[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020017050A1 - Composition, bonding material, sintered compact, assembly, and method for producing assembly - Google Patents

Composition, bonding material, sintered compact, assembly, and method for producing assembly Download PDF

Info

Publication number
WO2020017050A1
WO2020017050A1 PCT/JP2018/027384 JP2018027384W WO2020017050A1 WO 2020017050 A1 WO2020017050 A1 WO 2020017050A1 JP 2018027384 W JP2018027384 W JP 2018027384W WO 2020017050 A1 WO2020017050 A1 WO 2020017050A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
metal particles
metal
mass
component
Prior art date
Application number
PCT/JP2018/027384
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 山岸
史貴 上野
斉藤 晃一
雅記 竹内
貴耶 山本
将太 梅崎
洋子 坂入
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/027384 priority Critical patent/WO2020017050A1/en
Priority to JP2020530875A priority patent/JP7238894B2/en
Priority to PCT/JP2018/035437 priority patent/WO2020017065A1/en
Publication of WO2020017050A1 publication Critical patent/WO2020017050A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder

Definitions

  • the present invention relates to a composition, a bonding material, a sintered body, a bonded body, and a method for manufacturing a bonded body.
  • Lead-containing alloys solders
  • solders have conventionally been used as means for joining a semiconductor element and a support member when manufacturing a semiconductor device.
  • switching to a lead-free solder that does not contain lead or has a reduced lead content has been promoted in consideration of effects on the environment and living bodies.
  • a bonding material that has excellent low-temperature bonding properties and high-temperature connection reliability (sinters at low temperatures and has a high melting point after sintering), it is referred to as a transitional liquid phase sintered metal adhesive.
  • a joining material has been proposed (for example, see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).
  • One embodiment of the present invention has been made in view of the above circumstances, and includes a composition capable of forming a sintered body having excellent thermal conductivity and bonding strength by a transitional liquid phase sintering method, and containing the composition.
  • An object of the present invention is to provide a joining material, a sintered body using the composition, a joined body, and a method for producing the same.
  • a metal component capable of transitional liquid phase sintering is contained, and the metal component includes metal particles A having a melting point higher than 300 ° C. and metal particles B having a melting point of 300 ° C. or lower.
  • the metal particles B include Sn.
  • ⁇ 5> A bonding material containing the composition according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> A sintered body of the composition according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> A joined body in which the element and the support member are joined via the sintered body according to claim 5.
  • the composition according to any one of ⁇ 1> to ⁇ 4> is applied to at least one of a position where the element is joined to the support member and a position where the device is joined to the support member. Production of a joined body comprising: a step of forming a composition layer; a step of contacting the support member with the element via the composition layer; and a step of heating and sintering the composition layer.
  • a composition capable of forming a sintered body having excellent thermal conductivity and bonding strength by a transitional liquid phase sintering method, a bonding material containing the composition, and a composition using the composition
  • the present invention provides a sintered body, a joined body, and a method of manufacturing the same.
  • the present invention is not limited to the following embodiments.
  • the components including the element steps and the like
  • the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • the content of each component in the composition when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total of the plurality of substances present in the composition Means content.
  • the particle size of each component in the composition when there are a plurality of types of particles corresponding to each component in the composition, unless otherwise specified, a mixture of the plurality of types of particles present in the composition Means the value of
  • the term "layer" includes, when observing a region where the layer exists, in addition to a case where the layer is formed over the entire region and a case where the layer is formed only on a part of the region. included.
  • composition of the present disclosure contains a metal component capable of transitional liquid phase sintering, wherein the metal component includes metal particles A having a melting point higher than 300 ° C. and metal particles B having a melting point of 300 ° C. or lower,
  • the void volume X (cm 3 ) of the metal particles A, the density Y (g / cm 3 ) of the metal particles B, and the amount Z (g) of the metal particles B satisfy the following formula. 0.8 ⁇ Z / XY ⁇ 1.2
  • the metal particles A having a melting point higher than 300 ° C. contained in the composition do not melt in the sintering step and maintain the state of the particles.
  • the metal particles B having a melting point of 300 ° C. or less are melted in the sintering step to fill voids between the metal particles A.
  • the value of Z / XY is preferably equal to or greater than 0.85, and more preferably equal to or greater than 0.9. From the viewpoint of thermal conductivity, the value of Z / XY is preferably 1.15 or less, and more preferably 1.1 or less.
  • the void volume X (cm 3 ) of the metal particles A is calculated, for example, from the apparent volume of the metal particles A before mixing with other components (the actual volume of the metal particles + the void volume between the metal particles). Is obtained by subtracting the volume of Specifically, for example, it is determined by subtracting the tap volume (bulk volume) of the metal particles A measured using a graduated cylinder from the bulk volume (constant value) of the metal particles A. When the metal particles A include two or more kinds of metal particles, it is determined by summing the void volumes determined for each metal particle.
  • the void volume X of the metal particles A is preferably 50% by volume or less, more preferably 30% by volume or less, and more preferably 25% by volume or less of the apparent volume of the metal particles A. Is more preferable. From the viewpoint of bonding strength, the void volume X of the metal particles A is preferably 20% by volume or more, more preferably 30% by volume or more, and more preferably 40% by volume or more of the apparent volume of the metal particles A. Is more preferable.
  • the ratio of the metal particles A in the metal component is not particularly limited as long as the condition of the above formula is satisfied.
  • the content is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 67% by mass or more of the entire metal component.
  • the composition of the present disclosure contains a metal component capable of transitional liquid phase sintering.
  • “Transitional liquid phase sintering” in the present disclosure is also referred to as “Transient Liquid Phase Sintering (TLPS)” and is a liquid obtained by heating a metal interface having a relatively low melting point (low melting point metal) among particles having different melting points.
  • TLPS Transient Liquid Phase Sintering
  • This refers to a phenomenon in which the formation of a metal compound (alloying) by both metals proceeds due to phase transition and reaction diffusion of a metal having a relatively high melting point (high melting point metal) into the liquid phase.
  • a metal component capable of transitional liquid phase sintering a combination of metals having different melting points (combination of a low melting point metal and a high melting point metal) capable of transitional liquid phase sintering is given.
  • the combination of metals capable of transitional liquid phase sintering is not particularly limited.
  • a combination of a low-melting metal and a high-melting metal is Sn and Cu, a combination of In and Au, and a combination of Sn and Co, respectively.
  • Sn and Ni There are certain combinations and combinations of Sn and Ni.
  • the combination of metals capable of transitional liquid phase sintering may be a combination of two metals or a combination of three or more metals.
  • Metal components capable of transitional liquid phase sintering include metal particles A having a melting point higher than 300 ° C and metal particles B having a melting point of 300 ° C or lower. From the viewpoint of the bonding strength after sintering, the melting point of the metal particles A is more preferably 500 ° C. or higher, and further preferably 800 ° C. or higher. From the viewpoint of promoting the transition to the liquid phase during sintering, the melting point of the metal particles B is more preferably 250 ° C. or less.
  • the metal component capable of transitional liquid phase sintering may include Cu (melting point: 1085 ° C.) as metal particles A and Sn (melting point: 231.9 ° C.) as metal particles B. May be included.
  • the metal component containing Cu and Sn produces a copper-tin metal compound (Cu 6 Sn 5 ) by sintering. Since this generation reaction proceeds at around 250 ° C., sintering by general equipment such as a reflow furnace is possible.
  • the metal component includes the metal particles A and the metal particles B is not particularly limited.
  • the metal particles A and the metal particles B may each be a single metal state, or one or both of the metal particles A and the metal particles B may be in an alloy state. Further, the metal particles A and the metal particles B may contain the same kind of metal element.
  • the metal particles A may include Cu
  • the metal particles B may include an alloy containing Su.
  • Sn is in an alloy state
  • examples of a case where Sn is in an alloy state include an alloy (SAC) composed of Su, Ag, and Cu, and an alloy composed of Sn and Bi (SnBi).
  • SAC is preferable.
  • the composition of the SAC is not particularly limited, and examples thereof include Sn-3.0Ag-0.5Cu.
  • an alloy represented by Sn-AX-BY indicates that the alloy containing Sn contains A mass% of the element X and B mass% of the element Y in the alloy containing Sn.
  • the melting point (liquid phase transition temperature) of the alloy represented by Sn-3.0Ag-0.5Cu is about 217 ° C.
  • the metal particles A and the metal particles B contained in the metal component may each be composed of only one kind of metal, or may be composed of two or more kinds of metals.
  • the metal particle A or the metal particle B is composed of two or more kinds of metals, even if the metal particle is a combination (mixture) of metal particles containing each of the two or more kinds of metals, the two or more kinds of metals are the same metal. It may be contained in the particles or a combination thereof.
  • the configuration of metal particles containing two or more metals in the same metal particle is not particularly limited.
  • it may be a metal particle composed of an alloy of two or more metals or a metal particle composed of a simple substance of two or more metals.
  • Metal particles composed of a simple substance of two or more metals can be obtained, for example, by forming a layer containing the other metal on the surface of the metal particle containing one metal by plating, vapor deposition, or the like.
  • the same metal particles are applied to the surface of a metal particle containing one metal by applying particles containing the other metal in a dry manner using a force mainly composed of an impact force in a high-speed airflow to combine the two.
  • Metal particles containing two or more metals therein can also be obtained.
  • the average particle size of the metal particles is not particularly limited.
  • the average particle size of the metal particles is preferably 0.5 ⁇ m to 80 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and still more preferably 1 ⁇ m to 30 ⁇ m.
  • the average particle size of the metal particles refers to a volume average particle size measured by a laser diffraction type particle size distribution analyzer (for example, LS ⁇ 13 ⁇ 320 type laser scattering diffraction particle size distribution analyzer, Beckman Coulter, Inc.). Specifically, metal particles are added to 125 g of a solvent (terpineol) in a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is poured into a cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent being 1.48.
  • a laser diffraction type particle size distribution analyzer for example, LS ⁇ 13 ⁇ 320 type laser scattering diffraction particle size distribution analyzer, Beckman Coulter, Inc.
  • the relationship between the sizes of the metal particles A and the metal particles B is not particularly limited. From the viewpoint of filling the voids between the metal particles A with the molten metal particles B during sintering, for example, the value of the average particle diameter of the metal particles A / the average particle diameter of the metal particles B is preferably greater than 1. More preferably, it is more than 2, more preferably more than 5. The upper limit of the value of the average particle size of the metal particles A / the average particle size of the metal particles B is not particularly limited, but may be, for example, 10 or less.
  • the content of the metal component in the composition is not particularly limited.
  • the ratio by mass of the metal component to the entire composition is preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 88% by mass or more.
  • the ratio by mass of the metal component to the entire composition may be 98% by mass or less.
  • composition of the present disclosure may further contain an organic component.
  • organic component effects such as improvement of printability when the composition of the present disclosure is used as a paste can be obtained.
  • the content of the organic component in the composition is not particularly limited.
  • the proportion by mass of the organic component in the entire composition is preferably less than 20% by mass, more preferably less than 15% by mass, and even more preferably less than 12% by mass.
  • the ratio by mass of the organic component to the whole composition may be more than 2% by mass. If the proportion based on the mass of the organic component is more than 2% by mass, printability tends to be hardly impaired when the composition of the present disclosure is used as a paste.
  • the composition of the present disclosure may contain a resin component as an organic component.
  • a resin component as an organic component.
  • the resin component contained in the composition may be a thermoplastic resin, a thermosetting resin, or a combination thereof.
  • the resin component may be in the state of a monomer having a functional group capable of causing a polymerization reaction by heating or in the state of a polymer that has already been polymerized.
