WO2020025208A1 - Procédé pour déterminer des cycles d'étalonnage pour un appareil de terrain dans une installation d'automatisation de processus - Google Patents
Procédé pour déterminer des cycles d'étalonnage pour un appareil de terrain dans une installation d'automatisation de processus Download PDFInfo
- Publication number
- WO2020025208A1 WO2020025208A1 PCT/EP2019/065456 EP2019065456W WO2020025208A1 WO 2020025208 A1 WO2020025208 A1 WO 2020025208A1 EP 2019065456 W EP2019065456 W EP 2019065456W WO 2020025208 A1 WO2020025208 A1 WO 2020025208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process variable
- service platform
- variable
- field devices
- data
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25062—Detect physical location of field device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25428—Field device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
Definitions
- the invention relates to a method for determining calibration cycles for a field device in a process automation system, a plurality of field devices being provided in the system, each of the field devices having at least one sensor unit which is designed to record at least one process variable, the Field devices are integrated in a first communication network and communicate with a higher-level unit, the field devices transmitting the collected process values and further data, in particular diagnostic data, parameter data and status information, to the higher-level unit via the communication network, the higher-level unit transmitting the collected process values and the further ones Data transmitted to a control center of the plant.
- Field devices that are used in industrial plants have already become known from the prior art.
- Field devices are widely used in automation technology as well as in production automation.
- field devices are all devices that are used close to the process and that supply or process process-relevant information.
- Field devices are used to record and / or influence process variables.
- Sensor units are used to record process variables. These are used, for example, for pressure and temperature measurement, conductivity measurement, flow measurement, pFI measurement, level measurement, etc. and record the corresponding process variables pressure, temperature, conductivity, pFI value, level, flow etc.
- Actuator systems are used to influence process variables. These are, for example, pumps or valves that can influence the flow of a liquid in a pipe or the level in a container. In addition to the aforementioned
- Measuring devices and actuators are understood as field devices also remote I / Os, radio adapters or generally devices that are arranged on the field level.
- the higher-level units are control units, such as a PLC (programmable logic controller) or a PLC (programmable logic controller).
- the higher-level units are used, among other things, for process control and for commissioning the field devices.
- the measured values recorded by the field devices, in particular by the sensor units are transmitted via the respective bus system to one (or possibly several) higher-level unit (s), which process the measured values if necessary and forward them to the control center of the system.
- the control center is used for process visualization, process monitoring and process control via the higher-level units. Next to it is also one
- Field devices required, in particular for the configuration and parameterization of field devices and for controlling actuators.
- the field devices or their sensor units are calibrated during commissioning.
- the sensor unit is set in such a way that its measured values correspond to the measured values of a calibrated reference device.
- calibration cycles take place in a defined time sequence (so-called calibration cycles), regardless of the state of the sensor unit. On the one hand, this means that a calibration is carried out even if it is not necessary. The opposite can also be the case: a calibration is actually required but not yet planned / planned. On the other hand, the process may have to be stopped for calibration purposes, which can result in high costs.
- the object of the invention is to present a method which allows calibration cycles of a field device to be dynamically adapted.
- the task is accomplished through a method of determining calibration cycles for a
- Field device in a process automation system wherein a plurality of field devices are provided in the system, each of the field devices having at least one sensor unit that is designed to record at least one process variable, the field devices being integrated in a first communication network and with a higher-level unit communicate, the field devices, the collected process values and other data, in particular
- Service platform determines which first in the course of establishing the comparison system
- Process variable of a first sensor unit for a second process variable of a second sensor unit can act as a comparison variable
- the advantage of the method according to the invention is that no rigid, predetermined calibration times have to be used for the calibration of a field device or a sensor unit of the field device.
- the sensor unit is calibrated when calibration is actually necessary. To determine the necessity, the sensor unit becomes a further sensor unit assigned, which ideally collects the same process variable or a comparable process variable. In order to select the suitable comparison variable, the collected values of the process variables are compared with one another. If these agree with the predetermined process variable with a predetermined accuracy, then a process variable can potentially be used as a comparison variable. It is provided that the process variable that has the highest accuracy in relation to the first process variable is selected.
- a calibration order or a maintenance notification is created.
- Maintenance notification is only detected due to a detected time-varying deviation of the two process variables.
- the further properties are transmitted from the field devices or from the service platform to the higher-level unit.
- this information can be collected by the field devices themselves,
- field devices for example the information regarding the location of the field devices.
- An operator can enter the additional information on the service platform, for example, or have his own databases included on the service platform.
- field devices have, for example, GPS sensors or GSM modules, by means of which the information is collected.
- Location information and / or information relating to a measuring point can be used by field devices which are located in other systems that are different from the system. In this way, the knowledge of other measuring points can be accessed and the quality of the comparison variable can be further increased. This additional information is also located on the service platform or on other platforms that have interfaces for data exchange with the service platform.
- the service platform or the application running on the service platform, checks the type of the first and the second physical measurement variable and the physical measurement principle of the first and the second sensor unit.
- the first process variable is only used as a comparison variable for the second process variable if the first and the second physical measured variable are of the same Type and if the first and second sensor units have a different physical measurement principle.
- the service platform or the application running on the service platform, uses a KI algorithm, in particular based on neural networks.
- the service platform determines the predetermined maximum value of the deviation of the second process variable from the first process variable in the course of establishing the comparison system on the basis of the history data. For example, short-term deviations of the two process variables from one another can be seen in the history data. The maximum value should therefore be chosen such that such short-term deviations do not lead to the creation of a maintenance notification.
- a wire-based, in particular an Ethernet-based, communication network is used as the communication network.
- This can also be a fieldbus of automation technology, for example based on one of the protocols HART, Profibus PA / DP, Foundation Fieldbus, etc.
- the first communication network consists of several
- a wireless communication network is used as the communication network.
- this is based on the WLAN or WiFi standard.
- any other common wireless standard can be used.
- FIG. 1 shows parts of a plant A of automation technology. Specifically, there are two measuring points MS1, MS2. These each consist of a tank and a pipe leading away from the tank. To measure the fill level of the tank as a process variable, a field device FG1, FG4, for example a fill level measuring device, is attached to the tank by means of a radar as sensor unit SE1, SE4. To measure the flow rate in the pipeline, a field device FG3, FG5 is attached, the sensor unit SE3, SE5 of which
- Flow rate of a medium flowing through the pipeline is determined as the primary process variable according to the Coriolis principle.
- Each of the field devices F3, F5 also has a temperature sensor SE3 ', SE5' as further
- Sensor unit that detects the temperature of the medium flowing through the pipeline as a secondary process variable. Furthermore, a further field device FG2 is installed in the measuring point MS1, which determines the temperature of the measuring medium flowing through the pipeline by means of a high-precision temperature sensor SE2 as a sensor unit.
- the field devices FG1, ..., FG5 are interconnected by means of a first
- the first communication network KN1 is in particular an Ethernet network.
- the first communication network KN1 is a fieldbus according to one of the known
- Fieldbus standards e.g. Profibus, Foundation Fieldbus or FIART.
- the first communication network KN1 contains a higher-level unit PLC, for example a programmable logic controller, which transmits commands to the field devices FG1, ..., FG5, whereupon the field devices FG1, ..., FG5
- PLC programmable logic controller
- the first communication network KN1 contains a gateway GW, which overhears the process values, diagnostic data and status information transmitted from the field devices FG1, ..., FG5 to the higher-level unit PLC and makes it available via the Internet to a service platform SP stored on a cloud.
- the service platform SP is designed to run applications.
- such an application is a plant asset management system which is used to manage the assets, that is to say the inventory, of system A.
- comparison system VS serves the purpose of defining which
- Process variable of a field device FG1, ..., FG5, or a sensor unit SE1, ..., SE5 ' similar to a process variable of a further field device FG1, ..., FG5, or a further sensor unit SE1, ... , SE5 ', behaves and thus as a comparison or
- Reference size can act.
- the information of the field devices FG1, ..., FG5 transmitted to the service platform SP is analyzed. Based on the process values of the individual field devices FG1, ..., FG5, or their sensor units SE1, ..., SE5 '
- Comparison system VS defines that the process variable P2 of the temperature sensor SE3 'of the field device FG3 is used as a comparison variable of the process variable P1 of the
- Temperature sensor SE2 of the field device FG2 can function. When analyzing the history values of both process variables P1, P2, it emerged that the historical course of both process variables is largely the same.
- Sensor unit SE2 uses a PTC thermistor (PTC resistor), while sensor unit SE3 uses a thermistor (NTC resistor). A slow drift over time, which could be caused by the measuring principle, could be detected, which would not be possible if both sensor units SE2, SE3 'would use the same physical measuring principle.
- both process variables P1 and P2 behave very similarly and only have a small systematic offset. From the time ti, the distance between the two process variables P1, P2 increases continuously, for example due to a long-term drift of the sensor unit SE3 '. As soon as the distance between the process variables P1, P2 reaches or exceeds a predetermined distance DT, a maintenance notification WN is created and on the control center LS of plant A transmitted. In this way, a check of both sensor units SE2, SE3 'and a possible recalibration of at least one of the two sensor units SE2, SE3' is initiated.
- the comparison of process variables P1, P2 can be carried out by different components of system A. For example, this function can be performed by the
- the comparison system VS is created by the gateway GW.
- the gateway GW needs the corresponding one
- the gateway GW must be able to access the flistory data of all field devices FG1, ..., FG5 on the service platform SP.
- SE1 SE2, SE3, SE3 ', SE4, SE5, SE5' sensor unit
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
L'invention concerne un procédé pour déterminer des cycles d'étalonnage pour un appareil de terrain (FG1, FG2, FG3, FG4, FG5) dans une installation (A) d'automatisation de processus, comprenant : - la transmission de valeurs de processus et d'autres données des appareils de terrain (FG1, …, FG5) à une plateforme de service (SP), en particulier en nuage, au moyen d'une unité supérieure (GW, SPS) ; - l'élaboration de données d'historique sur la base des valeurs de processus transmises et des autres données pour chacun des appareils de terrain (FG1, …, FG5) ; - l'établissement d'un système de comparaison (VS) sur la base des données d'historique, la plateforme de service (SP), ou une application s'exécutant sur la plateforme de service (SP), déterminant au cours de l'établissement du système de comparaison (VS) quelle première grandeur de processus (P1) d'une première unité de capteurs (SE1, …, SE5') peut fonctionner en tant que grandeur de comparaison pour une seconde grandeur de processus (P2) d'une seconde unité de capteurs (SE1, …, SE5') ; - l'acquisition de la première grandeur de processus (P1) et de la seconde grandeur de processus (P2), de manière permanente ou à des moments définis ; - la comparaison de la première grandeur de processus (P1) à la seconde grandeur de processus (P2) et la détermination d'un écart entre la seconde grandeur de processus (P2) et la première grandeur de processus (P1) ; et - l'élaboration d'une notification d'attente (WN), au cas où la seconde grandeur de processus (P2) s'écarterait de la première grandeur de processus (P1) d'une valeur maximale (ΔT) prédéfinie .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018118533.2A DE102018118533A1 (de) | 2018-07-31 | 2018-07-31 | Verfahren zum Ermitteln von Kalibrierzyklen für ein Feldgerät in einer Anlage der Prozessautomatisierung |
DE102018118533.2 | 2018-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020025208A1 true WO2020025208A1 (fr) | 2020-02-06 |
Family
ID=66867141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/065456 WO2020025208A1 (fr) | 2018-07-31 | 2019-06-13 | Procédé pour déterminer des cycles d'étalonnage pour un appareil de terrain dans une installation d'automatisation de processus |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018118533A1 (fr) |
WO (1) | WO2020025208A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090082987A1 (en) * | 2007-09-20 | 2009-03-26 | Collins Daniel J | Use of statistics to determine calibration of instruments |
US20120296448A1 (en) * | 2011-05-19 | 2012-11-22 | Fisher-Rosemount Systems, Inc. | Software lockout coordination between a process control system and an asset management system |
US20170102251A1 (en) * | 2015-10-08 | 2017-04-13 | Qsense Inc. | Distributed sensor calibration |
US20170184416A1 (en) * | 2015-12-26 | 2017-06-29 | Tobias M. Kohlenberg | Technologies for managing sensor anomalies |
WO2017164368A1 (fr) * | 2016-03-24 | 2017-09-28 | 三菱重工業株式会社 | Dispositif de surveillance, procédé de surveillance, et programme |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007015369A1 (de) * | 2006-12-29 | 2008-07-03 | Endress + Hauser Gmbh + Co. Kg | Verfahren zur Überwachung des logischen Programmablaufs von kritischen Funktionen in Programmen eines Feldgeräts der Prozess- und Automatisierungstechnik |
