WO2020026818A1 - フレーク状封止用樹脂組成物、および半導体装置 - Google Patents
フレーク状封止用樹脂組成物、および半導体装置 Download PDFInfo
- Publication number
- WO2020026818A1 WO2020026818A1 PCT/JP2019/028135 JP2019028135W WO2020026818A1 WO 2020026818 A1 WO2020026818 A1 WO 2020026818A1 JP 2019028135 W JP2019028135 W JP 2019028135W WO 2020026818 A1 WO2020026818 A1 WO 2020026818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- sealing resin
- flake
- mass
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/011—Crosslinking or vulcanising agents, e.g. accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present disclosure relates to a flake-shaped resin composition for encapsulating a semiconductor and a semiconductor device.
- a curing agent and / or a curing accelerator As a sealing material for semiconductor devices such as transistors, ICs (Integrated Circuits), and LSIs (Large Scale Integration), a curing agent and / or a curing accelerator, an inorganic filler such as silica powder, a coloring agent, and the like are mixed with an epoxy resin.
- a resin composition is used.
- transfer molding has been generally used as a sealing process using such a sealing material.
- surface mount packages are becoming thinner and smaller. In a thinner and smaller surface mount package, the volume occupied by the semiconductor element in the package increases, and the thickness of the sealing resin covering the semiconductor element decreases.
- the chip area and the number of pins are increasing. Further, with the increase in the number of electrode pads, the pad pitch and the pad size have been reduced, that is, the so-called narrow pad pitch has been advanced.
- the pitch of the electrode pads on the substrate on which the semiconductor element is mounted cannot be as narrow as that of the semiconductor element. Therefore, by increasing the length of the bonding wire drawn from the semiconductor element or reducing the thickness of the bonding wire, the number of terminals can be increased. However, when the wire becomes thinner, the wire is more likely to flow due to the injection pressure of the resin in a later resin sealing step. In particular, this tendency is remarkable in the side gate transfer molding.
- a compression molding method has been used as a sealing process instead of transfer molding (for example, see Patent Document 1).
- an object to be sealed for example, a substrate on which a semiconductor element is mounted
- a powdery resin for example, aling material
- the molten sealing material flows in a direction substantially parallel to the main surface of the object to be sealed, the amount of flow can be reduced, and the object to be sealed (for example, It is expected that deformation and breakage of wires, wirings, and the like on a substrate on which a semiconductor element is mounted) can be reduced.
- Patent Document 2 contains an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and the like.
- a powdery resin composition having a certain particle size distribution is disclosed.
- Patent Document 3 discloses a powdery semiconductor in which the degree of compression is set within a range of 6 to 11%, thereby preventing adhesion to a hopper or the like and a crosslinking phenomenon, stabilizing fluidity, and improving measurement accuracy.
- a sealing material is disclosed.
- Patent Literature 4 discloses a granular resin composition in which the bulk density is adjusted to 0.8 g / cm 3 or more and 1.1 g / cm 3 or less to improve transportability, weighing accuracy, and the like. .
- the sealing materials described in Patent Documents 2 to 4 have a small sealing resin thickness, and are not sufficient as materials for sealing semiconductor elements connected by thin and long bonding wires. In particular, it was not sufficient in terms of reducing deformation and breakage (wire flow) of the wire and improving the formability. Further, as the capacity and the function of a semiconductor device are increased, the number of stacked semiconductor elements is increasing. When a plurality of semiconductor elements are stacked, an unfilled portion occurs on the semiconductor element because the thickness of the sealing material on the semiconductor element is reduced. In addition, if the semiconductor element is not completely sealed with a resin molded product, sufficient characteristics cannot be secured in a reliability test.
- the present disclosure can be used for a compression molding method, can sufficiently reduce wire flow during molding, and can sufficiently improve moldability, and a flake-shaped sealing resin composition, and the sealing resin composition To provide a highly reliable semiconductor device sealed by using the semiconductor device.
- the present inventors have found that when the sealing resin composition has a specific shape as described later, it is possible to reduce wire flow and obtain good formability in the compression molding method.
- a flake-shaped sealing resin composition containing (A) an epoxy resin, (B) a phenolic resin curing agent, (C) a curing accelerator, and (D) an inorganic filler, 80% by mass or more of the flake-shaped sealing resin composition has a pair of parallel planes, and a distance between the pair of planes is 150 to 1000 ⁇ m, and is a parallel plane-containing resin composition;
- the flake-shaped sealing resin composition passing through a sieve having a nominal opening of 150 ⁇ m contained in the flake-shaped sealing resin composition is 5% by mass or less, and the nominal opening is A flake-shaped sealing resin composition that does not pass through a 2 mm sieve and is 5% by mass or less.
- the flake-shaped sealing resin composition passing through a sieve having a nominal opening of more than 150 ⁇ m and 1 mm or less contained in the flake-shaped sealing resin composition is 20 mass%. % Of the flake-form sealing resin composition according to the above [1].
- the resin composition for sealing flakes according to the above [1] or [2], wherein the void ratio represented by the following formula (1) is 60% or less. Gap ratio (%) ⁇ 1 ⁇ (resin supply area / cavity area) ⁇ ⁇ 100 (1) (Here, the void ratio indicates an area ratio not covered by the sealing resin composition when the sealing resin composition is supplied into the cavity, and the cavity area is an effective area at the bottom of the molding die.
- a flake-shaped sealing resin composition which is used in a compression molding method, can sufficiently reduce wire flow during molding, and can sufficiently improve moldability, and the sealing resin A highly reliable semiconductor device sealed with the composition can be provided.
- 1 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present disclosure.
- 6 is a binarized image when a gap ratio is calculated according to the first embodiment.
- 13 is a binarized image when the gap ratio of Comparative Example 3 is calculated.
- the flake-shaped sealing resin composition of the present embodiment includes (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and ( D) A flake-shaped sealing resin composition containing an inorganic filler, 80% by mass or more of the flake-shaped sealing resin composition has a pair of parallel planes, and a distance between the pair of planes is 150 to 1000 ⁇ m, and is a parallel plane-containing resin composition;
- the flake-shaped sealing resin composition passing through a sieve having a nominal opening of 150 ⁇ m contained in the flake-shaped sealing resin composition is 5% by mass or less, and the nominal opening is The content of the flake-shaped sealing resin
- the “flake shape” includes shapes such as a flat shape, a flake shape, and a scale shape.
- 80% by mass or more of the sealing resin composition has a pair of parallel planes, and the distance between the pair of planes (hereinafter, also referred to as thickness).
- parallel means that the ratio of the difference between the maximum thickness and the minimum thickness of the sealing resin composition to the average thickness of each sealing resin composition is 5% or less.
- the agglomerated sealing resin composition may be less likely to transmit heat uniformly, and may have lower solubility. If the thickness of the sealing resin composition exceeds 1000 ⁇ m, heat may not be transmitted uniformly and the melting property may be reduced. From such a viewpoint, the thickness of the sealing resin composition may be 150 to 700 ⁇ m, 150 to 500 ⁇ m, or 200 to 400 ⁇ m.
- the thickness of the flake-shaped sealing resin composition can be determined, for example, by measuring the thickness of 50 sealing resin compositions using an optical microscope (magnification: 200 times) and calculating the average value. it can.
- the proportion of the sealing resin composition having the above-mentioned shape (parallel plane-containing resin composition) contained in the flake-shaped sealing resin composition of the present embodiment may be 90% by mass or more. , 95% by mass or more, or 100% by mass.
- the flake-shaped sealing resin composition of the present embodiment may include a resin composition that is not flake-shaped and a resin composition that does not have the above-described shape.
- the content is the total amount of the flake-shaped sealing resin composition. May be 20% by mass or less, 10% by mass or less, 5% by mass or less, or may not be contained.
- the flake-form sealing resin contained in the flake-form sealing resin composition of the present embodiment which passes through a sieve having a nominal opening of 150 ⁇ m by classification using a JIS standard sieve (JIS Z8801-1: 2006).
- the composition (hereinafter, also referred to as a sealing resin composition a) is 5% by mass or less, and a flake-shaped sealing resin composition that does not pass through a sieve having a nominal opening of 2 mm (hereinafter, also referred to as a sealing resin composition b). Is 5% by mass or less.
- the sealing resin composition a contained in the flake-shaped sealing resin composition may be 3% by mass or less, or 2% by mass or less.
- the wire may be deformed and damaged at the time of molding, and voids may be generated in the cured product.
- the sealing resin composition b contained in the flake-shaped sealing resin composition may be 3% by mass or less, or 2% by mass or less.
- the resin composition for sealing in the form of flakes of the present embodiment is classified by using a JIS standard sieve (JIS Z8801-1: 2006) to pass through a sieve having a nominal opening of more than 150 ⁇ m and 2 mm or less.
- the resin composition for sealing may contain a resin composition for stopping, and is classified by using a JIS standard sieve (JIS Z8801-1: 2006) to pass through a sieve having a nominal opening of more than 150 ⁇ m and 1 mm or less.
- a sealing resin composition c referred to as a sealing resin composition c).
- the flaky sealing resin composition that passes through a sieve having a nominal opening of more than 150 ⁇ m and 1 mm or less refers to a flake-like sealing that does not pass through a sieve with a nominal opening of 150 ⁇ m but passes through a sieve with a nominal opening of 1 mm. It means a resin composition for stopping.
- the content of the sealing resin composition c may be 20% by mass or more, 40% by mass or more, or 60% by mass or more. When the sealing resin composition c is contained in an amount of 20% by mass or more, the filling property is improved, and the occurrence of voids and the like in the cured product can be reduced.
- the upper limit is not particularly limited, and may be 100% by mass or 90% by mass.
- the content of the encapsulating resin composition (hereinafter, also referred to as encapsulating resin composition d) may be 10 to 75% by mass from the viewpoint of increasing the filling property and reducing the generation of voids. It may be 50 to 50% by mass, or 18 to 40% by mass.
- the epoxy resin of the component (A) used in the present embodiment is generally a sealing material for electronic parts without being limited by molecular structure, molecular weight, etc., as long as it has two or more epoxy groups in one molecule. Can be widely used.
- the epoxy resin (A) include biphenyl type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and dicyclopentadiene.
- Heterocyclic epoxy resin such as epoxy resin, triphenolmethane epoxy resin, epoxy resin containing triazine nucleus, stilbene type bifunctional epoxy resin, naphthalene type epoxy resin, condensed ring aromatic hydrocarbon modified epoxy resin, alicyclic epoxy Resins.
- a biphenyl type epoxy resin may be used. These epoxy resins may be used singly or as a mixture of two or more.
- the softening point of the epoxy resin (A) may be from 40 to 130 ° C. or from 50 to 110 ° C. from the viewpoint of the handleability of the sealing resin composition and the melt viscosity during molding. Good.
- the softening point in this specification refers to a "ring and ball softening point" and refers to a value measured in accordance with ASTM D36.
- Examples of commercially available epoxy resins of the component (A) include, for example, YX-4000 (epoxy equivalent 185, softening point 105 ° C) and YX-4000H (epoxy equivalent 193, softening point 105 ° C) manufactured by Mitsubishi Chemical Corporation. ), Nippon Kayaku Co., Ltd., NC-3000 (epoxy equivalent 273, softening point 58 ° C), NC-3000H (epoxy equivalent 288, softening point 91 ° C) (all of which are trade names). .
- the phenolic resin curing agent of the component (B) used in the present embodiment has two or more phenolic hydroxyl groups per molecule and can cure the epoxy resin of the component (A). Any material that is generally used as a sealing material for electronic components can be used without any particular limitation.
- Specific examples of the phenol resin curing agent (B) include novolak phenol resins such as phenol novolak resins and cresol novolak resins obtained by reacting phenols such as phenol and alkylphenol with formaldehyde or paraformaldehyde.
- the content of the phenolic resin curing agent of the component (B) is determined by the ratio of the number of phenolic hydroxyl groups (b) of the phenolic resin curing agent of the component (B) to the number of epoxy groups (a) of the epoxy resin of the component (A).
- (B) / (a) may be in the range of 0.3 or more and 1.5 or less, or may be in the range of 0.5 or more and 1.2 or less.
- the ratio (b) / (a) is 0.3 or more, the moisture resistance reliability of the cured product is improved, and when it is 1.5 or less, the strength of the cured product is improved.
- the total content of the epoxy resin (A) and the phenolic resin curing agent (B) in the encapsulating resin composition may be 5 to 20% by mass, or 10 to 15% by mass. There may be.
- the curing accelerator of the component (C) used in the present embodiment is a component that promotes a curing reaction between the epoxy resin of the component (A) and the phenol resin curing agent of the component (B).
- a known curing accelerator can be used without any particular limitation as long as it has the above-mentioned effect.
- curing accelerator of the component (C) include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, and 2,4-dimethylimidazole.
- the content of the curing accelerator of the component (C) may be in the range of 0.1 to 5% by mass or 0.1 to 1% by mass based on the total amount of the sealing resin composition. Is also good.
- the content of the curing accelerator (C) is 0.1% by mass or more, the effect of promoting curability is obtained.
- the content is 5% by mass or less, deformation and breakage of the wire at the time of molding are suppressed, and the filling property is improved. Can be improved.
- the inorganic filler of the component (D) used in the present embodiment can be used without particular limitation as long as it is a known inorganic filler generally used for this type of resin composition.
- the inorganic filler as the component (D) include oxide powders such as fused silica, crystalline silica, crushed silica, synthetic silica, alumina, titanium oxide, and magnesium oxide; and hydroxides such as aluminum hydroxide and magnesium hydroxide.
- Powders: nitride powders such as boron nitride, aluminum nitride, and silicon nitride are exemplified.
- One of these inorganic fillers may be used, or two or more thereof may be used in combination.
- the inorganic filler of the component (D) may be a silica powder or a fused silica among those exemplified above. It may be spherical fused silica. Further, fused silica and silica other than fused silica can be used in combination. In this case, the ratio of silica other than fused silica may be less than 30% by mass of the entire silica powder.
- the inorganic filler as the component (D) may have an average particle size of 0.5 to 40 ⁇ m, 1 to 30 ⁇ m, or 5 to 20 ⁇ m. Further, the maximum particle size of the inorganic filler as the component (D) may be 55 ⁇ m or less.
- the average particle size is 0.5 ⁇ m or more, the fluidity and moldability of the sealing resin composition can be improved.
- the average particle diameter is 40 ⁇ m or less, warpage of a molded product obtained by curing the sealing resin composition can be suppressed, and dimensional accuracy can be improved.
- the maximum particle size is 55 ⁇ m or less, the moldability of the encapsulating resin composition can be improved.
- the average particle size of the inorganic filler of the component (D) can be determined by, for example, a laser diffraction type particle size distribution analyzer, and the average particle size is calculated based on the particle size distribution measured by the same device.
- the content of the inorganic filler as the component (D) may be in the range of 70 to 95% by mass, or may be in the range of 75 to 90% by mass based on the total amount of the sealing resin composition.
- the content of the inorganic filler as the component (D) is 70% by mass or more, the linear expansion coefficient of the sealing resin composition is not excessively increased, and the sealing resin composition is cured. The dimensional accuracy, moisture resistance, mechanical strength and the like of the molded article to be obtained can be improved.
- the content of the inorganic filler as the component (D) is 95% by mass or less, a resin sheet obtained by molding the sealing resin composition can be hardly cracked.
- the melt viscosity of the sealing resin composition does not increase too much, and the fluidity and moldability can be improved.
- the sealing resin composition of the present embodiment includes, in addition to the above components, components generally blended with this type of resin composition within a range that does not impair the effects of the present embodiment, for example, a coupling agent; Release agents such as synthetic waxes, natural waxes, higher fatty acids, and metal salts of higher fatty acids; coloring agents such as carbon black and cobalt blue; low stress imparting agents such as silicone oil and silicone rubber; hydrotalcites; And the like.
- a coupling agent such as synthetic waxes, natural waxes, higher fatty acids, and metal salts of higher fatty acids
- coloring agents such as carbon black and cobalt blue
- low stress imparting agents such as silicone oil and silicone rubber
- hydrotalcites hydrotalcites
- Coupling agents such as epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate and aluminum alcoholate can be used as the coupling agent.
- One type of these coupling agents may be used, or two or more types may be mixed and used.
- aminosilane-based coupling agents are preferable from the viewpoint of moldability, flame retardancy, curability, etc., and particularly, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane , ⁇ -aminopropylmethyldiethoxysilane, ⁇ -phenylaminopropyltrimethoxysilane and the like.
- the content of the coupling agent may be in the range of 0.01 to 3% by mass or 0.1 to 1% by mass with respect to the total amount of the sealing resin composition.
- the content of the coupling agent is 0.01% by mass or more, the moldability of the sealing resin composition can be improved, and when the content is 3% by mass or less, foaming occurs during molding of the sealing resin composition. And the occurrence of voids or surface swelling in the molded product can be reduced.
- the sealing resin composition of the present embodiment may not include a solvent from the viewpoint of suppressing blocking.
- the sealing resin composition does not contain a solvent, there is no possibility that the reliability may be degraded due to the remaining solvent when the semiconductor element is sealed.
- the sealing resin composition of the present embodiment can be obtained by a known method for producing a sealing resin composition, and can be prepared, for example, as follows. First, the above-mentioned (A) epoxy resin, (B) phenolic resin curing agent, (C) curing accelerator, (D) inorganic filler, and the above-mentioned various components to be blended as required are sufficiently mixed by a mixer or the like. After (dry blending), the mixture is melt-kneaded by a kneading device such as a hot roll or a kneader, and compressed between pressurizing members to form a sheet.
- a kneading device such as a hot roll or a kneader
- the sealing resin composition is rolled to a thickness of 150 to 1000 ⁇ m by a roll or a hot press while being softened by heating.
- the heating temperature when rolling the sealing resin composition is usually about 60 to 150 ° C. When the heating temperature is 60 ° C. or higher, rolling becomes easy, and when the heating temperature is 150 ° C. or lower, the curing reaction proceeds appropriately and the moldability can be improved.
- the thickness of the sheet is 150 to 1000 ⁇ m, may be 150 to 700 ⁇ m, may be 150 to 500 ⁇ m, and may be 200 to 400 ⁇ m.
- the flake-shaped sealing resin composition having the above-mentioned specific shape can be obtained by pulverizing the sheet.
- fine particles passing through a sieve having a nominal opening of 150 ⁇ m can be made less likely to be generated by classification using a JIS standard sieve (JIS Z8801-1: 2006).
- JIS Z8801-1 JIS Z8801-1: 2006.
- the aforementioned sealing resin composition a contained in the flake-shaped sealing resin composition of the present embodiment can be reduced to 5% by mass or less.
- the thickness of the sheet can be determined as an average value by measuring the thickness of the sheet at 50 points using a micrometer, for example.
- the pulverization method is not particularly limited, and a general pulverizer such as a speed mill, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grinder mill, or the like can be used. Among them, a speed mill can be used.
- the encapsulating resin composition may be formed into a flat string shape using an extruder, and may be pulverized by a hot cut method of cutting into a predetermined length with a cutter or the like.
- the pulverized product can then be prepared by sieving classification or air classification as a flake-like aggregate having a predetermined particle size distribution with the properties adjusted.
- the flake-form sealing resin composition thus obtained can have a gap ratio represented by the following formula (1) of 60% or less, 50% or less, and 40% or less. can do.
- Gap ratio (%) ⁇ 1 ⁇ (resin supply area / cavity area) ⁇ ⁇ 100 (1)
- the gap ratio indicates an area ratio that is not covered with the sealing resin composition when the sealing resin composition is supplied into the cavity.
- the cavity area is the effective area at the bottom of the molding die, and the resin supply area indicates the area covered by the sealing resin composition.
- the gap ratio is 60% or less, the melting property of the sealing resin composition is improved, the filling property is improved, and the generation of voids and the like in the cured product can be reduced. Further, the wire flow can be sufficiently reduced.
- the semiconductor device of the present embodiment can be manufactured by sealing a semiconductor element by compression molding using the flake-shaped sealing resin composition.
- the sealing resin composition is supplied into the cavity of the lower die.
- the upper mold and the lower mold are clamped at a required clamping pressure, and the semiconductor element is immersed in the sealing resin composition heated and melted in the lower mold cavity.
- the heat-melted sealing resin composition in the lower mold cavity is pressed by the cavity bottom member, and compression molding is performed by applying a required pressure under reduced pressure.
- the molding conditions may be a temperature of 120 ° C. to 200 ° C. and a pressure of 2 MPa to 20 MPa.
- FIG. 1 shows an example of the semiconductor device of the present disclosure obtained as described above, and an adhesive layer 3 may be interposed between a lead frame 1 such as a copper frame and a semiconductor element 2. . Further, the electrode 4 on the semiconductor element 2 and the lead portion 5 of the lead frame 1 are connected by a bonding wire 6, and these are cured products (sealing resin) 7 of the sealing resin composition of the present disclosure. Is sealed.
- the semiconductor element is sealed with the sealing resin composition having the specific shape described above, the occurrence of wire flow or the like during molding is reduced. In addition, moldability is improved, and a highly reliable semiconductor device can be obtained.
- the sealing resin composition having the above specific shape is used, the thickness of the sealing material on the semiconductor element of the semiconductor device may be 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less. it can.
- the sealing resin composition having the above-mentioned specific shape is used, the sealing resin composition is scattered when supplied to the cavity of the lower mold, or is heated and melted under reduced pressure. Since so-called “resin leakage” in which resin is scattered is reduced, a highly reliable semiconductor device can be obtained.
- the semiconductor element sealed in the semiconductor device of the present disclosure is not particularly limited, and examples thereof include an IC, an LSI, a diode, a thyristor, and a transistor.
- the present invention is useful in the case of a semiconductor device having a thickness of 0.1 mm or more and 1.5 mm or less after sealing, in which a wire flow is likely to occur.
- Examples 1 to 7, and Comparative Examples 1 to 4 The components of the types and compounding amounts shown in Table 1 were mixed at room temperature (25 ° C.) using a mixer, and then heated and kneaded at 80 to 130 ° C. using a hot roll. Rolling was performed using a roll at a resin temperature of 60 to 110 ° C., followed by cooling to obtain a sheet having the thickness shown in Table 1. The obtained sheet was pulverized using a speed mill, and a sealing resin composition was prepared using three types of JIS standard sieves (JIS Z8801-1: 2006 regulations) (mesh size: 150 ⁇ m, 1 mm, 2 mm). Furthermore, a semiconductor chip was sealed using the obtained sealing resin composition.
- JIS standard sieves JIS Z8801-1: 2006 regulations
- a 50 mm ⁇ 50 mm ⁇ 0.54 mm FBGA (Fine pitch Ball Grid Array) is compressed using a sealing resin composition under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a curing time of 2 minutes. After molding, post-curing was performed at 175 ° C. for 4 hours to produce a semiconductor device.
- the thickness of the obtained sealing resin composition was measured at 50 points using an optical microscope (magnification: 200 times), and the average value of the measured 50 points was taken as the thickness of the sealing resin composition. Also, when 50 sealing resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 4 were observed by an optical microscope (magnification: 200 times), all of them were broken in the thickness direction. It was confirmed that 80% by mass or more of the sealing resin composition had a pair of parallel planes, and the distance (thickness) between the pair of planes was in the range of 150 to 1000 ⁇ m.
- Epoxy resin / epoxy resin 1 NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent: 273, softening point: 58 ° C.)
- Epoxy resin 2 YX-4000H (trade name, manufactured by Mitsubishi Chemical Corporation; epoxy equivalent: 193, softening point: 105 ° C)
- Phenolic resin curing agent / phenol resin 1 MEH-7800M (trade name; hydroxyl equivalent: 175, manufactured by Meiwa Kasei Co., Ltd.)
- -Phenol resin 2 BRG-557 (manufactured by Showa Denko KK, trade name; hydroxyl equivalent: 104)
- Inorganic filler / fused silica 1 MSR-8030 (trade name, manufactured by Tatsumori Co., Ltd .; average particle size: 12 ⁇ m)
- Fused silica 2 SC-4500SQ (trade name; average particle size: 1 ⁇ m, manufactured by Admatechs Co., Ltd.)
- Gap ratio (%) (1 ⁇ (resin supply area / cavity area)) ⁇ 100 (1)
- the void ratio represents the area ratio when the sealing resin composition is not supplied to the cavity when the sealing resin composition is supplied into the cavity, and the cavity area is the effective area of the bottom of the molding die.
- the resin supply area indicates the area covered with the sealing resin composition.
- FIG. 2 shows a binarized image when the gap ratio is calculated in Example 1
- FIG. 3 shows a binarized image when the gap ratio is calculated in Comparative Example 3.
- High temperature storage reliability highly accelerated life test: HAST
- the sealing resin composition of this example had good filling properties during molding and extremely low wire flow. Although there is no difference in the value of the spiral flow between the example and the comparative example, it is found that the example has a lower void ratio than the comparative example.
- FIG. 2 shows a binarized image when the gap ratio of Example 1 is calculated
- FIG. 3 shows a binarized image when the gap ratio of Comparative Example 3 is calculated. 2 and 3, white portions indicate portions in the cavity that are not covered with the sealing resin composition, and black portions indicate portions in the cavity that are covered with the sealing resin composition. 2 and FIG. 3, it can be seen that the sealing resin composition in Example 1 was uniformly filled in the cavity and the void ratio was lower in Example 1 than in Comparative Example 3.
- the sealing resin composition of the present invention can be supplied thinly and uniformly into a mold because of the flake shape. It is obtained.
- the semiconductor device manufactured using the sealing resin composition has obtained good results in any of the MSL test, the pressure cooker test, and the highly accelerated life test, It was confirmed that the device had high reliability.
- the sealing resin composition of the present invention can be thinly and uniformly supplied into a mold due to its flake shape, so that it has excellent moldability and reduces wire flow during molding. Therefore, the sealing resin has a small thickness and is useful as a sealing material for semiconductor elements connected by long and thin wires, and a highly reliable resin-sealed semiconductor device can be manufactured.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
従来、このような封止材料を用いた封止プロセスは、トランスファ成形が一般的であった。しかし、近年、電子部品のプリント配線板への高密度実装化に伴い、半導体装置の主流はピン挿入型のパッケージから表面実装型のパッケージに移っている。さらに、表面実装型パッケージは薄型化・小型化が進んでいる。薄型化・小型化された表面実装型パッケージでは、半導体素子のパッケージに対する占有体積も大きくなり、半導体素子を覆う封止樹脂の肉厚は薄くなる。また、半導体素子の多機能化、大容量化に伴い、チップ面積の増大、多ピン化が進んでいる。さらには電極パッド数の増加によって、パッドピッチ、パッドサイズの縮小化、いわゆる狭パッドピッチ化も進んでいる。
さらに、半導体装置の大容量化、および高機能化に伴い、半導体素子を複数積層する場合も増加している。半導体素子を複数積層すると、半導体素子上の封止材の肉厚が薄くなるため、半導体素子上に未充填部分が生じる。また、半導体素子を完全に樹脂成形物で封止しないと、信頼性試験で十分な特性を確保することができない。
[1](A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150~1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下であるフレーク状封止用樹脂組成物。
[2]前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物が20質量%以上である上記[1]に記載のフレーク状封止用樹脂組成物。
[3]下記式(1)で表される隙間率が60%以下である上記[1]又は[2]に記載のフレーク状封止用樹脂組成物。
隙間率(%)={1-(樹脂供給面積/キャビティ面積)}×100・・・式(1)
(ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。)
[4]上記[1]乃至[3]のいずれかに記載のフレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなる半導体装置。
[5]前記半導体装置の半導体素子上の封止材の厚みが200μm以下である上記[4]に記載の半導体装置。
[フレーク状封止用樹脂組成物]
本実施形態のフレーク状封止用樹脂組成物(以下、単に封止用樹脂組成物ともいう)は、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150~1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下である。
ここで、「平行」とは個々の封止用樹脂組成物の平均厚みに対する当該封止用樹脂組成物の最大厚みと最小厚みとの差の割合が5%以下であることを意味する。
上記封止用樹脂組成物の厚みが150μm未満では静電気の影響を受け凝集しやすくなる。凝集した封止用樹脂組成物は、熱が均一に伝わりにくく溶け性が低下するおそれがある。また、当該封止用樹脂組成物の厚みが1000μmを超えると熱が均一に伝わりにくく溶け性が低下するおそれがある。このような観点から、封止用樹脂組成物の厚みは、150~700μmであってもよく、150~500μmであってもよく、200~400μmであってもよい。
なお、上記フレーク状封止用樹脂組成物の厚みは、例えば、光学顕微鏡(倍率:200倍)を用いて50個の封止用樹脂組成物の厚みを測定し、その平均値として求めることができる。
なお、本実施形態のフレーク状封止用樹脂組成物は、フレーク状ではない樹脂組成物、上述の形状を有さない樹脂組成物を含んでもよい。本実施形態のフレーク状封止用樹脂組成物がフレーク状ではない樹脂組成物、上述の形状を有さない樹脂組成物を含む場合、その含有量は、当該フレーク状封止用樹脂組成物全量に対し20質量%以下であってもよく、10質量%以下であってもよく、5質量%以下であってもよく、含まなくてもよい。
本実施形態で用いられる(A)成分のエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものであれば、分子構造、分子量等に制限されることなく一般に電子部品の封止材料として使用されているものを広く用いることができる。
(A)成分のエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等の複素環型エポキシ樹脂、スチルベン型二官能エポキシ樹脂、ナフタレン型エポキシ樹脂、縮合環芳香族炭化水素変性エポキシ樹脂、脂環型エポキシ樹脂などが挙げられる。なかでも、ビフェニル型エポキシ樹脂であってもよい。
これらのエポキシ樹脂は1種を使用してもよく、2種以上を混合して使用してもよい。
なお、本明細書における軟化点とは、「環球式軟化点」を指し、ASTM D36に準拠して測定された値をいう。
本実施形態で用いられる(B)成分のフェノール樹脂硬化剤は、1分子当たり2個以上のフェノール性水酸基を有し、上記(A)成分のエポキシ樹脂を硬化させることができるものである。電子部品の封止材料として一般に用いられるものであれば特に制限されることなく使用できる。
(B)成分のフェノール樹脂硬化剤としては、具体的には、フェノール、アルキルフェノール等のフェノール類とホルムアルデヒド又はパラホルムアルデヒドを反応させて得られるフェノールノボラック樹脂やクレゾールノボラック樹脂等のノボラック型フェノール樹脂、これらのノボラック型フェノール樹脂をエポキシ化又はブチル化した変性ノボラック型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシレン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールアルカン型フェノール樹脂、多官能型フェノール樹脂などが挙げられる。なかでも、フェノールアラルキル樹脂、フェノールノボラック樹脂、ビフェニルアラルキル樹脂が好ましい。これらのフェノール樹脂硬化剤は1種を使用してもよく、2種以上を混合して使用してもよい。
本実施形態で用いられる(C)成分の硬化促進剤は、(A)成分のエポキシ樹脂と、(B)成分のフェノール樹脂硬化剤との硬化反応を促進する成分である。(C)成分の硬化促進剤は、上記作用を奏するものであれば、特に制限されることなく公知の硬化促進剤を使用することができる。
本実施形態で用いられる(D)成分の無機充填材は、この種の樹脂組成物に一般的に使用されている公知の無機充填材であれば、特に制限されることなく使用することができる。
(D)成分の無機充填材としては、例えば、溶融シリカ、結晶シリカ、破砕シリカ、合成シリカ、アルミナ、酸化チタン、酸化マグネシウム等の酸化物粉末;水酸化アルミニウム、水酸化マグネシウム等の水酸化物粉末;窒化ホウ素、窒化アルミニウム、窒化ケイ素等の窒化物粉末などが挙げられる。これらの無機充填材は、1種を使用してもよく、2種以上を混合して使用してもよい。
なお、本明細書において、(D)成分の無機充填材の平均粒径は、例えば、レーザー回折式粒度分布測定装置により求めることができ、平均粒径は、同装置で測定された粒度分布において積算体積が50%になる粒径(d50)である。
なお、封止用樹脂組成物を圧延する際の加熱温度は、通常、60~150℃程度である。加熱温度が60℃以上であると圧延しやすくなり、150℃以下であると硬化反応が適度に進行し、成形性を良好にすることができる。
シートの厚みは150~1000μmであり、150~700μmであってもよく、150~500μmであってもよく、200~400μmであってもよい。シートの厚みが上記範囲内であると、当該シートを粉砕することで、前述の特定の形状を有するフレーク状の封止用樹脂組成物を得ることができる。また、当該シートを粉砕した際に、JIS標準篩(JIS Z8801-1:2006規定)を用いた分級により、公称目開き150μmの篩を通過する微粉を生じにくくすることができる。本実施形態のフレーク状封止用樹脂組成物中に含まれる前述の封止用樹脂組成物aを5質量%以下に低減することができる。
なお、上記シートの厚みは、例えば、マイクロメーターを用いて当該シートの厚みを50点測定し、その平均値として求めることができる。
また、押出機を用いて封止用樹脂組成物を平紐状に成形し、カッター等で所定の長さに切断するホットカット法で粉砕してもよい。
粉砕物は、その後、篩い分級又はエアー分級等によって所定の粒度分布を持つフレーク状の集合体として、特性を整えて調製することができる。
隙間率(%)={1-(樹脂供給面積/キャビティ面積)}×100・・・式(1)
ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表す。キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。
上記隙間率が60%以下であると、封止用樹脂組成物の溶け性が良好となり、充填性が向上し硬化物にボイド等の発生を低減することができる。また、ワイヤ流れを十分に低減することができる。
本実施形態の半導体装置は、上記フレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することにより製造することができる。以下、その方法の一例を説明する。
まず、圧縮成形用金型の上型に、半導体素子を実装した基板を供給した後、下型のキャビティ内に上記封止用樹脂組成物を供給する。次に、上型及び下型を所要の型締圧力にて型締めをし、下型キャビティで加熱溶融した封止用樹脂組成物に半導体素子を浸漬する。次に、下型キャビティ内の加熱溶融した封止用樹脂組成物をキャビティ底面部材で押圧し、減圧下で、所要の圧力を加えて圧縮成形する。成形条件は、温度120℃以上200℃以下、圧力2MPa以上20MPa以下とすることができる。
また、前述の特定の形状を有する封止用樹脂組成物を用いると、半導体装置の半導体素子上の封止材の厚みを200μm以下としてもよく、150μm以下としてもよく、100μm以下とすることができる。
表1に記載の種類及び配合量の各成分を常温(25℃)でミキサーを用いて混合し、次いで、熱ロールを用いて80~130℃で加熱混練した。樹脂温度60~110℃において、ロールを用い圧延、冷却し、表1に示す厚みのシートを得た。
得られたシートを、スピードミルを用いて粉砕し、JIS標準篩(JIS Z8801-1:2006規定)3種類(目開き150μm、1mm、2mm)を用い封止用樹脂組成物を調製した。
さらに、得られた封止用樹脂組成物を用いて半導体チップの封止を行った。すなわち、50mm×50mm×0.54mmのFBGA(Fine pitch Ball Grid Array)を、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0MPa、硬化時間2分間の条件で圧縮成形した後、175℃、4時間の後硬化を行い、半導体装置を製造した。
マイクロメーターを用いて得られたシートの厚みを50点測定し、最大厚み(dmax)、最小厚み(dmin)を求め、さらに、測定した50点の平均値をシートの厚み(dave.)とした。
また、シートの厚み(dave.)に対する当該シートの最大厚み(dmax)と最小厚み(dmin)との差の割合を算出した。
光学顕微鏡(倍率:200倍)を用いて得られた封止用樹脂組成物の厚みを50点測定し、測定した50点の平均値を封止用樹脂組成物の厚みとした。
また、実施例1~7、及び比較例1、4で得られた封止用樹脂組成物50個を光学顕微鏡(倍率:200倍)により観察したところ、いずれも厚み方向に破断されており、当該封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離(厚み)が150~1000μmの範囲内であることを確認した。
・エポキシ樹脂1:NC-3000(日本化薬(株)製、商品名;エポキシ当量:273、軟化点:58℃)
・エポキシ樹脂2:YX-4000H(三菱ケミカル(株)製、商品名;エポキシ当量:193、軟化点:105℃)
・フェノール樹脂1:MEH-7800M(明和化成(株)製、商品名;水酸基当量:175)
・フェノール樹脂2:BRG-557(昭和電工(株)製、商品名;水酸基当量:104)
・イミダゾール:2P4MHZ(四国化成(株)製、商品名)
・溶融シリカ1:MSR-8030((株)龍森製、商品名;平均粒径:12μm)
・溶融シリカ2:SC-4500SQ((株)アドマテックス製、商品名;平均粒径:1μm)
・シランカップリング剤:Z-6883(東レ・ダウコーニング(株)製、商品名;γ-フェニルアミノプロピルトリメトキシシラン)
・着色剤:MA-600(三菱ケミカル(株)製、商品名;カーボンブラック)
(封止用樹脂組成物)
(1)スパイラルフロー
EMMI規格に準じた金型を用いて、温度175℃、圧力9.8MPaでトランスファ成形し、測定した。
JIS C 2161(2010)の7.5.1に規定されるゲル化時間A法に準じて、約1gの封止用樹脂組成物を175℃の熱盤上に塗布し、かき混ぜ棒にてかき混ぜ、ゲル状になりかき混ぜられなくなるまでの時間を測定した。
(1)隙間率
TOWA(株)製、圧縮成形機 PMC1040-Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、封止用樹脂組成物表面を上部からキャビティ底面に向けデジタルカメラで撮影し画像化した。得られた画像を二値化し、封止用樹脂組成物の面積を計測し、隙間率を下記式(1)により算出した。
隙間率(%)=(1-(樹脂供給面積/キャビティ面積))×100・・・式(1)
ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。
なお、実施例1の隙間率を算出した際の二値化画像を図2に、比較例3の隙間率を算出した際の二値化画像を図3に示す。
TOWA(株)製、圧縮成形機 PMC1040-Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、金型温度175℃、成形圧力5.0MPa、硬化時間2分間で圧縮成形した後、得られた成形品の未充填の有無を目視で確認した。未充填部分が無いものを「良好」、未充填部分があるものを「未充填」と評価した。
TOWA(株)製、圧縮成形機 PMC1040-Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、金型温度175℃、成形圧力5.0MPa、硬化時間2分間で圧縮成形し成形品を得た。得られた成形品のボイドを超音波探傷装置(日立建機ファインテック(株)製、FS300II)で観察し、下記の基準によって評価した。
A:ボイドの発生なし
B:ボイドの数が5個未満
C:ボイドの数が5個以上
50mm×50mm×0.54mmのFBGAを、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0MPa、硬化時間2分間の条件で圧縮成形した後、得られた成形品(FBGA)内部の金ワイヤ(直径18μm、長さ5mm)をX線観察装置((株)島津製作所製、SMX-1000)で観察し、最大変形部のワイヤ流れ率(封止前のワイヤの位置と封止後のワイヤの位置との最大距離のワイヤの長さに対する比率(%))を求めた。
(1)耐リフロー性(MSL試験)
半導体装置に対し、85℃、85%RHにて72時間吸湿処理した後、260℃の赤外線リフロー炉中で90秒間加熱する試験(MSL試験:Level 3)を行い、不良(剥離及びクラック)の発生率を調べた(試料数=20)。
半導体装置を、プレッシャクッカー内で、127℃、0.25MPaの条件下、72時間吸水させた後、260℃、90秒間のベーパーリフローを行い、不良(オープン不良)の発生率を調べた(試料数=20)。
半導体装置を、180℃の恒温槽中に1000時間放置し、不良(オープン不良)の発生率を調べた(試料数=20)。
本発明の封止用樹脂組成物は、フレーク形状のため金型内へ薄くかつ均一に供給することができるため、圧縮成形時の樹脂流動が少なくなり、良好な充填性と低いワイヤ流れ率を得られるものである。
また、当該封止用樹脂組成物を用いて製造された半導体装置は、MSL試験、プレッシャクッカー試験、高度加速寿命試験のいずれの試験においても良好な結果が得られており、樹脂封止型半導体装置として高い信頼性を有するものであることが確認できた。
2 半導体素子
3 接着剤層
4 電極
5 リード部
6 ボンディングワイヤ
7 封止用樹脂組成物の硬化物(封止樹脂)
Claims (5)
- (A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150~1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下であることを特徴とするフレーク状封止用樹脂組成物。 - 前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物が20質量%以上であることを特徴とする請求項1に記載のフレーク状封止用樹脂組成物。
- 下記式(1)で表される隙間率が60%以下であることを特徴とする請求項1又は2に記載のフレーク状封止用樹脂組成物。
隙間率(%)={1-(樹脂供給面積/キャビティ面積)}×100・・・式(1)
(ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。) - 請求項1乃至3のいずれか1項に記載のフレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなることを特徴とする半導体装置。
- 前記半導体装置の半導体素子上の封止材の厚みが200μm以下であることを特徴とする請求項4に記載の半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217001333A KR102506974B1 (ko) | 2018-07-31 | 2019-07-17 | 플레이크 형상 밀봉용 수지 조성물, 및 반도체 장치 |
JP2020533411A JP6941737B2 (ja) | 2018-07-31 | 2019-07-17 | フレーク状封止用樹脂組成物、および半導体装置 |
CN201980047496.9A CN112424284B (zh) | 2018-07-31 | 2019-07-17 | 片状密封用树脂组合物和半导体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-143674 | 2018-07-31 | ||
JP2018143674 | 2018-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020026818A1 true WO2020026818A1 (ja) | 2020-02-06 |
Family
ID=69231067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/028135 WO2020026818A1 (ja) | 2018-07-31 | 2019-07-17 | フレーク状封止用樹脂組成物、および半導体装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6941737B2 (ja) |
KR (1) | KR102506974B1 (ja) |
CN (1) | CN112424284B (ja) |
TW (1) | TWI796507B (ja) |
WO (1) | WO2020026818A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7506543B2 (ja) | 2020-07-07 | 2024-06-26 | 株式会社巴川コーポレーション | 素子保護構造体およびその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060161A (ja) * | 1996-03-05 | 1998-03-03 | Advanced Ceramics Corp | 改良窒化ホウ素組成物及びポリマーベースの高熱伝導率成形コンパウンド |
JP2000290378A (ja) * | 1999-04-13 | 2000-10-17 | Hitachi Chem Co Ltd | 顆粒状エポキシ樹脂封止材の製造方法 |
JP2003155328A (ja) * | 2001-11-22 | 2003-05-27 | Sumitomo Bakelite Co Ltd | タブレット及び半導体装置 |
JP2005048173A (ja) * | 2003-07-17 | 2005-02-24 | Nitto Denko Corp | 半導体封止用タブレットの製法およびそれにより得られた半導体封止用タブレットならびにそれを用いた半導体装置 |
JP2015185759A (ja) * | 2014-03-25 | 2015-10-22 | 京セラケミカル株式会社 | 封止用樹脂組成物とその製造方法、および樹脂封止型半導体装置 |
WO2016030985A1 (ja) * | 2014-08-27 | 2016-03-03 | 積水化学工業株式会社 | 光半導体装置用白色硬化性組成物、光半導体装置用白色タブレット、光半導体装置用成形体及び光半導体装置 |
JP2018203839A (ja) * | 2017-05-31 | 2018-12-27 | パナソニックIpマネジメント株式会社 | 封止用エポキシ樹脂組成物、封止用エポキシ樹脂組成物の製造方法及び半導体装置の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000011084A1 (fr) * | 1998-08-21 | 2000-03-02 | Hitachi Chemical Company, Ltd. | Composition d'une pate, et film protecteur et semi-conducteur en etant faits |
JP4535213B2 (ja) | 1999-02-12 | 2010-09-01 | 日東電工株式会社 | 粉粒状半導体封止材料 |
JP4232443B2 (ja) * | 2002-11-27 | 2009-03-04 | 住友ベークライト株式会社 | 半導体封止用エポキシ樹脂組成物及び半導体装置 |
JP2006216899A (ja) * | 2005-02-07 | 2006-08-17 | Kyocera Chemical Corp | コンプレッション成形用成形材料及び樹脂封止型半導体装置 |
JP4855329B2 (ja) | 2007-05-08 | 2012-01-18 | Towa株式会社 | 電子部品の圧縮成形方法及び装置 |
JP4973325B2 (ja) | 2007-06-11 | 2012-07-11 | 住友ベークライト株式会社 | 半導体封止用エポキシ樹脂組成物の製造方法及び半導体装置の製造方法 |
JP2011148959A (ja) * | 2010-01-25 | 2011-08-04 | Kyocera Chemical Corp | 半導体封止用樹脂シートおよび樹脂封止型半導体装置 |
JP5189606B2 (ja) * | 2010-01-26 | 2013-04-24 | パナソニック株式会社 | 半導体封止用エポキシ樹脂組成物、及び半導体装置 |
JP5663250B2 (ja) * | 2010-09-17 | 2015-02-04 | 京セラケミカル株式会社 | 半導体封止用樹脂組成物および樹脂封止型半導体装置 |
JP6351927B2 (ja) * | 2012-12-27 | 2018-07-04 | 京セラ株式会社 | 封止用樹脂組成物及び半導体装置の製造方法 |
JP6389382B2 (ja) * | 2014-06-26 | 2018-09-12 | 京セラ株式会社 | 半導体封止用樹脂シート及び樹脂封止型半導体装置 |
JP6880567B2 (ja) * | 2016-04-26 | 2021-06-02 | 住友ベークライト株式会社 | 半導体封止用エポキシ樹脂組成物および半導体装置の製造方法 |
JP6891639B2 (ja) * | 2016-07-14 | 2021-06-18 | 住友ベークライト株式会社 | 半導体装置、半導体装置の製造方法、半導体封止用エポキシ樹脂組成物および樹脂セット |
-
2019
- 2019-07-17 CN CN201980047496.9A patent/CN112424284B/zh active Active
- 2019-07-17 WO PCT/JP2019/028135 patent/WO2020026818A1/ja active Application Filing
- 2019-07-17 JP JP2020533411A patent/JP6941737B2/ja active Active
- 2019-07-17 KR KR1020217001333A patent/KR102506974B1/ko active IP Right Grant
- 2019-07-24 TW TW108126135A patent/TWI796507B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060161A (ja) * | 1996-03-05 | 1998-03-03 | Advanced Ceramics Corp | 改良窒化ホウ素組成物及びポリマーベースの高熱伝導率成形コンパウンド |
JP2000290378A (ja) * | 1999-04-13 | 2000-10-17 | Hitachi Chem Co Ltd | 顆粒状エポキシ樹脂封止材の製造方法 |
JP2003155328A (ja) * | 2001-11-22 | 2003-05-27 | Sumitomo Bakelite Co Ltd | タブレット及び半導体装置 |
JP2005048173A (ja) * | 2003-07-17 | 2005-02-24 | Nitto Denko Corp | 半導体封止用タブレットの製法およびそれにより得られた半導体封止用タブレットならびにそれを用いた半導体装置 |
JP2015185759A (ja) * | 2014-03-25 | 2015-10-22 | 京セラケミカル株式会社 | 封止用樹脂組成物とその製造方法、および樹脂封止型半導体装置 |
WO2016030985A1 (ja) * | 2014-08-27 | 2016-03-03 | 積水化学工業株式会社 | 光半導体装置用白色硬化性組成物、光半導体装置用白色タブレット、光半導体装置用成形体及び光半導体装置 |
JP2018203839A (ja) * | 2017-05-31 | 2018-12-27 | パナソニックIpマネジメント株式会社 | 封止用エポキシ樹脂組成物、封止用エポキシ樹脂組成物の製造方法及び半導体装置の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7506543B2 (ja) | 2020-07-07 | 2024-06-26 | 株式会社巴川コーポレーション | 素子保護構造体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6941737B2 (ja) | 2021-09-29 |
CN112424284A (zh) | 2021-02-26 |
KR102506974B1 (ko) | 2023-03-07 |
TWI796507B (zh) | 2023-03-21 |
CN112424284B (zh) | 2023-09-26 |
JPWO2020026818A1 (ja) | 2021-08-12 |
TW202012584A (zh) | 2020-04-01 |
KR20210021049A (ko) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6066865B2 (ja) | 高誘電率エポキシ樹脂組成物および半導体装置 | |
JP5663250B2 (ja) | 半導体封止用樹脂組成物および樹脂封止型半導体装置 | |
JP4973322B2 (ja) | エポキシ樹脂組成物及び半導体装置 | |
JP4496786B2 (ja) | エポキシ樹脂組成物及び半導体装置 | |
JP6389382B2 (ja) | 半導体封止用樹脂シート及び樹脂封止型半導体装置 | |
JP6235969B2 (ja) | 圧縮成形用粉粒状樹脂組成物および樹脂封止型半導体装置 | |
JP2019176023A (ja) | 半導体封止用樹脂組成物及び半導体装置 | |
JP2011258603A (ja) | 半導体封止装置および封止用樹脂組成物 | |
TWI663203B (zh) | 樹脂片及半導體裝置、以及半導體裝置之製造方法 | |
WO2020026818A1 (ja) | フレーク状封止用樹脂組成物、および半導体装置 | |
TWI657513B (zh) | 密封片材用樹脂組合物、密封片材及半導體裝置 | |
JP5407767B2 (ja) | エポキシ樹脂組成物及び半導体装置 | |
JP7002866B2 (ja) | 粉粒状半導体封止用樹脂組成物及び半導体装置 | |
JP6351927B2 (ja) | 封止用樹脂組成物及び半導体装置の製造方法 | |
JP2020139070A (ja) | 封止用樹脂組成物及びその製造方法、並びに半導体装置 | |
KR102625669B1 (ko) | 전자 디바이스 밀봉용 수지 조성물 및 이를 사용하여 제조된 전자 디바이스 | |
JP3846854B2 (ja) | エポキシ樹脂組成物及び半導体装置 | |
JP5093977B2 (ja) | エリア実装型半導体装置 | |
KR20110018606A (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자 패키지 | |
JP7065389B2 (ja) | エポキシ樹脂組成物、エポキシ樹脂組成物の製造方法及び半導体装置 | |
JP2006257309A (ja) | 半導体封止用エポキシ樹脂組成物及び半導体装置 | |
JP2006143865A (ja) | エポキシ樹脂組成物及び半導体装置 | |
JP2005041928A (ja) | エポキシ樹脂組成物及び半導体装置 | |
CN118900868A (zh) | 密封用环氧树脂组合物和电子装置 | |
WO2019106953A1 (ja) | 樹脂シート、半導体装置及び半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19844518 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020533411 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217001333 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19844518 Country of ref document: EP Kind code of ref document: A1 |