  • thermosetting resin examples include a resin having a functional group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, a vinyl group, a carboxy group, an amino group, a maleimide group, an acid anhydride group, a thiol group, and a thionyl group.
  • a resin having a functional group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, a vinyl group, a carboxy group, an amino group, a maleimide group, an acid anhydride group, a thiol group, and a thionyl group.
  • thermosetting resin examples include an epoxy resin, an oxazine resin, a bismaleimide resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. Of these, epoxy resins are preferred.
  • epoxy resin for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, Biphenyl novolak type epoxy resins and cycloaliphatic epoxy resins are exemplified.
  • the resin component may be used alone or in combination of two or more.
  • the ratio of the resin component to the entire organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
  • the composition of the present disclosure may contain a flux component as an organic component.
  • the flux component means an organic component capable of exerting a flux action (an action of removing an oxide film), and its type is not particularly limited. Specific examples of the flux component include a rosin, an activator, a thixotropic agent, and an antioxidant.
  • One type of flux component may be used alone, or two or more types may be used in combination.
  • rosin include dehydroabietic acid, dihydroabietic acid, neoabietic acid, dihydropimaric acid, pimaric acid, isopimaric acid, tetrahydroabietic acid, and parastolic acid.
  • activator include aminodecanoic acid, pentane-1,5-dicarboxylic acid, triethanolamine, diphenylacetic acid, sebacic acid, phthalic acid, benzoic acid, dibromosalicylic acid, anisic acid, iodosalicylic acid, picolinic acid and the like.
  • the thixotropic agent examples include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylenebisoleic acid amide, N, N'-distearyladipic acid amide and the like.
  • Specific examples of the antioxidant include a hindered phenol-based antioxidant, a phosphorus-based antioxidant, and a hydroxylamine-based antioxidant.
  • the ratio of the flux component to the entire organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
  • the composition of the present disclosure may contain a solvent as an organic component.
  • the solvent is preferably a polar solvent, and from the viewpoint of preventing drying of the composition in the step of applying the composition, it is preferably a solvent having a boiling point of 200 ° C or higher. It is more preferable that the solvent has a boiling point of 300 ° C. or less in order to suppress generation of voids during sintering.
  • solvents examples include terpineol, stearyl alcohol, tripropylene glycol methyl ether, diethylene glycol, diethylene glycol monoethyl ether (ethoxyethoxyethanol), diethylene glycol monohexyl ether, diethylene glycol monomethyl ether, dipropylene glycol-n-propyl ether, Alcohols such as dipropylene glycol-n-butyl ether, tripropylene glycol-n-butyl ether, 1,3-butanediol, 1,4-butanediol, propylene glycol phenyl ether, 2- (2-butoxyethoxy) ethanol; Tributylate, 4-methyl-1,3-dioxolan-2-one, ⁇ -butyrolactone, diethylene glycol Esters such as ethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate and glycerin tria
  • the proportion of the solvent in the whole organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
  • the method for producing the composition of the present disclosure is not particularly limited. It can be obtained by mixing the components constituting the composition of the present disclosure, and further performing a treatment such as stirring, melting, and dispersion.
  • the apparatus for mixing, stirring, dispersing, and the like is not particularly limited, and includes a three-roll mill, a planetary mixer, a planetary mixer, a rotation-revolution-type stirring apparatus, a grinder, a twin-screw kneader, A thin shear disperser or the like can be used. Further, these devices may be used in appropriate combination. During the above treatment, heating may be performed as necessary. After the treatment, the maximum particle size of the composition may be adjusted by filtration. Filtration can be performed using a filtration device. Examples of the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
  • composition of the present disclosure is used, for example, as a joining material for joining an element constituting a semiconductor device, an electronic component, or the like and a support member.
  • applications of the composition of the present disclosure are not limited to these.
  • the bonding material of the present disclosure contains the composition of the present disclosure.
  • the composition of the present disclosure can be used as a bonding material as it is, or may be used as a bonding material by adding other components as necessary.
  • Preferred embodiments of the bonding material of the present disclosure are the same as those of the composition of the present disclosure described above.
  • the sintered body of the present disclosure is obtained by sintering the composition of the present disclosure.
  • the method for sintering the composition of the present disclosure is not particularly limited.
  • the electric resistivity of the sintered body is preferably 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the joined body of the present disclosure is one in which the element and the support member are joined via the sintered body of the present disclosure.
  • the support member is not particularly limited, and a material in which the material of the portion where the elements are joined is metal is used. Examples of the metal as the material of the portion where the elements are joined include gold, silver, copper, nickel, and the like. Further, among the above, a plurality of metals may be patterned on the base material to form a support member. Specific examples of the support member include a lead frame, a wired tape carrier, a rigid wiring board, a flexible wiring board, a wired glass substrate, a wired silicon wafer, and a wafer level CSP (Wafer Level Chip Size Package).
  • the elements are not particularly limited, and include active elements such as semiconductor chips, transistors, diodes, light emitting diodes, and thyristors, and passive elements such as capacitors, resistors, resistor arrays, coils, and switches.
  • examples of the joined body of the present disclosure include a semiconductor device and an electronic component.
  • Specific examples of the semiconductor device include a diode, a rectifier, a thyristor, a metal oxide semiconductor (MOS) gate driver, a power switch, a power oxide semiconductor field-effect transistor (IGBT), and an IGBT (insulator transistor).
  • Examples include a power module including a fast recovery diode, a transmitter, an amplifier, and an LED module.
  • the method for manufacturing a joined body according to the present disclosure includes forming a composition layer by applying the composition of the present disclosure to at least one of a portion of the support member where the device is joined and a portion of the device where the device is joined to the support member. Performing, contacting the support member with the element via the composition layer, and heating and sintering the composition layer.
  • the step of applying the composition to form the composition layer may include the step of drying the applied composition.
  • a composition layer is formed by applying the composition of the present disclosure to at least one of a portion of the support member where the element is bonded and a portion of the device where the device is bonded to the support member.
  • the method for applying the composition include a coating method and a printing method.
  • a coating method for applying the composition for example, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and application using an applicator can be used.
  • a printing method for printing the composition for example, a dispenser method, a stencil printing method, an intaglio printing method, a screen printing method, a needle dispenser method, and a jet dispenser method can be used.
  • the composition layer formed by applying the composition is preferably dried from the viewpoint of suppressing the flow of the composition and the generation of voids during heating.
  • a method for drying the composition layer drying by standing at room temperature (for example, 25 ° C.), drying by heating, or drying under reduced pressure can be used.
  • room temperature for example, 25 ° C.
  • heating or vacuum drying hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device , A heater heating device, a steam heating furnace, a hot plate pressing device, or the like.
  • the temperature and time for drying can be appropriately adjusted according to the type and amount of the solvent used. For example, drying at 50 ° C. to 180 ° C.
  • the element and the supporting member are brought into contact with each other, whereby the element and the supporting member are bonded to each other with the composition layer interposed therebetween.
  • the step of drying the applied composition may be performed before or after the step of bringing the support member into contact with the element.
  • a sintered body is formed by heating the composition layer.
  • the sintering of the composition layer may be performed by a heat treatment or a heat and pressure treatment.
  • heating treatment hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used.
  • a hot plate press device or the like may be used, or the above-described heating treatment may be performed while applying pressure.
  • the heating temperature in the sintering of the composition layer can be selected according to the type and content of the components contained in the composition.
  • the melting point is preferably equal to or higher than the melting point of the metal particles B.
  • the temperature is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and further preferably 220 ° C. or higher.
  • the upper limit of the heating temperature is not particularly limited, but may be, for example, 300 ° C. or lower.
  • the heating time in the sintering of the composition layer can be selected according to the type and content of the components contained in the composition. For example, the duration is preferably from 5 seconds to 10 hours, more preferably from 1 minute to 30 minutes, even more preferably from 3 minutes to 10 minutes.
  • the sintering of the composition layer is preferably performed in an atmosphere having a low oxygen concentration.
  • the low oxygen concentration atmosphere refers to a state in which the oxygen concentration is 1000 ppm or less, and preferably 500 ppm or less.
  • Each component shown in Table 1 was mixed in an amount (unit: g) shown in Table 1 to prepare a composition. Details of the components shown in Table 1 are as follows.
  • Metal component 1 Cu particles having an average particle size of 3 ⁇ m
  • Metal component 2 Cu particles having an average particle size of 5 ⁇ m
  • Metal component 3 Cu particles having an average particle size of 25 ⁇ m
  • Metal component 4 SAC particles having an average particle size of 3 ⁇ m (Sn96.5% by mass) , Ag 3.0% by mass, Cu 0.5% by mass, density: 4.00 g / cm 3 )
  • Metal component 5 SAC particles having an average particle size of 25 ⁇ m (Sn96.5% by mass, Ag 3.0% by mass, Cu 0.5% by mass, density: 5.88 g / cm 3 )
  • Metal component 6 SnBi alloy particles having an average particle diameter of 7 ⁇ m (Sn 42% by mass, Bi 58% by mass, density: 5.56 g / cm 3 )
  • organic components 0.69% by mass of an epoxy resin (bisphenol A type epoxy resin), 1.44% by mass of rosin (dehydroabietic acid), 0.36% by mass of a thixotropic agent (12-hydroxystearic acid), and an activator ( A mixture of 1.44% by mass of triethanolamine, 0.08% by mass of an antioxidant (“Irganox 1010” manufactured by BASF) and 2.00% by mass of a solvent (2- (2-hexyloxyethoxy) ethanol) was used.
  • an epoxy resin bisphenol A type epoxy resin
  • rosin dehydroabietic acid
  • a thixotropic agent (12-hydroxystearic acid
  • an activator A mixture of 1.44% by mass of triethanolamine, 0.08% by mass of an antioxidant (“Irganox 1010” manufactured by BASF) and 2.00% by mass of a solvent (2- (2-hexyloxyethoxy) ethanol
  • the prepared composition was applied to a copper lead frame using sharp tweezers to form a composition layer.
  • An Si chip having a size of 2 mm ⁇ 2 mm and a gold-plated surface was placed on the composition layer, and lightly pressed with tweezers to obtain a sample of the composition before sintering.
  • After the sample before sintering was dried on a hot plate at 100 ° C. for 30 minutes, it was set on a conveyor of a nitrogen reflow apparatus (Tamura Seisakusho Co., Ltd .: 1 zone 50 cm, 7 zone configuration, under a nitrogen stream), and the oxygen concentration was 200 ppm. It was conveyed at a speed of 0.3 m / min below.
  • the sample was heated at 250 ° C. or more for 1 minute or more to obtain a sintered sample of the composition.
  • a universal bond tester 4000 series, manufactured by DAGE
  • the Si chip was pressed horizontally at a measurement speed of 500 ⁇ m / s and a measurement height of 100 ⁇ m, and the die-share of a sintered sample of the composition was performed.
  • the strength was measured.
  • the average of the results of the nine measurements was taken as the die shear strength. If the die shear strength is less than 20 MPa, it can be said that the adhesion is poor.
  • Thermal conductivity A sintered product of the composition prepared in the same manner as in the die shear strength measurement was polished with a polishing paper to a size of 12 mm in diameter and 0.5 mm in thickness to prepare a test piece for measuring thermal conductivity. Then, using a Xe flash method thermal conductivity measurement device (Nano Flash, LFA447, manufactured by NETZCCH), the lamp voltage was 247.0 V, the pulse width was 0.06 mm, and the diffusion model was tested from the following equation A under the conditions of the Cowan model. The thermal conductivity ⁇ (W / (m ⁇ K)) of the piece was measured.
  • a sintered sample of the composition was prepared in the same manner as in the measurement of the die shear strength.
  • a sintered sample of the composition was set in a thermal shock tester (Type 6015, manufactured by Life Tech Co., Ltd.), and a cooling / heating cycle test in which cooling and heating were repeated was performed. Specifically, first, cool at room temperature (25 ° C.) at a rate of ⁇ 10 ° C./min and maintain at ⁇ 65 ° C. for 30 minutes, then heat at a rate of + 10 ° C./min and maintain at 175 ° C. for 30 minutes. Thereafter, an operation of cooling to room temperature (25 ° C.) at a rate of ⁇ 10 ° C. per minute was defined as one cycle.
  • a sintered product prepared using the composition of the example in which the value of Z / XY is in the range of 0.8 to 1.2 has a large die shear strength, excellent bonding strength, and It also had excellent thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Die Bonding (AREA)

