WO2020015625A1 - 电力系统脆弱性评估方法及终端设备 - Google Patents
电力系统脆弱性评估方法及终端设备 Download PDFInfo
- Publication number
- WO2020015625A1 WO2020015625A1 PCT/CN2019/096120 CN2019096120W WO2020015625A1 WO 2020015625 A1 WO2020015625 A1 WO 2020015625A1 CN 2019096120 W CN2019096120 W CN 2019096120W WO 2020015625 A1 WO2020015625 A1 WO 2020015625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- power system
- failure
- node
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/007—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
- H02J3/0073—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Definitions
- the present application belongs to the technical field of power systems, and for example, relates to a power system vulnerability assessment method and terminal equipment.
- the grid will be highly interconnected through the main grid, the structure and operation of the grid will become increasingly complex, and the development model of the grid will also be affected.
- the highly interconnected power grid structure conforms to the basic characteristics of complex networks, and also brings certain security and stability risks to power systems.
- the power grids in many countries in the world have been proven to be typical complex networks. Therefore, using complex network theory for power system analysis becomes an effective tool.
- complex network theory The origin of complex network theory can be traced back to the stochastic graph theory. With the establishment of small-world network models and scale-free network models, complex network theory has been formally born and has become a research hotspot in many fields. Complex network theory indicates that there are a small number of lines in the power system that are critical to the network structure. These line failures often have a huge impact on the power system and even cause chain failures. This is also one of the root causes of hidden dangers in modern power systems with complex network characteristics. These few important lines that are important to the power system network structure and may cause cascading failures are called fragile lines in the power system. Therefore, the use of complex network theory to assess the vulnerability of power, and then to locate the weak links in the power system through fragile lines, is of great significance to optimize the structure of the power grid, eliminate potential risks, and ensure the safety and stability of the power system.
- the vulnerability assessment of power systems is essentially the application and optimization of complex networks.
- the main characteristic indicators are the degree and degree distribution of the nodes, the average path length, the network clustering coefficient, the node number, and the edge number. Number etc. These characteristic indicators can reflect the structural characteristics of the actual network from multiple sides, and determine the vulnerability of various lines in the power system. Although this idea is simple to implement and excavates the structural characteristics of the power grid, in the analysis of the power system, the electrical characteristics of the topological connection and the physical meaning in actual operation are ignored.
- the embodiments of the present application provide a power system vulnerability assessment method and terminal equipment, which solve the problems of vulnerability assessment in the related technology that ignore the electrical characteristics of the topological connection and the physical significance in actual operation, and effectively complete the power system vulnerability assessment, and Locate weak links in power systems based on fragile lines.
- An embodiment of the present application provides a power system vulnerability assessment method, including:
- the voltage of the target load node after each line failure and the voltage of the target load node before each line failure are determined, and the local voltage change amount of the power system after each line failure is determined, wherein the target The load node is a load node whose voltage change after each line failure exceeds a preset voltage threshold; based on the reactive power output of the target generator node after each line failure and the target power generation before each line failure.
- the reactive power output of the generator node and the reactive power capacity of the target generator node determine the local reactive power change of the power system after each line failure, wherein the target generator node is after the line failure Generator nodes with an increase in reactive power output exceeding a preset multiple of the generator node's own reactive capacity;
- the reliability index of the load node and the reliability index of all load nodes before the failure of each line determine the reliability change of the power system after
- An embodiment of the present application further provides a power system vulnerability assessment device, including:
- the average transmission electrical distance determining unit is configured to determine the power after each line failure according to the weight and electrical length of all transmission paths of the power system after each line failure in the power system, and the total amount of active power transmitted.
- the local voltage change determination unit is configured to determine each line according to the voltage of the target load node after each line failure and the voltage of the target load node before each failure
- the local voltage change amount of the power system after the fault wherein the target load node is a load node whose voltage change amount after the line fault exceeds a preset voltage threshold;
- the local reactive power change amount determination unit is set according to each of the The reactive power output of the target generator node after the line failure and the reactive power output of the target generator node before each line failure, and the reactive power capacity of the target generator node determine the local reactive power of the power system.
- the amount of change in power wherein the target generator node increases the reactive power output after the line fault exceeds itself Generator node with a preset multiple of reactive power;
- the reliability change determination unit is set according to the reliability index of all load nodes after each line failure and the reliability of all load nodes before each line failure Performance index to determine the reliability change of the power system after each line failure;
- the vulnerability determination unit is configured to be based on the average transmission electrical distance and the local voltage change amount after each line failure And the local reactive power change amount and the reliability change amount determine the vulnerability of each line;
- the system weak link positioning unit is configured to locate the weak link of the power system according to the vulnerability of each line.
