[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020026518A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2020026518A1
WO2020026518A1 PCT/JP2019/012444 JP2019012444W WO2020026518A1 WO 2020026518 A1 WO2020026518 A1 WO 2020026518A1 JP 2019012444 W JP2019012444 W JP 2019012444W WO 2020026518 A1 WO2020026518 A1 WO 2020026518A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
terminal
response signal
control information
pucch
Prior art date
Application number
PCT/JP2019/012444
Other languages
English (en)
French (fr)
Inventor
哲矢 山本
ホンチャオ リ
鈴木 秀俊
岩井 敬
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020247029384A priority Critical patent/KR20240136454A/ko
Priority to EP19844009.1A priority patent/EP3833144A4/en
Priority to KR1020217002222A priority patent/KR20210033477A/ko
Priority to AU2019313622A priority patent/AU2019313622B2/en
Priority to CN201980050661.6A priority patent/CN112771973A/zh
Priority to JP2020534054A priority patent/JP7291144B2/ja
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US17/264,480 priority patent/US12022467B2/en
Priority to MX2021001187A priority patent/MX2021001187A/es
Priority to BR112021002802-1A priority patent/BR112021002802A2/pt
Publication of WO2020026518A1 publication Critical patent/WO2020026518A1/ja
Priority to ZA2021/00651A priority patent/ZA202100651B/en
Priority to US18/667,941 priority patent/US20240306158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present disclosure relates to a terminal and a communication method.
  • NR New Radio Access Technology
  • URLLC Ultra-Reliable and Low-Latency Communication
  • eMBB Enhanced Mobile Broadband
  • low delay is realized by flexibly controlling the subcarrier interval or the number of transmission symbols to shorten the TTI (Transmit Time Interval). Also, by setting or notifying a modulation and coding scheme (MCS: Modulation and Coding Scheme) or a channel state report (CQI: Channel Quality Indicator) for achieving a low target block error rate (BLER).
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Indicator
  • BLER target block error rate
  • 3GPP TS 38.212 V15.2.0 “NR; Multiplexing and channel coding (Release 15),” June 2018.
  • 3GPP TS 38.214 V15.2.0 “NR; Physical layer procedures for data (Release 15),” June 2018. H. Shariatmadari, Z. Li, S. Iraji, M. A. Uusitalo, and R. Jantti, “Control channel enhancements for ultra-reliable low-latency communications,” Proc.
  • a non-limiting embodiment of the present disclosure contributes to providing a terminal and a communication method that can appropriately transmit uplink control information.
  • a terminal a circuit that determines a processing mode for an uplink control channel used for transmission of the uplink control information or the uplink control information, according to a request condition for the uplink control information, And a transmitter for transmitting the uplink control information using the uplink control channel based on the determined processing mode.
  • the communication method determines a processing mode for an uplink control channel used for transmission of the uplink control information or the uplink control information according to a request condition for the uplink control information,
  • the uplink control information is transmitted using the uplink control channel based on the determined processing mode.
  • FIG. 2 is a block diagram showing a partial configuration of a terminal according to Embodiment 1.
  • FIG. 3 is a block diagram showing a configuration of a base station according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a terminal according to Embodiment 1.
  • FIG. 9 is a diagram showing an example of an ACK / NACK transmission process according to Embodiment 1.
  • FIG. 9 is a diagram showing an example of ACK / NACK mapping according to Option # 1 of the first embodiment.
  • FIG. 9 is a diagram showing an example of ACK / NACK mapping according to Option # 2 of the first embodiment.
  • FIG. 9 is a diagram showing an example of ACK / NACK mapping according to Option # 3 of the first embodiment.
  • FIG. 10 is a diagram showing an example of ACK / NACK mapping according to Option # 4 of the first embodiment.
  • FIG. 14 is a diagram showing an example of ACK / NACK and transmission processing according to Embodiment 3.
  • FIG. 17 is a diagram showing an example of ACK / NACK and transmission processing according to Embodiment 4.
  • FIG. 21 is a diagram showing another example of the ACK / NACK and transmission processing according to Embodiment 4.
  • HARQ hybrid automatic repeat request
  • BLER 10 ⁇ 5
  • Release 16 or future URLLC is expected to handle data sizes larger than Release 15 NR, and to expand the use cases of URLLC.
  • a low target error rate is set, a huge amount of radio resources may be required to realize highly reliable packet transmission by one transmission, which is inefficient from the viewpoint of resource utilization efficiency. is there.
  • high-speed HARQ retransmission control is effective for performing low-delay, highly-reliable packet transmission while improving resource utilization efficiency.
  • the terminal UE: User @ Equipment
  • ACK / NACK Acknowledgement / Negative @ Acknowledgement or HARQ-ACK
  • ACK / NACK Acknowledgement / Negative @ Acknowledgement or HARQ-ACK
  • the reliability or delay requirement required for transmitting the response signal differs depending on the reliability of the downlink data transmission, the delay requirement, or the type of use case (or service) (or usageusscenario).
  • a response signal to the data transmission of the URLLC requires a lower delay compared to the response signal to the data transmission of the eMBB.
  • the terminal transmits a response signal to the base station using an uplink control channel (PUCCH: Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • reliability required for transmission of a response signal in URLLC that allows retransmission is not designed.
  • the NR terminal supports a plurality of use cases or services (for example, eMBB and URLLC, etc.). It is also assumed that the NR terminal supports a plurality of data transmissions with different target error rates in URLLC. At this time, in the same slot of the uplink, there is a possibility that the terminal simultaneously transmits response signals respectively corresponding to data transmissions with different types of reliability, delay request, or use case (or service). .
  • the number of PUCCHs that can transmit a response signal in one slot is limited to one. Therefore, if response signals corresponding to data transmission of different types of reliability, delay request or use case (or service) are simultaneously transmitted in the same slot as described above, these response signals are It is multiplexed on PUCCH and transmitted.
  • a response signal requiring high reliability level is required in order to satisfy a requirement condition of a response signal level requiring high reliability level. It is conceivable to set a radio resource for PUCCH in accordance with the reliability of. However, in this case, a high reliability is also required for a response signal requiring a low reliability compared to the response signal requiring a high reliability (in other words, a response signal not requiring a high reliability). Since the radio resource for the PUCCH is set in the same manner as the requested response signal, it is inefficient from the viewpoint of resource utilization efficiency.
  • the HARQ-ACK codebook for multiplexing the response signals indicates the type of reliability, delay request, or use case (or service). Irrespective of, the response signals corresponding to the downlink data received earlier in time are arranged in order. For example, when response signals having different delay requests (e.g., response signals corresponding to eMBB and URLLC) are multiplexed and transmitted on one PUCCH, transmission of response signals that do not require low delay (e.g., eMBB response signals) May be a bottleneck for delay.
  • response signals having different delay requests e.g., response signals corresponding to eMBB and URLLC
  • transmission of response signals that do not require low delay e.g., eMBB response signals
  • a method of transmitting response signals having different types of reliability, delay request, or use case (or service) will be described.
  • a method of transmitting a response signal according to “requirement conditions” such as reliability, delay request, or type of use case (or service) will be described.
  • a communication system includes a base station 100 and a terminal 200.
  • FIG. 1 is a block diagram showing a partial configuration of terminal 200 according to each embodiment of the present disclosure.
  • the control unit 211 determines a request condition (eg, reliability, delay request, or type of use case (service)) for uplink control information (UCI; for example, a response signal to downlink data).
  • a processing mode for example, a transmission method or a parameter setting
  • an uplink control channel for example, a PUCCH
  • the transmitting unit 216 transmits the uplink control information using the uplink control channel based on the determined processing mode.
  • FIG. 2 is a block diagram illustrating a configuration of the base station 100 according to Embodiment 1 of the present disclosure.
  • base station 100 includes control section 101, data generation section 102, coding section 103, retransmission control section 104, modulation section 105, higher control signal generation section 106, coding section 107, , Modulation section 108, downlink control signal generation section 109, encoding section 110, modulation section 111, signal allocation section 112, IFFT (Inverse Fast Fourier Transform) section 113, transmission section 114, antenna 115, , A reception unit 116, an FFT (Fast Fourier Transform) unit 117, an extraction unit 118, a demodulation unit 119, a decoding unit 120, and a determination unit 121.
  • FFT Fast Fourier Transform
  • Control section 101 determines information related to downlink data transmission of terminal 200, and outputs the determined information to encoding section 103, modulation section 105, and signal allocation section 112.
  • the information on downlink data transmission includes, for example, a modulation and coding method for downlink data transmitted on the PDSCH (for example, MCS) or a PDSCH radio resource (hereinafter, referred to as a “PDSCH resource”).
  • control section 101 outputs the determined information to downlink control signal generation section 109.
  • control unit 101 determines information on the reliability of the downlink data of the terminal 200, the delay request or the type of use case (or service) (in other words, information on the request condition of the response signal), and determines the determined information. It outputs to upper control signal generator 106 or downlink control signal generator 109. This information is notified to the terminal 200 (for example, the control unit 211).
  • control section 101 determines information related to transmission of uplink control information (UCI: Uplink ⁇ Control ⁇ Information) of terminal 200, and outputs the determined information to extraction section 118 and decoding section 120. Further, control section 101 outputs information on UCI transmission to upper control signal generation section 106 or downlink control signal generation section 109.
  • the information related to UCI transmission includes, for example, a UCI (for example, a response signal or CSI) or a PUCCH transmission method or parameters used for UCI transmission.
  • the information output to the higher-level control signal generation unit 106 includes, for example, information on PUCCH resource set and a slot position set semi-statically (for example, PDSCH-to-HARQ-ACK timing). , Or information on the maximum coding rate of UCI.
  • information for indicating a radio resource (hereinafter, PUCCH resource) of a PUCCH actually used in the PUCCH resource set, which is set quasi-statically Information for instructing PDSCH-to-HARQ-ACK timing that is actually used in the set of slot positions is included.
  • control unit 101 determines and determines a radio resource assignment for a downlink control signal for transmitting a control signal (upper control signal) of a higher layer or a downlink control information, and a radio resource assignment for downlink data.
  • the information thus output is output to signal assignment section 112.
  • Data generating section 102 generates downlink data for terminal 200 and outputs the data to encoding section 103.
  • the coding unit 103 performs error correction coding on the downlink data input from the data generation unit 102 based on information input from the control unit 101 (for example, information on a coding rate).
  • the subsequent data signal is output to retransmission control section 104.
  • retransmission control section 104 holds the encoded data signal input from encoding section 103 and outputs the signal to modulation section 105. Further, when NACK for the transmitted data signal is input from determination section 121 described later, retransmission control section 104 outputs the corresponding held data to modulation section 105. On the other hand, when ACK for the transmitted data signal is input from determination section 121, retransmission control section 104 deletes the corresponding held data.
  • Modulation section 105 modulates a data signal input from retransmission control section 104 based on information input from control section 101 (for example, information on a modulation scheme), and outputs a data modulation signal to signal allocation section 112. I do.
  • the higher control signal generation unit 106 generates a control information bit sequence (higher control signal) using the control information input from the control unit 101, and outputs the generated control information bit sequence to the encoding unit 107.
  • Encoding section 107 performs error correction encoding on the control information bit sequence input from higher control signal generation section 106 and outputs the encoded control signal to modulation section 108.
  • Modulating section 108 modulates the control signal input from encoding section 107 and outputs the modulated control signal to signal allocating section 112.
  • Downlink control signal generation section 109 generates a control information bit sequence (downlink control signal; for example, DCI) using control information input from control section 101 and outputs the generated control information bit sequence to encoding section 110. . Since the control information may be transmitted to a plurality of terminals, the downlink control signal generation unit 109 may generate a bit string including the terminal ID of each terminal in the control information for each terminal. Note that a scrambling sequence to be described later may be used for the terminal ID.
  • Encoding section 110 performs error correction encoding on the control information bit sequence input from downlink control signal generation section 109, and outputs the encoded control signal to modulation section 111.
  • Modulation section 111 modulates the control signal input from encoding section 110 and outputs the modulated control signal to signal allocation section 112.
  • the signal allocating unit 112 receives the data signal input from the modulation unit 105, the higher control signal input from the modulation unit 108, or the input from the modulation unit 111 based on the information indicating the radio resource input from the control unit 101.
  • the downlink control signal to be mapped is mapped to a radio resource.
  • Signal allocating section 112 outputs the downlink signal on which the signal is mapped to IFFT section 113.
  • IFFT section 113 performs transmission waveform generation processing such as OFDM on the signal input from signal allocation section 112. IFFT section 113 adds a CP (not shown) in the case of OFDM transmission to which a CP (Cyclic @ Prefix) is added. IFFT section 113 outputs the generated transmission waveform to transmitting section 114.
  • Transmitting section 114 performs RF (Radio Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from IFFT section 113, and wirelessly transmits to terminal 200 via antenna 115. Send a signal.
  • RF Radio Frequency
  • the receiving unit 116 performs RF processing such as down-conversion or A / D (Analog-to-Digital) conversion on the uplink signal waveform received from the terminal 200 via the antenna 115, and performs the reception processing.
  • RF processing such as down-conversion or A / D (Analog-to-Digital) conversion
  • An uplink signal waveform is output to FFT section 117.
  • FFT section 117 performs an FFT process on the uplink signal waveform input from receiving section 116 to convert a time domain signal into a frequency domain signal. FFT section 117 outputs the frequency domain signal obtained by the FFT processing to extraction section 118.
  • Extraction section 118 extracts a radio resource component to which a PUCCH has been transmitted from a signal input from FFT section 117 based on information input from control section 101 (for example, information on UCI transmission). Extraction section 118 outputs the extracted radio resource component to demodulation section 119.
  • Demodulation section 119 performs equalization and demodulation on the radio resource component corresponding to the PUCCH input from extraction section 118, and outputs a demodulation result (demodulation sequence) to decoding section 120.
  • the decoding unit 120 performs error correction decoding on the demodulation result input from the demodulation unit 119 based on the information on UCI transmission input from the control unit 101 (for example, information on UCI encoding), and performs decoding.
  • the subsequent bit sequence is output to determination section 121.
  • the determining unit 121 determines whether the response signal transmitted from the terminal 200 indicates ACK (with error) or NACK (without error) for the transmitted data signal based on the bit sequence input from the decoding unit 120. Is determined. Determination section 121 outputs the determination result to retransmission control section 104.
  • FIG. 3 is a block diagram illustrating a configuration of terminal 200 according to Embodiment 1 of the present disclosure.
  • terminal 200 includes antenna 201, reception section 202, FFT section 203, extraction section 204, downlink control signal demodulation section 205, decoding section 206, upper control signal demodulation section 207, decoding section 208, a data demodulation unit 209, a decoding unit 210, a control unit 211, an encoding unit 212, a modulation unit 213, a signal allocation unit 214, an IFFT unit 215, and a transmission unit 216.
  • the receiving unit 202 performs down conversion or A / D (Analog-to-Digital) conversion on a signal waveform of a downlink signal (data signal or control signal) from the base station 100 received via the antenna 201. And outputs the obtained received signal (baseband signal) to the FFT section 203.
  • a / D Analog-to-Digital
  • the FFT unit 203 performs an FFT process on the signal (time domain signal) input from the receiving unit 202 to convert the time domain signal into a frequency domain signal.
  • FFT section 203 outputs the frequency domain signal obtained by the FFT processing to extraction section 204.
  • the extracting unit 204 converts a signal input from the FFT unit 203 into a downlink control signal (for example, DCI) based on control information (for example, information on radio resources of downlink data or a control signal) input from the control unit 211. ), And extract a higher control signal or downlink data.
  • Extraction section 204 outputs a downlink control signal to downlink control signal demodulation section 205, outputs an upper control signal to upper control signal demodulation section 207, and outputs downlink data to data demodulation section 209.
  • the downlink control signal demodulation unit 205 equalizes and demodulates the downlink control signal input from the extraction unit 204, and outputs the demodulation result to the decoding unit 206.
  • Decoding section 206 performs error correction decoding using the demodulation result input from downlink control signal demodulation section 205 to obtain control information. Decoding section 206 outputs the obtained control information to control section 211.
  • the higher control signal demodulation unit 207 equalizes and demodulates the higher control signal input from the extraction unit 204, and outputs the demodulation result to the decoding unit 208.
  • Decoding section 208 performs error correction decoding using the demodulation result input from higher order control signal demodulation section 207 to obtain control information. Decoding section 208 outputs the obtained control information to control section 211.
  • Data demodulation section 209 equalizes and demodulates downlink data input from extraction section 204 and outputs a decoding result to decoding section 210.
  • Decoding section 210 performs error correction decoding using the demodulation result input from data demodulation section 209. Further, decoding section 210 performs error detection on downlink data and outputs an error detection result to control section 211. Further, decoding section 210 outputs downlink data determined as having no error as a result of the error detection, as reception data.
  • the control unit 211 uses UCI (for example, ACK / NACK or CSI) or UCI transmission based on information related to UCI transmission of the terminal 200 included in the control information input from the decoding unit 206 or the decoding unit 208.
  • a PUCCH transmission method or parameter (for example, MCS or radio resource) is determined.
  • Control section 211 outputs the determined information to encoding section 212, modulation section 213, and signal allocation section 214.
  • Control section 211 generates a response signal (ACK / NACK) using the error detection result input from decoding section 210, and outputs the generated response signal to encoding section 212.
  • control unit 211 outputs to the extraction unit 204 information on the radio resource of the downlink data or the control signal included in the control information input from the decoding unit 206 or the decoding unit 208.
  • Encoding section 212 performs error correction encoding on the response signal (ACK / NACK bit sequence) based on the information input from control section 211, and outputs the encoded response signal (bit sequence) to modulation section 213. I do.
  • the encoding unit 212 applies a different encoding method to response signals having different request conditions such as reliability, a delay request, or a type of use case (or service) to apply an encoded bit sequence. May be generated.
  • Modulating section 213 modulates the response signal input from encoding section 212 based on the information input from control section 211, and outputs a modulated response signal (modulated symbol sequence) to signal allocating section 214.
  • the modulation unit 213 modulates each encoded bit sequence.
  • Signal allocating section 214 maps the response signal (modulated symbol sequence) input from modulating section 213 to the radio resource of PUCCH specified by control section 211.
  • Signal allocating section 214 outputs the signal on which the response signal is mapped to IFFT section 215.
  • IFFT section 215 performs transmission waveform generation processing such as OFDM on the signal input from signal allocation section 214.
  • IFFT section 215 adds a CP (not shown) in the case of OFDM transmission to which a CP (Cyclic @ Prefix) is added.
  • a DFT Discrete Fourier Transform
  • IFFT section 215 outputs the generated transmission waveform to transmitting section 216.
  • the transmitting unit 216 performs RF (Radio Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from the IFFT unit 215, and transmits the signal to the base station 100 via the antenna 201. Transmit radio signals.
  • RF Radio Frequency
  • FIG. 4 shows a processing flow of base station 100 and terminal 200 according to the present embodiment.
  • Base station 100 transmits information on PUCCH to terminal 200 (ST101).
  • Terminal 200 acquires information on PUCCH notified from base station 100 (ST102).
  • the information on PUCCH includes, for example, information on PUCCH ⁇ resource ⁇ set or information on the coding rate of PUCCH.
  • Base station 100 transmits DCI including information on downlink data to terminal 200 (ST103).
  • Terminal 200 acquires, for example, scheduling information of downlink data or information on PUCCH based on the DCI notified from base station 100 (ST104).
  • Base station 100 transmits downlink data to terminal 200 (ST105).
  • Terminal 200 receives, for example, downlink data (PDSCH) based on the DCI notified from base station 100 (ST106).
  • PDSCH downlink data
  • Terminal 200 controls the operation related to the transmission of the response signal or the response signal according to the request condition for the response signal (in other words, the reliability, the delay request, or the type of use case (service)) (ST107). For example, terminal 200 determines a processing mode for the response signal or the PUCCH according to a request condition for the response signal. In determining the processing mode for the response signal or the PUCCH, for example, a coding method of the response signal, a PUCCH resource determination method, a parameter related to PUCCH transmission, or the like may be determined.
  • Terminal 200 transmits UCI (for example, including a response signal) to base station 100 using PUCCH based on the determined operation (ST108).
  • Base station 100 receives the UCI transmitted from terminal 200 (ST109).
  • the terminal 200 applies a different coding method to response signals having different types of reliability, delay request, or use case (or service) (in other words, response signals having different request conditions), and performs HARQ- Generate an ACK bit.
  • terminal 200 multiplexes the response signal after encoding to which a different encoding method is applied to PUCCH and transmits the PUCCH.
  • the terminal 200 applies encoding processing with different encoding rates to response signals having different types of reliability, delay request, or use case (or service).
  • the terminal 200 encodes the response signal using a low coding rate (for example, a coding rate equal to or less than a threshold) with respect to the response signal requiring high reliability, and generates a HARQ-ACK bit. .
  • a low coding rate for example, a coding rate equal to or less than a threshold
  • the reliability of the response signal can be improved.
  • the terminal 200 encodes the response signal using a high coding rate (for example, a coding rate higher than a threshold) for the response signal for which high reliability is not required, and generates a HARQ-ACK bit.
