[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020022002A1 - Optical component - Google Patents

Optical component Download PDF

Info

Publication number
WO2020022002A1
WO2020022002A1 PCT/JP2019/026396 JP2019026396W WO2020022002A1 WO 2020022002 A1 WO2020022002 A1 WO 2020022002A1 JP 2019026396 W JP2019026396 W JP 2019026396W WO 2020022002 A1 WO2020022002 A1 WO 2020022002A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical component
component according
support member
optical
window
Prior art date
Application number
PCT/JP2019/026396
Other languages
French (fr)
Japanese (ja)
Inventor
佳雅 松下
佐藤 史雄
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2020022002A1 publication Critical patent/WO2020022002A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to an optical component used for a gas sensor, a gas alarm, a gas concentration measuring device, and the like.
  • An optical gas sensor utilizing infrared light absorption requires a member for transmitting infrared light to the sensor light receiving portion.
  • a member glass or the like is used (for example, see Patent Document 1).
  • glass has a problem that the glass has a low mechanical strength and is easily broken when incorporated into an optical gas sensor.
  • the present invention has been made in view of such a situation, and provides an optical component that hardly breaks glass when incorporated in an optical gas sensor and can sufficiently transmit infrared light. Aim.
  • the optical component of the present invention is characterized by including a window member made of chalcogenide glass and a support member for supporting the window member. If the chalcogenide glass alone is incorporated into the optical gas sensor, the chalcogenide glass may be broken due to contact with another member or the like. In the present invention, since the handling is facilitated by providing the support member for supporting the chalcogenide glass, the contact between the chalcogenide glass and other members is easily prevented when the chalcogenide glass is incorporated into the optical gas sensor, and the chalcogenide glass is hardly damaged. Further, since the chalcogenide glass has excellent infrared light transmission characteristics, the sensitivity of the optical gas sensor can be improved.
  • the optical component according to the aspect of the invention is a cap member in which the support member includes a cylindrical side wall having an opening on the distal end side and the proximal end side, and the window member is fixed so as to cover the opening of the cap member. Is preferred.
  • the support member By using the support member as a cap member, the support member can be easily fixed in the optical gas sensor.
  • the window material preferably has a lens shape.
  • a lens shape since it has an excellent light collecting ability, the sensitivity of the optical gas sensor using infrared light absorption can be further improved. It is also possible to convert diffused light into collimated light.
  • the chalcogenide glass contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%.
  • Ge + Ga + Sb + Bi + Sn + In + Ag + Si means the total amount of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si
  • S + Se + Te means the total amount of each of S, Se, and Te.
  • the chalcogenide glass preferably has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 ⁇ m at a thickness of 1 mm.
  • the chalcogenide glass preferably has a coefficient of thermal expansion of 250 ⁇ 10 ⁇ 7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
  • the optical component of the present invention preferably has an antireflection film formed on the surface of the window material. This makes it easy to improve the light transmittance in the infrared region.
  • the support member preferably has a thermal expansion coefficient of 250 ⁇ 10 ⁇ 7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
  • the optical component of the present invention is preferably used for optical sensor applications.
  • an optical component that is less likely to break glass when incorporated into an optical gas sensor and that can sufficiently transmit infrared light.
  • FIG. 2 is a schematic plan view illustrating the optical component according to the first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing an AA section of the optical component according to the first embodiment of the present invention.
  • FIG. 9 is a schematic plan view illustrating an optical component according to a second embodiment of the present invention. It is a typical sectional view showing the BB section of the optical component concerning a 2nd embodiment of the present invention.
  • FIG. 13 is a schematic plan view illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing CC section of an optical component concerning a 3rd embodiment of the present invention.
  • FIG. 13 is a schematic plan view illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing DD section of an optical component concerning a 4th embodiment of the present invention.
  • FIG. 1A is a schematic plan view showing an optical component (optical cap component) according to a first embodiment of the present invention
  • FIG. 1B is a plan view of the first embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view showing an AA cross section of such an optical component.
  • the optical component 1 includes a window 2 made of chalcogenide glass and a support member 3 that supports the window 2.
  • the provision of the support member 3 makes it difficult for the window member 2 made of chalcogenide glass to be damaged when the optical component 1 is incorporated into the optical gas sensor.
  • the support member 3 is a cap member having a side wall 3c having an opening 3a on the distal end and an opening 3b on the proximal end.
  • the side wall 3c has a cylindrical shape having substantially the same inner diameter over the entire length.
  • the window member 2 is fixed so as to cover the opening 3a on the distal side of the support member 3 or between the opening 3a on the distal side and the opening 3b on the proximal side.
  • a method of fixing the window material 2 to the support member 3 a method of applying a bonding material such as low-melting glass, an adhesive, a solder, or the like between the window material 2 and the support member 3 may be used.
  • the window material 2 itself may be melted and fused to the support member 3.
  • the window material 2 is housed in the support member 3, and then heated and cooled, so that the heat of the support member 3 and the window material 2 is increased.
  • the window member 2 can be fixed by the support member 3 and fixed by the difference in shrinkage ratio.
  • the window material 2 is made of chalcogenide glass. Chalcogenide glass has good light transmittance in the infrared region.
  • the chalcogenide glass preferably contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” indicates “mol%” unless otherwise specified.
  • Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are components that extend the vitrification range, and the total content of these components is more than 0 to 70%, and preferably 1 to 60%. More preferably, it is more preferably 10 to 50%.
  • Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are not contained, it is difficult to vitrify. On the other hand, when these contents are too large, it becomes difficult to vitrify.
  • the contents of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are each preferably 0 to 70%, and more preferably 0 to 50%.
  • S, Se, and Te which are chalcogen elements, are components that form a glass skeleton.
  • the content of S + Se + Te (the total amount of S, Se and Te) is preferably more than 0 to 90%, more preferably 10 to 85%, and even more preferably 20 to 80%.
  • S, Se, and Te are not contained, it is difficult to vitrify.
  • the weather resistance may be reduced.
  • the chalcogen element it is preferable to select S or Te from an environmental point of view.
  • the chalcogenide glass does not substantially contain toxic substances As, Cd, Tl and Pb. In this way, the impact on the environment can be minimized.
  • substantially not contained means that it is not intentionally contained in the raw material, and does not exclude inclusion of an impurity level. Objectively, the content of each component is less than 1000 ppm.
  • the glass having the above composition tends to have a maximum transmittance of 40% or more, 45% or more, particularly 50% or more in a wavelength range of 3 to 12 ⁇ m at a thickness of 1 mm.
  • the thermal expansion coefficient of the chalcogenide glass is 250 ⁇ 10 ⁇ 7 / ° C. or less, 220 ⁇ 10 ⁇ 7 / ° C. or less, 200 ⁇ 10 ⁇ 7 / ° C. or less, 180 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 0 to 150 ° C. It is preferable that the temperature is not higher than ° C. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 ⁇ 10 ⁇ 7 / ° C. or more.
  • An anti-reflection film may be formed on the surface of the window material 2 (the light incident surface or the light emitting surface) for the purpose of improving the infrared light transmittance.
  • Examples of the structure of the antireflection film include a multilayer film in which high refractive index layers and low refractive index layers are alternately laminated.
  • Materials constituting the antireflection film include Y 2 O 3 , Al 2 O 3 , SiO, SiO 2 , MgO, TiO, TiO 2 , Ti 2 O 3 , CeO 2 , Bi 2 O 3 , HfO 2 , Nb 2 O 5, La 2 O 3, Ta 2 O 5, Gd 2 O 3, oxides such as WO 3, hydrogenated carbon, diamond-like carbon (DLC), Ge, Si, ZnS, ZnSe, As 2 S 3, As 2 Se 3 , PbF 2 , metal telluride, metal fluoride (MgF 2 , CaF 2 , BaF 2, etc.) are preferred.
  • the material of the refractive index layer may be a resin, and for example, an olefin resin or the like can be used.
  • the antireflection film is not limited to a multilayer film
  • the shape of the window material 2 is not particularly limited, but is preferably a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
  • a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
  • an elemental raw material (Te, Ge, Ga, or the like) may be used, or a compound raw material (GeTe, GeTe 2 , Ga 2 Te 3, or the like) may be used. These can also be used in combination.
  • the sealed quartz glass ampule is heated in a melting furnace at a rate of 10 to 80 ° C./hour up to 650 to 1000 ° C., and held for 6 to 12 hours. During the holding time, if necessary, the quartz glass ampule is turned upside down to stir the melt.
  • the quartz glass ampule is taken out of the melting furnace and rapidly cooled to room temperature to obtain a glass base material.
  • the obtained glass base material is processed into a predetermined shape (a disk shape, a lens shape, or the like).
  • an antireflection film is formed on one or both sides of the glass base material processed into a predetermined shape to obtain the window material 2.
  • Examples of the method for forming the antireflection film include a vacuum deposition method, an ion plating method, and a sputtering method.
  • the glass base material may be processed into a predetermined shape.
  • the antireflection film is likely to be peeled off in the processing step, it is preferable to form the antireflection film after processing the glass base material into a predetermined shape unless otherwise specified.
  • the material of the support member 3 may be either a metal or a ceramic, but is preferably a metal such as Hastelloy (registered trademark), Inconel (registered trademark), or SUS in consideration of workability.
  • the coefficient of thermal expansion of the support member 3 is 250 ⁇ 10 ⁇ 7 / ° C. or less, 220 ⁇ 10 ⁇ 7 / ° C. or less, 200 ⁇ 10 ⁇ 7 / ° C. or less, 180 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 0 to 150 ° C. The following is preferred. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 ⁇ 10 ⁇ 7 / ° C. or more.
  • FIG. 2A is a schematic plan view showing an optical component according to a second embodiment of the present invention
  • FIG. 2B is a cross-sectional view of an optical component according to a second embodiment of the present invention. It is a typical sectional view showing B section.
  • the optical component according to the second embodiment is different from the optical component according to the first embodiment in that a projection 3d is further provided around the side wall 3c. Providing the protrusion 3d makes it easier to fix the support member 3 in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
  • FIG. 3A is a schematic plan view showing an optical component according to a third embodiment of the present invention
  • FIG. 3B is a diagram illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing C section.
  • the side wall 3c has a rectangular cylindrical shape.
  • FIG. 4A is a schematic plan view showing an optical component according to a fourth embodiment of the present invention
  • FIG. 4B is a drawing illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing D section.
  • the difference from the optical component according to the first embodiment is that, in the fourth embodiment, a notch 3e is further present in a part of the side wall portion.
  • the notch 3e can be fitted into the projection, so that the positioning of the support member 3 becomes easy. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
  • the present invention is not limited to the above embodiment, and can be implemented in various other forms without departing from the gist of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Glass Compositions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Provided is an optical component for which the glass thereof is resistant to damage when the optical component is incorporated with an optical gas sensor, and through which infrared light can sufficiently pass. The optical component is characterized by comprising: a window material formed of chalcogenide glass; and a support member that supports the window material.

