[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020019297A1 - 车联网设备之间的信息传输方法、装置及系统 - Google Patents

车联网设备之间的信息传输方法、装置及系统 Download PDF

Info

Publication number
WO2020019297A1
WO2020019297A1 PCT/CN2018/097423 CN2018097423W WO2020019297A1 WO 2020019297 A1 WO2020019297 A1 WO 2020019297A1 CN 2018097423 W CN2018097423 W CN 2018097423W WO 2020019297 A1 WO2020019297 A1 WO 2020019297A1
Authority
WO
WIPO (PCT)
Prior art keywords
broadcast block
synchronization
connected vehicle
information
block
Prior art date
Application number
PCT/CN2018/097423
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000901.7A priority Critical patent/CN109565647B/zh
Priority to PCT/CN2018/097423 priority patent/WO2020019297A1/zh
Publication of WO2020019297A1 publication Critical patent/WO2020019297A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, a device, and a system for transmitting information between connected vehicle devices.
  • Telematics is a new automotive technology development direction that combines navigation and positioning, wireless communication, and remote sensing technologies.
  • vehicle-to-vehicle connected devices perform synchronization and information transmission between devices through broadcast system information.
  • an IoV device can send a synchronization signal and system information of the IoV device through broadcasting. After receiving another IoV device and the system information, the IoV device synchronizes the signal through the synchronization signal and communicates with the IoV devices communicate.
  • the present disclosure provides a method for transmitting information between connected vehicle devices.
  • the technical solution is as follows:
  • a method for transmitting information between connected devices in a car includes:
  • the first connected vehicle device sends a wireless signal including a synchronization broadcast block, which is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located in 3 consecutive orthogonal frequency division multiplexes in the time domain OFDM symbol
  • the second connected vehicle device receives the wireless signal
  • the second connected vehicle device acquires information carried by the synchronous broadcast block according to a detection result.
  • a method for transmitting information between a connected vehicle device the method being executed by a second connected vehicle device, the method including:
  • the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive orthogonal frequency division multiplexes in the time domain OFDM symbol
  • the information carried by the synchronization broadcast block is acquired according to a detection result.
  • the synchronization signals include a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is located in a first OFDM symbol, and the secondary synchronization signal is located in a second OFDM symbol.
  • the physical broadcast channel is located at a third OFDM symbol
  • the physical broadcast channel is located in a third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band where the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • some of the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • part of the demodulation reference signal includes index information of the synchronous broadcast block
  • all signals in the demodulation reference signal include index information of the synchronization broadcast block
  • the demodulation reference signal does not include index information of the synchronization broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the period of the synchronous broadcast block is all or part of a period of at least one designated period.
  • a method for transmitting information between a connected vehicle device the method being executed by a first connected vehicle device, the method including:
  • Generating information carried by a synchronization broadcast block where the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located in three consecutive orthogonal frequency division multiplexed OFDM symbols in the time domain;
  • an apparatus for transmitting information between connected vehicle devices the device is used in a second connected vehicle device, and the device includes:
  • a signal receiving module configured to receive a wireless signal sent by the first connected vehicle device
  • a detection module configured to detect a synchronization broadcast block in the received wireless signal, the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive positive signals in the time domain; Cross-frequency division multiplexed OFDM symbol;
  • An information acquisition module is configured to acquire information carried by the synchronous broadcast block according to a detection result.
  • the synchronization signals include a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is located in a first OFDM symbol, and the secondary synchronization signal is located in a second OFDM symbol.
  • the physical broadcast channel is located at a third OFDM symbol
  • the physical broadcast channel is located in a third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band where the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • some of the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • part of the demodulation reference signal includes index information of the synchronous broadcast block
  • all signals in the demodulation reference signal include index information of the synchronization broadcast block
  • the demodulation reference signal does not include index information of the synchronization broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the period of the synchronous broadcast block is all or part of a period of at least one designated period.
  • an apparatus for transmitting information between a connected vehicle device the device being used in a first connected vehicle device, the device including:
  • An information generating module is configured to generate information carried by a synchronous broadcast block, which is used to carry signals and physical broadcast channels synchronously, and the synchronous broadcast block is located in three consecutive orthogonal frequency division multiplexes in the time domain.
  • a signal sending module configured to send a wireless signal including the synchronous broadcast block according to the information carried by the synchronous broadcast block, so that the second connected vehicle device detects the synchronous broadcast block in the wireless signal, and obtains Information carried by the synchronization broadcast block.
  • an information transmission system between connected vehicle devices including: a first connected vehicle device and a second connected vehicle device;
  • the first IoV device includes an information transmission device between the IoV devices shown in the fifth aspect;
  • the second IoV device includes an information transmission device between the IoV devices shown in the fourth aspect or any optional manner of the fourth aspect.
  • an apparatus for transmitting information between connected vehicle devices which is used in a second connected vehicle device, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive orthogonal frequency division multiplexes in the time domain OFDM symbol
  • the information carried by the synchronization broadcast block is acquired according to a detection result.
  • an apparatus for transmitting information between connected vehicle devices which is used in a first connected vehicle device, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • Generating information carried by a synchronization broadcast block where the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located in three consecutive orthogonal frequency division multiplexed OFDM symbols in the time domain;
  • a computer-readable storage medium includes executable instructions, and a processor in a second connected vehicle device calls the executable instructions to implement The information transmission method between the connected vehicle devices described in the second aspect or any optional solution of the second aspect.
  • a computer-readable storage medium includes executable instructions, and a processor in a first connected vehicle device calls the executable instructions to implement The method for transmitting information between the connected vehicle devices according to the third aspect.
  • the first connected vehicle device broadcasts a synchronous broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device acquires the information carried by the synchronized broadcast block according to the detection result of the synchronized broadcast block, reducing synchronization.
  • the resource occupation of the broadcast block in the time domain improves the transmission efficiency of the synchronous broadcast block.
  • FIG. 1 is a schematic diagram of a synchronous broadcast block architecture in the related art.
  • Fig. 2 is a schematic diagram showing an implementation environment involved in a method for transmitting information between connected devices in a car according to some exemplary embodiments;
  • Fig. 3 is a flow chart showing a method for transmitting information between connected devices in a car according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for transmitting information between connected devices in a car according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for transmitting information between connected devices in a car according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for transmitting information between connected devices in a car according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of a synchronous broadcast block according to the embodiment shown in FIG. 6;
  • FIG. 8 is a schematic structural diagram of another synchronous broadcast block according to the embodiment shown in FIG. 6;
  • FIG. 9 is a schematic structural diagram of still another synchronous broadcast block according to the embodiment shown in FIG. 6;
  • Fig. 10 is a block diagram of an apparatus for transmitting information between connected devices in a car according to an exemplary embodiment
  • Fig. 11 is a block diagram showing an apparatus for transmitting information between connected devices in a car according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a connected vehicle device according to an exemplary embodiment.
  • Vehicle-to-vehicle communication is also called V2x (vehicle totoeverything, vehicle and other equipment) communication, which includes V2V (vehicle totovehicle) communication technology, V2I (vehicle totoinfrastructure, vehicle to roadside equipment) communication technology and V2P (vehicle vehicle to person) communication technology.
  • V2x vehicle totoeverything, vehicle and other equipment
  • V2V vehicle totovehicle communication technology
  • V2I vehicle totoinfrastructure, vehicle to roadside equipment
  • V2P vehicle vehicle to person
  • the use of existing cellular communication technology to support IoV communication can effectively utilize the existing base station deployment, reduce equipment overhead, and be more conducive to providing services with QoS (Quality of Service) guarantee to meet the needs of IoV services. Therefore, the Rel-14 / 15 of LTE (Long Term Evolution, Long Term Evolution) technology provides cellular network support for V2x communication of vehicle networking, namely C-V2x (cellular based V2x).
  • LTE Long Term Evolution, Long Term Evolution
  • in-vehicle equipment and other equipment can be relayed through the base station and the core network, that is, the communication link between the terminal equipment and the base station in the original cellular network is used for communication (uplink / downlink communication)
  • the vehicle-mounted device and other devices may also communicate directly through a direct link between the devices, for example, communicate through a side link.