  • a high coding rate for example, a coding rate higher than a threshold
  • a difference may be caused in the encoding process between the response signal to the downlink data.
  • the target error rate of the first data transmission is high, a high reliability is required for the response signal in order to surely retransmit the data. Is applied.
  • the target error rate of the first data transmission is low, data errors are unlikely to occur, so that the response signal is not required to have such high reliability. Is applied.
  • FIG. 5 shows an example in which different encoding methods (encoding processes) are applied to a response signal between URLLC and eMBB.
  • terminal 200 applies encoding process 1 (encoding process 1) to a response signal to eMBB downlink data (eMBB @ PDSCH), and responds to a response signal to URLLC downlink data (URLLC @ PDSCH).
  • encoding process 2 encoding ⁇ process ⁇ 2).
  • terminal 200 generates HARQ-ACK bits by applying different encoding methods to the URLLC response signal and the eMBB response signal, respectively, and multiplexes the generated HARQ-ACK bits into one PUCCH. And transmits it to base station 100.
  • terminal 200 performs an appropriate encoding method (for example, encoding) for each response signal in accordance with the reliability of the response signal, the delay request, or the type of use case (or service). Conversion rate) can be applied. As a result, even when the requirements of the response signals multiplexed on one PUCCH are different, each response signal is encoded using an encoding method corresponding to the requirements of each response signal. Thus, efficient PUCCH transmission becomes possible.
  • an appropriate encoding method for example, encoding
  • Conversion rate can be applied.
  • the encoding process different for each ACK / NACK is not limited to the case where the encoding process is determined based on the above-described reliability or the type of use case (service).
  • the reliability, the delay request, or the use case (The service may be determined based on at least one of the types.
  • mapping method Next, a method of mapping response signals having different types of reliability, delay request, or use case (or service) (in other words, response signals having different request conditions) to PUCCH resources will be described.
  • the terminal 200 maps the PUCCH in the order of the response signals requiring higher reliability or in the order of the response signals requiring lower delay in the delay request. Specifically, terminal 200 first maps a response signal requiring higher reliability or lower delay to a PUCCH resource. Next, terminal 200 maps a response signal that does not require high reliability or low delay to a PUCCH resource.
  • response signals in a Short-PUCCH composed of one or two symbols for example, PUCCH Format 2
  • a Long-PUCCH composed of four or more symbols for example, PUCCH Format 3 or PUCCH Format 4
  • Option 1 and Option 2 can be applied to the mapping of the response signal in the Short PUCCH to the PUCCH resource.
  • FIG. 6 shows an example of mapping response signals to REs (Resource Elements) in Option 1.
  • terminal 200 converts the modulated symbol sequence after modulating the response signal (HARQ-ACK) into a reference signal (RS-RS) based on the "Frequency-first-time-second format".
  • RS-RS reference signal
  • ⁇ Reference ⁇ Signal for example, mapping to the RE except for the resource element (RE: ⁇ Resource ⁇ Element) to which DMRS: Demodulation ⁇ RS is mapped.
  • terminal 200 maps the response signal in the PUCCH in order from the frequency direction to the time direction.
  • a response signal requiring high reliability or low delay (in FIG. 6, HARQ-ACK for URLLC) is first mapped to the PUCCH resource, and subsequently , A response signal that does not require high reliability or low delay (in FIG. 6, HARQ-ACK for eMBB) is mapped to PUCCH resources.
  • HARQ-ACK for URLLC includes all REs of the first symbol constituting the PUCCH (excluding the RE to which the DMRS is mapped) and a part of the second symbol.
  • the HARQ-ACK for the eMBB, which is mapped to the RE, is mapped to the remaining RE of the second symbol.
  • mapping method of ⁇ Option ⁇ 1 for example, a response signal requiring a lower delay is mapped to the first symbol of the PUCCH. Therefore, in the case of Short @ PUCCH of two symbols, a delay reduction effect can be obtained.
  • FIG. 7 shows an example of mapping response signals to REs in Option 2.
  • terminal 200 converts the modulation symbol sequence after modulating the response signal (HARQ-ACK) based on the "Frequency-first-time-second format" as in Option # 1. , To the REs except for the RE to which the reference signal is mapped. Further, in Option # 2, terminal 200 performs mapping such that response signals in the allocated band are dispersed in the frequency direction.
  • a response signal requiring high reliability or low delay (in FIG. 7, HARQ-ACK for URLLC) is first mapped to the PUCCH resource, and subsequently , A response signal that does not require high reliability or low delay (in FIG. 7, HARQ-ACK for eMBB) is mapped to PUCCH resources.
  • ACK / NACK for URLLC and ACK / NACK corresponding to eMBB are mapped in a dispersed manner in the frequency direction.
  • HARQ-ACK for URLLC includes all REs of the first symbol constituting the PUCCH (excluding the RE to which the DMRS is mapped) and a part of the second symbol.
  • the HARQ-ACK for the eMBB which is mapped to the RE, is mapped to the remaining RE of the second symbol.
  • the HARQ-ACK for URLLC and the HARQ-ACK for eMBB are distributed and mapped in the frequency direction in the allocated band of PUCCH (for example, 4 RBs (Resource @ Block)). I have.
  • the mapping method of Option # 2 similarly to the mapping method of Option # 1, the response signal requiring a lower delay is mapped to the first symbol of the PUCCH. Therefore, in the case of Short @ PUCCH of two symbols, the delay reduction effect is achieved. Is obtained.
  • a frequency diversity effect can be obtained by dispersive mapping in the frequency direction, so that a higher quality response signal (in other words, a higher reliability response signal) can be obtained. Transmission can be realized.
  • ⁇ Long PUCCH> The following two methods (Option 3 and Option 4) can be applied to mapping the response signal to the PUCCH resource in Long-PUCCH.
  • Option 3 a method similar to the mapping relationship between HARQ-ACK bits and CSI (CSI Part 1 and CSI Part 2) in NR PUCCH Format 3 or PUCCH Format 4 (for example, see Non-Patent Document 2) is reliable. The method is applied to mapping for response signals having different types of delay requests or use cases (or services).
  • FIG. 8 shows an example of mapping response signals to REs in Option # 3.
  • terminal 200 converts the modulated symbol sequence after modulating the response signal (HARQ-ACK) into RS (FIG. 8) based on the "Frequency-first-time-second format". Then, the mapping is mapped to the RE except the RE to which the DMRS is mapped. Also, as shown in FIG. 8, terminal 200 maps a response signal requiring higher reliability to a symbol closer to a symbol to which a reference signal (eg, DMRS) is mapped in PUCCH.
  • a reference signal eg, DMRS
  • the HARQ-ACK for the URLLC that requires high reliability is a symbol (a symbol close to the symbol to which the DMRS is mapped) (Symbols before and after).
  • HARQ-ACK bits for eMBBs for which high reliability is not so required are mapped to the remaining PUCCH resources.
  • HARQ-ACK bits requiring higher reliability are mapped to symbols with high channel estimation accuracy (symbols close to symbols to which DMRS is mapped). For this reason, according to Option # 3, transmission of a higher quality response signal (in other words, a higher reliability response signal) can be realized.
  • FIG. 9 shows an example of mapping response signals to REs in Option 4.
  • terminal 200 maps the modulation symbol sequence after modulating the response signal (HARQ-ACK) based on the “Frequency-first-time-second format” to the RS. Mapping to the RE excluding the RE Also, as shown in FIG. 9, terminal 200 maps a response signal for which a lower delay is required in a delay request to a symbol earlier in the PUCCH.
  • the HARQ-ACK for the URLLC for which low delay is required first starts from the symbol with the earlier timing (for example, the first symbol). Are mapped in order. Subsequently, as shown in FIG. 9, HARQ-ACKs for eMBBs that do not require much low delay are mapped to the remaining PUCCH resources.
  • mapping method of ⁇ Option ⁇ 4 since a response signal requiring a lower delay is mapped to the first symbol of the PUCCH, there is an effect of reducing delay.
  • mapping response signals to PUCCH resources has been described.
  • terminal 200 preferentially maps a response signal requiring high reliability or low delay, that is, a response signal having strict requirements, to a PUCCH resource. Thereby, the terminal 200 preferentially assigns, for example, among the response signals multiplexed on the PUCCH, a response signal requiring higher reliability or lower delay to a PUCCH resource capable of achieving higher reliability or lower delay. Can be mapped. Therefore, according to the present embodiment, terminal 200 can transmit a response signal using a PUCCH resource suitable for a request condition for the response signal.
  • Option # 3 and Option # 4 a method of mapping a response signal to Long-PUCCH using four or more symbols has been described.
  • using Long-PUCCH is not desirable from the viewpoint of delay reduction. Therefore, in the present embodiment, the multiplexing of response signals having different types of reliability, delay requests, or use cases (or services) on one PUCCH may be limited to the Short-PUCCH. This makes it possible to omit the design for a plurality of PUCCH formats while satisfying the requirement of low delay.
  • the method of mapping the response signal to the PUCCH resource is not limited to Option # 1 to Option # 4. Further, for example, any one of Option # 1 to Option # 4 may be combined. For example, in Option # 3 (see FIG. 8) or Option # 4 (see FIG. 9), the response signal (HARQ-ACK) is distributed and mapped in the frequency direction like Option # 2 (see FIG. 7). You may.
  • the base station uses a terminal-specific upper layer signal (for example, RRC (Radio Resource Control) signaling) to generate a quasi-static signal.
  • RRC Radio Resource Control
  • a method of notifying a set of PUCCH resources (PUCCH resource set) and notifying a PUCCH resource actually used in the PUCCH resource set by DCI (Downlink Control Information) that allocates downlink data is adopted (for example, see Non-Patent Documents). 3).
  • the PUCCH resource includes, for example, the symbol position in the slot, the number of symbols in the slot, the frequency domain position, the number of resources in the frequency domain (for example, the number of RBs or the number of PRBs (Physical RB)), and whether or not frequency hopping is applied.
  • a parameter consisting of at least one of code resources for example, a cyclic shift sequence or an orthogonal code.
  • the base station can notify the terminal of a plurality of PUCCH resource sets.
  • the terminal can determine which PUCCH resource set among the plurality of notified PUCCH resource sets based on the number of bits of uplink control information (UCI: Uplink Control Information) transmitted using the PUCCH.
  • UCI Uplink Control Information
  • terminal 200 determines PUCCH resource ⁇ ⁇ ⁇ set based on the total number of encoded bits of a response signal (HARQ-ACK) multiplexed on PUCCH.
  • HARQ-ACK response signal
  • the maximum coding rate is set for each PUCCH format.
  • the terminal determines the number of RBs used for PUCCH transmission from the number of UCI bits transmitted using PUCCH and the maximum coding rate.
  • the upper limit is the number of RBs of PUCCH resources notified by the above PUCCH ⁇ resource ⁇ set.
  • the maximum coding rate is set for each PUCCH format and for each type of response signal reliability, delay request or use case (or service) (in other words, each response signal request condition).
  • the terminal 200 determines the number of bits after encoding the response signal and the set maximum coding rate. Based on this, the resource amount (for example, the number of REs) used for transmitting the response signal is calculated. Then, terminal 200 determines the number of RBs used for transmitting the PUCCH based on the number of REs used for transmitting each response signal multiplexed on one PUCCH.
  • the resource amount for example, the number of REs
  • terminal 200 for example, as described above, based on the number of bits after encoding by the encoding method set for each response signal, PUCCH ⁇ resource ⁇ set in PUCCH in which response signals having different requirements are multiplexed. Can be determined. For example, the terminal 200 can calculate an appropriate resource amount according to the reliability of the response signal, the delay request, or the type of use case (or service), so that efficient PUCCH transmission can be performed from the viewpoint of resource utilization efficiency. .
  • the upper limit of the number of RBs used for PUCCH transmission is the number of RBs of PUCCH resources notified by PUCCH ⁇ resource ⁇ set. Therefore, for example, if the number of RBs determined from the number of bits of the response signal and the maximum coding rate exceeds the upper limit value notified by PUCCH resource set, the actual coding rate of the response signal is set May exceed the set maximum coding rate. In this case, there is a possibility that the quality required for PUCCH transmission cannot be satisfied.
  • terminal 200 may drop a part of the response signal transmitted using PUCCH.
  • PUCCH resources resources obtained by dropping a part of the response signal are used for the remaining response signals, so that the quality of PUCCH transmission can be improved.
  • the threshold value may be, for example, the maximum coding rate set for each PUCCH format and for each type of response signal reliability, delay request, or use case (or service).
  • a threshold value for dropping some response signals may be newly notified from the base station 100 to the terminal 200.
  • terminal 200 uses PUCCH when the number of RBs calculated from the number of bits of the response signal (or UCI) transmitted using PUCCH and the maximum coding rate exceeds a predetermined threshold (upper limit). At least a part of the response signal to be transmitted may be dropped.
  • a predetermined threshold upper limit
  • the response signal to be dropped depends on the reliability of the response signal, the priority set according to the type of the delay request or the use case (or service) (in other words, the priority set for each request condition). It may be determined. For example, the terminal 200 may preferentially transmit a response signal of a high priority request condition. In other words, the terminal 200 may preferentially drop a response signal of a low priority request condition.
  • the priority of URLLC is set higher than the priority of eMBB.
  • terminal 200 may drop response signals with lower priority. As a result, it is possible to suppress the deterioration of the transmission quality of a response signal having a high priority, that is, a response signal requiring higher reliability.
  • resource @ sharing @ factor or resource @ splitting @ factor may be notified from the base station 100 to the terminal 200 in advance.
  • terminal 200 performs processing on a response signal or a PUCCH according to a request condition (eg, reliability, delay request, or type of use case (service)) for a response signal of downlink data.
  • a request condition eg, reliability, delay request, or type of use case (service)
  • terminal 200 applies different encoding methods to response signals having different request conditions.
  • terminal 200 multiplexes the encoded response signal on the PUCCH and transmits the multiplexed response signal.
  • terminal 200 performs processing according to the requirements required for the response signal multiplexed on the PUCCH (for example, Encoding processing) or setting of radio resources (for example, determination of a mapping method or PUCCH resources) can be performed.
  • terminal 200 can improve the PUCCH resource utilization efficiency by setting the position or amount of the PUCCH resource according to the reliability required for the response signal.
  • terminal 200 can reduce the delay of the response signal by setting the position of the PUCCH resource according to the delay request for the response signal.
  • terminal 200 can appropriately transmit UCI including a response signal.
  • the base station and the terminal according to the present embodiment have the same basic configuration as base station 100 and terminal 200 according to the first embodiment, and thus will be described with reference to FIGS.
  • terminal 200 receives PUCCH resources or PUCCH resource sets for response signals having different types of reliability, delay request, or use case (or service) (in other words, response signals having different request conditions). Different decision methods.
  • the number of PUCCHs to which terminal 200 can transmit a response signal in one slot is not limited to one. In other words, in the present embodiment, the number of PUCCHs to which terminal 200 can transmit a response signal in one slot is one or more.
  • the terminal 200 transmits each response signal having a different requirement using a different PUCCH in a slot.
  • a plurality of PUCCHs are multiplexed in the same slot by time division multiplexing (TDM: Time Division Multiplexing), frequency division multiplexing (FDM: Frequency Division Division Multiplexing), or code division multiplexing (CDM: Code Division Division Multiplexing).
  • terminal 200 can allocate an appropriate PUCCH resource for each response signal according to the reliability of the response signal, the delay request, or the type of use case (or service).
  • the terminal 200 can transmit response signals having different request conditions by using individual PUCCHs without multiplexing them into one PUCCH. For this reason, efficient PUCCH transmission becomes possible from the viewpoint of resource utilization efficiency.
  • terminal 200 can transmit response signals with different delay requests using different PUCCHs, for example. For this reason, for example, by using a Short-PUCCH to transmit a response signal that requires a low delay such as URLLC, and by transmitting a response signal that does not require a long delay such as eMBB using a Long-PUCCH Thus, a bottleneck for a delay request can be eliminated.
  • the base station 100 uses a terminal-specific upper layer signal (for example, RRC signaling) to generate a set of quasi-static PUCCH resources (for example, RRC signaling). For example, PUCCH (resource set) is notified.
  • the terminal 200 determines the PUCCH resource set based on, for example, one of the following two methods (Option # 1 and Option # 2).
  • FIG. 10A shows a setting example of PUCCH resource set in Option # 1.
  • a group of PUCCH resource set for eMBB for example, group X
  • a group of PUCCH resource set for URLLC for example, group Y
  • group X includes PUCCH resource set X0, X1, X2, and X3
  • group Y includes PUCCH resource set Y0, Y1, Y2, and Y3.
  • the terminal 200 for example, for each response signal of different types of reliability, delay request or use case (or service), based on the number of UCI bits transmitted using PUCCH (eg, the number of HARQ-ACK bits) Decide which PUCCH resource set within each group to use.
  • terminal 200 selects PUCCH resource set X1 from PUCCH resource set in group X based on the number of bits of the response signal to the eMBB.
  • terminal 200 selects PUCCH ⁇ resource ⁇ set ⁇ Y0 from PUCCH ⁇ resource ⁇ set in group Y based on the number of bits of the response signal to URLLC.
  • terminal 200 assigns DCI (e.g., DL @ assignment @ for @ eMBB or DL @ assignment shown in FIG. 10B) for assigning downlink data corresponding to each of response signals having different types of reliability, delay request, or use case (or service).
  • DCI e.g., DL @ assignment @ for @ eMBB or DL @ assignment shown in FIG. 10B
  • terminal 200 transmits a response signal using the PUCCH resource notified by the DCI among the selected PUCCH resource set.
  • PUCCH resource set is set individually for each type of reliability, delay request, or use case (or service), so responses with different reliability, delay request, or use case (or service) type PUCCH resources suitable for signals can be allocated more flexibly.
  • the setting example of the PUCCH ⁇ resource ⁇ set shown in FIG. 10A is an example, and is not limited.
  • the number of PUCCH resource set included in the group of PUCCH resource set for eMBB and URLLC is not limited to four, and may be another number. Further, the number of PUCCH resource set included in each group of PUCCH resource set for eMBB and URLLC may be the same or different.
  • eMBB and URLLC are described as an example of a case where the request conditions are different, but the present invention is not limited to this.
  • a PUCCH ⁇ resource ⁇ set It may be set.
  • the same PUCCH resource set group is set for response signals having different types of reliability, delay request, or use case (or service) (in other words, response signals having different request conditions). Therefore, terminal 200 sets PUCCH resource sets included in the same group for response signals having different request conditions.
  • FIG. 11A shows a setting example of PUCCH ⁇ resource ⁇ set in Option # 2.
  • groups including PUCCH resource set 0, # 1, # 2, and 3 are set.
  • the terminal 200 may, for example, be in the same group based on the number of UCI bits transmitted using the PUCCH (eg, the number of HARQ-ACK bits) regardless of the type of reliability, delay request, or use case (or service). Which PUCCH resource set to use.
  • terminal 200 selects PUCCH resource set 1 from PUCCH resource set 0 to 3 based on the number of bits of the response signal to the eMBB. Also, in FIG. 11A, terminal 200 selects PUCCH resource set 0 from PUCCH resource set 0 to 3 based on the number of bits of the response signal to URLLC.
  • terminal 200 assigns DCI (e.g., DL @ assignment @ for @ eMBB or DL @ assignment shown in FIG. 11B) that assigns downlink data corresponding to each of response signals having different types of reliability, delay request, or use case (or service).
  • DCI e.g., DL @ assignment @ for @ eMBB or DL @ assignment shown in FIG. 11B
  • terminal 200 transmits a response signal using the PUCCH resource notified by the DCI among the selected PUCCH resource set.
  • the selectable PUCCH ⁇ resource ⁇ set is the same regardless of the type of reliability, delay request, or use case (or service). For this reason, it is possible to reduce the overhead related to the notification of the PUCCH ⁇ resource ⁇ set.
  • Terminal 200 ⁇ can individually determine a PUCCH ⁇ resource ⁇ set to be actually used based on the number of bits of each response signal having different reliability, delay request, or use case (or service) type. Therefore, terminal 200 can use PUCCH resources suitable for response signals having different types of reliability, delay request, or use case (or service).
  • terminal 200 applies different resource determination methods to response signals having different request conditions (for example, reliability, delay request, or use case (service) type). Then, terminal 200 transmits the response signal using the PUCCH resource set for each response signal.
  • request conditions for example, reliability, delay request, or use case (service) type.
  • terminal 200 can individually set radio resources according to the request conditions required for the response signal, thereby improving resource utilization efficiency or reducing the delay of the response signal it can.
  • terminal 200 can appropriately transmit UCI including a response signal.
  • terminal 200 may apply the same processing as in Embodiment 1.
  • Option # 1 a case has been described where different PUCCH ⁇ resource ⁇ set groups are set for each type of reliability, delay request, or use case (or service).
  • a difference may be caused in values (or value ranges) that can be set for each type of reliability, delay request, or use case (or service).
  • PUCCH Format 0 of NR Sequence selection is used (for example, see Non-Patent Document 1).
  • frequency allocation of one-cell repetition is used.
  • inter-cell interference is the main factor of characteristic degradation.
  • Short-PUCCH since the number of symbols used (one symbol or two symbols) is small, it is not possible to suppress inter-cell interference due to the effect of averaging interference by using a plurality of symbols.
  • the number of RBs or the sequence length that can be set for the PUCCH may be varied according to response signals having different types of reliability, delay request, or use case (or service).
  • a variable number of PRBs (for example, any of 1, 2, and 4 PRBs) may be settable.
  • the number of PRBs that can be set may be 1 PRB.
  • the number of PRBs that can be set for each request condition is not limited to the above example, and may be another number.
  • the number of PUCCH configurable Repetitions may be made different according to response signals having different reliability, delay request, or type of use case (or service).
  • Repetition may be set, and a variable number of repetitions (for example, any one of 1, 2, and 4) may be set.
  • a variable number of repetitions for example, any one of 1, 2, and 4
  • Repetition cannot be set. Note that the number of Repetitions that can be set for each request condition is not limited to the above example, and may be another number.
  • the Repetition in the time domain there is a method of repeatedly transmitting the same sequence over a plurality of symbols.
  • this method by performing in-phase synthesis of the Repetition signal on the receiving side (for example, the base station 100), it is possible to expect a characteristic improvement effect by improving the power of the received signal.
  • the sequence length is expanded from 12 to 24, the first half of the sequence length 24 is transmitted with the first symbol, and the latter half is transmitted with the next symbol. In this method, the effect of interference suppression by using a long sequence length can be expected.
  • Embodiment 2 has described the case where PUCCH resources or PUCCH resource set determination methods are made different for response signals having different types of reliability, delay requests, or use cases (or services).