- An embodiment of the present application further provides a power system vulnerability assessment terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer
- the program implements the method described above.
- An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the foregoing method.
- the embodiments of the present application solve the problem of lack of vulnerability assessment in the related technology to consider the electrical characteristics and the physical significance of the actual operation of the power system.
- the power system reliability assessment components Its own characteristics and the influence of components on system operation are used in the vulnerability assessment. Not only the importance of branches and electrical paths in the topology connection relationship is considered, but also the impact on the power system operation caused by line failures.
- the results of the line vulnerability assessment in the system are comprehensive and can reflect the real problems of the actual power system.
- the fragile lines of the power system are analyzed to improve the reliability level, which can further guide the later upgrade and transformation of the power grid and apply it to the grid planning and operation stages. .
- FIG. 1 is a schematic flowchart of a power system vulnerability assessment method according to an embodiment of the present application
- FIG. 2 is a schematic block diagram of a power system vulnerability assessment device according to an embodiment of the present application.
- FIG. 3 is a schematic block diagram of a power system vulnerability assessment device according to another embodiment of the present application.
- FIG. 4 is a schematic block diagram of a power system vulnerability assessment terminal device according to an embodiment of the present application.
- FIG. 1 is a schematic flowchart of a power system vulnerability assessment method according to an embodiment of the present application.
- an angle trigger of a terminal is used as an example for description.
- the terminal processing process of the power system vulnerability assessment method may include the following steps:
- S1010 Determine the average transmission electrical distance of the power system after each line failure according to the weight and electrical length of all transmission paths of the power system after each line failure of the power system, and the total amount of active power transmitted.
- the weights and electrical lengths are active transmission power and reactance values of a transmission path, respectively.
- the average transmission electrical distance of the power system after a line failure is the quotient of the weighted electrical length of all transmission paths and the total active power transmitted by the power system, where the weighted length and d of all transmission paths are defined as all The sum of the product of the weight of the transmission path and the electrical length.
- the active transmission power is used as the weight
- the reactance value is used as the electrical distance.
- a transmission path can be formed between each generator node and each load node, that is, each transmission path starts with the generator node and ends with the load node.
- the generator node is a node that points to the power system to inject power
- the load node is a node that draws power from the power system.
- the generator node In addition to the generator nodes and load nodes, there are intermediate nodes (neither absorbing power nor injecting power).
- the generator node generally provides active power to multiple loads.
- the load node generally absorbs active power from multiple generator nodes.
- the electrical distances and active transmission power of the multiple sides experienced in the transmission path are different.
- the weighted electrical of the transmission path is different. It is difficult to uniquely determine the distance. To avoid this difficulty, the weighted electrical length sum of the transmission path is converted to the weighted electrical length sum of the line, which is derived as follows:
- the subscript a refers to any transmission path
- the subscript t refers to any line
- t (a) refers to all the lines through which the transmission path a passes
- a (t) refers to all the transmission paths through the line t.
- p a and p t refer to the active power transmitted on transmission path a and the active power transmitted on line t
- len a and len t refer to the electrical length of transmission path a and the active power transmitted on line t
- w r w a and w t Refers to the weight of path a and line t, respectively, and is represented by p a and p t .
- S1020 Determine the local voltage change amount of the power system after each line failure according to the voltage of the target load node after each line failure and the voltage of the target load node before each line failure.
- the target load node is a load node whose voltage change after a line fault exceeds a preset voltage threshold.
- the preset voltage threshold can be set according to actual needs. For example, after the line 1 fails, the voltage of the load node s drops more than ⁇ 1 , the load node is considered to be significantly affected, and the load node is the target load node. The absolute value of the voltage difference between the load node s after the fault and the line 1 before the fault. Based on the absolute value of the voltage difference between the load nodes s calculated, the local voltage change of the power system after the fault of the line 1 is determined.
- the preset voltage threshold ⁇ 1 should be determined according to an actual situation.
- S1030 determine the target generator node's reactive power output after each line failure and the target generator node's reactive power output before each line failure, and the target generator node's reactive power capacity to determine the The local reactive power change of the power system after each line fault, wherein the target generator node is a generator node whose reactive power increase after each line fault exceeds a preset multiple of the reactive capacity of the generator node itself .
- the preset multiple may be set according to actual needs. For example, after the line l fails, the reactive power increase of the generator node g exceeds 2 times the reactive capacity of the generator node g. Affected significantly, the ratio of the reactive power output of generator node g to the reactive capacity of generator node g after line 1 failure and before line 1 failure is calculated. Based on this ratio, the local reactive power system failure after line 1 failure Work change.