  • sidelink communication has the characteristics of short delay and low overhead, which is very suitable for direct communication between vehicle-mounted devices and other peripheral devices in close proximity.
  • V2x sidelink communication in LTE can support some basic security V2x applications, such as exchange of CAM (Cooperative Awareness Messages, Cooperative Awareness Messages) or DENM (Decentralized Environmental Notification Notification, Decentralized Environment Notification Message) and other BSM (Basic Safety Message Basic security information), voice broadcast communications, etc.
  • CAM Cooperative Awareness Messages, Cooperative Awareness Messages
  • DENM Decentralized Environmental Notification Notification, Decentralized Environment Notification Message
  • BSM Basic Security Information
  • voice broadcast communications etc.
  • 5G NR New Radio
  • the 3GPP working group has established a number of new business requirements for V2x communication, including vehicle management (Platooning), extended sensors (Advanced Sensors), advanced driving (Advanced driving), and remote driving (Remote driving).
  • vehicle management Platinum
  • Advanced Sensors extended sensors
  • Advanced driving Advanced driving
  • Remote driving Remote driving
  • NR V2x sidelink needs to provide higher communication rates, shorter communication delays, and more reliable communication quality.
  • V2x devices communicate with each other through sidelinks using vehicle-mounted GNSS (Global Navigation Satellite System), such as GPS or Beidou, or the synchronization signal broadcast by the base station as the synchronization reference signal for the device to ensure transmission. Between the receiver and the receiver.
  • GNSS Global Navigation Satellite System
  • V2x devices need to be able to pass through. Sidelink communicates reliably.
  • LTE V2x synchronization via a Sidelink direct link is supported, that is, a V2x device can complete synchronization between V2x devices by receiving synchronization signals broadcast by other V2x devices.
  • V2x system message broadcast is performed simultaneously through a PSBCH (Physical Sidelink Broadcast Channel) and a synchronization signal.
  • PSBCH Physical Sidelink Broadcast Channel
  • the broadcast content contains some synchronization and system configuration related information.
  • V2X's support for Sidelink the following synchronization scenarios need to be supported: that is, when V2X UE1 loses coverage or has no coverage, it synchronizes with surrounding UEs (vehicles), that is, it needs to support sidelink synchronization.
  • the synchronization broadcast block architecture is shown in FIG. 1.
  • the 5G NR synchronous broadcast block occupies at least 4 OFDM symbols in the time domain.
  • V2X's Sidelink is mainly for opportunistic localized communication between devices, it is only necessary to ensure that devices within the communication range have the same synchronization and frame structure understanding through broadcasting, so its system Compared with 5G, NR has less broadcast information. Therefore, if the 5G NR synchronous broadcast block sending method is directly used in NR V2X, it will cause excessive redundancy in the resources occupied by the synchronous broadcast block, cause waste of NR V2X communication resources, and affect the communication efficiency of NR V2X.
  • Fig. 2 is a schematic diagram illustrating an implementation environment involved in a method for transmitting information between connected vehicle devices according to some exemplary embodiments. As shown in Fig. 1, the implementation environment may include: several connected vehicle devices 210.
  • the connected vehicle device 210 is a wireless communication device supporting V2x technology.
  • the connected vehicle device 110 may support cellular mobile communication technology, for example, it may support the 4th generation mobile communication technology (4G) technology or 5G technology.
  • the IoV device 110 may also support the next-generation mobile communication technology of 5G technology.
  • the vehicle networking device 210 may be an in-vehicle communication device, for example, it may be a driving computer with a wireless communication function, or a wireless communication device with an external driving computer.
  • the connected vehicle device 210 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with a wireless communication function.
  • the connected vehicle device 210 may also be a user terminal device, such as a mobile phone (also referred to as a “cellular” phone) and a computer with a mobile terminal.
  • a mobile phone also referred to as a “cellular” phone
  • it may be portable, compact, handheld, built-in computer, or in-vehicle Mobile device.
  • the connected vehicle device 110 may be a mobile terminal such as a smart phone, a tablet computer, an e-book reader, or may be a smart wearable device such as smart glasses, a smart watch, or a smart bracelet.
  • Fig. 3 is a flowchart illustrating a method for transmitting information between connected devices in a vehicle according to an exemplary embodiment. As shown in Fig. 3, the method for transmitting information between connected devices in a vehicle is applied to the implementation shown in Fig. 2 In an environment, the method may include the following steps.
  • the first connected vehicle device sends a wireless signal including a synchronization broadcast block, the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located on three consecutive orthogonal frequencies in the time domain. Demultiplexing OFDM symbols; the second connected vehicle device receives the wireless signal.
  • step 302 the second connected vehicle device detects the synchronous broadcast block in the wireless signal.
  • step 303 the second connected vehicle device acquires the information carried by the synchronous broadcast block according to the detection result.
  • the system information is transmitted in a hierarchical manner, that is, the sending end first sends a PBCH (Physical Broadcast Channel).
  • the PBCH contains a MIB (master information block) and subsequent hierarchical transmission.
  • SIB System Information Block, System Information Block
  • RMSI Remaining minimum system information
  • OSI Open System Interconnection
  • the SSB Synchronous Signal / PBCH Block
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division
  • the transmitting end (that is, the first vehicle-to-vehicle device) carries the synchronous broadcast block in 3 OFDM symbols for broadcast transmission, thereby greatly reducing Time-frequency resource occupation of synchronous broadcast blocks in V2X scenarios.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • Fig. 4 is a flow chart showing a method for transmitting information between a connected vehicle device according to an exemplary embodiment. The method may be executed by a second connected vehicle device in the embodiment shown in Fig. 3. The method may include: The following steps.
  • step 401 a wireless signal sent by a first connected vehicle device is received.
  • a synchronization broadcast block is detected in the received wireless signal.
  • the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive orthogonal frequency division multiplexed OFDM in the time domain. symbol.
  • step 403 the information carried in the synchronous broadcast block is acquired according to the detection result.
  • the synchronization signals include a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is located at the first OFDM symbol, and the secondary synchronization signal is located at the second OFDM symbol.
  • the physical broadcast channel is located at the third OFDM symbol
  • the physical broadcast channel is located in the third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band in which the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • part of the resource blocks in the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • part of the demodulation reference signal includes index information of a synchronous broadcast block
  • all the signals in the demodulation reference signal include index information of a synchronous broadcast block
  • the demodulation reference signal does not include the index information of the synchronization broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the period of the synchronous broadcast block is all or a part of at least one designated period.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • Fig. 5 is a flow chart showing a method for transmitting information between a connected vehicle device according to an exemplary embodiment.
  • the method may be executed by a first connected vehicle device in the embodiment shown in Fig. 3.
  • the method may include: The following steps.
  • step 501 information carried by a synchronization broadcast block is generated, the synchronization broadcast block is used to carry synchronization signals and physical broadcast channels, and the synchronization broadcast block is located in three consecutive orthogonal frequency division multiplexed OFDM symbols in the time domain.
  • a wireless signal including the synchronous broadcast block is sent according to the information carried by the synchronous broadcast block, so that the second connected vehicle device detects the synchronous broadcast block in the wireless signal, and acquires the synchronous broadcast block carry according to the detection result.
  • Information is carried by the synchronous broadcast block, so that the second connected vehicle device detects the synchronous broadcast block in the wireless signal, and acquires the synchronous broadcast block carry according to the detection result.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • Fig. 6 is a flowchart illustrating a method for transmitting information between connected devices in a car according to an exemplary embodiment. As shown in Fig. 6, the method for transmitting information between connected devices in a car is applied to the implementation shown in Fig. 2 In an environment, the method may include the following steps.
  • the first connected vehicle device In step 601, the first connected vehicle device generates information carried by a synchronization broadcast block, which is used to carry synchronization signals and physical broadcast channels, and the synchronization broadcast block is located in three consecutive orthogonal frequency divisions in the time domain. Multiplexing OFDM symbols.