Abstract

This composition contains a metal component which can undergo transitional liquid-phase sintering. The metal component contains: metal particles A having a melting point higher than 300°C; and metal particles B having a melting point not exceeding 300°C. The void volume X (in cm3) of metal particles A and the density Y (in g/cm3) of the metal particles B, and the mass Z (in g) of metal particles B satisfy the formula: 0.8≤Z/XY≤1.2.

Description

組成物、接合材料、焼結体、接合体及び接合体の製造方法Composition, bonding material, sintered body, bonded body, and method for manufacturing bonded body
 本発明は、組成物、接合材料、焼結体、接合体及び接合体の製造方法に関する。 The present invention relates to a composition, a bonding material, a sintered body, a bonded body, and a method for manufacturing a bonded body.
 半導体装置を製造する際に半導体素子と支持部材とを接合する手段としては、鉛を含有する合金(はんだ)が従来より使用されている。近年、環境及び生体に対する影響を考慮し、鉛を含有しないか鉛含有率を低減した鉛フリーはんだへの切り替えが進められている。 (4) Lead-containing alloys (solders) have conventionally been used as means for joining a semiconductor element and a support member when manufacturing a semiconductor device. In recent years, switching to a lead-free solder that does not contain lead or has a reduced lead content has been promoted in consideration of effects on the environment and living bodies.
 鉛フリーはんだとしては種々の合金組成が検討されているが、主流であるSn(錫)、Ag(銀)及びCu(銅)を含むものは鉛を含有するはんだに比べて融点が高い、接合後に融点以上の環境下におかれると再溶融する、等の性質を有するために取り扱い上の制約が大きい。また、半導体素子の高速化、高集積化等が進むに伴い、半導体装置の高温耐性の向上が求められている。このため、低温での接合性と高温での接続信頼性にすぐれる接合材料の開発が求められている。 Various alloy compositions have been studied as lead-free solders, but those containing Sn (tin), Ag (silver) and Cu (copper), which are the mainstream, have a higher melting point than solders containing lead. Since it has properties such as re-melting when placed in an environment at or above the melting point later, handling restrictions are great. In addition, as the speed of semiconductor elements and the degree of integration of semiconductor elements increase, there is a demand for improvement in high-temperature resistance of semiconductor devices. For this reason, there is a demand for the development of a bonding material having excellent low-temperature bonding properties and high-temperature connection reliability.
 低温での接合性と高温での接続信頼性にすぐれる(低温で焼結し、かつ焼結後の融点が高い)接合材料としては、遷移的液相焼結型金属接着剤と称される接合材料が提案されている(例えば、特許文献1、非特許文献1及び非特許文献2参照)。 As a bonding material that has excellent low-temperature bonding properties and high-temperature connection reliability (sinters at low temperatures and has a high melting point after sintering), it is referred to as a transitional liquid phase sintered metal adhesive. A joining material has been proposed (for example, see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).
特許第6203493号Patent No. 6203493
 上述したように、半導体素子の高速化、高集積化等が進むに伴い、半導体素子が高温にさらされる場合への対応が求められている。半導体素子に用いている接合材料の熱伝導性が不充分であると、これを用いた半導体装置の温度が過度に上昇して故障、劣化等を引き起こすおそれがある。
 本発明の一態様は、上記事情に鑑みてなされたものであり、熱伝導性と接合強度に優れる焼結体を遷移的液相焼結法により形成可能な組成物及びこの組成物を含有する接合材料、並びにこの組成物を用いた焼結体、接合体及びその製造方法を提供することを目的とする。
As described above, as the speed of semiconductor devices and the degree of integration of semiconductor devices increase, there is a demand for a case where the semiconductor devices are exposed to high temperatures. If the thermal conductivity of the bonding material used for the semiconductor element is insufficient, the temperature of the semiconductor device using the bonding material may rise excessively, causing a failure or deterioration.
One embodiment of the present invention has been made in view of the above circumstances, and includes a composition capable of forming a sintered body having excellent thermal conductivity and bonding strength by a transitional liquid phase sintering method, and containing the composition. An object of the present invention is to provide a joining material, a sintered body using the composition, a joined body, and a method for producing the same.
 前記課題を達成するための具体的手段は以下の通りである。
<1>遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす組成物。
   0.8≦Z/XY≦1.2
<2>金属粒子Aの空隙体積Xが金属粒子Aの見かけの体積の50体積%以下である、<1>に記載の組成物。
<3>金属粒子AがCuを含む、<1>又は<2>に記載の組成物。
<4>金属粒子BがSnを含む、<1>~<3>のいずれか1項に記載の組成物。
<5><1>~<4>のいずれか1項に記載の組成物を含有する接合材料。
<6><1>~<5>のいずれか1項に記載の組成物の焼結体。
<7>素子と支持部材とが請求項5に記載の焼結体を介して接合された接合体。
<8>支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、<1>~<4>のいずれか1項に記載の組成物を付与して組成物層を形成する工程と、前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
Specific means for achieving the above object are as follows.
<1> A metal component capable of transitional liquid phase sintering is contained, and the metal component includes metal particles A having a melting point higher than 300 ° C. and metal particles B having a melting point of 300 ° C. or lower. A composition in which the void volume X (cm 3 ), the density Y (g / cm 3 ) of the metal particles B, and the amount Z (g) of the metal particles B satisfy the following formula.
0.8 ≦ Z / XY ≦ 1.2
<2> The composition according to <1>, wherein the void volume X of the metal particles A is 50% by volume or less of the apparent volume of the metal particles A.
<3> The composition according to <1> or <2>, wherein the metal particles A include Cu.
<4> The composition according to any one of <1> to <3>, wherein the metal particles B include Sn.
<5> A bonding material containing the composition according to any one of <1> to <4>.
<6> A sintered body of the composition according to any one of <1> to <5>.
<7> A joined body in which the element and the support member are joined via the sintered body according to claim 5.
<8> The composition according to any one of <1> to <4> is applied to at least one of a position where the element is joined to the support member and a position where the device is joined to the support member. Production of a joined body comprising: a step of forming a composition layer; a step of contacting the support member with the element via the composition layer; and a step of heating and sintering the composition layer. Method.
 本発明の一態様によれば、熱伝導性と接合強度に優れる焼結体を遷移的液相焼結法により形成可能な組成物及びこの組成物を含有する接合材料、並びにこの組成物を用いた焼結体、接合体及びその製造方法が提供される。 According to one aspect of the present invention, a composition capable of forming a sintered body having excellent thermal conductivity and bonding strength by a transitional liquid phase sintering method, a bonding material containing the composition, and a composition using the composition The present invention provides a sintered body, a joined body, and a method of manufacturing the same.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本開示において組成物中の各成分の粒径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including the element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and does not limit the present invention.
In the present disclosure, the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described in stages in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages. . Further, in the numerical range described in the present disclosure, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
In the present disclosure, the content of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total of the plurality of substances present in the composition Means content.
In the present disclosure, the particle size of each component in the composition, when there are a plurality of types of particles corresponding to each component in the composition, unless otherwise specified, a mixture of the plurality of types of particles present in the composition Means the value of
In the present disclosure, the term "layer" includes, when observing a region where the layer exists, in addition to a case where the layer is formed over the entire region and a case where the layer is formed only on a part of the region. included.
<組成物>
 本開示の組成物は、遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす。
   0.8≦Z/XY≦1.2
<Composition>
The composition of the present disclosure contains a metal component capable of transitional liquid phase sintering, wherein the metal component includes metal particles A having a melting point higher than 300 ° C. and metal particles B having a melting point of 300 ° C. or lower, The void volume X (cm 3 ) of the metal particles A, the density Y (g / cm 3 ) of the metal particles B, and the amount Z (g) of the metal particles B satisfy the following formula.
0.8 ≦ Z / XY ≦ 1.2
 本発明者らの検討の結果、上記条件を満たす組成物から得られる焼結体は接合強度と熱伝導性に優れていることがわかった。その理由は必ずしも明らかではないが、以下のように考えることができる。 検 討 As a result of the study by the present inventors, it was found that a sintered body obtained from a composition satisfying the above conditions had excellent bonding strength and thermal conductivity. The reason is not necessarily clear, but can be considered as follows.
 組成物中に含まれる融点が300℃より高い金属粒子Aは、焼結工程で溶融せずに粒子の状態を維持する。一方、融点が300℃以下の金属粒子Bは、焼結工程で溶融して金属粒子Aの間の空隙を充填する。 (4) The metal particles A having a melting point higher than 300 ° C. contained in the composition do not melt in the sintering step and maintain the state of the particles. On the other hand, the metal particles B having a melting point of 300 ° C. or less are melted in the sintering step to fill voids between the metal particles A.
 金属粒子Aの空隙体積X(cm)に金属粒子Bの密度(g/cm)を乗じて得られる値XY(g)は、金属粒子Aの間の空隙を過不足なく充填する金属粒子Bの溶融物の量に相当する。 Density of the metal particles B in void volume X (cm 3) of the metal particles A (g / cm 3) obtained by multiplying by the value obtained XY (g), the metal particles to be filled without excess or shortage gap between the metal particles A B corresponds to the amount of the melt.
 組成物中に含まれる金属粒子Bの量Z(g)をXY(g)で除した値Z/XYが0.8以上であることで、焼結体中の金属粒子Aの間の空隙が金属粒子Bの溶融物で充分に充填され、良好な接合強度が達成されると考えられる。一方、Z/XYが1.2以下であることで、焼結体中での金属粒子A同士の接触が充分に確保され、良好な熱伝導率が達成されると考えられる。 When the value Z / XY obtained by dividing the amount Z (g) of the metal particles B contained in the composition by XY (g) is 0.8 or more, the gap between the metal particles A in the sintered body is reduced. It is considered that the metal particles B are sufficiently filled with the melt and good bonding strength is achieved. On the other hand, when Z / XY is 1.2 or less, it is considered that contact between the metal particles A in the sintered body is sufficiently ensured, and good thermal conductivity is achieved.
 接合強度の観点からは、Z/XYの値は0.85以上であることが好ましく、0.9以上であることがより好ましい。
 熱伝導率の観点からは、Z/XYの値は1.15以下であることが好ましく、1.1以下であることがより好ましい。
From the viewpoint of bonding strength, the value of Z / XY is preferably equal to or greater than 0.85, and more preferably equal to or greater than 0.9.
