WO2020022002A1 - Optical component - Google Patents
Optical component Download PDFInfo
- Publication number
- WO2020022002A1 WO2020022002A1 PCT/JP2019/026396 JP2019026396W WO2020022002A1 WO 2020022002 A1 WO2020022002 A1 WO 2020022002A1 JP 2019026396 W JP2019026396 W JP 2019026396W WO 2020022002 A1 WO2020022002 A1 WO 2020022002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical component
- component according
- support member
- optical
- window
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000005387 chalcogenide glass Substances 0.000 claims abstract description 23
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 238000002834 transmittance Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 abstract description 17
- 239000007789 gas Substances 0.000 description 18
- 229910052732 germanium Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 229910052714 tellurium Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003708 ampul Substances 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 4
- 229910052797 bismuth Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910005900 GeTe Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 150000001787 chalcogens Chemical class 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
Definitions
- the present invention relates to an optical component used for a gas sensor, a gas alarm, a gas concentration measuring device, and the like.
- An optical gas sensor utilizing infrared light absorption requires a member for transmitting infrared light to the sensor light receiving portion.
- a member glass or the like is used (for example, see Patent Document 1).
- glass has a problem that the glass has a low mechanical strength and is easily broken when incorporated into an optical gas sensor.
- the present invention has been made in view of such a situation, and provides an optical component that hardly breaks glass when incorporated in an optical gas sensor and can sufficiently transmit infrared light. Aim.
- the optical component of the present invention is characterized by including a window member made of chalcogenide glass and a support member for supporting the window member. If the chalcogenide glass alone is incorporated into the optical gas sensor, the chalcogenide glass may be broken due to contact with another member or the like. In the present invention, since the handling is facilitated by providing the support member for supporting the chalcogenide glass, the contact between the chalcogenide glass and other members is easily prevented when the chalcogenide glass is incorporated into the optical gas sensor, and the chalcogenide glass is hardly damaged. Further, since the chalcogenide glass has excellent infrared light transmission characteristics, the sensitivity of the optical gas sensor can be improved.
- the optical component according to the aspect of the invention is a cap member in which the support member includes a cylindrical side wall having an opening on the distal end side and the proximal end side, and the window member is fixed so as to cover the opening of the cap member. Is preferred.
- the support member By using the support member as a cap member, the support member can be easily fixed in the optical gas sensor.
- the window material preferably has a lens shape.
- a lens shape since it has an excellent light collecting ability, the sensitivity of the optical gas sensor using infrared light absorption can be further improved. It is also possible to convert diffused light into collimated light.
- the chalcogenide glass contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%.
- Ge + Ga + Sb + Bi + Sn + In + Ag + Si means the total amount of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si
- S + Se + Te means the total amount of each of S, Se, and Te.
- the chalcogenide glass preferably has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 ⁇ m at a thickness of 1 mm.
- the chalcogenide glass preferably has a coefficient of thermal expansion of 250 ⁇ 10 ⁇ 7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
- the optical component of the present invention preferably has an antireflection film formed on the surface of the window material. This makes it easy to improve the light transmittance in the infrared region.
- the support member preferably has a thermal expansion coefficient of 250 ⁇ 10 ⁇ 7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
- the optical component of the present invention is preferably used for optical sensor applications.
- an optical component that is less likely to break glass when incorporated into an optical gas sensor and that can sufficiently transmit infrared light.
- FIG. 2 is a schematic plan view illustrating the optical component according to the first embodiment of the present invention.
- FIG. 2 is a schematic sectional view showing an AA section of the optical component according to the first embodiment of the present invention.
- FIG. 9 is a schematic plan view illustrating an optical component according to a second embodiment of the present invention. It is a typical sectional view showing the BB section of the optical component concerning a 2nd embodiment of the present invention.
- FIG. 13 is a schematic plan view illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing CC section of an optical component concerning a 3rd embodiment of the present invention.
- FIG. 13 is a schematic plan view illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing DD section of an optical component concerning a 4th embodiment of the present invention.
- FIG. 1A is a schematic plan view showing an optical component (optical cap component) according to a first embodiment of the present invention
- FIG. 1B is a plan view of the first embodiment of the present invention
- FIG. 3 is a schematic cross-sectional view showing an AA cross section of such an optical component.
- the optical component 1 includes a window 2 made of chalcogenide glass and a support member 3 that supports the window 2.
- the provision of the support member 3 makes it difficult for the window member 2 made of chalcogenide glass to be damaged when the optical component 1 is incorporated into the optical gas sensor.
- the support member 3 is a cap member having a side wall 3c having an opening 3a on the distal end and an opening 3b on the proximal end.
- the side wall 3c has a cylindrical shape having substantially the same inner diameter over the entire length.
- the window member 2 is fixed so as to cover the opening 3a on the distal side of the support member 3 or between the opening 3a on the distal side and the opening 3b on the proximal side.
- a method of fixing the window material 2 to the support member 3 a method of applying a bonding material such as low-melting glass, an adhesive, a solder, or the like between the window material 2 and the support member 3 may be used.
- the window material 2 itself may be melted and fused to the support member 3.
- the window material 2 is housed in the support member 3, and then heated and cooled, so that the heat of the support member 3 and the window material 2 is increased.