  • the first connected vehicle device can send a synchronous broadcast block through a side link.
  • the physical broadcast channel of V2X can be transmitted in a single stage, with multiple stages optional. That is, the system defines only one basic physical broadcast channel in sidelink.
  • the basic physical broadcast channel The broadcast channel can also be called PSBCH.
  • the basic physical broadcast channel contains basic system information required for V2X communication. Whether or not other system information exists outside the basic physical broadcast channel can be indicated by an extended indication in the physical broadcast channel.
  • the physical broadcast channel may also carry extended configuration information, and the extended configuration information may be used to indicate a resource location of other system information.
  • the synchronization signals may include PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the primary synchronization signal and the secondary synchronization signal may have different OFDM symbols, respectively. For example, assuming that three consecutive orthogonal frequency division multiplexed OFDM symbols where the synchronization broadcast block is located are the first OFDM symbol, the second OFDM symbol, and the third OFDM symbol, the primary synchronization signal may be located at the first OFDM symbol and the secondary synchronization signal. May be located on the second OFDM symbol.
  • the physical broadcast channel may be located in a third OFDM symbol other than the OFDM symbol in which the primary synchronization signal and the secondary synchronization signal are located.
  • FIG. 7 shows a schematic structural diagram of a synchronous broadcast block according to an embodiment of the present application.
  • the abscissa is a time domain resource and the ordinate is a frequency domain resource.
  • a synchronous broadcast block occupies 3 OFDM symbols in the time domain, of which the first OFDM among the 3 OFDM symbols The symbol carries the primary synchronization signal PSS, the middle OFDM symbol carries the physical broadcast channel, and the last OFDM symbol carries the secondary synchronization signal SSS.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the physical broadcast channel is used to carry system information, and the data amount of the system information is usually larger than the data amount of the synchronization signal (whether the primary synchronization signal or the secondary synchronization signal). Therefore, the resource block occupied by the physical broadcast channel The number is also greater.
  • FIG. 8 is a schematic structural diagram of another synchronous broadcast block according to an embodiment of the present application.
  • the abscissa is a time domain resource and the ordinate is a frequency domain resource.
  • a synchronous broadcast block occupies 3 OFDM symbols in the time domain, of which the first OFDM among the 3 OFDM symbols The symbol carries the primary synchronization signal PSS, the middle OFDM symbol carries the physical broadcast channel, and the last OFDM symbol carries the secondary synchronization signal SSS.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the left and right synchronization signals in the frequency domain.
  • the height of the physical broadcast channel is greater than that of the primary synchronization signal or the secondary synchronization signal. height.
  • the physical broadcast channel is located in a third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the synchronization signal in the frequency domain. Therefore, when the number of resource blocks occupied by the physical broadcast channel is large, Carrying on an OFDM symbol may cause the bandwidth occupied by the synchronous broadcast block to be high and waste system bandwidth resources. Therefore, in the embodiment of the present application, the physical broadcast channel may be distributed in the third OFDM symbol and the OFDM symbol in which the synchronization signal is located, so as to reduce bandwidth resource occupation on a single OFDM symbol.
  • FIG. 9 shows a schematic structural diagram of still another synchronous broadcast block according to an embodiment of the present application.
  • the abscissa is a time domain resource
  • the ordinate is a frequency domain resource.
  • a synchronous broadcast block occupies 3 OFDM symbols in the time domain, of which the first OFDM among the 3 OFDM symbols The symbol carries the primary synchronization signal PSS, the middle OFDM symbol carries the physical broadcast channel, and the last OFDM symbol carries the secondary synchronization signal SSS.
  • the last OFDM symbol carries a part of the physical broadcast channel in addition to the secondary synchronization signal SSS, which can reduce the bandwidth occupied by the physical broadcast channel in the frequency domain.
  • part of the resource blocks in the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • a predetermined proportion of resource blocks among resource blocks occupied by a physical broadcast channel may be used to carry demodulation reference signals, for example, 30% of resource blocks among resource blocks occupied by a physical broadcast channel are used to carry demodulation. Reference signal.
  • some signals in the demodulation reference signal include index information (Index information) of the synchronous broadcast block; or, all signals in the demodulation reference signal include index information of the synchronous broadcast block; or, the demodulation reference signal does not include Index information of the synchronous broadcast block.
  • Index information index information
  • the demodulation reference signal may carry index information of the synchronous broadcast block.
  • the demodulation reference signal may carry index information of the synchronous broadcast block, or all demodulation reference signals may carry synchronization. Index information of the broadcast block.
  • the demodulation reference signal may not carry the index information of the synchronous broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the system may preset a small number of designated frequency bands as the frequency bands corresponding to the index information of the synchronous broadcast block.
  • the system may preset 3 frequency bands as the frequency bands corresponding to the index information of the synchronous broadcast block to reduce system complexity. Degree, simplify system design and improve transmission efficiency.
  • the system can preset three frequency bands: n77 (the frequency range is 3.3GHz to 4.2GHz), n79 (the frequency range is 4.4GHz to 5.0GHz), and the newly supported 5.9GHz frequency band for the 5G system. Specify the frequency band.
  • step 602 the first connected vehicle device sends a wireless signal including the synchronized broadcast block according to the information carried by the synchronized broadcast block, and the second connected vehicle device receives the wireless signal sent by the first connected vehicle device.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band in which the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • a subcarrier interval of the wireless signal may be determined according to a frequency band of the transmitted or received wireless signal.
  • SCS subcarrier spacing
  • the SCS set contains three subcarrier intervals of 15kHz, 30kHz, and 60kHz.
  • Each frequency band corresponds to a subcarrier interval in the SCS set.
  • the n77 frequency band corresponds to a 30kHz subcarrier interval.
  • the 5.9GHz band corresponds to a subcarrier interval of 60kHz.
  • the synchronous broadcast block not only supports the carrier intervals of 15kHz and 30kHz, but also supports the carrier interval of 60kHz, thereby realizing the effective use of the high frequency part (such as the 5.9GHz frequency band) in the 5G system.
  • the period of the synchronous broadcast block is all or a part of at least one designated period.
  • the system can set a small number of designated periods in advance (for example, set 1 to 2 designated periods).
  • the first connected vehicle device can select a designated period and follow the selected designated period.
  • the specified period can be 20ms and 50ms.
  • step 603 the second connected vehicle device detects a synchronous broadcast block in the received wireless signal.
  • step 604 the second connected vehicle device acquires the information carried by the synchronous broadcast block according to the detection result.
  • the second connected vehicle device may perform synchronization signal detection on the wireless signal to detect the synchronization signal in the synchronization broadcast block, complete synchronization with the second connected vehicle device, and obtain the synchronization broadcast block.
  • System information carried in the physical broadcast channel, so as to establish a connection and communicate with the second connected vehicle device according to the system information.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • Fig. 10 is a block diagram of an information transmission device between connected devices in a vehicle according to an exemplary embodiment.
  • the information transmission device between connected devices in a vehicle can be implemented through hardware or a combination of software and hardware. It is implemented as all or part of the connected vehicle device in the implementation environment shown in FIG. 2 to perform the steps performed by the second connected vehicle device in the embodiment shown in FIG. 3 or FIG. 4 or FIG. 6.
  • the information transmission device between the connected vehicle devices may include:
  • a signal receiving module 1001 configured to receive a wireless signal sent by a first connected vehicle device
  • a detection module 1002 is configured to detect a synchronization broadcast block in the received wireless signal, the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive time domains in the time domain. Orthogonal Frequency Division Multiplexing OFDM symbols;
  • An information acquisition module 1003 is configured to acquire information carried by the synchronous broadcast block according to a detection result.
  • the synchronization signals include a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is located in a first OFDM symbol, and the secondary synchronization signal is located in a second OFDM symbol.
  • the physical broadcast channel is located at a third OFDM symbol
  • the physical broadcast channel is located in a third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band where the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • some of the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • part of the demodulation reference signal includes index information of the synchronous broadcast block
  • all signals in the demodulation reference signal include index information of the synchronization broadcast block
  • the demodulation reference signal does not include index information of the synchronization broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the period of the synchronous broadcast block is all or part of a period of at least one designated period.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • Fig. 11 is a block diagram of an information transmission device between connected vehicle devices according to an exemplary embodiment.
  • the information transmission device between connected vehicle devices can be implemented through hardware or a combination of software and hardware. It is implemented as all or part of the connected vehicle device in the implementation environment shown in FIG. 2 to perform the steps performed by the first connected vehicle device in the embodiment shown in FIG. 3 or FIG. 5 or FIG. 6.
  • the information transmission device between the connected vehicle devices may include:
  • An information generating module 1101 is configured to generate information carried by a synchronization broadcast block, where the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located in three consecutive orthogonal frequency division complexes in the time domain. Use OFDM symbols;
  • a signal sending module 1102 configured to send a wireless signal including the synchronous broadcast block according to the information carried by the synchronous broadcast block, so that the second connected vehicle device detects the synchronous broadcast block in the wireless signal, and according to the detection result Acquiring information carried by the synchronous broadcast block.
  • the first connected vehicle device broadcasts a synchronized broadcast block including a synchronization signal and a physical broadcast channel to the outside through 3 OFDM symbols, so that the second connected vehicle device according to the synchronization broadcast block.
  • the detection result obtains the information carried by the synchronous broadcast block, reduces the resource occupation amount of the synchronous broadcast block in the time domain, and improves the transmission efficiency of the synchronous broadcast block.
  • An exemplary embodiment of the present disclosure also provides an information transmission system between the connected vehicle devices, the system includes: a first connected vehicle device and a second connected vehicle device.
  • the first IoV device includes an information transmission device between the IoV devices provided in the embodiment shown in FIG. 11 above;
  • the second IoV device includes an information transmission device between the IoV devices provided in the embodiment shown in FIG. 10.
  • the device provided by the above embodiment implements its functions, only the division of the above functional modules is used as an example. In actual applications, the above functions may be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides an apparatus for transmitting information between connected vehicle devices, which can implement all or part of the above-mentioned embodiment shown in FIG. 3, FIG. 4, or FIG. 6 performed by the second connected vehicle device.
  • the information transmission device between the connected vehicle devices includes: a processor and a memory for storing executable instructions of the processor;
  • the processor is configured to:
  • the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block occupies 3 consecutive orthogonal frequency division multiplexes in the time domain OFDM symbol
  • the information carried by the synchronization broadcast block is acquired according to a detection result.
  • the synchronization signals include a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is located in a first OFDM symbol, and the secondary synchronization signal is located in a second OFDM symbol.
  • the physical broadcast channel is located at a third OFDM symbol
  • the physical broadcast channel is located in a third OFDM symbol, and at least one of the first OFDM symbol and the second OFDM symbol.
  • the number of resource blocks occupied by the physical broadcast channel in the frequency domain is greater than the number of resource blocks occupied by the primary synchronization signal or the secondary synchronization signal in the frequency domain.
  • the subcarrier interval of the wireless signal is a subcarrier interval determined according to a frequency band where the wireless signal is located; the subcarrier interval is 15kHz, 30kHz, or 60kHz.
  • some of the resource blocks occupied by the physical broadcast channel are used to carry demodulation reference signals.
  • a part of the demodulation reference signal includes index information of the synchronous broadcast block
  • all signals in the demodulation reference signal include index information of the synchronization broadcast block
  • the demodulation reference signal does not include index information of the synchronization broadcast block.
  • the frequency band corresponding to the index information of the synchronous broadcast block is all or part of the at least one designated frequency band.
  • the period of the synchronous broadcast block is all or part of a period of at least one designated period.
  • An exemplary embodiment of the present disclosure provides an apparatus for transmitting information between connected vehicle devices, which can implement all or part of the above-mentioned embodiment shown in FIG. 3, FIG. 5 or FIG. 6 by the first connected vehicle device.
  • the information transmission device between the connected vehicle devices includes: a processor and a memory for storing executable instructions of the processor;
  • the processor is configured to:
  • Generating information carried by a synchronization broadcast block where the synchronization broadcast block is used to carry a synchronization signal and a physical broadcast channel, and the synchronization broadcast block is located in three consecutive orthogonal frequency division multiplexed OFDM symbols in the time domain;
  • the connected vehicle device includes a hardware structure and / or a software module corresponding to each function.
  • the embodiments of this disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a connected vehicle device according to an exemplary embodiment.
  • the connected vehicle device 1200 includes a communication unit 1204 and a processor 1202.
  • the processor 1202 may also be a controller, which is shown as "controller / processor 1202" in FIG. 12.
  • the communication unit 1204 is configured to support communication between a connected vehicle device and other network entities (such as other connected vehicle devices).
  • the connected vehicle device 1200 may further include a memory 1203, and the memory 1203 is configured to store program codes and data of the connected vehicle device 1200.
  • FIG. 12 only shows a simplified design of the connected vehicle device 1200.
  • the connected vehicle device 1200 may include any number of processors, controllers, memories, communication units, etc., and all the connected vehicle devices that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the functions described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • An embodiment of the present disclosure also provides a computer storage medium for storing computer software instructions used for the first IoV device or the second IoV device, which includes a method for performing information transmission between the IoV devices. Designed procedures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种车联网设备之间的信息传输方法,属于无线通信技术领域。所述方法包括:第一车联网设备发送包含同步广播块的无线信号,同步广播块用于承载同步信号和物理广播信道,且同步广播块在时域上位于3个连续的正交频分复用OFDM符号;第二车联网设备接收无线信号,在无线信号中检测同步广播块,根据检测结果获取同步广播块携带的信息。第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。

Description

车联网设备之间的信息传输方法、装置及系统 技术领域
本公开涉及无线通信技术领域,特别涉及一种车联网设备之间的信息传输方法、装置及系统。
背景技术
车联网是一种结合导航定位、无线通信以及远程感应等技术的新的汽车技术发展方向。
在相关技术中,车联网设备之间通过广播系统信息进行设备之间的同步和信息传输。比如,一个车联网设备可以通过广播方式发送该车联网设备的同步信号和系统信息,另一车联网设备接收到该同步信号和系统信息后,通过同步信号进行信号同步,并根据系统信息与该车联网设备进行通信。
发明内容
本公开提供一种车联网设备之间的信息传输方法。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种车联网设备之间的信息传输方法,所述方法包括:
第一车联网设备发送包含同步广播块的无线信号,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
第二车联网设备接收所述无线信号;
所述第二车联网设备在所述无线信号中检测所述同步广播块;
所述第二车联网设备根据检测结果,获取所述同步广播块携带的信息。
根据本公开实施例的第二方面,提供了一种车联网设备之间的信息传输方法,所述方法由第二车联网设备执行,所述方法包括:
接收第一车联网设备发送的无线信号;
在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同 步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
根据检测结果获取所述同步广播块携带的信息。
可选的,所述同步信号包括主同步信号和辅同步信号;
所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
可选的,所述物理广播信道位于第三OFDM符号;
或者,
所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
可选的,所述物理广播信道在频域上占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
可选的,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
可选的,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
可选的,所述解调参考信号中的部分信号包含所述同步广播块的索引信息;
或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
或者,所述解调参考信号不包含所述同步广播块的索引信息。
可选的,所述同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
可选的,所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
根据本公开实施例的第三方面,提供了一种车联网设备之间的信息传输方法,所述方法由第一车联网设备执行,所述方法包括:
生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以 便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
根据本公开实施例的第四方面,提供了一种车联网设备之间的信息传输装置,所述装置用于第二车联网设备中,所述装置包括:
信号接收模块,用于接收第一车联网设备发送的无线信号;
检测模块,用于在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
信息获取模块,用于根据检测结果获取所述同步广播块携带的信息。
可选的,所述同步信号包括主同步信号和辅同步信号;
所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
可选的,所述物理广播信道位于第三OFDM符号;
或者,
所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
可选的,所述物理广播信道在频域上占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
可选的,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
可选的,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
可选的,所述解调参考信号中的部分信号包含所述同步广播块的索引信息;
或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
或者,所述解调参考信号不包含所述同步广播块的索引信息。
可选的,所述同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
可选的,所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
根据本公开实施例的第五方面,提供了一种车联网设备之间的信息传输装置,所述装置用于第一车联网设备中,所述装置包括:
信息生成模块,用于生成同步广播块携带的信息,所述同步广播块同步用于承载信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
信号发送模块,用于根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
根据本公开实施例的第六方面,提供了一种车联网设备之间的信息传输系统,所述系统包括:第一车联网设备和第二车联网设备;
所述第一车联网设备包含如上述第五方面所示的车联网设备之间的信息传输装置;
所述第二车联网设备包含如上述第四方面或者第四方面的任一可选方式所示的车联网设备之间的信息传输装置。
根据本公开实施例的第七方面,提供了一种车联网设备之间的信息传输装置,用于第二车联网设备中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收第一车联网设备发送的无线信号;
在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
根据检测结果获取所述同步广播块携带的信息。
根据本公开实施例的第八方面,提供了一种车联网设备之间的信息传输装置,用于第一车联网设备中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
根据本公开实施例的第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,第二车联网设备中的处理器调用所述可执行指令以实现上述第二方面或者第二方面的任一可选方案所述的车联网设备之间的信息传输方法。
根据本公开实施例的第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,第一车联网设备中的处理器调用所述可执行指令以实现上述第三方面所述的车联网设备之间的信息传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是相关技术中的同步广播块架构示意图。
图2是根据部分示例性实施例示出的一种车联网设备之间的信息传输方法所涉及的实施环境的示意图;
图3是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图;
图4是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图;
图5是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图;
图6是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图;
图7是图6所示实施例涉及的一种同步广播块的结构示意图;
图8是图6所示实施例涉及的另一种同步广播块的结构示意图;
图9是图6所示实施例涉及的又一种同步广播块的结构示意图;
图10是根据一示例性实施例示出的一种车联网设备之间的信息传输装置的框图;
图11是根据一示例性实施例示出的一种车联网设备之间的信息传输装置的框图;
图12是根据一示例性实施例示出的一种车联网设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
车联网通信也称为V2x(vehicle to everything,车与其他设备)通信,其 包括V2V(vehicle to vehicle,车对车)通信技术、V2I(vehicle to Infrastructure,车对路边设备)通信技术和V2P(vehicle to pedestrian,车对人)通信技术。通过V2V、V2I以及V2P的通信,车联网技术可以有效提升交通安全,改善交通效率以及丰富人们的出行体验。
利用现有的蜂窝通信技术支持车联网通信,可以有效利用现有基站部署,减少设备开销,也更有利于提供具有QoS(Quality of Service,服务质量)保证的服务,满足车联网业务的需求。因此,LTE(Long Term Evolution,长期演进)技术的Rel-14/15中提供了蜂窝网络对于车联网V2x通信的支持,即C-V2x(cellular based V2x,基于蜂窝网络的V2x)。在C-V2x技术中,车载设备和其他设备之间的通信可以通过基站以及核心网进行中转,即利用原有蜂窝网络中终端设备和基站之间的通信链路进行通信(上行/下行通信);在另一种可能的方式中,车载设备和其他设备之间也可以直接通过设备之间的直连链路进行通信,比如,通过副链路(sidelink)进行通信。与利用上行/下行通信相比,sidelink通信具有时延短,开销小等特点,非常适合用于车载设备和地理位置接近的其他周边设备直接的通信。