From the viewpoint of thermal conductivity, the value of Z / XY is preferably 1.15 or less, and more preferably 1.1 or less.
 金属粒子Aの空隙体積X(cm)は、例えば、他の成分と混合する前の金属粒子Aの見かけの体積(金属粒子の実際の体積+金属粒子間の空隙体積)から金属粒子の実際の体積を差し引くことで求められる。具体的には、例えば、金属粒子Aのバルク体積(一定値)からメスシリンダーを使用して測定した金属粒子Aのタップ体積(かさ体積)を差し引くことで求められる。金属粒子Aが2種以上の金属粒子を含む場合は、それぞれの金属粒子について求めた空隙体積を合計することで求められる。 The void volume X (cm 3 ) of the metal particles A is calculated, for example, from the apparent volume of the metal particles A before mixing with other components (the actual volume of the metal particles + the void volume between the metal particles). Is obtained by subtracting the volume of Specifically, for example, it is determined by subtracting the tap volume (bulk volume) of the metal particles A measured using a graduated cylinder from the bulk volume (constant value) of the metal particles A. When the metal particles A include two or more kinds of metal particles, it is determined by summing the void volumes determined for each metal particle.
 熱伝導率の観点からは、金属粒子Aの空隙体積Xは、金属粒子Aの見かけの体積の50体積%以下であることが好ましく、30体積%以下であることがより好ましく、25体積%以下であることがさらに好ましい。
 接合強度の観点からは、金属粒子Aの空隙体積Xは、金属粒子Aの見かけの体積の20体積%以上であることが好ましく、30体積%以上であることがより好ましく40体積%以上であることがさらに好ましい。
From the viewpoint of thermal conductivity, the void volume X of the metal particles A is preferably 50% by volume or less, more preferably 30% by volume or less, and more preferably 25% by volume or less of the apparent volume of the metal particles A. Is more preferable.
From the viewpoint of bonding strength, the void volume X of the metal particles A is preferably 20% by volume or more, more preferably 30% by volume or more, and more preferably 40% by volume or more of the apparent volume of the metal particles A. Is more preferable.
 金属成分に占める金属粒子Aの割合は、上記式の条件を満たすのであれば特に制限されない。例えば、金属成分全体の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、67質量%以上であることがさらに好ましい。 割 合 The ratio of the metal particles A in the metal component is not particularly limited as long as the condition of the above formula is satisfied. For example, the content is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 67% by mass or more of the entire metal component.
(金属成分)
 本開示の組成物は、遷移的液相焼結が可能な金属成分を含有する。
 本開示における「遷移的液相焼結」とは、Transient Liquid Phase Sintering(TLPS)とも称され、融点の異なる金属のうち相対的に融点の低い金属(低融点金属)の粒子界面における加熱による液相への転移と、相対的に融点の高い金属(高融点金属)の前記液相への反応拡散により両金属による金属化合物の生成(合金化)が進行する現象をいう。この現象を利用して、低温で焼結可能であり、かつ焼結後の融点が高い焼結体を得ることができる。
(Metal components)
The composition of the present disclosure contains a metal component capable of transitional liquid phase sintering.
“Transitional liquid phase sintering” in the present disclosure is also referred to as “Transient Liquid Phase Sintering (TLPS)” and is a liquid obtained by heating a metal interface having a relatively low melting point (low melting point metal) among particles having different melting points. This refers to a phenomenon in which the formation of a metal compound (alloying) by both metals proceeds due to phase transition and reaction diffusion of a metal having a relatively high melting point (high melting point metal) into the liquid phase. By utilizing this phenomenon, it is possible to obtain a sintered body that can be sintered at a low temperature and has a high melting point after sintering.
 遷移的液相焼結が可能な金属成分としては、遷移的液相焼結が可能な融点の異なる金属の組み合わせ(低融点金属と高融点金属の組み合わせ)が挙げられる。遷移的液相焼結が可能な金属の組み合わせは特に限定されるものではなく、例えば、低融点金属と高融点金属がそれぞれSnとCuである組み合わせ、InとAuである組み合わせ、SnとCoである組み合わせ、及びSnとNiである組み合わせが挙げられる。遷移的液相焼結が可能な金属の組み合わせは2種の金属の組み合わせであっても、3種以上の金属の組み合わせであってもよい。 金属 As a metal component capable of transitional liquid phase sintering, a combination of metals having different melting points (combination of a low melting point metal and a high melting point metal) capable of transitional liquid phase sintering is given. The combination of metals capable of transitional liquid phase sintering is not particularly limited. For example, a combination of a low-melting metal and a high-melting metal is Sn and Cu, a combination of In and Au, and a combination of Sn and Co, respectively. There are certain combinations and combinations of Sn and Ni. The combination of metals capable of transitional liquid phase sintering may be a combination of two metals or a combination of three or more metals.
 遷移的液相焼結が可能な金属成分は、融点が300℃より高い金属粒子Aと、融点が300℃以下である金属粒子Bとを含む。
 焼結後の接合強度の観点からは、金属粒子Aの融点は500℃以上であることがより好ましく、800℃以上であることがさらに好ましい。
 焼結時の液相への転移を促進する観点からは、金属粒子Bの融点は250℃以下であることがより好ましい。
Metal components capable of transitional liquid phase sintering include metal particles A having a melting point higher than 300 ° C and metal particles B having a melting point of 300 ° C or lower.
From the viewpoint of the bonding strength after sintering, the melting point of the metal particles A is more preferably 500 ° C. or higher, and further preferably 800 ° C. or higher.
From the viewpoint of promoting the transition to the liquid phase during sintering, the melting point of the metal particles B is more preferably 250 ° C. or less.
 ある実施態様では、遷移的液相焼結が可能な金属成分は、金属粒子AとしてCu(融点:1085℃)を含んでいてもよく、金属粒子BとしてSn(融点:231.9℃)を含んでいてもよい。CuとSnを含む金属成分は、焼結により銅-錫金属化合物(CuSn)を生成する。この生成反応は250℃付近で進行するため、リフロー炉等の一般的な設備による焼結が可能である。 In one embodiment, the metal component capable of transitional liquid phase sintering may include Cu (melting point: 1085 ° C.) as metal particles A and Sn (melting point: 231.9 ° C.) as metal particles B. May be included. The metal component containing Cu and Sn produces a copper-tin metal compound (Cu 6 Sn 5 ) by sintering. Since this generation reaction proceeds at around 250 ° C., sintering by general equipment such as a reflow furnace is possible.
 金属成分が金属粒子Aと金属粒子Bとを含む場合の具体的な態様は、特に制限されない。例えば、金属粒子Aと金属粒子Bがそれぞれ金属の単体の状態であっても、金属粒子Aと金属粒子Bの一方又は両方が合金の状態であってもよい。また、金属粒子Aと金属粒子Bに同種の金属元素が含まれていてもよい。 具体 A specific embodiment in the case where the metal component includes the metal particles A and the metal particles B is not particularly limited. For example, the metal particles A and the metal particles B may each be a single metal state, or one or both of the metal particles A and the metal particles B may be in an alloy state. Further, the metal particles A and the metal particles B may contain the same kind of metal element.
 ある実施態様では、金属粒子AとしてCuと、金属粒子BとしてSuを含む合金とを含んでもよい。Snが合金の状態である場合の例としては、Su、Ag及びCuからなる合金(SAC)、SnとBiからなる合金(SnBi)等が挙げられる。中でも、SACが好ましい。SACの組成は特に制限されず、例えばSn-3.0Ag-0.5Cuが挙げられる。本開示において、例えばSn-AX-BYで表される合金は、Snを含む合金の中に元素XがA質量%、元素YがB質量%含まれていることを示す。Sn-3.0Ag-0.5Cuで表される合金の融点(液相転移温度)は、約217℃である。 In an embodiment, the metal particles A may include Cu, and the metal particles B may include an alloy containing Su. Examples of a case where Sn is in an alloy state include an alloy (SAC) composed of Su, Ag, and Cu, and an alloy composed of Sn and Bi (SnBi). Among them, SAC is preferable. The composition of the SAC is not particularly limited, and examples thereof include Sn-3.0Ag-0.5Cu. In the present disclosure, for example, an alloy represented by Sn-AX-BY indicates that the alloy containing Sn contains A mass% of the element X and B mass% of the element Y in the alloy containing Sn. The melting point (liquid phase transition temperature) of the alloy represented by Sn-3.0Ag-0.5Cu is about 217 ° C.
 金属成分に含まれる金属粒子Aと金属粒子Bは、それぞれ1種の金属のみからなっていても、2種以上の金属からなっていてもよい。金属粒子A又は金属粒子Bが2種以上の金属からなる場合、当該金属粒子は2種以上の金属のそれぞれを含む金属粒子の組み合わせ(混合物)であっても、2種以上の金属が同じ金属粒子中に含まれていても、これらの組み合わせであってもよい。 金属 The metal particles A and the metal particles B contained in the metal component may each be composed of only one kind of metal, or may be composed of two or more kinds of metals. When the metal particle A or the metal particle B is composed of two or more kinds of metals, even if the metal particle is a combination (mixture) of metal particles containing each of the two or more kinds of metals, the two or more kinds of metals are the same metal. It may be contained in the particles or a combination thereof.
 同じ金属粒子中に2種以上の金属を含有する金属粒子の構成は、特に制限されない。例えば、2種以上の金属の合金からなる金属粒子であっても、2種以上の金属の単体から構成される金属粒子であってもよい。2種以上の金属の単体から構成される金属粒子は、例えば、一方の金属を含む金属粒子の表面に、めっき、蒸着等により他方の金属を含む層を形成することで得ることができる。また、一方の金属を含む金属粒子の表面に、高速気流中で衝撃力を主体とした力を用いて乾式で他方の金属を含む粒子を付与して両者を複合化する方法により、同じ金属粒子中に2種以上の金属を含有する金属粒子を得ることもできる。 構成 The configuration of metal particles containing two or more metals in the same metal particle is not particularly limited. For example, it may be a metal particle composed of an alloy of two or more metals or a metal particle composed of a simple substance of two or more metals. Metal particles composed of a simple substance of two or more metals can be obtained, for example, by forming a layer containing the other metal on the surface of the metal particle containing one metal by plating, vapor deposition, or the like. In addition, the same metal particles are applied to the surface of a metal particle containing one metal by applying particles containing the other metal in a dry manner using a force mainly composed of an impact force in a high-speed airflow to combine the two. Metal particles containing two or more metals therein can also be obtained.
 金属粒子の平均粒径は、特に限定されるものではない。例えば、金属粒子の平均粒径は、0.5μm~80μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることがさらに好ましい。 平均 The average particle size of the metal particles is not particularly limited. For example, the average particle size of the metal particles is preferably 0.5 μm to 80 μm, more preferably 1 μm to 50 μm, and still more preferably 1 μm to 30 μm.
 金属粒子の平均粒径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター株式会社、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される体積平均粒径をいう。具体的には、溶剤(テルピネオール)125gに、金属粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。 平均 The average particle size of the metal particles refers to a volume average particle size measured by a laser diffraction type particle size distribution analyzer (for example, LS {13} 320 type laser scattering diffraction particle size distribution analyzer, Beckman Coulter, Inc.). Specifically, metal particles are added to 125 g of a solvent (terpineol) in a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is poured into a cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent being 1.48.