- the window member 2 can be fixed by the support member 3 and fixed by the difference in shrinkage ratio.
- the window material 2 is made of chalcogenide glass. Chalcogenide glass has good light transmittance in the infrared region.
- the chalcogenide glass preferably contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” indicates “mol%” unless otherwise specified.
- Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are components that extend the vitrification range, and the total content of these components is more than 0 to 70%, and preferably 1 to 60%. More preferably, it is more preferably 10 to 50%.
- Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are not contained, it is difficult to vitrify. On the other hand, when these contents are too large, it becomes difficult to vitrify.
- the contents of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are each preferably 0 to 70%, and more preferably 0 to 50%.
- S, Se, and Te which are chalcogen elements, are components that form a glass skeleton.
- the content of S + Se + Te (the total amount of S, Se and Te) is preferably more than 0 to 90%, more preferably 10 to 85%, and even more preferably 20 to 80%.
- S, Se, and Te are not contained, it is difficult to vitrify.
- the weather resistance may be reduced.
- the chalcogen element it is preferable to select S or Te from an environmental point of view.
- the chalcogenide glass does not substantially contain toxic substances As, Cd, Tl and Pb. In this way, the impact on the environment can be minimized.
- substantially not contained means that it is not intentionally contained in the raw material, and does not exclude inclusion of an impurity level. Objectively, the content of each component is less than 1000 ppm.
- the glass having the above composition tends to have a maximum transmittance of 40% or more, 45% or more, particularly 50% or more in a wavelength range of 3 to 12 ⁇ m at a thickness of 1 mm.
- the thermal expansion coefficient of the chalcogenide glass is 250 ⁇ 10 ⁇ 7 / ° C. or less, 220 ⁇ 10 ⁇ 7 / ° C. or less, 200 ⁇ 10 ⁇ 7 / ° C. or less, 180 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 0 to 150 ° C. It is preferable that the temperature is not higher than ° C. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced.
- the lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 ⁇ 10 ⁇ 7 / ° C. or more.
- An anti-reflection film may be formed on the surface of the window material 2 (the light incident surface or the light emitting surface) for the purpose of improving the infrared light transmittance.
- Examples of the structure of the antireflection film include a multilayer film in which high refractive index layers and low refractive index layers are alternately laminated.
- Materials constituting the antireflection film include Y 2 O 3 , Al 2 O 3 , SiO, SiO 2 , MgO, TiO, TiO 2 , Ti 2 O 3 , CeO 2 , Bi 2 O 3 , HfO 2 , Nb 2 O 5, La 2 O 3, Ta 2 O 5, Gd 2 O 3, oxides such as WO 3, hydrogenated carbon, diamond-like carbon (DLC), Ge, Si, ZnS, ZnSe, As 2 S 3, As 2 Se 3 , PbF 2 , metal telluride, metal fluoride (MgF 2 , CaF 2 , BaF 2, etc.) are preferred.
- the material of the refractive index layer may be a resin, and for example, an olefin resin or the like can be used.
- the antireflection film is not limited to a multilayer film
- the shape of the window material 2 is not particularly limited, but is preferably a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
- a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
- an elemental raw material (Te, Ge, Ga, or the like) may be used, or a compound raw material (GeTe, GeTe 2 , Ga 2 Te 3, or the like) may be used. These can also be used in combination.
- the sealed quartz glass ampule is heated in a melting furnace at a rate of 10 to 80 ° C./hour up to 650 to 1000 ° C., and held for 6 to 12 hours. During the holding time, if necessary, the quartz glass ampule is turned upside down to stir the melt.
- the quartz glass ampule is taken out of the melting furnace and rapidly cooled to room temperature to obtain a glass base material.
- the obtained glass base material is processed into a predetermined shape (a disk shape, a lens shape, or the like).
- an antireflection film is formed on one or both sides of the glass base material processed into a predetermined shape to obtain the window material 2.
- Examples of the method for forming the antireflection film include a vacuum deposition method, an ion plating method, and a sputtering method.
- the glass base material may be processed into a predetermined shape.
- the antireflection film is likely to be peeled off in the processing step, it is preferable to form the antireflection film after processing the glass base material into a predetermined shape unless otherwise specified.
- the material of the support member 3 may be either a metal or a ceramic, but is preferably a metal such as Hastelloy (registered trademark), Inconel (registered trademark), or SUS in consideration of workability.
- the coefficient of thermal expansion of the support member 3 is 250 ⁇ 10 ⁇ 7 / ° C. or less, 220 ⁇ 10 ⁇ 7 / ° C. or less, 200 ⁇ 10 ⁇ 7 / ° C. or less, 180 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 0 to 150 ° C. The following is preferred. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced.
- the lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 ⁇ 10 ⁇ 7 / ° C. or more.
- FIG. 2A is a schematic plan view showing an optical component according to a second embodiment of the present invention
- FIG. 2B is a cross-sectional view of an optical component according to a second embodiment of the present invention. It is a typical sectional view showing B section.
- the optical component according to the second embodiment is different from the optical component according to the first embodiment in that a projection 3d is further provided around the side wall 3c. Providing the protrusion 3d makes it easier to fix the support member 3 in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
- FIG. 3A is a schematic plan view showing an optical component according to a third embodiment of the present invention
- FIG. 3B is a diagram illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing C section.