LTE中的V2x sidelink通信能支持一些基础的安全方面的V2x应用,如交换CAM(Cooperative Awareness Messages,协同感知消息)或DENM(Decentralized Environmental Notification Message,分散式环境通知消息)等BSM(Basic Safety Message,基础安全信息),进行语音广播通信等。近来随着自动驾驶等技术的发展,为了支持新的V2x业务,对于V2x技术的性能又提出了新的要求。利用5G NR(New Radio,新空口)技术支持新的V2x通信服务和场景已经被3GPP计划为Rel16的一项重要内容。3GPP工作组已经设立了一些新的V2x通信需要满足的业务需求,包括车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(Remote Driving)等。总体来说,NR V2x sidelink需要提供更高的通信速率,更短的通信延时,以及更可靠的通信质量。
一般来说,V2x设备通过sidelink进行的设备间通信可以使用车载GNSS(Global Navigation Satellite System,全球导航定位系统),比如GPS或北斗等,或者基站广播的同步信号作为设备的同步参考信号,保证发送端和接收端之间的同步。但考虑到V2X车联网应用场景的广泛性,即使当V2x设备处于蜂窝网络基站覆盖范围之外而且无法可靠的接收到GNSS信号的时候(如山区,沙 漠道路),V2x设备之间也需要能够通过Sidelink进行可靠通信。因此,在LTE V2x中支持通过Sidelink直连链路进行同步,即一个V2x设备可以通过接收其他V2x设备广播的同步信号完成V2x设备间的同步。在LTE V2x中,通过PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)和同步信号同时进行V2x的系统消息广播。广播内容包含一些同步和系统配置相关的信息。
考虑到V2X对Sidelink的支持,下面的同步场景需要支持:即当V2X UE1丢失覆盖或者没有覆盖的情况下和周围的UE(车)同步,也就是要支持sidelink同步。
在相关技术中,在5G NR的同步架构中,以同步广播块为基础,同步广播块架构如图1所示。在图1中,5G NR的同步广播块在时域上占用至少4个OFDM符号。
3GPP在R16开展了对NR V2X的立项研究,由于V2X的Sidelink主要为设备间的机会性的本地化通信,只需要通过广播保证通信范围内的设备具备相同的同步和帧结构理解,因此其系统广播信息相对5G NR较少。因此,若在NR V2X中直接沿用5G NR的同步广播块的发送方式,会导致同步广播块占用资源过多冗余,造成NR V2X的通信资源的浪费,且影响NR V2X的通信效率。
图2是根据部分示例性实施例示出的一种车联网设备之间的信息传输方法所涉及的实施环境的示意图,如图1所示,该实施环境可以包括:若干个车联网设备210。
车联网设备210是支持V2x技术的无线通信设备。比如,车联网设备110可以支持蜂窝移动通信技术,比如,可以支持第四代移动通信技术(the 4th generation mobile communication,4G)技术或者5G技术。或者,车联网设备110也可以支持5G技术的更下一代移动通信技术。
例如,车联网设备210可以是车载通信设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。
或者,车联网设备210也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备。
或者,车联网设备210也可以是用户终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、 计算机内置的或者车载的移动装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。具体比如,车联网设备110可以是智能手机、平板电脑、电子书阅读器等移动终端,或者,可以是智能眼镜、智能手表或者智能手环等智能可穿戴设备。
图3是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图,如图3所示,该车联网设备之间的信息传输方法应用于图2所示的实施环境中,该方法可以包括以下步骤。
在步骤301中,第一车联网设备发送包含同步广播块的无线信号,该同步广播块用于承载同步信号和物理广播信道,且该同步广播块在时域上位于3个连续的正交频分复用OFDM符号;第二车联网设备接收该无线信号。
在步骤302中,该第二车联网设备在该无线信号中检测该同步广播块。
在步骤303中,该第二车联网设备根据检测结果,获取该同步广播块携带的信息。
在5G新空口系统中,系统信息采用分级的方式进行发送,即发送端首先发送PBCH(Physical Broadcast Channel,物理广播信道),该PBCH中包含MIB(master information block,主信息块),后续分级发送包含SIB(System Information Block,系统信息块)1以及RMSI(Remaining minimum system information,剩余最小系统信息),以及包含其它SIB以及OSI(Open System Interconnection,开放系统互联)信息,其中,PBCH中包含有解RMSI的必要信息,RMSI和OSI中分别含有接入信息以及其他必要的系统信息。因此,5G新空口系统中的SSB(Synchronous signal/PBCH block,同步广播块)所占用的时频资源较多,通常需要占用4个或者4个以上的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,并且在时频域上所需的带宽也更高。
而本申请实施例提供的方案,在车联网通信(V2x)中,发送端(即上述第一车联网设备)将同步广播块承载在3个OFDM符号中进行广播发送,从而极大的降低了V2X场景下同步广播块的时频资源占用。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
图4是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图,该方法可以由图3所示实施例中的第二车联网设备来执行,该方法可以包括以下步骤。
在步骤401中,接收第一车联网设备发送的无线信号。
在步骤402中,在接收到的无线信号中检测同步广播块,同步广播块用于承载同步信号和物理广播信道,且同步广播块在时域上占3个连续的正交频分复用OFDM符号。
在步骤403中,根据检测结果获取同步广播块携带的信息。
可选的,同步信号包括主同步信号和辅同步信号;
主同步信号位于第一OFDM符号,辅同步信号位于第二OFDM符号。
可选的,
物理广播信道位于第三OFDM符号;
或者,
物理广播信道位于第三OFDM符号,以及第一OFDM符号和第二OFDM符号中的至少一个OFDM符号。
可选的,物理广播信道在频域上占用的资源块的数量,大于主同步信号或者辅同步信号在频域上占用的资源块的数量。
可选的,无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
可选的,物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
可选的,解调参考信号中的部分信号包含同步广播块的索引信息;
或者,解调参考信号中的全部信号包含同步广播块的索引信息;
或者,解调参考信号不包含同步广播块的索引信息。
可选的,同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
可选的,同步广播块的周期为至少一个指定周期中的全部或者部分周期。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
图5是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图,该方法可以由图3所示实施例中的第一车联网设备来执行,该方法可以包括以下步骤。
在步骤501中,生成同步广播块携带的信息,该同步广播块用于承载同步信号和物理广播信道,且该同步广播块在时域上位于3个连续的正交频分复用OFDM符号。
在步骤502中,根据该同步广播块携带的信息发送包含该同步广播块的无线信号,以便第二车联网设备在该无线信号中检测该同步广播块,并根据检测结果获取该同步广播块携带的信息。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
图6是根据一示例性实施例示出的一种车联网设备之间的信息传输方法的流程图,如图6所示,该车联网设备之间的信息传输方法应用于图2所示的实施环境中,该方法可以包括以下步骤。
在步骤601中,第一车联网设备生成同步广播块携带的信息,该同步广播块用于承载同步信号和物理广播信道,且该同步广播块在时域上位于3个连续的正交频分复用OFDM符号。
第一车联网设备可以通过副链路(Sidelink)发送同步广播块。
在本申请实施例中,V2X的物理广播信道可以采用单级为主,多级可选的方式进行发送,即系统在sidelink中只定义一个基本的物理广播信道,在sidelink中,该基本的物理广播信道也可以称为PSBCH,该基本的物理广播信道包含V2X通信所需的基本的系统信息。而基本的物理广播信道之外是否存在其它的 系统信息,则可以由物理广播信道中的扩展指示来进行指示。可选的,当基本的物理广播信道之外存在其它的系统信息时,该物理广播信道中还可以携带扩展配置信息,该扩展配置信息可以用于指示其它系统信息的资源位置。
可选的,同步信号可以包括PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)。
上述主同步信号和辅同步信号可以分别不同的OFDM符号。比如,假设同步广播块所在的3个连续的正交频分复用OFDM符号为第一OFDM符号、第二OFDM符号和第三OFDM符号,则主同步信号可以位于第一OFDM符号,辅同步信号可以位于第二OFDM符号。
可选的,物理广播信道可以位于主同步信号和辅同步信号所在的OFDM符号之外的第三OFDM符号。
比如,请参考图7,其示出了本申请实施例涉及的一种同步广播块的结构示意图。如图7所示,横坐标为时域资源,纵坐标为频域资源,在图7中,一个同步广播块在时域上占用3个OFDM符号,其中3个OFDM符号中的第一个OFDM符号承载主同步信号PSS,中间一个OFDM符号承载物理广播信道,最后一个OFDM符号承载辅同步信号SSS。
可选的,物理广播信道在频域上占用的资源块的数量,大于主同步信号或者辅同步信号在频域上占用的资源块的数量。
在实际应用中,物理广播信道用于承载系统信息,而系统信息的数据量通常比同步信号(无论是主同步信号还是辅同步信号)的数据量大,因此,物理广播信道所占用的资源块的数量也更多。
比如,请参考图8,其示出了本申请实施例涉及的另一种同步广播块的结构示意图。如图8所示,横坐标为时域资源,纵坐标为频域资源,在图8中,一个同步广播块在时域上占用3个OFDM符号,其中3个OFDM符号中的第一个OFDM符号承载主同步信号PSS,中间一个OFDM符号承载物理广播信道,最后一个OFDM符号承载辅同步信号SSS。物理广播信道在频域上占用的资源块的数量大于左右两个同步信号在频域上占用的资源块的数量,在图8中体现为物理广播信道的高度大于主同步信号或者辅同步信号的高度。
可选的,物理广播信道位于第三OFDM符号,以及第一OFDM符号和第二OFDM符号中的至少一个OFDM符号。
由于物理广播信道在频域上占用的资源块的数量大于同步信号在频域上 占用的资源块的数量,因此,当物理广播信道需要占用的资源块的数量较多时,若将物理广播信道只承载在一个OFDM符号上,则可能会导致同步广播块占用的带宽较高,浪费系统带宽资源。因此,在本申请实施例中,物理广播信道可以分布在第三OFDM符号以及同步信号所在的OFDM符号中,以减少在单个OFDM符号上的带宽资源占用。
比如,请参考图9,其示出了本申请实施例涉及的又一种同步广播块的结构示意图。如图9所示,横坐标为时域资源,纵坐标为频域资源,在图9中,一个同步广播块在时域上占用3个OFDM符号,其中3个OFDM符号中的第一个OFDM符号承载主同步信号PSS,中间一个OFDM符号承载物理广播信道,最后一个OFDM符号承载辅同步信号SSS。此外,最后一个OFDM符号除了承载辅同步信号SSS之外,还承载物理广播信道的一部分,这样可以减少物理广播信道在频域上占用的带宽。
可选的,物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
在本申请实施例中,物理广播信道占用的资源块中的预定比例的资源块可以用于携带解调参考信号,比如,物理广播信道占用的资源块中30%的资源块用来携带解调参考信号。
可选的,解调参考信号中的部分信号包含同步广播块的索引信息(Index信息);或者,解调参考信号中的全部信号包含同步广播块的索引信息;或者,解调参考信号不包含同步广播块的索引信息。
在本申请实施例中,解调参考信号可以携带同步广播块的索引信息,具体的,可以部分解调参考信号中携带同步广播块的索引信息,也可以所有的解调参考信号中都携带同步广播块的索引信息。或者,上述解调参考信号中也可以不携带同步广播块的索引信息。
可选的,同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