- the preset multiple ⁇ 2 of the reactive capacity should be determined according to the actual situation.
- S1040 Determine the reliability of the power system after each line failure according to the reliability indicators of all load nodes in the power system after each line failure and the reliability indicators of all load nodes before each line failure. Sexual change.
- the difference between the reliability index of the load node after the line 1 failure and the line 1 before the failure is calculated, and the reliability change amount of the power system after the line 1 failure is determined according to the difference.
- the reliability index of the load node here can be measured by the node load loss probability caused by the line failure.
- the load loss probability can be obtained through the conventional reliability evaluation algorithm and the load loss time statistics.
- the above nodes are all load nodes in the power system after a line failure.
- NL indicates A set of all load nodes of the power system.
- PLn represents the load loss probability index of the load node n, that is, the probability value of the power supply of the node n is less than its load.
- the conventional reliability evaluation algorithm and statistics of the load loss time are obtained, that is, the ratio of the load load time n of the load node n to the total time is calculated to obtain the index.
- S1050 Determine the vulnerability of each line according to the average transmission electrical distance, the local voltage change amount, the local reactive power change amount, and the reliability change amount after each line failure.
- the calculation is based on the reliability of line 1, that is, the probability of normal operation of the line, and the average transmission electrical distance, local voltage change, local reactive power change, and reliability change of the power system after the failure of line 1.
- the vulnerability of line l is, the probability of normal operation of the line, and the average transmission electrical distance, local voltage change, local reactive power change, and reliability change of the power system after the failure of line 1.
- the expression Determine the vulnerability IV l of line l, where rel (l) represents the reliability of line l, that is, the probability that line l works normally, obtained through historical statistics, Represents the average transmission electrical distance of the power system after a normalized line l failure, by the expression determine, Represents the local voltage change of the power system after a normalized line l failure, through an expression determine, Represents the local reactive power change of the power system after a normalized line l failure, through the expression determine, Represents the normalized line l power system reliability change after a fault determine, with Represent normalized index values of D l , V l , QQ l and RR l , and M represents the total number of lines in the power system.
- S1060 Locate the weak link of the power system according to the vulnerability of each line.
- the power system vulnerability assessment method of the present application solves the problems of the lack of vulnerability assessment in the related technology to consider the electrical characteristics and the physical significance of the actual operation of the power system.
- power system reliability assessment, component characteristics, and the impact of components on system operation not only the importance of branches and electrical paths in the topology connection relationship, but also the line failure
- the impact on the operation of the power system makes the results of line vulnerability assessment in the power system comprehensive and can reflect the real problems of the actual power system.
- it analyzes the vulnerable lines of the power system and improves the reliability level, which can further guide the later stages of the power grid. Upgrading and transformation, applied to the grid planning and operation phase.
- the power system vulnerability assessment method further includes: in a case where the power system generates multiple connected subnets after the failure of each line, determining a maximum of the generated multiple connected subnets. The connected subnet; determining the average transmission electrical distance of the power system after each line failure according to the weight and electrical length of all transmission paths of the power system after each line failure in the power system, and the total amount of active power transmitted Including: determining the power system after each line fault according to the weight and electrical length of all transmission paths of the largest connected subnet after the failure of each line in the power system, and the total active power transmitted in the connected subnet The average transmission electrical distance.
- the power system vulnerability assessment method further includes: in a case where the power system generates multiple connected subnets after the failure of each line, determining a maximum of the generated multiple connected subnets. The connected subnet; determining the average transmission electrical distance of the power system after each line failure according to the weight and electrical length of all transmission paths of the power system after each line failure in the power system, and the total amount of active power transmitted
- FIG. 2 shows a schematic block diagram of a power system vulnerability assessment device provided by an embodiment of the present application.
- a plurality of units included in the power system vulnerability assessment device 200 of this embodiment are configured to perform multiple steps in the embodiment corresponding to FIG. 1, please refer to the related description in the embodiment corresponding to FIG. 1 and FIG. To repeat.
- the power system vulnerability assessment device 200 of this embodiment includes an average transmission electrical distance determination unit 201, a local voltage change determination unit 202, a local reactive power change determination unit 203, a reliability change determination unit 204, and a vulnerability determination unit 205 And the system weak link positioning unit 206.
- the average transmission electrical distance determining unit 201 is configured to determine the power after the line fault according to the weights and electrical lengths of all transmission paths of the power system after each line fault in the power system, and the total amount of active power transmitted. The average transmission electrical distance of the system.