  • the terminal uses the terminal specific to the terminal regarding the specification of the PUCCH slot position (or the time from the slot receiving the downlink data to the slot transmitting the PUCCH) for transmitting the response signal to the downlink data.
  • a method is used in which a set of quasi-static slot positions is notified by an upper layer signal (for example, RRC signaling), and a slot position actually used in the set of slot positions is notified by a DCI that allocates downlink data. (For example, see Non-Patent Document 3).
  • a set of PUCCH slot positions for transmitting a response signal similarly has a different response signal having different reliability, delay request, or use case (or service) type (in other words, It can be set for each of the response signals having different request conditions.
  • terminal 200 can use an appropriate transmission slot for a response signal according to the reliability of the response signal, the delay request, or the type of use case (or service). For example, if different sets of slot positions are set for different delay requests, terminal 200 transmits each of the response signals having different delay requests using different PUCCHs. In contrast, more flexible slot assignment suitable for a delay request becomes possible.
  • the base station and the terminal according to the present embodiment have the same basic configuration as base station 100 and terminal 200 according to the first embodiment, and thus will be described with reference to FIGS.
  • the terminal 200 in the same slot, when simultaneously transmitting a response signal for data transmission of different types of reliability, delay request or use case (or service), according to the priority of PUCCH, Drop all or partially puncture PUCCH that transmits the response signal.
  • PUCCH for dropping or partially puncturing may be determined based on the reliability of ACK / NACK, a delay request, or a priority given according to the type of use case (or service).
  • the terminal 200 drops or punctures all PUCCHs with lower priorities based on the requirements.
  • FIG. 12 shows a case where two services, URLLC and eMBB, exist.
  • the priority of the PUCCH corresponding to URLLC is set higher than the priority of the PUCCH corresponding to eMBB. That is, terminal 200 drops or punctures all PUCCHs corresponding to the eMBB.
  • the terminal 200 transmits a response signal corresponding to URLLC using a PUCCH corresponding to URLLC (URLLC PUCCH), and drops all PUCCH corresponding to eMBB (eMBB PUCCH).
  • the method of puncturing symbols that overlap in time is performed, for example, when the terminal 200 cannot simultaneously transmit a plurality of uplink signals or when the terminal 200 has a capability of simultaneously transmitting a plurality of uplink signals, Can exceed the maximum transmission power, and can be applied to a case where one of the signals must be transmitted.
  • a method of puncturing an RE in which time and frequency overlap with each other is, for example, capable of transmitting a plurality of uplink signals to the terminal 200 at the same time. Applicable when the power is not exceeded.
  • Embodiment 4 For example, Embodiment 1 has described the case where different encoding processes are applied to response signals having different types of reliability, delay request, or use case (or service). However, performing different encoding processes may increase the processing amount of the terminal, and may complicate the implementation.
  • the base station and the terminal according to the present embodiment have the same basic configuration as base station 100 and terminal 200 according to Embodiment 1, and thus will be described with reference to FIGS.
  • the terminal 200 has a capability (UE capability; hereinafter, referred to as “N1”) relating to a processing time required for decoding downlink data, generating a response signal, and transmitting a PUCCH after receiving downlink data.
  • N1 UE capability
  • terminal 200 reports “N1” to base station 100.
  • the base station 100 transmits the PUCCH slot position for transmitting the response signal to the downlink data by the terminal 200 (or the time from the slot receiving the downlink data to the slot transmitting the PUCCH (for example, the response signal): “ PDSCH-to-HARQ-ACK @ timing ”) and notifies terminal 200.
  • the base station 100 cannot set and notify a value exceeding the processing capability (N1) of the terminal 200 reported from the terminal 200 (in other words, a value smaller than N1) for PDSCH-to-HARQ-ACK @ timing.
  • the terminal 200 specifies the capability (N1) for transmitting response signals having different types of reliability, delay request, or use case (or service), and reports the same to the base station 100.
  • terminal 200 transmits the PUCCH used for transmitting the response signal or the response signal based on the value of PDSCH-to-HARQ-ACK timing set and notified from base station 100 and the specified value of N1.
  • parameters in other words, the processing mode for the response signal or PUCCH is determined.
  • the terminal 200 receives the downlink data, decodes the data, generates a response signal, and processes the necessary processing time (N1) until transmitting the PUCCH. It has two or more capabilities depending on the type of case (or service). The terminal 200 reports two or more capabilities (N1) to the base station 100.
  • the terminal 200 has two terminal capabilities (UE capability) of N1 for eMBB (hereinafter, referred to as “N1_X” or “N1_eMBB”) and N1 for URLLC (hereinafter, referred to as “N1_Y” or “N1_URLLC”). ).
  • N1_X terminal capabilities
  • N1_Y N1 for URLLC
  • N1_Y URLLC
  • N1_URLLC URLLC
  • the base station 100 uses the terminal-specific upper layer.
  • a set of quasi-static slot positions is notified by a signal (for example, RRC signaling), and which PDSCH-to-HARQ-ACK timing in the set is actually used is notified by a DCI that allocates downlink data.
  • terminal 200 transmits the PDSCH-to-HARQ- for each response signal.
  • the processing for the response signal is determined based on the value of ACK @ timing and the capability (N1) of terminal 200.
  • the minimum value of the PDSCH-to-HARQ-ACK @ timing value for each response signal is N1 (N1_X or If N1_eMBB or more, the terminal 200 performs common encoding processing (joint @ encoding) on the response signal corresponding to eMBB and the response signal corresponding to URLLC, and generates a HARQ-ACK bit.
  • the terminal 200 receives the PDSCH for URLLC and before the time corresponding to PDSCH-to-HARQ-ACK timing for URLLC elapses.
  • the processing up to generation of the corresponding response signal and transmission of the PUCCH including the response signal can be completed (in other words, N1_X / N1_eMBBMB ⁇ ⁇ PDSCH-to-HARQ-ACK timing for URLLC). Therefore, the terminal 200 receives the URLLC response signal and the eMBB response signal after the terminal 200 receives the PDSCH for URLLC until the time corresponding to PDSCH-to-HARQ-ACKSCHtiming for URLLC elapses. And a common encoding process can be performed.
  • a value of PDSCH-to-HARQ-ACK @ timing for a response signal requiring high reliability or low delay or a response signal corresponding to URLLC (in FIG. 14, PDSCH-to-HARQ If -ACK timing for URLLC is less than N1 (N1_X or N1_eMBB) corresponding to eMBB, terminal 200 performs common encoding processing on the response signal corresponding to eMBB and the response signal corresponding to URLLC. Can not do.
  • the terminal 200 after the terminal 200 receives the PDSCH for URLLC and before the time corresponding to PDSCH-to-HARQ-ACK timing for URLLC elapses, the terminal 200 A process until a corresponding response signal is generated and a PUCCH including the response signal is transmitted cannot be completed (in other words, N1_X / N1_eMBB> PDSCH-to-HARQ-ACK timing for URLLC).
  • the terminal 200 receives the ACK / NACK of the URLLC and the eMBB of the URLMB from the time when the terminal 200 receives the PDSCH for URLLC until the time corresponding to PDSCH-to-HARQ-ACK-timing for URLLC elapses.
  • ACK / NACK cannot be collectively encoded.
  • terminal 200 uses any of the methods in Embodiment 3 or Embodiment 1.
  • the number of encoding processes can be reduced to one for response signals having different types of reliability, delay request, or use case (or service).
  • the implementation of 200 can be simplified.
  • terminal 200 performs appropriate coding (or code) according to the reliability of the response signal, the delay request, or the type of use case (or service). Since the HARQ-ACK bit can be generated based on the conversion rate), efficient PUCCH transmission can be performed from the viewpoint of resource utilization efficiency.
  • code processing can be shared as much as possible according to the processing capability of terminal 200, so that the processing amount of terminal 200 can be increased or the complexity of implementation can be reduced.
  • the reliability of the response signal may be different.
  • the former response signal requires high reliability, while the latter response signal does not require very high reliability.
  • a case where a delay request of the response signal is different or a use case (or service) is different.
  • the former response signal requires high reliability or low delay, while the latter response signal does not require much higher reliability or low delay.
  • examples of causing a difference in the transmission method of the response signal or the PUCCH are not limited to the types of the reliability, the delay request, or the use case (service), but may be, for example, different physical layer parameters.
  • eMBB may be replaced with “transmission in slot units” and URLLC may be replaced with “transmission in non-slot units”.
  • the eMBB may be replaced with “PDSCH mapping type A” or “PUSCH mapping type A”
  • the URLLC may be replaced with “PDSCH mapping type B” or “PUSCH mapping type B”.
  • the transmission is not limited to transmission corresponding to eMBB and URLLC.
  • eMBB is replaced with transmission having a longer transmission interval (for example, slot length or symbol length)
  • URLLC is replaced with transmission having a transmission interval shorter than the above transmission interval. You may.
  • the target error rate may be the target error rate of the first data transmission as described above, or may be the target error rate in retransmission when retransmission occurs. Further, the target error rate may be referred to as an “instantaneous target error rate” in the sense of the target error rates of the first and retransmission.
  • the method of determining the "type of reliability, delay request, or use case (or service)" (in other words, the required condition) of the response signal described in the above embodiment includes, for example, the following Example 1. -There is a method as in Example 5.
  • Example 1 Scramble sequence
  • the terminal 200 determines the reliability of the response signal, the delay request or the use case (service) based on the terminal-specific scrambling sequence used for DCI for scheduling downlink data transmission corresponding to each response signal. Judge the type.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling-RNTI
  • the control unit 101 of the base station 100 determines information on the reliability of the downlink data of the terminal 200, the delay request, or the type of use case (service).
  • the determined information is output to downlink control signal generation section 109 of base station 100.
  • downlink control signal generating section 109 generates a DCI bit sequence using a scrambling sequence according to the reliability of downlink data of terminal 200, a delay request, or a type of use case (or service).
  • decoding section 206 of terminal 200 (for example, see FIG. 3) outputs the detected scrambling sequence to control section 211.
  • the control unit 211 determines information on the reliability of the downlink data, the delay request, or the type of use case (service) based on the obtained scrambling sequence.
  • Example 2 MCS table
  • the terminal 200 determines the reliability of the response signal, the delay request, or the type of use case (service) based on the MCS table used for scheduling the downlink data transmission corresponding to each response signal.
  • terminal 200 determines that the reliability required for the response signal is high.
  • terminal 200 determines that the reliability required for the response signal is not high.
  • the control unit 101 of the base station 100 determines information on the reliability of the downlink data of the terminal 200, the delay request, or the type of use case (service). The determined information is output to downlink control signal generation section 109, coding section 103 and modulation section 105 of base station 100.
  • Downlink control signal generation section 109 includes information on the MCS table used for downlink data transmission in the bit string of DCI. Encoding section 103 and modulation section 105 also encode and modulate downlink data using information on the MCS table input from control section 101.
  • the decoding unit 206 of the terminal 200 decodes the DCI and outputs the decoding result to the control unit 211.
  • the control unit 211 determines information on the reliability of the downlink data, delay request or type of use case (service) based on the information on the MCS table obtained from the DCI.
  • Example 3 PDSCH-to-HARQ-ACK timing or PDSCH transmission symbols
  • the terminal 200 determines the reliability of the response signal based on “PDSCH-to-HARQ-ACK timing” notified by the DCI that schedules downlink data transmission corresponding to each response signal or the number of PDSCH transmission symbols. Level, type of delay request or use case (service).
  • the terminal 200 has a severe delay request for a response signal or a response for URLLC. It is determined that it is a signal.
  • the terminal 200 has a less demanding response signal delay requirement or eMBB. It is determined that this is a response signal.
  • the predetermined value or the predetermined number of symbols may be a value predetermined in a standard or a value that can be set by the base station 100 to the terminal 200 by an upper layer signal.
  • the control unit 101 of the base station 100 determines the PDSCH-to-HARQ-ACK timing or the number of PDSCH transmission symbols indicating a slot position for transmitting a response signal to the downlink data of the terminal 200.
  • the determined information is output to downlink control signal generating section 109, signal allocating section 112 and extracting section 118 of base station 100.
  • the downlink control signal generator 109 includes information on the PDSCH-to-HARQ-ACK timing or the number of PDSCH transmission symbols in the DCI bit string.
  • the decoding unit 206 of the terminal 200 decodes the DCI and outputs the decoding result to the control unit 211.
  • the control unit 211 determines the information on the type of the reliability of the downlink data, the delay request or the use case (service) based on the information on the PDSCH-to-HARQ-ACK timing or the number of transmission symbols of the PDSCH obtained from the DCI. I do.
  • Example 4 CQI table
  • the terminal 200 determines the reliability of the response signal, the delay request, or the type of use case (service) based on the CQI table set for downlink data transmission corresponding to each response signal.
  • terminal 200 determines that the reliability required for the response signal is high.
  • control unit 101 of the base station 100 determines information on the CQI table set for the terminal 200 for downlink data transmission.
  • the determined information is output to higher control signal generation section 106.
  • Upper control signal generating section 106 includes information on the CQI table in the higher control signal.
  • the decoding unit 208 of the terminal 200 decodes the higher control signal and outputs the decoding result to the control unit 211.
  • the control unit 211 determines information on the reliability of the downlink data, delay request, or type of use case (service) based on the information on the CQI table obtained from the higher control signal.
  • Example 5 Explicit notification by DCI
  • the terminal 200 determines the reliability of the response signal, the delay request, or the type of use case (service) by explicit notification using several bits in the DCI that schedules downlink data transmission corresponding to each response signal. to decide.
  • the explicit notification may be information on the reliability of the response signal itself, information on the type of delay request or use case (service), information on the reliability of the PDSCH (e.g., target BLER), information on the type of delay request or use case (service). May be.
  • control unit 101 of the base station 100 determines information on the reliability of the response signal to the downlink data of the terminal 200, the delay request, or the type of use case (service).
  • the determined information is output to downlink control signal generation section 109.
  • the downlink control signal generation unit 109 includes information on the reliability of the response signal, the delay request, or the type of use case (service) in the DCI bit string.
  • the decoding unit 206 of the terminal 200 decodes the DCI and outputs the decoding result to the control unit 211.
  • the control unit 211 obtains information on the reliability of the response signal, the delay request, or the type of use case (service) from the DCI.
  • the method of determining the “reliability, delay request, or type of use case (or service)” of the response signal has been described above.
  • the method of determining the “reliability of the response signal, the type of the delay request or the use case (or service)” is not limited to Examples 1 to 5 described above, and may be a determination method based on other information regarding the request condition. Good.
  • ACK / NACK or HARQ-ACK may be replaced with channel state information (CSI), or may be replaced with UCI including the response signal and CSI.
  • each functional block used in the description of the above embodiment is partially or entirely realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly performed. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include some or all of the functional blocks.
  • the LSI may include data input and output.
  • the LSI may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor capable of reconfiguring connection and setting of circuit cells inside the LSI after manufacturing the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing. Furthermore, if an integrated circuit technology that replaces the LSI appears due to the progress of the semiconductor technology or another technology derived therefrom, the functional blocks may be naturally integrated using the technology. Application of biotechnology, etc. is possible.
  • the present disclosure can be implemented in any type of device, device, or system having a communication function (collectively, a communication device).
  • communication devices include phones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles or mobile vehicles with communication capabilities (automobiles, airplanes, ships, etc.), and combinations of the various devices described above.
  • the communication device is not limited to a portable or movable device, and may be any type of device, device, or system that is not portable or fixed, such as a smart home device (home appliance, lighting device, smart meter or Measurement equipment, control panels, etc.), vending machines, and any other "things" that can exist on an IoT (Internet of Things) network.
  • a smart home device home appliance, lighting device, smart meter or Measurement equipment, control panels, etc.
  • vending machines and any other "things” that can exist on an IoT (Internet of Things) network.
  • Communication includes not only data communication by cellular systems, wireless LAN systems, communication satellite systems, etc., but also data communication by combinations of these.
  • the communication device also includes a device such as a controller or a sensor that is connected or connected to a communication device that performs the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that performs a communication function of the communication device is included.
  • the communication device includes infrastructure equipment, such as a base station, an access point, and any other device, device, or system that communicates with or controls the above-described various types of devices. .
  • infrastructure equipment such as a base station, an access point, and any other device, device, or system that communicates with or controls the above-described various types of devices.
  • a terminal a circuit that determines a processing mode for an uplink control channel used for transmission of the uplink control information or the uplink control information, according to a request condition for the uplink control information, And a transmitter for transmitting the uplink control information using the uplink control channel based on the determined processing mode.
  • the circuit applies a different encoding method to the uplink control information having the different requirement, and the transmitter performs encoding on the uplink control channel after encoding. And multiplexes the uplink control information.
  • the request condition includes a reliability or a delay request, and the higher the reliability is requested in the order of the uplink control information, or a lower request in the delay request.
  • the information is mapped to the uplink control channel in the order of the uplink control information requiring a delay.
  • the uplink control information is mapped on the uplink control channel in order from the frequency direction to the time direction.
  • the uplink control information is mapped in a dispersed manner in the frequency direction.
  • the uplink control information for which higher reliability is required is mapped to a symbol closer to a symbol to which a reference signal is mapped in the uplink control channel.
  • the uplink control information for which a lower delay is required in the delay request is mapped to an earlier symbol of the uplink control channel.
  • the resource set of the uplink control channel is determined based on the total number of encoded bits of the uplink control information multiplexed on the uplink control channel.
  • a maximum coding rate is set for each of the request conditions for the uplink control information.
  • the terminal when a coding rate of the uplink control information exceeds a predetermined threshold, at least a part of the uplink control information is dropped in the uplink control channel.
  • the predetermined threshold is the maximum coding rate.
  • the predetermined threshold is reported from the base station to the terminal.
  • the uplink control information to be dropped is determined according to a priority set for each of the request conditions.
  • the uplink control information in the uplink control channel if the number of resource blocks calculated from the number of bits of the uplink control information and the maximum coding rate exceeds a predetermined threshold, the uplink control information in the uplink control channel. Is dropped at least in part.
  • information indicating a ratio of a resource shared between the uplink control information having different request conditions in the uplink control channel is reported from the base station to the terminal.
  • a different resource determination method is applied in the uplink control channel to the uplink control information having different request conditions.
  • the number of uplink control channels for transmitting the uplink control information in one slot is one or more, and the transmitter transmits the uplink control information having different requirements. , Respectively, using different uplink control channels in the one slot.
  • the circuit sets resource sets included in different groups for the uplink control information having different requirements.
  • the circuit sets resource sets included in the same group for the uplink control information having different requirements.
  • the parameter related to the resource set differs for each of the uplink control information having different requirements.
  • the parameter is a number of resource blocks or a sequence length of the uplink control channel.
  • the parameter is a number of repetitions of the uplink control information.
  • a slot position for transmitting the uplink control information is set for each of the uplink control information having different requirements.
  • the circuit drops all of the uplink control channels having lower priorities based on the request conditions when transmission of the uplink control information having different request conditions is the same timing. Or puncture a part.
  • the uplink control information is a response signal to downlink data
  • the capability of the terminal regarding the processing time required from the reception of the downlink data to the transmission of the response signal
  • Timing information that is defined for each of the request conditions and indicates a time period from the reception of the downlink data to the transmission of the response signal is notified from the base station to the terminal
  • the circuit includes the timing information and the capability. Based on this, the processing mode is determined.
  • the communication method determines a processing mode for the uplink control information or an uplink control channel used for transmitting the uplink control information according to a request condition for the uplink control information, and The uplink control information is transmitted using the uplink control channel based on the performed processing mode.
  • One embodiment of the present disclosure is useful for a mobile communication system.
  • Reference Signs List 100 base station 101, 211 control unit 102 data generation unit 103, 107, 110, 212 coding unit 104 retransmission control unit 105, 108, 111, 213 modulation unit 106 higher control signal generation unit 109 downlink control signal generation unit 112, 214 Signal allocating unit 113, 215 IFFT unit 114, 216 Transmitting unit 115, 201 Antenna 116, 202 Receiving unit 117, 203 FFT unit 118, 204 Extracting unit 119 Demodulating unit 120, 206, 208, 210 Decoding unit 121 Judgment unit 200 Terminal 205 Downlink control signal demodulation unit 207 Upper control signal demodulation unit 209 Data demodulation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

上りリンク制御情報を適切に送信することができる端末。端末(200)において、制御部(211)は、下りデータの応答信号に対する要求条件に応じて、応答信号又は応答信号の送信に用いる上り制御チャネルに対する処理態様を決定する。送信部(216)は、決定された処理態様に基づいて、上り制御チャネルを用いて応答信号を送信する。

Description

端末及び通信方法
 本開示は、端末及び通信方法に関する。
 3GPP(3rd Generation Partnership Project)では、第5世代移動通信システム(5G:5th Generation mobile communication sysmtems)の実現に向けて、Release 15 NR(New Radio access technology)の仕様策定が完了した。NRでは、モバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)の基本的な要求条件である高速及び大容量と合わせ、超高信頼低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)をサポートしている(例えば、非特許文献1-4を参照)。
 3GPPが定義するRelease 15におけるURLLCへの要求条件として、片道0.5ms以下のユーザプレーン遅延、かつ、一定の信頼性を担保し、1ms以下の遅延を達成することが求められている。
 Release 15 NRでは、サブキャリア間隔又は送信シンボル数を柔軟に制御してTTI(Transmit Time Interval)を短縮することにより低遅延を実現する。また、低い目標ブロック誤り率(BLER: Block Error Rate)を達成するための変調符号化方式(MCS: Modulation and Coding Scheme)又はチャネル状態報告(CQI:Channel Quality Indicator)を設定又は通知することにより高信頼なデータ伝送を実現する。例えば、目標誤り率(又は、目標BLER)は、通常モード(例えば、BLER=10-1)と、高信頼モード(例えば、BLER=10-5)とが設定できる。
3GPP TS 38.211 V15.2.0, "NR; Physical channels and modulation (Release 15)," March 2018. 3GPP TS 38.212 V15.2.0, "NR; Multiplexing and channel coding (Release 15)," June 2018. 3GPP TS 38.213 V15.2.0, "NR; Physical layer procedure for control (Release 15)," June 2018. 3GPP TS 38.214 V15.2.0, "NR; Physical layer procedures for data (Release 15)," June 2018. H. Shariatmadari, Z. Li, S. Iraji, M. A. Uusitalo, and R. Jantti, "Control channel enhancements for ultra-reliable low-latency communications," Proc. The 10th International Workshop on Evolutional Technologies and Ecosystems for 5G and Beyond (WDN-5G ICC2017), May 2017. 山本哲矢, 河内涼子, 湯田泰明, 鈴木秀俊, "Release 16 NR URLLCのための1シンボル上りリンク制御チャネルに関する一検討," 信学会ソサイエティ大会2018, September 2018.
 NRにおいて、上りリンク制御情報の送信方法について十分に検討されていない。
 本開示の非限定的な実施例は、上りリンク制御情報を適切に送信できる端末及び通信方法の提供に資する。
 本開示の一実施例に係る端末は、上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定する回路と、前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する送信機と、を具備する。
 本開示の一実施例に係る通信方法は、上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定し、前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、上りリンク制御情報を適切に送信できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
実施の形態1に係る端末の一部の構成を示すブロック図 実施の形態1に係る基地局の構成を示すブロック図 実施の形態1に係る端末の構成を示すブロック図 実施の形態1に係る基地局及び端末の処理を示すシーケンス図 実施の形態1に係るACK/NACKの送信処理の一例を示す図 実施の形態1のOption 1に係るACK/NACKのマッピング例を示す図 実施の形態1のOption 2に係るACK/NACKのマッピング例を示す図 実施の形態1のOption 3に係るACK/NACKのマッピング例を示す図 実施の形態1のOption 4に係るACK/NACKのマッピング例を示す図 実施の形態2のOption 1に係るACK/NACK及の送信処理の一例を示す図 実施の形態2のOption 1に係るACK/NACK及の送信処理の一例を示す図 実施の形態2のOption 2に係るACK/NACK及の送信処理の一例を示す図 実施の形態2のOption 2に係るACK/NACK及の送信処理の一例を示す図 実施の形態3に係るACK/NACK及の送信処理の一例を示す図 実施の形態4に係るACK/NACK及の送信処理の一例を示す図 実施の形態4に係るACK/NACK及の送信処理の他の例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 LTE(Long-Term Evolution)又はNRにおけるeMBBのユースケースでは、セルスループット又は周波数利用効率を最大化することが求められる。このような場合、データの目標誤り率を比較的高い値(例えば、BLER=10-1)に設定して運用されることが一般的である。これは、ハイブリッド自動再送要求(HARQ: Hybrid Automatic Repeat Request)を適用しているためである。eMBBでは、例えば、HARQによる数回の再送による合成利得を考慮した上で、最終的に高信頼のパケット伝送(例えば、BLER=10-5)を実現することを許容している。
 一方、URLLCでは、高信頼のパケット伝送(例えば、BLER=10-5)を1ms以下の遅延で実現することが求められる。例えば、上述したHARQでは、データ伝送に誤りが発生した場合に再送要求が起こり、データが再送されるため、再送回数の増加に応じて遅延時間が長くなり、低遅延の要求条件を満たせなくなる。よって、URLLCでは、HARQによる再送無しで高信頼のパケット伝送を可能とするために、上述したような高信頼モード(データの目標誤り率を比較的低い値(例えば、BLER=10-5)に設定するモード)により1回目の送信においてデータを確実に伝送できるように運用することが考えられる。
 低い目標誤り率を設定することは、高信頼のデータ伝送につながるものの、高い目標誤り率を設定する場合と比較して、無線リソースをより多く必要とする。Release 15 NRでは、URLLCのデータサイズは、比較的小さい32byteに制限されているため、低い目標誤り率の設定によるリソース利用効率への影響はそれほど大きくなかった。
 一方で、Release 16又は今後のURLLCでは、Release 15 NRよりも大きなデータサイズを扱い、URLLCのユースケースを拡大していくことが期待される。この場合、低い目標誤り率を設定すると、1回の送信によって高信頼のパケット送信を実現するためには、膨大な無線リソースを必要とする可能性があり、リソース利用効率の観点から非効率である。
 したがって、比較的大きなデータサイズを扱うURLLCのユースケースでは、例えば、高速なHARQ再送制御の適用が想定される。高速なHARQ再送制御では、例えば、1回目の送信において高い目標誤り率(例えば、BLER=10-1又はBLER=10-2等)を設定し、1回目の送信において誤りが発生しても次の再送(2回目の送信)においてデータを確実に伝送する運用が行われる。このように、高速なHARQ再送制御は、リソース利用効率を向上させつつ、低遅延で高信頼なパケット伝送を行うために有効である。
 ここで、下りリンクにおけるHARQ伝送に着目すると、端末(UE:User Equipment)は、下りリンクデータに対する誤り検出結果を示す応答信号(ACK/NACK:Acknowledgement / Negative Acknowledgement。又は、HARQ-ACKと呼ぶ)を基地局(例えば、eNB又はgNB)へ送信する。
 このとき、応答信号の伝送に必要とされる信頼度又は遅延要求は、下りリンクデータ伝送の信頼度、遅延要求、又は、ユースケース(またはサービス)の種類(又はusage scenario)によって異なる。
 例えば、URLLCにおいて、1回目の送信において誤りが発生しても次の送信(再送)においてデータを確実に伝送できるような運用を想定する。この場合、1回目のデータ送信の目標誤り率が高いほど、より高い信頼度の応答信号の伝送(換言すると、目標誤り率がより低い応答信号の伝送)が求められる。例えば、1回目のデータ送信の目標誤り率がBLER=10-1である場合、応答信号にはBLER=10-4以下の誤り率が求められ、1回目のデータ送信の目標誤り率がBLER=10-3である場合、応答信号にはBLER=10-2以下の誤り率が求められる(例えば、非特許文献5を参照)。
 また、eMBBとURLLCとでは、URLLCのデータ伝送に対する応答信号は、eMBBのデータ伝送に対する応答信号と比較してより低遅延が要求される。
 しかしながら、Release 15 NRでは、端末からの応答信号のフィードバック機構において、信頼性、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に関する動作について十分に検討されていない。
 また、端末は、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)を用いて応答信号を基地局へ送信する。しかしながら、Release 15 NRでは、再送を許容するURLLCにおいて応答信号の伝送に要する信頼度に関する要求条件(例えば、BLER=10-4以下の誤り率)を実現するようなPUCCHは設計されていない。
 また、NRの端末は、複数のユースケース又はサービス(例えば、eMBB及びURLLC等)に対応することが想定される。また、NRの端末は、URLLCにおいて、目標誤り率の異なる複数のデータ伝送に対応することも想定される。このとき、上りリンクの同一スロット内において、端末が、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なるデータ伝送にそれぞれ対応する応答信号を同時に送信する場合が発生する可能性がある。
 Release 15 NRでは、1スロット内において応答信号を送信できるPUCCHの数は1つに制限されている。したがって、仮に、上述したように同一スロット内において信頼度、遅延要求又はユースケース(またはサービス)の種類が異なるデータ伝送に対応する応答信号が同時に送信される場合、これらの応答信号は、1つのPUCCHに多重して送信される。
 例えば、Release 15 NRにおける方法では、要求される信頼度が異なる応答信号が多重される場合、高い信頼度が要求される応答信号の要求条件を満たすために、高い信頼度が要求される応答信号の信頼度に合わせてPUCCHに対する無線リソースを設定することが考えられる。しかし、この場合、当該高い信頼度が要求される応答信号と比較して低い信頼度が要求される応答信号(換言すると、高い信頼度が要求されない応答信号)に対しても、高い信頼度が要求される応答信号と同様にPUCCHに対する無線リソースが設定されるため、リソース利用効率の観点から非効率である。
 また、要求される信頼度が異なる応答信号が多重される場合、応答信号を多重するためのHARQ-ACKコードブック(応答信号ビット列)では、信頼度、遅延要求又はユースケース(またはサービス)の種類に関係なく、時間的に早く受信した下りリンクデータに対応する応答信号から順に並べられる。例えば、遅延要求が異なる応答信号(例えば、eMBB及びURLLCに対応する応答信号)が1つのPUCCHに多重して送信される場合、低遅延を要求されない応答信号(例えば、eMBBの応答信号)の送信が遅延のボトルネックとなる場合がある。
 そこで、本開示の一実施例では、信頼度、遅延要求、又は、ユースケース(またはサービス)の種類が異なる応答信号の送信方法について説明する。換言すると、信頼度、遅延要求又はユースケース(又はサービス)の種類等の「要求条件」に応じた応答信号の送信方法について説明する。
 以下、各実施の形態について、詳細に説明する。
 (実施の形態1)
 [通信システムの概要]
 本開示の各実施の形態に係る通信システムは、基地局100及び端末200を備える。
 図1は、本開示の各実施の形態に係る端末200の一部の構成を示すブロック図である。図1に示す端末200において、制御部211は、上りリンク制御情報(UCI。例えば、下りリンクデータに対する応答信号)に対する要求条件(例えば、信頼度、遅延要求又はユースケース(サービス)の種類)に応じて、上りリンク制御情報又は上りリンク制御情報の送信に用いる上りリンク制御チャネル(例えば、PUCCH)に対する処理態様(例えば、送信方法又はパラメータ設定など)を決定する。送信部216は、決定された処理態様に基づいて、上りリンク制御チャネルを用いて上りリンク制御情報を送信する。
 [基地局の構成]
 図2は、本開示の実施の形態1に係る基地局100の構成を示すブロック図である。図2において、基地局100は、制御部101と、データ生成部102と、符号化部103と、再送制御部104と、変調部105と、上位制御信号生成部106と、符号化部107と、変調部108と、下り制御信号生成部109と、符号化部110と、変調部111と、信号割当部112と、IFFT(Inverse Fast Fourier Transform)部113と、送信部114と、アンテナ115と、受信部116と、FFT(Fast Fourier Transform)部117と、抽出部118と、復調部119と、復号部120と、判定部121と、を有する。
 制御部101は、端末200の下りリンクデータ送信に関する情報を決定し、決定した情報を符号化部103、変調部105及び信号割当部112に出力する。下りリンクデータ送信に関する情報には、例えば、PDSCHにおいて送信される下りリンクデータの変調符号化方法(例えば、MCS)、又は、PDSCHの無線リソース(以下、「PDSCHリソース」と呼ぶ)等が含まれる。また、制御部101は、決定した情報を下り制御信号生成部109に出力する。
 また、制御部101は、端末200の下りリンクデータの信頼度、遅延要求又はユースケース(又はサービス)の種類に関する情報(換言すると、応答信号の要求条件に関する情報)を決定し、決定した情報を上位制御信号生成部106又は下り制御信号生成部109へ出力する。この情報は、端末200(例えば、制御部211)へ通知される。
 また、制御部101は、端末200の上りリンク制御情報(UCI:Uplink Control Information)の送信に関する情報を決定し、決定した情報を、抽出部118及び復号部120へ出力する。また、制御部101は、UCIの送信に関する情報を上位制御信号生成部106又は下り制御信号生成部109へ出力する。UCIの送信に関する情報には、例えば、UCI(例えば、応答信号又はCSI等)又はUCIの送信に用いるPUCCHの送信方法又はパラメータ等が含まれる。
 また、上位制御信号生成部106に出力される情報には、例えば、PUCCH resource setに関する情報、準静的(Semi-static)に設定されるスロット位置(例えば、PDSCH-to-HARQ-ACK timing)の集合に関する情報、又は、UCIの最大符号化率に関する情報等が含まれる。また、下り制御情報生成部109に出力される情報には、例えば、PUCCH resource set内の実際に用いるPUCCHの無線リソース(以下、PUCCHリソース)を指示するための情報、準静的に設定されるスロット位置の集合内の実際に用いるPDSCH-to-HARQ-ACK timingを指示するための情報等が含まれる。
 また、制御部101は、上位レイヤの制御信号(上位制御信号)又は下りリンク制御情報を送信するための下りリンク制御信号に対する無線リソース割当、及び、下りリンクデータに対する無線リソース割当を決定し、決定した情報を信号割当部112へ出力する。
 データ生成部102は、端末200に対する下りリンクデータを生成し、符号化部103へ出力する。
 符号化部103は、データ生成部102から入力される下りリンクデータに対して、制御部101から入力される情報(例えば、符号化率に関する情報)に基づいて誤り訂正符号化を行い、符号化後のデータ信号を再送制御部104へ出力する。
 再送制御部104は、初回送信時には、符号化部103から入力される符号化後のデータ信号を保持するとともに、変調部105へ出力する。また、再送制御部104は、後述する判定部121から、送信したデータ信号に対するNACKが入力されると、対応する保持データを変調部105へ出力する。一方、再送制御部104は、判定部121から、送信したデータ信号に対するACKが入力されると、対応する保持データを削除する。
 変調部105は、制御部101から入力される情報(例えば、変調方式に関する情報)に基づいて、再送制御部104から入力されるデータ信号を変調して、データ変調信号を信号割当部112へ出力する。
 上位制御信号生成部106は、制御部101から入力される制御情報を用いて、制御情報ビット列(上位制御信号)を生成し、生成した制御情報ビット列を符号化部107へ出力する。
 符号化部107は、上位制御信号生成部106から入力される制御情報ビット列に対して誤り訂正符号化を行い、符号化後の制御信号を変調部108へ出力する。
 変調部108は、符号化部107から入力される制御信号を変調して、変調後の制御信号を信号割当部112へ出力する。
 下り制御信号生成部109は、制御部101から入力される制御情報を用いて、制御情報ビット列(下り制御信号。例えば、DCI)を生成し、生成した制御情報ビット列を符号化部110へ出力する。なお、制御情報が複数の端末向けに送信されることもあるため、下り制御信号生成部109は、各端末向けの制御情報に、各端末の端末IDを含めてビット列を生成してもよい。なお、端末IDには、後述するスクランブリング系列が用いられてもよい。
 符号化部110は、下り制御信号生成部109から入力される制御情報ビット列に対して誤り訂正符号化を行い、符号化後の制御信号を変調部111へ出力する。
 変調部111は、符号化部110から入力される制御信号を変調して、変調後の制御信号を信号割当部112へ出力する。
 信号割当部112は、制御部101から入力される無線リソースを示す情報に基づいて、変調部105から入力されるデータ信号、変調部108から入力される上位制御信号、又は、変調部111から入力される下り制御信号を、無線リソースにマッピングする。信号割当部112は、信号がマッピングされた下りリンクの信号をIFFT部113へ出力する。
 IFFT部113は、信号割当部112から入力される信号に対して、OFDM等の送信波形生成処理を施す。IFFT部113は、CP(Cyclic Prefix)を付加するOFDM伝送の場合には、CPを付加する(図示せず)。IFFT部113は、生成した送信波形を送信部114へ出力する。
 送信部114は、IFFT部113から入力される信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ115を介して端末200に無線信号を送信する。
 受信部116は、アンテナ115を介して受信された端末200からの上りリンク信号波形に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換などのRF処理を行い、受信処理後の上りリンク信号波形をFFT部117に出力する。
 FFT部117は、受信部116から入力される上りリンク信号波形に対して、時間領域信号を周波数領域信号に変換するFFT処理を施す。FFT部117は、FFT処理により得られた周波数領域信号を抽出部118へ出力する。
 抽出部118は、制御部101から入力される情報(例えば、UCIの送信に関する情報)に基づいて、FFT部117から入力される信号から、PUCCHが送信された無線リソース成分を抽出する。抽出部118は、抽出した無線リソース成分を復調部119へ出力する。
 復調部119は、抽出部118から入力されるPUCCHに対応する無線リソース成分に対して、等化及び復調を行い、復調結果(復調系列)を復号部120へ出力する。
 復号部120は、制御部101から入力されるUCIの送信に関する情報(例えば、UCIの符号化に関する情報)に基づいて、復調部119から入力される復調結果に対して誤り訂正復号を行い、復号後のビット系列を判定部121へ出力する。
 判定部121は、復号部120から入力されるビット系列に基づいて、端末200から送信された応答信号が、送信したデータ信号に対してACK(誤り有り)又はNACK(誤り無し)の何れを示しているかを判定する。判定部121は、判定結果を再送制御部104に出力する。
 [端末の構成]
 図3は、本開示の実施の形態1に係る端末200の構成を示すブロック図である。図3において、端末200は、アンテナ201と、受信部202と、FFT部203と、抽出部204と、下り制御信号復調部205と、復号部206と、上位制御信号復調部207と、復号部208と、データ復調部209と、復号部210と、制御部211と、符号化部212と、変調部213と、信号割当部214と、IFFT部215と、送信部216と、を有する。
 受信部202は、アンテナ201を介して受信された基地局100からの下りリンク信号(データ信号又は制御信号)の信号波形に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換などのRF処理を行い、得られる受信信号(ベースバンド信号)をFFT部203に出力する。
 FFT部203は、受信部202から入力される信号(時間領域信号)に対して、時間領域信号を周波数領域信号に変換するFFT処理を施す。FFT部203は、FFT処理により得られた周波数領域信号を抽出部204へ出力する。
 抽出部204は、制御部211から入力される制御情報(例えば、下りリンクデータ又は制御信号の無線リソースに関する情報)に基づいて、FFT部203から入力される信号から、下り制御信号(例えば、DCI)、上位制御信号、又は、下りリンクデータを抽出する。抽出部204は、下り制御信号を下り制御信号復調部205へ出力し、上位制御信号を上位制御信号復調部207へ出力し、下りリンクデータをデータ復調部209へ出力する。
 下り制御信号復調部205は、抽出部204から入力される下り制御信号を等化及び復調して、復調結果を復号部206へ出力する。
 復号部206は、下り制御信号復調部205から入力される復調結果を用いて誤り訂正復号を行い、制御情報を得る。復号部206は、得られた制御情報を制御部211に出力する。
 上位制御信号復調部207は、抽出部204から入力される上位制御信号を等化及び復調し、復調結果を復号部208へ出力する。
 復号部208は、上位制御信号復調部207から入力される復調結果を用いて誤り訂正復号を行い、制御情報を得る。復号部208は、得られた制御情報を制御部211に出力する。
 データ復調部209は、抽出部204から入力される下りリンクデータを等化及び復調し、復号結果を復号部210へ出力する。
 復号部210は、データ復調部209から入力される復調結果を用いて誤り訂正復号を行う。また、復号部210は、下りリンクデータに対して誤り検出を行い、誤り検出結果を制御部211に出力する。また、復号部210は、誤り検出の結果、誤り無しと判定した下りリンクデータを受信データとして出力する。
 制御部211は、復号部206又は復号部208から入力される制御情報に含まれる、端末200のUCIの送信に関する情報に基づいて、UCI(例えば、ACK/NACK又はCSI)又はUCIの送信に用いるPUCCHの送信方法又はパラメータ(例えば、MCS又は無線リソース等)を決定する。制御部211は、決定した情報を符号化部212、変調部213及び信号割当部214へ出力する。
 また、制御部211は、復号部210から入力される誤り検出結果を用いて応答信号(ACK/NACK)を生成し、符号化部212に出力する。
 また、制御部211は、復号部206又は復号部208から入力される制御情報に含まれる、下りリンクデータ又は制御信号の無線リソースに関する情報を、抽出部204に出力する。
 符号化部212は、制御部211から入力される情報に基づいて、応答信号(ACK/NACKのビット系列)を誤り訂正符号化し、符号化後の応答信号(ビット系列)を変調部213へ出力する。例えば、符号化部212は、後述するように、信頼度、遅延要求又はユースケース(またはサービス)の種類等の要求条件の異なる応答信号に対して、異なる符号化方法を適用して符号化ビット列を生成してもよい。
 変調部213は、制御部211から入力される情報に基づいて、符号化部212から入力される応答信号を変調して、変調後の応答信号(変調シンボル列)を信号割当部214へ出力する。例えば、変調部213は、符号化部212から、異なる符号化方法が適用された符号化ビット列が入力される場合、各符号化ビット列に対して変調を行う。
 信号割当部214は、変調部213から入力される応答信号(変調シンボル列)を、制御部211から指示されるPUCCHの無線リソースにマッピングする。信号割当部214は、応答信号がマッピングされた信号をIFFT部215へ出力する。
 IFFT部215は、信号割当部214から入力される信号に対して、OFDM等の送信波形生成処理を施す。IFFT部215は、CP(Cyclic Prefix)を付加するOFDM伝送の場合には、CPを付加する(図示せず)。または、IFFT部215がシングルキャリア波形を生成する場合には、信号割当部214の前段にDFT(Discrete Fourier Transform)部が追加されてもよい(図示せず)。IFFT部215は、生成した送信波形を送信部216へ出力する。
 送信部216は、IFFT部215から入力される信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ201を介して基地局100に無線信号を送信する。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200における動作について詳細に説明する。
 図4は、本実施の形態に係る基地局100及び端末200の処理のフローを示す。
 基地局100は、PUCCHに関する情報を端末200へ送信する(ST101)。端末200は、基地局100から通知されるPUCCHに関する情報を取得する(ST102)。PUCCHに関する情報には、例えば、PUCCH resource setに関する情報、又は、PUCCHの符号化率に関する情報が含まれる。
 基地局100は、下りリンクデータに関する情報を含むDCIを、端末200へ送信する(ST103)。端末200は、例えば、基地局100から通知されるDCIに基づいて、下りリンクデータのスケジューリング情報、又は、PUCCHに関する情報を取得する(ST104)。
 基地局100は、下りリンクデータを端末200へ送信する(ST105)。端末200は、例えば、基地局100から通知されているDCIに基づいて、下りリンクデータ(PDSCH)を受信する(ST106)。
 端末200は、応答信号に対する要求条件(換言すると、信頼度、遅延要求又はユースケース(サービス)の種類)に応じて、応答信号又は応答信号の送信に関する動作を制御する(ST107)。例えば、端末200は、応答信号に対する要求条件に応じて、応答信号又はPUCCHに対する処理態様を決定する。応答信号又はPUCCHに対する処理態様の決定では、例えば、応答信号の符号化方法、PUCCHリソースの決定方法、又は、PUCCH送信に関するパラメータ等が決定されてもよい。
 端末200は、決定した動作に基づいて、PUCCHを用いてUCI(例えば、応答信号を含む)を基地局100へ送信する(ST108)。基地局100は、端末200から送信されるUCIを受信する(ST109)。
 次に、端末200におけるUCI送信に関する動作(例えば、図4のST107の処理)の制御方法について詳細に説明する。
 [符号化方法]
 端末200は、信頼度、遅延要求、又は、ユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)に対して、異なる符号化方法を適用して、HARQ-ACKビットを生成する。
 そして、端末200は、異なる符号化方法を適用した符号化後の応答信号をPUCCHに多重して送信する。
 例えば、端末200は、信頼度、遅延要求、又は、ユースケース(またはサービス)の種類が異なる応答信号に対して、異なる符号化率による符号化処理を適用する。
 例えば、端末200は、高い信頼度が要求される応答信号に対して、低い符号化率(例えば、閾値以下の符号化率)を用いて応答信号を符号化して、HARQ-ACKビットを生成する。低い符号化率を適用することにより、応答信号の信頼度を向上できる。
 一方、端末200は、高い信頼度が要求されない応答信号に対して、高い符号化率(例えば、閾値より高い符号化率)を用いて応答信号を符号化して、HARQ-ACKビットを生成する。高い符号化率を適用することにより、応答信号のビット数の増加を抑えて、リソース利用効率を向上できる。
 応答信号に対する符号化処理に差異を生じさせる例として、応答信号の信頼度が異なる場合について説明する。例えば、URLLCにおいて、1回目のデータ送信の目標誤り率が高い(例えば、BLER=10-1)下りリンクデータに対する応答信号と、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号と、で符号化処理に差異を生じさせてもよい。
 具体的には、1回目のデータ送信の目標誤り率が高い場合、データを確実に再送させるために、応答信号には高い信頼度が要求されるため、応答信号に対して、低い符号化率の符号化方法が適用される。一方、1回目のデータ送信の目標誤り率が低い場合、データの誤りが発生しにくいので、応答信号にはそれほど高い信頼度が要求されないため、応答信号に対して高い符号化率の符号化方法が適用される。
 また、応答信号に対する符号化処理に差異を生じさせる他の例として、応答信号の遅延要求が異なる場合、又は、応答信号のユースケース(またはサービス)の種類(例えば、URLLC又はeMBB等)が異なる場合がある。
 一例として、図5は、URLLCとeMBBとで異なる符号化方法(符号化処理)が応答信号に適用される例を示す。図5では、端末200は、eMBBの下りリンクデータ(eMBB PDSCH)に対する応答信号に対して符号化処理1(encoding process 1)を適用し、URLLCの下りリンクデータ(URLLC PDSCH)に対する応答信号に対して符号化処理2(encoding process 2)を適用する。
 例えば、URLLCでは高い信頼度が要求されるため、応答信号に対する符号化処理2では、低い符号化率の符号化方法が適用される。一方、eMBBでは、URLLCと比較して高い信頼度が要求されないため、応答信号に対する符号化処理1では、高い符号化率の符号化方法が適用される。
 図5において、端末200は、URLLCの応答信号及びeMBBの応答信号に対してそれぞれ異なる符号化方法を適用してHARQ-ACKビットをそれぞれ生成し、生成したHARQ-ACKビットを1つのPUCCHに多重して基地局100へ送信する。
 このように、本実施の形態によれば、端末200は、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて、応答信号毎に適切な符号化方法(例えば、符号化率)を適用できる。これにより、1つのPUCCHに多重される応答信号の要求条件が異なる場合でも、各応答信号の要求条件に応じた符号化方法を用いて各応答信号が符号化されるので、リソース利用効率の観点から効率的なPUCCH送信が可能になる。
 なお、ACK/NACK毎に異なる符号化処理は、上述した信頼度、又は、ユースケース(サービス)の種類に基づいて決定される場合に限定されず、例えば、信頼度、遅延要求又はユースケース(サービス)の種類の少なくとも1つに基づいて決定されればよい。
 [マッピング方法]
 次に、信頼度、遅延要求、又は、ユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)のPUCCHリソースへのマッピング方法について説明する。
 例えば、端末200は、より高い信頼度が要求される応答信号の順に、又は、遅延要求においてより低遅延が要求される応答信号の順に、PUCCHにマッピングする。具体的には、端末200は、まず、より高い信頼度又はより低遅延が要求される応答信号をPUCCHリソースへマッピングする。次に、端末200は、高い信頼度又は低遅延が要求されない応答信号をPUCCHリソースへマッピングする。
 以下、一例として、1又は2シンボルで構成されるShort-PUCCH(例えば、PUCCH Format 2)及び4シンボル以上のシンボルで構成されるLong-PUCCH(例えば、PUCCH Format 3又はPUCCH Format 4)における応答信号のマッピング方法についてそれぞれ説明する。
 <Short PUCCHの場合>
 Short PUCCHにおける応答信号のPUCCHリソースへのマッピングとしては、以下の2つの方法(Option 1及びOption 2)を適用できる。
 [Option 1]
 図6は、Option 1における応答信号のRE(Resource Element)へのマッピング例を示す。
 図6に示すように、Option 1では、端末200は、応答信号(HARQ-ACK)を変調した後の変調シンボル列を、「Frequency-first-time-second形式」に基づいて、参照信号(RS: Reference Signal。例えば、DMRS:Demodulation RS)がマッピングされるリソースエレメント(RE: Resource Element)を除いたREへマッピングする。換言すると、端末200は、PUCCHにおいて、応答信号を、周波数方向から時間方向の順にマッピングする。
 具体的には、REへのマッピングにおいて、上述したように、高い信頼度又は低遅延が要求される応答信号(図6では、URLLCに対するHARQ-ACK)が最初にPUCCHリソースへマッピングされ、続いて、高い信頼度又は低遅延がそれほど要求されない応答信号(図6では、eMBBに対するHARQ-ACK)がPUCCHリソースへマッピングされる。
 Option 1のマッピング方法により、図6では、URLLCに対するHARQ-ACKは、PUCCHを構成する1シンボル目の全てのRE(ただし、DMRSがマッピングされたREを除く)と、2シンボル目の一部のREにマッピングされ、eMBBに対するHARQ-ACKは、2シンボル目の残りのREにマッピングされる。
 Option 1のマッピング方法によれば、例えば、より低遅延が要求される応答信号がPUCCHの先頭シンボルへマッピングされるので、2シンボルのShort PUCCHの場合に、遅延の削減効果が得られる。
 [Option 2]
 図7は、Option 2における応答信号のREへのマッピング例を示す。
 図7に示すように、Option 2では、端末200は、応答信号(HARQ-ACK)を変調した後の変調シンボル列を、Option 1と同様に「Frequency-first-time-second形式」に基づいて、参照信号がマッピングされるREを除いたREへマッピングする。更に、Option 2では、端末200は、周波数方向において割当帯域内の応答信号が分散されるようにマッピングする。
 具体的には、REへのマッピングにおいて、上述したように、高い信頼度又は低遅延が要求される応答信号(図7では、URLLCに対するHARQ-ACK)が最初にPUCCHリソースへマッピングされ、続いて、高い信頼度又は低遅延がそれほど要求されない応答信号(図7では、eMBBに対するHARQ-ACK)がPUCCHリソースへマッピングされる。また、図7では、URLLCに対するACK/NACK及びeMBBに対応するACK/NACKは、周波数方向において分散してマッピングされる。
 Option 2のマッピング方法により、図7では、URLLCに対するHARQ-ACKは、PUCCHを構成する1シンボル目の全てのRE(ただし、DMRSがマッピングされたREを除く)と、2シンボル目の一部のREにマッピングされ、eMBBに対するHARQ-ACKは、2シンボル目の残りのREにマッピングされる。また、図7では、PUCCHの2シンボル目において、URLLCに対するHARQ-ACK及びeMBBに対するHARQ-ACKは、PUCCHの割り当て帯域(例えば、4RB(Resource Block))において周波数方向に分散してそれぞれマッピングされている。
 Option 2のマッピング方法によれば、Option 1のマッピング方法と同様、より低遅延が要求される応答信号がPUCCHの先頭シンボルへマッピングされるので、2シンボルのShort PUCCHの場合に、遅延の削減効果が得られる。
 また、Option 2のマッピング方法によれば、周波数方向への分散的なマッピングにより、周波数ダイバーシチ効果を得ることができるので、より高品質な応答信号(換言すると、より高信頼度の応答信号)の伝送を実現できる。
 <Long PUCCHの場合>
 Long-PUCCHにおける応答信号のPUCCHリソースへのマッピングとしては、以下の2つの方法(Option 3及びOption 4)を適用できる。
 [Option 3]
 Option 3では、NRのPUCCH Format 3又はPUCCH Format 4におけるHARQ-ACKビットとCSI(CSI Part 1及びCSI Part 2)とのマッピング関係と同様の方法(例えば、非特許文献2を参照)を、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対するマッピングに適用する。
 図8は、Option 3における応答信号のREへのマッピング例を示す。
 図8に示すように、Option 3では、端末200は、応答信号(HARQ-ACK)を変調した後の変調シンボル列を、「Frequency-first-time-second形式」に基づいて、RS(図8ではDMRS)がマッピングされるREを除いたREへマッピングする。また、図8に示すように、端末200は、より高い信頼度が要求される応答信号ほど、PUCCHにおいて参照信号(例えば、DMRS)がマッピングされたシンボルにより近いシンボルにマッピングする。
 具体的には、図8に示すように、REへのマッピングにおいて、上述したように、最初に、高い信頼度が要求されるURLLCに対するHARQ-ACKが、DMRSがマッピングされたシンボルに近いシンボル(前後のシンボル)に順にマッピングされる。続いて、図8に示すように、高い信頼度がそれほど要求されないeMBBに対するHARQ-ACKビットが残りのPUCCHリソースへマッピングされる。
 Option 3のマッピング方法によれば、より高い信頼度が要求されるHARQ-ACKビットが、チャネル推定精度の高いシンボル(DMRSがマッピングされたシンボルに近いシンボル)へマッピングされる。このため、Option 3によれば、より高品質な応答信号(換言すると、より高信頼度の応答信号)の伝送を実現できる。
 [Option 4]
 図9は、Option 4における応答信号のREへのマッピング例を示す。
 図9に示すように、Option 4では、端末200は、応答信号(HARQ-ACK)を変調した後の変調シンボル列を、「Frequency-first-time-second形式」に基づいて、RSがマッピングされるREを除いたREへマッピングする。また、図9に示すように、端末200は、遅延要求においてより低遅延が要求される応答信号ほど、PUCCHのより早いシンボルにマッピングする。
 具体的には、図9に示すように、REへのマッピングにおいて、上述したように、最初に、低遅延が要求されるURLLCに対するHARQ-ACKがより早いタイミングのシンボル(例えば、先頭シンボル)から順にマッピングされる。続いて、図9に示すように、低遅延がそれほど要求されないeMBBに対するHARQ-ACKが残りのPUCCHリソースへマッピングされる。
 Option 4のマッピング方法によれば、より低遅延が要求される応答信号がPUCCHの先頭シンボルへマッピングされるので、遅延の削減効果がある。
 以上、応答信号のPUCCHリソースへのマッピング方法について説明した。
 このように、端末200は、高い信頼度又は低遅延が要求される応答信号、つまり、要求条件が厳しい応答信号を、PUCCHリソースへ優先的にマッピングする。これにより、端末200は、例えば、PUCCHに多重される応答信号のうち、より高い信頼度又はより低遅延が要求される応答信号を、高い信頼度又は低遅延を実現できるPUCCHリソースへ優先的にマッピングできる。よって、本実施の形態によれば、端末200は、応答信号に対する要求条件に適したPUCCHリソースを用いて、応答信号を送信できる。
 なお、Option 3及びOption 4では、4シンボル以上を用いるLong-PUCCHに対する応答信号のマッピング方法について説明した。一方で、例えば、URLLCでは、Long-PUCCHを用いることは遅延削減の観点から望ましくない。そこで、本実施の形態では、信頼度、遅延要求又はユースケース(又はサービス)の種類が異なる応答信号を1つのPUCCHに多重することを許容するのは、Short-PUCCHに限定してもよい。これにより、低遅延の要求条件を満たしつつ、複数のPUCCH formatに対する設計を省くことができる。
 また、応答信号のPUCCHリソースへのマッピング方法は、上述したOption 1~4に限定されない。また、例えば、Option 1~4の何れかを組み合わせてもよい。例えば、Option 3(図8を参照)又はOption 4(図9を参照)において、Option 2(図7を参照)のように、応答信号(HARQ-ACK)は、周波数方向において分散してマッピングされてもよい。
 [PUCCHリソースの決定方法]
 次に、本実施の形態におけるPUCCHリソースの決定方法について説明する。
 NRでは、端末の下りリンクデータに対する応答信号を送信するためのPUCCHリソースの特定に関して、基地局が、端末固有の上位レイヤ信号(例えば、RRC(Radio Resource Control)シングナリング)によって、準静的なPUCCHリソースの集合(PUCCH resource set)を通知し、下りリンクデータを割り当てるDCI(Downlink Control Information)によって、PUCCH resource setの中の実際に用いるPUCCHリソースを通知する方法を採用する(例えば、非特許文献3を参照)。
 ここで、PUCCHリソースは、例えば、スロット内のシンボル位置、スロット内のシンボル数、周波数領域位置、周波数領域のリソース数(例えば、RB数又はPRB(Physical RB)数)、周波数ホッピングの適用の有無、又は、符号リソース(例えば、巡回シフト系列又は直交符号)の少なくとも1つからなるパラメータで構成される。
 また、基地局は、端末に対して複数のPUCCH resource setを通知できる。端末は、PUCCHを用いて送信する上りリンク制御情報(UCI: Uplink Control Information)のビット数に基づいて、通知された複数のPUCCH resource setのうちのどのPUCCH resource setを用いるかを決定できる。
 本実施の形態では、端末200は、PUCCHに多重される応答信号(HARQ-ACK)の符号化後のビット数の合計に基づいて、PUCCH resource setを決定する。
 また、本実施の形態では、PUCCHリソースの決定に係るパラメータについて、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)に対して、異なる値が設定されてもよい。
 例えば、NRでは、PUCCH format毎に最大符号化率が設定されている。端末は、PUCCHの送信に用いるRB数を、PUCCHを用いて送信するUCIのビット数と最大符号化率とから決定する。ただし、PUCCHの送信に用いるRB数について、上述したPUCCH resource setにより通知されるPUCCHリソースのRB数が上限となる。
 本実施の形態では、最大符号化率は、PUCCH format毎、かつ、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類毎(換言すると応答信号の要求条件毎)にそれぞれ設定される。
 例えば、端末200は、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の各々に対して、応答信号の符号化後のビット数と、設定された最大符号化率とに基づいて、応答信号の送信に用いるリソース量(例えば、RE数)を算出する。そして、端末200は、1つのPUCCHに多重される各応答信号の送信に用いるRE数に基づいて、当該PUCCHの送信に用いるRB数を決定する。
 これにより、端末200は、例えば、上述したように、応答信号毎に設定される符号化方法による符号化後のビット数に基づいて、要求条件の異なる応答信号が多重されるPUCCHにおけるPUCCH resource setを決定できる。例えば、端末200は、応答信号の信頼度、遅延要求またはユースケース(またはサービス)の種類に応じた適切なリソース量を算出できるため、リソース利用効率の観点から効率的なPUCCH送信が可能になる。
 なお、PUCCHの送信に用いるRB数については、上述したように、PUCCH resource setにより通知されるPUCCHリソースのRB数が上限となる。このため、例えば、応答信号のビット数と最大符号化率とから決定されるRB数が、PUCCH resource setにより通知される上限値を超える場合には、応答信号の実際の符号化率は、設定された最大符号化率を超える場合がある。この場合、PUCCHの送信において要求される品質を満たせない可能性がある。
 そこで、本実施の形態では、端末200は、応答信号の実際の符号化率が所定の閾値を超える場合、PUCCHを用いて送信する応答信号の一部をドロップしてもよい。これにより、PUCCHリソースにおいて、応答信号の一部をドロップした分のリソースは、残りの応答信号に使用されるので、PUCCHの送信における品質を向上できる。
 ここで、閾値は、例えば、PUCCH format毎、かつ、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類毎に設定される最大符号化率でもよい。また、最大符号化率とは別に、一部の応答信号をドロップするための閾値が基地局100から端末200へ新たに通知されてもよい。
 また、端末200は、PUCCHを用いて送信される応答信号(又はUCI)のビット数と、最大符号化率とから算出されるRB数が所定の閾値(上限値)を超える場合、PUCCHを用いて送信する応答信号の少なくとも一部をドロップしてもよい。これにより、PUCCHリソースにおいて、応答信号の一部をドロップした分のリソースは、残りの応答信号に使用されるので、PUCCHの送信における品質を向上できる。
 また、ドロップする応答信号は、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて設定される優先度(換言すると、要求条件毎に設定される優先度)に応じて決定されてもよい。例えば、端末200は、優先度の高い要求条件の応答信号を優先的に送信してもよい。換言すると、端末200は、優先度の低い要求条件の応答信号を優先的にドロップしてもよい。
 優先度の一例として、応答信号の信頼度が異なる場合、例えば、URLLCにおいて、1回目のデータ送信の目標誤り率が高い(例えば、BLER=10-1)下りリンクデータに対する応答信号の優先度は、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号の優先度よりも高く設定される。または、応答信号の遅延要求が異なる場合又はユースケース(またはサービス)の種類が異なる場合、例えば、URLLCの優先度は、eMBBの優先度よりも高く設定される。
 信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の少なくとも1つの符号化率が閾値を超えた場合、端末200は、優先度の低い応答信号からドロップしてもよい。これにより、優先度の高い応答信号、つまり、より高い信頼度が要求される応答信号の伝送品質の劣化を抑えることができる。
 また、信頼度、遅延要求またはユースケース(またはサービス)の種類が異なる応答信号がある場合、異なる応答信号に対してPUCCH内のリソース(例えば、RE)をどのような割合で共有又は分割するかを示す情報(例えば、resource sharing factor又はresource splitting factor)を基地局100から端末200へ予め通知してもよい。
 以上、PUCCHリソースの決定方法について説明した。
 このように、本実施の形態では、端末200は、下りリンクデータの応答信号に対する要求条件(例えば、信頼度、遅延要求又はユースケース(サービス)の種類)に応じて、応答信号又はPUCCHに対する処理態様を決定する。具体的には、端末200は、要求条件の異なる応答信号に対して、異なる符号化方法を適用する。そして、端末200は、符号化後の応答信号を、PUCCHに多重して送信する。
 これにより、本実施の形態によれば、要求条件が異なる応答信号がPUCCHに多重される場合でも、端末200は、PUCCHに多重される応答信号に要求される要求条件に応じた処理(例えば、符号化処理)又は無線リソースの設定(例えば、マッピング方法又はPUCCHリソースの決定)をそれぞれ行うことができる。例えば、端末200は、応答信号に要求される信頼度に応じたPUCCHリソースの位置又は量を設定することにより、PUCCHにおけるリソース利用効率を向上できる。また、例えば、端末200は、応答信号に対する遅延要求に応じたPUCCHリソースの位置を設定することにより、応答信号の遅延を削減できる。
 以上より、本実施の形態によれば、端末200は、応答信号を含むUCIを適切に送信できる。
 (実施の形態2)
 本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図2及び図3を援用して説明する。
 本実施の形態では、端末200は、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)に対して、PUCCHリソース又はPUCCHリソースセットの決定方法を異ならせる。
 また、本実施の形態では、1スロット内において端末200が応答信号を送信できるPUCCHの数を1つに制限しない。換言すると、本実施の形態では、1スロット内において端末200が応答信号を送信できるPUCCHの数は、1つ以上である。
 例えば、端末200は、要求条件の異なる各応答信号を、スロット内の異なるPUCCHを用いてそれぞれ送信する。例えば、複数のPUCCHは、時間分割多重(TDM:Time Division Multiplexing)、周波数分割多重(FDM:Frequency Division Multiplexing)、又は、符号分割多重(CDM:Code Division Multiplexing)により同一スロット内に多重される。
 これにより、端末200は、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて、応答信号毎に適切なPUCCHリソースを割り当てることができる。換言すると、端末200は、要求条件の異なる応答信号を、1つのPUCCHに多重せずに、個別のPUCCHを用いて送信できる。このため、リソース利用効率の観点から効率的なPUCCH送信が可能となる。
 また、本実施の形態によれば、端末200は、例えば、遅延要求の異なる応答信号を、異なるPUCCHを用いて送信できる。このため、例えば、URLLCのように低遅延が要求される応答信号をShort-PUCCHを用いて送信し、eMBBのように低遅延がそれほど要求されない応答信号をLong-PUCCHを用いて送信することにより、遅延要求に対するボトルネックを解消できる。
 例えば、端末200の下りリンクデータに対する応答信号を送信するためのPUCCHリソースの特定に関して、基地局100は、端末固有の上位レイヤ信号(例えば、RRCシグナリング)によって、準静的なPUCCHリソースの集合(例えば、PUCCH resource set)を通知する。端末200は、例えば、以下の2つの方法(Option 1及びOption 2)の何れかに基づいてPUCCH resource setを決定する。
 [Option 1]
 Option 1では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)に対して、異なるPUCCH resource setのグループが設定される。よって、端末200は、要求条件の異なる応答信号に対して、異なるグループに含まれるPUCCH resource setをそれぞれ設定する。
 図10Aは、Option 1におけるPUCCH resource setの設定例を示す。
 図10Aでは、eMBB及に対するPUCCH resource setのグループ(例えばグループX)、及び、URLLCに対するPUCCH resource setのグループ(例えば、グループY)が設定されている。例えば、図10Aでは、グループXには、PUCCH resource set X0, X1, X2及びX3が含まれ、グループYには、PUCCH resource set Y0, Y1, Y2及びY3が含まれる。
 端末200は、例えば、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号毎に、PUCCHを用いて送信するUCIのビット数(例えば、HARQ-ACKビット数)に基づいて、各グループ内のどのPUCCH resource setを用いるかを決定する。
 例えば、図10Aでは、端末200は、eMBBに対する応答信号のビット数に基づいて、グループX内のPUCCH resource setの中から、PUCCH resource set X1を選択する。また図10Aでは、端末200は、URLLCに対する応答信号のビット数に基づいて、グループY内のPUCCH resource setの中から、PUCCH resource set Y0を選択する。
 また、端末200には、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の各々に対応する下りリンクデータを割り当てるDCI(例えば、図10Bに示すDL assignment for eMBB又はDL assignment for URLLC)によって、選択したPUCCH resource setの中の実際に用いるPUCCHリソースが通知される。端末200は、選択したPUCCH resource setのうち、DCIによって通知されたPUCCHリソースを用いて、応答信号を送信する。
 Option 1によれば、信頼度、遅延要求又はユースケース(またはサービス)の種類毎にPUCCH resource setが個別に設定されるので、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に適したPUCCHリソースをより柔軟に割り当てることができる。
 なお、図10Aに示すPUCCH resource setの設定例は一例であって、限定されない。例えば、eMBB及びURLLCに対するPUCCH resource setのグループ内に含まれるPUCCH resource setの数は、4個に限定されず、他の個数でもよい。また、eMBB及びURLLCに対するPUCCH resource setの各グループ内に含まれるPUCCH resource setの数は同一でもよく、異なってもよい。また、図10Aでは、要求条件の異なる場合の一例として、eMBB及びURLLCについて説明したが、これに限定されず、例えば、異なる信頼度又は異なる遅延要求の少なくとも一方に応じてPUCCH resource setのグループが設定されてもよい。
 [Option 2]
 Option 2では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)に対して、同一のPUCCH resource setのグループが設定される。よって、端末200は、要求条件の異なる応答信号に対して、同一グループに含まれるPUCCH resource setをそれぞれ設定する。
 図11Aは、Option 2におけるPUCCH resource setの設定例を示す。
 図11Aでは、PUCCH resource set 0, 1, 2及び3を含むグループが設定されている。
 端末200は、例えば、信頼度、遅延要求又はユースケース(またはサービス)の種類に依らず、PUCCHを用いて送信するUCIのビット数(例えば、HARQ-ACKビット数)に基づいて、同一グループ内のどのPUCCH resource setを用いるかを決定する。
 例えば、図11Aでは、端末200は、eMBBに対する応答信号のビット数に基づいて、PUCCH resource set 0~3の中から、PUCCH resource set 1を選択する。また、図11Aでは、端末200は、URLLCに対する応答信号のビット数に基づいて、PUCCH resource set 0~3の中から、PUCCH resource set 0を選択する。
 また、端末200には、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の各々に対応する下りリンクデータを割り当てるDCI(例えば、図11Bに示すDL assignment for eMBB又はDL assignment for URLLC)によって、選択したPUCCH resource setの中の実際に用いるPUCCHリソースが通知される。端末200は、選択したPUCCH resource setのうち、DCIによって通知されたPUCCHリソースを用いて、応答信号を送信する。
 Option 2によれば、信頼度、遅延要求又はユースケース(またはサービス)の種類に依らず、選択可能なPUCCH resource setは同一である。このため、PUCCH resource setの通知に係るオーバヘッドを削減できる。
 また、端末200は、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の各々のビット数に基づいて、実際に用いるPUCCH resource setを個別に決定できる。このため、端末200は、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に適したPUCCHリソースをそれぞれ用いることができる。
 以上、PUCCH resource setの決定方法について説明した。
 このように、本実施の形態では、端末200は、要求条件(例えば、信頼度、遅延要求又はユースケース(サービス)の種類)の異なる応答信号に対して、異なるリソース決定方法を適用する。そして、端末200は、各応答信号に対して設定したPUCCHリソースを用いて、当該応答信号を送信する。
 これにより、本実施の形態によれば、端末200は、応答信号に要求される要求条件に応じた無線リソースをそれぞれ個別に設定できるので、リソース利用効率の向上、又は、応答信号の遅延を削減できる。以上より、本実施の形態によれば、端末200は、応答信号を含むUCIを適切に送信できる。
 なお、本実施の形態では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対して、異なるPUCCHリソース又は異なるPUCCHリソースセットを決定する方法について説明した。ただし、本実施の形態におけるリソース決定方法に基づいて各応答信号に対して決定されたPUCCHリソースが同一である場合、端末200は、実施の形態1と同様の処理を適用してもよい。
 また、本実施の形態に係るOption 1では、信頼度、遅延要求又はユースケース(またはサービス)の種類毎に、異なるPUCCH resource setのグループが設定される場合について説明した。これに対して、さらに、PUCCH resource setに関するパラメータについて、信頼度、遅延要求又はユースケース(またはサービス)の種類毎に設定可能な値(または値の範囲)に差異を生じさせてもよい。
 例えば、NRのPUCCH Format 0では、Sequence selectionが用いられる(例えば、非特許文献1を参照)。また、Release 15 NRでは、PUCCH送信に割り当て可能な送信帯域幅は1RBであり、1RB=12サブキャリアに相当する系列長12の送信系列が用いられる。また、NRでは、1セル繰り返しの周波数割当が用いられる。1セル繰り返しでは、セル間干渉が特性劣化の主要因である。特に、Short-PUCCHでは、利用するシンボル数(1シンボル又は2シンボル)が少ないため、複数シンボルを利用することによる干渉の平均化効果によるセル間干渉の抑圧ができない。
 このため、応答信号に対して高い信頼度が要求される場合、セル間干渉の抑圧が必要である。セル間干渉を抑圧する方法として、送信帯域幅(系列長)の拡大が有効である(例えば、非特許文献6を参照)。
 そこで、例えば、PUCCH Format 0について、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に応じて、PUCCHの設定可能なRB数または系列長を異ならせてもよい。
 例えば、高い信頼度が要求される応答信号に対するPUCCH resource setでは、可変のPRB数(例えば、1,2,および4PRBの何れか)を設定可能としてもよい。一方、高い信頼度が要求されない応答信号に対するPUCCH resource setでは、設定可能なPRB数を1PRBとしてもよい。なお、各要求条件に対して設定可能なPRB数は、上記例に限定されず、他の個数でもよい。
 これにより、PUCCH Format 0において、応答信号に対して高い信頼度が要求される場合でも、送信帯域幅(系列長)の拡大によってセル間干渉を抑圧できる。
 また、PUCCH Format 0については、時間領域の繰り返し送信(Repetition)も特性改善に有効な技術である。
 そこで、PUCCH Format 0について、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に応じて、PUCCHの設定可能なRepetition回数を異ならせてもよい。
 例えば、高い信頼度が要求される応答信号に対するPUCCH resource setでは、Repetitionを設定可能とし、可変のRepetition回数(例えば、1,2,および4回の何れか)を設定可能としてもよい。一方、高い信頼度が要求されない応答信号に対するPUCCH resource setでは、Repetitionを設定可能としない。なお、各要求条件に対して設定可能なRepetition回数は、上記例に限定されず、他の回数でもよい。
 これにより、PUCCH Format 0において、応答信号に対して高い信頼度が要求される場合でも、Repetitionによって、特性改善の効果を得ることができる。
 なお、時間領域のRepetitionには、同一の系列を複数シンボルに渡り繰り返し送信する方法がある。この方法では、受信側(例えば、基地局100)においてRepetition信号を同相合成することにより、受信信号の電力向上による特性改善効果が期待できる。また、時間領域のRepetitionには、系列長を拡大し、拡大した系列の一部を異なるシンボルで送信する方法がある。例えば、系列長を12から24に拡大し、系列長24の前半部分が最初のシンボルで送信され、後半部分が次のシンボルで送信される。この方法では、長い系列長を用いることによる干渉抑圧の効果が期待できる。
 上述したように、PUCCH format 0について、高い信頼度が要求される応答信号に対するPUCCH resource setに対して、Release 15 NRとは異なるパラメータを設定可能とすることにより、Release 15 NRでは考慮されていない再送を許容するURLLCの応答信号の信頼度に関す要求条件(例えば、BLER=10-4以下の誤り率)を実現するPUCCH送信が可能となる。
 (実施の形態2のバリエーション)
 実施の形態2では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対して、PUCCHリソース又はPUCCHリソースセットの決定方法を異ならせる場合について説明した。
 NRでは、端末は下りリンクデータに対する応答信号を送信するためのPUCCHのスロット位置(又は、下りリンクデータを受信したスロットからPUCCHを送信するスロットまでの時間)の特定に関して、基地局が端末固有の上位レイヤ信号(例えば、RRCシグナリング)によって準静的なスロット位置の集合を通知し、下りリンクデータを割り当てるDCIによって、スロット位置の集合の中の実際に用いるスロット位置を通知する方法が採用されている(例えば、非特許文献3を参照)。
 そこで、実施の形態2のバリエーションでは、応答信号を送信するためのPUCCHのスロット位置の集合についても同様に、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号(換言すると、要求条件の異なる応答信号)毎に設定可能とする。
 実施の形態2のバリエーションによれば、端末200は、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて、応答信号に対する適切な送信スロットを用いることができる。例えば、異なる遅延要求に対して異なるスロット位置の集合が設定されていれば、端末200は、遅延要求の異なる応答信号を異なるPUCCHを用いてそれぞれ送信する場合でも、遅延要求の異なる応答信号の各々に対して、遅延要求に適したより柔軟なスロット割当が可能になる。
 (実施の形態3)
 本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図2及び図3を援用して説明する。
 本実施の形態では、端末200は、同一スロット内に、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なるデータ伝送に対する応答信号を同時に送信する場合、PUCCHの優先度に応じて、応答信号を送信するPUCCHの全てをドロップ、又は、一部をパンクチャする。
 ドロップ又は一部をパンクチャするPUCCHは、ACK/NACKの信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて付与される優先度に基づいて決定されてもよい。
 具体的には、端末200は、要求条件の異なる応答信号の送信タイミングが同一の場合、要求条件に基づく優先度がより低いPUCCHの全てをドロップ又は一部をパンクチャする。
 PUCCHの優先度の一例として、応答信号の信頼度が異なる場合について説明する。例えば、URLLCにおいて、1回目のデータ送信の目標誤り率が高い(例えば、BLER=10-1)下りリンクデータに対する応答信号を送信するPUCCHの優先度は、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号を送信するPUCCHの優先度よりも高く設定される。つまり、端末200は、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号を送信するPUCCHの全てをドロップ又は一部をパンクチャする。
 また、応答信号の遅延要求又はユースケース(またはサービス)の種類が異なる場合について説明する。例えば、図12は、URLLC及びeMBBの2つのサービスが存在する場合を示す。URLLCに対応するPUCCHの優先度は、eMBBに対応するPUCCHの優先度よりも高く設定される。つまり、端末200は、eMBBに対応するPUCCHの全てをドロップ又は一部をパンクチャする。例えば、図12では、端末200は、URLLCに対応するPUCCH(URLLC PUCCH)を用いて、URLLCに対応する応答信号を送信し、eMBBに対応するPUCCH(eMBB PUCCH)の全てをドロップする。
 本実施の形態によれば、より高い信頼度又は低遅延が要求される応答信号のためのPUCCH送信に対して、別の応答信号のためのPUCCH送信が影響を与えることがなくなるため、より高い信頼度又は低遅延が要求される応答信号の品質を保証できる。
 なお、PUCCHの一部をパンクチャする場合、例えば、異なる応答信号のPUCCH送信において、時間的に重なるシンボルをパンクチャする方法、又は、時間及び周波数が重なるREをパンクチャする方法がある。
 時間的に重なるシンボルをパンクチャする方法は、例えば、端末200が複数の上りリンク信号を同時に送信できない場合、又は、端末200に複数の上りリンク信号を同時送信できる能力があるものの、送信電力の総和が最大送信電力を超える場合において、何れか一方の信号を送信しなければならない場合に適用できる。
 また、時間及び周波数が重なるREをパンクチャする方法は、例えば、端末200に複数の上りリンク信号を同時に送信できる能力があり、かつ、複数の上りリンク信号を同時に送信しても端末200の最大送信電力を超えない場合に適用できる。
 (実施の形態4)
 例えば、実施の形態1では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対して異なる符号化処理を適用する場合について説明した。しかし、異なる符号化処理を行うことは、端末の処理量を増大させるため、実装を複雑にする恐れがある。
 そこで、本実施の形態では、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対して、1つの符号化処理を適用する方法について説明する。
 本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図2及び図3を援用して説明する。
 端末200は、下りリンクデータを受信してから、下りリンクデータの復号、応答信号の生成、及び、PUCCH送信までに要する処理時間に関する能力(UE capability。以下、「N1」と表す)を有する。NRでは、端末200は、「N1」を基地局100へ報告する。
 基地局100は、端末200が下りリンクデータに対する応答信号を送信するためのPUCCHのスロット位置(又は、下りリンクデータを受信したスロットからPUCCH(例えば、応答信号)を送信するスロットまでの時間:「PDSCH-to-HARQ-ACK timing」)を設定し、端末200へ通知する。このとき、基地局100は、PDSCH-to-HARQ-ACK timingについて、端末200から報告された端末200の処理能力(N1)を超える値(換言すると、N1より小さい値)を設定及び通知できない。
 本実施の形態では、端末200は、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号の送信に対する能力(N1)をそれぞれ規定し、基地局100へ報告する。また、端末200は、基地局100から設定及び通知されたPDSCH-to-HARQ-ACK timingの値と、規定したN1の値とに基づいて、応答信号又は応答信号の送信に用いるPUCCHの送信方法及びパラメータ(換言すると、応答信号又はPUCCHに対する処理態様)を決定する。
 例えば、端末200は、下りリンクデータを受信してから、データを復号し、応答信号を生成し、PUCCHを送信するまでに必要な処理時間に関する能力(N1)について、信頼度、遅延要求又はユースケース(またはサービス)の種類に応じた2つ以上の能力を有する。端末200は、2つ以上の能力(N1)を基地局100へ報告する。
 一例として、端末200は、eMBBに対するN1(以下、「N1_X」又は「N1_eMBB」と表す)、及び、URLLCに対するN1(以下、「N1_Y」又は「N1_URLLC」と表す)の2つの端末能力(UE capability)を有してもよい。例えば、URLLCでは、eMBBよりも低遅延が要求される可能性が高いので、URLLCに対するN1は、eMBBに対するN1よりも小さい値が設定されてもよい。
 実施の形態2のバリエーションで説明したように、下りリンクデータに対する応答信号を送信するためのPUCCHのスロット位置(PDSCH-to-HARQ-ACK timing)の特定に関して、基地局100が端末固有の上位レイヤ信号(例えば、RRCシグナリング)によって準静的なスロット位置の集合を通知し、下りリンクデータを割り当てるDCIによって、集合の中のどのPDSCH-to-HARQ-ACK timingを実際に用いるかを通知する。
 同一スロット内において、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なるデータ伝送に対応する応答信号の送信が同時に発生する場合、端末200は、各応答信号に対するPDSCH-to-HARQ-ACK timingの値と、端末200が有する能力(N1)とに基づいて、応答信号に対する処理を決定する。
 例えば、図13に示すように、各応答信号に対するPDSCH-to-HARQ-ACK timingの値の最小値(図13では、PDSCH-to-HARQ-ACK timing for URLLC)が、eMBBに対するN1(N1_X又はN1_eMBB)以上である場合、端末200は、eMBBに対応する応答信号及びURLLCに対応する応答信号に対して共通の符号化処理(joint encoding)を行い、HARQ-ACKビットを生成する。
 具体的には、図13では、端末200がURLLC用のPDSCHを受信してから、PDSCH-to-HARQ-ACK timing for URLLCに相当する時間が経過するまでの間に、端末200は、eMBBに対応する応答信号を生成し、当該応答信号を含むPUCCHを送信するまでの処理を完了できる(換言すると、N1_X/N1_eMBB ≦ PDSCH-to-HARQ-ACK timing for URLLC)。よって、端末200は、端末200がURLLC用のPDSCHを受信してから、PDSCH-to-HARQ-ACK timing for URLLCに相当する時間が経過するまでの間に、URLLCの応答信号とeMBBの応答信号とに対して共通の符号化処理を行うことができる。
 一方、図14に示すように、高い信頼度又は低遅延が要求される応答信号、又は、URLLCに対応する応答信号に対するPDSCH-to-HARQ-ACK timingの値(図14ではPDSCH-to-HARQ-ACK timing for URLLC)が、eMBBに対応するN1(N1_X又はN1_eMBB)未満である場合、端末200は、eMBBに対応する応答信号及びURLLCに対応する応答信号に対して共通の符号化処理を行うことができない。
 具体的には、図14では、端末200がURLLC用のPDSCHを受信してから、PDSCH-to-HARQ-ACK timing for URLLCに相当する時間が経過するまでの間に、端末200は、eMBBに対応する応答信号を生成し、当該応答信号を含むPUCCHを送信するまでの処理を完了できない(換言すると、N1_X/N1_eMBB > PDSCH-to-HARQ-ACK timing for URLLC)。
 よって、端末200は、端末200がURLLC用のPDSCHを受信してから、PDSCH-to-HARQ-ACK timing for URLLCに相当する時間が経過するまでの間に、URLLCのACK/NACKと、eMBBのACK/NACKをまとめて符号化処理できない。この場合、端末200は、実施の形態3又は実施の形態1の何れかの方法を用いる。
 例えば、実施の形態3の方法を用いる場合、信頼度、遅延要求又はユースケース(またはサービス)の種類が異なる応答信号に対して、符号化処理を全体で1つに抑えることができるため、端末200の実装を簡易にできる利点がある。また、実施の形態1の方法を用いる場合、端末200は、図14に示すように、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じた適切な符号化(または符号化率)によりHARQ-ACKビットを生成できるため、リソース利用効率の観点から効率的なPUCCH送信が可能になる。
 このように、本実施の形態によれば、端末200の処理能力に応じて、符号処理をできる限り共通化することができるため、端末200の処理量の増大又は実装の複雑さを軽減できる。
 以上、本開示の各実施の形態について説明した。
 (1)上記実施の形態では、応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類に応じて、応答信号又はPUCCHの送信方法、及びパラメータに差異を生じさせた。
 ここで、応答信号又はPUCCHの送信方法、及びパラメータに差異を生じさせる例としては、応答信号の信頼度が異なる場合がある。例えば、URLLCにおいて、1回目のデータ送信の目標誤り率が高い(例えば、BLER=10-1)下りリンクデータに対する応答信号と、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号とで、応答信号又はPUCCHの送信方法、及びパラメータに差異を生じさせることができる。前者の応答信号には高い信頼度が要求される一方、後者の応答信号にはそれほど高い信頼度が要求されない。
 また、応答信号又はPUCCHの送信方法、及びパラメータに差異を生じさせる例として、応答信号の遅延要求が異なる場合又はユースケース(またはサービス)が異なる場合がある。例えば、URLLCに対応する応答信号とeMBBに対応する応答信号とで、応答信号又はPUCCHの送信方法、及びパラメータに差異を生じさせることもできる。前者の応答信号には高い信頼度又は低遅延が要求される一方、後者の応答信号にはそれほど高い信頼度又は低遅延が要求されない。また、URLLCには、上述したように、1回目のデータ送信の目標誤り率が高い(例えば、BLER=10-1)下りリンクデータに対する応答信号と、1回目のデータ送信の目標誤り率が低い(例えば、BLER=10-5)下りリンクデータに対する応答信号とが含まれる場合がある。
 また、応答信号又はPUCCHの送信方法の差異を生じさせる例としては、信頼度、遅延要求又はユースケース(サービス)の種類に限らず、例えば、物理層のパラメータが異なる場合でもよい。例えば、eMBBを「スロット単位の送信」と置き換え、URLLCを「非スロット単位の送信」と置き換えてもよい。また、eMBBを「PDSCH mapping type A」又は「PUSCH mapping type A」と置き換え、URLLCを「PDSCH mapping type B」又は「PUSCH mapping type B」と置き換えてもよい。また、eMBB及びURLLCに対応する送信に限定されず、例えば、eMBBを送信区間(例えば、スロット長又はシンボル長)が長い送信と置き換え、URLLCを前述の送信区間よりも送信区間が短い送信と置き換えてもよい。
 また、本開示において、目標誤り率は、上述したように1回目のデータ送信の目標誤り率でもよく、再送が発生する場合は、再送における目標誤り率でもよい。また、目標誤り率は、1回目及び再送の各々の目標誤り率という意味で「瞬時目標誤り率」と呼んでもよい。
 (2)上記実施の形態において説明した、応答信号の「信頼度、遅延要求又はユースケース(またはサービス)の種類」(換言すると、要求条件)を判断する方法には、例えば、以下の例1~例5のような方法がある。
 [例1:スクランブル系列]
 例1では、端末200は、各応答信号に対応する下りリンクデータ伝送をスケジューリングするDCIに用いられる端末固有のスクランブリング系列に基づいて、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類を判断する。
 例えば、eMBBを想定したPDSCH用のDCIでは、端末固有のスクランブリング系列に、C-RNTI(Cell-Radio Network Temporary Identifier)又はCS-RNTI(Configured Scheduling-RNTI)等が用いられる。そこで、端末200は、検出したスクランブリング系列がC-RNTI及びCS-RNTIと異なる場合、応答信号の信頼度が高い、遅延要求が厳しい、又は、URLLCであると判断する。また、端末200は、検出したスクランブリング系列がC-RNTI又はCS-RNTIである場合、応答信号の信頼度が高くない、遅延要求が厳しくない、又は、eMBBであると判断する。
 例えば、基地局100の制御部101(例えば、図2を参照)は、端末200の下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を決定する。決定した情報は、基地局100の下り制御信号生成部109へ出力される。下り制御信号生成部109は、上述したように、端末200の下りリンクデータの信頼度、遅延要求又はユースケース(またはサービス)の種類に応じたスクランブリング系列を用いてDCIのビット列を生成する。
 一方、端末200の復号部206(例えば、図3を参照)は、検出したスクランブリング系列を制御部211へ出力する。制御部211は、得られたスクランブリング系列に基づいて、下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を判断する。
 [例2:MCSテーブル]
 例2では、端末200は、各応答信号に対応する下りリンクデータ伝送のスケジューリングに用いられるMCSテーブルに基づいて、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類を判断する。
 例えば、Release 15 NRでは、目標BLER=10-1を達成するためのMCSテーブル、及び、目標BLER=10-5を達成するためのMCSテーブルの何れを用いるかを設定できる。
 例えば、端末200は、URLLCにおいて設定されたMCSテーブルが目標BLER=10-1を達成するためのMCSテーブルである場合、応答信号に要求される信頼度が高いと判断する。一方、端末200は、URLLCにおいて設定されたMCSテーブルが目標BLER=10-5を達成するためのMCSテーブルである場合、応答信号に要求される信頼度は高くないと判断する。
 例えば、基地局100の制御部101は、端末200の下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を決定する。決定した情報は、基地局100の下り制御信号生成部109、符号化部103及び変調部105へ出力される。下り制御信号生成部109は、下りリンクデータ伝送に用いられるMCSテーブルに関する情報をDCIのビット列に含める。また、符号化部103及び変調部105は、制御部101から入力されるMCSテーブルに関する情報を用いて、下りリンクデータを符号化及び変調する。
 一方、端末200の復号部206は、DCIを復号し、復号結果を制御部211へ出力する。制御部211は、DCIから得られるMCSテーブルに関する情報に基づいて、下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を判断する。
 [例3:PDSCH-to-HARQ-ACK timing又はPDSCHの送信シンボル数]
 例3では、端末200は、各応答信号に対応する下りリンクデータ伝送をスケジューリングするDCIによって通知された「PDSCH-to-HARQ-ACK timing」又はPDSCHの送信シンボル数に基づいて、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類を判断する。
 例えば、端末200は、PDSCH-to-HARQ-ACK timingが所定の値以下、又は、PDSCHの送信シンボル数が所定のシンボル数以下である場合、応答信号の遅延要求が厳しい又はURLLCのための応答信号であると判断する。一方、端末200は、PDSCH-to-HARQ-ACK timingが所定の値より大きい、又は、PDSCHの送信シンボル数が所定のシンボル数より多い場合、応答信号の遅延要求が厳しくない又はeMBBのための応答信号であると判断する。
 なお、上記所定の値又は所定のシンボル数は、規格において予め決まった値でもよく、基地局100が上位レイヤ信号によって端末200へ設定可能な値でもよい。
 例えば、基地局100の制御部101は、端末200の下りリンクデータに対する応答信号を送信するスロット位置を示すPDSCH-to-HARQ-ACK timing又はPDSCHの送信シンボル数を決定する。決定した情報は、基地局100の下り制御信号生成部109、信号割当部112及び抽出部118へ出力される。下り制御信号生成部109は、PDSCH-to-HARQ-ACK timing又はPDSCHの送信シンボル数に関する情報をDCIのビット列に含める。
 一方、端末200の復号部206は、DCIを復号し、復号結果を制御部211へ出力する。制御部211は、DCIから得られるPDSCH-to-HARQ-ACK timing又はPDSCHの送信シンボル数に関する情報に基づいて、下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を判断する。
 [例4:CQIテーブル]
 例4では、端末200は、各応答信号に対応する下りリンクデータ伝送用に設定されるCQIテーブルに基づいて、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類を判断する。
 例えば、Release 15 NRでは、目標BLER=10-1を達成するためのCQIテーブル、及び、目標BLER=10-5を達成するためのCQIテーブルの何れを用いるかを設定できる。
 例えば、端末200は、URLLCにおいて設定されたCQIテーブルが目標BLER=10-1を達成するためのCQIテーブルである場合、応答信号に要求される信頼度が高いと判断する。一方、URLLCにおいて設定されたCQIテーブルが目標BLER=10-5を達成するためのCQIテーブルである場合、応答信号に要求される信頼度は高くないと判断する。
 例えば、基地局100の制御部101は、端末200の下りリンクデータ伝送用に設定されるCQIテーブルに関する情報を決定する。決定した情報は、上位制御信号生成部106へ出力される。上位制御信号生成部106は、CQIテーブルに関する情報を上位制御信号に含める。
 一方、端末200の復号部208は、上位制御信号を復号し、復号結果を制御部211へ出力する。制御部211は、上位制御信号から得られるCQIテーブルに関する情報に基づいて、下りリンクデータの信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を判断する。
 [例5:DCIによる明示的な通知]
 例5では、端末200は、各応答信号に対応する下りリンクデータ伝送をスケジューリングするDCI内の数ビットによる明示的な通知により、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類を判断する。
 明示的な通知は、応答信号自体の信頼度、遅延要求又はユースケース(サービス)の種類に関する情報でもよく、PDSCHの信頼度(例えば目標BLER)、遅延要求又はユースケース(サービス)の種類に関する情報でもよい。
 例えば、基地局100の制御部101は、端末200の下りリンクデータに対する応答信号の信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を決定する。決定された情報は、下り制御信号生成部109へ出力される。下り制御信号生成部109は、応答信号の信頼度、遅延要求又はユースケース(サービス)の種類に関する情報をDCIのビット列に含める。
 一方、端末200の復号部206は、DCIを復号し、復号結果を制御部211へ出力する。制御部211は、DCIから応答信号の信頼度、遅延要求又はユースケース(サービス)の種類に関する情報を得る。
 以上、応答信号の「信頼度、遅延要求又はユースケース(またはサービス)の種類」を判断する方法について説明した。なお、「応答信号の信頼度、遅延要求又はユースケース(またはサービス)の種類」を判断する方法は、上述した例1~例5に限定されず、要求条件に関する他の情報に基づく判断方法でもよい。
 (3)また、上記実施の形態では、下りリンクデータ伝送に対する応答信号がPUCCHを用いて送信される場合を一例として説明した。しかし、本開示においてPUCCHを用いて送信されるUCIは応答信号に限らない。例えば、上記実施の形態において、「応答信号(ACK/NACK又はHARQ-ACK)」をチャネル状態情報(CSI)に置き換えてもよく、応答信号とCSIとを含むUCIに置き換えてもよい。
 (4)また、本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例における端末は、上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定する回路と、前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する送信機と、を具備する。
 本開示の一実施例における端末において、前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、異なる符号化方法を適用し、前記送信機は、前記上り制御チャネルにおいて、符号化後の前記上りリンク制御情報を多重して送信する。
 本開示の一実施例における端末において、前記要求条件には、信頼度又は遅延要求が含まれ、より高い前記信頼度が要求される前記上りリンク制御情報の順に、又は、前記遅延要求においてより低遅延が要求される前記上りリンク制御情報の順に、前記上り制御チャネルにマッピングされる。
 本開示の一実施例における端末において、前記上りリンク制御情報は、前記上り制御チャネルにおいて、周波数方向から時間方向の順にマッピングされる。
 本開示の一実施例における端末において、前記上りリンク制御情報は、周波数方向において分散してマッピングされる。
 本開示の一実施例における端末において、より高い前記信頼度が要求される前記上りリンク制御情報ほど、前記上り制御チャネルにおいて参照信号がマッピングされたシンボルにより近いシンボルにマッピングされる。
 本開示の一実施例における端末において、前記遅延要求においてより低遅延が要求される前記上りリンク制御情報ほど、前記上り制御チャネルのより早いシンボルにマッピングされる。
 本開示の一実施例における端末において、前記上り制御チャネルに多重される前記上りリンク制御情報の符号化後のビット数の合計に基づいて、前記上り制御チャネルのリソースセットが決定される。
 本開示の一実施例における端末において、前記上りリンク制御情報に対する前記要求条件毎に、最大符号化率が設定される。
 本開示の一実施例における端末において、前記上りリンク制御情報の符号化率が所定の閾値を超える場合、前記上り制御チャネルにおいて前記上りリンク制御情報の少なくとも一部がドロップされる。
 本開示の一実施例における端末において、前記所定の閾値は、前記最大符号化率である。
 本開示の一実施例における端末において、前記所定の閾値は、基地局から前記端末へ通知される。
 本開示の一実施例における端末において、前記ドロップされる上りリンク制御情報は、前記要求条件毎に設定される優先度に応じて決定される。
 本開示の一実施例における端末において、前記上りリンク制御情報のビット数と前記最大符号化率とから算出されるリソースブロック数が所定の閾値を超える場合、前記上り制御チャネルにおいて前記上りリンク制御情報の少なくとも一部がドロップされる。
 本開示の一実施例における端末において、前記上り制御チャネルにおいて、前記要求条件の異なる前記上りリンク制御情報間で共有するリソースの割合を示す情報が、基地局から前記端末へ通知される。
 本開示の一実施例における端末において、前記要求条件の異なる前記上りリンク制御情報に対して、前記上り制御チャネルにおいて異なるリソース決定方法を適用する。
 本開示の一実施例における端末において、1スロット内の前記上りリンク制御情報を送信する上り制御チャネルの数は1つ以上であり、前記送信機は、前記要求条件の異なる前記上りリンク制御情報を、前記1スロット内の異なる上り制御チャネルを用いてそれぞれ送信する。
 本開示の一実施例における端末において、前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、異なるグループに含まれるリソースセットをそれぞれ設定する。
 本開示の一実施例における端末において、前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、同一グループに含まれるリソースセットをそれぞれ設定する。
 本開示の一実施例における端末において、前記リソースセットに関するパラメータは、前記要求条件の異なる前記上りリンク制御情報毎に異なる。
 本開示の一実施例における端末において、前記パラメータは、前記上り制御チャネルのリソースブロック数又は系列長である。
 本開示の一実施例における端末において、前記パラメータは、前記上りリンク制御情報のレピティション回数である。
 本開示の一実施例における端末において、前記要求条件の異なる前記上りリンク制御情報毎に、前記上りリンク制御情報を送信するためのスロット位置が設定される。
 本開示の一実施例における端末において、前記回路は、前記要求条件の異なる前記上りリンク制御情報の送信が同一タイミングの場合、前記要求条件に基づく優先度がより低い前記上り制御チャネルの全てをドロップ又は一部をパンクチャする。
 本開示の一実施例における端末において、前記上りリンク制御情報は、下りリンクデータに対する応答信号であり、前記下りリンクデータの受信から前記応答信号の送信までに要する処理時間に関する前記端末の能力が、前記要求条件毎に規定され、前記下りリンクデータの受信から前記応答信号の送信までの時間を示すタイミング情報が、基地局から前記端末へ通知され、前記回路は、前記タイミング情報と前記能力とに基づいて、前記処理態様を決定する。
 本開示の一実施例における通信方法は、上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定し、前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する。
 2018年8月1日出願の特願2018-144982の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、移動通信システムに有用である。
 100 基地局
 101,211 制御部
 102 データ生成部
 103,107,110,212 符号化部
 104 再送制御部
 105,108,111,213 変調部
 106 上位制御信号生成部
 109 下り制御信号生成部
 112,214 信号割当部
 113,215 IFFT部
 114,216 送信部
 115,201 アンテナ
 116,202 受信部
 117,203 FFT部
 118,204 抽出部
 119 復調部
 120,206,208,210 復号部
 121 判定部
 200 端末
 205 下り制御信号復調部
 207 上位制御信号復調部
 209 データ復調部