 金属粒子Aと金属粒子Bの大きさの関係は、特に限定されるものではない。焼結時に金属粒子Aの間の空隙を溶融した金属粒子Bで充填する観点からは、例えば、金属粒子Aの平均粒径/金属粒子Bの平均粒径の値が1より大きいことが好ましく、2より大きいことがより好ましく、5より大きいことがさらに好ましい。金属粒子Aの平均粒径/金属粒子Bの平均粒径の値の上限は特に制限されないが、例えば、10以下であってもよい。 関係 The relationship between the sizes of the metal particles A and the metal particles B is not particularly limited. From the viewpoint of filling the voids between the metal particles A with the molten metal particles B during sintering, for example, the value of the average particle diameter of the metal particles A / the average particle diameter of the metal particles B is preferably greater than 1. More preferably, it is more than 2, more preferably more than 5. The upper limit of the value of the average particle size of the metal particles A / the average particle size of the metal particles B is not particularly limited, but may be, for example, 10 or less.
 組成物中における金属成分の含有率は、特に限定されるものではない。例えば、組成物全体に占める金属成分の質量基準の割合は、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、88質量%以上であることがさらに好ましい。また、組成物全体に占める金属成分の質量基準の割合は、98質量%以下であってもよい。金属成分の質量基準の割合が98質量%以下であると、本開示の組成物をペーストとして使用した場合に、印刷性が損なわれにくい傾向にある。 含有 The content of the metal component in the composition is not particularly limited. For example, the ratio by mass of the metal component to the entire composition is preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 88% by mass or more. Further, the ratio by mass of the metal component to the entire composition may be 98% by mass or less. When the ratio based on the mass of the metal component is 98% by mass or less, printability tends to be hardly impaired when the composition of the present disclosure is used as a paste.
(有機成分)
 本開示の組成物は、有機成分をさらに含有してもよい。組成物が有機成分を含有することで、本開示の組成物をペーストとして使用した場合の印刷性の向上等の効果が得られる。
(Organic components)
The composition of the present disclosure may further contain an organic component. When the composition contains an organic component, effects such as improvement of printability when the composition of the present disclosure is used as a paste can be obtained.
 組成物中における有機成分の含有率は、特に限定されるものではない。例えば、組成物全体に占める有機成分の質量基準の割合は、20質量%未満であることが好ましく、15質量%未満であることがより好ましく、12質量%未満であることがさらに好ましい。また、組成物全体に占める有機成分の質量基準の割合は、2質量%超であってもよい。有機成分の質量基準の割合が2質量%超であると、本開示の組成物をペーストとして使用した場合に、印刷性が損なわれにくい傾向にある。 含有 The content of the organic component in the composition is not particularly limited. For example, the proportion by mass of the organic component in the entire composition is preferably less than 20% by mass, more preferably less than 15% by mass, and even more preferably less than 12% by mass. Further, the ratio by mass of the organic component to the whole composition may be more than 2% by mass. If the proportion based on the mass of the organic component is more than 2% by mass, printability tends to be hardly impaired when the composition of the present disclosure is used as a paste.
(樹脂成分)
 本開示の組成物は、有機成分として樹脂成分を含有してもよい。組成物が樹脂成分を含むことで、焼結物中の金属成分間の空隙が樹脂成分で充填され、応力緩和性等が向上する傾向にある。
(Resin component)
The composition of the present disclosure may contain a resin component as an organic component. When the composition contains the resin component, the voids between the metal components in the sintered product are filled with the resin component, and the stress relaxation property and the like tend to be improved.
 組成物に含まれる樹脂成分は熱可塑性樹脂であっても、熱硬化性樹脂であっても、これらの組み合わせであってもよい。また、樹脂成分は加熱により重合反応を生じうる官能基を有するモノマーの状態であってもすでに重合したポリマーの状態であってもよい。 樹脂 The resin component contained in the composition may be a thermoplastic resin, a thermosetting resin, or a combination thereof. The resin component may be in the state of a monomer having a functional group capable of causing a polymerization reaction by heating or in the state of a polymer that has already been polymerized.
 耐熱性の観点からは、樹脂成分として熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、エポキシ基、アクリロイル基、メタクリロイル基、ヒドロキシ基、ビニル基、カルボキシ基、アミノ基、マレイミド基、酸無水物基、チオール基、チオニル基等の官能基を有する樹脂が挙げられる。 か ら From the viewpoint of heat resistance, it is preferable to include a thermosetting resin as a resin component. Examples of the thermosetting resin include a resin having a functional group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, a vinyl group, a carboxy group, an amino group, a maleimide group, an acid anhydride group, a thiol group, and a thionyl group. Can be
 熱硬化性樹脂として具体的には、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。これらの中でもエポキシ樹脂が好ましい。 Specific examples of the thermosetting resin include an epoxy resin, an oxazine resin, a bismaleimide resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. Of these, epoxy resins are preferred.
 エポキシ樹脂の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及び環式脂肪族エポキシ樹脂が挙げられる。樹脂成分は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, Biphenyl novolak type epoxy resins and cycloaliphatic epoxy resins are exemplified. The resin component may be used alone or in combination of two or more.
 有機成分が樹脂成分を含む場合、有機成分全体に占める樹脂成分の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。 場合 When the organic component contains a resin component, the ratio of the resin component to the entire organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
(フラックス成分)
 本開示の組成物は、有機成分としてフラックス成分を含有してもよい。本開示においてフラックス成分とは、フラックス作用(酸化膜の除去作用)を発揮しうる有機成分を意味し、その種類は特に制限されない。フラックス成分として具体的には、ロジン、活性剤、チキソ剤、酸化防止剤等が挙げられる。フラックス成分は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。
(Flux component)
The composition of the present disclosure may contain a flux component as an organic component. In the present disclosure, the flux component means an organic component capable of exerting a flux action (an action of removing an oxide film), and its type is not particularly limited. Specific examples of the flux component include a rosin, an activator, a thixotropic agent, and an antioxidant. One type of flux component may be used alone, or two or more types may be used in combination.
 ロジンとして具体的には、デヒドロアビエチン酸、ジヒドロアビエチン酸、ネオアビエチン酸、ジヒドロピマル酸、ピマル酸、イソピマル酸、テトラヒドロアビエチン酸、パラストリン酸等が挙げられる。
 活性剤として具体的には、アミノデカン酸、ペンタン-1,5-ジカルボン酸、トリエタノールアミン、ジフェニル酢酸、セバシン酸、フタル酸、安息香酸、ジブロモサリチル酸、アニス酸、ヨードサリチル酸、ピコリン酸等が挙げられる。
 チキソ剤として具体的には、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等が挙げられる。
 酸化防止剤として具体的には、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、ヒドロキシルアミン系酸化防止剤等が挙げられる。
Specific examples of rosin include dehydroabietic acid, dihydroabietic acid, neoabietic acid, dihydropimaric acid, pimaric acid, isopimaric acid, tetrahydroabietic acid, and parastolic acid.
Specific examples of the activator include aminodecanoic acid, pentane-1,5-dicarboxylic acid, triethanolamine, diphenylacetic acid, sebacic acid, phthalic acid, benzoic acid, dibromosalicylic acid, anisic acid, iodosalicylic acid, picolinic acid and the like. Can be
Specific examples of the thixotropic agent include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylenebisoleic acid amide, N, N'-distearyladipic acid amide and the like.
Specific examples of the antioxidant include a hindered phenol-based antioxidant, a phosphorus-based antioxidant, and a hydroxylamine-based antioxidant.
 有機成分がフラックス成分を含む場合、有機成分全体に占めるフラックス成分の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。 場合 When the organic component contains a flux component, the ratio of the flux component to the entire organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
(溶剤)
 本開示の組成物は、有機成分として溶剤を含有してもよい。樹脂成分を充分に溶解する観点から、溶剤は極性溶媒が好ましく、組成物を付与する工程での組成物の乾燥を防ぐ観点から、200℃以上の沸点を有している溶剤であることが好ましく、焼結時のボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
(solvent)
The composition of the present disclosure may contain a solvent as an organic component. From the viewpoint of sufficiently dissolving the resin component, the solvent is preferably a polar solvent, and from the viewpoint of preventing drying of the composition in the step of applying the composition, it is preferably a solvent having a boiling point of 200 ° C or higher. It is more preferable that the solvent has a boiling point of 300 ° C. or less in order to suppress generation of voids during sintering.
 このような溶剤の例としては、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル(エトキシエトキシエタノール)、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールフェニルエーテル、2-(2-ブトキシエトキシ)エタノール等のアルコール類;クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、γ-ブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、グリセリントリアセテート等のエステル類;イソホロン等のケトン;N-メチル-2-ピロリドン等のラクタム;フェニルアセトニトリル等のニトリル類などを挙げることができる。溶剤は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。 Examples of such solvents include terpineol, stearyl alcohol, tripropylene glycol methyl ether, diethylene glycol, diethylene glycol monoethyl ether (ethoxyethoxyethanol), diethylene glycol monohexyl ether, diethylene glycol monomethyl ether, dipropylene glycol-n-propyl ether, Alcohols such as dipropylene glycol-n-butyl ether, tripropylene glycol-n-butyl ether, 1,3-butanediol, 1,4-butanediol, propylene glycol phenyl ether, 2- (2-butoxyethoxy) ethanol; Tributylate, 4-methyl-1,3-dioxolan-2-one, γ-butyrolactone, diethylene glycol Esters such as ethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate and glycerin triacetate; ketones such as isophorone; lactams such as N-methyl-2-pyrrolidone; nitriles such as phenylacetonitrile. it can. The solvent may be used alone or in combination of two or more.
 有機成分が溶剤を含む場合、有機成分全体に占める溶剤の割合は特に制限されない。例えば、有機成分全体の0.1質量%~50質量%であってよい。 場合 When the organic component contains a solvent, the proportion of the solvent in the whole organic component is not particularly limited. For example, it may be 0.1% by mass to 50% by mass of the whole organic component.
(組成物の製造方法)
 本開示の組成物の製造方法は、特に限定されるものではない。本開示の組成物を構成する成分を混合し、さらに撹拌、溶融、分散等の処理をすることにより得ることができる。これらの混合、撹拌、分散等のための装置としては、特に限定されるものではなく、3本ロールミル、プラネタリーミキサ、遊星式ミキサ、自転公転型撹拌装置、らいかい機、二軸混練機、薄層せん断分散機等を使用することができる。また、これらの装置を適宜組み合わせて使用してもよい。上記処理の際、必要に応じて加熱してもよい。
 処理後、ろ過により組成物の最大粒径を調整してもよい。ろ過は、ろ過装置を用いて行うことができる。ろ過用のフィルタとしては、例えば、金属メッシュ、メタルフィルター及びナイロンメッシュが挙げられる。
(Method for producing composition)
The method for producing the composition of the present disclosure is not particularly limited. It can be obtained by mixing the components constituting the composition of the present disclosure, and further performing a treatment such as stirring, melting, and dispersion. The apparatus for mixing, stirring, dispersing, and the like is not particularly limited, and includes a three-roll mill, a planetary mixer, a planetary mixer, a rotation-revolution-type stirring apparatus, a grinder, a twin-screw kneader, A thin shear disperser or the like can be used. Further, these devices may be used in appropriate combination. During the above treatment, heating may be performed as necessary.
