layer 4 formed in a sheet shape in advance. Laminate A and heat-fusible resin layer 4 are pasted through layer 5 The method (sandwich lamination method), and the like to match.
 第2の開示のように、表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 When the surface coating layer 6 is provided as in the second disclosure, the surface coating layer 6 is laminated on the surface of the base material layer 1 on the side opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above-described resin forming the surface coating layer 6 to the surface of the base material layer 1. The order of the step of laminating the barrier layer 3 on the surface of the substrate layer 1 and the step of laminating the surface coating layer 6 on the surface of the substrate layer 1 are not particularly limited. For example, after forming the surface coating layer 6 on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
 上記のようにして、第1の開示では必要に応じて設けられ、第2の開示では設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/必要に応じて表面が化成処理されたバリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4からなる積層体が形成されるが、接着剤層2または接着層5の接着性を強固にするために、更に、熱ロール接触式、熱風式、近赤外線式又は遠赤外線式等の加熱処理に供してもよい。このような加熱処理の条件としては、前述の通りである。 As described above, in the first disclosure, it is provided as needed, and in the second disclosure, the surface coating layer 6 / base material layer 1 / adhesive layer 2 provided as needed / optionally A laminate composed of the barrier layer 3 whose surface has been subjected to the chemical conversion treatment / the adhesive layer 5 provided as required / the heat-fusible resin layer 4 is formed, but the adhesiveness of the adhesive layer 2 or the adhesive layer 5 is strengthened. In order to achieve this, it may be further subjected to a heat treatment such as a hot roll contact type, a hot air type, a near infrared type or a far infrared type. The conditions for such a heat treatment are as described above.
 本開示の蓄電デバイス用外装材において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。 In the exterior material for a power storage device of the present disclosure, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing of secondary products (pouching, embossing), and the like, as necessary. For this purpose, a surface activation treatment such as a corona treatment, a blast treatment, an oxidation treatment, and an ozone treatment may be performed.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Use of exterior material for power storage device The exterior material for power storage device of the present disclosure is used for a package for hermetically containing a power storage device element such as a positive electrode, a negative electrode, and an electrolyte. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed by the power storage device exterior material of the present disclosure, and can be used as a power storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。 Specifically, at least the positive electrode, the negative electrode, and the power storage device element including the electrolyte, in a state where the metal terminals connected to each of the positive electrode and the negative electrode protrude outward with the power storage device exterior material of the present disclosure. Covering the periphery of the power storage device element so that a flange portion (a region where the heat-fusible resin layers contact each other) can be formed, and heat-sealing and sealing the heat-fusible resin layers of the flange portion. Accordingly, a power storage device using the power storage device exterior material is provided. When a power storage device element is accommodated in a package formed of the power storage device exterior material of the present disclosure, the heat-fusible resin portion of the power storage device exterior material of the present disclosure is on the inner side (the surface in contact with the power storage device element). ) To form a package.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 外 装 The exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor and a capacitor). Further, the exterior material for a power storage device of the present disclosure may be used for any of a primary battery and a secondary battery, but is preferably a secondary battery. The type of the secondary battery to which the power storage device packaging material of the present disclosure is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, an all-solid battery, a lead storage battery, a nickel-metal hydride storage battery, Cadmium storage batteries, nickel-iron storage batteries, nickel-zinc storage batteries, silver oxide-zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like. Among these secondary batteries, the lithium-ion battery and the lithium-ion polymer battery are preferable examples of the application of the exterior material for a power storage device according to the present disclosure.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 本 Hereinafter, the present disclosure will be described in detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the embodiments.
<蓄電デバイス用外装材の製造>
実施例1
 基材層としての二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
<Manufacture of exterior materials for power storage devices>
Example 1
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ15μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ15μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)がこの順に積層された蓄電デバイス用外装材(総厚み88μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, maleic anhydride-modified polypropylene (thickness: 15 μm) as an adhesive layer and polypropylene (thickness: 15 μm) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (15 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (15 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 88 μm) in which layers (15 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 なお、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 エ ル A lubricant layer was formed on both surfaces of the obtained exterior material for an electricity storage device by allowing erucamide to be present as a lubricant.
実施例2
 基材層としての二軸延伸ナイロンフィルム(厚さ12μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Example 2
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 12 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ18μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ15μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(12μm)/接着剤層(3μm)/バリア層(40μm)/接着層(18μm)/熱融着性樹脂層(15μm)がこの順に積層された蓄電デバイス用外装材(総厚み88μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a maleic anhydride-modified polypropylene (18 μm in thickness) as an adhesive layer and a polypropylene (15 μm in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (12 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (18 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 88 μm) in which layers (15 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
実施例3
 基材層としての二軸延伸ナイロンフィルム(厚さ12μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Example 3
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 12 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層側に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着層(硬化後の厚み3μm)を形成した。さらに、接着層の上から、熱融着性樹脂層としての未延伸ポリプロピレンフィルム(CPP、厚み30μm)をドライラミネート法により積層した。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(12μm)/接着剤層(3μm)/バリア層(40μm)/接着層(3μm)/熱融着性樹脂層(30μm)がこの順に積層された蓄電デバイス用外装材(総厚み88μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a two-component curable urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer side of the obtained laminate to form an adhesive layer (thickness after curing of 3 μm) on an aluminum foil. . Further, an unstretched polypropylene film (CPP, thickness 30 μm) as a heat-fusible resin layer was laminated on the adhesive layer by a dry lamination method. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (12 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (3 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 88 μm) in which layers (30 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
実施例4
 基材層としての二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Example 4
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層側に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着層(硬化後の厚み3μm)を形成した。さらに、接着層の上から、熱融着性樹脂層としての未延伸ポリプロピレンフィルム(CPP、厚み30μm)をドライラミネート法により積層した。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(3μm)/熱融着性樹脂層(30μm)がこの順に積層された蓄電デバイス用外装材(総厚み91μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a two-component curable urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to the barrier layer side of the obtained laminate to form an adhesive layer (thickness after curing of 3 μm) on an aluminum foil. . Further, an unstretched polypropylene film (CPP, thickness 30 μm) as a heat-fusible resin layer was laminated on the adhesive layer by a dry lamination method. Next, the obtained laminate is aged and heated, so that a biaxially stretched nylon film (15 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (3 μm) / heat-fusible resin An exterior material for a power storage device (total thickness: 91 μm) in which layers (30 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
実施例5
 実施例1において、基材層とバリア層とを接着する前記2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)の代わりに、黒色顔料が配合された2液硬化型ウレタン接着剤(黒色顔料とポリオール化合物と芳香族イソシアネート化合物)を用いたこと以外は、実施例1と同様にして、二軸延伸ナイロンフィルム(15μm)/接着剤層(黒色、3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)がこの順に積層された積層体(総厚み88μm)を得た。次に、得られた積層体の二軸延伸ナイロンフィルムの表面に、グラビアコートで、フィラーとしての平均粒子径1μmの沈降性硫酸バリウムと、エルカ酸アミドと、平均粒子径2μmのアクリレート樹脂とを含む樹脂組成物(硬化後の厚みが3μm)を塗布し、マット調の表面被覆層を形成して、蓄電デバイス用外装材(総厚み91μm)を得た。なお、沈降性硫酸バリウムの平均粒子径は、レーザ回折/散乱式粒子径分布測定装置(堀場製作所製の「LA-950」)で測定されたメジアン径である。蓄電デバイス用外装材の積層構成を表1に示す。
Example 5
In Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) that bonds the base layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment ( A biaxially stretched nylon film (15 μm) / adhesive layer (black, 3 μm) / barrier layer (40 μm) / same as in Example 1 except that a black pigment, a polyol compound and an aromatic isocyanate compound) were used. A laminate (total thickness: 88 μm) in which an adhesive layer (15 μm) / a heat-fusible resin layer (15 μm) was laminated in this order was obtained. Next, on the surface of the biaxially stretched nylon film of the obtained laminate, by gravure coating, sedimentable barium sulfate having an average particle diameter of 1 μm as a filler, erucamide, and an acrylate resin having an average particle diameter of 2 μm were used. The resulting resin composition (thickness after curing was 3 μm) was applied to form a mat-like surface coating layer to obtain an exterior material for an electric storage device (total thickness 91 μm). The average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
実施例6
 実施例1において、基材層とバリア層とを接着する前記2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)の代わりに、黒色顔料が配合された2液硬化型ウレタン接着剤(黒色顔料とポリオール化合物と芳香族イソシアネート化合物)を用いたこと以外は、実施例1と同様にして、二軸延伸ナイロンフィルム(15μm)/接着剤層(黒色、3μm)/バリア層(40μm)/接着層(15μm)/熱融着性樹脂層(15μm)がこの順に積層された積層体(総厚み88μm)を得た。次に、得られた積層体の二軸延伸ナイロンフィルムの表面に、グラビアコートで、フィラーとしての平均粒子径1.5μmのシリカと、エルカ酸アミドと、平均粒子径2.5μmのアクリレート樹脂とを含む樹脂組成物(硬化後の厚みが3μm)を塗布し、マット調の表面被覆層を形成して、蓄電デバイス用外装材(総厚み91μm)を得た。なお、沈降性硫酸バリウムの平均粒子径は、レーザ回折/散乱式粒子径分布測定装置(堀場製作所製の「LA-950」)で測定されたメジアン径である。蓄電デバイス用外装材の積層構成を表1に示す。
Example 6
In Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) that bonds the base layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment ( A biaxially stretched nylon film (15 μm) / adhesive layer (black, 3 μm) / barrier layer (40 μm) / same as in Example 1 except that a black pigment, a polyol compound and an aromatic isocyanate compound) were used. A laminate (total thickness: 88 μm) in which an adhesive layer (15 μm) / a heat-fusible resin layer (15 μm) was laminated in this order was obtained. Next, on the surface of the biaxially stretched nylon film of the obtained laminate, by gravure coating, silica having an average particle size of 1.5 μm as a filler, erucamide, and an acrylate resin having an average particle size of 2.5 μm were used. Was applied (thickness after curing was 3 μm) to form a mat-like surface coating layer, and an exterior material for an electric storage device (total thickness 91 μm) was obtained. The average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例1
 基材層としての二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ35μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Comparative Example 1
A barrier layer composed of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 35 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ20μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ15μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(35μm)/接着層(20μm)/熱融着性樹脂層(15μm)がこの順に積層された蓄電デバイス用外装材(総厚み88μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, maleic anhydride-modified polypropylene (thickness: 20 μm) as an adhesive layer and polypropylene (thickness: 15 μm) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (15 μm) / adhesive layer (3 μm) / barrier layer (35 μm) / adhesive layer (20 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 88 μm) in which layers (15 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例2
 基材層としての二軸延伸ナイロンフィルム(厚さ25μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ35μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Comparative Example 2