- the local voltage change determination unit 202 is configured to determine after each line failure according to the voltage of the target load node in the power system after each line failure and the voltage of the target load node before each line failure. The local voltage change amount of the power system, wherein the target load node is a load node whose voltage change amount after a line fault exceeds a preset voltage threshold. .
- the local reactive power change determining unit 203 is configured to be based on the reactive power output of the target generator node in the power system after each line fault and the reactive power output of the target generator node before each line fault, and The reactive power capacity of the target generator node determines a local reactive power change amount of the power system, wherein the target generator node is a power generator whose reactive power increase amount exceeds a preset multiple of its own reactive capacity after a line failure.
- Machine node The reliability change determining unit 204 is configured to determine each of the load nodes according to the reliability indexes of all load nodes in the power system after each line fault and the reliability indexes of all load nodes before each fault. Reliability change of power system after line failure.
- the vulnerability determining unit 205 is configured to determine the each of the voltages based on the average transmission electrical distance, the local voltage variation, the local reactive power variation, and the reliability variation after each line fault.
- the vulnerability of a line is configured to locate the weak link of the power system according to the vulnerability of each line.
- the average transmission electrical distance determination unit 201, the local voltage change determination unit 202, the local reactive power change determination unit 203, the reliability change determination unit 204, the vulnerability determination unit 205, and the system weak link positioning unit 206 are not described here.
- the power system vulnerability assessment device in the embodiment of the present application solves the problem that the lack of vulnerability assessment in the related technology takes into consideration the electrical characteristics and the physical significance of the actual operation of the power system. From three aspects: branch roads, electrical paths, and power system parameter changes, The reliability evaluation of power system, the characteristics of components themselves, and the impact of components on system operation are used in the vulnerability assessment, not only considering the importance of branches and electrical paths in the topology connection relationship, but also considering the power The impact of system operation makes the results of line vulnerability assessment in the power system comprehensive and can reflect the real problems of the actual power system. At the same time, it analyzes the fragile lines of the power system and improves the reliability level, which can further guide the later upgrade of the power grid. , Applied to the grid planning and operation phase. Referring to FIG.
- FIG. 3 is a schematic block diagram of another power system vulnerability assessment device according to another embodiment of the present application.
- the power system vulnerability assessment device 300 of this embodiment includes an average transmission electrical distance determination unit 301, a local voltage change determination unit 302, a local reactive power change determination unit 303, a reliability change determination unit 304, and a vulnerability determination unit 305. 2.
- the average transmission electrical distance determination unit 301, the local voltage change determination unit 302, the local reactive power change determination unit 303, the reliability index determination unit 304, the vulnerability determination unit 305, and the system weak link positioning unit 306 are specific Please refer to FIG. 2 and the embodiment corresponding to FIG. 2, the average transmission electrical distance determination unit 201, the local voltage change determination unit 202, the local reactive power change determination unit 203, the reliability change determination unit 204, and the vulnerability determination unit 205 And related descriptions of the system weak link positioning unit 206, which are not repeated here.
- the power system vulnerability assessment device 300 further includes a connected subnet determination unit 307.
- the connected subnet determining unit 307 is configured to determine a largest connected subnet among the multiple connected subnets generated when the power system generates multiple connected subnets after the failure of each line.
- the average transmission electrical distance determination unit 301 is configured to determine each line according to the weights and electrical lengths of all transmission paths of the largest connected subnet after the failure of each line, and the total amount of active power transmitted. The average transmission electrical distance of the circuit system after a fault.
- the average transmission electrical distance determining unit is configured to be based on an expression Determine the average transmission electrical distance D l of the power system after a line l failure, where w t represents the weight of line t in the power system after line l failure, len t represents the electrical length of line t, and T (l) represents The set of all lines of the power system after line 1 failure, P n represents the active power absorbed by node n after line 1 failure, and N refers to the set of all nodes of the power system.
- the local voltage change determination unit 302 is configured to be based on an expression Determine the local voltage change amount V l of the power system after the line 1 fault, where U s and U s0 represent the voltage of the target load node s after the line 1 fault and the voltage of the target load node s before the line 1 fault, S ( l) represents a set of target load nodes affected by a line 1 failure, wherein the target load node in the set of target load nodes has a voltage change amount after a line 1 failure exceeds a preset voltage threshold ⁇ 1 .
- the local reactive power change determining unit is configured to be based on an expression Determine the local reactive power change QQ l of the power system after line 1 failure, where Q g and Q g0 represent the reactive power output of target generator node g after line 1 failure and the generator node before line 1 failure, respectively
- the reactive power output of g, Q gmax represents the reactive power capacity of the generator node g
- G (l) represents the target generator node set affected by the fault of line l, wherein the generators in the target generator node set
- the reliability change amount determining unit 304 is configured to be based on an expression Determine the reliability change amount RR l of the power system after line 1 failure, where R n and R n0 respectively represent the reliability index of load node n after line 1 failure and the reliability of load node n before line 1 failure Index, NL represents the set of all load nodes of the power system.
- the vulnerability determination unit 305 is configured to be based on an expression Determine the vulnerability IV l of line l, where rel (l) represents the reliability of line l, Represents the average transmission electrical distance of the power system after a normalized line 1 failure, Represents the local voltage change of the power system after a normalized line 1 failure, Represents the local reactive power change of the power system after a normalized line 1 failure, Represents the amount of change in the reliability of the power system after a normalized line 1 failure. Sorting the vulnerability according to the calculated vulnerability of each line can locate the weak links in the power system and guide the upgrading of the power system.
- the embodiments of the present application solve the problem of lack of consideration of the electrical characteristics and the physical significance of the actual operation of the power system in the vulnerability assessment device in the related technology, and not only considers the importance of branches and electrical paths in the topology connection relationship.
- the impact of these electrical component failures on the operation of the power system is also considered, so that the results of the line vulnerability assessment in the power system are comprehensive and can reflect the real problems of the actual power system.
- the vulnerable lines of the power system are analyzed to improve reliability.
- the performance level can further guide the later upgrading and transformation of the power grid, which is applied to the planning and operation phase of the power grid.
- FIG. 4 is a schematic block diagram of a power system vulnerability assessment terminal device according to an embodiment of the present application.
- the power system vulnerability assessment terminal device 4 of this embodiment includes: a processor 40, a memory 41, and a computer program 42 stored in the memory 41 and executable on the processor 40, for example, Power system vulnerability assessment procedures.
- the processor 40 executes the computer program 42
- the power system vulnerability assessment method provided by any of the foregoing embodiments is implemented, such as steps 1010 to 1060 shown in FIG. 1.
- functions of multiple units in the foregoing device embodiment are implemented, for example, functions of units 301 to 307 shown in FIG. 3.
- the computer program 42 may be divided into one or more modules / units, and the one or more modules / units are stored in the memory 41 and executed by the processor 40 to complete the present application.
- the one or more modules / units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 42 in the power system vulnerability assessment terminal device 4.
- the computer program 42 may be divided into an average transmission electrical distance determination unit, a local voltage change determination unit, a local reactive power change determination unit, a reliability index change determination unit, a vulnerability determination unit, and a connected subnet determination.
- the function of multiple units is as follows: Determine the power system after each line failure according to the weight and electrical length of all transmission paths of the power system after each line failure in the power system, and the total amount of active power transmitted. Determine the local voltage of the power system after each line failure according to the voltage of the target load node after each line failure and the voltage of the target load node before each line failure The amount of change, wherein the target load node is a load node whose voltage change amount after each line fault exceeds a preset voltage threshold; according to the reactive power output of the target generator node and Reactive power output of the target generator node before the line failure, and the target generator section Determine the local reactive power change of the power system after the failure of each line, wherein the target generator node increases the reactive power output after the line fault exceeds the reactive capacity of the generator node itself.
- Set multiple generator nodes determine after each line failure according to the reliability indicators of all load nodes after each line failure and the reliability indicators of all load nodes before each line failure The amount of change in the reliability of the power system; determining the amount of each The vulnerability of each line; locate the weak link of the power system according to the vulnerability of each line.
- determining the largest connected subnet among the multiple connected subnets generated; The weight and electrical length of all transmission paths of the power system after a line failure, and the total amount of active power transmitted includes: The weights and electrical lengths of all transmission paths of the largest connected subnet and the total amount of active power transmitted in the connected subnet are determined to determine the average transmission electrical distance of the power system after each line failure.
- NL represents the set of all load nodes of the power system.
- the power system vulnerability assessment terminal device 4 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
- the power system vulnerability assessment terminal device may include, but is not limited to, a processor 40 and a memory 41.
- FIG. 4 is only an example of the power system vulnerability assessment terminal device 4 and does not constitute a limitation on the power system vulnerability assessment terminal device 4. It may include more or fewer components than shown in the figure. Either certain components or different components are combined, for example, the power system vulnerability assessment terminal device may further include an input / output device, a network access device, a bus, and the like.
- the so-called processor 40 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory 41 may be an internal storage unit of the power system vulnerability assessment terminal device 4, such as a hard disk or a memory of the power system vulnerability assessment terminal device 4.
- the memory 41 may also be an external storage device of the power system vulnerability assessment terminal device 4, for example, a plug-in hard disk, a smart memory card (SMC) provided on the power system vulnerability assessment terminal device 4. ), Secure Digital (SD) cards, Flash Cards, etc.
- the memory 41 may include both an internal storage unit of the power system vulnerability assessment terminal device 4 and an external storage device.
- the memory 41 is configured to store the computer program and other programs and data required by the power system vulnerability assessment terminal device.
- the memory 41 may also be configured to temporarily store data that has been output or is to be output.
- the disclosed apparatus / terminal device and method may be implemented in other ways.
- the device / terminal device embodiments described above are only schematic.
- the division of the modules or units is only a logical function division.
- components can be combined or integrated into another system.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
- multiple functional units in multiple embodiments of the present application may be integrated into one processing unit, or multiple units may exist separately physically, or two or more units may be integrated into one unit.
- the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
- the integrated module / unit When the integrated module / unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, this application implements all or part of the processes in the method of the above embodiment, and can also be completed by a computer program instructing related hardware.
- the computer program can be stored in a computer-readable storage medium.
- the computer When the program is executed by a processor, the steps of any of the foregoing method embodiments can be implemented.
- the computer program includes computer program code, and the computer program code may be in a source code form, an object code form, an executable file, or some intermediate form.
- the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a mobile hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM) , Random Access Memory (Random Access Memory, RAM), electric carrier signals, telecommunication signals, and software distribution media.
- a recording medium a U disk, a mobile hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM) , Random Access Memory (Random Access Memory, RAM), electric carrier signals, telecommunication signals, and software distribution media.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本申请提供了一种电力系统脆弱性评估方法及终端设备,所述方法包括:根据每条线路故障后所有传输路径的权重和电气长度,以及传输的有功功率总量,确定该线路故障后电力系统的平均传输电气距离;根据该线路故障后和故障前目标负荷节点的电压,确定该线路故障后电力系统的局部电压变化量;根据该线路故障后和故障前目标发电机节点的无功出力,以及目标发电机节点的无功容量,确定该线路故障后电力系统的局部无功变化量;根据该线路故障后和故障前所有负荷节点的可靠性指标,确定该故障后电力系统的可靠性变化量;根据平均传输电气距离、局部电压变化量、局部无功变化量和可靠性变化量,确定该线路的脆弱度,根据每条线路的脆弱度定位电力系统的薄弱环节。
Description
本申请要求在2018年07月16日提交中国专利局、申请号为201810778095.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请属于电力系统技术领域,例如涉及一种电力系统脆弱性评估方法及终端设备。
随着电力系统规模日益扩大,电网将通过主网架实现高度互联,电网结构与运行方式日趋复杂,电网的发展模式也受到影响。高度互联的电网结构符合复杂网络的基本特征,也给电力系统带来一定的安全稳定隐患,世界上许多国家的电网已被证实是典型的复杂网络。因此,利用复杂网络理论进行电力系统分析成为有效工具。
复杂网络理论的起源最早可追溯到随机图理论,随着小世界网络模型和无标度网络模型的建立,复杂网络理论正式诞生并成为多个领域研究热点。复杂网络理论指出,电力系统中存在对网络结构至关重要的少量线路,这些线路故障往往会对电力系统产生巨大影响,甚至引发连锁故障。这也是具有复杂网络特征的现代电力系统,存在安全稳定隐患的根源之一。这些对电力系统网络结构至关重要、同时又可能引发连锁故障的少量重要线路,被称为电力系统中的脆弱线路。因此,利用复杂网络理论评估出电力脆弱性,进而通过脆弱线路定位电力系统中的薄弱环节,对优化电网结构、消除潜在风险,保障电力系统安全稳定等具有重大意义。
电力系统脆弱性评估实质上是复杂网络的应用与优化。首先,建立电力系统的抽象拓扑模型;然后,从统计的角度考察网络中节点和边的性质,主要特征指标有节点度及度分布、平均路径长度、网络聚类系数、节点介数与边介数等。这些特征指标可以从多个侧面反映实际网络的结构特征,并以确定电力系统中各个线路的脆弱度。这种思路虽然实现简单,挖掘了电网的结构特征,但,在对电力系统的分析过程中,忽略了拓扑连接的电气特性和实际运行中的物理意义。一是没有线路故障造成的影响;二是没有考虑有功潮流、电压变化、可靠性指标等因素的影响。这就导致评估结果不能真实反映实际。
发明内容
本申请实施例提供了一种电力系统脆弱性评估方法及终端设备,解决相关技术中脆弱性评估忽略拓扑连接的电气特性和实际运行中的物理意义等问题,有效完成电力系统脆弱性评估,并根据脆弱线路定位电力系统薄弱环节。
本申请实施例提供了一种电力系统脆弱性评估方法,包括:
根据电力系统中每条线路故障后所述电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离;根据所述每条线路故障后目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后所述电力系统的局部电压变化量,其中,所述目标负荷节点为所述每条线路故障后电压变化量超过预设电压阈值的负荷节点;根据所述每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述每条线路故障后所述电力系统的局部无功变化量,其中,所述目标发电机节点为线路故障后无功出力增加量超过发电机节点自身无功容量预设倍数的发电机节点;根据所述每条线路故障后所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后所述电力系统的可靠性变化量;根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度;根据每条线路的脆弱度定位所述电力系统的薄弱环节。
本申请实施例还提供了一种电力系统脆弱性评估装置,包括:
平均传输电气距离确定单元,设置为根据电力系统中每条线路故障后所述电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离;局部电压变化量确定单元,设置为根据所述每条线路故障后目标负荷节点的电压和所述每条故障前所述目标负荷节点的电压,确定所述每条线路故障后所述电力系统的局部电压变化量,其中,所述目标负荷节点为线路故障后电压变化量超过预设电压阈值的负荷节点;局部无功变化量确定单元,设置为根据所述每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述电力系统的局部无功变化量, 其中,所述目标发电机节点为线路故障后无功出力增加量超过自身无功容量预设倍数的发电机节点;可靠性变化量确定单元,设置为根据所述每条线路故障后所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后所述电力系统的可靠性变化量;脆弱度确定单元,设置为根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度;系统薄弱环节定位单元,设置为根据每条线路的脆弱度定位所述电力系统的薄弱环节。
本申请实施例还提供了一种电力系统脆弱性评估终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述的方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述的方法。
本申请实施例解决了相关技术中脆弱性评估欠缺对电气特性及电力系统实际运行物理意义考虑的问题,从支路、电气路径及电力系统参数变化三个方面,将电力系统可靠性评估、元件自身特性、元件对系统运行的影响等,用于脆弱性评估中,不仅考虑了支路、电气路径在拓扑连接关系中的重要性,更考虑线路故障后对电力系统运行造成的影响,使电力系统中线路脆弱度评估的结果具有综合性,可以体现实际电力系统的真实问题,同时分析出电力系统脆弱线路,提升可靠性水平,可以进一步指导电网的后期升级改造,应用于电网规划及运行阶段。