Description

光学部品Optical components
 本発明は、ガスセンサ、ガス警報機、ガス濃度測定器等に使用される光学部品に関する。 The present invention relates to an optical component used for a gas sensor, a gas alarm, a gas concentration measuring device, and the like.
 近年、室内のエアクオリティーが注目され、小型かつ安価でメンテナンス性に優れたガスセンサが求められている。この要求に対して半導体、セラミックス等を用いた様々なガスセンサが開発されている。例えば、COセンサには、感度・安定性共に優れた赤外光吸収を利用した光学式センサが使用されている。 In recent years, attention has been paid to indoor air quality, and there is a demand for a small, inexpensive gas sensor having excellent maintainability. In response to this demand, various gas sensors using semiconductors, ceramics, and the like have been developed. For example, an optical sensor using infrared light absorption, which is excellent in both sensitivity and stability, is used for a CO 2 sensor.
 赤外光吸収を利用した光学式ガスセンサには、センサ受光部に赤外光を透過するための部材が必要である。このような部材として、ガラス等が使用されている(例えば、特許文献1参照)。 (4) An optical gas sensor utilizing infrared light absorption requires a member for transmitting infrared light to the sensor light receiving portion. As such a member, glass or the like is used (for example, see Patent Document 1).
特開2005-207891号公報JP 2005-207891 A
 しかしながら、ガラスは機械的強度が低く、光学式ガスセンサに組み込まれる際に破損しやすいという問題があった。 However, glass has a problem that the glass has a low mechanical strength and is easily broken when incorporated into an optical gas sensor.
 本発明は、このような状況に鑑みてなされたものであり、光学式ガスセンサに組み込まれる際にガラスが破損し難く、赤外光を十分に透過することが可能な光学部品を提供することを目的とする。 The present invention has been made in view of such a situation, and provides an optical component that hardly breaks glass when incorporated in an optical gas sensor and can sufficiently transmit infrared light. Aim.
 本発明の光学部品は、カルコゲナイドガラスからなる窓材と、窓材を支持する支持部材とを備えていることを特徴とする。カルコゲナイドガラス単体を光学式ガスセンサに組み込むと、カルコゲナイドガラスが他部材との接触等により破損する虞がある。本発明では、カルコゲナイドガラスを支持する支持部材を備えることにより取り扱いが容易となるため、光学式ガスセンサに組み込む際にカルコゲナイドガラスと他部材との接触を防止しやすく、カルコゲナイドガラスが破損し難くなる。また、カルコゲナイドガラスは赤外光透過特性に優れているため、光学式ガスセンサの感度を向上させることが可能となる。 光学 The optical component of the present invention is characterized by including a window member made of chalcogenide glass and a support member for supporting the window member. If the chalcogenide glass alone is incorporated into the optical gas sensor, the chalcogenide glass may be broken due to contact with another member or the like. In the present invention, since the handling is facilitated by providing the support member for supporting the chalcogenide glass, the contact between the chalcogenide glass and other members is easily prevented when the chalcogenide glass is incorporated into the optical gas sensor, and the chalcogenide glass is hardly damaged. Further, since the chalcogenide glass has excellent infrared light transmission characteristics, the sensitivity of the optical gas sensor can be improved.
 本発明の光学部品は、支持部材が、先端側及び基端側に開口部を有する筒状の側壁部を備えているキャップ部材であり、窓材がキャップ部材の開口部を覆うように固定されていることが好ましい。支持部材をキャップ部材にすることにより、光学式ガスセンサ内に固定しやすくなる。 The optical component according to the aspect of the invention is a cap member in which the support member includes a cylindrical side wall having an opening on the distal end side and the proximal end side, and the window member is fixed so as to cover the opening of the cap member. Is preferred. By using the support member as a cap member, the support member can be easily fixed in the optical gas sensor.
 本発明の光学部品は、窓材が、レンズ形状であることが好ましい。レンズ形状にすることにより、優れた集光能力を有するため、赤外光吸収を利用した光学式ガスセンサの感度をさらに向上させることが可能となる。また、拡散光をコリメート光に変換することも可能である。 光学 In the optical component of the present invention, the window material preferably has a lens shape. By having a lens shape, since it has an excellent light collecting ability, the sensitivity of the optical gas sensor using infrared light absorption can be further improved. It is also possible to convert diffused light into collimated light.
 本発明の光学部品は、カルコゲナイドガラスが、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することが好ましい。なお、「Ge+Ga+Sb+Bi+Sn+In+Ag+Si」は、Ge、Ga、Sb、Bi、Sn、In、Ag、Siの各含有量の合量を意味し、「S+Se+Te」は、S、Se、Teの各含有量の合量を意味する。 光学 In the optical component of the present invention, it is preferable that the chalcogenide glass contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. Note that “Ge + Ga + Sb + Bi + Sn + In + Ag + Si” means the total amount of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si, and “S + Se + Te” means the total amount of each of S, Se, and Te. Means
 本発明の光学部品は、カルコゲナイドガラスが、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上であることが好ましい。 光学 In the optical component of the present invention, the chalcogenide glass preferably has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 μm at a thickness of 1 mm.
 本発明の光学部品は、カルコゲナイドガラスが、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることが好ましい。このようにすれば、温度変化による変形を抑制できる。 In the optical component of the present invention, the chalcogenide glass preferably has a coefficient of thermal expansion of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
 本発明の光学部品は、窓材の表面に反射防止膜が形成されていることが好ましい。このようにすれば、赤外域の光透過率を向上しやすい。 光学 The optical component of the present invention preferably has an antireflection film formed on the surface of the window material. This makes it easy to improve the light transmittance in the infrared region.
 本発明の光学部品は、支持部材が、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることが好ましい。このようにすれば、温度変化による変形を抑制できる。 In the optical component of the present invention, the support member preferably has a thermal expansion coefficient of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C. In this way, deformation due to temperature change can be suppressed.