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 35 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ14μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ10μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(25μm)/接着剤層(3μm)/バリア層(35μm)/接着層(14μm)/熱融着性樹脂層(10μm)がこの順に積層された蓄電デバイス用外装材(総厚み87μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a maleic anhydride-modified polypropylene (14 μm in thickness) as an adhesive layer and a polypropylene (10 μm in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (25 μm) / adhesive layer (3 μm) / barrier layer (35 μm) / adhesive layer (14 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 87 μm) in which layers (10 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例3
 基材層としての二軸延伸ナイロンフィルム(厚さ25μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Comparative Example 3
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 μm) as a base material layer is dry-laminated. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ22.5μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ22.5μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(25μm)/接着剤層(3μm)/バリア層(40μm)/接着層(22.5μm)/熱融着性樹脂層(22.5μm)がこの順に積層された蓄電デバイス用外装材(総厚み113μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a maleic anhydride-modified polypropylene (22.5 μm in thickness) as an adhesive layer and a polypropylene (22.5 μm in thickness) as a heat-fusible resin layer were formed on the barrier layer of the obtained laminate. Was co-extruded to laminate the adhesive layer / heat-fusible resin layer on the barrier layer. Next, the obtained laminate is aged and heated, so that a biaxially stretched nylon film (25 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (22.5 μm) / heat fusion An exterior material for a power storage device (total thickness: 113 μm) in which a conductive resin layer (22.5 μm) was laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例4
 基材層としての二軸延伸ナイロンフィルム(厚さ25μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み2μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Comparative Example 4
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness of 25 μm) as a base material layer is dry-laminated. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. 2 μm thick). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ14μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ10μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(25μm)/接着剤層(2μm)/バリア層(40μm)/接着層(14μm)/熱融着性樹脂層(10μm)がこの順に積層された蓄電デバイス用外装材(総厚み91μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a maleic anhydride-modified polypropylene (14 μm in thickness) as an adhesive layer and a polypropylene (10 μm in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated to obtain a biaxially stretched nylon film (25 μm) / adhesive layer (2 μm) / barrier layer (40 μm) / adhesive layer (14 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 91 μm) in which layers (10 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例5
 基材層としての二軸延伸ナイロンフィルム(厚さ15μm)の上に、両面に耐酸性皮膜を形成したアルミニウム箔(JIS H4160:1994 A8021H-O、厚さ40μm)からなるバリア層をドライラミネート法により積層させた。具体的には、両面に耐酸性皮膜を形成したアルミニウム箔の一方面に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を塗布し、アルミニウム箔上に接着剤層(硬化後の厚み3μm)を形成した。次いで、アルミニウム箔上の接着剤層と二軸延伸ナイロンフィルムを積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。
Comparative Example 5
A barrier layer made of an aluminum foil (JIS H4160: 1994 A8021HO, thickness of 40 μm) having an acid-resistant film formed on both sides on a biaxially stretched nylon film (thickness: 15 μm) as a base material layer by a dry lamination method. Were laminated. Specifically, a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) is applied to one side of an aluminum foil having an acid-resistant film formed on both sides, and an adhesive layer (after curing) is applied on the aluminum foil. (Thickness: 3 μm). Next, after laminating the adhesive layer on the aluminum foil and the biaxially stretched nylon film, an aging treatment was performed to prepare a laminate of the base material layer / adhesive layer / barrier layer.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(厚さ14μm)と、熱融着性樹脂層としてのポリプロピレン(厚さ10μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(14μm)/熱融着性樹脂層(10μm)がこの順に積層された蓄電デバイス用外装材(総厚み82μm)を得た。蓄電デバイス用外装材の積層構成を表1に示す。 Next, a maleic anhydride-modified polypropylene (14 μm in thickness) as an adhesive layer and a polypropylene (10 μm in thickness) as a heat-fusible resin layer are coextruded on the barrier layer of the obtained laminate. Thereby, the adhesive layer / heat-fusible resin layer was laminated on the barrier layer. Next, the obtained laminate is aged and heated, so that a biaxially stretched nylon film (15 μm) / adhesive layer (3 μm) / barrier layer (40 μm) / adhesive layer (14 μm) / heat-fusible resin An exterior material for an electric storage device (total thickness: 82 μm) in which layers (10 μm) were laminated in this order was obtained. Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
比較例6
 比較例1において、基材層とバリア層とを接着する前記2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)の代わりに、黒色顔料が配合された2液硬化型ウレタン接着剤(黒色顔料とポリオール化合物と芳香族イソシアネート化合物)を用いたこと以外は、比較例1と同様にして、二軸延伸ナイロンフィルム(15μm)/接着剤層(黒色、3μm)/バリア層(35μm)/接着層(20μm)/熱融着性樹脂層(15μm)がこの順に積層された積層体(総厚み88μm)を得た。次に、得られた積層体の二軸延伸ナイロンフィルムの表面に、グラビアコートで、フィラーとしての平均粒子径1μmの沈降性硫酸バリウムと、エルカ酸アミドと、平均粒子径2μmのアクリレート樹脂とを含む樹脂組成物(硬化後の厚みが3μm)を塗布し、マット調の表面被覆層を形成して、蓄電デバイス用外装材(総厚み91μm)を得た。なお、沈降性硫酸バリウムの平均粒子径は、レーザ回折/散乱式粒子径分布測定装置(堀場製作所製の「LA-950」)で測定されたメジアン径である。蓄電デバイス用外装材の積層構成を表1に示す。
Comparative Example 6
In Comparative Example 1, in place of the two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound) for bonding the base material layer and the barrier layer, a two-component curable urethane adhesive containing a black pigment ( Biaxially stretched nylon film (15 μm) / adhesive layer (black, 3 μm) / barrier layer (35 μm) / same as in Comparative Example 1 except that black pigment, polyol compound and aromatic isocyanate compound were used. A laminate (total thickness: 88 μm) in which an adhesive layer (20 μm) / a heat-fusible resin layer (15 μm) was laminated in this order was obtained. Next, on the surface of the biaxially stretched nylon film of the obtained laminate, by gravure coating, sedimentable barium sulfate having an average particle diameter of 1 μm as a filler, erucamide, and an acrylate resin having an average particle diameter of 2 μm were used. The resulting resin composition (thickness after curing was 3 μm) was applied to form a mat-like surface coating layer to obtain an exterior material for an electric storage device (total thickness 91 μm). The average particle diameter of the sedimentable barium sulfate is a median diameter measured by a laser diffraction / scattering type particle diameter distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). Table 1 shows the laminated structure of the power storage device exterior material.
 実施例1と同様に、得られた蓄電デバイス用外装材の両面には、滑剤としてエルカ酸アミドを存在させて、滑剤層を形成した。 同 様 Similar to Example 1, erucamide was present as a lubricant on both surfaces of the obtained exterior material for a power storage device to form a lubricant layer.
<積層体の破断エネルギー>
 上記で得られた各蓄電デバイス用外装材について、それぞれ、MD及びTDにおける単位幅1m当りの破断エネルギーは、各蓄電デバイス用外装材のMD及びTDについて、それぞれ、下記試験条件にて引張試験を行った際に計測される「測定荷重(N/15mm)-変位量の曲線」のデータを取得し、当該データをcsvファイル形式で保存し、表計算ソフト(マイクロソフト社のExcel(登録商標))を用いて積層体が破断するまでの当該データの積分を行って算出した。このとき、当該表計算ソフトによって、各蓄電デバイス用外装材の1m幅当たりの破断エネルギーに変換(0.015で除する)して算出した。そして、MDにおける単位幅1m当りの破断エネルギーとTDにおける単位幅1m当りの破断エネルギーを合計した。なお、測定対象とする蓄電デバイス用外装材は、それぞれ5つずつ用意し、5つのサンプルについての破断エネルギー値のうち、最大値と最小値を除く3つの値の平均を、積層体の破断エネルギーとした。結果を表2に示す。表2に示された積層体の破断エネルギーの値は、得られた平均値の小数点第二位を四捨五入した値である。
(試験条件)
・引張試験機:島津製作所製の商品名AGS-XPlus
・試験速度:50mm/min
・試験片の幅:15mm
・試験片の長さ:100mm
・標点間距離:30mm
<Lamination energy of laminate>
For each power storage device exterior material obtained above, the breaking energy per unit width of 1 m in MD and TD, respectively, for MD and TD of each power storage device exterior material, the tensile test under the following test conditions, respectively The data of "measurement load (N / 15 mm) -displacement amount curve" measured at the time of performing the measurement is obtained, and the obtained data is saved in a csv file format, and spreadsheet software (Microsoft Excel (registered trademark)) Was used to calculate the integral of the data until the laminate was broken. At this time, the energy was calculated by dividing (by 0.015) the breaking energy per 1 m width of each power storage device exterior material by the spreadsheet software. The breaking energy per unit width of 1 m in MD and the breaking energy per unit width of 1 m in TD were totaled. In addition, five exterior materials for power storage devices to be measured were prepared, and among the fracture energy values of the five samples, the average of three values excluding the maximum value and the minimum value was calculated as the fracture energy of the laminate. And Table 2 shows the results. The values of the breaking energy of the laminate shown in Table 2 are values obtained by rounding off the second decimal place of the obtained average value.
(Test condition)
・ Tensile tester: Shimadzu AGS-XPlus
・ Test speed: 50mm / min
-Width of test piece: 15mm
・ Test piece length: 100mm
・ Distance between gauges: 30mm
 なお、参考のため、蓄電デバイス用外装材の引張試験(MD)で得られる測定荷重(N/15mm)-変位量の曲線の模式図を図10に示す。測定荷重(N/15mm)-変位量の曲線のデータの積分を行った部分は、例えば図11の模式図に示すように、引張試験開始(変位量0)から積層体の破断点までの積分値であり、図11の斜線部分の面積に対応している。 For reference, FIG. 10 shows a schematic diagram of a curve of a measured load (N / 15 mm) -displacement obtained in a tensile test (MD) of the exterior material for an electricity storage device. The part where the data of the curve of the measured load (N / 15 mm) -displacement amount was integrated is, for example, as shown in the schematic diagram of FIG. 11, the integral from the start of the tensile test (displacement amount 0) to the breaking point of the laminate. This value corresponds to the area of the hatched portion in FIG.
<成形によるカールの評価>
 上記で得られた蓄電デバイス用外装材を裁断して、TD(Transverse Direction)150mm×MD(Machine Direction)90mmの短冊片を作製し、これを試験サンプルとした。31.6mm×54.5mmの矩形状の雄型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)とこの雄型とのクリアランスが0.3mmの雌型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)からなる金型を用い、雄型側に熱融着性樹脂層側が位置するように雌型上に上記試験サンプルを載置し、31.6mm(MD)×54.5mm(TD)、成形深さ6mmとなるように当該試験サンプルを0.25MPaの押え圧(面圧)で押えて、冷間成形(引き込み1段成形)した。成形を行った位置の詳細は、図7に示される通りである。図7に示されるように、矩形状の成形部Mと蓄電デバイス用外装材10の端部Pとの最短距離d=70.5mmとなる位置で成形した。成形部Mは、金型によって凹部が形成される位置を示している。次に、成形後の蓄電デバイス用外装材10を、図8に示すようにして水平面20におき、水平面20から端部Pまでの垂直方向yの距離の最大値tをカールしている部分の最大高さとした。成形によるカールは、値が小さいほどカールが小さく、蓄電デバイス用外装材として優れている。表1に示された成形カール(mm)は、最大値tの小数点第二位を四捨五入した値である。
<Evaluation of curl due to molding>
The external storage material for an electricity storage device obtained above was cut to prepare a strip of TD (Transverse Direction) 150 mm × MD (Machine Direction) 90 mm, which was used as a test sample. 31.6 mm x 54.5 mm rectangular male mold (surface is JIS B 0659-1: 2002 Annex 1 (reference) Maximum height roughness specified in Table 2 of Comparative Surface Roughness Standard Piece (Nominal value of Rz) is 1.6 μm. Corner R2.0 mm, ridgeline R1.0 mm) and a female type having a clearance of 0.3 mm from this male type (the surface is JIS B 0659-1: 2002 Appendix 1) (Reference) The maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 μm. The test sample was placed on the female mold so that the heat-fusible resin layer side was positioned on the male mold side, and the thickness was 31.6 mm (MD) x 54.5 mm (TD) and the molding depth was 6 mm. Of the test sample at 0.25MPa Presser, and cold forming (draw-stage molding). Details of the molding position are as shown in FIG. As shown in FIG. 7, molding was performed at a position where the shortest distance d between the rectangular molded portion M and the end P of the exterior material 10 for a power storage device was 70.5 mm. The molded portion M indicates a position where the concave portion is formed by the mold. Next, the exterior material 10 for a power storage device after molding is placed on the horizontal surface 20 as shown in FIG. 8, and the maximum value t of the distance y in the vertical direction from the horizontal surface 20 to the end P is curled at the portion where Maximum height. As for the curl due to molding, the smaller the value, the smaller the curl, which is excellent as an exterior material for an electricity storage device. The molding curl (mm) shown in Table 1 is a value obtained by rounding off the second decimal place of the maximum value t.
<成形性の評価>
 各蓄電デバイス用外装材を長さ(MD)90mm×幅(TD)150mmの長方形に裁断して試験サンプルとした。このサンプルを32mm(MD)×54mm(TD)の口径を有する矩形状の成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである)と、これに対応した成形金型(雄型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである)を用いて、押さえ圧(面圧)0.25MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ20個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形をおこなった。また、雄型及び雌型のクリアランスは、0.5mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、バリア層にピンホールやクラックが生じているか否かを確認した。バリア層にピンホール、クラックが20個のサンプル全てにおいて発生しない最も深い成形深さをAmm、バリア層にピンホール等が発生した最も浅い成形深さにおいてピンホール等が発生したサンプルの数をB個とし、以下の式により算出される値を蓄電デバイス用外装材の限界成形深さとした。結果を表1に示す。表1に示された限界成形深さ(mm)は、算出された値の小数点第二位を四捨五入した値である。
 限界成形深さ=Amm+(0.5mm/20個)×(20個-B個)
<Evaluation of moldability>
Each power storage device exterior material was cut into a rectangle having a length (MD) of 90 mm and a width (TD) of 150 mm to obtain a test sample. A rectangular mold having a diameter of 32 mm (MD) × 54 mm (TD) (female mold, surface is JIS B 0659-1: 2002, Appendix 1 (reference)) The maximum height roughness (nominal value of Rz) specified in Table 2 is 3.2 μm) and the corresponding molding die (male mold, surface is JIS B 0659-1: 2002 Annex 1) (Reference) Using the maximum height roughness (nominal value of Rz is 1.6 μm) specified in Table 2 of the comparative surface roughness standard piece, a pressing pressure (surface pressure) of 0.25 MPa was set to 0. The forming depth was changed in increments of 0.5 mm from the forming depth of 0.5 mm, and each of the 20 samples was subjected to cold forming (drawing one-step forming). At this time, the test sample was placed on the female mold and molded so that the heat-fusible resin layer side was positioned on the male mold side. The clearance between the male and female molds was 0.5 mm. The sample after cold forming was irradiated with light with a penlight in a dark room, and it was confirmed whether or not pinholes or cracks were generated in the barrier layer due to light transmission. Amm is the deepest molding depth at which pinholes and cracks do not occur in all of the 20 samples in the barrier layer, and B is the number of samples where pinholes and the like occur at the shallowest molding depth at which the pinholes and the like occur in the barrier layer. And the value calculated by the following formula was defined as the critical forming depth of the exterior material for an electricity storage device. Table 1 shows the results. The critical forming depth (mm) shown in Table 1 is a value obtained by rounding off the calculated value to the second decimal place.
Limit forming depth = Amm + (0.5mm / 20 pieces) x (20 pieces-B pieces)
<バリア層の厚みが20μmとなる成形深さ>
 各蓄電デバイス用外装材を裁断して、長さ(MD)90mm×幅(TD)150mmの短冊片を作製し、これを試験サンプルとした。長さ(MD)31.6mm×幅(TD)54.5mmの矩形状の雄型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)と、この雄型とのクリアランスが0.3mmの雌型(表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)からなるストレート金型を用い、雄型側に試験サンプルの熱融着性樹脂層側が位置するようにして、雌型上に上記試験サンプルを載置し、試験サンプルを0.25MPaの押え圧(面圧)で押えて、冷間成形(引き込み1段成形)した。
<Molding depth at which the thickness of the barrier layer becomes 20 μm>
Each power storage device exterior material was cut to produce a strip having a length (MD) of 90 mm and a width (TD) of 150 mm, which was used as a test sample. A rectangular male mold with a length (MD) of 31.6 mm and a width (TD) of 54.5 mm (the surface is JIS B 0659-1: 2002 Annex 1 (Reference)) The specified maximum height roughness (nominal value of Rz) is 1.6 μm, a corner R2.0 mm, a ridgeline R1.0 mm) and a female mold having a clearance of 0.3 mm from the male mold (surface is: JIS B 0659-1: 2002 Annex 1 (Reference) The maximum height roughness (nominal value of Rz) is 3.2 μm, as defined in Table 2 of the comparative surface roughness standard piece. The test sample was placed on a female mold using a straight mold having a ridge line (1.0 mm) with the heat-fusible resin layer side of the test sample positioned on the male mold side. Pressing with 25MPa pressing pressure (surface pressure), cold forming ( 1-stage molding) was included come.
 この冷間成形の方法によって、成形深さを2.0mmから0.5mmずつ増加させた条件で成形を順次行い、成形後の試験サンプルのバリア層の角部Pの厚みa(図9を参照)と、成形深さとの関係をプロットして、近似直線を引いてグラフを作成した。当該グラフから、バリア層の角部Pの厚みaが20μmとなる成形深さを求めた。表1に示されたバリア層の厚みが20μmとなる成形深さ(mm)は、求めた値の小数点第二位を四捨五入した値である。 By this cold forming method, forming is sequentially performed under the condition that the forming depth is increased by 0.5 mm from 2.0 mm, and the thickness a of the corner P of the barrier layer of the test sample after forming (see FIG. 9) ) And the molding depth were plotted, and an approximate straight line was drawn to create a graph. From the graph, the molding depth at which the thickness a of the corner P of the barrier layer was 20 μm was determined. The molding depth (mm) at which the thickness of the barrier layer is 20 μm shown in Table 1 is a value obtained by rounding off the calculated value to the second decimal place.
 成形後の試験サンプルのバリア層の厚みaは、試験サンプルを基材層側から平面視した際、略矩形状に突出している部分の互いに対向する角部Pを結ぶ直線上において、ミクロトーム(大和光機工業製:REM-710リトラトーム)にて厚み方向に裁断して蓄電デバイス用外装材を2分割し、分割された一方の試験サンプルの前記角部Pの断面をレーザー顕微鏡(キーエンス製:VK-9700)で観察することで測定した。分割された一方の試験サンプルには、前記角部が2つ存在しており、前記バリア層の厚みaは、これら角部におけるバリア層の厚みaの平均値とした。成形後の試験サンプルのバリア層の模式図を図9に示す。なお、角部Pの厚みの位置は、成形によって形成された角部P(湾曲部)において曲率半径が最も小さくなるところであり、通常、湾曲の開始から終了の中央部を意味する。 The thickness a of the barrier layer of the test sample after molding is such that, when the test sample is viewed in plan from the base material layer side, the microtome (Yamato The package is cut in the thickness direction by Komiki Kogyo Co., Ltd .: REM-710 Retorome, and the exterior material for a power storage device is divided into two parts. -9700). One of the divided test samples had two corners, and the thickness a of the barrier layer was an average value of the thickness a of the barrier layer at these corners. FIG. 9 shows a schematic view of the barrier layer of the test sample after molding. The position of the thickness of the corner P is where the radius of curvature is the smallest in the corner P (curved portion) formed by molding, and usually means a central portion from the start to the end of bending.
<絶縁性の評価(ワイヤ短絡)>
 各蓄電デバイス用外装材を裁断し、幅40mm、長さ100mmの短冊片を作製して、各試験サンプルとした。試験サンプルの熱融着性樹脂層の面に、幅方向の中央に直径13μm、長さ70mmのステンレス製ワイヤーを配置した。さらにその上から、幅30mm、長さ100mm、厚み100μmのアルミニウム板を配置した。このとき、試験サンプルの幅方向の中央と、アルミニウム板の幅方向の中央が一致するようにした。次に、テスターのプラス極をアルミニウム板に、マイナス極を蓄電デバイス用外装材にそれぞれ接続した。テスターのマイナス極については、ワニ口クリップを蓄電デバイス用外装材の基材層側からバリア層に到達するように挟み込み、テスターのマイナス極とバリア層とを電気的に接続させた。テスターは印加電圧100V、抵抗200MΩ以下となったとき導通(短絡)信号が発するよう準備した。次に、テスター間に100Vの電圧をかけ、この状態でステンレス製ワイヤーがアルミニウム板と蓄電デバイス用外装材との間に介在した状態で、ワイヤーに直交するように190℃、1MPa、幅7mmでヒートシールし、短絡信号が発するまでの時間を計測した。5回計測し、最長、最短の1点ずつを排除した3点の平均値を、短絡までの時間とした。短絡するまでの時間が40.0秒以上であった場合をA、40.0秒未満13.0秒以上であった場合をB、13.0秒未満であった場合をCとして判定した。評価がA,Bであれば、絶縁性に優れており、評価がAは特に絶縁性が優れている。
<Evaluation of insulation (wire short-circuit)>
Each power storage device exterior material was cut, and strips having a width of 40 mm and a length of 100 mm were prepared, and used as test samples. On the surface of the heat-fusible resin layer of the test sample, a stainless steel wire having a diameter of 13 μm and a length of 70 mm was arranged at the center in the width direction. Further, an aluminum plate having a width of 30 mm, a length of 100 mm, and a thickness of 100 μm was arranged thereon. At this time, the center in the width direction of the test sample was made to coincide with the center in the width direction of the aluminum plate. Next, the positive electrode of the tester was connected to the aluminum plate, and the negative electrode was connected to the exterior material for the electricity storage device. Regarding the negative electrode of the tester, the alligator clip was sandwiched so as to reach the barrier layer from the base material layer side of the power storage device exterior material, and the negative electrode of the tester was electrically connected to the barrier layer. The tester was prepared to generate a conduction (short circuit) signal when the applied voltage became 100 V and the resistance became 200 MΩ or less. Next, a voltage of 100 V is applied between the testers, and in this state, at a temperature of 190 ° C., 1 MPa, and a width of 7 mm, the stainless steel wire is interposed between the aluminum plate and the exterior material for the power storage device so as to be orthogonal to the wire. Heat sealing was performed, and the time until a short circuit signal was generated was measured. The measurement was performed five times, and the average value of three points excluding the longest and shortest points was defined as the time until a short circuit. A case where the time until the short circuit was 40.0 seconds or more was determined as A, a case where it was less than 40.0 seconds and 13.0 seconds or more, and a case where it was less than 13.0 seconds was determined as C. If the evaluation is A or B, the insulation is excellent, and the evaluation A is particularly excellent in insulation.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1において、ONyは二軸延伸ナイロンフィルム、DLはドライラミネート法により形成された接着剤層又は接着層、ALMはアルミニウム箔、PPaは無水マレイン酸変性ポリプロピレンにより形成された接着層、PPはポリプロピレンにより形成された熱融着性樹脂層、CPPは無延伸ポリプロピレン(CPP)により形成された熱融着性樹脂層を意味する。SCは表面被覆層を意味する。また、積層構成における数値は厚み(μm)を意味し、例えば「ONy15」との表記は、厚み15μmの二軸延伸ナイロンフィルムを意味する。 In Table 1, ONy is a biaxially stretched nylon film, DL is an adhesive layer or an adhesive layer formed by a dry lamination method, ALM is an aluminum foil, PPa is an adhesive layer formed of maleic anhydride-modified polypropylene, PP is polypropylene. And CPP mean a heat-fusible resin layer formed of unstretched polypropylene (CPP). SC means a surface coating layer. Further, the numerical value in the laminated structure means the thickness (μm). For example, the notation “ONy15” means a biaxially stretched nylon film having a thickness of 15 μm.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示される結果から明らかな通り、実施例1~6の蓄電デバイス用外装材は、基材層がポリアミドフィルム層を有しており、ポリアミドフィルム層の厚みが10μm以上17μm以下であり、バリア層の厚みが36μm以上44μm以下であり、さらに、積層体の厚みが83μm以上93μm以下に設定されており、蓄電デバイス用外装材の厚みが比較的薄いにも拘わらず、優れた絶縁性を有し、成形カールが効果的に抑制されていることが分かる。また、実施例1~5の蓄電デバイス用外層材は、成形性も優れていた。実施例1,4,5の蓄電デバイス用外層材は、バリア層の厚みが20μmとなる成形深さ、及び限界成形深さが大きく、特に成形性が高いことが分かる。 As is clear from the results shown in Table 1, the exterior materials for power storage devices of Examples 1 to 6 had a base material layer having a polyamide film layer, and the thickness of the polyamide film layer was 10 μm or more and 17 μm or less, The thickness of the barrier layer is not less than 36 μm and not more than 44 μm, and the thickness of the laminate is set to not less than 83 μm and not more than 93 μm. It can be seen that the molding curl is effectively suppressed. The outer layer materials for power storage devices of Examples 1 to 5 were also excellent in moldability. It can be seen that the outer layer materials for power storage devices of Examples 1, 4, and 5 have a large forming depth at which the thickness of the barrier layer is 20 μm and a large limit forming depth, and particularly high formability.
 一方、比較例1~4及び比較例6の蓄電デバイス用外装材は、成形カールが大きかった。また、比較例5の蓄電デバイス用外装材は、厚みが83μmよりも薄く、絶縁性が不十分であり、蓄電デバイス用外装材として適していなかった。 On the other hand, the power storage device exterior materials of Comparative Examples 1 to 4 and Comparative Example 6 had large curls. In addition, the power storage device exterior material of Comparative Example 5 was thinner than 83 μm, had insufficient insulation, and was not suitable as a power storage device exterior material.
 また、表2に示されるように、実施例1~6の蓄電デバイス用外装材は、単位幅1m当たりの破断エネルギーが大きく、成形性に優れていることが分かる。 Further, as shown in Table 2, it can be seen that the exterior materials for power storage devices of Examples 1 to 6 have a large breaking energy per unit width of 1 m and are excellent in moldability.
1 基材層
11 ポリアミドフィルム層
12 ポリエステルフィルム層
13 接着剤層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
DESCRIPTION OF SYMBOLS 1 Base material layer 11 Polyamide film layer 12 Polyester film layer 13 Adhesive layer 2 Adhesive layer 3 Barrier layer 4 Heat-fusible resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for electricity storage device

Claims (7)

  1.  少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
     前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
     前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
     前記バリア層の厚みは、36μm以上44μm以下であり、
     前記積層体の厚みは、83μm以上93μm以下である、蓄電デバイス用外装材。
    At least, a base layer, a barrier layer, and a heat-fusible resin layer, which is configured from a laminate including in this order,
    The base material layer has at least a polyamide film layer,
    The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
    The thickness of the barrier layer is 36 μm or more and 44 μm or less,
    The exterior material for an electric storage device, wherein the thickness of the laminate is 83 μm or more and 93 μm or less.
  2.  前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
     前記接着層の厚みは、8μm以上22μm以下であり、
     前記熱融着性樹脂層の厚みは、8μm以上22μm以下である、請求項1に記載の蓄電デバイス用外装材。
    An adhesive layer is provided between the barrier layer and the heat-fusible resin layer,
    The thickness of the adhesive layer is 8 μm or more and 22 μm or less,
    The exterior material for an electric storage device according to claim 1, wherein the thickness of the heat-fusible resin layer is 8 µm or more and 22 µm or less.
  3.  前記バリア層と前記熱融着性樹脂層との間に、接着層を備えており、
     前記接着層の厚みは、1μm以上5μm以下であり、
     前記熱融着性樹脂層の厚みは、18μm以上34μm以下である、請求項1に記載の蓄電デバイス用外装材。
    An adhesive layer is provided between the barrier layer and the heat-fusible resin layer,
    The thickness of the adhesive layer is 1 μm or more and 5 μm or less,
    The exterior material for an electric storage device according to claim 1, wherein the thickness of the heat-fusible resin layer is 18 µm or more and 34 µm or less.
  4.  前記積層体は、引張試験によって測定される「測定荷重(N/15mm)-変位量」の曲線から算出される、MDにおける単位幅1m当りの破断エネルギーと、TDにおける単位幅1m当りの破断エネルギーとの合計が、100J以上である、請求項1~3のいずれかに記載の蓄電デバイス用外装材。 The laminate has a breaking energy per unit width of 1 m in MD and a breaking energy per unit width of 1 m in TD calculated from a curve of “measured load (N / 15 mm) −displacement” measured by a tensile test. The exterior material for an electricity storage device according to any one of claims 1 to 3, wherein the total of the above is 100 J or more.
  5.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~4のいずれかに記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 (5) A power storage device, wherein at least a power storage device element including a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the power storage device exterior material according to any one of (1) to (4).
  6.  少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
     前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
     前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
     前記バリア層の厚みは、36μm以上44μm以下であり、
     前記積層体の厚みは、83μm以上93μm以下である、蓄電デバイス用外装材の製造方法。
    At least, a substrate layer, a barrier layer, and a step of obtaining a laminate by laminating the heat-fusible resin layer in this order,
    The base material layer has at least a polyamide film layer,
    The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
    The thickness of the barrier layer is 36 μm or more and 44 μm or less,
    The method of manufacturing an exterior material for an electric storage device, wherein the thickness of the laminate is 83 μm or more and 93 μm or less.
  7.  少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
     前記基材層は、少なくとも、ポリアミドフィルム層を有しており、
     前記表面被覆層の厚みは、0.1μm以上5μm以下であり、
     前記ポリアミドフィルム層の厚みは、10μm以上17μm以下であり、
     前記バリア層の厚みは、36μm以上44μm以下であり、
     前記積層体の厚みは、83.1μm以上98μm以下である、蓄電デバイス用外装材。
    At least, a surface coating layer, a base material layer, a barrier layer, and a heat-fusible resin layer, which is composed of a laminate including in this order,
    The base material layer has at least a polyamide film layer,
    The thickness of the surface coating layer is 0.1 μm or more and 5 μm or less,
    The thickness of the polyamide film layer is 10 μm or more and 17 μm or less,
    The thickness of the barrier layer is 36 μm or more and 44 μm or less,
    The exterior material for an electric storage device, wherein the thickness of the laminate is 83.1 μm or more and 98 μm or less.
PCT/JP2019/030582 2018-08-02 2019-08-02 Packaging material for power storage device, method for manufacturing same, and power storage device WO2020027333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571092A JP6690800B1 (en) 2018-08-02 2019-08-02 Power storage device exterior material, manufacturing method thereof, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-146257 2018-08-02
JP2018146257 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020027333A1 true WO2020027333A1 (en) 2020-02-06

Family

ID=69231787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030582 WO2020027333A1 (en) 2018-08-02 2019-08-02 Packaging material for power storage device, method for manufacturing same, and power storage device

Country Status (2)

Country Link
JP (2) JP6690800B1 (en)
WO (1) WO2020027333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843664A (en) * 2022-03-29 2022-08-02 佛山市中技烯米新材料有限公司 Power battery aluminum plastic film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027333A1 (en) * 2018-08-02 2020-02-06 大日本印刷株式会社 Packaging material for power storage device, method for manufacturing same, and power storage device
KR20230060457A (en) 2021-10-27 2023-05-04 가부시키가이샤 레조낙·패키징 Packaging material for batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126510A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Packaging material for battery
JP2017208172A (en) * 2016-05-16 2017-11-24 凸版印刷株式会社 Exterior material for power storage device and power storage device
JP2017224485A (en) * 2016-06-15 2017-12-21 凸版印刷株式会社 Exterior material for power storage device
JP2018060765A (en) * 2016-09-29 2018-04-12 ユニチカ株式会社 Lithium ion secondary battery exterior packaging material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075162B2 (en) * 2013-03-29 2017-02-08 凸版印刷株式会社 Exterior material, storage battery, and method for manufacturing exterior material
CN106663751B (en) * 2014-07-17 2020-02-07 大日本印刷株式会社 Packaging material for battery
KR102265385B1 (en) * 2014-08-28 2021-06-16 다이니폰 인사츠 가부시키가이샤 Packaging material for battery
JP6492526B2 (en) * 2014-10-22 2019-04-03 凸版印刷株式会社 Power storage device exterior material and power storage device
CN108602596B (en) * 2016-01-29 2021-02-05 大日本印刷株式会社 Packaging material and battery
EP3439067B1 (en) * 2016-04-01 2020-03-04 Toppan Printing Co., Ltd. Exterior material for power storage device and method for manufacturing exterior material for power storage device
WO2017179636A1 (en) * 2016-04-12 2017-10-19 大日本印刷株式会社 Packaging material for batteries, method for producing same and battery
JP6319387B2 (en) * 2016-09-07 2018-05-09 大日本印刷株式会社 Battery packaging materials
WO2020027333A1 (en) * 2018-08-02 2020-02-06 大日本印刷株式会社 Packaging material for power storage device, method for manufacturing same, and power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126510A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Packaging material for battery
JP2017208172A (en) * 2016-05-16 2017-11-24 凸版印刷株式会社 Exterior material for power storage device and power storage device
JP2017224485A (en) * 2016-06-15 2017-12-21 凸版印刷株式会社 Exterior material for power storage device
JP2018060765A (en) * 2016-09-29 2018-04-12 ユニチカ株式会社 Lithium ion secondary battery exterior packaging material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843664A (en) * 2022-03-29 2022-08-02 佛山市中技烯米新材料有限公司 Power battery aluminum plastic film

Also Published As

Publication number Publication date
JP6690800B1 (en) 2020-04-28
JP2020129543A (en) 2020-08-27
JPWO2020027333A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US11251481B2 (en) Packaging material for battery
US10128471B2 (en) Battery-packaging material
CN108431987B (en) Battery packaging material, method for producing same, and battery
JP7136108B2 (en) Battery packaging materials and batteries
JP6628009B2 (en) Battery packaging material, method for producing the same, and battery
JP2020155364A (en) Exterior material for power storage device, manufacturing method of the same, and power storage device
WO2020085463A1 (en) Casing material for power storage device, production method therefor, and power storage device
WO2020071254A1 (en) Exterior material for electrical storage devices, method of manufacturing same, and electrical storage device
JPWO2018174056A1 (en) Battery packaging material, method for producing the same, polybutylene terephthalate film for battery packaging material, and battery
WO2020027333A1 (en) Packaging material for power storage device, method for manufacturing same, and power storage device
WO2019070078A1 (en) Battery packaging material and battery
JPWO2017188445A1 (en) Battery packaging material and battery
JPWO2019027021A1 (en) Battery packaging materials and batteries
WO2020085464A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP2019212433A (en) Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
JPWO2018066672A1 (en) Packaging material for battery, method for producing the same, and battery
CN113646857A (en) Outer packaging material for electricity storage device, method for producing same, and electricity storage device
JP6638875B1 (en) Battery packaging material, method for producing the same, polyester film, and battery
JP7347455B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
JP7332072B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device
WO2023058453A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2023022086A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
US20230261289A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571092

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843606

Country of ref document: EP

Kind code of ref document: A1