After the treatment, the maximum particle size of the composition may be adjusted by filtration. Filtration can be performed using a filtration device. Examples of the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
(組成物の用途)
 本開示の組成物は、例えば、半導体装置、電子部品等を構成する素子と支持部材とを接合するための接合材料として用いられる。ただし、本開示の組成物の用途はこれらに限定されるものではない。
(Use of the composition)
The composition of the present disclosure is used, for example, as a joining material for joining an element constituting a semiconductor device, an electronic component, or the like and a support member. However, applications of the composition of the present disclosure are not limited to these.
<接合材料>
 本開示の接合材料は、本開示の組成物を含有する。本開示の組成物は、そのまま接合材料として用いることができるし、必要に応じてその他の成分を含有させて接合材料としてもよい。本開示の接合材料の好ましい態様は、上述の本開示の組成物の場合と同様である。
<Joining materials>
The bonding material of the present disclosure contains the composition of the present disclosure. The composition of the present disclosure can be used as a bonding material as it is, or may be used as a bonding material by adding other components as necessary. Preferred embodiments of the bonding material of the present disclosure are the same as those of the composition of the present disclosure described above.
<焼結体>
 本開示の焼結体は、本開示の組成物を焼結したものである。本開示の組成物を焼結する方法は特に限定されるものではない。
 焼結体の電気抵抗率は、1×10-4Ω・cm以下であることが好ましい。
<Sintered body>
The sintered body of the present disclosure is obtained by sintering the composition of the present disclosure. The method for sintering the composition of the present disclosure is not particularly limited.
The electric resistivity of the sintered body is preferably 1 × 10 −4 Ω · cm or less.
<接合体及びその製造方法>
 本開示の接合体は、素子と支持部材とが本開示の焼結体を介して接合されたものである。
 支持部材としては特に限定されるものではなく、素子の接合される箇所の材質が金属であるものが用いられる。素子の接合される箇所の材質である金属としては、金、銀、銅、ニッケル等が挙げられる。また、上記のうち複数の金属が基材上にパターニングされて支持部材が構成されていてもよい。
 支持部材の具体例としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、配線済みのガラス基板、配線済みのシリコンウエハ、ウエハーレベルCSP(Wafer Level Chip Size Package)で採用される再配線層等が挙げられる。
 素子としては特に限定されるものではなく、半導体チップ、トランジスタ、ダイオード、発光ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。
 また、本開示の接合体としては、半導体装置、電子部品等が挙げられる。半導体装置の具体例としては、ダイオード、整流器、サイリスタ、MOS(Metal Oxide Semiconductor)ゲートドライバ、パワースイッチ、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、ショットキーダイオード、ファーストリカバリダイオード等を備えるパワーモジュール、発信機、増幅器、LEDモジュールなどが挙げられる。
<Joint body and its manufacturing method>
The joined body of the present disclosure is one in which the element and the support member are joined via the sintered body of the present disclosure.
The support member is not particularly limited, and a material in which the material of the portion where the elements are joined is metal is used. Examples of the metal as the material of the portion where the elements are joined include gold, silver, copper, nickel, and the like. Further, among the above, a plurality of metals may be patterned on the base material to form a support member.
Specific examples of the support member include a lead frame, a wired tape carrier, a rigid wiring board, a flexible wiring board, a wired glass substrate, a wired silicon wafer, and a wafer level CSP (Wafer Level Chip Size Package). Re-wiring layer.
The elements are not particularly limited, and include active elements such as semiconductor chips, transistors, diodes, light emitting diodes, and thyristors, and passive elements such as capacitors, resistors, resistor arrays, coils, and switches.
In addition, examples of the joined body of the present disclosure include a semiconductor device and an electronic component. Specific examples of the semiconductor device include a diode, a rectifier, a thyristor, a metal oxide semiconductor (MOS) gate driver, a power switch, a power oxide semiconductor field-effect transistor (IGBT), and an IGBT (insulator transistor). Examples include a power module including a fast recovery diode, a transmitter, an amplifier, and an LED module.
 本開示の接合体の製造方法は、支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、本開示の組成物を付与して組成物層を形成する工程と、前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、前記組成物層を加熱して焼結する工程と、を有する。
 組成物を付与して組成物層を形成する工程には、付与した組成物を乾燥する工程を含んでいてもよい。
The method for manufacturing a joined body according to the present disclosure includes forming a composition layer by applying the composition of the present disclosure to at least one of a portion of the support member where the device is joined and a portion of the device where the device is joined to the support member. Performing, contacting the support member with the element via the composition layer, and heating and sintering the composition layer.
The step of applying the composition to form the composition layer may include the step of drying the applied composition.
 本開示の組成物を支持部材における素子の接合される箇所及び素子における支持部材と接合される箇所の少なくとも一方に付与することで組成物層が形成される。
 組成物の付与方法としては、例えば、塗布法及び印刷法が挙げられる。
 組成物を塗布する塗布方法としては、例えば、ディッピング、スプレーコート、バーコート、ダイコート、コンマコート、スリットコート及びアプリケータによる塗布を用いることができる。組成物を印刷する印刷方法としては、例えば、ディスペンサー法、ステンシル印刷法、凹版印刷法、スクリーン印刷法、ニードルディスペンサ法及びジェットディスペンサ法を用いることができる。
A composition layer is formed by applying the composition of the present disclosure to at least one of a portion of the support member where the element is bonded and a portion of the device where the device is bonded to the support member.
Examples of the method for applying the composition include a coating method and a printing method.
As a coating method for applying the composition, for example, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and application using an applicator can be used. As a printing method for printing the composition, for example, a dispenser method, a stencil printing method, an intaglio printing method, a screen printing method, a needle dispenser method, and a jet dispenser method can be used.
 組成物の付与により形成された組成物層は、加熱時における組成物の流動及びボイドの発生を抑制する観点から乾燥させることが好ましい。
 組成物層の乾燥方法は、常温(例えば、25℃)放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。
 乾燥のための温度及び時間は、使用した溶剤の種類及び量に合わせて適宜調整することができ、例えば、50℃~180℃で、1分間~120分間乾燥させることが好ましい。
 組成物層の形成後、素子と支持部材とを接触させることで、素子と支持部材とを組成物層を介して貼り合わせる。付与した組成物を乾燥する工程は、支持部材と素子とを接触させる工程の前及び後のいずれの段階で行ってもよい。
The composition layer formed by applying the composition is preferably dried from the viewpoint of suppressing the flow of the composition and the generation of voids during heating.
As a method for drying the composition layer, drying by standing at room temperature (for example, 25 ° C.), drying by heating, or drying under reduced pressure can be used. For heating drying or vacuum drying, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device , A heater heating device, a steam heating furnace, a hot plate pressing device, or the like.
The temperature and time for drying can be appropriately adjusted according to the type and amount of the solvent used. For example, drying at 50 ° C. to 180 ° C. for 1 minute to 120 minutes is preferable.
After the formation of the composition layer, the element and the supporting member are brought into contact with each other, whereby the element and the supporting member are bonded to each other with the composition layer interposed therebetween. The step of drying the applied composition may be performed before or after the step of bringing the support member into contact with the element.
 次いで、組成物層を加熱することにより焼結体を形成する。組成物層の焼結は、加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。
 加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
 また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、加圧しながら上述の加熱処理を行ってもよい。
 組成物層の焼結における加熱温度は、組成物に含まれる成分の種類、含有率等に応じて選択できる。例えば、金属粒子Bの融点以上であることが好ましい。具体的には、180℃以上であることが好ましく、190℃以上であることがより好ましく、220℃以上であることがさらに好ましい。加熱温度の上限は、特に制限されないが、例えば、300℃以下であってもよい。
 組成物層の焼結における加熱時間は、組成物に含まれる成分の種類、含有率等に応じて選択できる。例えば、5秒間~10時間であることが好ましく、1分~30分であることがより好ましく、3分~10分であることがさらに好ましい。
 本開示の接合体の製造方法においては、組成物層の焼結は、低酸素濃度の雰囲気下で行うことが好ましい。低酸素濃度雰囲気下とは、酸素濃度が1000ppm以下の状態をいい、好ましくは500ppm以下である。
Next, a sintered body is formed by heating the composition layer. The sintering of the composition layer may be performed by a heat treatment or a heat and pressure treatment.
For heating treatment, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used.
For the heating and pressing treatment, a hot plate press device or the like may be used, or the above-described heating treatment may be performed while applying pressure.
The heating temperature in the sintering of the composition layer can be selected according to the type and content of the components contained in the composition. For example, the melting point is preferably equal to or higher than the melting point of the metal particles B. Specifically, the temperature is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and further preferably 220 ° C. or higher. The upper limit of the heating temperature is not particularly limited, but may be, for example, 300 ° C. or lower.
The heating time in the sintering of the composition layer can be selected according to the type and content of the components contained in the composition. For example, the duration is preferably from 5 seconds to 10 hours, more preferably from 1 minute to 30 minutes, even more preferably from 3 minutes to 10 minutes.
In the method for manufacturing a joined body according to the present disclosure, the sintering of the composition layer is preferably performed in an atmosphere having a low oxygen concentration. The low oxygen concentration atmosphere refers to a state in which the oxygen concentration is 1000 ppm or less, and preferably 500 ppm or less.
 以下、実施例により本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to Examples, but the present disclosure is not limited to the following Examples.
(組成物の調製)
 表1に示す各成分を表1に示す量(単位:g)で混合し、組成物を調製した。表1に示す成分の詳細は、下記のとおりである。
 金属成分1…平均粒径3μmのCu粒子
 金属成分2…平均粒径5μmのCu粒子
 金属成分3…平均粒径25μmのCu粒子
 金属成分4…平均粒径3μmのSAC粒子(Sn96.5質量%、Ag3.0質量%、Cu0.5質量%、密度:4.00g/cm
 金属成分5…平均粒径25μmのSAC粒子(Sn96.5質量%、Ag3.0質量%、Cu0.5質量%、密度:5.88g/cm
 金属成分6…平均粒径7μmのSnBi合金粒子(Sn42質量%、Bi58質量%、密度:5.56g/cm
(Preparation of composition)
Each component shown in Table 1 was mixed in an amount (unit: g) shown in Table 1 to prepare a composition. Details of the components shown in Table 1 are as follows.
Metal component 1: Cu particles having an average particle size of 3 μm Metal component 2: Cu particles having an average particle size of 5 μm Metal component 3: Cu particles having an average particle size of 25 μm Metal component 4: SAC particles having an average particle size of 3 μm (Sn96.5% by mass) , Ag 3.0% by mass, Cu 0.5% by mass, density: 4.00 g / cm 3 )
