[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020019351A1 - 传输配置指示的配置方法及装置 - Google Patents

传输配置指示的配置方法及装置 Download PDF

Info

Publication number
WO2020019351A1
WO2020019351A1 PCT/CN2018/097665 CN2018097665W WO2020019351A1 WO 2020019351 A1 WO2020019351 A1 WO 2020019351A1 CN 2018097665 W CN2018097665 W CN 2018097665W WO 2020019351 A1 WO2020019351 A1 WO 2020019351A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
target
signaling
terminal
configuration
Prior art date
Application number
PCT/CN2018/097665
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202110667770.1A priority Critical patent/CN113365359B/zh
Priority to ES18927634T priority patent/ES2946602T3/es
Priority to CN201880001656.1A priority patent/CN109076560B/zh
Priority to EP18927634.8A priority patent/EP3833081B1/en
Priority to PCT/CN2018/097665 priority patent/WO2020019351A1/zh
Priority to PL18927634.8T priority patent/PL3833081T3/pl
Priority to US17/263,639 priority patent/US11765023B2/en
Publication of WO2020019351A1 publication Critical patent/WO2020019351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a configuration method and device for transmitting configuration instructions.
  • 5G is NR (New Radio) system related standardization is being carried out in 3GPP (3rd Generation Partnership Project, 3rd Generation Partnership Project).
  • the base station can determine multiple TCI (transmission configuration) corresponding to the terminal according to the measurement results reported by the terminal.
  • indication, transmission configuration indication) status when the type of QCL (Quasi-Co-Location, quasi co-location) of each TCI status is type D, it is used to indicate the spatial Rx parameter, which is used to indicate a receiving beam (beam ).
  • the current number of TCI states is up to 64.
  • MAC CE Media Access Control Element
  • Layer control unit Layer control unit
  • embodiments of the present disclosure provide a configuration method and device for transmitting a configuration instruction.
  • a configuration method for transmitting a configuration indication is provided.
  • the method is used in a base station, and the method includes:
  • the terminal After establishing a radio resource control RRC connection with the terminal, sending activation signaling to the terminal; wherein the activation signaling is used to activate all TCI states included in the target TCI packet, and the target TCI packet includes multiple TCI status;
  • the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam
  • the target receiving beam is a reference corresponding to a target TCI state
  • the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • the method before the sending activation signaling to the terminal, the method further includes:
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier, and the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is an identifier of a reference signal corresponding to a current TCI state.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the sending activation signaling to the terminal includes:
  • the sending configuration signaling to the terminal includes:
  • a configuration method for transmitting a configuration indication is provided.
  • the method is used for a terminal, and the method includes:
  • the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state
  • the target TCI state is the target TCI
  • the configuration signaling sent by the base station After receiving the configuration signaling sent by the base station, determining a target receiving beam; wherein the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI state is the target TCI One of the TCI states indicated in the packet by the configuration signaling;
  • the method before the receiving the activation signaling sent by the base station, the method further includes:
  • TCI state correspondence table includes a mapping relationship between a TCI state identifier and a signal identifier, and the TCI state identifier is a state corresponding to all TCI states Identification, the signal identification is an identification of a reference signal corresponding to a current TCI state.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • determining the target receiving beam includes:
  • a receiving beam for receiving a target reference signal is used as the target receiving beam, and the target reference signal is a reference signal indicated by the target signal identifier.
  • a configuration device for transmitting a configuration instruction the device being used for a base station, the device including:
  • the first sending module is configured to send activation signaling to the terminal after establishing a radio resource control RRC connection with the terminal, where the activation signaling is used to activate all TCI states included in the target TCI packet, so that The target TCI packet includes multiple TCI states;
  • the second sending module is configured to send configuration signaling to the terminal, where the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam, and the target receiving beam Is a receive beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • the apparatus further includes:
  • a third sending module is configured to send a TCI status correspondence table to the terminal through target RRC signaling; wherein the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier, and the TCI status identifier is A state identifier corresponding to each TCI state, and the signal identifier is an identifier of a reference signal corresponding to the current TCI state.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the first sending module includes:
  • the first sending sub-module is configured to send activation signaling for indicating whether all TCI states included in each TCI packet are activated to the terminal.
  • the second sending module includes:
  • a first determining submodule configured to arrange all TCI states included in the target TCI group in a descending order of TCI status identifiers, and determine a serial number corresponding to each TCI state included in the target TCI group;
  • a second determining submodule configured to determine a target sequence number corresponding to the target TCI state
  • the second sending submodule is configured to send configuration signaling carrying the target sequence number to the terminal.
  • a configuration apparatus for transmitting a configuration instruction is provided.
  • the apparatus is used for a terminal.
  • the apparatus includes:
  • a first receiving module configured to receive activation signaling sent by the base station after establishing a radio resource control RRC connection with the base station;
  • An activation module configured to activate all TCI states included in the target TCI packet indicated by the activation signaling; wherein the target TCI packet includes multiple TCI states corresponding to the terminal;
  • a determining module configured to determine a target receiving beam after receiving the configuration signaling sent by the base station; wherein the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI The state is one of the TCI states indicated by the configuration signaling in the target TCI packet;
  • the second receiving module is configured to receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam.
  • the apparatus further includes:
  • a third receiving module is configured to receive a TCI status correspondence table sent by the base station through target RRC signaling; wherein the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier, and the TCI status identifier It is a state identifier corresponding to all TCI states, and the signal identifier is an identifier of a reference signal corresponding to the current TCI state.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the determining module includes:
  • the third determining submodule is configured to arrange all TCI states included in the target TCI group in a descending order of TCI status identifiers, and determine a serial number corresponding to each TCI state included in the target TCI group;
  • a fourth determining submodule is configured to determine a target TCI status by matching a corresponding TCI status of the serial number with a target serial number carried in the configuration signaling;
  • a fifth determining submodule configured to determine a target signal identifier corresponding to a target TCI status identifier of the target TCI status in the TCI status correspondence table;
  • a sixth determining submodule is configured to use a receiving beam for receiving a target reference signal as the target receiving beam, and the target reference signal is a reference signal indicated by the target signal identifier.
  • a computer-readable storage medium stores a computer program, and the computer program is configured to execute the configuration method for transmitting a configuration instruction according to the first aspect.
  • a computer-readable storage medium stores a computer program, and the computer program is configured to execute the configuration method for transmitting a configuration instruction according to the second aspect.
  • a configuration apparatus for transmitting a configuration instruction is provided.
  • the apparatus is used for a base station and includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the terminal After establishing a radio resource control RRC connection with the terminal, sending activation signaling to the terminal; wherein the activation signaling is used to activate all TCI states included in the target TCI packet, and the target TCI packet includes multiple TCI status;
  • the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam
  • the target receiving beam is a reference corresponding to a target TCI state
  • the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • a configuration device for transmitting a configuration instruction including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state
  • the target TCI state is the target TCI
  • the configuration signaling sent by the base station After receiving the configuration signaling sent by the base station, determining a target receiving beam; wherein the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI state is the target TCI One of the TCI states indicated in the packet by the configuration signaling;
  • the base station may send activation signaling to the terminal after establishing an RRC connection with the terminal, thereby activating all TCI states in the target TCI packet. Further, the base station sends configuration signaling to the terminal.
  • the receiving beam corresponding to the reference signal corresponding to the target TCI state in the target TCI packet is the target receiving beam, so that the terminal uses the target receiving beam to receive the physical downlink channel scheduled by the configuration signaling.
  • grouping the TCI states it is possible to indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling.
  • the target TCI packet includes All TCI states are activated, reducing the overhead of activation signaling and saving base station resources.
  • the base station may send the TCI status correspondence table to the terminal through the target RRC signaling before sending the activation signaling to the terminal.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • the base station sends the TCI state correspondence table to the terminal, so that the terminal can subsequently determine the target receiving beam of the physical downlink channel scheduled to receive the configuration signaling according to the TCI state correspondence table, and the availability is high.
  • the base station may also send the packet indication information to the terminal through the target RRC signaling, so that the terminal determines the TCI status included in each TCI packet in the TCI state correspondence table according to the packet indication information, and the subsequent base stations may In signaling, the number of bits is used to indicate whether each TCI packet is activated. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activating signaling.
  • the activation signaling may indicate whether all TCI states included in each TCI packet are activated, so that the terminal may determine to be activated after receiving the activation signaling. All TCI states included in the target TCI packet are activated, which reduces the overhead of activation signaling and saves base station resources.
  • the base station may arrange all the TCI states included in the target TCI packet according to the TCI state identifier in ascending order, thereby determining a serial number corresponding to each TCI state included in the target TCI packet. Further, a target serial number corresponding to the target TCI status may be determined.
  • the base station sends the target sequence number to the terminal through configuration signaling. On the terminal side, the corresponding target TCI status is determined according to the target serial number, and the target receiving beam is further determined.
  • the base station can configure the signaling to allow the terminal to quickly determine the target TCI status in the activated target TCI packet. In the case of ensuring terminal services, the same can be achieved to save activation signaling overhead. the goal of.
  • the terminal may receive activation signaling sent by the base station, and activate all TCI states included in the target TCI packet according to the activation signaling. Further, according to the received configuration signaling, a target TCI state is determined in the target TCI packet, and a receiving beam corresponding to a reference signal corresponding to the target TCI state is used as a target receiving beam. The terminal may receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam.
  • the base station can indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling, and the terminal can activate the target TCI packet included in the activation signaling according to the activation signaling All TCI states reduce the overhead of activation signaling and save base station resources.
  • the terminal before receiving the activation signaling sent by the base station, the terminal may receive the TCI state correspondence table sent by the base station through the target RRC signaling.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • logo It is convenient for the terminal to determine the target receiving beam of the physical downlink channel scheduled to receive the configuration signaling according to the TCI state correspondence table in the future, and the availability is high.
  • the terminal may also receive target RRC signaling including packet indication information, so that the terminal determines the TCI status included in each TCI packet in the TCI state correspondence table according to the packet indication information, and subsequent base stations may activate the signaling It indicates whether each TCI packet is activated by a smaller number of bits. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activation signaling.
  • the terminal may arrange all TCI states in the activated target TCI packet in a descending order of TCI state identifiers, and determine a serial number corresponding to each TCI state included in the target TCI packet.
  • the TCI status whose serial number matches the target serial number carried in the configuration signaling is the target TCI status.
  • the reference signal indicated by the target signal identifier is the target reference signal, and the terminal uses a receiving beam for receiving the target reference signal as the target receiving beam.
  • the terminal can quickly determine the target TCI status in the activated target TCI packet, and finally determine the target receiving beam.
  • the implementation saves the activation signaling overhead Purpose, saving base station resources.
  • Fig. 1 is a schematic diagram of a configuration scenario for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 2 is a flowchart of a configuration method for transmitting a configuration indication according to an exemplary embodiment.
  • Figs. 3A to 3B are schematic diagrams of a configuration scenario of a transmission configuration indication according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing another method for configuring a transmission configuration indication according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a configuration apparatus for transmitting a configuration instruction according to an exemplary embodiment.
  • Fig. 11 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 12 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 13 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 14 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 15 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 16 is a block diagram of another configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • Fig. 17 is a schematic structural diagram of a configuration apparatus for transmitting a configuration instruction according to an exemplary embodiment of the present disclosure.
  • Fig. 18 is a schematic structural diagram of another configuration apparatus for transmitting a configuration instruction according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • An embodiment of the present disclosure provides a configuration scenario diagram for transmitting a configuration indication, as shown in FIG. 1.
  • the base station 100 may send activation signaling to the terminal 200 after establishing a radio resource control RRC connection with the terminal.
  • the terminal 200 activates all TCI states included in the target TCI packet in a plurality of TCI packets according to the activation signaling.
  • the base station 100 sends configuration signaling to the terminal 200, and indicates the target TCI status in the target TCI packet.
  • the terminal receives the physical downlink channel scheduled by the configuration signaling through a receiving beam corresponding to the reference signal corresponding to the target TCI status.