在本申请实施例中,系统可以预先设置少量的指定频段作为同步广播块的索引信息对应的频段,比如,系统可以预先设置3个频段作为同步广播块的索引信息对应的频段,以降低系统复杂度,简化系统设计,提高传输效率。比如,系统可以预先设置频段号为n77(频率范围为3.3GHz至4.2GHz)、n79(频率范围4.4GHz至5.0GHz为)的频段,以及5G系统新支持的5.9GHz频段这三 个频段为上述指定频段。
在步骤602中,第一车联网设备根据该同步广播块携带的信息发送包含该同步广播块的无线信号,第二车联网设备接收第一车联网设备发送的无线信号。
可选的,无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
在本申请实施例中,车联网设备在发送或者接收无线信号时,可以根据发送或者接收无线信号的频段确定无线信号的子载波间隔,具体比如,车联网设备中预先设置有SCS(subcarrier spacing,子载波间隔)集,该SCS集中包含15kHz、30kHz以及60kHz这三种子载波间隔,每个频段对应SCS集中的一种子载波间隔,比如,n77频段对应30kHz的子载波间隔,而5G系统新支持的5.9GHz频段对应60kHz的子载波间隔。通过上述子载波间隔的确定方式,同步广播块不仅支持15kHz和30kHz的载波间隔,还可以支持60kHz的载波间隔,从而实现对5G系统中的高频部分(比如5.9GHz频段)的有效利用。
可选的,同步广播块的周期为至少一个指定周期中的全部或者部分周期。
在本申请实施例中,系统可以预先设置少量的指定周期(比如设置1至2个指定周期),在发送同步广播块时,第一车联网设备可以选择一个指定周期,并按照选择的指定周期发送同步广播块。比如,上述指定周期可以是20ms和50ms。
需要注意的是:以上关于指定频段和指定周期的定义适用于整个申请文件。
在步骤603中,第二车联网设备在接收到的无线信号中检测同步广播块。
在步骤604中,第二车联网设备根据检测结果获取同步广播块携带的信息。
在本申请实施例中,第二车联网设备可以对无线信号进行同步信号检测,以检测同步广播块中的同步信号,完成与第二车联网设备之间的同步,并获取同步广播块中的物理广播信道中携带的系统信息,以便根据这些系统信息与第二车联网设备建立连接并通信。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图10是根据一示例性实施例示出的一种车联网设备之间的信息传输装置的框图,如图10所示,该车联网设备之间的信息传输装置可以通过硬件或者软硬结合的方式实现为图2所示实施环境中的车联网设备的全部或者部分,以执行图3或图4或图6任一所示实施例中由第二车联网设备执行的步骤。该车联网设备之间的信息传输装置可以包括:
信号接收模块1001,用于接收第一车联网设备发送的无线信号;
检测模块1002,用于在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
信息获取模块1003,用于根据检测结果获取所述同步广播块携带的信息。
可选的,所述同步信号包括主同步信号和辅同步信号;
所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
可选的,所述物理广播信道位于第三OFDM符号;
或者,
所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
可选的,所述物理广播信道在频域上占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
可选的,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
可选的,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
可选的,所述解调参考信号中的部分信号包含所述同步广播块的索引信息;
或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
或者,所述解调参考信号不包含所述同步广播块的索引信息。
可选的,所述同步广播块的索引信息对应的频段为至少一个指定频段中的 全部或者部分频段。
可选的,所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
图11是根据一示例性实施例示出的一种车联网设备之间的信息传输装置的框图,如图11所示,该车联网设备之间的信息传输装置可以通过硬件或者软硬结合的方式实现为图2所示实施环境中的车联网设备的全部或者部分,以执行图3或图5或图6任一所示实施例中由第一车联网设备执行的步骤。该车联网设备之间的信息传输装置可以包括:
信息生成模块1101,用于生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
信号发送模块1102,用于根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
综上所述,本公开实施例所示的方案,第一车联网设备通过3个OFDM符号对外广播包含同步信号和物理广播信道的同步广播块,以便第二车联网设备根据对同步广播块的检测结果,获取同步广播块携带的信息,减少了同步广播块在时域上的资源占用量,提高了同步广播块的传输效率。
本公开一示例性实施例还提供了一种车联网设备之间的信息传输系统,所述系统包括:第一车联网设备和第二车联网设备。
所述第一车联网设备包含如上述图11所示实施例提供的车联网设备之间的信息传输装置;
所述第二车联网设备包含如上述图10所示实施例提供的车联网设备之间的信息传输装置。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种车联网设备之间的信息传输装置,能够实现本公开上述图3、图4或图6所示实施例中由第二车联网设备执行的全部或者部分步骤,该车联网设备之间的信息传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收第一车联网设备发送的无线信号;
在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
根据检测结果获取所述同步广播块携带的信息。
可选的,所述同步信号包括主同步信号和辅同步信号;
所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
可选的,所述物理广播信道位于第三OFDM符号;
或者,
所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
可选的,所述物理广播信道在频域上占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
可选的,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
可选的,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
可选的,所述解调参考信号中的部分信号包含所述同步广播块的索引信 息;
或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
或者,所述解调参考信号不包含所述同步广播块的索引信息。
可选的,所述同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
可选的,所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
本公开一示例性实施例提供了一种车联网设备之间的信息传输装置,能够实现本公开上述图3、图5或图6所示实施例中由第一车联网设备执行的全部或者部分步骤,该车联网设备之间的信息传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
上述主要以车联网设备为例,对本公开实施例提供的方案进行了介绍。可以理解的是,车联网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图12是根据一示例性实施例示出的一种车联网设备的结构示意图。
车联网设备1200包括通信单元1204和处理器1202。其中,处理器1202也可以为控制器,图12中表示为“控制器/处理器1202”。通信单元1204用于 支持车联网设备与其它网络实体(例如其它车联网设备诶等)进行通信。
进一步的,车联网设备1200还可以包括存储器1203,存储器1203用于存储车联网设备1200的程序代码和数据。
可以理解的是,图12仅仅示出了车联网设备1200的简化设计。在实际应用中,车联网设备1200可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的车联网设备都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述第一车联网设备或者第二车联网设备所用的计算机软件指令,其包含用于执行上述车联网设备之间的信息传输方法所设计的程序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种车联网设备之间的信息传输方法,其特征在于,所述方法包括:
    第一车联网设备发送包含同步广播块的无线信号,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
    第二车联网设备接收所述无线信号;
    所述第二车联网设备在所述无线信号中检测所述同步广播块;
    所述第二车联网设备根据检测结果,获取所述同步广播块携带的信息。
  2. 一种车联网设备之间的信息传输方法,其特征在于,所述方法由第二车联网设备执行,所述方法包括:
    接收第一车联网设备发送的无线信号;
    在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
    根据检测结果获取所述同步广播块携带的信息。
  3. 根据权利要求2所述的方法,其特征在于,所述同步信号包括主同步信号和辅同步信号;
    所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
  4. 根据权利要求3所述的方法,其特征在于,
    所述物理广播信道位于第三OFDM符号;
    或者,
    所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
  5. 根据权利要求3所述的方法,其特征在于,所述物理广播信道在频域上 占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
  6. 根据权利要求2所述的方法,其特征在于,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
  7. 根据权利要求2所述的方法,其特征在于,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
  8. 根据权利要求7所述的方法,其特征在于,
    所述解调参考信号中的部分信号包含所述同步广播块的索引信息;
    或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
    或者,所述解调参考信号不包含所述同步广播块的索引信息。
  9. 根据权利要求8所述的方法,其特征在于,
    所述同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
  10. 根据权利要求2所述的方法,其特征在于,
    所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
  11. 一种车联网设备之间的信息传输方法,其特征在于,所述方法由第一车联网设备执行,所述方法包括:
    生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
    根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
  12. 一种车联网设备之间的信息传输装置,其特征在于,所述装置用于第二车联网设备中,所述装置包括:
    信号接收模块,用于接收第一车联网设备发送的无线信号;
    检测模块,用于在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
    信息获取模块,用于根据检测结果获取所述同步广播块携带的信息。
  13. 根据权利要求12所述的装置,其特征在于,所述同步信号包括主同步信号和辅同步信号;
    所述主同步信号位于第一OFDM符号,所述辅同步信号位于第二OFDM符号。
  14. 根据权利要求13所述的装置,其特征在于,
    所述物理广播信道位于第三OFDM符号;
    或者,
    所述物理广播信道位于第三OFDM符号,以及所述第一OFDM符号和所述第二OFDM符号中的至少一个OFDM符号。
  15. 根据权利要求13所述的装置,其特征在于,所述物理广播信道在频域上占用的资源块的数量,大于所述主同步信号或者所述辅同步信号在频域上占用的资源块的数量。
  16. 根据权利要求12所述的装置,其特征在于,所述无线信号的子载波间隔是根据所述无线信号所在的频段确定的子载波间隔;所述子载波间隔为15kHz、30kHz或者60kHz。
  17. 根据权利要求12所述的装置,其特征在于,所述物理广播信道占用的资源块中的部分资源块用于携带解调参考信号。
  18. 根据权利要求17所述的装置,其特征在于,
    所述解调参考信号中的部分信号包含所述同步广播块的索引信息;
    或者,所述解调参考信号中的全部信号包含所述同步广播块的索引信息;
    或者,所述解调参考信号不包含所述同步广播块的索引信息。
  19. 根据权利要求18所述的装置,其特征在于,
    所述同步广播块的索引信息对应的频段为至少一个指定频段中的全部或者部分频段。
  20. 根据权利要求12所述的装置,其特征在于,
    所述同步广播块的周期为至少一个指定周期中的全部或者部分周期。
  21. 一种车联网设备之间的信息传输装置,其特征在于,所述装置用于第一车联网设备中,所述方法包括:
    信息生成模块,用于生成同步广播块携带的信息,所述同步广播块同步用于承载信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
    信号发送模块,用于根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
  22. 一种车联网设备之间的信息传输系统,其特征在于,所述系统包括:第一车联网设备和第二车联网设备;
    所述第一车联网设备包含如权利要求21所述的车联网设备之间的信息传输装置;
    所述第二车联网设备包含如权利要求12至20任一所述的车联网设备之间的信息传输装置。
  23. 一种车联网设备之间的信息传输装置,其特征在于,用于第二车联网设备中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收第一车联网设备发送的无线信号;
    在接收到的所述无线信号中检测同步广播块,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上占3个连续的正交频分复用OFDM符号;
    根据检测结果获取所述同步广播块携带的信息。
  24. 一种车联网设备之间的信息传输装置,其特征在于,用于第一车联网设备中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    生成同步广播块携带的信息,所述同步广播块用于承载同步信号和物理广播信道,且所述同步广播块在时域上位于3个连续的正交频分复用OFDM符号;
    根据所述同步广播块携带的信息发送包含所述同步广播块的无线信号,以便第二车联网设备在所述无线信号中检测所述同步广播块,并根据检测结果获取所述同步广播块携带的信息。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,第二车联网设备中的处理器调用所述可执行指令以实现上述权利要求2至10任一所述的车联网设备之间的信息传输输方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,第一车联网设备中的处理器调用所述可执行指令以实现上述权利要求11所述的车联网设备之间的信息传输方法。
PCT/CN2018/097423 2018-07-27 2018-07-27 车联网设备之间的信息传输方法、装置及系统 WO2020019297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000901.7A CN109565647B (zh) 2018-07-27 2018-07-27 车联网设备之间的信息传输方法、装置及系统
PCT/CN2018/097423 WO2020019297A1 (zh) 2018-07-27 2018-07-27 车联网设备之间的信息传输方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097423 WO2020019297A1 (zh) 2018-07-27 2018-07-27 车联网设备之间的信息传输方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2020019297A1 true WO2020019297A1 (zh) 2020-01-30

Family

ID=65872454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097423 WO2020019297A1 (zh) 2018-07-27 2018-07-27 车联网设备之间的信息传输方法、装置及系统

Country Status (2)

Country Link
CN (1) CN109565647B (zh)
WO (1) WO2020019297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796260B (zh) * 2019-08-12 2023-09-12 维沃移动通信有限公司 一种测距方法及设备
WO2021087822A1 (zh) * 2019-11-06 2021-05-14 Oppo广东移动通信有限公司 系统信息接收方法、发送方法、装置、终端及存储介质
CN113939035B (zh) * 2020-06-29 2024-06-14 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
EP4191921B1 (en) * 2020-07-29 2024-09-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, wireless communication apparatus, wireless communication system, device, and terminal
CN112600711B (zh) * 2020-12-21 2023-03-14 上海星融汽车科技有限公司 实车总线数据远端克隆系统及方法
CN116233762B (zh) * 2021-12-02 2024-03-29 中国联合网络通信集团有限公司 车辆间的通信方法、设备、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111208A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 一种第一类中继站接收系统信息的系统及方法
CN107682133A (zh) * 2017-09-20 2018-02-09 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备
CN108092930A (zh) * 2016-11-17 2018-05-29 华为技术有限公司 一种通信的方法及终端设备
US20180198659A1 (en) * 2017-01-09 2018-07-12 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
CN108282317A (zh) * 2017-01-06 2018-07-13 展讯通信(上海)有限公司 同步信号块的传输方法、接收方法、基站及用户设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100512255C (zh) * 2006-06-29 2009-07-08 上海交通大学 Ofdma蜂窝系统的小区识别方法
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
WO2016036142A1 (ko) * 2014-09-02 2016-03-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치
US10341977B2 (en) * 2014-09-19 2019-07-02 Lg Electronics Inc. Method for obtaining downlink synchronization, and MTC apparatus
CN108141340B (zh) * 2015-10-01 2020-11-24 Lg 电子株式会社 在d2d通信中发送参考信号的方法和终端
CN105282257B (zh) * 2015-11-05 2019-06-11 东莞酷派软件技术有限公司 用于车辆通信的数据传输方法及装置、终端和路侧单元
CN106792574B (zh) * 2015-11-19 2019-11-22 普天信息技术有限公司 一种基于终端到终端的集群直接通信方法
WO2017117811A1 (zh) * 2016-01-08 2017-07-13 华为技术有限公司 信号的传输方法和终端设备
CN106961735B (zh) * 2016-01-11 2023-05-05 中兴通讯股份有限公司 资源的使用方法及装置
CN107734557B (zh) * 2016-08-11 2023-04-21 北京三星通信技术研究有限公司 一种v2x通信中避免对蜂窝通信干扰的方法和设备
CN107846434B (zh) * 2016-09-19 2020-05-12 中兴通讯股份有限公司 一种车联网业务处理方法、装置及车联网系统
CN108307496B (zh) * 2017-01-13 2020-01-07 维沃移动通信有限公司 同步接入信号组的发送方法、接收方法、相关设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111208A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 一种第一类中继站接收系统信息的系统及方法
CN108092930A (zh) * 2016-11-17 2018-05-29 华为技术有限公司 一种通信的方法及终端设备
CN108282317A (zh) * 2017-01-06 2018-07-13 展讯通信(上海)有限公司 同步信号块的传输方法、接收方法、基站及用户设备
US20180198659A1 (en) * 2017-01-09 2018-07-12 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
CN107682133A (zh) * 2017-09-20 2018-02-09 宇龙计算机通信科技(深圳)有限公司 一种发现参考信号的生成方法、装置及网络侧设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置
CN114095520B (zh) * 2020-07-21 2024-01-19 中信科智联科技有限公司 一种定位数据的确定方法、车联网设备及装置

Also Published As

Publication number Publication date
CN109565647A (zh) 2019-04-02
CN109565647B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2020019297A1 (zh) 车联网设备之间的信息传输方法、装置及系统
CN109075921B (zh) 车联网设备之间的反馈信息传输方法、装置及系统
WO2020029279A1 (zh) 车联网设备之间的反馈信息传输方法、装置及系统
CN107852686B (zh) 通信装置和方法
WO2020019253A1 (zh) 车联网设备之间的系统信息传输方法、装置及系统
Filippi et al. Ready to roll: Why 802.11 p beats LTE and 5G for V2x
CN111726821B (zh) 一种通信方法及设备
CN107295625B (zh) 一种同步优先级的标识方法及装置
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
CN109600832A (zh) 寻呼消息的传输方法及装置
EP3411988A1 (en) Communication device, base station and communication method
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2019095916A1 (zh) 一种非授权频段上同步信号的发送方法、网络设备及终端设备
CN106470413B (zh) 多载波中邻近业务的处理方法及装置
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
CN111148229B (zh) 确定传输资源的方法和装置
CN107041001A (zh) 通信资源的确定方法及装置
WO2018133132A1 (zh) 同步方法及设备
JP2022528834A (ja) 方法
CN114503696B (zh) 一种通信方法及装置
CN115777186A (zh) 用于侧链路通信的时隙格式
CN116261844A (zh) 一种侧行链路通信方法及装置
CN107370703B (zh) 信息的收发方法、装置及系统
WO2018133133A1 (zh) 一种资源使用方法、相关装置及系统
WO2021212510A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928124

Country of ref document: EP

Kind code of ref document: A1