- the side wall 3c has a rectangular cylindrical shape.
- FIG. 4A is a schematic plan view showing an optical component according to a fourth embodiment of the present invention
- FIG. 4B is a drawing illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing D section.
- the difference from the optical component according to the first embodiment is that, in the fourth embodiment, a notch 3e is further present in a part of the side wall portion.
- the notch 3e can be fitted into the projection, so that the positioning of the support member 3 becomes easy. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
- the present invention is not limited to the above embodiment, and can be implemented in various other forms without departing from the gist of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Glass Compositions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Provided is an optical component for which the glass thereof is resistant to damage when the optical component is incorporated with an optical gas sensor, and through which infrared light can sufficiently pass. The optical component is characterized by comprising: a window material formed of chalcogenide glass; and a support member that supports the window material.
Description
本発明は、ガスセンサ、ガス警報機、ガス濃度測定器等に使用される光学部品に関する。
The present invention relates to an optical component used for a gas sensor, a gas alarm, a gas concentration measuring device, and the like.
近年、室内のエアクオリティーが注目され、小型かつ安価でメンテナンス性に優れたガスセンサが求められている。この要求に対して半導体、セラミックス等を用いた様々なガスセンサが開発されている。例えば、CO2センサには、感度・安定性共に優れた赤外光吸収を利用した光学式センサが使用されている。
In recent years, attention has been paid to indoor air quality, and there is a demand for a small, inexpensive gas sensor having excellent maintainability. In response to this demand, various gas sensors using semiconductors, ceramics, and the like have been developed. For example, an optical sensor using infrared light absorption, which is excellent in both sensitivity and stability, is used for a CO 2 sensor.
赤外光吸収を利用した光学式ガスセンサには、センサ受光部に赤外光を透過するための部材が必要である。このような部材として、ガラス等が使用されている(例えば、特許文献1参照)。
(4) An optical gas sensor utilizing infrared light absorption requires a member for transmitting infrared light to the sensor light receiving portion. As such a member, glass or the like is used (for example, see Patent Document 1).
しかしながら、ガラスは機械的強度が低く、光学式ガスセンサに組み込まれる際に破損しやすいという問題があった。
However, glass has a problem that the glass has a low mechanical strength and is easily broken when incorporated into an optical gas sensor.
本発明は、このような状況に鑑みてなされたものであり、光学式ガスセンサに組み込まれる際にガラスが破損し難く、赤外光を十分に透過することが可能な光学部品を提供することを目的とする。
The present invention has been made in view of such a situation, and provides an optical component that hardly breaks glass when incorporated in an optical gas sensor and can sufficiently transmit infrared light. Aim.
本発明の光学部品は、カルコゲナイドガラスからなる窓材と、窓材を支持する支持部材とを備えていることを特徴とする。カルコゲナイドガラス単体を光学式ガスセンサに組み込むと、カルコゲナイドガラスが他部材との接触等により破損する虞がある。本発明では、カルコゲナイドガラスを支持する支持部材を備えることにより取り扱いが容易となるため、光学式ガスセンサに組み込む際にカルコゲナイドガラスと他部材との接触を防止しやすく、カルコゲナイドガラスが破損し難くなる。また、カルコゲナイドガラスは赤外光透過特性に優れているため、光学式ガスセンサの感度を向上させることが可能となる。
光学 The optical component of the present invention is characterized by including a window member made of chalcogenide glass and a support member for supporting the window member. If the chalcogenide glass alone is incorporated into the optical gas sensor, the chalcogenide glass may be broken due to contact with another member or the like. In the present invention, since the handling is facilitated by providing the support member for supporting the chalcogenide glass, the contact between the chalcogenide glass and other members is easily prevented when the chalcogenide glass is incorporated into the optical gas sensor, and the chalcogenide glass is hardly damaged. Further, since the chalcogenide glass has excellent infrared light transmission characteristics, the sensitivity of the optical gas sensor can be improved.
本発明の光学部品は、支持部材が、先端側及び基端側に開口部を有する筒状の側壁部を備えているキャップ部材であり、窓材がキャップ部材の開口部を覆うように固定されていることが好ましい。支持部材をキャップ部材にすることにより、光学式ガスセンサ内に固定しやすくなる。
The optical component according to the aspect of the invention is a cap member in which the support member includes a cylindrical side wall having an opening on the distal end side and the proximal end side, and the window member is fixed so as to cover the opening of the cap member. Is preferred. By using the support member as a cap member, the support member can be easily fixed in the optical gas sensor.
本発明の光学部品は、窓材が、レンズ形状であることが好ましい。レンズ形状にすることにより、優れた集光能力を有するため、赤外光吸収を利用した光学式ガスセンサの感度をさらに向上させることが可能となる。また、拡散光をコリメート光に変換することも可能である。
光学 In the optical component of the present invention, the window material preferably has a lens shape. By having a lens shape, since it has an excellent light collecting ability, the sensitivity of the optical gas sensor using infrared light absorption can be further improved. It is also possible to convert diffused light into collimated light.