  • the target TCI packet by grouping the TCI states, it is possible to indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling. Once the target TCI packet is activated, the target TCI packet includes All TCI states are activated, reducing the overhead of activation signaling and saving base station resources.
  • An embodiment of the present disclosure provides a configuration method for transmitting a configuration indication, which can be used in a base station.
  • a flowchart of a configuration method for transmitting a configuration indication according to an exemplary embodiment may include the following steps:
  • step 101 after establishing a radio resource control RRC connection with a terminal, sending activation signaling to the terminal; wherein the activation signaling is used to activate all TCI states included in a target TCI packet, and the target TCI
  • the group includes multiple TCI states
  • step 102 configuration signaling is sent to the terminal, where the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam, where the target receiving beam is a target and target A receiving beam corresponding to a reference signal RS corresponding to a TCI state, and the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • the base station may send activation signaling to the terminal after establishing an RRC connection with the terminal, thereby activating all TCI states in the target TCI packet. Further, the base station sends configuration signaling to the terminal, and at the activated target The receiving beam corresponding to the reference signal corresponding to the target TCI status in the TCI packet is the target receiving beam, so that the terminal uses the target receiving beam to receive the physical downlink channel scheduled by the configuration signaling.
  • the target TCI packet includes All TCI states are activated, reducing the overhead of activation signaling and saving base station resources.
  • the base station may first send measurement configuration information to the terminal according to the related technology, and the measurement configuration information is used for the terminal to report a beam measurement result to the base station.
  • the base station determines the TCI state set based on the beam measurement results reported by the terminal.
  • the beam measurement result may include an RS (Reference Signal) reference signal corresponding to the beam and L1-RSRP (Layer 1-Reference Signal Receive Power), and the RS identifier may include an RS type and Index number, the RS type refers to that the reference signal can be SSB (Synchronization Signal Block) or CSI-RS (channel state information reference signal).
  • RS Reference Signal
  • L1-RSRP Layer 1-Reference Signal Receive Power
  • the RS identifier may include an RS type and Index number
  • the RS type refers to that the reference signal can be SSB (Synchronization Signal Block) or CSI-RS (channel state information reference signal).
  • the base station may send activation signaling to the terminal, where the activation signaling is used to activate all TCI states included in the target TCI packet, and the target TCI packet includes multiple TCI status.
  • the activation signaling is MAC CE signaling.
  • all TCI states corresponding to the terminal may be grouped.
  • the TCI states with similar spatial information may be grouped, that is, the TCI states corresponding to multiple RSs with close beam directions used by the base station to send RSs are grouped into one group, or used when the terminal receives RSs.
  • the TCI states corresponding to RSs whose beam directions are close to each other are grouped into one group.
  • the serial numbers of the TCI states divided into a group may be adjacent.
  • TCI # 3A the direction of the beam when RS is transmitted using a transmission beam of the base station closer to T 0, T 1, T 2 , T 3 RS corresponding to each state corresponding TCI TCI # 0, TCI # 1, TCI # 2, TCI # 3 is divided into a group, and the transmission beams T 4 , T 5 , T 6 , and T 7 corresponding to the beam directions used by the base station when transmitting the RS are corresponding to the TCI states corresponding to the RS TCI # 4, TCI # 5, TCI # 6. TCI # 7 is divided into another group.
  • the terminal receiving RS may use the receiving beams R 0 , R 1 , R 2 , and R 3 corresponding to the beam directions that are close to each other.
  • TCI # 11 is divided into a group, and the receiving RS of the terminal is the receiving beams R 4 , R 5 , R 6 , and R 7 corresponding to the beam directions used by the terminal.
  • the TCI states corresponding to the RS corresponding to TCI # 12, TCI # 13, TCI # 14 and TCI # 15 are divided into another group.
  • each TCI packet includes the same number of TCI states, for example, each TCI packet includes 2, 4, or 8 TCI states. Considering that MAC CE signaling generally activates eight TCI states, therefore, in the embodiment of the present disclosure, the maximum number of TCI states included in each TCI packet may be eight.
  • different TCI groups may not have the same TCI state, or may have the same TCI state.
  • the number of the same TCI state included in any two TCI packets should be less than in each TCI packet.
  • TCI states are grouped into a group, and the total number of TCI states included in each TCI group is 4, then the first group may include TCI # 0, TCI # 1, TCI # 2, TCI # 3, the first The two groups can include TCI # 4, TCI # 5, TCI # 6, TCI # 7.
  • the first group may include TCI # 0, TCI # 1, TCI # 2, TCI # 3, and the second group may include TCI # 3, TCI # 4, TCI # 5, TCI # 6.
  • the number of the above two TCI packets including the same TCI state is 1, and the same TCI state is TCI # 3.
  • the base station When the base station sends activation signaling to the terminal, it can send activation signaling to the terminal to indicate whether all TCI states included in each TCI packet are activated, so that the terminal can use activation signaling in all TCI packets. Determine the target TCI packet that needs to be activated, thereby activating all TCI states included in the target TCI packet.
  • N bits are required to indicate which target TCI group is activated.
  • the value of the current bit is 1 to activate all TCI states in the target TCI group.
  • the value of the current bit is 0 to indicate All TCI states included in this TCI packet are not activated. Or a value of 1 indicates that all TCI states included in the TCI packet are not activated, and a value of 0 indicates that all TCI states in the target TCI packet are not limited by this disclosure.
  • each TCI packet includes 4 TCI states, and any two TCI packets do not include the same TCI state. Then the 64 TCI states are divided into 16 groups in total.
  • the activation signaling MAC CE needs to send 16 bits to The terminal, so that the terminal determines the target TCI packet that needs to be activated. Assuming that the first group and the third group need to be activated, the value of 16 bits sent by the base station through the MAC CE is 0000, 0000, and 0101 in turn. From right to left, the target TCI groups that need to be activated are respectively the first and third groups.
  • the base station passes The MAC sends the above 16 bits to the terminal, and the terminal can determine that all TCI states in the target TCI packet need to be activated, that is, the activated TCI states include: TCI # 0, TCI # 1, TCI # 2, TCI # 3, TCI # 8. TCI # 9, TCI # 10, TCI # 11.
  • the activation signaling MAC CE needs to send 64 bits to the terminal before the terminal can determine the 8 TCI states that need to be activated.
  • the number of TCI states included can be 2, 4, or 8. Therefore, the base station only needs to send fewer bits to achieve the purpose of enabling the terminal to activate 8 of the 64 TCI states, reducing the overhead of activation signaling.
  • FIG. 4 is a flowchart of another method for configuring a transmission configuration indication according to the embodiment shown in FIG. 2, and 102 may include the following steps:
  • step 102-1 all TCI states included in the target TCI group are arranged in ascending order of TCI status identifiers, and a serial number corresponding to each TCI state included in the target TCI group is determined;
  • the base station may arrange all TCI states included in the target TCI group in ascending order of TCI status identifiers, so as to determine a correspondence for each TCI state included in the target TCI group. Serial number.
  • TCI # 11 TCI # 11
  • step 102-2 a target sequence number corresponding to the target TCI status is determined
  • the base station may determine the target sequence number corresponding to the target TCI status in Table 1. For example, if the target TCI status is TCI # 9, the target serial number is 5.
  • step 102-3 sending configuration signaling carrying the target sequence number to the terminal.
  • the base station may send the configuration signaling carrying the target sequence number to the terminal.
  • the configuration signaling may be DCI (Downlink Control Information) signaling.
  • the target serial number in order to carry the target serial number in the configuration signaling, the target serial number may be converted according to the binary in the related technology to obtain the target binary value. Further, only the target needs to be carried in the configuration signaling. A binary value is sufficient. For example, the target number is 5, and the target binary value obtained after conversion to binary is 101.
  • the terminal After receiving the configuration signaling, the terminal can determine the target TCI status as TCI # 9 among the 8 activated TCI states according to the target sequence number carried in the configuration signaling. Further, the receiving beam corresponding to TCI # 9 can be used as The target receives the beam to receive the physical downlink channel scheduled by the DCI signaling.
  • the physical downlink channel may be a physical downlink control channel (PDCCH) or a physical downlink shared channel (PDSCH).
  • the base station can enable the terminal to quickly determine one of the TCI states, that is, the target TCI state, in the activated target TCI packet through configuration signaling.
  • the same The purpose of saving activation signaling overhead is achieved.
  • FIG. 5 is a flowchart of another method for configuring the transmission configuration indication according to the embodiment shown in FIG. 2. Before sending activation signaling to the terminal, the method may further include the following steps:
  • step 103 a TCI status correspondence table is sent to the terminal through target RRC signaling
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status, and the signal identifier corresponds to the current TCI status. Identification of the reference signal.
  • the signal identifier may include a reference signal type and an index number, where the reference signal type means that the reference signal may be SSB or CSI-RS.
  • the TCI status correspondence table can be shown in Table 2.
  • TCI status identification Signal identification TCI # 0 SSB index # 1 TCI # 1 SSB index # 2 TCI # 2 CSI-RS index # 5 TCI # 3 CSI-RS index # 6 TCI # 4 SSB index # 3 ... ...
  • the base station may send Table 2 to the terminal through the target RRC signaling before sending the activation signaling to the terminal.
  • the terminal may use the receiving beam R x receiving the CSI-RS index # 6 as the target receiving beam according to Table 2, so as to receive the scheduled scheduling signaling through R x Physical downlink channel.
  • the target TCI is TCI # 3
  • it may also be described a base station that transmits CSI-RS index # through transmission beam T x 6, transmission beam base station side reception beam R x T x and the terminal side is the corresponding, i.e. It is said that the terminal side needs to receive the physical downlink channel transmitted by the transmission beam T x through the reception beam R x .
  • the base station may send the TCI status correspondence table to the terminal through the target RRC signaling before sending the activation signaling to the terminal.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • the base station sends the TCI state correspondence table to the terminal, so that the terminal can subsequently determine the target receiving beam of the physical downlink channel scheduled to receive the configuration signaling according to the TCI state correspondence table, and the availability is high.
  • the base station may further send group instruction information to the terminal through the target RRC signaling, and the group instruction information is used to indicate a TCI group corresponding to each TCI status identifier in the TCI status correspondence table. As shown in Table 3.
  • TCI status identification Signal identification Grouping instructions TCI # 0 SSB index # 1 First group TCI # 1 SSB index # 2 First group TCI # 2 CSI-RS index # 5 First group TCI # 3 CSI-RS index # 6 First group TCI # 4 SSB index # 3 Second Group ... ... ...
  • the terminal may further determine the TCI packet to which each TCI status belongs, and the subsequent base station may be characterized by a smaller number of bits in the activation signaling. Whether each TCI packet is activated. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activation signaling.
  • the grouping indication information only needs to give the number L of TCI states divided into a group and the number M of the same TCI states in each adjacent two TCI packets.
  • the predefined grouping indication information is a continuous L TCI state as a group, that is, TCI # 0, TCI # 1, TCI # 2, TCI # 3 belong to the first group, TCI # 4, TCI # 5, TCI # 6, TCI # 7 belong to the second group, and so on.
  • the base station does not need to send any grouping instruction information to the terminal, that is, the values of L and M are also predefined.
  • the above grouping instruction information is directly written into the base station chip and the terminal chip. Accordingly, the base station does not need to pass the target RRC The signaling sends grouping instruction information to the terminal, and the terminal can directly obtain the grouping instruction information through its own chip, which saves signaling resources for interaction between the base station and the terminal.
  • the following describes the method for configuring the transmission configuration instruction provided by the embodiment of the present disclosure from the terminal side.
  • An embodiment of the present disclosure provides another configuration method for transmitting a configuration indication, which can be used for a terminal.
  • FIG. 6 which is a flowchart of another configuration method for transmitting a configuration indication, according to an exemplary embodiment, which may include the following steps:
  • step 201 after establishing a radio resource control RRC connection with a base station, receiving activation signaling sent by the base station;
  • step 202 all TCI states included in the target TCI packet indicated by the activation signaling are activated; wherein the target TCI packet includes multiple TCI states;
  • a target receiving beam is determined; wherein the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI state One of the TCI states indicated by the configuration signaling in the target TCI packet;
  • step 204 a physical downlink channel scheduled by the configuration signaling is received through the target receiving beam.
  • the terminal may receive activation signaling sent by the base station after establishing an RRC connection with the base station, and activate all TCI states included in the target TCI packet according to the activation signaling. Further, according to the received configuration signaling, a target TCI state is determined in the target TCI packet, and a receiving beam corresponding to a reference signal corresponding to the target TCI state is used as a target receiving beam. The terminal may receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam. In the above process, by grouping the TCI states, the base station can indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling, and the terminal can activate the target TCI packet included in the activation signaling according to the activation signaling. All TCI states reduce the overhead of activation signaling and save base station resources.
  • the terminal may first receive the measurement configuration information sent by the base station according to the related technology, and then report the beam measurement result to the base station according to the measurement configuration information, so that the base station determines the TCI state set.
  • the beam measurement result may include an RS identifier of the beam, L1-RSRP, and the like, the RS identifier may include an RS type and an index number, and the RS type means that the reference signal may be SSB or CSI-RS.
  • the terminal After the terminal establishes an RRC connection with the base station, it can receive the activation signaling sent by the base station according to the related technology.
  • the activation signaling may be MAC signaling.
  • the terminal activates all TCI states included in the target TCI packet according to the instruction of the activation signaling.
  • each TCI packet includes multiple TCI states, and each TCI packet includes the same number of TCI states, for example, each TCI packet includes 2, 4, or 8 TCI states.
  • each TCI packet includes 2, 4, or 8 TCI states.
  • the maximum number of TCI states included in each TCI packet may be eight.
  • different TCI groups may not have the same TCI state or the same TCI state.
  • the number of identical TCI states included in any two TCI groups should be less than the total number of TCI states included in each TCI group. Head.
  • the base station When the base station sends activation signaling to the terminal, it may send activation signaling to the terminal to indicate whether all TCI states included in each TCI packet are activated.
  • the terminal activates all TCI states included in the target TCI packet according to the activation signaling.
  • each TCI packet includes 4 TCI states, and any two TCI packets do not include the same TCI state. Then the 64 TCI states are divided into 16 groups in total.
  • the activation signaling MAC CE needs to send 16 bits to The 16-bit value sent by the terminal and the base station through the MAC CE is 0000, 0000, 0000, and 0101 in turn. From right to left, the target TCI groups that need to be activated are respectively the first group and the third group.
  • the terminal determines that the target TCI group is the first group and the third group according to the activation signaling, and then the terminal needs to activate all TCI states included in the first group and the third group.
  • step 203 after the terminal receives the configuration signaling sent by the base station, the process of determining the target receiving beam may refer to FIG. 7, and FIG. 7 is another transmission configuration indication according to the embodiment shown in FIG. 6.
  • the configuration method flowchart, step 203 may include the following steps:
  • step 203-1 all TCI states included in the target TCI packet are arranged in ascending order of TCI state identifiers, and a serial number corresponding to each TCI state included in the target TCI packet is determined;
  • the terminal may arrange the above TCI states according to the TCI state identifiers in ascending order, and determine that each TCI state included in the target TCI group corresponds to
  • the serial number is also shown in Table 1.
  • step 203-2 the TCI status corresponding to the corresponding serial number and the target serial number carried in the configuration signaling is determined as the target TCI status;
  • the terminal may convert the serial numbers corresponding to each TCI status in Table 1 in binary to obtain the target.
  • the binary value corresponding to each TCI state included in the TCI packet is shown in Table 4.
  • the base station will also carry the target binary value corresponding to the target TCI status in binary mode in the configuration signaling, such as DCI signaling. Assuming 101, the terminal can determine the target TCI status according to Table 4. TCI # 9.
  • step 203-3 in the TCI state correspondence table, determine a target signal identifier corresponding to a target TCI state identifier of the target TCI state;
  • the terminal may determine a target signal identifier corresponding to the target TCI status identifier according to Table 3 above, assuming that the target signal identifier is SSB # 4.
  • a receiving beam for receiving a target reference signal is used as the target receiving beam, and the target reference signal is a reference signal indicated by the target signal identifier.
  • the terminal may be configured to receive a target reference signal received beam as the target reception beam, i.e. the received SSB # reception beam reception beam x-R 4 as a target.
  • the terminal can quickly determine the target TCI status in the activated target TCI packet, and finally determine the target receiving beam. Under the condition of ensuring terminal services, the activation signaling overhead is saved.
  • the purpose is to save base station resources.
  • the terminal may receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam according to related technologies.
  • the physical downlink channel may be a PDCCH or a PDSCH.
  • FIG. 8 is a flowchart of another method for configuring a transmission configuration indication according to the embodiment shown in FIG. 6. Before receiving the activation signaling sent by the base station, the transmission is performed.
  • the configuration method of the configuration means may further include the following steps:
  • step 205 receiving a TCI status correspondence table sent by the base station through target RRC signaling
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • the base station may send the above Table 2 to the terminal through the target RRC signaling before sending the activation signaling to the terminal, and the terminal receives according to the related technology, so that the terminal determines to receive the configuration according to the TCI status correspondence table in the subsequent
  • the target receiving beam of the physical downlink channel scheduled by the signaling has high availability.
  • the terminal may also receive grouping indication information sent by the base station through target RRC signaling, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the base station sends Table 3 to the terminal through the target RRC signaling, and the terminal determines the TCI status included in each TCI packet in the TCI status correspondence table according to the grouping indication information. Subsequent base stations can pass less in the activation signaling. The number of bits is used to indicate whether each TCI packet is activated. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activation signaling.
  • the grouping indication information only needs to give the number L of TCI states divided into a group and the number M of the same TCI states in two adjacent TCI groups.
  • the pre-defined grouping indication information consecutive L TCI states are a group, that is, TCI # 0, TCI # 1, TCI # 2, TCI # 3 belong to the first group, TCI # 4, TCI # 5, TCI # 6, TCI # 7 belong to the second group, and so on.
  • the base station does not need to send any grouping instruction information to the terminal, that is, the values of L and M are also predefined.
  • the above grouping instruction information is directly written into the base station chip and the terminal chip. Accordingly, the base station does not need to pass the target RRC.
  • the signaling sends grouping instruction information to the terminal, and the terminal can directly obtain the grouping instruction information through its own chip, which saves signaling resources for interaction between the base station and the terminal.
  • An embodiment of the present disclosure provides another configuration method for transmitting a configuration indication.
  • FIG. 9 is a flowchart of another configuration method for transmitting a configuration indication, according to an exemplary embodiment, which may include the following steps:
  • step 301 the base station sends a TCI status correspondence table to the terminal through target RRC signaling, and the target RRC signaling further includes grouping indication information.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • Identification; the grouping indication information is used to indicate a TCI group corresponding to each TCI status identifier in the TCI status correspondence table.
  • step 302 the base station sends activation signaling to the terminal to indicate whether all TCI states included in each TCI packet are activated.
  • the activation signaling may be MAC signaling.
  • the base station needs N bits to indicate which target TCI packet is activated, and N is far less than 64.
  • step 303 the terminal activates all TCI states included in the target TCI packet indicated by the activation signaling.
  • the target TCI packet includes multiple TCI states.
  • step 304 the base station arranges all TCI states included in the target TCI packet according to a TCI status identifier in ascending order, and determines a serial number corresponding to each TCI state included in the target TCI packet.
  • step 305 the base station determines a target sequence number corresponding to the target TCI state.
  • the target TCI state is one of the TCI states in the target TCI packet that needs to be subsequently indicated by configuration signaling.
  • step 306 the base station sends configuration signaling carrying the target sequence number to the terminal.
  • the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam, and the target receiving beam is a receiving beam corresponding to a reference signal RS corresponding to a target TCI state. .
  • step 307 the terminal arranges all TCI states included in the target TCI packet in a descending order of TCI state identifiers, and determines a serial number corresponding to each TCI state included in the target TCI packet.
  • step 308 the terminal determines the TCI status corresponding to the serial number and the target serial number carried in the configuration signaling as the target TCI status.
  • step 309 the terminal determines a target signal identifier corresponding to a target TCI status identifier of the target TCI status in the TCI status correspondence table.
  • step 310 the terminal uses a receiving beam for receiving a target reference signal as the target receiving beam.
  • the target reference signal is a reference signal indicated by the target signal identifier.
  • step 311 the terminal receives the physical downlink channel scheduled by the configuration signaling through the target receiving beam.
  • the base station may first send the target RRC signaling to the terminal, and send the TCI status correspondence table and TCI packet information to the terminal through the target RRC signaling. Further, the base station sends activation signaling to the terminal to activate the target TCI. All TCI states in the packet are then sent by the base station to the terminal. In the activated target TCI packet, the receiving beam corresponding to the reference signal RS corresponding to the target TCI state is the target receiving beam, so that the terminal uses the target receiving beam. Receiving a physical downlink channel scheduled by the configuration signaling. In the above process, by grouping the TCI states, it is possible to indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling. Once the target TCI packet is activated, the target TCI packet includes All TCI states are activated, reducing the overhead of activation signaling and saving base station resources.
  • the present disclosure also provides embodiments of an application function implementation device, and corresponding base stations and terminals.
  • FIG. 10 is a block diagram of a configuration apparatus for transmitting a configuration indication according to an exemplary embodiment.
  • the apparatus is used in a base station, and the apparatus includes:
  • the first sending module 410 is configured to send activation signaling to the terminal after establishing a radio resource control RRC connection with the terminal, where the activation signaling is used to activate all TCI states included in the target TCI packet,
  • the target TCI packet includes multiple TCI states;
  • the second sending module 420 is configured to send configuration signaling to the terminal, where the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam, and the target receives
  • the beam is a receiving beam corresponding to a reference signal RS corresponding to a target TCI state
  • the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • the base station may send activation signaling to the terminal after establishing an RRC connection with the terminal, thereby activating all TCI states in the target TCI packet. Further, the base station sends configuration signaling to the terminal, and at the activated target The receiving beam corresponding to the reference signal corresponding to the target TCI status in the TCI packet is the target receiving beam, so that the terminal uses the target receiving beam to receive the physical downlink channel scheduled by the configuration signaling.
  • the target TCI packet includes All TCI states are activated, reducing the overhead of activation signaling and saving base station resources.
  • FIG. 11 is a block diagram of another configuration apparatus for transmitting a configuration indication shown on the basis of the embodiment shown in FIG. 10.
  • the apparatus further includes:
  • the third sending module 430 is configured to send a TCI status correspondence table to the terminal through target RRC signaling; wherein the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier, and the TCI status identifier It is a state identifier corresponding to all TCI states, and the signal identifier is an identifier of a reference signal corresponding to the current TCI state.
  • the base station may send the TCI status correspondence table to the terminal through the target RRC signaling before sending the activation signaling to the terminal.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • the base station sends the TCI state correspondence table to the terminal, so that the terminal can subsequently determine the target receiving beam of the physical downlink channel scheduled to receive the configuration signaling according to the TCI state correspondence table, and the availability is high.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the base station may also send the packet indication information to the terminal through the target RRC signaling, so that the terminal determines the TCI status included in each TCI packet in the TCI status correspondence table according to the packet indication information.
  • the subsequent base stations may The command uses a smaller number of bits to indicate whether each TCI packet is activated. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activation signaling.
  • FIG. 12 is a block diagram of another configuration apparatus for transmitting a configuration indication according to the embodiment shown in FIG. 10.
  • the first sending module 410 includes:
  • the first sending sub-module 411 is configured to send activation signaling to the terminal to indicate whether all TCI states included in each TCI packet are activated.
  • the activation signaling may indicate whether all TCI states included in each TCI packet are activated, so that the terminal can determine that it is activated after receiving the activation signaling. All TCI states included in the target TCI packet are activated, which reduces the overhead of activation signaling and saves base station resources.
  • FIG. 13 is a block diagram of another configuration apparatus for transmitting a configuration indication shown on the basis of the embodiment shown in FIG. 10.
  • the second sending module 420 includes:
  • the first determining sub-module 421 is configured to arrange all TCI states included in the target TCI group in ascending order of TCI status identifiers, and determine a serial number corresponding to each TCI state included in the target TCI group. ;
  • a second determining sub-module 422 configured to determine a target sequence number corresponding to the target TCI state
  • the second sending submodule 423 is configured to send configuration signaling carrying the target sequence number to the terminal.
  • the base station may arrange all TCI states included in the target TCI packet in ascending order of TCI state identifiers, thereby determining a serial number corresponding to each TCI state included in the target TCI packet.
  • the base station sends the target sequence number to the terminal through configuration signaling.
  • the corresponding target TCI status is determined according to the target serial number, so as to determine the target receiving beam.
  • FIG. 14 is a block diagram of a configuration apparatus for transmitting a configuration instruction according to an exemplary embodiment.
  • the apparatus is used for a terminal, and the apparatus includes:
  • a first receiving module 510 configured to receive activation signaling sent by the base station after establishing a radio resource control RRC connection with the base station;
  • An activation module 520 configured to activate all TCI states included in the target TCI packet indicated by the activation signaling; wherein the target TCI packet includes multiple TCI states;
  • the determining module 530 is configured to determine a target receiving beam after receiving the configuration signaling sent by the base station, where the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target The TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet;
  • the second receiving module 540 is configured to receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam.
  • the terminal may receive activation signaling sent by the base station after establishing an RRC connection with the base station, and activate all TCI states included in the target TCI packet according to the activation signaling. Further, according to the received configuration signaling, a target TCI state is determined in the target TCI packet, and a receiving beam corresponding to a reference signal corresponding to the target TCI state is used as a target receiving beam. The terminal may receive the physical downlink channel scheduled by the configuration signaling through the target receiving beam.
  • the base station can indicate whether each TCI packet is activated by a smaller number of bits in the activation signaling, and the terminal can activate the target TCI packet included in the activation signaling according to the activation signaling All TCI states reduce the overhead of activation signaling and save base station resources.
  • FIG. 15 is a block diagram of another configuration apparatus for transmitting a configuration indication shown on the basis of the embodiment shown in FIG. 14.
  • the apparatus further includes:
  • the third receiving module 550 is configured to receive a TCI status correspondence table sent by the base station through target RRC signaling; wherein the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier, and the TCI status
  • the identifier is a state identifier corresponding to each of the TCI states
  • the signal identifier is an identifier of a reference signal corresponding to the current TCI state.
  • the terminal may receive the TCI state correspondence table sent by the base station through the target RRC signaling before receiving the activation signaling sent by the base station.
  • the TCI status correspondence table includes a mapping relationship between a TCI status identifier and a signal identifier.
  • the TCI status identifier is a status identifier corresponding to each TCI status
  • the signal identifier is a reference signal corresponding to the current TCI status.
  • logo It is convenient for the terminal to determine the target receiving beam of the physical downlink channel scheduled to receive the configuration signaling according to the TCI state correspondence table in the future, and the availability is high.
  • the target RRC signaling further includes grouping indication information, where the grouping indication information is used to indicate a TCI group corresponding to each TCI state identifier in the TCI state correspondence table.
  • the terminal may also receive target RRC signaling including packet indication information, so that the terminal determines the TCI status included in each TCI packet in the TCI status correspondence table according to the packet indication information, and the subsequent base stations may be included in the activation signaling. Whether each TCI packet is activated is represented by a smaller number of bits. Once the target TCI packet is activated, all TCI states included in the target TCI packet are activated, thereby reducing the overhead of activation signaling.
  • FIG. 16 is a block diagram of another configuration apparatus for transmitting a configuration indication shown on the basis of the embodiment shown in FIG. 14.
  • the determining module 530 includes:
  • the third determining sub-module 531 is configured to arrange all TCI states included in the target TCI group in a descending order of TCI status identifiers, and determine a serial number corresponding to each TCI state included in the target TCI group. ;
  • a fourth determining submodule 532 is configured to determine a target TCI status by matching the corresponding TCI status with the target serial number carried in the configuration signaling;
  • a fifth determining submodule 533 is configured to determine, in the TCI state correspondence table, a target signal identifier corresponding to a target TCI state identifier of the target TCI state;
  • the sixth determining sub-module 534 is configured to use a receiving beam for receiving a target reference signal as the target receiving beam, and the target reference signal is a reference signal indicated by the target signal identifier.
  • the terminal may arrange all TCI states in the activated target TCI packet in a descending order of TCI state identifiers, and determine a serial number corresponding to each TCI state included in the target TCI packet.
  • the TCI status whose serial number matches the target serial number carried in the configuration signaling is the target TCI status.
  • the reference signal indicated by the target signal identifier is the target reference signal, and the terminal uses a receiving beam for receiving the target reference signal as the target receiving beam.
  • the terminal can quickly determine the target TCI status in the activated target TCI packet, and finally determine the target receiving beam.
  • the implementation saves the activation signaling overhead Purpose, saving base station resources.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, in which the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one Place, or can be distributed across multiple network elements. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solution of the present disclosure. Those of ordinary skill in the art can understand and implement without creative efforts.
  • the present disclosure also provides a computer-readable storage medium storing a computer program for performing the above-mentioned configuration method for a transmission configuration instruction for a base station side.
  • the present disclosure also provides a computer-readable storage medium storing a computer program for executing the above-mentioned configuration method for transmitting a configuration instruction for a terminal side.
  • the present disclosure also provides a configuration device for transmitting a configuration instruction, the device being used in a base station, including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the terminal After establishing a radio resource control RRC connection with the terminal, sending activation signaling to the terminal; wherein the activation signaling is used to activate all TCI states included in the target TCI packet, and the target TCI packet includes multiple TCI status;
  • the configuration signaling is used to instruct the terminal to receive a physical downlink channel scheduled by the configuration signaling using a target receiving beam
  • the target receiving beam is a reference corresponding to a target TCI state
  • the target TCI state is one of the TCI states indicated by the configuration signaling in the target TCI packet.
  • FIG. 17 is a schematic structural diagram of a configuration apparatus 1700 for transmitting a configuration instruction according to an exemplary embodiment.
  • the apparatus 1700 may be provided as a base station.
  • the device 1700 includes a processing component 1722, a wireless transmitting / receiving component 1724, an antenna component 1726, and a signal processing portion unique to a wireless interface.
  • the processing component 1722 may further include one or more processors.
  • One of the processors in the processing component 1722 may be configured to execute any one of the above-mentioned configuration methods for a base station-side transmission configuration indication.
  • the present disclosure also provides a configuration device for transmitting a configuration instruction, the device for a terminal, including:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state
  • the target TCI state is the target TCI
  • the configuration signaling sent by the base station After receiving the configuration signaling sent by the base station, determining a target receiving beam; wherein the target receiving beam is a receiving beam corresponding to a reference signal corresponding to a target TCI state, and the target TCI state is the target TCI One of the TCI states indicated in the packet by the configuration signaling;
  • Fig. 18 is a schematic structural diagram of a configuration apparatus for transmitting a configuration instruction according to an exemplary embodiment.
  • a configuration device 1800 for transmitting configuration instructions is shown according to an exemplary embodiment.
  • the device 1800 may be a computer, a mobile phone, a digital broadcast terminal, a messaging device, a game console, a tablet device, and a medical device Equipment, fitness equipment, personal digital assistants and other terminals.
  • the device 1800 may include one or more of the following components: a processing component 1801, a memory 1802, a power component 1803, a multimedia component 1804, an audio component 1805, an input / output (I / O) interface 1806, a sensor component 1807, And communication component 1808.
  • the processing component 1801 generally controls overall operations of the device 1800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1801 may include one or more processors 1809 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 1801 may include one or more modules to facilitate interaction between the processing component 1801 and other components.
  • the processing component 1801 may include a multimedia module to facilitate the interaction between the multimedia component 1804 and the processing component 1801.
  • the memory 1802 is configured to store various types of data to support operation at the device 1800. Examples of such data include instructions for any application or method operating on the device 1800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1802 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 1803 provides power to various components of the device 1800.
  • the power component 1803 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1800.
  • the multimedia component 1804 includes a screen that provides an output interface between the device 1800 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1804 includes a front camera and / or a rear camera. When the device 1800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1805 is configured to output and / or input audio signals.
  • the audio component 1805 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 1802 or transmitted via the communication component 1808.
  • the audio component 1805 also includes a speaker for outputting audio signals.
  • the I / O interface 1806 provides an interface between the processing component 1801 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1807 includes one or more sensors for providing status assessment of various aspects of the device 1800.
  • the sensor component 1807 can detect the on / off state of the device 1800, and the relative positioning of the components, such as the display and keypad of the device 1800.
  • the sensor component 1807 can also detect the change in the position of the device 1800 or a component of the device 1800 , The presence or absence of the user's contact with the device 1800, the orientation or acceleration / deceleration of the device 1800, and the temperature change of the device 1800.
  • the sensor component 1807 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1807 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1807 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1808 is configured to facilitate wired or wireless communication between the device 1800 and other devices.
  • the device 1800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1808 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1808 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the apparatus 1800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1802 including instructions, may be executed by the processor 1809 of the device 1800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • the device 1800 when the instructions in the storage medium are executed by the processor, the device 1800 is capable of executing any one of the foregoing configuration methods for a terminal-side transmission configuration instruction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本公开提供一种传输配置指示的配置方法及装置,其中,所述方法包括:在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,激活信令用于激活目标TCI分组中所包括的所有TCI状态,目标TCI分组中包括多个TCI状态;发送配置信令到终端,配置信令用于指示终端采用目标接收波束接收配置信令所调度的物理下行信道,目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,目标TCI状态是目标TCI分组中由配置信令所指示的其中一个TCI状态。

Description

传输配置指示的配置方法及装置 技术领域
本公开涉及通信领域,尤其涉及传输配置指示的配置方法及装置。
背景技术
5G即NR(New Radio,新空口)系统相关标准化正在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)中进行。
在5G系统中,终端与基站完成随机接入,并建立好RRC(Radio Resource Control,无线资源控制)连接之后,基站可以根据终端上报的测量结果确定多个与所述终端对应的TCI(transmission configuration indication,传输配置指示)状态,每个TCI状态的QCL(Quasi-Co-Location,准共址)的类型为type D时,用于指示spatial Rx parameter,即用于指示终端的一个接收beam(波束)。目前TCI状态的数目最多是64个。
目前,针对PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的接收,基站使用RRC信令配置了最多64个TCI状态之后,需要使用激活信令,例如MAC CE(Media Access Control Element,媒体访问控制层控制单元)信令来激活其中的任意8个TCI状态,如果每个TCI状态对应MAC CE中的1个比特,则最多需要64比特的MAC CE来激活其中的8个TCI状态,从而造成MAC CE的信令开销较大。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种传输配置指示的配置方法及装置。
根据本公开实施例的第一方面,提供一种传输配置指示的配置方法,所述方法用于基站,所述方法包括:
在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终 端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
可选地,在所述发送激活信令到所述终端之前,所述方法还包括:
通过目标RRC信令发送TCI状态对应表给所述终端;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
可选地,所述发送激活信令到所述终端,包括:
发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。
可选地,所述发送配置信令到所述终端,包括:
将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
确定所述目标TCI状态对应的目标序号;
发送携带所述目标序号的配置信令到所述终端。
根据本公开实施例的第二方面,提供一种传输配置指示的配置方法,所述方法用于终端,所述方法包括:
在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态; 其中,所述目标TCI分组中包括多个TCI状态;
在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
可选地,在所述接收所述基站发送的激活信令之前,所述方法还包括:
接收所述基站通过目标RRC信令发送的TCI状态对应表;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
可选地,所述在接收到所述基站发送的配置信令之后,确定目标接收波束,包括:
对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
将用于接收目标参考信号的接收波束作为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
根据本公开实施例的第三方面,提供一种传输配置指示的配置装置,所述装置用于基站,所述装置包括:
第一发送模块,被配置为在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
第二发送模块,被配置为发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
可选地,所述装置还包括:
第三发送模块,被配置为通过目标RRC信令发送TCI状态对应表给所述终端;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
可选地,所述第一发送模块包括:
第一发送子模块,被配置为发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。
可选地,所述第二发送模块包括:
第一确定子模块,被配置为将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
第二确定子模块,被配置为确定所述目标TCI状态对应的目标序号;
第二发送子模块,被配置为发送携带所述目标序号的配置信令到所述终端。
根据本公开实施例的第四方面,提供一种传输配置指示的配置装置,所述装置用于终端,所述装置包括:
第一接收模块,被配置为在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
激活模块,被配置为激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个与所述终端对应的TCI状态;
确定模块,被配置为在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
第二接收模块,被配置为通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
可选地,所述装置还包括:
第三接收模块,被配置为接收所述基站通过目标RRC信令发送的TCI状态对应表;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
可选地,所述确定模块包括:
第三确定子模块,被配置为对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
第四确定子模块,被配置为将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
第五确定子模块,被配置为在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
第六确定子模块,被配置为将用于接收目标参考信号的接收波束作 为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面所述的传输配置指示的配置方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第二方面所述的传输配置指示的配置方法。
根据本公开实施例的第七方面,提供一种传输配置指示的配置装置,所述装置用于基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
根据本公开实施例的第八方面,提供一种传输配置指示的配置装置,所述装置用于终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,基站可以在与终端建立RRC连接之后,发送激活信令到终端,从而激活目标TCI分组中的所有TCI状态,进一步地,再由基站发送配置信令到终端,在激活的目标TCI分组中指示目标TCI状态对应的参考信号相对应的接收波束为目标接收波束,从而由终端采用目标接收波束接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,从而可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,减少了激活信令的开销,节省了基站资源。
本公开实施例中,基站可以在发送激活信令到所述终端之前,通过目标RRC信令将TCI状态对应表发送给终端。其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。本公开实施例中,由基站将TCI状态对应表发送给终端,便于终端后续根据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
本公开实施例中,基站还可以通过目标RRC信令将分组指示信息发送给终端,以便终端根据分组指示信息在TCI状态对应表中确定每个TCI分组所包括的TCI状态,后续基站可以在激活信令中通过较少的比特数目 来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
本公开实施例中,基站在发送激活信令时,所述激活信令可以表征每个TCI分组所包括的所有TCI状态是否被激活,这样终端在接收到激活信令之后,就可以确定被激活的目标TCI分组中包括的所有TCI状态均被激活,减少激活信令的开销,节省了基站资源。
本公开实施例中,基站可以将目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,从而确定所述目标TCI分组所包括的每个TCI状态对应的序号。进一步地,可以确定目标TCI状态对应的目标序号。基站会通过配置信令将所述目标序号发送给终端。在终端侧会根据该目标序号确定相应的目标TCI状态,进一步地确定目标接收波束。通过上述过程,基站可以在激活了目标TCI分组后,通过配置信令让终端在被激活的目标TCI分组中快速确定目标TCI状态,在确保终端业务的情况下,同样实现了节省激活信令开销的目的。
本公开实施例中,终端可以在与基站建立了RRC连接之后,接收基站发送的激活信令,根据该激活信令激活目标TCI分组中所包括的所有TCI状态。进一步地,根据接收到的配置信令,在目标TCI分组中确定目标TCI状态,并将与所述目标TCI状态对应的参考信号相对应的接收波束作为目标接收波束。终端可以通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,终端可以根据激活信令激活所述目标TCI分组所包括的所有TCI状态,减少了激活信令的开销,节省了基站资源。
本公开实施例中,终端可以在接收基站发送的激活信令之前,接收基站通过目标RRC信令发送的TCI状态对应表。其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应 的参考信号的标识。便于终端后续根据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
本公开实施例中,终端还可以接收包括分组指示信息的目标RRC信令,以便终端根据分组指示信息在TCI状态对应表中确定每个TCI分组所包括的TCI状态,后续基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
本公开实施例中,终端可以对激活的目标TCI分组中的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号。所述序号与所述配置信令中携带的目标序号匹配的TCI状态,就是目标TCI状态,通过之前接收到的TCI状态对应表,就可以在目标TCI分组中快速确定目标TCI状态,以及相应的目标信号标识。目标信号标识所指示的参考信号即为目标参考信号,终端将用于接收目标参考信号的接收波束作为所述目标接收波束。通过上述过程,终端可以在激活了目标TCI分组后,在被激活的目标TCI分组中快速确定目标TCI状态,最终确定目标接收波束,在确保终端业务的情况下,实现了节省激活信令开销的目的,节省了基站资源。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种传输配置指示的配置场景示意图。
图2是根据一示例性实施例示出的一种传输配置指示的配置方法流 程图。
图3A至3B是根据一示例性实施例示出的传输配置指示的配置场景示意图。
图4是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图5是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图6是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图7是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图8是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图9是根据一示例性实施例示出的另一种传输配置指示的配置方法流程图。
图10是根据一示例性实施例示出的一种传输配置指示的配置装置框图。
图11是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图12是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图13是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图14是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图15是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图16是根据一示例性实施例示出的另一种传输配置指示的配置装置框图。
图17是本公开根据一示例性实施例示出的一种用于传输配置指示的配置装置的一结构示意图。
图18是本公开根据一示例性实施例示出的另一种用于传输配置指示的配置装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供了一种传输配置指示的配置场景示意图,参照图1所示。基站100可以在与终端建立无线资源控制RRC连接之后,发送激活信令到终端200。终端200根据激活信令在多个TCI分组中激活目标TCI 分组所包括的所有TCI状态。进一步地,基站100再发送配置信令到终端200,在目标TCI分组中指示目标TCI状态,终端通过目标TCI状态对应的参考信号相对应的接收波束接收配置信令所调度的物理下行信道。
上述实施例中,通过将TCI状态进行分组,从而可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,减少了激活信令的开销,节省了基站资源。
下面先从基站侧介绍本公开实施例提供的传输配置指示的配置方法。
本公开实施例提供了一种传输配置指示的配置方法,可以用于基站。参照图2根据一示例性实施例示出的一种传输配置指示的配置方法流程图,可以包括以下步骤:
在步骤101中,在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
在步骤102中,发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号RS相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
上述实施例中,基站可以在与终端建立RRC连接之后,发送激活信令到终端,从而激活目标TCI分组中的所有TCI状态,进一步地,再由基站发送配置信令到终端,在激活的目标TCI分组中指示目标TCI状态对应的参考信号相对应的接收波束为目标接收波束,从而由终端采用目标接收波束接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,从而可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,减少了激活信令的开销,节省了基站资源。
针对上述步骤101,基站可以按照相关技术先向终端发送测量配置信息,所述测量配置信息用于让终端上报波束测量结果给所述基站。基站基于终端上报的波束测量结果确定TCI状态集合。
其中,所述波束测量结果可以包括波束对应的RS(Reference Signal,参考信号)标识和L1-RSRP(Layer 1-Reference Signal Receiving Power,物理层参考信号接收功率)等,RS标识可以包括RS类型和索引号,所述RS类型是指参考信号可以是SSB(Synchronization Signal Block,同步信号块)或CSI-RS(channel state information reference signal,信道状态信息参考信号)。
本步骤中,基站与终端建立RRC连接之后,可以发送激活信令到所述终端,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态。可选地,所述激活信令为MAC CE信令。
本公开实施例中,为了减少激活信令开销,可以对与该终端对应的所有TCI状态进行分组。可选地,可以将空间信息相近的TCI状态分为一组,也就是说将基站发送RS时使用的波束方向接近的多个RS对应的TCI状态分为一组,或将终端接收RS时使用的波束方向接近的RS所分别对应的TCI状态分为一组。其中,分为一组的TCI状态的序号可以相邻。
如图3A所示,将基站发送RS时使用的波束方向接近的发送波束T 0、T 1、T 2、T 3分别对应的RS对应的TCI状态TCI#0、TCI#1、TCI#2、TCI#3划分为一组,将基站发送RS时使用的波束方向接近的发送波束T 4、T 5、T 6、T 7分别对应的RS对应的TCI状态TCI#4、TCI#5、TCI#6、TCI#7划分为另一组。
或者如图3B所示,可以将终端接收RS是使用的波束方向接近的接收波束R 0、R 1、R 2、R 3分别对应的RS对应的TCI状态TCI#8、TCI#9、TCI#10、TCI#11划分为一组,将终端接收RS是使用的波束方向接近的接收波束R 4、R 5、R 6、R 7分别对应的RS对应的TCI状态TCI#12、TCI#13、 TCI#14、TCI#15划分为另一组。
在本公开实施例中,可选地,每个TCI分组中包括相同数目的TCI状态,例如每个TCI分组中包括2、4或8个TCI状态。考虑到MAC CE信令一般激活8个TCI状态,因此,本公开实施例中,每个TCI分组所包括的TCI状态的最大数目可以为8。
另外,在本公开实施例中,不同TCI分组中可以没有相同的TCI状态,也可以有相同的TCI状态,任意两个TCI分组中所包括的相同的TCI状态的数目应小于每个TCI分组中所包括的TCI状态的总数目。
例如将4个TCI状态分为一组,每个TCI分组中所包括的TCI状态的总数目为4,则第一组可以包括TCI#0、TCI#1、TCI#2、TCI#3,第二组可以包括TCI#4、TCI#5、TCI#6、TCI#7。
或者第一组可以包括TCI#0、TCI#1、TCI#2、TCI#3,第二组可以包括TCI#3、TCI#4、TCI#5、TCI#6。上述两个TCI分组包括相同的TCI状态的数目为1,该相同的TCI状态为TCI#3。
基站在发送激活信令到终端时,可以发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端,这样终端可以通过激活信令在所有的TCI分组中确定需要激活的目标TCI分组,从而激活目标TCI分组所包括的所有TCI状态。
如果将64个TCI状态分为N组,则需要N比特来指示激活的是哪个目标TCI分组,当前比特的数值为1表示激活该目标TCI分组中所有TCI状态,当前比特的数值为0则表示不激活该TCI分组所包括的所有TCI状态。或者数值1表示不激活该TCI分组所包括的所有TCI状态,数值为0则表示该目标TCI分组中所有TCI状态,本公开对此不作限制。
例如,每个TCI分组包括4个TCI状态,且任意两个TCI分组之间不包括相同的TCI状态,那么64个TCI状态一共分为16组,则激活信令MAC CE需要发送16个比特到终端,以便终端确定需要激活的目标TCI分组。假设需要激活第一组和第三组,则基站通过MAC CE发送的16比 特的数值依次为0000 0000 0000 0101,由右到左分别代表需要激活的目标TCI分组为第一组和第三组。
如果第一组目标TCI分组包括TCI#0、TCI#1、TCI#2、TCI#3,第三组目标TCI分组包括TCI#8、TCI#9、TCI#10、TCI#11,则基站通过MAC CE发送上述16个比特到终端,终端就可以确定需要激活目标TCI分组中所有的TCI状态,即激活的TCI状态包括:TCI#0、TCI#1、TCI#2、TCI#3、TCI#8、TCI#9、TCI#10、TCI#11。
通过上述过程可以看出,相关技术中激活信令MAC CE需要发送64个比特到终端,终端才能确定需要激活的8个TCI状态,而采用本公开实施例提供的方法,如果任意两个TCI分组中不包括相同的TCI状态,则激活信令MAC CE只需要发送N个比特到终端,终端就可以激活目标TCI分组中的所有TCI状态,其中N=64/X,X是每个TCI分组中所包括的TCI状态的数目,可以为2、4或8。因此,基站只需要发较少的比特就可以实现让终端在64个TCI状态中激活其中8个TCI状态的目的,减少了激活信令的开销。
针对上述步骤102,可选地,参照4所示,图4是根据图2所示的实施例示出的另一种传输配置指示的配置方法流程图,102可以包括以下步骤:
在步骤102-1中,将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
本步骤中,基站在确定了目标TCI分组之后,可以将目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,从而为目标TCI分组所包括的每个TCI状态确定对应的序号。
假设目标TCI分组为第一组和第三组,需要激活的所有TCI状态包括TCI#0、TCI#1、TCI#2、TCI#3、TCI#8、TCI#9、TCI#10、TCI#11,则需要激活的TCI状态标识和序号之间的对应关系如表1所示。
Figure PCTCN2018097665-appb-000001
表1
在步骤102-2中,确定所述目标TCI状态对应的目标序号;
本步骤中,基站可以在表1中确定目标TCI状态对应的目标序号。例如目标TCI状态为TCI#9,则目标序号为5。
在步骤102-3中,发送携带所述目标序号的配置信令到所述终端。
本步骤中,基站可以将携带目标序号的配置信令发送给所述终端。可选地,所述配置信令可以为DCI(Downlink Control Information,下行控制信息)信令。
在本公开实施例中,为了将所述目标序号携带在配置信令中,可以将目标序号按照相关技术中的二进制进行转换,获得目标二进制值,进一步地,在配置信令中只需要携带目标二进制值即可。例如,目标序号为5,转换为二进制后得到的目标二进制值为101。
终端接收到配置信令后,可以根据配置信令中携带的目标序号在已激活的8个TCI状态中确定目标TCI状态为TCI#9,进一步地,可以将与TCI#9对应的接收波束作为目标接收波束,来接收DCI信令所调度的物理下行信道。其中,所述物理下行信道可以是PDCCH(physical downlink control channel,物理下行控制信道)或PDSCH(physical downlink shared channel,物理下行共享信道)。
上述实施例中,基站可以在激活了目标TCI分组后,通过配置信令让终端在被激活的目标TCI分组中快速确定其中一个TCI状态,即目标TCI状态,在确保终端业务的情况下,同样实现了节省激活信令开销的目的。
在一实施例中,可选地,上述传输配置指示的配置方法参照5所示,图5是根据图2所示的实施例示出的另一种传输配置指示的配置方法流程图,在所述发送激活信令到所述终端之前,还可以包括以下步骤:
在步骤103中,通过目标RRC信令发送TCI状态对应表给所述终端;
本公开实施例中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。其中,信号标识可以包括参考信号类型和索引号,所述参考信号类型是指参考信号可以是SSB或CSI-RS。TCI状态对应表可以如表2所示。
TCI状态标识 信号标识
TCI#0 SSB index#1
TCI#1 SSB index#2
TCI#2 CSI-RS index#5
TCI#3 CSI-RS index#6
TCI#4 SSB index#3
…… ……
表2
基站可以在发送激活信令到终端之前,先通过目标RRC信令将表2发送给终端。终端接收后,如果后续确定目标TCI为TCI#3,则终端可以根据表2将接收CSI-RS index#6的接收波束R x作为目标接收波束,从而通过R x来接收配置信令所调度的物理下行信道。当然,如果目标TCI为TCI#3,还可以说明基站是通过发送波束T x来发送CSI-RS index#6,基站侧的发送波束T x与终端侧的接收波束R x是对应的,也就是说终端侧需要通过接收 波束R x来接收发送波束T x所发送的物理下行信道。
上述实施例中,基站可以在发送激活信令到终端之前,通过目标RRC信令将TCI状态对应表发送给终端。其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。本公开实施例中,由基站将TCI状态对应表发送给终端,便于终端后续根据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
在一实施例中,可选地,基站还可以通过目标RRC信令发送分组指示信息给终端,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组,例如表3所示。
TCI状态标识 信号标识 分组指示信息
TCI#0 SSB index#1 第一组
TCI#1 SSB index#2 第一组
TCI#2 CSI-RS index#5 第一组
TCI#3 CSI-RS index#6 第一组
TCI#4 SSB index#3 第二组
…… …… ……
表3
在本公开实施例中,终端在接收到包括分组指示信息的目标RRC信令之后,可以进一步确定每个TCI状态所属的TCI分组,后续基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
在上述实施例中,可选地,所述分组指示信息仅需要给出分为一组的TCI状态的数目L和每相邻的两个TCI分组中相同的TCI状态的数目M。 例如当L=4,M=0时,预定义的分组指示信息为连续的L个TCI状态为一组,即TCI#0、TCI#1、TCI#2、TCI#3属于第一组,TCI#4、TCI#5、TCI#6、TCI#7属于第二组,依次类推。又或者,基站不需要发送任何分组指示信息给终端,即L和M的值也是预定义好的,将上述分组指示信息直接写入基站芯片和终端芯片中,相应地,基站无需再通过目标RRC信令发送分组指示信息给终端,终端可以直接通过自身芯片获得分组指示信息,节省了基站和终端之间进行交互的信令资源。
下面再从终端侧介绍本公开实施例提供的传输配置指示的配置方法。
本公开实施例提供了另一种传输配置指示的配置方法,可以用于终端。参照图6根据一示例性实施例示出的另一种传输配置指示的配置方法流程图,可以包括以下步骤:
在步骤201中,在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
在步骤202中,激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
在步骤203中,在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
在步骤204中,通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
上述实施例中,终端可以在与基站建立了RRC连接之后,接收基站发送的激活信令,根据该激活信令激活目标TCI分组中所包括的所有TCI状态。进一步地,根据接收到的配置信令,在目标TCI分组中确定目标TCI状态,并将与所述目标TCI状态对应的参考信号相对应的接收波束作为目标接收波束。终端可以通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,基站可以在 激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,终端可以根据激活信令激活所述目标TCI分组所包括的所有TCI状态,减少了激活信令的开销,节省了基站资源。
针对上述步骤201,终端可以先按照相关技术接收基站发送的测量配置信息,从而根据测量配置信息上报波束测量结果给基站,以便基站确定TCI状态集合。所述波束测量结果可以包括波束的RS标识和L1-RSRP等,RS标识可以包括RS类型和索引号,所述RS类型是指参考信号可以是SSB或CSI-RS。
终端在与基站建立RRC连接之后,可以按照相关技术接收基站发送的激活信令。可选地,所述激活信令可以为MAC CE信令。
针对上述步骤202,终端按照激活信令的指示激活目标TCI分组所包括的所有TCI状态。
在本公开实施例中,每个TCI分组均包括多个TCI状态,每个TCI分组中包括相同数目的TCI状态,例如每个TCI分组中包括2、4或8个TCI状态。考虑到MAC CE信令一般激活8个TCI状态,因此,本公开实施例中,每个TCI分组所包括的TCI状态的最大数目可以为8。
另外,不同TCI分组中可以没有相同的TCI状态,也可以有相同的TCI状态,任意两个TCI分组中所包括的相同的TCI状态的数目应小于每个TCI分组中所包括的TCI状态的总数目。
基站在发送激活信令到终端时,可以发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。终端根据激活信令来激活目标TCI分组所包括的所有TCI状态。
例如,每个TCI分组包括4个TCI状态,且任意两个TCI分组之间不包括相同的TCI状态,那么64个TCI状态一共分为16组,则激活信令MAC CE需要发送16个比特到终端,基站通过MAC CE发送的16比特的数值依次为0000 0000 0000 0101,由右到左分别代表需要激活的目标TCI分组为第一组和第三组。终端根据激活信令确定目标TCI分组为第一组和 第三组,则终端需要激活第一组和第三组所包括的所有TCI状态。
针对上述步骤203,终端在接收到所述基站发送的配置信令之后,确定目标接收波束的过程可以参照7所示,图7是根据图6所示的实施例示出的另一种传输配置指示的配置方法流程图,步骤203可以包括以下步骤:
在步骤203-1中,对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
本步骤中,终端在激活了目标TCI分组所包括的所有TCI状态之后,可以将上述TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号,同样如表1所示。
在步骤203-2中,将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
本步骤中,为了将目标TCI分组所包括的所有TCI状态对应的序号与所述目标序号进行匹配,终端可以将表1中的每个TCI状态对应的序号按照二进制进行转换,从而获得所述目标TCI分组所包括的每个TCI状态对应的二进制值,如表4所示。
Figure PCTCN2018097665-appb-000002
表4
本公开实施例中,基站会在配置信令,例如DCI信令中同样通过二进制的方式,携带与目标TCI状态对应的目标二进制值,假设为101,则终端可以根据表4确定目标TCI状态为TCI#9。
在步骤203-3中,在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
本步骤中,终端在确定了目标TCI状态之后,可以根据上述表3确定与目标TCI状态标识对应的目标信号标识,假设目标信号标识为SSB#4。
在步骤203-4中,将用于接收目标参考信号的接收波束作为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
本步骤中,终端可以将用于接收目标参考信号的接收波束作为所述目标接收波束,也就是说将接收SSB#4的接收波束R x作为目标接收波束。
上述实施例中,终端可以在激活了目标TCI分组后,在被激活的目标TCI分组中快速确定目标TCI状态,最终确定目标接收波束,在确保终端业务的情况下,实现了节省激活信令开销的目的,节省了基站资源。
针对上述步骤204,终端确定目标接收波束之后,可以按照相关技术通过该目标接收波束,接收配置信令所调度的物理下行信道。可选地,物理下行信道可以是PDCCH或PDSCH。
在一实施例中,参照8所示,图8是根据图6所示的实施例示出的另一种传输配置指示的配置方法流程图,在接收所述基站发送的激活信令之前,上述传输配置指的配置方法还可以包括以下步骤:
在步骤205中,接收所述基站通过目标RRC信令发送的TCI状态对应表;
其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
本步骤中,基站可以在发送激活信令到终端之前,通过目标RRC信令将上述表2发送给终端,终端按照相关技术进行接收,以便终端后续根 据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
在上述实施例中,终端还可以接收基站通过目标RRC信令发送的分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
也就是说,基站通过目标RRC信令将表3发送给终端,终端根据分组指示信息在TCI状态对应表中确定每个TCI分组所包括的TCI状态,后续基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
在本公开实施例中,可选地,所述分组指示信息仅需要给出分为一组的TCI状态的数目L和每相邻的两个TCI分组中相同的TCI状态的数目M。例如当L=4,M=0时,预定义的分组指示信息连续的L个TCI状态为一组,即为TCI#0、TCI#1、TCI#2、TCI#3属于第一组,TCI#4、TCI#5、TCI#6、TCI#7属于第二组,依次类推。又或者,基站不需要发送任何分组指示信息给终端,即L和M的值也是预定义好的,将上述分组指示信息直接写入基站芯片和终端芯片中,相应地,基站无需再通过目标RRC信令发送分组指示信息给终端,终端可以直接通过自身芯片获得分组指示信息,节省了基站和终端之间进行交互的信令资源。
本公开实施例提供了另一种传输配置指示的配置方法。参照图9根据一示例性实施例示出的另一种传输配置指示的配置方法流程图,可以包括以下步骤:
在步骤301中,基站通过目标RRC信令发送TCI状态对应表给所述终端,所述目标RRC信令还包括分组指示信息。
其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识;所述分组指示信息用于 指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
在步骤302中,基站发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。
可选地,激活信令可以是MAC CE信令。此时,基站需要N比特来指示激活的是哪个目标TCI分组,N远小于64。
在步骤303中,终端激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态。
其中,所述目标TCI分组中包括多个TCI状态。
在步骤304中,基站将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号。
在步骤305中,基站确定目标TCI状态对应的目标序号。
其中,所述目标TCI状态是所述目标TCI分组中后续需要由配置信令所指示的其中一个TCI状态。
在步骤306中,基站发送携带所述目标序号的配置信令到所述终端。
其中,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号RS相对应的接收波束。
在步骤307中,终端对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号。
在步骤308中,终端将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态。
在步骤309中,终端在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识。
在步骤310中,终端将用于接收目标参考信号的接收波束作为所述目标接收波束。
其中,所述目标参考信号是所述目标信号标识所指示的参考信号。
在步骤311中,终端通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
上述实施例中,基站可以先发送目标RRC信令到终端,通过目标RRC信令将TCI状态对应表和TCI分组信息发送给终端,进一步地,基站再发送激活信令到终端,从而激活目标TCI分组中的所有TCI状态,再由基站发送配置信令到终端,在激活的目标TCI分组中指示目标TCI状态对应的参考信号RS相对应的接收波束为目标接收波束,从而由终端采用目标接收波束接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,从而可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,减少了激活信令的开销,节省了基站资源。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置、及相应的基站和终端的实施例。
参照图10,图10是根据一示例性实施例示出的一种传输配置指示的配置装置框图,所述装置用于基站,所述装置包括:
第一发送模块410,被配置为在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
第二发送模块420,被配置为发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号RS相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
上述实施例中,基站可以在与终端建立RRC连接之后,发送激活信令到终端,从而激活目标TCI分组中的所有TCI状态,进一步地,再由基 站发送配置信令到终端,在激活的目标TCI分组中指示目标TCI状态对应的参考信号相对应的接收波束为目标接收波束,从而由终端采用目标接收波束接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,从而可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,减少了激活信令的开销,节省了基站资源。
参照图11,图11是根据图10所示实施例的基础上示出的另一种传输配置指示的配置装置框图,所述装置还包括:
第三发送模块430,被配置为通过目标RRC信令发送TCI状态对应表给所述终端;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
上述实施例中,基站可以在发送激活信令到所述终端之前,通过目标RRC信令将TCI状态对应表发送给终端。其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。本公开实施例中,由基站将TCI状态对应表发送给终端,便于终端后续根据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
上述实施例中,基站还可以通过目标RRC信令将分组指示信息发送给终端,以便终端根据分组指示信息在TCI状态对应表中确定每个TCI分组所包括的TCI状态,后续基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
参照图12,图12是根据图10所示实施例的基础上示出的另一种传 输配置指示的配置装置框图,所述第一发送模块410包括:
第一发送子模块411,被配置为发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。
上述实施例中,基站在发送激活信令时,所述激活信令可以表征每个TCI分组所包括的所有TCI状态是否被激活,这样终端在接收到激活信令之后,就可以确定被激活的目标TCI分组中包括的所有TCI状态均被激活,减少激活信令的开销,节省了基站资源。
参照图13,图13是根据图10所示实施例的基础上示出的另一种传输配置指示的配置装置框图,所述第二发送模块420包括:
第一确定子模块421,被配置为将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
第二确定子模块422,被配置为确定所述目标TCI状态对应的目标序号;
第二发送子模块423,被配置为发送携带所述目标序号的配置信令到所述终端。
上述实施例中,基站可以将目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,从而确定所述目标TCI分组所包括的每个TCI状态对应的序号。基站会通过配置信令将所述目标序号发送给终端。在终端侧会根据该目标序号确定相应的目标TCI状态,从而确定目标接收波束。通过上述过程,基站可以在激活了目标TCI分组后,通过配置信令让终端在被激活的目标TCI分组中快速确定目标TCI状态,在确保终端业务的情况下,同样实现了节省激活信令开销的目的。
参照图14,图14是根据一示例性实施例示出的一种传输配置指示的配置装置框图,所述装置用于终端,所述装置包括:
第一接收模块510,被配置为在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
激活模块520,被配置为激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
确定模块530,被配置为在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
第二接收模块540,被配置为通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
上述实施例中,终端可以在与基站建立了RRC连接之后,接收基站发送的激活信令,根据该激活信令激活目标TCI分组中所包括的所有TCI状态。进一步地,根据接收到的配置信令,在目标TCI分组中确定目标TCI状态,并将与所述目标TCI状态对应的参考信号相对应的接收波束作为目标接收波束。终端可以通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。在上述过程中,通过将TCI状态进行分组,基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,终端可以根据激活信令激活所述目标TCI分组所包括的所有TCI状态,减少了激活信令的开销,节省了基站资源。
参照图15,图15是根据图14所示实施例的基础上示出的另一种传输配置指示的配置装置框图,所述装置还包括:
第三接收模块550,被配置为接收所述基站通过目标RRC信令发送的TCI状态对应表;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
上述实施例中,终端可以在接收基站发送的激活信令之前,接收基站通过目标RRC信令发送的TCI状态对应表。其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的 参考信号的标识。便于终端后续根据该TCI状态对应表,确定接收所述配置信令所调度的物理下行信道的目标接收波束,可用性高。
可选地,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
上述实施例中,终端还可以接收包括分组指示信息的目标RRC信令,以便终端根据分组指示信息在TCI状态对应表中确定每个TCI分组所包括的TCI状态,后续基站可以在激活信令中通过较少的比特数目来表征每个TCI分组是否被激活,一旦目标TCI分组被激活,则所述目标TCI分组所包括的所有TCI状态均被激活,从而减少激活信令的开销。
参照图16,图16是根据图14所示实施例的基础上示出的另一种传输配置指示的配置装置框图,所述确定模块530包括:
第三确定子模块531,被配置为对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
第四确定子模块532,被配置为将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
第五确定子模块533,被配置为在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
第六确定子模块534,被配置为将用于接收目标参考信号的接收波束作为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
上述实施例中,终端可以对激活的目标TCI分组中的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号。所述序号与所述配置信令中携带的目标序号匹配的TCI状态,就是目标TCI状态,通过之前接收到的TCI状态对应表,就可以在目标TCI分组中快速确定目标TCI状态,以及相应的目标信号标识。目标信号标识所指示的参考信号即为目标参考信号,终端将用于接收 目标参考信号的接收波束作为所述目标接收波束。通过上述过程,终端可以在激活了目标TCI分组后,在被激活的目标TCI分组中快速确定目标TCI状态,最终确定目标接收波束,在确保终端业务的情况下,实现了节省激活信令开销的目的,节省了基站资源。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧的任一所述的传输配置指示的配置方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧的任一所述的传输配置指示的配置方法。
相应地,本公开还提供了一种传输配置指示的配置装置,所述装置用于基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
发送配置信令到所述终端,所述配置信令用于指示所述终端采用目 标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
如图17所示,图17是根据一示例性实施例示出的一种传输配置指示的配置装置1700的一结构示意图。装置1700可以被提供为一基站。参照图17,装置1700包括处理组件1722、无线发射/接收组件1724、天线组件1726、以及无线接口特有的信号处理部分,处理组件1722可进一步包括一个或多个处理器。
处理组件1722中的其中一个处理器可以被配置为用于执行上述任一所述的用于基站侧的传输配置指示的配置方法。
相应地,本公开还提供了一种传输配置指示的配置装置,所述装置用于终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
图18是根据一示例性实施例示出的一种传输配置指示的配置装置的结构示意图。如图18所示,根据一示例性实施例示出的一种传输配置指示的配置装置1800,该装置1800可以是计算机,移动电话,数字广播终 端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图18,装置1800可以包括以下一个或多个组件:处理组件1801,存储器1802,电源组件1803,多媒体组件1804,音频组件1805,输入/输出(I/O)的接口1806,传感器组件1807,以及通信组件1808。
处理组件1801通常控制装置1800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1801可以包括一个或多个处理器1809来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1801可以包括一个或多个模块,便于处理组件1801和其它组件之间的交互。例如,处理组件1801可以包括多媒体模块,以方便多媒体组件1804和处理组件1801之间的交互。
存储器1802被配置为存储各种类型的数据以支持在装置1800的操作。这些数据的示例包括用于在装置1800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1802可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1803为装置1800的各种组件提供电力。电源组件1803可以包括电源管理系统,一个或多个电源,及其它与为装置1800生成、管理和分配电力相关联的组件。
多媒体组件1804包括在所述装置1800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一 些实施例中,多媒体组件1804包括一个前置摄像头和/或后置摄像头。当装置1800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1805被配置为输出和/或输入音频信号。例如,音频组件1805包括一个麦克风(MIC),当装置1800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1802或经由通信组件1808发送。在一些实施例中,音频组件1805还包括一个扬声器,用于输出音频信号。
I/O接口1806为处理组件1801和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1807包括一个或多个传感器,用于为装置1800提供各个方面的状态评估。例如,传感器组件1807可以检测到装置1800的打开/关闭状态,组件的相对定位,例如所述组件为装置1800的显示器和小键盘,传感器组件1807还可以检测装置1800或装置1800一个组件的位置改变,用户与装置1800接触的存在或不存在,装置1800方位或加速/减速和装置1800的温度变化。传感器组件1807可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1807还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1807还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1808被配置为便于装置1800和其它设备之间有线或无线方式的通信。装置1800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1808经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1808还包括近场通信(NFC)模块,以促进短 程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置1800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1802,上述指令可由装置1800的处理器1809执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
其中,当所述存储介质中的指令由所述处理器执行时,使得装置1800能够执行上述任一所述的用于终端侧的传输配置指示的配置方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种传输配置指示的配置方法,其特征在于,所述方法用于基站,所述方法包括:
    在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
    发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
  2. 根据权利要求1所述的方法,其特征在于,在所述发送激活信令到所述终端之前,所述方法还包括:
    通过目标RRC信令发送TCI状态对应表给所述终端;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
  3. 根据权利要求2所述的方法,其特征在于,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
  4. 根据权利要求1所述的方法,其特征在于,所述发送激活信令到所述终端,包括:
    发送用于表征每个TCI分组所包括的所有TCI状态是否被激活的激活信令到所述终端。
  5. 根据权利要求1所述的方法,其特征在于,所述发送配置信令到所述终端,包括:
    将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到 大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
    确定所述目标TCI状态对应的目标序号;
    发送携带所述目标序号的配置信令到所述终端。
  6. 一种传输配置指示的配置方法,其特征在于,所述方法用于终端,所述方法包括:
    在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
    激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个与TCI状态;
    在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
    通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
  7. 根据权利要求6所述的方法,其特征在于,在所述接收所述基站发送的激活信令之前,所述方法还包括:
    接收所述基站通过目标RRC信令发送的TCI状态对应表;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
  8. 根据权利要求7所述的方法,其特征在于,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
  9. 根据权利要求7或8所述的方法,其特征在于,所述在接收到所述基站发送的配置信令之后,确定目标接收波束,包括:
    对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
    将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
    在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
    将用于接收目标参考信号的接收波束作为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
  10. 一种传输配置指示的配置装置,其特征在于,所述装置用于基站,所述装置包括:
    第一发送模块,被配置为在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
    第二发送模块,被配置为发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第三发送模块,被配置为通过目标RRC信令发送TCI状态对应表给所述终端;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是与所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
  12. 根据权利要求11所述的装置,其特征在于,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中每个TCI状态标识所对应的TCI分组。
  13. 根据权利要求10所述的装置,其特征在于,所述第一发送模块包括:
    第一发送子模块,被配置为发送用于表征每个TCI分组所包括的所有 TCI状态是否被激活的激活信令到所述终端。
  14. 根据权利要求10所述的装置,其特征在于,所述第二发送模块包括:
    第一确定子模块,被配置为将所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
    第二确定子模块,被配置为确定所述目标TCI状态对应的目标序号;
    第二发送子模块,被配置为发送携带所述序号的配置信令到所述终端。
  15. 一种传输配置指示的配置装置,其特征在于,所述装置用于终端,所述装置包括:
    第一接收模块,被配置为在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
    激活模块,被配置为激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
    确定模块,被配置为在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
    第二接收模块,被配置为通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    第三接收模块,被配置为接收所述基站通过目标RRC信令发送的TCI状态对应表;其中,所述TCI状态对应表包括TCI状态标识和信号标识之间的映射关系,所述TCI状态标识是所有TCI状态各自对应的状态标识,所述信号标识是与当前TCI状态对应的参考信号的标识。
  17. 根据权利要求16所述的装置,其特征在于,所述目标RRC信令还包括分组指示信息,所述分组指示信息用于指示所述TCI状态对应表中 每个TCI状态标识所对应的TCI分组。
  18. 根据权利要求16或17所述的装置,其特征在于,所述确定模块包括:
    第三确定子模块,被配置为对所述目标TCI分组所包括的所有TCI状态按照TCI状态标识由小到大的顺序排列,确定所述目标TCI分组所包括的每个TCI状态对应的序号;
    第四确定子模块,被配置为将对应的所述序号与所述配置信令中携带的目标序号匹配的TCI状态,确定为目标TCI状态;
    第五确定子模块,被配置为在所述TCI状态对应表中,确定所述目标TCI状态的目标TCI状态标识对应的目标信号标识;
    第六确定子模块,被配置为将用于接收目标参考信号的接收波束作为所述目标接收波束,所述目标参考信号是所述目标信号标识所指示的参考信号。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-5任一所述的传输配置指示的配置方法。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求6-9任一所述的传输配置指示的配置方法。
  21. 一种传输配置指示的配置装置,其特征在于,所述装置用于基站,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在与终端建立无线资源控制RRC连接之后,发送激活信令到所述终端;其中,所述激活信令用于激活目标TCI分组中所包括的所有TCI状态,所述目标TCI分组中包括多个TCI状态;
    发送配置信令到所述终端,所述配置信令用于指示所述终端采用目标接收波束接收所述配置信令所调度的物理下行信道,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态。
  22. 一种传输配置指示的配置装置,其特征在于,所述装置用于终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在与基站建立无线资源控制RRC连接之后,接收所述基站发送的激活信令;
    激活所述激活信令所指示的目标TCI分组所包括的所有TCI状态;其中,所述目标TCI分组中包括多个TCI状态;
    在接收到所述基站发送的配置信令之后,确定目标接收波束;其中,所述目标接收波束是与目标TCI状态对应的参考信号相对应的接收波束,所述目标TCI状态是所述目标TCI分组中由所述配置信令所指示的其中一个TCI状态;
    通过所述目标接收波束,接收所述配置信令所调度的物理下行信道。
PCT/CN2018/097665 2018-07-27 2018-07-27 传输配置指示的配置方法及装置 WO2020019351A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110667770.1A CN113365359B (zh) 2018-07-27 2018-07-27 传输配置指示的配置方法及装置
ES18927634T ES2946602T3 (es) 2018-07-27 2018-07-27 Método y aparato de configuración para indicación de configuración de transmisión
CN201880001656.1A CN109076560B (zh) 2018-07-27 2018-07-27 传输配置指示的配置方法及装置
EP18927634.8A EP3833081B1 (en) 2018-07-27 2018-07-27 Configuration method and apparatus for transmission configuration indication
PCT/CN2018/097665 WO2020019351A1 (zh) 2018-07-27 2018-07-27 传输配置指示的配置方法及装置
PL18927634.8T PL3833081T3 (pl) 2018-07-27 2018-07-27 Sposób konfiguracji i urządzenie do wskazania konfiguracji transmisji
US17/263,639 US11765023B2 (en) 2018-07-27 2018-07-27 Configuration method and apparatus for transmission configuration indication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097665 WO2020019351A1 (zh) 2018-07-27 2018-07-27 传输配置指示的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020019351A1 true WO2020019351A1 (zh) 2020-01-30

Family

ID=64789370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097665 WO2020019351A1 (zh) 2018-07-27 2018-07-27 传输配置指示的配置方法及装置

Country Status (6)

Country Link
US (1) US11765023B2 (zh)
EP (1) EP3833081B1 (zh)
CN (2) CN109076560B (zh)
ES (1) ES2946602T3 (zh)
PL (1) PL3833081T3 (zh)
WO (1) WO2020019351A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237637A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及网络设备
US11510082B2 (en) * 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351856A (zh) * 2018-04-03 2019-10-18 英特尔公司 确定用于pdcch的波束的装置和方法
CN110839290B (zh) * 2018-08-17 2022-04-22 成都华为技术有限公司 信号传输的方法和通信装置
KR20210108475A (ko) 2019-01-04 2021-09-02 지티이 코포레이션 무선 통신에서의 레이트 매칭 자원 매핑
CN111416695B (zh) * 2019-01-07 2022-02-08 大唐移动通信设备有限公司 一种数据传输方法、终端和网络侧设备
WO2020142900A1 (zh) * 2019-01-08 2020-07-16 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和存储介质
CN111431685B (zh) * 2019-01-10 2021-08-13 华为技术有限公司 传输下行信道的方法和装置
CN111436129B (zh) * 2019-01-11 2023-10-24 华为技术有限公司 数据传输方法和通信装置
CN113287264A (zh) * 2019-01-17 2021-08-20 苹果公司 用于多传输/接收点(trp)传输的系统和方法
BR112021015002A2 (pt) 2019-02-01 2021-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Método implementado em um nó de rede, nó de rede, método implementado em um dispositivo sem fio e dispositivo sem fio
CN114124330A (zh) * 2019-02-14 2022-03-01 华为技术有限公司 一种状态配置方法和设备
WO2020164600A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 信息指示的方法及装置
JP7264921B2 (ja) * 2019-02-15 2023-04-25 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN113677035B (zh) * 2019-02-15 2023-03-14 Oppo广东移动通信有限公司 下行数据传输方法及相关产品
CN111586846B (zh) * 2019-02-15 2024-02-20 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN111586862B (zh) * 2019-02-15 2024-07-26 华为技术有限公司 信息指示的方法及装置
CN112956266B (zh) * 2019-02-15 2022-04-12 Oppo广东移动通信有限公司 资源指示方法及相关设备、计算机可读存储介质
KR102527602B1 (ko) * 2019-02-22 2023-05-02 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 데이터 전송 방법, 장치 및 저장 매체
EP3930365A4 (en) * 2019-02-22 2022-09-28 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DATA TRANSMISSION AND INFORMATION MEDIA
WO2020188829A1 (ja) * 2019-03-20 2020-09-24 株式会社Nttドコモ ユーザ装置及び通信方法
WO2020194638A1 (ja) * 2019-03-27 2020-10-01 株式会社Nttドコモ ユーザ装置及び基地局装置
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN111865531B (zh) * 2019-04-30 2021-10-29 大唐移动通信设备有限公司 一种传输指示方法、网络侧设备及终端
CN112189320A (zh) * 2019-05-03 2021-01-05 联发科技股份有限公司 新无线电移动通信中的传输配置指示切换过程
WO2020231834A1 (en) * 2019-05-10 2020-11-19 Apple Inc. Mechanism and signaling on coreset and pucch resource grouping for multi-trp operation
CN110463319B (zh) * 2019-06-25 2023-12-15 北京小米移动软件有限公司 数据传输方法、装置、系统及存储介质
CN112134598B (zh) * 2019-06-25 2022-06-07 中国移动通信有限公司研究院 一种指示方法、终端及网络侧设备
US11323202B2 (en) * 2019-08-12 2022-05-03 Qualcomm Incorporated Rate matching for multi-transmitter communication
CN110785958B (zh) * 2019-09-20 2023-05-02 北京小米移动软件有限公司 传输配置状态激活方法、装置及存储介质
CN110856258B (zh) * 2019-11-08 2022-02-22 中国信息通信研究院 一种多点发送波束指示方法和设备
EP4075856A4 (en) * 2019-12-13 2023-08-16 Beijing Xiaomi Mobile Software Co., Ltd. WIRELESS COMMUNICATION METHOD AND DEVICE AND STORAGE MEDIUM
CN113347714A (zh) * 2020-02-18 2021-09-03 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN113498206B (zh) * 2020-04-08 2023-04-07 展讯半导体(南京)有限公司 信息传输方法及装置
US11362723B2 (en) * 2020-05-15 2022-06-14 Samsung Electronics Co., Ltd. Method and apparatus for beam management
EP4066561A4 (en) 2020-05-20 2023-01-04 ZTE Corporation TRANSMISSION CONFIGURATION INDICATIONS (TCI) SWITCHING USING LISTEN BEFORE TALK (LBT) COUNTERS
CN116250329A (zh) * 2020-08-06 2023-06-09 联发科技股份有限公司 具有多个tci状态的下行链路接收
US20230370238A1 (en) * 2020-10-09 2023-11-16 Lenovo (Beijing) Limited Simultaneous tci state activation for ul and dl
US11647530B2 (en) * 2020-12-21 2023-05-09 Qualcomm Incorporated Transmission configuration indicator (TCI) state groups
CN116248238A (zh) * 2021-12-08 2023-06-09 维沃移动通信有限公司 检测及配置参考信号的方法、装置、终端及网络侧设备
WO2023245553A1 (zh) * 2022-06-23 2023-12-28 北京小米移动软件有限公司 Tci状态的指示方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958045A (zh) * 2011-08-30 2013-03-06 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站
CN105991263A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 下行控制信息dci的配置、下行数据的接收方法及装置
WO2017074156A1 (en) * 2015-10-30 2017-05-04 Lg Electronics Inc. Method and apparatus for designing downlink control information for short tti in wireless communication system
CN108024268A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种传输配置方法、传输配置确定方法、基站和终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922938B (zh) 2017-11-17 2024-02-02 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备
CN110167036B (zh) * 2018-02-14 2022-05-24 华硕电脑股份有限公司 无线通信考虑波束故障恢复的监听控制资源的方法和设备
CN108199819A (zh) 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
KR102450978B1 (ko) * 2018-03-28 2022-10-05 삼성전자 주식회사 차세대 무선통신 시스템에서 비연속수신모드가 적용시 채널상태보고를 수행하는 방법 및 장치
CN110401516B (zh) * 2018-04-24 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的第一节点、基站中的方法和装置
WO2020019218A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958045A (zh) * 2011-08-30 2013-03-06 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站
CN105991263A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 下行控制信息dci的配置、下行数据的接收方法及装置
WO2017074156A1 (en) * 2015-10-30 2017-05-04 Lg Electronics Inc. Method and apparatus for designing downlink control information for short tti in wireless communication system
CN108024268A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种传输配置方法、传输配置确定方法、基站和终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510082B2 (en) * 2019-03-29 2022-11-22 Qualcomm Incorporated Beam indication reuse
US11540158B2 (en) 2019-03-29 2022-12-27 Qualcomm Incorporated Avoiding TCI reselection due to active BWP switching
US12022315B2 (en) 2019-03-29 2024-06-25 Qualcomm Incorporated Avoiding TCI reselection due to active BWP switching
US12028735B2 (en) 2019-03-29 2024-07-02 Qualcomm Incorporated Beam indication reuse
WO2022237637A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及网络设备
EP4340499A4 (en) * 2021-05-11 2024-10-23 Datang mobile communications equipment co ltd INFORMATION PROCESSING METHOD AND APPARATUS, TERMINAL AND NETWORK DEVICE

Also Published As

Publication number Publication date
EP3833081B1 (en) 2023-04-26
CN109076560B (zh) 2021-06-29
EP3833081A4 (en) 2021-08-04
PL3833081T3 (pl) 2023-09-11
CN113365359B (zh) 2023-09-12
CN113365359A (zh) 2021-09-07
CN109076560A (zh) 2018-12-21
US11765023B2 (en) 2023-09-19
ES2946602T3 (es) 2023-07-21
EP3833081A1 (en) 2021-06-09
US20210168030A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
CN109076378B (zh) 传输配置方法及装置
US11546867B2 (en) Transmission configuration method and apparatus
WO2020061953A1 (zh) 测量配置方法、装置、设备、系统及存储介质
WO2020019216A1 (zh) 传输配置方法及装置
CN111837425A (zh) 一种接入方法、接入装置及存储介质
US12021629B2 (en) Hybrid automatic repeat request feedback method and device
US11792659B2 (en) Method and device for using network slice
WO2020097783A1 (zh) 资源配置方法及装置
EP4175338A1 (en) Communication processing method, communication processing apparatus and storage medium
WO2019100281A1 (zh) 传输配置方法及装置
US20220385413A1 (en) Method and apparatus for indicating sidelink hybrid automatic repeat request (harq) feedback
WO2020097757A1 (zh) 带宽部分的配置方法及装置
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
WO2018201392A1 (zh) 为多模终端配置工作模式的方法及装置
WO2021000323A1 (zh) 缓存状态报告发送方法和装置
WO2020133200A1 (zh) 载波配置方法及装置
WO2019090723A1 (zh) 数据传输方法及装置
WO2020258050A1 (zh) 确定无线资源的方法及装置
JP6901591B2 (ja) 基地局にアクセスするための方法および装置
WO2020124497A1 (zh) 上行传输方法及装置
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2019023880A1 (zh) 传输方向的指示方法及装置
WO2020206640A1 (zh) 资源指示方法及装置
WO2021087906A1 (zh) 下行控制信息配置方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927634

Country of ref document: EP

Effective date: 20210301