本発明の光学部品は、光学センサ用途に使用することが好ましい。 The optical component of the present invention is preferably used for optical sensor applications.
 本発明によれば、光学式ガスセンサに組み込まれる際にガラスが破損し難く、赤外光を十分に透過することが可能な光学部品を提供することができる。 According to the present invention, it is possible to provide an optical component that is less likely to break glass when incorporated into an optical gas sensor and that can sufficiently transmit infrared light.
本発明の第1の実施形態に係る光学部品を示す模式的平面図である。FIG. 2 is a schematic plan view illustrating the optical component according to the first embodiment of the present invention. 本発明の第1の実施形態に係る光学部品のA-A断面を示す模式的断面図である。FIG. 2 is a schematic sectional view showing an AA section of the optical component according to the first embodiment of the present invention. 本発明の第2の実施形態に係る光学部品を示す模式的平面図である。FIG. 9 is a schematic plan view illustrating an optical component according to a second embodiment of the present invention. 本発明の第2の実施形態に係る光学部品のB-B断面を示す模式的断面図である。It is a typical sectional view showing the BB section of the optical component concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る光学部品を示す模式的平面図である。FIG. 13 is a schematic plan view illustrating an optical component according to a third embodiment of the present invention. 本発明の第3の実施形態に係る光学部品のC-C断面を示す模式的断面図である。It is a typical sectional view showing CC section of an optical component concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係る光学部品を示す模式的平面図である。FIG. 13 is a schematic plan view illustrating an optical component according to a fourth embodiment of the present invention. 本発明の第4の実施形態に係る光学部品のD-D断面を示す模式的断面図である。It is a typical sectional view showing DD section of an optical component concerning a 4th embodiment of the present invention.
 以下に、本発明の光学部品の実施形態について説明する。 Hereinafter, embodiments of the optical component of the present invention will be described.
 (1)第1の実施形態
 図1Aは本発明の第1の実施形態に係る光学部品(光学用キャップ部品)を示す模式的平面図であり、図1Bは本発明の第1の実施形態に係る光学部品のA-A断面を示す模式的断面図である。
(1) First Embodiment FIG. 1A is a schematic plan view showing an optical component (optical cap component) according to a first embodiment of the present invention, and FIG. 1B is a plan view of the first embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing an AA cross section of such an optical component.
 本実施形態において、光学部品1は、カルコゲナイドガラスからなる窓材2と、窓材2を支持する支持部材3とを備えている。上述した通り、支持部材3を備えることにより、光学部品1を光学式ガスセンサに組み込む際に、カルコゲナイドガラスからなる窓材2が破損し難くなる。 In the present embodiment, the optical component 1 includes a window 2 made of chalcogenide glass and a support member 3 that supports the window 2. As described above, the provision of the support member 3 makes it difficult for the window member 2 made of chalcogenide glass to be damaged when the optical component 1 is incorporated into the optical gas sensor.
 支持部材3は、先端側に開口部3a及び基端側に開口部3bを有する側壁部3cを備えているキャップ部材である。なお、側壁部3cは全長に亘って略同一の内径を有する円筒形状である。窓材2は、支持部材3の先端側の開口部3aを覆うように、又は先端側の開口部3aと基端側の開口部3bとの間に固定されている。 The support member 3 is a cap member having a side wall 3c having an opening 3a on the distal end and an opening 3b on the proximal end. The side wall 3c has a cylindrical shape having substantially the same inner diameter over the entire length. The window member 2 is fixed so as to cover the opening 3a on the distal side of the support member 3 or between the opening 3a on the distal side and the opening 3b on the proximal side.
 窓材2を支持部材3に固定する方法としては、低融点ガラス、接着剤、はんだ等の接合材を窓材2と支持部材3の間に塗布する手法が挙げられる。また、窓材2自体を融解させ、支持部材3に融着させてもよい。あるいは、支持部材3の熱膨張係数が窓材2の熱膨張係数より高い場合、窓材2を支持部材3に収納させた後、加熱、冷却することにより、支持部材3と窓材2の熱収縮率差によって、支持部材3で窓材2を締め付け、窓材2を固定することもできる。 方法 As a method of fixing the window material 2 to the support member 3, a method of applying a bonding material such as low-melting glass, an adhesive, a solder, or the like between the window material 2 and the support member 3 may be used. Alternatively, the window material 2 itself may be melted and fused to the support member 3. Alternatively, when the thermal expansion coefficient of the support member 3 is higher than the thermal expansion coefficient of the window material 2, the window material 2 is housed in the support member 3, and then heated and cooled, so that the heat of the support member 3 and the window material 2 is increased. The window member 2 can be fixed by the support member 3 and fixed by the difference in shrinkage ratio.
 以下に各構成要素ごとに説明する。 す る Each component will be described below.
 (窓材2)
 窓材2は、カルコゲナイドガラスからなる。カルコゲナイドガラスは、赤外域において良好な光透過率を有する。
(Window material 2)
The window material 2 is made of chalcogenide glass. Chalcogenide glass has good light transmittance in the infrared region.
 カルコゲナイドガラスは、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することが好ましい。ガラス組成範囲をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りがない限り「%」は「モル%」を示す。 The chalcogenide glass preferably contains, by mole%, Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” indicates “mol%” unless otherwise specified.
 Ge、Ga、Sb、Bi、Sn、In、Ag、Siはガラス化範囲を広げる成分であり、これらの含有量の合量は0超~70%であることが好ましく、1~60%であることがより好ましく、10~50%であることがさらに好ましい。Ge、Ga、Sb、Bi、Sn、In、Ag、Siを含有しない場合は、ガラス化しにくくなる。一方、これらの含有量が多すぎると、逆にガラス化しにくくなる。なお、Ge、Ga、Sb、Bi、Sn、In、Ag、Siの含有量は、それぞれ0~70%であることが好ましく、0~50%であることがより好ましい。 Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are components that extend the vitrification range, and the total content of these components is more than 0 to 70%, and preferably 1 to 60%. More preferably, it is more preferably 10 to 50%. When Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are not contained, it is difficult to vitrify. On the other hand, when these contents are too large, it becomes difficult to vitrify. The contents of Ge, Ga, Sb, Bi, Sn, In, Ag, and Si are each preferably 0 to 70%, and more preferably 0 to 50%.