Metal component 5: SAC particles having an average particle size of 25 μm (Sn96.5% by mass, Ag 3.0% by mass, Cu 0.5% by mass, density: 5.88 g / cm 3 )
Metal component 6: SnBi alloy particles having an average particle diameter of 7 μm (Sn 42% by mass, Bi 58% by mass, density: 5.56 g / cm 3 )
 有機成分としては、エポキシ樹脂(ビスフェノールA型エポキシ樹脂)0.69質量%、ロジン(デヒドロアビエチン酸)1.44質量%、チキソ剤(12-ヒドロキシステアリン酸)0.36質量%、活性剤(トリエタノールアミン)1.44質量%、酸化防止剤(BASF社「イルガノックス1010」0.08質量%、溶媒(2-(2-ヘキシルオキシエトキシ)エタノール2.00質量%の混合物を用いた。 As the organic components, 0.69% by mass of an epoxy resin (bisphenol A type epoxy resin), 1.44% by mass of rosin (dehydroabietic acid), 0.36% by mass of a thixotropic agent (12-hydroxystearic acid), and an activator ( A mixture of 1.44% by mass of triethanolamine, 0.08% by mass of an antioxidant (“Irganox 1010” manufactured by BASF) and 2.00% by mass of a solvent (2- (2-hexyloxyethoxy) ethanol) was used.
(Z/XYの計算)
 金属粒子A(Cu粒子)の空隙体積X(cm)を算出し、金属粒子B(SAC粒子)の密度(g/cm)を乗じて得られる値XY(g)を金属粒子Bの配合量Z(g)で除して、Z/XYの値を求めた。
(Calculation of Z / XY)
The void volume X (cm 3 ) of the metal particles A (Cu particles) is calculated, and the value XY (g) obtained by multiplying by the density (g / cm 3 ) of the metal particles B (SAC particles) is mixed with the metal particles B. The value of Z / XY was determined by dividing by the amount Z (g).
(ダイシェア強度)
 調製した組成物を、銅製のリードフレーム上に先のとがったピンセットを用いて塗布して組成物層を形成した。組成物層上に、2mm×2mmのサイズで被着面が金めっきされているSiチップを載せ、ピンセットで軽く押さえて組成物の焼結前サンプルとした。焼結前サンプルをホットプレート上において100℃で30分乾燥した後、窒素リフロー装置(株式会社タムラ製作所製:1ゾーン50cm、7ゾーン構成、窒素気流下)のコンベア上にセットし、酸素濃度200ppm以下で0.3m/分の速度で搬送した。この際、250℃以上にて1分以上加熱し、組成物の焼結済みサンプルを得た。次いで、1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmでSiチップを水平方向に押し、組成物の焼結済みサンプルのダイシェア強度を測定した。9回の測定結果の平均をダイシェア強度とした。なお、ダイシェア強度が20MPa未満であると、接着不良であるといえる。
(Die shear strength)
The prepared composition was applied to a copper lead frame using sharp tweezers to form a composition layer. An Si chip having a size of 2 mm × 2 mm and a gold-plated surface was placed on the composition layer, and lightly pressed with tweezers to obtain a sample of the composition before sintering. After the sample before sintering was dried on a hot plate at 100 ° C. for 30 minutes, it was set on a conveyor of a nitrogen reflow apparatus (Tamura Seisakusho Co., Ltd .: 1 zone 50 cm, 7 zone configuration, under a nitrogen stream), and the oxygen concentration was 200 ppm. It was conveyed at a speed of 0.3 m / min below. At this time, the sample was heated at 250 ° C. or more for 1 minute or more to obtain a sintered sample of the composition. Next, using a universal bond tester (4000 series, manufactured by DAGE) equipped with a 1 kN load cell, the Si chip was pressed horizontally at a measurement speed of 500 μm / s and a measurement height of 100 μm, and the die-share of a sintered sample of the composition was performed. The strength was measured. The average of the results of the nine measurements was taken as the die shear strength. If the die shear strength is less than 20 MPa, it can be said that the adhesion is poor.
(熱伝導率)
 ダイシェア強度測定と同様にして作製した組成物の焼結物を、研磨紙で直径12mm、厚さ0.5mmのサイズに研磨し、熱伝導率測定用の試験片を作製した。その後、Xeフラッシュ法熱伝導測定装置(Nano Flash、LFA447、NETZCCH製)を用いて、Lamp Voltageは247.0V、パルス幅 は0.06mm、拡散モデルはCowanモデルの条件で、下記式Aから試験片の熱伝導率λ(W/(m・K))を測定した。
(Thermal conductivity)
A sintered product of the composition prepared in the same manner as in the die shear strength measurement was polished with a polishing paper to a size of 12 mm in diameter and 0.5 mm in thickness to prepare a test piece for measuring thermal conductivity. Then, using a Xe flash method thermal conductivity measurement device (Nano Flash, LFA447, manufactured by NETZCCH), the lamp voltage was 247.0 V, the pulse width was 0.06 mm, and the diffusion model was tested from the following equation A under the conditions of the Cowan model. The thermal conductivity λ (W / (m · K)) of the piece was measured.
 λ=αρc・・・・・・・・・・式A
 α:熱拡散率(m/s)
 ρ:密度(kg/m
 c:比熱容量(J/kg・K)
λ = αρc Expression A
α: thermal diffusivity (m 2 / s)
ρ: density (kg / m 3 )
c: Specific heat capacity (J / kg · K)
(連続印刷時間)
 Auto Film Applicator(テスター産業株式会社製)上のアルミ板の上にアプリケータと金属ペースト150gを塗布した。速度:10mm/sec、膜厚(ギャップ):0.0mm、回数:6回/1時間の条件で金属ペーストを繰り返し印刷し、流動性を目視で観察した。また、金属ペーストは1時間毎に15g回収し、溶剤の揮発割合と粘度の確認を行った。上記試験の開始から粘度が250Pa・s以上となるまでの時間を表1に示す。
(Continuous printing time)
An applicator and 150 g of metal paste were applied on an aluminum plate on an Auto Film Applicator (manufactured by Tester Sangyo Co., Ltd.). The metal paste was repeatedly printed under the following conditions: speed: 10 mm / sec, film thickness (gap): 0.0 mm, number of times: 6 times / 1 hour, and the fluidity was visually observed. In addition, 15 g of the metal paste was collected every hour, and the volatilization ratio and viscosity of the solvent were confirmed. Table 1 shows the time from the start of the test until the viscosity becomes 250 Pa · s or more.
(信頼性試験)
 ダイシェア強度の測定と同様にして組成物の焼結済みサンプルを作製した。組成物の焼結済みサンプルを熱衝撃試験機(ライフテック社製、6015型)にセットし、冷却及び加熱を繰り返す冷熱サイクル試験を行った。具体的には、まず室温(25℃)から毎分-10℃の速度で冷却して-65℃で30分間維持し、その後毎分+10℃の速度で加熱して175℃で30分維持し、その後毎分-10℃の速度で室温(25℃)まで冷却する操作を1サイクルとした。
(Reliability test)
A sintered sample of the composition was prepared in the same manner as in the measurement of the die shear strength. A sintered sample of the composition was set in a thermal shock tester (Type 6015, manufactured by Life Tech Co., Ltd.), and a cooling / heating cycle test in which cooling and heating were repeated was performed. Specifically, first, cool at room temperature (25 ° C.) at a rate of −10 ° C./min and maintain at −65 ° C. for 30 minutes, then heat at a rate of + 10 ° C./min and maintain at 175 ° C. for 30 minutes. Thereafter, an operation of cooling to room temperature (25 ° C.) at a rate of −10 ° C. per minute was defined as one cycle.
 冷熱サイクル試験の開始から500サイクル後、1000サイクル後、2000サイクル後、及び3000サイクル後のサンプルの断面SEM観察を行い、クラックが生じていないかを確認した。表1中「>3000」は3000サイクル後でもクラックが生じなかったことを意味し、「>2000」は2000サイクル後にはクラックが生じていなかったが3000サイクル後にクラックが生じていたことを意味し、「>1000」は1000サイクル後にはクラックが生じていなかったが2000サイクル後にクラックが生じていたことを意味する。 (4) Cross-sectional SEM observation of the sample after 500 cycles, 1000 cycles, 2000 cycles, and 3000 cycles from the start of the cooling / heating cycle test was performed to check whether cracks were generated. In Table 1, “> 3000” means that no cracks occurred even after 3000 cycles, and “> 2000” means that no cracks occurred after 2000 cycles but cracks occurred after 3000 cycles. , "> 1000" means that no crack occurred after 1000 cycles, but crack occurred after 2000 cycles.
(表面焼結性)
 ダイシェア強度の評価で得た焼結物の表面を目視で観察し、下記の評価基準によって評価した。
 A…焼結物の表面の色がCu由来の赤茶色から、CuとSuによる金属化合物由来の灰色に変化した。
 B…焼結物の表面の色がCu由来の赤茶色のままであった。
(Surface sinterability)
The surface of the sintered product obtained by the evaluation of the die shear strength was visually observed and evaluated according to the following evaluation criteria.
A: The color of the surface of the sintered product changed from reddish brown derived from Cu to gray derived from a metal compound composed of Cu and Su.
B: The color of the surface of the sintered product remained reddish brown derived from Cu.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Z/XYの値が0.8~1.2の範囲内である実施例の組成物を用いて作成した焼結物は、ダイシェア強度が大きく接合強度に優れ、かつ熱伝導性にも優れていた。 As shown in Table 1, a sintered product prepared using the composition of the example in which the value of Z / XY is in the range of 0.8 to 1.2 has a large die shear strength, excellent bonding strength, and It also had excellent thermal conductivity.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  遷移的液相焼結が可能な金属成分を含有し、前記金属成分は融点が300℃より高い金属粒子Aと、融点が300℃以下の金属粒子Bとを含み、金属粒子Aの空隙体積X(cm)、金属粒子Bの密度Y(g/cm)及び金属粒子Bの量Z(g)が下記式を満たす組成物。
       0.8≦Z/XY≦1.2
    It contains a metal component capable of transitional liquid phase sintering, and the metal component includes metal particles A having a melting point higher than 300 ° C. and metal particles B having a melting point of 300 ° C. or less. (Cm 3 ), a composition in which the density Y (g / cm 3 ) of the metal particles B and the amount Z (g) of the metal particles B satisfy the following formula.
    0.8 ≦ Z / XY ≦ 1.2
  2.  金属粒子Aの空隙体積Xが金属粒子Aの見かけの体積の50体積%以下である、請求項1に記載の組成物。 The composition according to claim 1, wherein the void volume X of the metal particles A is 50% by volume or less of the apparent volume of the metal particles A.
  3.  金属粒子AがCuを含む、請求項1又は請求項2に記載の組成物。 The composition according to claim 1 or 2, wherein the metal particles A contain Cu.
  4.  金属粒子BがSnを含む、請求項1~請求項3のいずれか1項に記載の組成物。 (4) The composition according to any one of (1) to (3), wherein the metal particles B contain Sn.
  5.  請求項1~請求項4のいずれか1項に記載の組成物を含有する接合材料。 [4] A bonding material containing the composition according to any one of [1] to [4].
  6.  請求項1~請求項5のいずれか1項に記載の組成物の焼結体。 焼 結 A sintered body of the composition according to any one of claims 1 to 5.
  7.  素子と支持部材とが請求項5に記載の焼結体を介して接合された接合体。 A joined body in which the element and the support member are joined via the sintered body according to claim 5.
  8.  支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、請求項1~請求項4のいずれか1項に記載の組成物を付与して組成物層を形成する工程と、
     前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、
     前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
    The composition layer according to any one of claims 1 to 4, wherein the composition according to any one of claims 1 to 4 is applied to at least one of a position where the element is joined to the support member and a position where the device is joined to the support member. Forming a;
    Contacting the support member and the element through the composition layer,
    Heating the composition layer and sintering the composition layer.
PCT/JP2018/027384 2018-07-20 2018-07-20 Composition, bonding material, sintered compact, assembly, and method for producing assembly WO2020017050A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/027384 WO2020017050A1 (en) 2018-07-20 2018-07-20 Composition, bonding material, sintered compact, assembly, and method for producing assembly
JP2020530875A JP7238894B2 (en) 2018-07-20 2018-09-25 Composition, bonding material, sintered body, bonded body, and method for manufacturing bonded body
PCT/JP2018/035437 WO2020017065A1 (en) 2018-07-20 2018-09-25 Composition, bonding material, sintered compact, assembly, and method for producing assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027384 WO2020017050A1 (en) 2018-07-20 2018-07-20 Composition, bonding material, sintered compact, assembly, and method for producing assembly