Claims (15)

  1.  上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定する回路と、
     前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する送信機と、
     を具備する端末。
  2.  前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、異なる符号化方法を適用し、
     前記送信機は、前記上り制御チャネルにおいて、符号化後の前記上りリンク制御情報を多重して送信する、
     請求項1に記載の端末。
  3.  前記要求条件には、信頼度又は遅延要求が含まれ、
     より高い前記信頼度が要求される前記上りリンク制御情報の順に、又は、前記遅延要求においてより低遅延が要求される前記上りリンク制御情報の順に、前記上り制御チャネルにマッピングされる、
     請求項2に記載の端末。
  4.  前記上りリンク制御情報は、前記上り制御チャネルにおいて、周波数方向から時間方向の順にマッピングされる、
     請求項3に記載の端末。
  5.  前記上り制御チャネルに多重される前記上りリンク制御情報の符号化後のビット数の合計に基づいて、前記上り制御チャネルのリソースセットが決定される、
     請求項2に記載の端末。
  6.  前記上りリンク制御情報に対する前記要求条件毎に、最大符号化率が設定される、
     請求項5に記載の端末。
  7.  前記上り制御チャネルにおいて、前記要求条件の異なる前記上りリンク制御情報間で共有するリソースの割合を示す情報が、基地局から前記端末へ通知される、
     請求項2に記載の端末。
  8.  前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、前記上り制御チャネルにおいて異なるリソース決定方法を適用する、
     請求項1に記載の端末。
  9.  1スロット内の前記上りリンク制御情報を送信する上り制御チャネルの数は1つ以上であり、
     前記送信機は、前記要求条件の異なる前記上りリンク制御情報を、前記1スロット内の異なる上り制御チャネルを用いてそれぞれ送信する、
     請求項8に記載の端末。
  10.  前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、異なるグループに含まれるリソースセットをそれぞれ設定する、
     請求項8に記載の端末。
  11.  前記回路は、前記要求条件の異なる前記上りリンク制御情報に対して、同一グループに含まれるリソースセットをそれぞれ設定する、
     請求項8に記載の端末。
  12.  前記要求条件の異なる前記上りリンク制御情報毎に、前記上りリンク制御情報を送信するためのスロット位置が設定される、
     請求項1に記載の端末。
  13.  前記回路は、前記要求条件の異なる前記上りリンク制御情報の送信が同一タイミングの場合、前記要求条件に基づく優先度がより低い前記上り制御チャネルの全てをドロップ又は一部をパンクチャする、
     請求項1に記載の端末。
  14.  前記上りリンク制御情報は、下りリンクデータに対する応答信号であり、
     前記下りリンクデータの受信から前記応答信号の送信までに要する処理時間に関する前記端末の能力が、前記要求条件毎に規定され、
     前記下りリンクデータの受信から前記応答信号の送信までの時間を示すタイミング情報が、基地局から前記端末へ通知され、
     前記回路は、前記タイミング情報と前記能力とに基づいて、前記処理態様を決定する、
     請求項1に記載の端末。
  15.  上りリンク制御情報に対する要求条件に応じて、前記上りリンク制御情報又は前記上りリンク制御情報の送信に用いる上りリンク制御チャネルに対する処理態様を決定し、
     前記決定された処理態様に基づいて、前記上りリンク制御チャネルを用いて前記上りリンク制御情報を送信する、
     通信方法。
PCT/JP2019/012444 2018-08-01 2019-03-25 端末及び通信方法 WO2020026518A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP19844009.1A EP3833144A4 (en) 2018-08-01 2019-03-25 TERMINAL DEVICE AND COMMUNICATION PROCEDURE
KR1020217002222A KR20210033477A (ko) 2018-08-01 2019-03-25 단말 및 통신 방법
AU2019313622A AU2019313622B2 (en) 2018-08-01 2019-03-25 Terminal and communication method
CN201980050661.6A CN112771973A (zh) 2018-08-01 2019-03-25 终端及通信方法
JP2020534054A JP7291144B2 (ja) 2018-08-01 2019-03-25 通信装置、通信方法及び集積回路
KR1020247029384A KR20240136454A (ko) 2018-08-01 2019-03-25 단말 및 통신 방법
US17/264,480 US12022467B2 (en) 2018-08-01 2019-03-25 Terminal and communication method
MX2021001187A MX2021001187A (es) 2018-08-01 2019-03-25 Terminal y metodo de comunicacion.
BR112021002802-1A BR112021002802A2 (pt) 2018-08-01 2019-03-25 terminal e método de comunicação.
ZA2021/00651A ZA202100651B (en) 2018-08-01 2021-01-29 Terminal and communication method
US18/667,941 US20240306158A1 (en) 2018-08-01 2024-05-17 Terminal and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144982 2018-08-01
JP2018144982 2018-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/264,480 A-371-Of-International US12022467B2 (en) 2018-08-01 2019-03-25 Terminal and communication method
US18/667,941 Continuation US20240306158A1 (en) 2018-08-01 2024-05-17 Terminal and communication method

Publications (1)

Publication Number Publication Date
WO2020026518A1 true WO2020026518A1 (ja) 2020-02-06

Family

ID=69231185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012444 WO2020026518A1 (ja) 2018-08-01 2019-03-25 端末及び通信方法

Country Status (10)

Country Link
US (2) US12022467B2 (ja)
EP (1) EP3833144A4 (ja)
JP (2) JP7291144B2 (ja)
KR (2) KR20210033477A (ja)
CN (1) CN112771973A (ja)
AU (1) AU2019313622B2 (ja)
BR (1) BR112021002802A2 (ja)
MX (1) MX2021001187A (ja)
WO (1) WO2020026518A1 (ja)
ZA (1) ZA202100651B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197333A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
US11451284B2 (en) * 2019-03-28 2022-09-20 Qualcomm Incorporated Multiplexing codebooks generated for transmissions having different service types
WO2021142802A1 (zh) * 2020-01-17 2021-07-22 华为技术有限公司 一种上行控制信息的传输方法及装置
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144982A (ja) 2017-03-08 2018-09-20 株式会社リコー 綴じ装置、及び、画像形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691172B1 (en) * 2009-10-01 2023-12-06 InterDigital Patent Holdings, Inc. Uplink control data transmission
JP2012005034A (ja) * 2010-06-21 2012-01-05 Sharp Corp 移動局装置、送信方法、集積回路および制御プログラム
EP3836648A1 (en) * 2012-08-23 2021-06-16 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites
KR101566943B1 (ko) * 2013-03-28 2015-11-06 주식회사 케이티 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법 및 그 장치
JP6125596B1 (ja) * 2015-11-05 2017-05-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11088732B2 (en) 2016-09-26 2021-08-10 Lg Electronics Inc. Method for transmitting/receiving channel state information in wireless communication system and apparatus for same
KR102603814B1 (ko) * 2017-01-06 2023-11-17 한국전자통신연구원 상향링크 제어정보 전송 방법 및 장치
US10805941B2 (en) * 2017-03-24 2020-10-13 Sharp Kabushiki Kaisha Radio resource control (RRC) messages for enhanced scheduling request
US20180368173A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Systems and methods for an enhanced scheduling request for 5g nr
US11516782B2 (en) * 2017-12-27 2022-11-29 Ntt Docomo, Inc. User terminal and radio communication method
JP7074199B2 (ja) * 2018-02-14 2022-05-24 日本電気株式会社 方法、端末デバイス、及び基地局
CA3092137A1 (en) * 2018-02-26 2019-08-29 Ntt Docomo, Inc. User terminal and radio communication method
US11647484B2 (en) * 2018-05-11 2023-05-09 Ntt Docomo, Inc. User terminal and radio communication method
AU2018423026B2 (en) * 2018-05-11 2023-02-09 Ntt Docomo, Inc. User terminal and radio communication method
US11503619B2 (en) * 2018-07-06 2022-11-15 Qualcomm Incorporated Feedback for multi-point communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144982A (ja) 2017-03-08 2018-09-20 株式会社リコー 綴じ装置、及び、画像形成装置

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Considerations for URLLC resource allocation for PUCCH", 3GPP TSG RAN WG1 #93 R1-1807362, 25 August 2018 (2018-08-25), XP051442554, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/Rl-1807362.zip> [retrieved on 20190415] *
"NR; Multiplexing and channel coding (Release 15", 3GPP TS 38.212, June 2018 (2018-06-01)
"NR; Physical channels and modulation (Release 15", 3GPP TS 38.211, June 2018 (2018-06-01)
"NR; Physical layer procedure for control (Release 15", 3GPP TS 38.213, June 2018 (2018-06-01)
"NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214, June 2018 (2018-06-01)
H. SHARIATMADARIZ. LIS. IRAJIM. A. UUSITALOR. JANTTI: "Control channel enhancements for ultra-reliable low-latency communications", PROC. THE 10TH INTERNATIONAL WORKSHOP ON EVOLUTIONAL TECHNOLOGIES AND ECOSYSTEMS FOR 5G AND BEYOND (WDN-5G ICC2017, May 2017 (2017-05-01)
HUAWEI ET AL.: "Discussion on UCI feedback for URLLC", 3GPP TSG RAN WG1 #90B R1-1717094, 13 October 2017 (2017-10-13), XP051340285, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90b/Docs/Rl-1717094.zip> [retrieved on 20190415] *
HUAWEI ET AL.: "Discussion on UCI feedback for URLLC", 3GPP TSG RAN WG1 ADHOC_NR_AH_1801 R1- 1800054, 26 January 2018 (2018-01-26), XP051384557, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGRLAH/NR_AH_1801/Docs/R1-1800054.zip> [retrieved on 20190415] *
NTT DOCOMO: "Details on Resource Element Mapping", 3GPP TSG RAN WG1 #90 R1-1714598, 25 August 2017 (2017-08-25), XP051317362, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90/Docs/R1-1714598.zip> [retrieved on 20190415] *
See also references of EP3833144A4
TETSUYA YAMAMOTORYOKO KAWAUCHIYASUAKI YUDAHIDETOSHI SUZUKI: "Study on 1-symbol uplink control channel for Release 16 NR URLLC", IEICE SOCIETY CONFERENCE, vol. 2018, September 2018 (2018-09-01)
VIVO: "Discussion on eMBB and URLLC UCI multiplexing", 3GPP TSG RAN WG1 #93 R1-1806064, 25 August 2018 (2018-08-25), XP051441279, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/Rl-1806064.zip> [retrieved on 20190415] *

Also Published As

Publication number Publication date
EP3833144A1 (en) 2021-06-09
BR112021002802A2 (pt) 2021-06-29
US20240306158A1 (en) 2024-09-12
CN112771973A (zh) 2021-05-07
US20210227537A1 (en) 2021-07-22
KR20240136454A (ko) 2024-09-13
JP7291144B2 (ja) 2023-06-14
MX2021001187A (es) 2021-04-19
JP2023099023A (ja) 2023-07-11
AU2019313622B2 (en) 2024-08-01
JPWO2020026518A1 (ja) 2021-08-05
EP3833144A4 (en) 2021-10-20
ZA202100651B (en) 2022-06-29
US12022467B2 (en) 2024-06-25
KR20210033477A (ko) 2021-03-26
JP7546717B2 (ja) 2024-09-06
AU2019313622A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7575945B2 (ja) 通信装置、通信方法及び集積回路
JP7546717B2 (ja) 基地局、通信方法及び集積回路
JP7150758B2 (ja) 無線通信ネットワークにおける波形指示
JP5462085B2 (ja) 基地局装置及び通信制御方法
JP2019523574A (ja) Puschにおけるharq−ack多重化
JP7509684B2 (ja) 端末及び通信方法
JP7297663B2 (ja) 端末及び通信方法
JPWO2018230137A1 (ja) 端末及び通信方法
US20240171312A1 (en) Transmission device, reception device, transmission method, and reception method
JP7250008B2 (ja) 端末及び送信方法
US20150215882A1 (en) User equipment and methods for device-to-device communication over an lte air interface
RU2788968C2 (ru) Терминал связи и способ связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002802

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019313622

Country of ref document: AU

Date of ref document: 20190325

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019844009

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 112021002802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210212