 カルコゲン元素であるS、Se、Teはガラス骨格を形成する成分である。S+Se+Teの含有量(S、Se及びTeの合量)は0超~90%であることが好ましく、10~85%であることがより好ましく、20~80%であることがさらに好ましい。S、Se、Teを含有しない場合は、ガラス化しにくくなる。一方、S、Se及びTeの合量が多すぎると耐候性が低下する恐れがある。 S, Se, and Te, which are chalcogen elements, are components that form a glass skeleton. The content of S + Se + Te (the total amount of S, Se and Te) is preferably more than 0 to 90%, more preferably 10 to 85%, and even more preferably 20 to 80%. When S, Se, and Te are not contained, it is difficult to vitrify. On the other hand, if the total amount of S, Se and Te is too large, the weather resistance may be reduced.
 なお、カルコゲン元素としては、環境面からS、又はTeを選択することが好ましい。 As the chalcogen element, it is preferable to select S or Te from an environmental point of view.
 カルコゲナイドガラスは、有毒物質であるAs、Cd、Tl及びPbを実質的に含有しないことが好ましい。このようにすれば、環境面への影響を最小限に抑えることができる。ここで、「実質的に含有しない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入をも排除するものではない。客観的には、各成分の含有量が1000ppm未満を指す。 It is preferable that the chalcogenide glass does not substantially contain toxic substances As, Cd, Tl and Pb. In this way, the impact on the environment can be minimized. Here, “substantially not contained” means that it is not intentionally contained in the raw material, and does not exclude inclusion of an impurity level. Objectively, the content of each component is less than 1000 ppm.
 上記のような組成を有するガラスは、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上、45%以上、特に50%以上になりやすい。 ガ ラ ス The glass having the above composition tends to have a maximum transmittance of 40% or more, 45% or more, particularly 50% or more in a wavelength range of 3 to 12 μm at a thickness of 1 mm.
 また、カルコゲナイドガラスの熱膨張係数は0~150℃の温度範囲で250×10-7/℃以下、220×10-7/℃以下、200×10-7/℃以下、180×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、温度変化により変形しやすく、集光能力が低下して、センサの感度が低下するおそれがある。熱膨張係数の下限は特に限定されないが、現実的には、50×10-7/℃以上である。 The thermal expansion coefficient of the chalcogenide glass is 250 × 10 −7 / ° C. or less, 220 × 10 −7 / ° C. or less, 200 × 10 −7 / ° C. or less, 180 × 10 −7 / ° C. in a temperature range of 0 to 150 ° C. It is preferable that the temperature is not higher than ° C. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced. The lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 × 10 −7 / ° C. or more.
 赤外光透過率の向上を目的として、窓材2の表面(光入射面または光出射面)に、反射防止膜を形成してもよい。 防止 An anti-reflection film may be formed on the surface of the window material 2 (the light incident surface or the light emitting surface) for the purpose of improving the infrared light transmittance.
 反射防止膜の構造としては、高屈折率層と低屈折率層が交互に積層された多層膜が挙げられる。反射防止膜を構成する材質としては、Y、Al、SiO、SiO、MgO、TiO、TiO、Ti、CeO、Bi、HfO、Nb、La、Ta、Gd、WO等の酸化物、水素化炭素、ダイヤモンドライクカーボン(DLC)、Ge、Si、ZnS、ZnSe、As、AsSe、PbF、テルル化金属、フッ化金属(MgF、CaF,BaF等)が好ましい。なお、屈折率層の材質は、樹脂でもよく、例えばオレフィン系樹脂等を用いることができる。反射防止膜としては多層膜に限られるものではなく、単層膜を使用することもできる。 Examples of the structure of the antireflection film include a multilayer film in which high refractive index layers and low refractive index layers are alternately laminated. Materials constituting the antireflection film include Y 2 O 3 , Al 2 O 3 , SiO, SiO 2 , MgO, TiO, TiO 2 , Ti 2 O 3 , CeO 2 , Bi 2 O 3 , HfO 2 , Nb 2 O 5, La 2 O 3, Ta 2 O 5, Gd 2 O 3, oxides such as WO 3, hydrogenated carbon, diamond-like carbon (DLC), Ge, Si, ZnS, ZnSe, As 2 S 3, As 2 Se 3 , PbF 2 , metal telluride, metal fluoride (MgF 2 , CaF 2 , BaF 2, etc.) are preferred. The material of the refractive index layer may be a resin, and for example, an olefin resin or the like can be used. The antireflection film is not limited to a multilayer film, but may be a single-layer film.
 窓材2の形状は、特に限定されないが、集光能力を考慮すると、両凸形状(例えば球状)、平凸形状、メニスカス形状等のレンズ形状であることが好ましい。 (4) The shape of the window material 2 is not particularly limited, but is preferably a lens shape such as a biconvex shape (for example, a spherical shape), a planoconvex shape, or a meniscus shape in consideration of light-collecting ability.
 次に、窓材2の製造方法について説明する。 Next, a method for manufacturing the window material 2 will be described.
 上記のガラス組成となるように、原料を混合し、原料バッチを得る。次に、石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管する。 原料 Mix the raw materials so that the above glass composition is obtained, and obtain a raw material batch. Next, the quartz glass ampule is evacuated while being heated, and then the raw material batch is put in. The quartz glass ampule is sealed with an oxygen burner while evacuating.
 原料としては、元素原料(Te、Ge、Ga等)を用いてもよく、化合物原料(GeTe、GeTe、GaTe等)を用いても良い。また、これらを併用することも可能である。 As a raw material, an elemental raw material (Te, Ge, Ga, or the like) may be used, or a compound raw material (GeTe, GeTe 2 , Ga 2 Te 3, or the like) may be used. These can also be used in combination.
 次に、封管された石英ガラスアンプルを溶融炉内で10~80℃/時間の速度で650~1000℃まで昇温後、6~12時間保持する。保持時間中、必要に応じて、石英ガラスアンプルの上下を反転し、溶融物を攪拌する。 Next, the sealed quartz glass ampule is heated in a melting furnace at a rate of 10 to 80 ° C./hour up to 650 to 1000 ° C., and held for 6 to 12 hours. During the holding time, if necessary, the quartz glass ampule is turned upside down to stir the melt.
 その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することによりガラス母材を得る。 After that, the quartz glass ampule is taken out of the melting furnace and rapidly cooled to room temperature to obtain a glass base material.
 続いて、得られたガラス母材を所定形状(円盤状、レンズ状等)に加工する。 Subsequently, the obtained glass base material is processed into a predetermined shape (a disk shape, a lens shape, or the like).
 必要に応じて、所定形状に加工したガラス母材の片面又は両面に、反射防止膜を形成させ窓材2を得る。反射防止膜の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。 (4) If necessary, an antireflection film is formed on one or both sides of the glass base material processed into a predetermined shape to obtain the window material 2. Examples of the method for forming the antireflection film include a vacuum deposition method, an ion plating method, and a sputtering method.
 なお、ガラス母材に反射防止膜を形成した後、ガラス母材を所定形状に加工しても構わない。ただし、加工工程において反射防止膜の剥離が生じやすくなるため、特段の事情がない限り、ガラス母材を所定形状に加工した後に、反射防止膜を形成することが好ましい。 After the antireflection film is formed on the glass base material, the glass base material may be processed into a predetermined shape. However, since the antireflection film is likely to be peeled off in the processing step, it is preferable to form the antireflection film after processing the glass base material into a predetermined shape unless otherwise specified.
 (支持部材3)
 支持部材3の材質は、金属、セラミックスのいずれでも構わないが、加工性を考慮するとハステロイ(登録商標)、インコネル(登録商標)、SUS等の金属であることが好ましい。
(Support member 3)
The material of the support member 3 may be either a metal or a ceramic, but is preferably a metal such as Hastelloy (registered trademark), Inconel (registered trademark), or SUS in consideration of workability.
 支持部材3の熱膨張係数は0~150℃の温度範囲において250×10-7/℃以下、220×10-7/℃以下、200×10-7/℃以下、180×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、温度変化により変形しやすく、集光能力が低下して、センサの感度が低下するおそれがある。熱膨張係数の下限は特に限定されないが、現実的には、50×10-7/℃以上である。 The coefficient of thermal expansion of the support member 3 is 250 × 10 −7 / ° C. or less, 220 × 10 −7 / ° C. or less, 200 × 10 −7 / ° C. or less, 180 × 10 −7 / ° C. in a temperature range of 0 to 150 ° C. The following is preferred. If the coefficient of thermal expansion is too large, it is likely to be deformed due to a change in temperature, and the light-gathering ability may be reduced, and the sensitivity of the sensor may be reduced. The lower limit of the coefficient of thermal expansion is not particularly limited, but is actually 50 × 10 −7 / ° C. or more.
 (2)第2の実施形態
 図2Aは本発明の第2の実施形態に係る光学部品を示す模式的平面図であり、図2Bは本発明の第2の実施形態に係る光学部品のB-B断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第2の実施形態では、さらに、側壁部3cの周囲に突起部3dが存在する点である。突起部3dを設けることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。
(2) Second Embodiment FIG. 2A is a schematic plan view showing an optical component according to a second embodiment of the present invention, and FIG. 2B is a cross-sectional view of an optical component according to a second embodiment of the present invention. It is a typical sectional view showing B section. The optical component according to the second embodiment is different from the optical component according to the first embodiment in that a projection 3d is further provided around the side wall 3c. Providing the protrusion 3d makes it easier to fix the support member 3 in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
 (3)第3の実施形態
 図3Aは本発明の第3の実施形態に係る光学部品を示す模式的平面図であり、図3Bは本発明の第3の実施形態に係る光学部品のC-C断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第3の実施形態では、側壁部3cが角筒形状である点である。側壁部3cを角筒形状にすることにより、支持部材3をガスセンサ内に固定しやすくなる。また、窓材2と支持部材3の光軸を合わせやすくなる。
(3) Third Embodiment FIG. 3A is a schematic plan view showing an optical component according to a third embodiment of the present invention, and FIG. 3B is a diagram illustrating an optical component according to a third embodiment of the present invention. It is a typical sectional view showing C section. The difference from the optical component according to the first embodiment is that, in the third embodiment, the side wall 3c has a rectangular cylindrical shape. By forming the side wall portion 3c in the shape of a rectangular tube, the support member 3 can be easily fixed in the gas sensor. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
 (4)第4の実施形態
 図4Aは本発明の第4の実施形態に係る光学部品を示す模式的平面図であり、図4Bは本発明の第4の実施形態に係る光学部品のD-D断面を示す模式的断面図である。第1の実施形態に係る光学部品との違いは、第4の実施形態では、さらに、側壁部の一部に切り欠き3eが存在している点である。ガスセンサ内の所定の位置に切り欠き3eに対応する突起部を設けると、その突起部に切り欠き3eを嵌め込めるため、支持部材3の位置決めが容易になる。また、窓材2と支持部材3の光軸を合わせやすくなる。
(4) Fourth Embodiment FIG. 4A is a schematic plan view showing an optical component according to a fourth embodiment of the present invention, and FIG. 4B is a drawing illustrating an optical component according to a fourth embodiment of the present invention. It is a typical sectional view showing D section. The difference from the optical component according to the first embodiment is that, in the fourth embodiment, a notch 3e is further present in a part of the side wall portion. When a projection corresponding to the notch 3e is provided at a predetermined position in the gas sensor, the notch 3e can be fitted into the projection, so that the positioning of the support member 3 becomes easy. Further, it becomes easy to align the optical axis of the window member 2 with the optical axis of the support member 3.
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施することができる。 The present invention is not limited to the above embodiment, and can be implemented in various other forms without departing from the gist of the present invention.
 1 光学部品
 2 窓材
 3 支持部材
 3a 開口部
 3b 開口部
 3c 側壁部
 3d 突起部
 3e 切り欠き
DESCRIPTION OF SYMBOLS 1 Optical component 2 Window material 3 Support member 3a Opening 3b Opening 3c Side wall 3d Projection 3e Notch

Claims (9)

  1.  カルコゲナイドガラスからなる窓材と、窓材を支持する支持部材とを備えていることを特徴とする光学部品。 (4) An optical component comprising: a window member made of chalcogenide glass; and a support member for supporting the window member.
  2.  支持部材が、先端側及び基端側に開口部を有する筒状の側壁部を備えているキャップ部材であり、窓材がキャップ部材の開口部を覆うように固定されていることを特徴とする請求項1に記載の光学部品。 The support member is a cap member having a cylindrical side wall having an opening at the distal end side and the base end side, and the window material is fixed so as to cover the opening of the cap member. The optical component according to claim 1.
  3.  窓材が、レンズ形状であることを特徴とする請求項1又は2に記載の光学部品。 (3) The optical component according to (1) or (2), wherein the window material has a lens shape.
  4.  カルコゲナイドガラスが、組成として、モル%で、Ge+Ga+Sb+Bi+Sn+In+Ag+Si 0超~70%、S+Se+Te 0超~90%を含有することを特徴とする請求項1~3のいずれかに記載の光学部品。 4. The optical component according to claim 1, wherein the chalcogenide glass contains Ge + Ga + Sb + Bi + Sn + In + Ag + Si 0 to 70% and S + Se + Te 0 to 90% by mole% as a composition.
  5.  カルコゲナイドガラスが、厚み1mmにて波長3~12μmの範囲で最大透過率が40%以上であることを特徴とする請求項1~4のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 4, wherein the chalcogenide glass has a maximum transmittance of 40% or more in a wavelength range of 3 to 12 µm at a thickness of 1 mm.
  6.  カルコゲナイドガラスが、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることを特徴とする請求項1~5のいずれかに記載の光学部品。 6. The optical component according to claim 1, wherein the chalcogenide glass has a thermal expansion coefficient of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C.
  7.  窓材の表面に反射防止膜が形成されていることを特徴とする請求項1~6のいずれかに記載の光学部品。 (7) The optical component according to any one of (1) to (6), wherein an antireflection film is formed on a surface of the window material.
  8.  支持部材が、0~150℃の温度範囲で熱膨張係数が250×10-7/℃以下であることを特徴とする請求項1~7のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 7, wherein the support member has a coefficient of thermal expansion of 250 × 10 −7 / ° C. or less in a temperature range of 0 to 150 ° C.
  9.  光学センサ用途に使用されることを特徴とする請求項1~8のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 8, which is used for an optical sensor.
PCT/JP2019/026396 2018-07-25 2019-07-03 Optical component WO2020022002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139109A JP2020016519A (en) 2018-07-25 2018-07-25 Optical component
JP2018-139109 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022002A1 true WO2020022002A1 (en) 2020-01-30