DE102014223810A1 (de) * | 2014-11-21 | 2016-05-25 | Siemens Aktiengesellschaft | Verfahren und Assistenzsystem zur Erkennung einer Störung in einer Anlage |
-
2018
- 2018-07-31 DE DE102018118533.2A patent/DE102018118533A1/de active Pending
-
2019
- 2019-06-13 WO PCT/EP2019/065456 patent/WO2020025208A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090082987A1 (en) * | 2007-09-20 | 2009-03-26 | Collins Daniel J | Use of statistics to determine calibration of instruments |
US20120296448A1 (en) * | 2011-05-19 | 2012-11-22 | Fisher-Rosemount Systems, Inc. | Software lockout coordination between a process control system and an asset management system |
US20170102251A1 (en) * | 2015-10-08 | 2017-04-13 | Qsense Inc. | Distributed sensor calibration |
US20170184416A1 (en) * | 2015-12-26 | 2017-06-29 | Tobias M. Kohlenberg | Technologies for managing sensor anomalies |
WO2017164368A1 (fr) * | 2016-03-24 | 2017-09-28 | 三菱重工業株式会社 | Dispositif de surveillance, procédé de surveillance, et programme |
US20190003927A1 (en) * | 2016-03-24 | 2019-01-03 | Mitsubishi Heavy Industries, Ltd. | Monitoring device, monitoring method, and program |
Also Published As
Publication number | Publication date |
---|---|
DE102018118533A1 (de) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3538962B1 (fr) | Procédé d'analyse de dysfonctionnements dans une installation de l'automatisation de processus | |
DE102007043328A1 (de) | Verfahren zur Überwachung einer Prozessanlage mit einem Feldbus der Prozessautomatisierungstechnik | |
EP3355139A1 (fr) | Procédé de fonctionnement d'un système d'automatisation, système d'automatisation, appareil de terrain et commande destinés à exécuter ledit procédé | |
EP3729219B1 (fr) | Procédé de surveillance d'une station de mesure dans une installation d'automatisation de processus | |
EP3821306B1 (fr) | Procédé de paramétrage d'un système de capteurs | |
WO2006018345A1 (fr) | Procede pour faire fonctionner un appareil de champ d'automatisation | |
EP4018277B1 (fr) | Transmission des valeurs mesurées de processus orientée événements | |
EP3718115A1 (fr) | Procédé de surveillance d'un système de la technique d'automatisation | |
EP3844582B1 (fr) | Procédé de surveillance d'une station de mesure dans une installation d'automatisation de processus | |
EP3384353B1 (fr) | Procédé et système d'optimisation de la commande d'au moins un appareil de champ d'une pluralité d'appareils de champ du secteur de la robotique | |
EP3821310B1 (fr) | Procédé pour compenser un dysfonctionnement d'un appareil de terrain dans un système utilisé en technique d'automatisation | |
EP3652595B1 (fr) | Procédé et système pour surveiller une installation de la technologie d'automatisation | |
WO2020025208A1 (fr) | Procédé pour déterminer des cycles d'étalonnage pour un appareil de terrain dans une installation d'automatisation de processus | |
WO2020011479A1 (fr) | Procédé pour compenser un dysfonctionnement d'un appareil de terrain dans un système utilisé en technique d'automatisation | |
EP2486459B1 (fr) | Interface de bus de terrain et procédé de fonctionnement correspondant | |
DE102018123436A1 (de) | Verfahren zum Überwachen einer Anlage der Automatisierungstechnik | |
WO2018108376A1 (fr) | Procédé de réglage, spécifique à une application, d'un appareil de terrain | |
DE202011051196U1 (de) | Überwachungssystem für einen Wasserkreislauf | |
WO2021115762A1 (fr) | Procédé de compensation d'un dysfonctionnement d'un appareil de terrain dans une installation de technologie d'automatisation | |
DE102008020508A1 (de) | Vorrichtung zur Erfassung oder Beeinflussung einer physikalischen und/oder chemischen Prozessgröße | |
DE102018132288A1 (de) | Verfahren zum Integrieren einer Feldzugriffseinheit in ein Kommunikationsnetzwerk der Automatisierungstechnik | |
WO2022089854A1 (fr) | Méthode d'amélioration du fonctionnement d'un système de transfert de garde | |
WO2023117317A1 (fr) | Procédé d'inspection automatisée d'un appareil de terrain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19730759 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19730759 Country of ref document: EP Kind code of ref document: A1 |