本発明の光学部品は、カルコゲナイドガラスが、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することが好ましい。なお、「Ge+Ga+Sb+Bi+Sn+In+Ag+Si」は、Ge、Ga、Sb、Bi、Sn、In、Ag、Siの各含有量の合量を意味し、「S+Se+Te」は、S、Se、Teの各含有量の合量を意味する。
光学 In the optical component of the present invention, it is preferable that the chalcogenide glass contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. Note that “Ge + Ga + Sb + Bi + Sn + In + Ag + Si” means the total amount of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si, and “S + Se + Te” means the total amount of each of S, Se, and Te. Means
本発明の光学部品は、カルコゲナイドガラスが、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上であることが好ましい。
光学 In the optical component of the present invention, the chalcogenide glass preferably has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 μm at a thickness of 1 mm.
本発明の光学部品は、カルコゲナイドガラスが、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることが好ましい。このようにすれば、温度変化による変形を抑制できる。
In the optical component of the present invention, the chalcogenide glass preferably has a coefficient of thermal expansion of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
本発明の光学部品は、窓材の表面に反射防止膜が形成されていることが好ましい。このようにすれば、赤外域の光透過率を向上しやすい。
光学 The optical component of the present invention preferably has an antireflection film formed on the surface of the window material. This makes it easy to improve the light transmittance in the infrared region.
本発明の光学部品は、支持部材が、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることが好ましい。このようにすれば、温度変化による変形を抑制できる。
In the optical component of the present invention, the support member preferably has a thermal expansion coefficient of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
本発明の光学部品は、光学センサ用途に使用することが好ましい。
The optical component of the present invention is preferably used for optical sensor applications.
本発明によれば、光学式ガスセンサに組み込まれる際にガラスが破損し難く、赤外光を十分に透過することが可能な光学部品を提供することができる。
According to the present invention, it is possible to provide an optical component that is less likely to break glass when incorporated into an optical gas sensor and that can sufficiently transmit infrared light.
以下に、本発明の光学部品の実施形態について説明する。
Hereinafter, embodiments of the optical component of the present invention will be described.
(1)第1の実施形態
図1Aは本発明の第1の実施形態に係る光学部品(光学用キャップ部品)を示す模式的平面図であり、図1Bは本発明の第1の実施形態に係る光学部品のA-A断面を示す模式的断面図である。 (1) First Embodiment FIG. 1A is a schematic plan view showing an optical component (optical cap component) according to a first embodiment of the present invention, and FIG. 1B is a plan view of the first embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing an AA cross section of such an optical component.
図1Aは本発明の第1の実施形態に係る光学部品(光学用キャップ部品)を示す模式的平面図であり、図1Bは本発明の第1の実施形態に係る光学部品のA-A断面を示す模式的断面図である。 (1) First Embodiment FIG. 1A is a schematic plan view showing an optical component (optical cap component) according to a first embodiment of the present invention, and FIG. 1B is a plan view of the first embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing an AA cross section of such an optical component.
本実施形態において、光学部品1は、カルコゲナイドガラスからなる窓材2と、窓材2を支持する支持部材3とを備えている。上述した通り、支持部材3を備えることにより、光学部品1を光学式ガスセンサに組み込む際に、カルコゲナイドガラスからなる窓材2が破損し難くなる。
In the present embodiment, the optical component 1 includes a window 2 made of chalcogenide glass and a support member 3 that supports the window 2. As described above, the provision of the support member 3 makes it difficult for the window member 2 made of chalcogenide glass to be damaged when the optical component 1 is incorporated into the optical gas sensor.
支持部材3は、先端側に開口部3a及び基端側に開口部3bを有する側壁部3cを備えているキャップ部材である。なお、側壁部3cは全長に亘って略同一の内径を有する円筒形状である。窓材2は、支持部材3の先端側の開口部3aを覆うように、又は先端側の開口部3aと基端側の開口部3bとの間に固定されている。
The support member 3 is a cap member having a side wall 3c having an opening 3a on the distal end and an opening 3b on the proximal end. The side wall 3c has a cylindrical shape having substantially the same inner diameter over the entire length. The window member 2 is fixed so as to cover the opening 3a on the distal side of the support member 3 or between the opening 3a on the distal side and the opening 3b on the proximal side.
窓材2を支持部材3に固定する方法としては、低融点ガラス、接着剤、はんだ等の接合材を窓材2と支持部材3の間に塗布する手法が挙げられる。また、窓材2自体を融解させ、支持部材3に融着させてもよい。あるいは、支持部材3の熱膨張係数が窓材2の熱膨張係数より高い場合、窓材2を支持部材3に収納させた後、加熱、冷却することにより、支持部材3と窓材2の熱収縮率差によって、支持部材3で窓材2を締め付け、窓材2を固定することもできる。
方法 As a method of fixing the window material 2 to the support member 3, a method of applying a bonding material such as low-melting glass, an adhesive, a solder, or the like between the window material 2 and the support member 3 may be used. Alternatively, the window material 2 itself may be melted and fused to the support member 3. Alternatively, when the thermal expansion coefficient of the support member 3 is higher than the thermal expansion coefficient of the window material 2, the window material 2 is housed in the support member 3, and then heated and cooled, so that the heat of the support member 3 and the window material 2 is increased. The window member 2 can be fixed by the support member 3 and fixed by the difference in shrinkage ratio.
以下に各構成要素ごとに説明する。
す る Each component will be described below.
(窓材2)
窓材2は、カルコゲナイドガラスからなる。カルコゲナイドガラスは、赤外域において良好な光透過率を有する。 (Window material 2)
Thewindow material 2 is made of chalcogenide glass. Chalcogenide glass has good light transmittance in the infrared region.
窓材2は、カルコゲナイドガラスからなる。カルコゲナイドガラスは、赤外域において良好な光透過率を有する。 (Window material 2)
The
カルコゲナイドガラスは、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することが好ましい。ガラス組成範囲をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りがない限り「%」は「モル%」を示す。
The chalcogenide glass preferably contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” indicates “mol%” unless otherwise specified.
Ge、Ga、Sb、Bi、Sn、In、Ag、Siはガラス化範囲を広げる成分であり、これらの含有量の合量は0超~70%であることが好ましく、1~60%であることがより好ましく、10~50%であることがさらに好ましい。Ge、Ga、Sb、Bi、Sn、In、Ag、Siを含有しない場合は、ガラス化しにくくなる。一方、これらの含有量が多すぎると、逆にガラス化しにくくなる。なお、Ge、Ga、Sb、Bi、Sn、In、Ag、Siの含有量は、それぞれ0~70%であることが好ましく、0~50%であることがより好ましい。
Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are components that extend the vitrification range, and the total content of these components is more than 0 to 70%, and preferably 1 to 60%. More preferably, it is more preferably 10 to 50%. When Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are not contained, it is difficult to vitrify. On the other hand, when these contents are too large, it becomes difficult to vitrify. The contents of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are each preferably 0 to 70%, and more preferably 0 to 50%.
カルコゲン元素であるS、Se、Teはガラス骨格を形成する成分である。S+Se+Teの含有量(S、Se及びTeの合量)は0超~90%であることが好ましく、10~85%であることがより好ましく、20~80%であることがさらに好ましい。S、Se、Teを含有しない場合は、ガラス化しにくくなる。一方、S、Se及びTeの合量が多すぎると耐候性が低下する恐れがある。
S, Se, and Te, which are chalcogen elements, are components that form a glass skeleton. The content of S + Se + Te (the total amount of S, Se and Te) is preferably more than 0 to 90%, more preferably 10 to 85%, and even more preferably 20 to 80%. When S, Se, and Te are not contained, it is difficult to vitrify. On the other hand, if the total amount of S, Se and Te is too large, the weather resistance may be reduced.
なお、カルコゲン元素としては、環境面からS、又はTeを選択することが好ましい。
As the chalcogen element, it is preferable to select S or Te from an environmental point of view.
カルコゲナイドガラスは、有毒物質であるAs、Cd、Tl及びPbを実質的に含有しないことが好ましい。このようにすれば、環境面への影響を最小限に抑えることができる。ここで、「実質的に含有しない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入をも排除するものではない。客観的には、各成分の含有量が1000ppm未満を指す。
It is preferable that the chalcogenide glass does not substantially contain toxic substances As, Cd, Tl and Pb. In this way, the impact on the environment can be minimized. Here, “substantially not contained” means that it is not intentionally contained in the raw material, and does not exclude inclusion of an impurity level. Objectively, the content of each component is less than 1000 ppm.
上記のような組成を有するガラスは、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上、45%以上、特に50%以上になりやすい。
ガ ラ ス The glass having the above composition tends to have a maximum transmittance of 40% or more, 45% or more, particularly 50% or more in a wavelength range of 3 to 12 μm at a thickness of 1 mm.
また、カルコゲナイドガラスの熱膨張係数は0~150℃の温度範囲で250×10-7/℃以下、220×10-7/℃以下、200×10-7/℃以下、180×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、温度変化により変形しやすく、集光能力が低下して、センサの感度が低下するおそれがある。熱膨張係数の下限は特に限定されないが、現実的には、50×10-7/℃以上である。
The thermal expansion coefficient of the chalcogenide glass is 250 × 10 −7 / ° C. or less, 220 × 10 −7 / ° C. or less, 200 × 10 −7 / ° C. or less, 180 × 10 −7 / ° C. in a temperature range of 0 to 150 ° C. It is preferable that the temperature is not higher than ° C. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced. The lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 × 10 −7 / ° C. or more.
赤外光透過率の向上を目的として、窓材2の表面(光入射面または光出射面)に、反射防止膜を形成してもよい。
防止 An anti-reflection film may be formed on the surface of the window material 2 (the light incident surface or the light emitting surface) for the purpose of improving the infrared light transmittance.