Publications (1)

Publication Number Publication Date
WO2020017050A1 true WO2020017050A1 (en) 2020-01-23

Family

ID=69163663

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/027384 WO2020017050A1 (en) 2018-07-20 2018-07-20 Composition, bonding material, sintered compact, assembly, and method for producing assembly
PCT/JP2018/035437 WO2020017065A1 (en) 2018-07-20 2018-09-25 Composition, bonding material, sintered compact, assembly, and method for producing assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035437 WO2020017065A1 (en) 2018-07-20 2018-09-25 Composition, bonding material, sintered compact, assembly, and method for producing assembly

Country Status (2)

Country Link
JP (1) JP7238894B2 (en)
WO (2) WO2020017050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065418A1 (en) * 2020-09-24 2022-03-31 積水化学工業株式会社 Sintering composition, sintered body, and bonded structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534454A (en) * 2000-05-22 2003-11-18 マサチューセッツ インスティテュート オブ テクノロジー Infiltration method of powder metal skeleton of similar substance using melting point depressant
JP2017222930A (en) * 2009-11-05 2017-12-21 オーメット サーキッツ インク Preparation of metallurgy network composition and method for using the same
JP2018515348A (en) * 2015-04-28 2018-06-14 オルメット・サーキッツ・インコーポレイテッド High metal loading sintered paste for semiconductor die bonding applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153077B2 (en) * 2013-02-28 2017-06-28 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534454A (en) * 2000-05-22 2003-11-18 マサチューセッツ インスティテュート オブ テクノロジー Infiltration method of powder metal skeleton of similar substance using melting point depressant
JP2017222930A (en) * 2009-11-05 2017-12-21 オーメット サーキッツ インク Preparation of metallurgy network composition and method for using the same
JP2018515348A (en) * 2015-04-28 2018-06-14 オルメット・サーキッツ・インコーポレイテッド High metal loading sintered paste for semiconductor die bonding applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065418A1 (en) * 2020-09-24 2022-03-31 積水化学工業株式会社 Sintering composition, sintered body, and bonded structure

Also Published As

Publication number Publication date
JPWO2020017065A1 (en) 2021-09-30
JP7238894B2 (en) 2023-03-14
WO2020017065A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CN102084435B (en) Metallic pastes and inks
Kang et al. Development of high conductivity lead (Pb)-free conducting adhesives
JP6848549B2 (en) Copper paste for bonding and semiconductor devices
US20060043543A1 (en) Solder composition, connecting process with soldering, and connection structure with soldering
CN110636912B (en) Metal adhesive composition with good working life and thermal conductivity, its manufacturing method and its use
JP2007302872A (en) Use of die-attach composition for high power semiconductor, method for bonding the same composition to printed circuit board and semiconductor device produced thereby
WO2020017065A1 (en) Composition, bonding material, sintered compact, assembly, and method for producing assembly
JP2013110403A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JP5077684B2 (en) Au-Sn alloy solder paste for pin transfer
JP2018181605A (en) Sheet for joining metal member, method for joining metal member and metal member joint
WO2020017064A1 (en) Composition, bonding material, sintered compact, assembly, and method for producing assembly
JP7432633B2 (en) Connection body manufacturing method, anisotropic conductive bonding material, and connection body
WO2020017063A1 (en) Composition, joining material, sintered body, joined body and method for manufacturing same
JP2020175415A (en) Metallic composition, adhesive, sintered body, joint structure, joint body and method for manufacture thereof, and support member with sintered body and method for manufacture thereof
JP2001001180A (en) Solder and electronic part using the solder
US20220297243A1 (en) Solder paste and solder bonded body
Li et al. Study on the properties of epoxy-based Sn58Bi solder joints
JP2021063262A (en) Metal paste for joining, method for manufacturing joined body, and joined body
JP7500943B2 (en) Metal paste for bonding, method for manufacturing bonded body, and bonded body
CN114450103A (en) Copper paste for forming sintered copper pillar and method for producing joined body
JP7015415B1 (en) Bonding composition
JP2016056288A (en) Adhesive composition and semiconductor device using the same
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
JP4780466B2 (en) Sn-Au alloy solder paste for Au plated substrate
Wrosch et al. Sintered conductive adhesives for high temperature packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP