WO2020021735A1 - Resin-coated metallic pigment - Google Patents
Resin-coated metallic pigment Download PDFInfo
- Publication number
- WO2020021735A1 WO2020021735A1 PCT/JP2018/043509 JP2018043509W WO2020021735A1 WO 2020021735 A1 WO2020021735 A1 WO 2020021735A1 JP 2018043509 W JP2018043509 W JP 2018043509W WO 2020021735 A1 WO2020021735 A1 WO 2020021735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- particles
- raw material
- coated
- metal pigment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/62—Metallic pigments or fillers
- C09C1/64—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/10—Treatment with macromolecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/037—Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
Definitions
- the present invention relates to a resin-coated metal pigment coated with a copolymer.
- Metallic paints are applied to the body and interior parts of automobiles, household appliances such as refrigerators and washing machines, and portable electronic devices such as smartphones and mobile computers, and are mainly used in metallic colors. It is widely used for the purpose of giving a texture.
- the metallic paint is usually compounded with a metal powder having a flat shape (also referred to as a scale shape) such as aluminum, copper, nickel, or titanium, or a metal pigment represented by metal oxide particles such as mica.
- Patent Document 1 the surface of a metal particle having an average particle diameter (d50) selected from a range of 3 to 40 ⁇ m, an average thickness (t) of 0.005 to 2 ⁇ m, and an average aspect ratio of 20 to 2500 is chemically coated. It has been reported that a metal pigment composition containing a living radical polymer composition having a bound or adsorbed compound as an initiator has excellent adhesion.
- Patent Literature 2 discloses an aluminum pigment to which a copolymer obtained by polymerizing a radical polymerizable monomer and / or oligomer having one or more double bonds in a molecule is attached, and the solid content after washing with chloroform is reduced.
- the mass ratio (b) / (a) of (a) the insoluble solid content to (b) the dissolved solid content when dispersed in dimethylformamide is 0.0001 to 0.1, and the polymerization average molecular weight of the dissolved solid content is It has been reported that a resin-attached aluminum pigment having a molecular weight of 1,000 to 30,000 is excellent in adhesion.
- the present inventors have conducted intensive studies to solve the above problems, and as a result, when the resin-coated metal pigment is formed into a coating film by coating the resin-coated metal pigment, the number of particles of a specific size is small. As a result, they found that the adhesiveness was more excellent, and completed the resin-coated metal pigment of the present invention.
- the present invention (1) The resin-coated metal pigment coated with the copolymer was adjusted with an acrylic resin and a solvent so that the average particle diameter was 5 to 15 ⁇ m and the content of the resin-coated metal pigment was 0.8% by mass.
- the ratio of the area of particles having a diameter of 2 ⁇ m or less to the total particle area of an image obtained by photographing a coating film formed in the same manner as described in (1) with a microscope is 33% or less.
- Resin-coated metal pigment (3) A paint, ink or molded article containing the resin-coated metal pigment according to any one of the above. It is about.
- cohesive peeling refers to peeling that occurs not between the substrate and the coating but between the coating layers.
- Example 7 is a micrograph of a coating film of a printed matter obtained in Example 7.
- 16 is a micrograph of a coating film of a printed matter obtained in Comparative Example 5.
- the flat metal particles or metal oxide particles have a surface in which a monomer (B1) of a radically polymerizable unsaturated carboxylic acid or a radically polymerizable phosphoric acid ester has a molecular weight of 3 per molecule.
- the particles according to the embodiment are metal particles or metal oxide particles, and include particles belonging to Groups 1 to 15 of the periodic table except for those in the first and second periods.
- Specific examples include aluminum powder, silver powder, copper powder, bronze powder, zinc powder, stainless steel powder, nickel powder, silicon oxide powder, aluminum oxide powder, mica powder, glass flake, and the like.
- flat (scale-like) metal particles or metal oxide particles are more preferable, aluminum particles are further preferable, and flat (scale-like) aluminum particles are particularly preferable from the viewpoint of glitter.
- the particles in the present invention may be composed of only one kind, or may be a mixture of plural kinds.
- substantially spherical aluminum particles may be ground and processed into flat aluminum particles, or may be processed into flat aluminum particles by a method such as vapor deposition.
- the processing method include a method using a ball mill and a method using vapor deposition.
- Examples include aluminum particles and vapor-deposited aluminum particles having a shape called a cone flake or a silver dollar.
- the average particle diameter of the particles can be calculated as a volume-based median diameter d50 from a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer.
- the average particle size of the particles is preferably in the range of 5 to 15 ⁇ m from the viewpoint of obtaining excellent glitter and adhesion.
- the average thickness of the particles may be 1 ⁇ m or less, may be 0.001 ⁇ m to 1 ⁇ m, may be 0.01 to 0.8 ⁇ m, and may be 0.01 to 0.5 ⁇ m. It may be.
- the average thickness of the particles is obtained by calculating the average value of the thickness of one particle in a region selected at random, and further setting the average value of the thickness of a plurality of particles.
- the term “plurality” refers to 10 or more.
- the ratio R / t between the average particle diameter (R) and the average thickness (t) of the particles is preferably 5 or more, and may be 5 to 3000, 15 to 1500, and 30 to 750. May be. When the R / t of the particles is within the above range, the particles have an appropriate flake shape, so that excellent glitter can be easily obtained.
- the surface roughness Ra of the particles is preferably 20 nm or less, more preferably 15 nm or less.
- the surface roughness Rc of the particles is preferably 80 nm or less, more preferably 60 nm or less. When the surface roughness Ra and / or Rc is equal to or less than the above upper limit, the surface state of the particles becomes smoother, and excellent glitter is easily exhibited.
- the shape of the particles it is preferable that two or more of the numerical ranges of the above-described average particle diameter, average thickness, R / t, Ra, and Rc are satisfied.
- the particles (A) used in the present invention are preferably 34 parts by mass or less, more preferably 33 parts by mass or less when the total amount of the particles of 2 ⁇ m or less is 100 parts by mass.
- the acrylic copolymer (B) is a monomer (B1) of a radical polymerizable unsaturated carboxylic acid or a radical polymerizable phosphate, a radical polymerizable unsaturated aldehyde, and a radical polymerizable unsaturated alcohol.
- the acrylic copolymer according to the embodiment includes a structural unit derived from the monomer (B1) and a structural unit derived from the monomer (B2).
- the monomer (B1) according to the embodiment is a radically polymerizable unsaturated carboxylic acid or a radically polymerizable phosphate, a radically polymerizable unsaturated aldehyde, or a radically polymerizable unsaturated alcohol.
- radical polymerizable unsaturated carboxylic acid examples include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, maleic acid, fumaric acid, unsaturated dicarboxylic acids such as itaconic acid and half esters of these unsaturated dicarboxylic acids. Is mentioned. These monomers can be used alone or in combination of two or more.
- Examples of the radically polymerizable phosphoric acid ester include 2-methacryloyloxyethyl phosphate, di-2-methacryloyloxyethyl phosphate, tri-2-methacryloyloxyethyl phosphate, 2-acryloyloxyethyl phosphate, di-2-acryloyloxyethyl phosphate, Tri-2-acryloyloxyethyl phosphate, bis (2-hydroxyethyl methacrylate) phosphate, diphenyl-2-methacryloyloxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dioctyl-2 -Acryloyloxyethyl phosphate, 2-methacryloyloxypropyl phosphate and the like. These monomers can be used alone or in combination of two or more.
- radical polymerizable unsaturated aldehyde and radical polymerizable unsaturated alcohol include acrolein, methacrolein, 2-ethylacrolein, crotonaldehyde, 2-pentenal, 2-hexenal, 2-heptenal, 2-octenal, -Nonenal, 2-decenal, 2-dodecenal, 2-octadecenal, 3-methyl-2-butenal, 2-ethylbutenal, 2-methylpentenal, 2-ethylpentenal, 2,4-hexadienal, 2,4 -Heptadienal, 2,4-octadienal, cinnamaldehyde, ⁇ -amylcinnamaldehyde, ⁇ -methylcinnamaldehyde, ⁇ -hexylcinnamaldehyde, ⁇ -bromocinnamaldehyde, 2-hydroxycin
- the monomer (B2) according to the embodiment is a monomer containing 3 to 6 (meth) acryloyloxy groups per molecule.
- Monomers containing 3 to 6 (meth) acryloyloxy groups per molecule include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, glycerin triacrylate, ditrimethylolpropanetetramethacrylate, and ditrimethylolpropanetetramethacrylate.
- the molar ratio (B1: B2) of the structural unit derived from the monomer (B1) to the structural unit derived from the monomer (B2) of the acrylic copolymer (B) is determined by the coating resin. From the viewpoint of improving the coating state of, the ratio is preferably 1: 1.5 to 1:10, more preferably 1: 1.5 to 1: 8, and still more preferably 1: 1.5 to 1: 7.
- the polymerization initiator (C) is a radical polymerization initiator that generates at least a radical as an active species, and includes, for example, an azo polymerization initiator.
- the monomer (B1) and the monomer (B2) are subjected to a radical polymerization reaction.
- Examples of the polymerization initiator (C) according to the embodiment include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), and 2,2′-azobis (2, 4-dimethylvaleronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (2-methylpropanenitrile) and the like, and 2,2'-azobis (isobutyroyl) Nitrile) and 2,2'-azobis (2-methylbutyronitrile) are preferred.
- polymerization initiators (C) include peroxides, such as potassium persulfate, sodium persulfate, ammonium persulfate, benzoyl peroxide, lauroyl peroxide, isobutyl peroxide, methyl ethyl ketone peroxide, and the like. Examples include, but are not limited to, di- (t-butyl) cyclohexylidene diperoxide.
- the polymerization initiator (C) may have a polymerization temperature of 60 to 120 ° C. or 70 to 100 ° C.
- the half-life time can be appropriately set depending on the polymerization temperature and the type of the initiator.
- the particles (A) are coated with a coating resin containing an acrylic copolymer (B).
- the coating resin preferably contains the acrylic copolymer (B) in an amount of 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and more preferably 99% by mass or more. Is particularly preferred.
- the coating resin may be composed of only the acrylic copolymer (B).
- the phrase “particle (A) is coated with the coating resin” means a state in which the coating resin is laminated on part or all of the particle surface. It is preferable that the coating resin is directly bonded to the surface of the particle (A). Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond. Since the coating resin is bonded to the surface of the particles (A), the coating resin can be hardly peeled off from the particles (A).
- Resin content is preferably 0.05% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, based on 100% by mass of the total of the particle content and the coating resin content.
- the mass [g] of the acrylic copolymer (B) per the total surface area [m 2 ] of the particles (A) is appropriately set according to the surface area of the metal pigment. It is.
- the mass of the acrylic copolymer (B) per the total surface area of the particles is within the appropriate range, the balance between the glitter of the particles (A) and the adhesion of the coating resin to the coating resin is preferable.
- the monomer (B1) can be a starting point of polymerization of the acrylic copolymer (B)
- the mass of the monomer (B1) per the total surface area of the particles (A) is within an appropriate range. It is believed that the radical polymerization on the surface of the particles proceeds in a more uniform state between the regions. As a result, a coating resin having a smooth and uniform thickness can be obtained.
- the total surface area of the particles (A) can be calculated from the specific surface area of the particles measured using a specific surface area meter and the mass of the particles (A).
- the coating resin may have resin particles.
- the resin particles according to the embodiment can be formed by radical polymerization of the copolymer (B) on the particles (A), and can be a hemispherical copolymer.
- the resin-coated metal pigment according to the embodiment has an average particle size of 5 to 15 ⁇ m, and a paint prepared with an acrylic resin and a solvent so that the content of the resin-coated metal pigment is 0.8% by mass.
- This is a resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 ⁇ m or less to the total particle area is 34% or less per image obtained by photographing the coating film dried and dried with a microscope.
- the resin-coated pigment having better adhesion preferably has an area ratio of particles having a diameter of 2 ⁇ m or less to a total particle area of 33% or less per image obtained by photographing the coating film with a microscope.
- particles (A) from which particles having a diameter of 2 ⁇ m or less have been removed in advance by classification or resin (A) prepared using particles (A) from which particles having a diameter of 2 ⁇ m or less have not been removed You may classify and produce a coating metal pigment. Among them, it is preferable to use particles (A) from which particles having a diameter of 2 ⁇ m or less have been removed in advance.
- any of conventionally known methods can be used for the classification, and a gravity classification method, an inertial classification method, and a centrifugal classification method can be used under dry and wet methods. Among them, it is preferable to classify the particles (A) before being coated with the coating resin by any of the above classification methods under a dry system from the viewpoint of production cost.
- the resin-coated metal pigment of the embodiment can be used as a paint or an ink.
- a paint or ink containing the resin metal pigment of the embodiment can be provided.
- the paint include a powder paint, a paint for furniture painting, a paint for electrical appliance painting, a paint for automobile painting, a paint for plastic painting, and the like.
- the ink include a printing ink and a packaging material printing ink.
- the paint or ink may contain the resin-coated metal pigment of the embodiment, the dispersion medium, and the paint or ink resin.
- the dispersion medium any dispersion medium used for dispersing the pigment can be used, and a conventionally known dispersion medium may be used.
- the dispersion medium include alcohol solvents such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol and isobutyl alcohol; esters such as ethyl acetate, propyl acetate and butyl acetate.
- Solvents such as methyl ethyl ketone, methyl butyl ketone and cyclohexanone; ether ester solvents such as methyl cellosolve acetate and butyl cellosolve acetate; amide solvents such as dimethyl formamide and dimethyl acetamide; aromatic carbonization such as toluene and xylene Hydrogen solvents: aliphatic hydrocarbon solvents such as hexane, heptane, and white spirits; and mixed solvents of aromatic hydrocarbons and aliphatic hydrocarbons such as mineral spirits.
- any resin blended into paint or ink can be used, and a conventionally known resin may be used.
- the resin include an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, an epoxy resin, a vinyl chloride-vinyl acetate copolymer resin, a polyamide resin, a melamine resin, a nitrocellulose resin, and a urethane resin.
- the paint or ink pigment in addition to the resin-coated metal pigment of the embodiment, further contains any color pigment or glitter that is not included in the resin-coated metal pigment of the embodiment and is blended into the paint or ink.
- coloring pigments include phthalocyanine pigments, halogenated phthalocyanine pigments, quinacridone pigments, diketopyrrolopyrrol-based pigments, isoindolinone pigments, azo pigments, azomethine metal complex pigments, indanthrone pigments, and perylene pigments.
- Perinone pigments, anthraquinone pigments, dioxazine pigments, benzimidazolone pigments, condensed azo pigments, triphenylmethane pigments, quinophthalone pigments, anthrapyrimidine pigments, titanium oxide, iron oxide, carbon black, Bismuth vanadate is mentioned.
- the glittering material include aluminum pigments, mica pigments, alumina pigments, and glass flake pigments coated with a metal or metal oxide.
- the paint or ink preferably contains the resin-coated metal pigment in an amount of 0.5 to 50% by mass, more preferably 3 to 40% by mass, and even more preferably 5 to 30% by mass.
- Paints or inks in addition to the resin-coated metal pigment of the embodiment, if necessary, an antioxidant, a preservative, a softener, an ultraviolet absorber, an antioxidant, a light stabilizer, a heat stabilizer, an antistatic agent And other various additives.
- the resin-coated metal pigment of the embodiment is preferably coated with a coating resin containing an acrylic copolymer (B) that has been subjected to a radical polymerization reaction with a polymerization initiator (C).
- a coating resin containing an acrylic copolymer (B) that has been subjected to a radical polymerization reaction with a polymerization initiator (C).
- the monomer (B1) is subjected to a radical polymerization reaction with the monomer ⁇ (B2) using the polymerization initiator (C) according to the embodiment, the obtained acrylic copolymer (B) is obtained.
- the contained coating resin has a smooth and uniform thickness, and the resin-coated metal pigment has good glitter and excellent adhesion.
- Examples of the molded article containing the resin-coated metal pigment according to the embodiment include various molded articles to which a paint or ink containing the resin-coated metal pigment according to the embodiment is applied and decorated, such as a packaging container and various plastic coated articles. , Automobile parts and the like. As another form, there is also a molded article in which the resin-coated metal pigment according to the embodiment is internally added. For example, electric equipment housings, automobile parts, plastic containers, base makeup such as makeup and foundation such as nail polish and eye shadow. And the like.
- the resin-coated metal pigment of the embodiment can be manufactured by a method for manufacturing a resin-coated metal pigment described below.
- the method for producing the resin-coated metal pigment of the embodiment is (I) reacting the particles (A) with the monomer (B1), (Ii) The monomer (B1) or a structure derived therefrom and the monomer (B2) are subjected to a radical polymerization reaction with a polymerization initiator (C) to form an acrylic copolymer on the particles (A). Having a step of forming a polymer (B), The particles (A) are coated with a coating resin containing an acrylic copolymer (B).
- the terminal of the acrylic copolymer (B) may include a structure represented by the following general formula (1) derived from the polymerization initiator (C).
- R1 represents a methyl group
- a group represented by -R2a ⁇ R2a represents an alkyl group having 1 to 8 carbon atoms; And may represent a cyclic structure in which R1 and R2 are bonded to each other.
- the particles (A), the monomer (B1), the monomer (B2) ⁇ and the polymerization initiator (C) are those exemplified in the above ⁇ Resin-coated metal pigment ⁇ . And a detailed description will be omitted.
- the step (i) may be a step of reacting the particle (A) with the monomer (B1) to form a bond between the particle and the monomer.
- Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond.
- the step (i) may be a step of forming a bond between an atom on the outermost surface of the particle (A) and the monomer (B1).
- Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond.
- a structure derived from the monomer (B1) or the monomer (B1) resulting from the reaction is bonded to the surface of the particle (A).
- the monomer (B1) or a structure derived from the monomer (B1) bonded to the surface of the particle (A) can be a starting point for the subsequent radical polymerization.
- the acrylic copolymer (B) can be formed on the surface of the particles (A).
- the acrylic copolymer (B) of the resin-coated metal pigment produced through the steps (i) and (ii) is a structural unit derived from the monomer (B1) from the side of the particles (A). Having structural units derived from the monomer (B2) in this order.
- the reaction can proceed in a reaction solution.
- the reaction solution in the step (i) can contain the particles (A), the monomer (B1), a solvent and / or a dispersion medium, and if necessary, other components.
- the reaction solution in the step (ii) comprises a reaction product of the particles (A) and the monomer (B1), a polymerization initiator (C), a monomer (B2), a solvent and / or a dispersion medium, Other components can be included as needed.
- Examples of the solvent and / or dispersion medium include organic solvents.
- Examples of the organic solvent include ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone, methyl butyl ketone and cyclohexanone; ether ester solvents such as methyl cellosolve acetate and butyl cellosolve acetate; toluene and xylene And amide solvents such as dimethylformamide and dimethylacetamide, and petroleum solvents such as mineral spirits. These may be used alone or as a mixture of plural kinds of solvents.
- Other components include a chain transfer agent for a radical polymerization reaction.
- the temperature of the reaction solution in step (i) is, for example, about 80 to 120 ° C. ⁇
- the temperature of the reaction solution in the step (ii) is a reaction temperature of a radical polymerization reaction, and may be, for example, 60 to 120 ° C or 70 to 100 ° C.
- the steps (i) and (ii) are performed to produce the resin-coated metal pigment of the embodiment.
- the obtained acrylic copolymer (B) is obtained.
- the contained coating resin has a smooth and uniform thickness, and the resin-coated metal pigment has good glitter and excellent adhesion.
- the resin-coated aluminum pigment according to the present invention was produced as follows.
- Raw material A 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 ⁇ m, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-1) which was a paste-like bright material.
- the resin coating amount (resin solid content / resin coated pigment solid content) of the particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-2) as a paste-like bright material.
- the resin coating amount of these particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-3) as a paste-like bright material.
- the resin coating amount of these particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the reaction solution was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-4) as a paste-like bright material.
- the resin coating amount of these particles was 2%.
- Raw material H 111.33 g of aluminum paste ZQ-407 (manufactured by Shogaoka Co., Ltd., average particle diameter 7 ⁇ m, metal content 74.7% by mass), and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an inert gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the reaction solution was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-5) as a paste-like bright material.
- the resin coating amount of these particles was 2%.
- Raw material A 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 ⁇ m, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material I: 0.01 g of 2,2′-azobis (2-isobutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-6) as a paste-like bright material. The resin coating amount of the particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-isobutyronitrile
- raw material B mineral spirit. 5% by weight
- polymerized at 100 ° C. for 1 hour After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-7) as a paste-like bright material.
- the resin coating amount of the particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-9) as a paste-like glittering material.
- the resin coating amount of these particles was 2%.
- raw material D 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution
- raw material E 0.01 g of 2,2′-azobis (2-methylbutyronitrile
- raw material B mineral spirit. 0.5% by weight solution
- polymerized 100 ° C. for 1 hour.
- the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-10) as a paste-like bright material.
- the resin coating amount of these particles was 2%.
- IPA isopropyl alcohol
- the viscosity-adjusted ink was printed on a one-side coated paper (DMSC, 270 g / m2 in U.S.P.) by a gravure proofing machine equipped with a gravure plate having a depth of 30 ⁇ m, and dried at 40 to 50 ° C. to obtain a printed material.
- the printed materials were (Examples 1 to 7) and (Comparative Examples 1 to 3).
- NC resin nitrified cotton resin (nitrocellulose resin)
- IPA isopropyl alcohol plasticizer: ATBC (Taoka Chemical Industry)
- Example 7 had very high adhesion as compared with the printed materials of Comparative Examples 1 to 3.
- the aluminum paste (X-7) used in Example 7 was obtained by removing fine particles of the aluminum paste (X-9) used in Comparative Example 2.
- metal particles (X-1 to 6) having a small content of fine particles were coated with the resin. It became clear that the adhesiveness was increased in the same manner as in.
- the area ratio of the area of the particles having a diameter of 2 ⁇ m or less to the particle area was measured.
- the photographed image area is adjusted so that the field of view is in the range of 0.20 to 0.40 mm 2 , and the automatic area ratio measurement method is to measure each different printed part 20 times or more to eliminate measurement errors, and average The value was determined.
- the total particle area indicates the area of all the particles obtained from the automatic area measurement
- the area of the particles having a diameter of 2 ⁇ m or less indicates the area of only the particles calculated to be 2 ⁇ m or less from the result of the automatic area measurement.
- Printed materials on which the coating films were formed were named (Examples 8 to 14) and (Comparative Examples 4 to 6), and the results are shown in Table 2.
- FIGS. 1 and 2 show images obtained by photographing the coating films in the printed materials obtained in Example 8 and Comparative Example 5.
- FIG. 1 and 2 show images obtained by photographing the coating films in the printed materials obtained in Example 8 and Comparative Example 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Paints Or Removers (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Aluminum pigments not having undergone any surface treatment are high in metallic sensation and appearance attractiveness, but have a drawback in that coating materials or printing inks containing such aluminum pigment give coating films in which adhesion between the aluminum pigment and the resin is low and from which a large amount of aluminum pigment particles separate in an adhesion test based on peeling with cellophane adhesive tape. Thus, the coating films are insufficient in satisfying the adhesion properties required of printed matter produced with inks containing metallic pigments. It was found that a resin-coated metallic pigment having a very small average particle diameter gave a coating material which gave coating films wherein the smaller the number of specific particles contained therein, the higher the adhesion. The resin-coated metallic pigment of the present invention has been thus completed.
Description
本発明は、共重合体で被覆された樹脂被覆金属顔料に関する。
(4) The present invention relates to a resin-coated metal pigment coated with a copolymer.
メタリック塗料は、自動車の車体や内装部品、及び冷蔵庫・洗濯機に代表される家庭用電化製品や、スマートフォン、モバイルコンピュ-タ-に代表される携帯用電子機器等に塗装され、主にメタリック調の質感を付与する目的で、広く使用されている。メタリック塗料には、通常、扁平形状(鱗片形状ともいう)を有するアルミニウム・銅・ニッケル・チタンなどの金属粉や、マイカ等の金属酸化物粒子等に代表されるメタリック顔料が配合される。
Metallic paints are applied to the body and interior parts of automobiles, household appliances such as refrigerators and washing machines, and portable electronic devices such as smartphones and mobile computers, and are mainly used in metallic colors. It is widely used for the purpose of giving a texture. The metallic paint is usually compounded with a metal powder having a flat shape (also referred to as a scale shape) such as aluminum, copper, nickel, or titanium, or a metal pigment represented by metal oxide particles such as mica.
従来より、メタリック塗料用、印刷インキ用、プラスチック練り込み用等に、メタリック感を重視する美粧効果を得る目的でアルミニウム顔料が使用されている。
ア ル ミ ニ ウ ム Conventionally, aluminum pigments have been used for metallic paints, printing inks, kneading plastics, etc. for the purpose of obtaining a cosmetic effect emphasizing the metallic feeling.
しかしながら、何らの表面処理も施されていないアルミニウム顔料は、金属感や意匠性が高い反面、塗料や印刷インキにした場合、塗膜中で樹脂との密着性が低く、例えばセロハンテープ剥離による密着性試験を行った場合に、多量に剥離してしまうという欠点を有している。
However, aluminum pigments that have not been subjected to any surface treatment have a high metallic appearance and design, but when used in paints and printing inks, have low adhesion to the resin in the coating film, for example, adhesion by cellophane tape peeling. It has a drawback that a large amount of exfoliation occurs when a performance test is performed.
これらの問題を解決するため、アルミニウム顔料の密着性の改善を図る方法として、アルミニウム顔料に所定の表面処理を施す方法が提案されている。しかし、近年、これらの要求特性がさらに高くなり、密着性が十分であるとは言えない状況である。
を In order to solve these problems, a method of performing a predetermined surface treatment on an aluminum pigment has been proposed as a method for improving the adhesion of the aluminum pigment. However, in recent years, these required characteristics have been further increased, and the situation is that the adhesion cannot be said to be sufficient.
例えば特許文献1では、平均粒径(d50)が3から40μmの範囲、平均厚み(t)が0.005から2μmの範囲、平均アスペクト比が20から2500の範囲から選ばれる金属粒子表面に化学結合もしくは吸着した化合物を開始剤とするリビングラジカル重合体組成物を含有する金属顔料組成物が、密着性に優れることが報告されている。
For example, in Patent Document 1, the surface of a metal particle having an average particle diameter (d50) selected from a range of 3 to 40 μm, an average thickness (t) of 0.005 to 2 μm, and an average aspect ratio of 20 to 2500 is chemically coated. It has been reported that a metal pigment composition containing a living radical polymer composition having a bound or adsorbed compound as an initiator has excellent adhesion.
また特許文献2では、分子内に1個以上の二重結合を有するラジカル重合性モノマー及び/またはオリゴマーを重合して得られる共重合体が付着したアルミニウム顔料を含み、クロロホルム洗浄後の固形分をジメチルホルムアミドに分散させた際の(a)不溶固形分と(b)溶解固形分との質量比(b)/(a)が0.0001~0.1であり、溶解固形分の重合平均分子量が1000以上30000以下である樹脂付着アルミニウム顔料が、密着性に優れることが報告がされている。
Patent Literature 2 discloses an aluminum pigment to which a copolymer obtained by polymerizing a radical polymerizable monomer and / or oligomer having one or more double bonds in a molecule is attached, and the solid content after washing with chloroform is reduced. The mass ratio (b) / (a) of (a) the insoluble solid content to (b) the dissolved solid content when dispersed in dimethylformamide is 0.0001 to 0.1, and the polymerization average molecular weight of the dissolved solid content is It has been reported that a resin-attached aluminum pigment having a molecular weight of 1,000 to 30,000 is excellent in adhesion.
しかし上記の技術では、昨今の基体との密着レベルの要求特性を満たすには不十分である。
However, the above techniques are not enough to satisfy the recent required characteristics of the level of adhesion to a substrate.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、樹脂被覆金属顔料において、当該樹脂被覆金属顔料を塗料化し塗膜にしたときに、特定サイズの粒子の数が少ないものほど密着性に優れることを見出し、本発明の樹脂被覆金属顔料を完成させるに至った。
The present inventors have conducted intensive studies to solve the above problems, and as a result, when the resin-coated metal pigment is formed into a coating film by coating the resin-coated metal pigment, the number of particles of a specific size is small. As a result, they found that the adhesiveness was more excellent, and completed the resin-coated metal pigment of the present invention.
すなわち、本発明は、
(1)共重合体で被覆された樹脂被覆金属顔料の平均粒子径が5~15μmであり、かつ、当該樹脂被覆金属顔料分が0.8質量%になるようにアクリル樹脂、溶剤で調整した塗料を1ミルのアプリケーターで展色、乾燥した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が34%以下である樹脂被覆金属顔料。
(2)さらに、(1)記載と同様に作成した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が33%以下である請求項1記載の樹脂被覆金属顔料。
(3)前記いずれか記載の樹脂被覆金属顔料を含む塗料、インク又は成形品。
に関するものである。 That is, the present invention
(1) The resin-coated metal pigment coated with the copolymer was adjusted with an acrylic resin and a solvent so that the average particle diameter was 5 to 15 μm and the content of the resin-coated metal pigment was 0.8% by mass. A resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 μm or less to the total particle area is 34% or less per image obtained by applying a 1-mil applicator to paint and drying a dried coating film with a microscope.
(2) The ratio of the area of particles having a diameter of 2 μm or less to the total particle area of an image obtained by photographing a coating film formed in the same manner as described in (1) with a microscope is 33% or less. Resin-coated metal pigment.
(3) A paint, ink or molded article containing the resin-coated metal pigment according to any one of the above.
It is about.
(1)共重合体で被覆された樹脂被覆金属顔料の平均粒子径が5~15μmであり、かつ、当該樹脂被覆金属顔料分が0.8質量%になるようにアクリル樹脂、溶剤で調整した塗料を1ミルのアプリケーターで展色、乾燥した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が34%以下である樹脂被覆金属顔料。
(2)さらに、(1)記載と同様に作成した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が33%以下である請求項1記載の樹脂被覆金属顔料。
(3)前記いずれか記載の樹脂被覆金属顔料を含む塗料、インク又は成形品。
に関するものである。 That is, the present invention
(1) The resin-coated metal pigment coated with the copolymer was adjusted with an acrylic resin and a solvent so that the average particle diameter was 5 to 15 μm and the content of the resin-coated metal pigment was 0.8% by mass. A resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 μm or less to the total particle area is 34% or less per image obtained by applying a 1-mil applicator to paint and drying a dried coating film with a microscope.
(2) The ratio of the area of particles having a diameter of 2 μm or less to the total particle area of an image obtained by photographing a coating film formed in the same manner as described in (1) with a microscope is 33% or less. Resin-coated metal pigment.
(3) A paint, ink or molded article containing the resin-coated metal pigment according to any one of the above.
It is about.
当該樹脂被覆金属顔料を用いて塗膜を形成した際に、密着性が向上し所謂「凝集剥離」を起こしにくくなり基体との密着性が良好であるため、剥離性が少ない樹脂被覆金属顔料、および該樹脂被覆金属顔料を含む塗料、インク、成形品を提供することができる。
When a coating film is formed using the resin-coated metal pigment, the adhesion is improved, so-called "cohesive peeling" is less likely to occur, and the adhesion to the substrate is good, so that the resin-coated metal pigment having less peelability is used. And a paint, ink, and molded article containing the resin-coated metal pigment.
ここで「凝集剥離」とは、基体と塗膜の界面ではなく塗膜層間で起こる剥離のことを指す。
Here, “cohesive peeling” refers to peeling that occurs not between the substrate and the coating but between the coating layers.
≪樹脂被覆金属顔料≫
本実施形態の樹脂被覆金属顔料は、扁平形状の金属粒子または金属酸化物粒子表面が、ラジカル重合性不飽和カルボン酸又はラジカル重合性リン酸エステルの単量体(B1)と、1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体(B2)とを、重合開始剤(C)にてラジカル重合反応させたアクリル系共重合体(B)を含有する被覆樹脂で被覆された、樹脂被覆金属顔料である。 ≪Resin coated metal pigment≫
In the resin-coated metal pigment of the present embodiment, the flat metal particles or metal oxide particles have a surface in which a monomer (B1) of a radically polymerizable unsaturated carboxylic acid or a radically polymerizable phosphoric acid ester has a molecular weight of 3 per molecule. Coated with a coating resin containing an acrylic copolymer (B) obtained by radical polymerization of up to six monomers (B2) containing a (meth) acryloyloxy group with a polymerization initiator (C) And a resin-coated metal pigment.
本実施形態の樹脂被覆金属顔料は、扁平形状の金属粒子または金属酸化物粒子表面が、ラジカル重合性不飽和カルボン酸又はラジカル重合性リン酸エステルの単量体(B1)と、1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体(B2)とを、重合開始剤(C)にてラジカル重合反応させたアクリル系共重合体(B)を含有する被覆樹脂で被覆された、樹脂被覆金属顔料である。 ≪Resin coated metal pigment≫
In the resin-coated metal pigment of the present embodiment, the flat metal particles or metal oxide particles have a surface in which a monomer (B1) of a radically polymerizable unsaturated carboxylic acid or a radically polymerizable phosphoric acid ester has a molecular weight of 3 per molecule. Coated with a coating resin containing an acrylic copolymer (B) obtained by radical polymerization of up to six monomers (B2) containing a (meth) acryloyloxy group with a polymerization initiator (C) And a resin-coated metal pigment.
<粒子(A)>
実施形態に係る粒子は、金属粒子または金属酸化物粒子であり、元素の周期表1~15族に属するもののうち、第1周期及び第2周期のものを除いたものが挙げられる。具体的には、アルミニウム粉、銀粉、銅粉、ブロンズ粉、亜鉛粉、ステンレス粉、ニッケル粉、酸化ケイ素粉、酸化アルミニウム粉、マイカ粉、ガラスフレークなどを例示できる。これらのなかでは、扁平形状(鱗片形状)の金属粒子または金属酸化物粒子がより好ましく、アルミニウム粒子がさらに好ましく、光輝性の観点から扁平形状(鱗片形状)のアルミニウム粒子が特に好ましい。なお、本発明における粒子は、1種のみからなっていてもよいし、複数種を混合していてもよい。 <Particle (A)>
The particles according to the embodiment are metal particles or metal oxide particles, and include particles belonging to Groups 1 to 15 of the periodic table except for those in the first and second periods. Specific examples include aluminum powder, silver powder, copper powder, bronze powder, zinc powder, stainless steel powder, nickel powder, silicon oxide powder, aluminum oxide powder, mica powder, glass flake, and the like. Among them, flat (scale-like) metal particles or metal oxide particles are more preferable, aluminum particles are further preferable, and flat (scale-like) aluminum particles are particularly preferable from the viewpoint of glitter. The particles in the present invention may be composed of only one kind, or may be a mixture of plural kinds.
実施形態に係る粒子は、金属粒子または金属酸化物粒子であり、元素の周期表1~15族に属するもののうち、第1周期及び第2周期のものを除いたものが挙げられる。具体的には、アルミニウム粉、銀粉、銅粉、ブロンズ粉、亜鉛粉、ステンレス粉、ニッケル粉、酸化ケイ素粉、酸化アルミニウム粉、マイカ粉、ガラスフレークなどを例示できる。これらのなかでは、扁平形状(鱗片形状)の金属粒子または金属酸化物粒子がより好ましく、アルミニウム粒子がさらに好ましく、光輝性の観点から扁平形状(鱗片形状)のアルミニウム粒子が特に好ましい。なお、本発明における粒子は、1種のみからなっていてもよいし、複数種を混合していてもよい。 <Particle (A)>
The particles according to the embodiment are metal particles or metal oxide particles, and include particles belonging to Groups 1 to 15 of the periodic table except for those in the first and second periods. Specific examples include aluminum powder, silver powder, copper powder, bronze powder, zinc powder, stainless steel powder, nickel powder, silicon oxide powder, aluminum oxide powder, mica powder, glass flake, and the like. Among them, flat (scale-like) metal particles or metal oxide particles are more preferable, aluminum particles are further preferable, and flat (scale-like) aluminum particles are particularly preferable from the viewpoint of glitter. The particles in the present invention may be composed of only one kind, or may be a mixture of plural kinds.
実施形態に係る粒子は、従来公知の方法で製造されたものを広く用いることができる。扁平形状のアルミニウム粒子を用いる場合には、略球状のアルミニウム粒子を磨砕・加工して扁平形状のアルミニウム粒子にしてもよく、蒸着等の方法により扁平形状のアルミニウムに加工してもよい。加工方法としては、ボ-ルミルを用いる方法や蒸着を利用する方法等が挙げられる。コ-ンフレ-クまたはシルバ-ダラーと呼ばれる形状のアルミニウム粒子や蒸着アルミニウム粒子等が例示される。
粒子 As the particles according to the embodiment, those manufactured by a conventionally known method can be widely used. When flat aluminum particles are used, substantially spherical aluminum particles may be ground and processed into flat aluminum particles, or may be processed into flat aluminum particles by a method such as vapor deposition. Examples of the processing method include a method using a ball mill and a method using vapor deposition. Examples include aluminum particles and vapor-deposited aluminum particles having a shape called a cone flake or a silver dollar.
以下、粒子の形状について説明する。通常、顔料としての粒子は1個のみで提供されることは想定されないため、下記に示す値は、提供される複数個の粒子を対象にして求められた平均値であってもよい。
(4) Hereinafter, the shape of the particles will be described. Usually, it is not assumed that only one particle is provided as a pigment, so the value shown below may be an average value obtained for a plurality of provided particles.
粒子の平均粒径は、レ-ザ-回折式粒度分布測定装置により測定された体積基準の累積粒度分布から、体積基準メジアン径d50として算出可能である。
The average particle diameter of the particles can be calculated as a volume-based median diameter d50 from a volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer.
本発明において、粒子の平均粒径は、優れた光輝性及び密着性が得られるとの観点から、5~15μmの範囲であることが好ましい。
に お い て In the present invention, the average particle size of the particles is preferably in the range of 5 to 15 μm from the viewpoint of obtaining excellent glitter and adhesion.
粒子が扁平形状である場合、粒子の平均厚みは、1μm以下であってよく、0.001μm~1μmであってよく、0.01~0.8μmであってよく、0.01~0.5μmであってよい。粒子の平均厚みは、1個の粒子に対して、無作為に選定された領域における厚みの平均値をもとめ、そこからさらに複数個の粒子の厚みについての平均値とする。ここで複数個とは10個以上とする。
When the particles have a flat shape, the average thickness of the particles may be 1 μm or less, may be 0.001 μm to 1 μm, may be 0.01 to 0.8 μm, and may be 0.01 to 0.5 μm. It may be. The average thickness of the particles is obtained by calculating the average value of the thickness of one particle in a region selected at random, and further setting the average value of the thickness of a plurality of particles. Here, the term “plurality” refers to 10 or more.
粒子の平均粒径(R)と平均厚み(t)の比R/tは、5以上であることが好ましく、5~3000であってよく、15~1500であってよく、30~750であってよい。粒子の前記R/tが上記の範囲内であることで、粒子が適度な薄片の形状となるため、優れた光輝性が得られやすい。
The ratio R / t between the average particle diameter (R) and the average thickness (t) of the particles is preferably 5 or more, and may be 5 to 3000, 15 to 1500, and 30 to 750. May be. When the R / t of the particles is within the above range, the particles have an appropriate flake shape, so that excellent glitter can be easily obtained.
粒子の表面粗さRaは、20nm以下が好ましく、15nm以下がより好ましい。粒子の表面粗さRcは、80nm以下が好ましく、60nm以下がより好ましい。前記表面粗さRa及び/又はRcが上記の上限値以下であることにより、粒子の表面状態がより平滑となり、優れた光輝性が発揮されやすい。
表面 The surface roughness Ra of the particles is preferably 20 nm or less, more preferably 15 nm or less. The surface roughness Rc of the particles is preferably 80 nm or less, more preferably 60 nm or less. When the surface roughness Ra and / or Rc is equal to or less than the above upper limit, the surface state of the particles becomes smoother, and excellent glitter is easily exhibited.
粒子の形状に関し、上記の平均粒径、平均厚み、R/t、Ra、Rcの5つの項目の数値範囲のうち、2つ以上の項目の数値範囲を満たしていることが好ましい。
Regarding the shape of the particles, it is preferable that two or more of the numerical ranges of the above-described average particle diameter, average thickness, R / t, Ra, and Rc are satisfied.
また、本発明で用いる粒子(A)は、2μm以下の微粒子が、粒子全量を100質量部としたときに34質量部以下であることが好ましく、33質量部以下であることがさらに好ましい。
は Further, the particles (A) used in the present invention are preferably 34 parts by mass or less, more preferably 33 parts by mass or less when the total amount of the particles of 2 μm or less is 100 parts by mass.
<アクリル系共重合体(B)>
実施形態に係るアクリル系共重合体(B)は、ラジカル重合性不飽和カルボン酸又はラジカル重合性リン酸エステル、ラジカル重合性不飽和アルデヒド、ラジカル重合性不飽和アルコールの単量体(B1)(「単量体(B1)」と省略することがある。)と、1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体(B2)(「単量体(B2)」と省略することがある。)と、のラジカル重合物である。実施形態に係るアクリル系共重合体は、単量体(B1)に由来する構成単位、及び単量体(B2)に由来する構成単位を含む。 <Acrylic copolymer (B)>
The acrylic copolymer (B) according to the embodiment is a monomer (B1) of a radical polymerizable unsaturated carboxylic acid or a radical polymerizable phosphate, a radical polymerizable unsaturated aldehyde, and a radical polymerizable unsaturated alcohol. "Monomer (B1)") and monomer (B2) containing 3 to 6 (meth) acryloyloxy groups per molecule ("monomer (B2)"). May be omitted)). The acrylic copolymer according to the embodiment includes a structural unit derived from the monomer (B1) and a structural unit derived from the monomer (B2).
実施形態に係るアクリル系共重合体(B)は、ラジカル重合性不飽和カルボン酸又はラジカル重合性リン酸エステル、ラジカル重合性不飽和アルデヒド、ラジカル重合性不飽和アルコールの単量体(B1)(「単量体(B1)」と省略することがある。)と、1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体(B2)(「単量体(B2)」と省略することがある。)と、のラジカル重合物である。実施形態に係るアクリル系共重合体は、単量体(B1)に由来する構成単位、及び単量体(B2)に由来する構成単位を含む。 <Acrylic copolymer (B)>
The acrylic copolymer (B) according to the embodiment is a monomer (B1) of a radical polymerizable unsaturated carboxylic acid or a radical polymerizable phosphate, a radical polymerizable unsaturated aldehyde, and a radical polymerizable unsaturated alcohol. "Monomer (B1)") and monomer (B2) containing 3 to 6 (meth) acryloyloxy groups per molecule ("monomer (B2)"). May be omitted)). The acrylic copolymer according to the embodiment includes a structural unit derived from the monomer (B1) and a structural unit derived from the monomer (B2).
実施形態に係る単量体(B1)は、ラジカル重合性不飽和カルボン酸又はラジカル重合性リン酸エステル、ラジカル重合性不飽和アルデヒド、ラジカル重合性不飽和アルコールである。
The monomer (B1) according to the embodiment is a radically polymerizable unsaturated carboxylic acid or a radically polymerizable phosphate, a radically polymerizable unsaturated aldehyde, or a radically polymerizable unsaturated alcohol.
ラジカル重合性不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸、マレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸またはこれら不飽和ジカルボン酸のハーフエステル等が挙げられる。これらの単量体は、1種または2種以上を併用して用いることができる。
Examples of the radical polymerizable unsaturated carboxylic acid include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, maleic acid, fumaric acid, unsaturated dicarboxylic acids such as itaconic acid and half esters of these unsaturated dicarboxylic acids. Is mentioned. These monomers can be used alone or in combination of two or more.
ラジカル重合性リン酸エステルとしては、2-メタクリロイルオキシエチルホスフェート、ジ-2-メタクリロイルオキシエチルホスフェート、トリ-2-メタクリロイルオキシエチルホスフェート、2-アクリロイルオキシエチルホスフェート、ジ-2-アクリロイルオキシエチルホスフェート、トリ-2-アクリロイルオキシエチルホスフェート、ビス(2-ヒドロキシエチルメタクリラート)ホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジブチル-2-メタクリロイルオキシエチルホスフェート、ジオクチル-2-アクリロイルオキシエチルホスフェート、2-メタクリロイルオキシプロピルホスフェート等が挙げられる。これらの単量体は、1種または2種以上を併用して用いることができる。
Examples of the radically polymerizable phosphoric acid ester include 2-methacryloyloxyethyl phosphate, di-2-methacryloyloxyethyl phosphate, tri-2-methacryloyloxyethyl phosphate, 2-acryloyloxyethyl phosphate, di-2-acryloyloxyethyl phosphate, Tri-2-acryloyloxyethyl phosphate, bis (2-hydroxyethyl methacrylate) phosphate, diphenyl-2-methacryloyloxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dioctyl-2 -Acryloyloxyethyl phosphate, 2-methacryloyloxypropyl phosphate and the like. These monomers can be used alone or in combination of two or more.
上記ラジカル重合性不飽和アルデヒドやラジカル重合性不飽和アルコールの一般例としては、アクロレイン、メタクロレイン、2-エチルアクロレイン、クロトンアルデヒド、2-ペンテナール、2-ヘキセナール、2-ヘプテナール、2-オクテナール、2-ノネナール、2-デセナール、2-ドデセナール、2-オクタデセナール、3-メチル-2-ブテナール、2-エチルブテナール、2-メチルペンテナール、2-エチルペンテナール、2,4-ヘキサジエナール、2,4-ヘプタジエナール、2,4-オクタジエナール、シンナムアルデヒド、α-アミルシンナムアルデヒド、α-メチルシンナムアルデヒド、α-ヘキシルシンナムアルデヒド、α-ブロモシンナムアルデヒド、2-ヒドロキシシンナムアルデヒド、2-ニトロシンナムアルデヒド、4-アジドシンナムアルデヒド、4-メトキシシンナムアルデヒド、trans-4-ブロモシンナムアルデヒド、4-ニトロシンナムアルデヒド、4-ジメチルアミノシンナムアルデヒド、4-フルオロシンナムアルデヒド、2-フラルアクロレイン、ゲラニアール、ネラール、シトラール、ファルネサール等が挙げられる。これらの単量体は、1種または2種以上を併用して用いることができる。
General examples of the above-mentioned radical polymerizable unsaturated aldehyde and radical polymerizable unsaturated alcohol include acrolein, methacrolein, 2-ethylacrolein, crotonaldehyde, 2-pentenal, 2-hexenal, 2-heptenal, 2-octenal, -Nonenal, 2-decenal, 2-dodecenal, 2-octadecenal, 3-methyl-2-butenal, 2-ethylbutenal, 2-methylpentenal, 2-ethylpentenal, 2,4-hexadienal, 2,4 -Heptadienal, 2,4-octadienal, cinnamaldehyde, α-amylcinnamaldehyde, α-methylcinnamaldehyde, α-hexylcinnamaldehyde, α-bromocinnamaldehyde, 2-hydroxycinnamaldehyde, 2-nitrocin Namaldehyde, 4-azidocinnamaldehyde, 4-methoxycinnamaldehyde, trans-4-bromocinnamaldehyde, 4-nitrocinnamaldehyde, 4-dimethylaminocinnamaldehyde, 4-fluorocinnamaldehyde, 2-furalacrolein, geranial, Neral, citral, farnesal and the like can be mentioned. These monomers can be used alone or in combination of two or more.
実施形態に係る単量体(B2)は、1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体である。
単 量 体 The monomer (B2) according to the embodiment is a monomer containing 3 to 6 (meth) acryloyloxy groups per molecule.
1分子当たり3~6個の(メタ)アクリロイルオキシ基を含む単量体としては、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタアクリレート、グリセリントリアクリレート、ジトリメチロールプロパンテトラメタアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートや、これら単量体のエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)付加物、或いは、イソシアヌル酸EO変性トリアクリレート等が挙げられる。これらの単量体は、1種または2種以上を併用して用いることができる。
Monomers containing 3 to 6 (meth) acryloyloxy groups per molecule include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, glycerin triacrylate, ditrimethylolpropanetetramethacrylate, and ditrimethylolpropanetetramethacrylate. Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and ethylene oxide (EO) and / or propylene oxide (PO) adducts of these monomers, or isocyanuric acid EO Modified triacrylate and the like can be mentioned. These monomers can be used alone or in combination of two or more.
被覆顔料における、アクリル系共重合体(B)の、単量体(B1)に由来する構成単位と単量体(B2)に由来する構成単位とのモル比率(B1:B2)は、被覆樹脂の被覆状態を良好とする観点から、1:1.5~1:10が好ましく、1:1.5~1:8がより好ましく、1:1.5~1:7がさらに好ましい。
In the coated pigment, the molar ratio (B1: B2) of the structural unit derived from the monomer (B1) to the structural unit derived from the monomer (B2) of the acrylic copolymer (B) is determined by the coating resin. From the viewpoint of improving the coating state of, the ratio is preferably 1: 1.5 to 1:10, more preferably 1: 1.5 to 1: 8, and still more preferably 1: 1.5 to 1: 7.
<重合開始剤(C)>
実施形態に係る重合開始剤(C)は、活性種として少なくともラジカルを発生させるラジカル重合開始剤であり、例えば、アゾ重合開始剤が挙げられる。 <Polymerization initiator (C)>
The polymerization initiator (C) according to the embodiment is a radical polymerization initiator that generates at least a radical as an active species, and includes, for example, an azo polymerization initiator.
実施形態に係る重合開始剤(C)は、活性種として少なくともラジカルを発生させるラジカル重合開始剤であり、例えば、アゾ重合開始剤が挙げられる。 <Polymerization initiator (C)>
The polymerization initiator (C) according to the embodiment is a radical polymerization initiator that generates at least a radical as an active species, and includes, for example, an azo polymerization initiator.
実施形態に係る重合開始剤(C)としてニトリル基を含むアゾ重合開始剤を用いる場合、前記単量体(B1)、前記単量体(B2)とをラジカル重合反応させるものである。
In the case of using an azo polymerization initiator containing a nitrile group as the polymerization initiator (C) according to the embodiment, the monomer (B1) and the monomer (B2) are subjected to a radical polymerization reaction.
実施形態に係る重合開始剤(C)としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルプロパンニトリル)等が挙げられ、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)が好ましい。
Examples of the polymerization initiator (C) according to the embodiment include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), and 2,2′-azobis (2, 4-dimethylvaleronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (2-methylpropanenitrile) and the like, and 2,2'-azobis (isobutyroyl) Nitrile) and 2,2'-azobis (2-methylbutyronitrile) are preferred.
実施形態に係る他の重合開始剤(C)としては過酸化物が挙げられ、例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、ベンゾイルパ-オキサイド、ラウロイルパ-オキサイド、イソブチルパ-オキサイド、メチルエチルケトンパ-オキサイド、ジ-(t-ブチル)シクロヘキシリデンジペルオキサイド等が例示されるが、これらに限定されない。
Other polymerization initiators (C) according to the embodiment include peroxides, such as potassium persulfate, sodium persulfate, ammonium persulfate, benzoyl peroxide, lauroyl peroxide, isobutyl peroxide, methyl ethyl ketone peroxide, and the like. Examples include, but are not limited to, di- (t-butyl) cyclohexylidene diperoxide.
実施形態に係る重合開始剤(C)の、重合時温度は60~120℃であってもよく、70~100℃であってもよい。半減期時間は、重合時温度や開始剤種により適宜設定することができる。
重合 The polymerization initiator (C) according to the embodiment may have a polymerization temperature of 60 to 120 ° C. or 70 to 100 ° C. The half-life time can be appropriately set depending on the polymerization temperature and the type of the initiator.
<粒子(A)と被覆樹脂>
以下、実施形態の樹脂被覆金属顔料における粒子(A)及び被覆樹脂について説明する。ここで、通常、樹脂被覆金属顔料は、顔料の粒子1個のみで提供されることは想定されないため、下記に示す値は、提供される樹脂被覆金属顔料を対象にした平均値として求めてもよい。 <Particle (A) and coating resin>
Hereinafter, the particles (A) and the coating resin in the resin-coated metal pigment of the embodiment will be described. Here, usually, it is not assumed that the resin-coated metal pigment is provided by only one pigment particle. Therefore, the value shown below may be obtained as an average value for the provided resin-coated metal pigment. Good.
以下、実施形態の樹脂被覆金属顔料における粒子(A)及び被覆樹脂について説明する。ここで、通常、樹脂被覆金属顔料は、顔料の粒子1個のみで提供されることは想定されないため、下記に示す値は、提供される樹脂被覆金属顔料を対象にした平均値として求めてもよい。 <Particle (A) and coating resin>
Hereinafter, the particles (A) and the coating resin in the resin-coated metal pigment of the embodiment will be described. Here, usually, it is not assumed that the resin-coated metal pigment is provided by only one pigment particle. Therefore, the value shown below may be obtained as an average value for the provided resin-coated metal pigment. Good.
実施形態の樹脂被覆金属顔料において、粒子(A)は、アクリル系共重合体(B)を含有する被覆樹脂に被覆されている。
In the resin-coated metal pigment of the embodiment, the particles (A) are coated with a coating resin containing an acrylic copolymer (B).
被覆樹脂はアクリル系共重合体(B)を50質量%以上含むものであることが好ましく、80質量%以上含むものであることがより好ましく、95質量%以上含むものであることがさらに好ましく、99質量%以上含むものであることが特に好ましい。又は、被覆樹脂はアクリル系共重合体(B)のみからなるものであってもよい。
The coating resin preferably contains the acrylic copolymer (B) in an amount of 50% by mass or more, more preferably 80% by mass or more, even more preferably 95% by mass or more, and more preferably 99% by mass or more. Is particularly preferred. Alternatively, the coating resin may be composed of only the acrylic copolymer (B).
本明細書において、粒子(A)が「被覆樹脂に被覆されている」とは、粒子表面の一部又は全部に被覆樹脂が積層されている状態を意味する。被覆樹脂は、粒子(A)の表面に直接結合していることが好ましい。結合の種類としては、共有結合、配位結合、イオン結合等の化学結合が挙げられる。被覆樹脂が粒子(A)の表面に結合していることにより、粒子(A)から被覆樹脂を剥がれ難くすることができる。
に お い て In the present specification, the phrase “particle (A) is coated with the coating resin” means a state in which the coating resin is laminated on part or all of the particle surface. It is preferable that the coating resin is directly bonded to the surface of the particle (A). Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond. Since the coating resin is bonded to the surface of the particles (A), the coating resin can be hardly peeled off from the particles (A).
粒子含有量と被覆樹脂含有量の合計量100質量%に対し、樹脂含有量は0.05質量%~30質量%が好ましく、0.5質量%~20質量%がより好ましい。
に 対 し Resin content is preferably 0.05% by mass to 30% by mass, more preferably 0.5% by mass to 20% by mass, based on 100% by mass of the total of the particle content and the coating resin content.
粒子(A)と被覆樹脂との質量比が上記範囲内にあることで、粒子(A)の光輝性と被覆樹脂の塗膜樹脂との密着性のバランスが好ましいものとなる。
こ と When the mass ratio between the particles (A) and the coating resin is within the above range, the balance between the glitter of the particles (A) and the adhesion between the coating resin and the coating resin becomes preferable.
実施形態の樹脂被覆金属顔料における、粒子(A)の総表面積[m2]あたりの、アクリル系共重合体(B)の質量[g]は、金属顔料の表面積に応じて適宜設定されるものである。
In the resin-coated metal pigment of the embodiment, the mass [g] of the acrylic copolymer (B) per the total surface area [m 2 ] of the particles (A) is appropriately set according to the surface area of the metal pigment. It is.
粒子総表面積あたりの、アクリル系共重合体(B)の質量が適性範囲内にあることで、粒子(A)の光輝性と被覆樹脂の塗膜樹脂との密着性とのバランスが好ましいものとなる。また、単量体(B1)は、アクリル系共重合体(B)の重合の起点となり得るものであるので、粒子(A)総表面積あたりの、単量体(B1)の質量が適性範囲であることにより、粒子の表面上でのラジカル重合が、領域間でより均一な状態で進行すると考えられる。その結果、平滑で均一な厚みを有する被覆樹脂が得られる。
When the mass of the acrylic copolymer (B) per the total surface area of the particles is within the appropriate range, the balance between the glitter of the particles (A) and the adhesion of the coating resin to the coating resin is preferable. Become. Further, since the monomer (B1) can be a starting point of polymerization of the acrylic copolymer (B), the mass of the monomer (B1) per the total surface area of the particles (A) is within an appropriate range. It is believed that the radical polymerization on the surface of the particles proceeds in a more uniform state between the regions. As a result, a coating resin having a smooth and uniform thickness can be obtained.
粒子(A)の総表面積は、比表面積計を用いて測定した粒子の比表面積と粒子(A)の質量から計算することができる。
総 The total surface area of the particles (A) can be calculated from the specific surface area of the particles measured using a specific surface area meter and the mass of the particles (A).
前記被覆樹脂は樹脂粒を有していてよい。実施形態に係る樹脂粒は、粒子(A)上で共重合体(B)がラジカル重合されることで形成され得るものであり、半球状の共重合物であり得る。
The coating resin may have resin particles. The resin particles according to the embodiment can be formed by radical polymerization of the copolymer (B) on the particles (A), and can be a hemispherical copolymer.
<樹脂被覆金属顔料>
実施形態の樹脂被覆金属顔料は、平均粒子径が5~15μmであり、かつ、当該樹脂被覆金属顔料分が0.8質量%になるようにアクリル樹脂、溶剤で調整した塗料を1ミルのアプリケーターで展色、乾燥した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が34%以下である樹脂被覆金属顔料である。 <Resin coated metal pigment>
The resin-coated metal pigment according to the embodiment has an average particle size of 5 to 15 μm, and a paint prepared with an acrylic resin and a solvent so that the content of the resin-coated metal pigment is 0.8% by mass. This is a resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 μm or less to the total particle area is 34% or less per image obtained by photographing the coating film dried and dried with a microscope.
実施形態の樹脂被覆金属顔料は、平均粒子径が5~15μmであり、かつ、当該樹脂被覆金属顔料分が0.8質量%になるようにアクリル樹脂、溶剤で調整した塗料を1ミルのアプリケーターで展色、乾燥した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が34%以下である樹脂被覆金属顔料である。 <Resin coated metal pigment>
The resin-coated metal pigment according to the embodiment has an average particle size of 5 to 15 μm, and a paint prepared with an acrylic resin and a solvent so that the content of the resin-coated metal pigment is 0.8% by mass. This is a resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 μm or less to the total particle area is 34% or less per image obtained by photographing the coating film dried and dried with a microscope.
上記記載の塗膜において、さらに密着性の良好な樹脂被覆顔料は、塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が33%以下が好ましい。
In the above-mentioned coating film, the resin-coated pigment having better adhesion preferably has an area ratio of particles having a diameter of 2 μm or less to a total particle area of 33% or less per image obtained by photographing the coating film with a microscope.
実施形態の樹脂被覆金属顔料は、分級により予め直径2μm以下の粒子を取り除いた粒子(A)を用いてもよいし、直径2μm以下の粒子を取り除いていない粒子(A)を用いて作成した樹脂被覆金属顔料を分級して作製してもよい。なかでも、予め直径2μm以下の粒子を取り除いた粒子(A)を用いるのが好ましい。
As the resin-coated metal pigment of the embodiment, particles (A) from which particles having a diameter of 2 μm or less have been removed in advance by classification or resin (A) prepared using particles (A) from which particles having a diameter of 2 μm or less have not been removed You may classify and produce a coating metal pigment. Among them, it is preferable to use particles (A) from which particles having a diameter of 2 μm or less have been removed in advance.
上記分級は従来公知の何れの方法も使用でき、乾式及び湿式下において重力分級法、慣性分級法、遠心分級法を用いることが出来る。なかでも、製造コストの観点から被覆樹脂で被覆する前の粒子(A)を乾式下にて上記何れかの分級法で分級するのが好ましい
Any of conventionally known methods can be used for the classification, and a gravity classification method, an inertial classification method, and a centrifugal classification method can be used under dry and wet methods. Among them, it is preferable to classify the particles (A) before being coated with the coating resin by any of the above classification methods under a dry system from the viewpoint of production cost.
<塗料・インク>
実施形態の樹脂被覆金属顔料は、塗料又はインクとして利用可能である。一実施形態として、実施形態の樹脂金属顔料を含有する塗料又はインクを提供できる。塗料としては、粉体塗料、家具塗装用塗料、電化製品塗装用塗料、自動車塗装用塗料、プラスチック塗装用塗料等が挙げられる。インクとしては、印刷用インク、包装材印刷用インク等が挙げられる。 <Paints and inks>
The resin-coated metal pigment of the embodiment can be used as a paint or an ink. As one embodiment, a paint or ink containing the resin metal pigment of the embodiment can be provided. Examples of the paint include a powder paint, a paint for furniture painting, a paint for electrical appliance painting, a paint for automobile painting, a paint for plastic painting, and the like. Examples of the ink include a printing ink and a packaging material printing ink.
実施形態の樹脂被覆金属顔料は、塗料又はインクとして利用可能である。一実施形態として、実施形態の樹脂金属顔料を含有する塗料又はインクを提供できる。塗料としては、粉体塗料、家具塗装用塗料、電化製品塗装用塗料、自動車塗装用塗料、プラスチック塗装用塗料等が挙げられる。インクとしては、印刷用インク、包装材印刷用インク等が挙げられる。 <Paints and inks>
The resin-coated metal pigment of the embodiment can be used as a paint or an ink. As one embodiment, a paint or ink containing the resin metal pigment of the embodiment can be provided. Examples of the paint include a powder paint, a paint for furniture painting, a paint for electrical appliance painting, a paint for automobile painting, a paint for plastic painting, and the like. Examples of the ink include a printing ink and a packaging material printing ink.
塗料又はインクは、実施形態の樹脂被覆金属顔料と、分散媒と塗料又はインク用樹脂とを含有してもよい。分散媒としては、顔料の分散に用いられる任意の分散媒を用いることができ、従来公知の分散媒を用いてもよい。分散媒としては、エチルアルコ-ル、n-プロピルアルコ-ル、イソプロピルアルコ-ル、n-ブチルアルコ-ル、イソブチルアルコ-ルなどのアルコ-ル系溶剤;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルブチルケトン、シクロヘキサノン等のケトン系溶剤;メチルセロソルブアセテート、ブチルセロソルブアセテート等のエ-テルエステル系溶剤;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;ヘキサン、ヘプタン、ホワイトスピリッツ等の脂肪族炭化水素系溶剤、及びミネラルスピリット等の芳香族炭化水素と脂肪族炭化水素の混合系溶剤等が挙げられる。
The paint or ink may contain the resin-coated metal pigment of the embodiment, the dispersion medium, and the paint or ink resin. As the dispersion medium, any dispersion medium used for dispersing the pigment can be used, and a conventionally known dispersion medium may be used. Examples of the dispersion medium include alcohol solvents such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol and isobutyl alcohol; esters such as ethyl acetate, propyl acetate and butyl acetate. Solvents, ketone solvents such as methyl ethyl ketone, methyl butyl ketone and cyclohexanone; ether ester solvents such as methyl cellosolve acetate and butyl cellosolve acetate; amide solvents such as dimethyl formamide and dimethyl acetamide; aromatic carbonization such as toluene and xylene Hydrogen solvents: aliphatic hydrocarbon solvents such as hexane, heptane, and white spirits; and mixed solvents of aromatic hydrocarbons and aliphatic hydrocarbons such as mineral spirits.
塗料又はインク用樹脂としては、塗料またはインクへと配合される任意の樹脂を用いることができ、従来公知の樹脂を用いてもよい。樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、塩ビ酢ビ共重合樹脂、ポリアミド樹脂、メラミン樹脂、ニトロセルロース樹脂、ウレタン樹脂等が挙げられる。
(4) As the resin for paint or ink, any resin blended into paint or ink can be used, and a conventionally known resin may be used. Examples of the resin include an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, an epoxy resin, a vinyl chloride-vinyl acetate copolymer resin, a polyamide resin, a melamine resin, a nitrocellulose resin, and a urethane resin.
また、塗料又はインク用顔料としては、実施形態の樹脂被覆金属顔料の他に、実施形態の樹脂被覆金属顔料に該当しない、塗料またはインクへと配合される任意の着色顔料又は光輝材を更に含有することができ、従来公知の着色顔料や光輝材を用いてもよい。着色顔料としては、フタロシアニン系顔料、ハロゲン化フタロシアニン系顔料、キナクリドン系顔料、ジケトピロロピロ-ル系顔料、イソインドリノン系顔料、アゾ系顔料、アゾメチン金属錯体系顔料、インダンスロン系顔料、ペリレン系顔料、ペリノン系顔料、アントラキノン系顔料、ジオキサジン系顔料、ベンゾイミダゾロン系顔料、縮合アゾ系顔料、トリフェニルメタン系顔料、キノフタロン系顔料、アントラピリミジン系顔料、酸化チタン、酸化鉄、カ-ボンブラック、バナジウム酸ビスマスが挙げられる。また光輝材としては、金属又は金属酸化物を被覆したアルミニウム顔料、マイカ顔料、アルミナ顔料、ガラスフレーク顔料等が挙げられる。
In addition, as the paint or ink pigment, in addition to the resin-coated metal pigment of the embodiment, further contains any color pigment or glitter that is not included in the resin-coated metal pigment of the embodiment and is blended into the paint or ink. It is also possible to use conventionally known coloring pigments and glittering materials. Examples of coloring pigments include phthalocyanine pigments, halogenated phthalocyanine pigments, quinacridone pigments, diketopyrrolopyrrol-based pigments, isoindolinone pigments, azo pigments, azomethine metal complex pigments, indanthrone pigments, and perylene pigments. , Perinone pigments, anthraquinone pigments, dioxazine pigments, benzimidazolone pigments, condensed azo pigments, triphenylmethane pigments, quinophthalone pigments, anthrapyrimidine pigments, titanium oxide, iron oxide, carbon black, Bismuth vanadate is mentioned. Examples of the glittering material include aluminum pigments, mica pigments, alumina pigments, and glass flake pigments coated with a metal or metal oxide.
例えば、塗料又はインクは樹脂被覆金属顔料を0.5~50質量%含有することが好ましく、3~40質量%含有することがより好ましく、5~30質量%含有することがさらに好ましい。
For example, the paint or ink preferably contains the resin-coated metal pigment in an amount of 0.5 to 50% by mass, more preferably 3 to 40% by mass, and even more preferably 5 to 30% by mass.
塗料又はインクは、実施形態の樹脂被覆金属顔料の他に、必要に応じて老化防止剤、防腐剤、防軟剤、紫外線吸収剤、酸化防止剤、光安定剤、熱安定剤、帯電防止剤などの各種添加剤を含有してもよい。
Paints or inks, in addition to the resin-coated metal pigment of the embodiment, if necessary, an antioxidant, a preservative, a softener, an ultraviolet absorber, an antioxidant, a light stabilizer, a heat stabilizer, an antistatic agent And other various additives.
実施形態の樹脂被覆金属顔料は、重合開始剤(C)にてラジカル重合反応させた、アクリル系共重合体(B)を含有する被覆樹脂に被覆されていることが好ましい。実施形態に係る重合開始剤(C)を用いて、前記単量体(B1)と、前記単量体 (B2)とをラジカル重合反応させると、得られたアクリル系共重合体(B)を含有する被覆樹脂が平滑で均一な厚みを有するものとなり、樹脂被覆金属顔料は、光輝感が良好で且つ密着性に優れたものとなる。
樹脂 The resin-coated metal pigment of the embodiment is preferably coated with a coating resin containing an acrylic copolymer (B) that has been subjected to a radical polymerization reaction with a polymerization initiator (C). When the monomer (B1) is subjected to a radical polymerization reaction with the monomer 重合 (B2) using the polymerization initiator (C) according to the embodiment, the obtained acrylic copolymer (B) is obtained. The contained coating resin has a smooth and uniform thickness, and the resin-coated metal pigment has good glitter and excellent adhesion.
実施形態に係る樹脂被覆金属顔料を含む成型品としては、実施形態に係る樹脂被覆金属顔料を含む塗料やインキが塗布され加飾された各種成型品が挙げられ、例えば包装容器、各種プラスチック塗装品、自動車部品等が例示される。また別の形態として、実施形態に係る樹脂被覆金属顔料を内添した成型品も挙げられ、例えば電気機器筐体や自動車部品、プラスチック容器、マニキュア及びアイシャドー等のメイキャップやファンデーションなどのベースメイクを含む化粧料等が例示される。
Examples of the molded article containing the resin-coated metal pigment according to the embodiment include various molded articles to which a paint or ink containing the resin-coated metal pigment according to the embodiment is applied and decorated, such as a packaging container and various plastic coated articles. , Automobile parts and the like. As another form, there is also a molded article in which the resin-coated metal pigment according to the embodiment is internally added. For example, electric equipment housings, automobile parts, plastic containers, base makeup such as makeup and foundation such as nail polish and eye shadow. And the like.
≪樹脂被覆金属顔料の製造方法≫
実施形態の樹脂被覆金属顔料は、一例として、後述の樹脂被覆金属顔料の製造方法により製造可能である。 製造 Production method of resin-coated metal pigment≫
As an example, the resin-coated metal pigment of the embodiment can be manufactured by a method for manufacturing a resin-coated metal pigment described below.
実施形態の樹脂被覆金属顔料は、一例として、後述の樹脂被覆金属顔料の製造方法により製造可能である。 製造 Production method of resin-coated metal pigment≫
As an example, the resin-coated metal pigment of the embodiment can be manufactured by a method for manufacturing a resin-coated metal pigment described below.
実施形態の樹脂被覆金属顔料の製造方法は、
(i)粒子(A)と、単量体(B1)と、を反応させる工程、
(ii)前記単量体(B1)又はそれに由来する構造と、単量体(B2)とを、重合開始剤(C)にてラジカル重合反応させることにより、粒子(A)上にアクリル系共重合体(B)を形成させる工程を有し、
前記粒子(A)が、アクリル系共重合体(B)を含有する被覆樹脂で被覆される。 The method for producing the resin-coated metal pigment of the embodiment is
(I) reacting the particles (A) with the monomer (B1),
(Ii) The monomer (B1) or a structure derived therefrom and the monomer (B2) are subjected to a radical polymerization reaction with a polymerization initiator (C) to form an acrylic copolymer on the particles (A). Having a step of forming a polymer (B),
The particles (A) are coated with a coating resin containing an acrylic copolymer (B).
(i)粒子(A)と、単量体(B1)と、を反応させる工程、
(ii)前記単量体(B1)又はそれに由来する構造と、単量体(B2)とを、重合開始剤(C)にてラジカル重合反応させることにより、粒子(A)上にアクリル系共重合体(B)を形成させる工程を有し、
前記粒子(A)が、アクリル系共重合体(B)を含有する被覆樹脂で被覆される。 The method for producing the resin-coated metal pigment of the embodiment is
(I) reacting the particles (A) with the monomer (B1),
(Ii) The monomer (B1) or a structure derived therefrom and the monomer (B2) are subjected to a radical polymerization reaction with a polymerization initiator (C) to form an acrylic copolymer on the particles (A). Having a step of forming a polymer (B),
The particles (A) are coated with a coating resin containing an acrylic copolymer (B).
アクリル系共重合体(B)の末端に、前記重合開始剤(C)に由来する下記一般式(1)で表される構造を含んでもよい。
末端 The terminal of the acrylic copolymer (B) may include a structure represented by the following general formula (1) derived from the polymerization initiator (C).
[式(1)中、R1はメチル基を表し、R2は炭素数1~5のアルキル基、-C(=O)-O-R2aで表される基、又は-C(=O)-NH-R2aで表される基{前記R2aは炭素数1~8のアルキル基を表す。}を表し、前記R1と前記R2とが互いに結合した環状構造を形成してもよい。]
[In the formula (1), R1 represents a methyl group, R2 represents an alkyl group having 1 to 5 carbon atoms, a group represented by —C (= O) —O—R2a, or —C (= O) —NH A group represented by -R2a {R2a represents an alkyl group having 1 to 8 carbon atoms; And may represent a cyclic structure in which R1 and R2 are bonded to each other. ]
実施形態の樹脂被覆金属顔料の製造方法において、粒子(A)、単量体(B1)、単量体(B2) 、重合開始剤(C)について、上記≪樹脂被覆金属顔料≫で例示したものが挙げられ、詳細な説明を省略する。
In the method for producing a resin-coated metal pigment according to the embodiment, the particles (A), the monomer (B1), the monomer (B2)} and the polymerization initiator (C) are those exemplified in the above {Resin-coated metal pigment}. And a detailed description will be omitted.
前記工程(i)は、粒子(A)と、単量体(B1)と、を反応させて前記粒子との間に結合を形成させる工程であってもよい。結合の種類としては、共有結合、配位結合、イオン結合等の化学結合が挙げられる。
The step (i) may be a step of reacting the particle (A) with the monomer (B1) to form a bond between the particle and the monomer. Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond.
前記工程(i)は、粒子(A)の最表面の原子と、単量体(B1)との間に結合を形成させる工程であってもよい。結合の種類としては、共有結合、配位結合、イオン結合等の化学結合が挙げられる。
The step (i) may be a step of forming a bond between an atom on the outermost surface of the particle (A) and the monomer (B1). Examples of the type of the bond include a chemical bond such as a covalent bond, a coordinate bond, and an ionic bond.
上記工程(i)によれば、粒子(A)の表面に、単量体(B1)、又は反応の結果生じた単量体(B1)に由来する構造が結合した状態となる。粒子(A)の表面に結合した、単量体(B1)又はそれに由来する構造は、続くラジカル重合の起点となり得る。
According to the step (i), a structure derived from the monomer (B1) or the monomer (B1) resulting from the reaction is bonded to the surface of the particle (A). The monomer (B1) or a structure derived from the monomer (B1) bonded to the surface of the particle (A) can be a starting point for the subsequent radical polymerization.
上記工程(ii)によれば、粒子(A)の表面に、アクリル系共重合体(B)を形成できる。
According to the step (ii), the acrylic copolymer (B) can be formed on the surface of the particles (A).
上記工程(i)及び工程(ii)を経て製造された樹脂被覆金属顔料の、アクリル系共重合体(B)は、粒子(A)の側から、単量体(B1)に由来する構成単位、単量体(B2)に由来する構成単位をこの順に有するものとなり得る。
The acrylic copolymer (B) of the resin-coated metal pigment produced through the steps (i) and (ii) is a structural unit derived from the monomer (B1) from the side of the particles (A). Having structural units derived from the monomer (B2) in this order.
工程(i)及び工程(ii)において、反応は反応液中で進行させることができる。工程(i)における反応液は、粒子(A)と、単量体(B1)と、溶媒及び/又は分散媒と、必要に応じその他の成分と、を含むことができる。工程(ii)における反応液は、粒子(A)と単量体(B1)との反応物と、重合開始剤(C)と、単量体(B2) と、溶媒及び/又は分散媒と、必要に応じその他の成分と、を含むことができる。
反 応 In step (i) and step (ii), the reaction can proceed in a reaction solution. The reaction solution in the step (i) can contain the particles (A), the monomer (B1), a solvent and / or a dispersion medium, and if necessary, other components. The reaction solution in the step (ii) comprises a reaction product of the particles (A) and the monomer (B1), a polymerization initiator (C), a monomer (B2), a solvent and / or a dispersion medium, Other components can be included as needed.
溶媒及び/又は分散媒としては、有機溶剤が挙げられる。有機溶剤としては、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルブチルケトン、シクロヘキサノン等のケトン系溶剤、メチルセロソルブアセテート、ブチルセロソルブアセテート等のエ-テルエステル系溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤、ミネラルスピリット等の石油系溶剤を例示できる。これらは、単独で用いても複数種の混合溶媒で用いても良い。その他の成分としては、ラジカル重合反応の連鎖移動剤等が挙げられる。
Examples of the solvent and / or dispersion medium include organic solvents. Examples of the organic solvent include ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone, methyl butyl ketone and cyclohexanone; ether ester solvents such as methyl cellosolve acetate and butyl cellosolve acetate; toluene and xylene And amide solvents such as dimethylformamide and dimethylacetamide, and petroleum solvents such as mineral spirits. These may be used alone or as a mixture of plural kinds of solvents. Other components include a chain transfer agent for a radical polymerization reaction.
工程(i)における反応液の温度は、一例として、80~120℃程度が挙げられる。 工程(ii)における反応液の温度は、ラジカル重合反応の反応温度であり、一例として、60~120℃であってもよく、70~100℃であってもよい。
温度 The temperature of the reaction solution in step (i) is, for example, about 80 to 120 ° C.温度 The temperature of the reaction solution in the step (ii) is a reaction temperature of a radical polymerization reaction, and may be, for example, 60 to 120 ° C or 70 to 100 ° C.
実施形態の樹脂被覆金属顔料の製造方法によれば、上記工程(i)及び工程(ii)を行うことにより、実施形態の樹脂被覆金属顔料が製造される。
According to the method for producing a resin-coated metal pigment of the embodiment, the steps (i) and (ii) are performed to produce the resin-coated metal pigment of the embodiment.
実施形態に係る重合開始剤(C)を用いて、前記単量体(B1)と、前記単量体(B2)とをラジカル重合反応させると、得られたアクリル系共重合体(B)を含有する被覆樹脂が平滑で均一な厚みを有するものとなり、樹脂被覆金属顔料は、光輝感が良好で且つ密着性に優れたものとなる。
When the monomer (B1) is subjected to a radical polymerization reaction with the monomer (B2) using the polymerization initiator (C) according to the embodiment, the obtained acrylic copolymer (B) is obtained. The contained coating resin has a smooth and uniform thickness, and the resin-coated metal pigment has good glitter and excellent adhesion.
以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断わりがない限り「部」、「%」は質量基準である。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Unless otherwise specified, “parts” and “%” are based on mass.
〔樹脂被覆アルミニウム顔料の製造〕
本発明に係る樹脂被覆アルミニウム顔料を、下記のとおり製造した。 [Production of resin-coated aluminum pigment]
The resin-coated aluminum pigment according to the present invention was produced as follows.
本発明に係る樹脂被覆アルミニウム顔料を、下記のとおり製造した。 [Production of resin-coated aluminum pigment]
The resin-coated aluminum pigment according to the present invention was produced as follows.
<製造例1>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405(章丘社製、平均粒子径 11μm、金属分76.4質量%)114gと原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 1>
Raw material A: 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 μm, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405(章丘社製、平均粒子径 11μm、金属分76.4質量%)114gと原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 1>
Raw material A: 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 μm, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-1)を得た。この粒子における樹脂コート量(樹脂固形分/樹脂被覆顔料固形分)は2%であった。
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-1) which was a paste-like bright material. The resin coating amount (resin solid content / resin coated pigment solid content) of the particles was 2%.
<製造例2>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 107.67gと原料G:ZQ-2085(章丘社製、平均粒子径 11μm、金属分69.9質量%) 3.33g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 2>
Raw material A: 107.67 g of aluminum paste ZQ-405 and raw material G: 3.33 g of ZQ-2085 (manufactured by Shogaoka Co., Ltd., average particle diameter 11 μm, metal content 69.9% by mass) in a 3 L four-necked flask, Raw material B: 506.00 g of mineral spirit was added, and the mixture was stirred at room temperature for 1 hour under an inert gas atmosphere. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 107.67gと原料G:ZQ-2085(章丘社製、平均粒子径 11μm、金属分69.9質量%) 3.33g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 2>
Raw material A: 107.67 g of aluminum paste ZQ-405 and raw material G: 3.33 g of ZQ-2085 (manufactured by Shogaoka Co., Ltd., average particle diameter 11 μm, metal content 69.9% by mass) in a 3 L four-necked flask, Raw material B: 506.00 g of mineral spirit was added, and the mixture was stirred at room temperature for 1 hour under an inert gas atmosphere. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-2)を得た。この粒子における樹脂コート量は2%であった
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-2) as a paste-like bright material. The resin coating amount of these particles was 2%.
<製造例3>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 100.70gと原料G:ZQ-2085 5.30g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 3>
Raw material A: 100.70 g of aluminum paste ZQ-405, raw material G: 5.30 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 100.70gと原料G:ZQ-2085 5.30g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 3>
Raw material A: 100.70 g of aluminum paste ZQ-405, raw material G: 5.30 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-3)を得た。この粒子における樹脂コート量は2%であった
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-3) as a paste-like bright material. The resin coating amount of these particles was 2%.
<製造例4>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 102.30gと原料G:ZQ-2085 7.70g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 4>
Raw material A: 102.30 g of aluminum paste ZQ-405, raw material G: 7.70 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 102.30gと原料G:ZQ-2085 7.70g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 4>
Raw material A: 102.30 g of aluminum paste ZQ-405, raw material G: 7.70 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.20 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-4)を得た。この粒子における樹脂コート量は2%であった
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the reaction solution was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-4) as a paste-like bright material. The resin coating amount of these particles was 2%.
<製造例5>
容量3Lの4つ口フラスコに、原料H:アルミニウムペーストZQ-407(章丘社製、平均粒子径 7μm、金属分74.7質量%) 111.33g、原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 5>
Raw material H: 111.33 g of aluminum paste ZQ-407 (manufactured by Shogaoka Co., Ltd., average particle diameter 7 μm, metal content 74.7% by mass), and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an inert gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料H:アルミニウムペーストZQ-407(章丘社製、平均粒子径 7μm、金属分74.7質量%) 111.33g、原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 5>
Raw material H: 111.33 g of aluminum paste ZQ-407 (manufactured by Shogaoka Co., Ltd., average particle diameter 7 μm, metal content 74.7% by mass), and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an inert gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-5)を得た。この粒子における樹脂コート量は2%であった
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the reaction solution was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-5) as a paste-like bright material. The resin coating amount of these particles was 2%.
<製造例6>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405(章丘社製、平均粒子径 11μm、金属分76.4質量%)114gと原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 6>
Raw material A: 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 μm, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405(章丘社製、平均粒子径 11μm、金属分76.4質量%)114gと原料B:ミネラルスピリット506.00gを加え、不活性ガス雰囲気下で100 ℃に昇温した。次に原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。 <Production Example 6>
Raw material A: 114 g of aluminum paste ZQ-405 (manufactured by Shogaoka Co., Ltd., average particle size 11 μm, metal content 76.4 mass%) and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask. The temperature was raised to 100 ° C. in an active gas atmosphere. Next, 1.20 g of raw material C: acrylic acid was added and stirred at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料I:2,2‘-アゾビス(2-イソブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-6)を得た。この粒子における樹脂コート量は2%であった。
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material I: 0.01 g of 2,2′-azobis (2-isobutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-6) as a paste-like bright material. The resin coating amount of the particles was 2%.
<製造例7>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 1008.00gと原料G:ZQ-2085 112.00g、原料B:ミネラルスピリット10603.75gを加え不活性ガス雰囲気下、室温で1時間攪拌することで、8wt%のアルミニウムスラリーを得た。このスラリーを液体サイクロン分級装置(村田工業社製、T-10型スーパークロン)により微粒子のアルミニウム顔料を取り除いた。この溶液を濾過し、ペースト状の光輝材料である中間体アルミニウムペースト(金属分71.1質量)を得た。 <Production Example 7>
Raw material A: 1008.00 g of aluminum paste ZQ-405, raw material G: 112.00 g of ZQ-2085, and raw material B: 10603.75 g of mineral spirit were added to a 3 L four-necked flask in an inert gas atmosphere at room temperature. By stirring for an hour, an 8 wt% aluminum slurry was obtained. Fine aluminum pigment particles were removed from the slurry by using a liquid cyclone classifier (T-10 type supercron, manufactured by Murata Industry Co., Ltd.). This solution was filtered to obtain an intermediate aluminum paste (metal content: 71.1 mass) as a paste-like bright material.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 1008.00gと原料G:ZQ-2085 112.00g、原料B:ミネラルスピリット10603.75gを加え不活性ガス雰囲気下、室温で1時間攪拌することで、8wt%のアルミニウムスラリーを得た。このスラリーを液体サイクロン分級装置(村田工業社製、T-10型スーパークロン)により微粒子のアルミニウム顔料を取り除いた。この溶液を濾過し、ペースト状の光輝材料である中間体アルミニウムペースト(金属分71.1質量)を得た。 <Production Example 7>
Raw material A: 1008.00 g of aluminum paste ZQ-405, raw material G: 112.00 g of ZQ-2085, and raw material B: 10603.75 g of mineral spirit were added to a 3 L four-necked flask in an inert gas atmosphere at room temperature. By stirring for an hour, an 8 wt% aluminum slurry was obtained. Fine aluminum pigment particles were removed from the slurry by using a liquid cyclone classifier (T-10 type supercron, manufactured by Murata Industry Co., Ltd.). This solution was filtered to obtain an intermediate aluminum paste (metal content: 71.1 mass) as a paste-like bright material.
次に、容量3Lの4つ口フラスコに、中間体アルミニウムペースト117.16g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.20gを加え、100℃で1時間攪拌した。
Next, 117.16 g of the intermediate aluminum paste and 506.00 g of the raw material B: mineral spirit were added to a 3 L four-necked flask, and the mixture was stirred at room temperature for 1 hour under an inert gas atmosphere. Next, the temperature was raised to 100 ° C., 1.20 g of raw material C: acrylic acid was added, and the mixture was stirred at 100 ° C. for 1 hour.
さらに、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-イソブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-7)を得た。この粒子における樹脂コート量は2%であった。
Further, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-isobutyronitrile) are dissolved in raw material B: mineral spirit. 5% by weight) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-7) as a paste-like bright material. The resin coating amount of the particles was 2%.
<比較製造例1>
容量3Lの4つ口フラスコに原料A:ZQ-405 150.00gと原料F:ノルマルプロピルアセテート300.00gを加え室温で1時間攪拌した。この溶液を濾過し、ペースト状の光輝材料であるアルミニウムペースト(X-8)を得た。 <Comparative Production Example 1>
To a 3 L four-necked flask, 150.00 g of the raw material A: ZQ-405 and 300.00 g of the raw material F: normal propyl acetate were added and stirred at room temperature for 1 hour. This solution was filtered to obtain an aluminum paste (X-8) as a paste-like bright material.
容量3Lの4つ口フラスコに原料A:ZQ-405 150.00gと原料F:ノルマルプロピルアセテート300.00gを加え室温で1時間攪拌した。この溶液を濾過し、ペースト状の光輝材料であるアルミニウムペースト(X-8)を得た。 <Comparative Production Example 1>
To a 3 L four-necked flask, 150.00 g of the raw material A: ZQ-405 and 300.00 g of the raw material F: normal propyl acetate were added and stirred at room temperature for 1 hour. This solution was filtered to obtain an aluminum paste (X-8) as a paste-like bright material.
<比較製造例2>
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 100.80gと原料G:ZQ-2085 11.20g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.2gを加え、100℃で1時間攪拌した。 <Comparative Production Example 2>
Raw material A: 100.80 g of aluminum paste ZQ-405, raw material G: 11.20 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.2 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
容量3Lの4つ口フラスコに、原料A:アルミニウムペーストZQ-405 100.80gと原料G:ZQ-2085 11.20g、原料B:ミネラルスピリット506.00gを加え不活性ガス雰囲気下、室温で1時間攪拌した。次に100 ℃に昇温し、原料C:アクリル酸1.2gを加え、100℃で1時間攪拌した。 <Comparative Production Example 2>
Raw material A: 100.80 g of aluminum paste ZQ-405, raw material G: 11.20 g of ZQ-2085, and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask at room temperature under an inert gas atmosphere. Stirred for hours. Next, the temperature was raised to 100 ° C., and 1.2 g of raw material C: acrylic acid was added, followed by stirring at 100 ° C. for 1 hour.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-9)を得た。この粒子における樹脂コート量は2%であった
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-9) as a paste-like glittering material. The resin coating amount of these particles was 2%.
<比較製造例3>
容量3Lの4つ口フラスコに、原料G:ZQ-2085 119.24g、原料B:ミネラルスピリット506.00gを加え100 ℃に昇温し、次に原料C:アクリル酸1.20gを加え、不活性ガス雰囲気下、100℃で1時間攪拌した。 <Comparative Production Example 3>
Raw material G: 119.24 g of ZQ-2085 and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask, and the temperature was raised to 100 ° C. Then, raw material C: 1.20 g of acrylic acid was added. The mixture was stirred at 100 ° C. for 1 hour in an active gas atmosphere.
容量3Lの4つ口フラスコに、原料G:ZQ-2085 119.24g、原料B:ミネラルスピリット506.00gを加え100 ℃に昇温し、次に原料C:アクリル酸1.20gを加え、不活性ガス雰囲気下、100℃で1時間攪拌した。 <Comparative Production Example 3>
Raw material G: 119.24 g of ZQ-2085 and raw material B: 506.00 g of mineral spirit were added to a 3 L four-necked flask, and the temperature was raised to 100 ° C. Then, raw material C: 1.20 g of acrylic acid was added. The mixture was stirred at 100 ° C. for 1 hour in an active gas atmosphere.
次に、原料D:トリメチロールプロパントリメタクリレート0.35gと開始剤溶液(原料E:2,2‘-アゾビス(2-メチルブチロニトリル)0.01gを原料B:ミネラルスピリットに溶解させ、2.5重量パーセント溶液に調製したもの)を加え、100℃で1時間重合した。重合終了後、常温まで冷却し、この反応液を濾過し、原料F:ノルマルプロピルアセテートを用いて洗浄することにより、ペースト状の光輝材料である樹脂被覆アルミニウムペースト(X-10)を得た。この粒子における樹脂コート量は2%であっ
Next, raw material D: 0.35 g of trimethylolpropane trimethacrylate and 0.01 g of an initiator solution (raw material E: 0.01 g of 2,2′-azobis (2-methylbutyronitrile) were dissolved in raw material B: mineral spirit. 0.5% by weight solution) and polymerized at 100 ° C. for 1 hour. After completion of the polymerization, the mixture was cooled to room temperature, and the reaction solution was filtered and washed with a raw material F: normal propyl acetate to obtain a resin-coated aluminum paste (X-10) as a paste-like bright material. The resin coating amount of these particles was 2%.
(印刷インキおよび印刷物の作製方法)
製造例1~7、比較製造例1~3で作成されたアルミニウムペーストに、固形分調整溶剤(酢酸エチル:イソプロピルアルコール(IPA)=38.4質量部:61.6質量部)を混ぜ、金属分39.7質量%のアルミペースト36.5質量部作成した。
得られたアルミペーストへ、硝化綿樹脂(Nobel NC Company Ltd.)16.0質量部、イソプロピルアルコール21.9質量部、酢酸エチル21.1質量部、可塑剤3.9質量部、ポリエチレンワックス(PE-WAX)0.6質量部を混ぜて印刷インキを作成した。
得られた印刷インキ100.0質量部に対して、希釈溶剤(酢酸エチル:イソプロピルアルコール=60.0質量部:40.0質量部)を50.0質量部混ぜ、粘度調整したメタリックインキを得た。粘度調整したインキを版深30μmグラビア版を備えたグラビア校正機により片面コート紙(三菱製紙社: DMSC、米坪270g/m2)に印刷して、40~50℃で乾燥し印刷物を得た。それぞれの印刷物を(実施例1~7)、(比較例1~3)とした。 (Production method of printing ink and printed matter)
A solid content adjusting solvent (ethyl acetate: isopropyl alcohol (IPA) = 38.4 parts by mass: 61.6 parts by mass) was mixed with the aluminum pastes produced in Production Examples 1 to 7 and Comparative Production Examples 1 to 3, and the mixture was mixed with a metal. 39.7 parts by mass of an aluminum paste of 39.7 parts by mass were prepared.
To the obtained aluminum paste, 16.0 parts by mass of a nitrified cotton resin (Nobel NC Company Ltd.), 21.9 parts by mass of isopropyl alcohol, 21.1 parts by mass of ethyl acetate, 3.9 parts by mass of a plasticizer, polyethylene wax ( A printing ink was prepared by mixing 0.6 parts by mass of (PE-WAX).
50.0 parts by mass of a diluting solvent (ethyl acetate: isopropyl alcohol = 60.0 parts by mass: 40.0 parts by mass) was mixed with 100.0 parts by mass of the obtained printing ink to obtain a metallic ink whose viscosity was adjusted. Was. The viscosity-adjusted ink was printed on a one-side coated paper (DMSC, 270 g / m2 in U.S.P.) by a gravure proofing machine equipped with a gravure plate having a depth of 30 μm, and dried at 40 to 50 ° C. to obtain a printed material. The printed materials were (Examples 1 to 7) and (Comparative Examples 1 to 3).
製造例1~7、比較製造例1~3で作成されたアルミニウムペーストに、固形分調整溶剤(酢酸エチル:イソプロピルアルコール(IPA)=38.4質量部:61.6質量部)を混ぜ、金属分39.7質量%のアルミペースト36.5質量部作成した。
得られたアルミペーストへ、硝化綿樹脂(Nobel NC Company Ltd.)16.0質量部、イソプロピルアルコール21.9質量部、酢酸エチル21.1質量部、可塑剤3.9質量部、ポリエチレンワックス(PE-WAX)0.6質量部を混ぜて印刷インキを作成した。
得られた印刷インキ100.0質量部に対して、希釈溶剤(酢酸エチル:イソプロピルアルコール=60.0質量部:40.0質量部)を50.0質量部混ぜ、粘度調整したメタリックインキを得た。粘度調整したインキを版深30μmグラビア版を備えたグラビア校正機により片面コート紙(三菱製紙社: DMSC、米坪270g/m2)に印刷して、40~50℃で乾燥し印刷物を得た。それぞれの印刷物を(実施例1~7)、(比較例1~3)とした。 (Production method of printing ink and printed matter)
A solid content adjusting solvent (ethyl acetate: isopropyl alcohol (IPA) = 38.4 parts by mass: 61.6 parts by mass) was mixed with the aluminum pastes produced in Production Examples 1 to 7 and Comparative Production Examples 1 to 3, and the mixture was mixed with a metal. 39.7 parts by mass of an aluminum paste of 39.7 parts by mass were prepared.
To the obtained aluminum paste, 16.0 parts by mass of a nitrified cotton resin (Nobel NC Company Ltd.), 21.9 parts by mass of isopropyl alcohol, 21.1 parts by mass of ethyl acetate, 3.9 parts by mass of a plasticizer, polyethylene wax ( A printing ink was prepared by mixing 0.6 parts by mass of (PE-WAX).
50.0 parts by mass of a diluting solvent (ethyl acetate: isopropyl alcohol = 60.0 parts by mass: 40.0 parts by mass) was mixed with 100.0 parts by mass of the obtained printing ink to obtain a metallic ink whose viscosity was adjusted. Was. The viscosity-adjusted ink was printed on a one-side coated paper (DMSC, 270 g / m2 in U.S.P.) by a gravure proofing machine equipped with a gravure plate having a depth of 30 μm, and dried at 40 to 50 ° C. to obtain a printed material. The printed materials were (Examples 1 to 7) and (Comparative Examples 1 to 3).
(密着性の評価)
前記の(印刷インキおよび印刷物の作製方法)により得られた印刷物(実施例1~7、比較例1~3)を十分乾燥させ、印刷面にセロハンテープを貼り付け、これを印刷面から垂直方向へ急速に剥がしたときの印刷皮膜の外観の状態を目視判定した。密着性の判定基準は、「合格」:セロハンテープを剥がした部分にて印刷皮膜とコート紙が共に剥離した部分が30%以上、「不合格」:セロハンテープを剥がした部分にて印刷皮膜とコート紙が共に剥離した部分が30%以下とし、試験10回行い合格数を数えて10段階で相対評価を行った。結果を表1に示した。 (Evaluation of adhesion)
The printed matter (Examples 1 to 7 and Comparative Examples 1 to 3) obtained by the above-described (printing ink and printed matter production method) is sufficiently dried, and a cellophane tape is stuck on the printed surface, and this is placed in a direction perpendicular to the printed surface. The state of the appearance of the printed film when rapidly peeled off was visually determined. The criteria for determining the adhesion were “Pass”: at least 30% of the portion where the printed film and the coated paper were peeled off at the portion where the cellophane tape was peeled off, and “Fail”: the portion where the printed film was peeled with the cellophane tape. The portion where the coated paper was peeled off was 30% or less, the test was performed 10 times, the number of passed tests was counted, and the relative evaluation was performed in 10 steps. The results are shown in Table 1.
前記の(印刷インキおよび印刷物の作製方法)により得られた印刷物(実施例1~7、比較例1~3)を十分乾燥させ、印刷面にセロハンテープを貼り付け、これを印刷面から垂直方向へ急速に剥がしたときの印刷皮膜の外観の状態を目視判定した。密着性の判定基準は、「合格」:セロハンテープを剥がした部分にて印刷皮膜とコート紙が共に剥離した部分が30%以上、「不合格」:セロハンテープを剥がした部分にて印刷皮膜とコート紙が共に剥離した部分が30%以下とし、試験10回行い合格数を数えて10段階で相対評価を行った。結果を表1に示した。 (Evaluation of adhesion)
The printed matter (Examples 1 to 7 and Comparative Examples 1 to 3) obtained by the above-described (printing ink and printed matter production method) is sufficiently dried, and a cellophane tape is stuck on the printed surface, and this is placed in a direction perpendicular to the printed surface. The state of the appearance of the printed film when rapidly peeled off was visually determined. The criteria for determining the adhesion were “Pass”: at least 30% of the portion where the printed film and the coated paper were peeled off at the portion where the cellophane tape was peeled off, and “Fail”: the portion where the printed film was peeled with the cellophane tape. The portion where the coated paper was peeled off was 30% or less, the test was performed 10 times, the number of passed tests was counted, and the relative evaluation was performed in 10 steps. The results are shown in Table 1.
*表中の記載において、
固形分調整溶剤:酢酸エチル:イソプロピルアルコール=38.4部:61.6部
NC樹脂:硝化綿樹脂(ニトロセルロース樹脂)
IPA:イソプロピルアルコール
可塑剤:ATBC(田岡化学工業)
PE-WAX:ポリエチレンワックス
希釈溶剤:酢酸エチル/イソプロピルアルコール=6/4 * In the description in the table,
Solid content adjusting solvent: ethyl acetate: isopropyl alcohol = 38.4 parts: 61.6 parts NC resin: nitrified cotton resin (nitrocellulose resin)
IPA: isopropyl alcohol plasticizer: ATBC (Taoka Chemical Industry)
PE-WAX: polyethylene wax diluting solvent: ethyl acetate / isopropyl alcohol = 6/4
固形分調整溶剤:酢酸エチル:イソプロピルアルコール=38.4部:61.6部
NC樹脂:硝化綿樹脂(ニトロセルロース樹脂)
IPA:イソプロピルアルコール
可塑剤:ATBC(田岡化学工業)
PE-WAX:ポリエチレンワックス
希釈溶剤:酢酸エチル/イソプロピルアルコール=6/4 * In the description in the table,
Solid content adjusting solvent: ethyl acetate: isopropyl alcohol = 38.4 parts: 61.6 parts NC resin: nitrified cotton resin (nitrocellulose resin)
IPA: isopropyl alcohol plasticizer: ATBC (Taoka Chemical Industry)
PE-WAX: polyethylene wax diluting solvent: ethyl acetate / isopropyl alcohol = 6/4
表1の結果からわかるように、実施例1~7の印刷物は、比較例1~3の印刷物と比較すると密着性が非常に高い結果となった。実施例7で使用したアルミニウムペースト(X-7)は比較例2で使用したアルミニウムペースト(X-9)の微粒子を除去したものである。実施例7と比較例2を対比して分かるように、微粒子を除去し樹脂被覆した金属粒子を使用しても、微粒子の含有割合が少ない金属粒子(X-1~6)を樹脂被覆した時と同様に密着性が高くなることが明らかとなった。
わ か る As can be seen from the results in Table 1, the printed materials of Examples 1 to 7 had very high adhesion as compared with the printed materials of Comparative Examples 1 to 3. The aluminum paste (X-7) used in Example 7 was obtained by removing fine particles of the aluminum paste (X-9) used in Comparative Example 2. As can be seen from a comparison between Example 7 and Comparative Example 2, even when metal particles from which fine particles were removed and resin-coated were used, metal particles (X-1 to 6) having a small content of fine particles were coated with the resin. It became clear that the adhesiveness was increased in the same manner as in.
(顕微鏡測定)
前記製造例1~7よび比較製造例1~3で製造したアルミニウムペーストそれぞれ不揮発分として0.25部と、アクリル樹脂24部、メラミン樹脂5部と、固形分調整溶剤として酢酸エチルと混ぜて塗料を作成し、1ミルのアプリケーターで展色して、140℃で15分乾燥させて塗膜を作成した。この塗膜をマイクロスコープ(キ―エンス社:VHX-5000)を用いて500倍の倍率で撮影し、VHX-5000の機能のひとつである自動面積測定から直径2μm以下の粒子を抽出し、全粒子面積に対する直径2μm以下の粒子の面積の面積比率を計測した。撮影した画像面積は視野が0.20~0.40mm2の範囲になるように調整し、自動面積比率の計測方法は測定誤差を排除するためそれぞれ異なる印刷部位を20回以上測定し、その平均値を求めた。ここで全粒子面積とは自動面積測定から求められるすべての粒子の面積を示し、直径2μm以下の粒子の面積とは自動面積測定の結果から直径2μm以下と算出された粒子のみの面積を示す。それぞれ塗膜を形成した印刷物を(実施例8~14)、(比較例4~6)とし、結果を表2に示した。実施例8および比較例5で得た印刷物中の塗膜を撮影した画像が図1および図2である。 (Microscope measurement)
Each of the aluminum pastes prepared in Preparation Examples 1 to 7 and Comparative Preparation Examples 1 to 3 was mixed with 0.25 part as a nonvolatile component, 24 parts of an acrylic resin, 5 parts of a melamine resin, and mixed with ethyl acetate as a solid content adjusting solvent to form a paint. Was spread with a 1 mil applicator and dried at 140 ° C. for 15 minutes to form a coating film. This coating film was photographed at a magnification of 500 times using a microscope (Keyence Corporation: VHX-5000), and particles having a diameter of 2 μm or less were extracted from automatic area measurement, which is one of the functions of VHX-5000. The area ratio of the area of the particles having a diameter of 2 μm or less to the particle area was measured. The photographed image area is adjusted so that the field of view is in the range of 0.20 to 0.40 mm 2 , and the automatic area ratio measurement method is to measure each different printed part 20 times or more to eliminate measurement errors, and average The value was determined. Here, the total particle area indicates the area of all the particles obtained from the automatic area measurement, and the area of the particles having a diameter of 2 μm or less indicates the area of only the particles calculated to be 2 μm or less from the result of the automatic area measurement. Printed materials on which the coating films were formed were named (Examples 8 to 14) and (Comparative Examples 4 to 6), and the results are shown in Table 2. FIGS. 1 and 2 show images obtained by photographing the coating films in the printed materials obtained in Example 8 and Comparative Example 5. FIG.
前記製造例1~7よび比較製造例1~3で製造したアルミニウムペーストそれぞれ不揮発分として0.25部と、アクリル樹脂24部、メラミン樹脂5部と、固形分調整溶剤として酢酸エチルと混ぜて塗料を作成し、1ミルのアプリケーターで展色して、140℃で15分乾燥させて塗膜を作成した。この塗膜をマイクロスコープ(キ―エンス社:VHX-5000)を用いて500倍の倍率で撮影し、VHX-5000の機能のひとつである自動面積測定から直径2μm以下の粒子を抽出し、全粒子面積に対する直径2μm以下の粒子の面積の面積比率を計測した。撮影した画像面積は視野が0.20~0.40mm2の範囲になるように調整し、自動面積比率の計測方法は測定誤差を排除するためそれぞれ異なる印刷部位を20回以上測定し、その平均値を求めた。ここで全粒子面積とは自動面積測定から求められるすべての粒子の面積を示し、直径2μm以下の粒子の面積とは自動面積測定の結果から直径2μm以下と算出された粒子のみの面積を示す。それぞれ塗膜を形成した印刷物を(実施例8~14)、(比較例4~6)とし、結果を表2に示した。実施例8および比較例5で得た印刷物中の塗膜を撮影した画像が図1および図2である。 (Microscope measurement)
Each of the aluminum pastes prepared in Preparation Examples 1 to 7 and Comparative Preparation Examples 1 to 3 was mixed with 0.25 part as a nonvolatile component, 24 parts of an acrylic resin, 5 parts of a melamine resin, and mixed with ethyl acetate as a solid content adjusting solvent to form a paint. Was spread with a 1 mil applicator and dried at 140 ° C. for 15 minutes to form a coating film. This coating film was photographed at a magnification of 500 times using a microscope (Keyence Corporation: VHX-5000), and particles having a diameter of 2 μm or less were extracted from automatic area measurement, which is one of the functions of VHX-5000. The area ratio of the area of the particles having a diameter of 2 μm or less to the particle area was measured. The photographed image area is adjusted so that the field of view is in the range of 0.20 to 0.40 mm 2 , and the automatic area ratio measurement method is to measure each different printed part 20 times or more to eliminate measurement errors, and average The value was determined. Here, the total particle area indicates the area of all the particles obtained from the automatic area measurement, and the area of the particles having a diameter of 2 μm or less indicates the area of only the particles calculated to be 2 μm or less from the result of the automatic area measurement. Printed materials on which the coating films were formed were named (Examples 8 to 14) and (Comparative Examples 4 to 6), and the results are shown in Table 2. FIGS. 1 and 2 show images obtained by photographing the coating films in the printed materials obtained in Example 8 and Comparative Example 5. FIG.
Claims (3)
- 共重合体で被覆された樹脂被覆金属顔料の平均粒子径が5~15μmであり、かつ、当該樹脂被覆金属顔料分が0.8質量%になるようにアクリル樹脂、溶剤で調整した塗料を1ミルのアプリケーターで展色、乾燥した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子の面積の面積比率が34%以下である樹脂被覆金属顔料。 A paint prepared by using an acrylic resin and a solvent so that the resin-coated metal pigment coated with the copolymer has an average particle size of 5 to 15 μm and the content of the resin-coated metal pigment is 0.8% by mass. A resin-coated metal pigment in which the area ratio of the area of particles having a diameter of 2 μm or less to the total particle area is 34% or less in an image of a coating film which has been colored and dried with a mill applicator and taken by a microscope.
- 請求項1記載と同様に作成した塗膜をマイクロスコープで撮影した画像あたり、全粒子面積に対する直径2μm以下の粒子が33%以下である請求項1記載の樹脂被覆金属顔料。 <4> The resin-coated metal pigment according to <1>, wherein particles having a diameter of 2 [mu] m or less with respect to the total particle area are 33% or less in an image obtained by photographing a coating film formed in the same manner as described in [1].
- 請求項1または請求項2記載の樹脂被覆金属顔料を含む塗料、インクまたは成形品。 塗料 A paint, ink or molded article containing the resin-coated metal pigment according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019520660A JP6809605B2 (en) | 2018-07-23 | 2018-11-27 | Resin coated metal pigment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018137687 | 2018-07-23 | ||
JP2018-137687 | 2018-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020021735A1 true WO2020021735A1 (en) | 2020-01-30 |
Family
ID=69180950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043509 WO2020021735A1 (en) | 2018-07-23 | 2018-11-27 | Resin-coated metallic pigment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6809605B2 (en) |
WO (1) | WO2020021735A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075117A1 (en) * | 2020-10-05 | 2022-04-14 | 大日本塗料株式会社 | Metallic coating material composition and coated body |
KR20220134457A (en) | 2021-03-26 | 2022-10-05 | 아사히 가세이 가부시키가이샤 | Metallic pigment composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002226733A (en) * | 2001-02-02 | 2002-08-14 | Asahi Kasei Metals Kk | Novel aluminum pigment |
JP2003082290A (en) * | 2001-09-17 | 2003-03-19 | Nippon Paint Co Ltd | Bright coating composition, method for forming coating film, and multilayer coating film |
JP2009227798A (en) * | 2008-03-21 | 2009-10-08 | Asahi Kasei Chemicals Corp | New resin-coated metal pigment |
JP2015172162A (en) * | 2014-03-12 | 2015-10-01 | 旭化成ケミカルズ株式会社 | Resin-attached metallic pigment |
JP2017057309A (en) * | 2015-09-17 | 2017-03-23 | 旭化成株式会社 | Resin-adhered aluminum pigment, coating material and ink |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4207722A1 (en) * | 1991-05-28 | 1992-12-03 | Merck Patent Gmbh | SURFACE-MODIFIED PLAIN-SHAPED PIGMENTS WITH IMPROVED REALLY BEHAVIOR |
JP4193430B2 (en) * | 2002-07-08 | 2008-12-10 | Dic株式会社 | High glitter ink and laminated sheet |
JP2004099642A (en) * | 2002-09-05 | 2004-04-02 | Toyo Ink Mfg Co Ltd | Coating material having metallic luster and coating method |
JP2004292758A (en) * | 2003-03-28 | 2004-10-21 | Toyo Aluminium Kk | Metallic flake pigment and coating material containing the same |
JP4481603B2 (en) * | 2003-07-22 | 2010-06-16 | 株式会社放電精密加工研究所 | Water-based metal anticorrosive paint |
JP2005212135A (en) * | 2004-01-27 | 2005-08-11 | Dainippon Ink & Chem Inc | Packaging material |
JP2005281601A (en) * | 2004-03-30 | 2005-10-13 | Nissan Motor Co Ltd | Bright-looking coating, coating film, and method for forming coating film |
JP2007224243A (en) * | 2006-02-27 | 2007-09-06 | Dainippon Ink & Chem Inc | Highly brilliant printing ink and thermal transfer sheet produced by using the same |
JP5359120B2 (en) * | 2008-08-27 | 2013-12-04 | 東洋インキScホールディングス株式会社 | High-brightness laminating ink composition and retort-resistant soft packaging material using the same. |
JP2009030065A (en) * | 2008-09-16 | 2009-02-12 | Seiko Advance:Kk | Ink, decorated printed matter and decorated resin molded article |
JP2010254934A (en) * | 2009-04-28 | 2010-11-11 | Tokai Rika Co Ltd | Metallic coating and metallic ink, metallic coated film, as well as producing method of them |
JP5669067B2 (en) * | 2010-12-07 | 2015-02-12 | 北越パッケージ株式会社 | Light-shielding silver ink composition and packaging container using the same |
JP5912565B2 (en) * | 2012-01-23 | 2016-04-27 | サカタインクス株式会社 | Printing ink composition for laminate cans |
JP2015199782A (en) * | 2014-04-04 | 2015-11-12 | 株式会社倉本産業 | Printing method for forming printed matter having mirror surface gloss |
-
2018
- 2018-11-27 WO PCT/JP2018/043509 patent/WO2020021735A1/en active Application Filing
- 2018-11-27 JP JP2019520660A patent/JP6809605B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002226733A (en) * | 2001-02-02 | 2002-08-14 | Asahi Kasei Metals Kk | Novel aluminum pigment |
JP2003082290A (en) * | 2001-09-17 | 2003-03-19 | Nippon Paint Co Ltd | Bright coating composition, method for forming coating film, and multilayer coating film |
JP2009227798A (en) * | 2008-03-21 | 2009-10-08 | Asahi Kasei Chemicals Corp | New resin-coated metal pigment |
JP2015172162A (en) * | 2014-03-12 | 2015-10-01 | 旭化成ケミカルズ株式会社 | Resin-attached metallic pigment |
JP2017057309A (en) * | 2015-09-17 | 2017-03-23 | 旭化成株式会社 | Resin-adhered aluminum pigment, coating material and ink |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075117A1 (en) * | 2020-10-05 | 2022-04-14 | 大日本塗料株式会社 | Metallic coating material composition and coated body |
JP7575907B2 (en) | 2020-10-05 | 2024-10-30 | 大日本塗料株式会社 | Metallic paint composition and coated body |
KR20220134457A (en) | 2021-03-26 | 2022-10-05 | 아사히 가세이 가부시키가이샤 | Metallic pigment composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020021735A1 (en) | 2020-08-06 |
JP6809605B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2436738B1 (en) | Surface-coated metallic pigment, water-based coating comprising same and article coated therewith | |
JPS62253668A (en) | Novel resin-coated metallic pigment and its production | |
JP6886597B2 (en) | Resin coated aluminum pigment | |
WO2020021735A1 (en) | Resin-coated metallic pigment | |
JP7257268B2 (en) | Hydrophilic treatment agent and method for forming hydrophilic film | |
JP5781366B2 (en) | Resin-coated metallic pigment | |
JP2000044835A (en) | Resin-coated metallic pigment and metallic coating material produced by using the pigment | |
JP6168266B1 (en) | Resin-coated inorganic or metal pigment | |
JP6436250B2 (en) | Resin-coated metal pigment | |
JPH0249076A (en) | Metallic paint | |
JP6384624B1 (en) | Resin-coated metal pigment | |
JP7186197B2 (en) | Coating composition and method for producing coating composition | |
JP3489641B2 (en) | Paint composition for pre-coated steel sheet | |
KR101986064B1 (en) | Resin-coated inorganic or metallic pigments | |
JP5221048B2 (en) | Water-based paint composition | |
JP7186198B2 (en) | Coating composition and method for producing coating composition | |
JP7113412B1 (en) | Protective film, housing having protective film, and electronic device using the same | |
JP3498850B2 (en) | Metallic coating composition and coating film forming method | |
JP4691617B2 (en) | How to paint ABS material | |
JP2022150018A (en) | Coating composition, coated laminate and method for producing coated laminate | |
JP2017057309A (en) | Resin-adhered aluminum pigment, coating material and ink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019520660 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927760 Country of ref document: EP Kind code of ref document: A1 |