Family

ID=69182185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026396 WO2020022002A1 (en) 2018-07-25 2019-07-03 Optical component

Country Status (2)

Country Link
JP (1) JP2020016519A (en)
WO (1) WO2020022002A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7538476B2 (en) 2020-11-13 2024-08-22 日本電気硝子株式会社 Optical member and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077462A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2005537473A (en) * 2002-09-02 2005-12-08 キネティック リミテッド Hermetically sealed
JP2015521148A (en) * 2012-04-20 2015-07-27 ショット コーポレーションSchott Corporation Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra
US20160073042A1 (en) * 2013-05-06 2016-03-10 Irlynx Compact human presence detector
WO2018083941A1 (en) * 2016-11-02 2018-05-11 日本電気硝子株式会社 Optical cap component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077462A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2005537473A (en) * 2002-09-02 2005-12-08 キネティック リミテッド Hermetically sealed
JP2015521148A (en) * 2012-04-20 2015-07-27 ショット コーポレーションSchott Corporation Glass that corrects chromatic and thermooptic aberrations of lenses that transmit in the near-infrared, mid-infrared and far-infrared spectra
US20160073042A1 (en) * 2013-05-06 2016-03-10 Irlynx Compact human presence detector
WO2018083941A1 (en) * 2016-11-02 2018-05-11 日本電気硝子株式会社 Optical cap component

Also Published As

Publication number Publication date
JP2020016519A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP7519019B2 (en) Chalcogenide Glass Materials
US10065881B2 (en) Infrared transmitting glass
WO2020105719A1 (en) Chalcogenide glass lens
JP2000356704A (en) Formation of reflection preventing film and optical device
JP2017120285A (en) Near-infrared cut filter
WO2020022002A1 (en) Optical component
JPWO2018025883A1 (en) Glass substrate, semiconductor device and display device
JP2024074945A (en) Infrared transmission glass
US20210230046A1 (en) Optical cap component
US7313292B2 (en) Optical component using optical transmission element joining metal holder
JP7058825B2 (en) Infrared transmissive glass
WO2020175402A1 (en) Infrared-transmitting glass
JP6987364B2 (en) Optical cap parts
JP4091773B2 (en) Optical device
JP2008174440A (en) Glass for use as substrate
JP4756337B2 (en) Cover glass for solid-state image sensor
JP2012082085A (en) Glass
JP2010001167A (en) Infrared transmitting glass
WO2008075546A1 (en) Glass for substrate
KR101201384B1 (en) Cover glass for solid image pickup device and process for producing the same
WO2023095900A1 (en) Infrared-transmitting glass
JP2003040648A (en) Optical device
JP2023000285A (en) Infrared transmitting glass
JP2022169294A (en) Infrared transmitting glass
JPH04136901A (en) Optical parts made of silicon for infrared transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842086

Country of ref document: EP

Kind code of ref document: A1