反射防止膜の構造としては、高屈折率層と低屈折率層が交互に積層された多層膜が挙げられる。反射防止膜を構成する材質としては、Y2O3、Al2O3、SiO、SiO2、MgO、TiO、TiO2、Ti2O3、CeO2、Bi2O3、HfO2、Nb2O5、La2O3、Ta2O5、Gd2O3、WO3等の酸化物、水素化炭素、ダイヤモンドライクカーボン(DLC)、Ge、Si、ZnS、ZnSe、As2S3、As2Se3、PbF2、テルル化金属、フッ化金属(MgF2、CaF2,BaF2等)が好ましい。なお、屈折率層の材質は、樹脂でもよく、例えばオレフィン系樹脂等を用いることができる。反射防止膜としては多層膜に限られるものではなく、単層膜を使用することもできる。
Examples of the structure of the antireflection film include a multilayer film in which high refractive index layers and low refractive index layers are alternately laminated. Materials constituting the antireflection film include Y 2 O 3 , Al 2 O 3 , SiO, SiO 2 , MgO, TiO, TiO 2 , Ti 2 O 3 , CeO 2 , Bi 2 O 3 , HfO 2 , Nb 2 O 5, La 2 O 3, Ta 2 O 5, Gd 2 O 3, oxides such as WO 3, hydrogenated carbon, diamond-like carbon (DLC), Ge, Si, ZnS, ZnSe, As 2 S 3, As 2 Se 3 , PbF 2 , metal telluride, metal fluoride (MgF 2 , CaF 2 , BaF 2, etc.) are preferred. The material of the refractive index layer may be a resin, and for example, an olefin resin or the like can be used. The antireflection film is not limited to a multilayer film, but may be a single-layer film.
窓材2の形状は、特に限定されないが、集光能力を考慮すると、両凸形状(例えば球状)、平凸形状、メニスカス形状等のレンズ形状であることが好ましい。
(4) The shape of the window material 2 is not particularly limited, but is preferably a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
次に、窓材2の製造方法について説明する。
Next, a method for manufacturing the window material 2 will be described.
上記のガラス組成となるように、原料を混合し、原料バッチを得る。次に、石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管する。
原料 Mix the raw materials so that the above glass composition is obtained, and obtain a raw material batch. Next, the quartz glass ampule is evacuated while being heated, and then the raw material batch is put in. The quartz glass ampule is sealed with an oxygen burner while evacuating.
原料としては、元素原料(Te、Ge、Ga等)を用いてもよく、化合物原料(GeTe、GeTe2、Ga2Te3等)を用いても良い。また、これらを併用することも可能である。
As a raw material, an elemental raw material (Te, Ge, Ga, or the like) may be used, or a compound raw material (GeTe, GeTe 2 , Ga 2 Te 3, or the like) may be used. These can also be used in combination.
次に、封管された石英ガラスアンプルを溶融炉内で10~80℃/時間の速度で650~1000℃まで昇温後、6~12時間保持する。保持時間中、必要に応じて、石英ガラスアンプルの上下を反転し、溶融物を攪拌する。
Next, the sealed quartz glass ampule is heated in a melting furnace at a rate of 10 to 80 ° C./hour up to 650 to 1000 ° C., and held for 6 to 12 hours. During the holding time, if necessary, the quartz glass ampule is turned upside down to stir the melt.
その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することによりガラス母材を得る。
After that, the quartz glass ampule is taken out of the melting furnace and rapidly cooled to room temperature to obtain a glass base material.
続いて、得られたガラス母材を所定形状(円盤状、レンズ状等)に加工する。
Subsequently, the obtained glass base material is processed into a predetermined shape (a disk shape, a lens shape, or the like).
必要に応じて、所定形状に加工したガラス母材の片面又は両面に、反射防止膜を形成させ窓材2を得る。反射防止膜の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。
(4) If necessary, an antireflection film is formed on one or both sides of the glass base material processed into a predetermined shape to obtain the window material 2. Examples of the method for forming the antireflection film include a vacuum deposition method, an ion plating method, and a sputtering method.
なお、ガラス母材に反射防止膜を形成した後、ガラス母材を所定形状に加工しても構わない。ただし、加工工程において反射防止膜の剥離が生じやすくなるため、特段の事情がない限り、ガラス母材を所定形状に加工した後に、反射防止膜を形成することが好ましい。
After the antireflection film is formed on the glass base material, the glass base material may be processed into a predetermined shape. However, since the antireflection film is likely to be peeled off in the processing step, it is preferable to form the antireflection film after processing the glass base material into a predetermined shape unless otherwise specified.
(支持部材3)
支持部材3の材質は、金属、セラミックスのいずれでも構わないが、加工性を考慮するとハステロイ(登録商標)、インコネル(登録商標)、SUS等の金属であることが好ましい。 (Support member 3)
The material of thesupport member 3 may be either a metal or a ceramic, but is preferably a metal such as Hastelloy (registered trademark), Inconel (registered trademark), or SUS in consideration of workability.
支持部材3の材質は、金属、セラミックスのいずれでも構わないが、加工性を考慮するとハステロイ(登録商標)、インコネル(登録商標)、SUS等の金属であることが好ましい。 (Support member 3)
The material of the
支持部材3の熱膨張係数は0~150℃の温度範囲において250×10-7/℃以下、220×10-7/℃以下、200×10-7/℃以下、180×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、温度変化により変形しやすく、集光能力が低下して、センサの感度が低下するおそれがある。熱膨張係数の下限は特に限定されないが、現実的には、50×10-7/℃以上である。
The coefficient of thermal expansion of the support member 3 is 250 × 10 −7 / ° C. or less, 220 × 10 −7 / ° C. or less, 200 × 10 −7 / ° C. or less, 180 × 10 −7 / ° C. in a temperature range of 0 to 150 ° C. The following is preferred. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced. The lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 × 10 −7 / ° C. or more.
(2)第2の実施形態
図2Aは本発明の第2の実施形態に係る光学部品を示す模式的平面図であり、図2Bは本発明の第2の実施形態に係る光学部品のB-B断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第2の実施形態では、さらに、側壁部3cの周囲に突起部3dが存在する点である。突起部3dを設けることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (2) Second Embodiment FIG. 2A is a schematic plan view showing an optical component according to a second embodiment of the present invention, and FIG. 2B is a cross-sectional view of an optical component according to a second embodiment of the present invention. It is a typical sectional view showing B section. The optical component according to the second embodiment is different from the optical component according to the first embodiment in that aprojection 3d is further provided around the side wall 3c. Providing the protrusion 3d makes it easier to fix the support member 3 in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
図2Aは本発明の第2の実施形態に係る光学部品を示す模式的平面図であり、図2Bは本発明の第2の実施形態に係る光学部品のB-B断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第2の実施形態では、さらに、側壁部3cの周囲に突起部3dが存在する点である。突起部3dを設けることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (2) Second Embodiment FIG. 2A is a schematic plan view showing an optical component according to a second embodiment of the present invention, and FIG. 2B is a cross-sectional view of an optical component according to a second embodiment of the present invention. It is a typical sectional view showing B section. The optical component according to the second embodiment is different from the optical component according to the first embodiment in that a
(3)第3の実施形態
図3Aは本発明の第3の実施形態に係る光学部品を示す模式的平面図であり、図3Bは本発明の第3の実施形態に係る光学部品のC-C断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第3の実施形態では、側壁部3cが角筒形状である点である。側壁部3cを角筒形状にすることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (3) Third Embodiment FIG. 3A is a schematic plan view showing an optical component according to a third embodiment of the present invention, and FIG. 3B is a diagram illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing C section. The difference from the optical component according to the first embodiment is that, in the third embodiment, theside wall 3c has a rectangular cylindrical shape. By forming the side wall portion 3c in the shape of a rectangular tube, the support member 3 can be easily fixed in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
図3Aは本発明の第3の実施形態に係る光学部品を示す模式的平面図であり、図3Bは本発明の第3の実施形態に係る光学部品のC-C断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第3の実施形態では、側壁部3cが角筒形状である点である。側壁部3cを角筒形状にすることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (3) Third Embodiment FIG. 3A is a schematic plan view showing an optical component according to a third embodiment of the present invention, and FIG. 3B is a diagram illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing C section. The difference from the optical component according to the first embodiment is that, in the third embodiment, the
(4)第4の実施形態
図4Aは本発明の第4の実施形態に係る光学部品を示す模式的平面図であり、図4Bは本発明の第4の実施形態に係る光学部品のD-D断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第4の実施形態では、さらに、側壁部の一部に切り欠き3eが存在している点である。ガスセンサ内の所定の位置に切り欠き3eに対応する突起部を設けると、その突起部に切り欠き3eを嵌め込めるため、支持部材3の位置決めが容易になる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (4) Fourth Embodiment FIG. 4A is a schematic plan view showing an optical component according to a fourth embodiment of the present invention, and FIG. 4B is a drawing illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing D section. The difference from the optical component according to the first embodiment is that, in the fourth embodiment, anotch 3e is further present in a part of the side wall portion. When a projection corresponding to the notch 3e is provided at a predetermined position in the gas sensor, the notch 3e can be fitted into the projection, so that the positioning of the support member 3 becomes easy. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
図4Aは本発明の第4の実施形態に係る光学部品を示す模式的平面図であり、図4Bは本発明の第4の実施形態に係る光学部品のD-D断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第4の実施形態では、さらに、側壁部の一部に切り欠き3eが存在している点である。ガスセンサ内の所定の位置に切り欠き3eに対応する突起部を設けると、その突起部に切り欠き3eを嵌め込めるため、支持部材3の位置決めが容易になる。また、窓材2と支持部材3の光軸を合わせやすくなる。 (4) Fourth Embodiment FIG. 4A is a schematic plan view showing an optical component according to a fourth embodiment of the present invention, and FIG. 4B is a drawing illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing D section. The difference from the optical component according to the first embodiment is that, in the fourth embodiment, a
なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施することができる。
The present invention is not limited to the above embodiment, and can be implemented in various other forms without departing from the gist of the present invention.
1 光学部品
2 窓材
3 支持部材
3a 開口部
3b 開口部
3c 側壁部
3d 突起部
3e 切り欠き DESCRIPTION OFSYMBOLS 1 Optical component 2 Window material 3 Support member 3a Opening 3b Opening 3c Side wall 3d Projection 3e Notch
2 窓材
3 支持部材
3a 開口部
3b 開口部
3c 側壁部
3d 突起部
3e 切り欠き DESCRIPTION OF
Claims (9)
- カルコゲナイドガラスからなる窓材と、窓材を支持する支持部材とを備えていることを特徴とする光学部品。 (4) An optical component comprising: a window member made of chalcogenide glass; and a support member for supporting the window member.
- 支持部材が、先端側及び基端側に開口部を有する筒状の側壁部を備えているキャップ部材であり、窓材がキャップ部材の開口部を覆うように固定されていることを特徴とする請求項1に記載の光学部品。 The support member is a cap member having a cylindrical side wall having an opening at the distal end side and the base end side, and the window material is fixed so as to cover the opening of the cap member. The optical component according to claim 1.
- 窓材が、レンズ形状であることを特徴とする請求項1又は2に記載の光学部品。 (3) The optical component according to (1) or (2), wherein the window material has a lens shape.
- カルコゲナイドガラスが、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することを特徴とする請求項1~3のいずれかに記載の光学部品。 4. The optical component according to claim 1, wherein the chalcogenide glass contains Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90% by mole% as a composition.
- カルコゲナイドガラスが、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上であることを特徴とする請求項1~4のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 4, wherein the chalcogenide glass has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 µm at a thickness of 1 mm.
- カルコゲナイドガラスが、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることを特徴とする請求項1~5のいずれかに記載の光学部品。 6. The optical component according to claim 1, wherein the chalcogenide glass has a thermal expansion coefficient of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C.
- 窓材の表面に反射防止膜が形成されていることを特徴とする請求項1~6のいずれかに記載の光学部品。 (7) The optical component according to any one of (1) to (6), wherein an antireflection film is formed on a surface of the window material.
- 支持部材が、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることを特徴とする請求項1~7のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 7, wherein the support member has a coefficient of thermal expansion of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C.
- 光学センサ用途に使用されることを特徴とする請求項1~8のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 8, which is used for an optical sensor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139109A JP2020016519A (en) | 2018-07-25 | 2018-07-25 | Optical component |
JP2018-139109 | 2018-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020022002A1 true WO2020022002A1 (en) | 2020-01-30 |
Family
ID=69182185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/026396 WO2020022002A1 (en) | 2018-07-25 | 2019-07-03 | Optical component |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020016519A (en) |
WO (1) | WO2020022002A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7538476B2 (en) | 2020-11-13 | 2024-08-22 | 日本電気硝子株式会社 | Optical member and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004077462A (en) * | 2002-08-17 | 2004-03-11 | Lg Electronics Inc | Infrared sensor assembly and refrigerator having the same |
JP2005537473A (en) * | 2002-09-02 | 2005-12-08 | キネティック リミテッド | Hermetically sealed |
JP2015521148A (en) * | 2012-04-20 | 2015-07-27 | ショット コーポレーションSchott Corporation | Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra |
US20160073042A1 (en) * | 2013-05-06 | 2016-03-10 | Irlynx | Compact human presence detector |
WO2018083941A1 (en) * | 2016-11-02 | 2018-05-11 | 日本電気硝子株式会社 | Optical cap component |
-
2018
- 2018-07-25 JP JP2018139109A patent/JP2020016519A/en active Pending
-
2019
- 2019-07-03 WO PCT/JP2019/026396 patent/WO2020022002A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004077462A (en) * | 2002-08-17 | 2004-03-11 | Lg Electronics Inc | Infrared sensor assembly and refrigerator having the same |
JP2005537473A (en) * | 2002-09-02 | 2005-12-08 | キネティック リミテッド | Hermetically sealed |
JP2015521148A (en) * | 2012-04-20 | 2015-07-27 | ショット コーポレーションSchott Corporation | Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra |
US20160073042A1 (en) * | 2013-05-06 | 2016-03-10 | Irlynx | Compact human presence detector |
WO2018083941A1 (en) * | 2016-11-02 | 2018-05-11 | 日本電気硝子株式会社 | Optical cap component |
Also Published As
Publication number | Publication date |
---|---|
JP2020016519A (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7519019B2 (en) | Chalcogenide Glass Materials | |
US10065881B2 (en) | Infrared transmitting glass | |
WO2020105719A1 (en) | Chalcogenide glass lens | |
JP2000356704A (en) | Formation of reflection preventing film and optical device | |
JP2017120285A (en) | Near-infrared cut filter | |
WO2020022002A1 (en) | Optical component | |
JPWO2018025883A1 (en) | Glass substrate, semiconductor device and display device | |
JP2024074945A (en) | Infrared transmission glass | |
US20210230046A1 (en) | Optical cap component | |
US7313292B2 (en) | Optical component using optical transmission element joining metal holder | |
JP7058825B2 (en) | Infrared transmissive glass | |
WO2020175402A1 (en) | Infrared-transmitting glass | |
JP6987364B2 (en) | Optical cap parts | |
JP4091773B2 (en) | Optical device | |
JP2008174440A (en) | Glass for use as substrate | |
JP4756337B2 (en) | Cover glass for solid-state image sensor | |
JP2012082085A (en) | Glass | |
JP2010001167A (en) | Infrared transmitting glass | |
WO2008075546A1 (en) | Glass for substrate | |
KR101201384B1 (en) | Cover glass for solid image pickup device and process for producing the same | |
WO2023095900A1 (en) | Infrared-transmitting glass | |
JP2003040648A (en) | Optical device | |
JP2023000285A (en) | Infrared transmitting glass | |
JP2022169294A (en) | Infrared transmitting glass | |
JPH04136901A (en) | Optical parts made of silicon for infrared transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19842086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19842086 Country of ref document: EP Kind code of ref document: A1 |