图1是本申请实施例提供的一种电力系统脆弱性评估方法的示意流程图;
图2是本申请实施例提供的一种电力系统脆弱性评估装置示意性框图;
图3是本申请另一实施例提供的一种电力系统脆弱性评估装置示意性框图;
图4是本申请实施例提供的一种电力系统脆弱性评估终端设备的示意性框图。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本申请实施例提供的一种电力系统脆弱性评估方法的示意流程图,在该实施例中,以终端的角度触发为例进行说明。如图1所示,在该实施例中,电力系统脆弱性评估方法的终端处理过程可以包括以下步骤:
S1010:根据电力系统的每条线路故障后电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后电力系统的平均传输电气距离。
在一实施例中,在S1010之前还可包括:确定电力系统中的线路总数M,并对所有线路进行编号,编号变量l=1,2,3…M。
本实施例中,所述权重和电气长度分别为传输路径的有功传输功率和电抗值。
本实施例中,线路故障后电力系统的平均传输电气距离为所有传输路径的加权电气长度和除以电力系统传输的有功功率总量的商,其中,所有传输路径的加权长度和d定义为所有传输路径的权重与电气长度的乘积之和。本实施例中,以有功传输功率作为权重,以电抗值作为电气距离。在电力系统中,每个发电机节点和每个负荷节点之间可构成传输路径,即每个传输路径以发电机节点为起点、以负荷节点为终点。发电机节点是指向电力系统注入功率的节点,而负荷节点则是从电力系统中吸收功率的节点。在某些电力系统中除发电机节 点和负荷节点外,还有中间节点(既不吸收功率、也不注入功率)。发电机节点一般向多个负荷提供有功功率,负荷节点一般从多个发电机节点吸收有功功率,传输路径中经历的多条边的电气距离、有功传输功率等各不相同,传输路径的加权电气距离难以唯一确定。为了回避这一困难,将传输路径的加权电气长度和转换为线路的加权电气长度和,推导如下:
其中,下标a指任意一条传输路径,下标t指任意一条线路,t(a)指传输路径a经过的所有线路,a(t)指所有经过线路t的传输路径。p
a和p
t分别指传输路径a传输的有功功率和线路t传输的有功功率;len
a和len
t分别指传输路径a的电气长度和线路t传输的有功功率;w
rw
a和w
t分别指路径a和线路t的权重,用p
a和p
t表示。
在一实施例中,根据表达式
确定线路l故障后电力系统的平均传输电气距离D
l,其中,d
l表示线路l故障后电力系统中所有线路的加权电气长度之和,w
t表示线路l故障后电力系统中线路t的权重,用线路t有功传输功率表示,即w
t=p
t(p
t表示线路t传输的有功功率),len
t表示线路t的电气长度,即线路t的电抗值,T(l)表示所述线路l故障后电力系统的所有线路的集合,P
n表示线路l故障后节点n吸收的有功功率,N指表示所述电力系统的所有节点的集合。
S1020:根据所述每条线路故障后目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后电力系统的局部电压变化量,其中,所述目标负荷节点为线路故障后电压变化量超过预设电压阈值的负荷节点。
本实施例中,预设电压阈值可以根据实际需要设置,例如线路l故障后,负荷节点s的电压下降超过α
1,则认为此负荷节点受到显著影响,该负荷节点为目标负荷节点,计算线路l故障后和线路l故障前负荷节点s的电压差值的绝对值,根据计算得到的负荷节点s的电压差值的绝对值,确定线路l故障后电力系统的局部电压变化量。
在一实施例中,根据表达式
确定线路l故障后电力系统的局部电压变化量V
l,其中,U
s和U
s0分别表示线路l故障后目标负荷节点s的电压和线路l故障前目标负荷节点s的电压,S(l)表示线路l故障后电力系统中目标负荷节点集合,其中,所述目标负荷节点集合中的目标负荷节点在线路l故障后电压变化量超过预设电压阈值α
1,即S(l)={s||U
s-U
s0|>α
1}。
在本实施例中,预设电压阈值α
1应根据实际情况确定。
S1030:根据每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述每条线路故障后电力系统的局部无功变化量,其中,所述目标发电机节点为所述每条线路故障后无功出力增加量超过发电机节点自身无功容量预设倍数的发电机节点。本实施例中,预设倍数可以根据实际需要设置,例如线路l故障后,发电机节点g的无功出力增加量超过发电机节点g的无功容量的α
2倍,则认为此发电机节点受到显著影响,计算线路l故障后和线路l故障前发电机节点g的无功出力的差值与发电机节点g的无功容量的比值,根据该比值确定线路l故障后电力系统的局部无功变化量。
在一实施例中,根据表达式
确定线路l故障后电力系统的局部无功变化量QQ
l,其中,Q
g和Q
g0分别表示线路l故障后目标发电机节点g的无功出力和线路l故障前目标发电机节点g的无功出力,Q
gmax表示目标发电机节点g的无功容量,G(l)表示受线路l故障影响的目标发电机节点集合,其中,所述目标发电机节点集合中的目标发电机节点在线路l故障后无功出力增加量超过发电机节点自身无功容量预设倍数α
2,即G(l)={g|(Q
g-Q
g0)/Q
gmax>α
2}。
本实施例中,无功容量预设倍数α
2应根据实际情况确定。
S1040:根据所述每条线路故障后电力系统中所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后电力系统的可靠性变化量。在本实施例中,计算线路l故障后和线路l故障前负荷节点的可靠性指标的差值,根据该差值确定线路l故障后电力系统的可靠性变化量。这里的负荷节点的可靠性指标,可以用线路故障后造成的节点失负荷概率进行衡量,失负荷概率可通过常规可靠性评估算法并进行失负荷时间统计得到。其中,上述节点为线路故障后电力系统中的所有负荷节点。
在一实施例中,根据表达式
确定线路l故障后电力系统的可靠性变化量RR
l,其中,R
n和R
n0分别表示线路l故障后负荷节点n的可靠性指标和线路l故障前负荷节点n的可靠性指标,NL表示所述电力系统的所有负荷节点的集合。
在一实施例中,节点n的可靠性指标通过表达式R
n=1-PL
n确定,PLn表示负荷节点n的失负荷概率指标,即节点n的功率供应小于其负荷的概率值,可通过常规可靠性评估算法并进行失负荷时间统计得到,即计算负荷节点n的失负荷时间与总时间的比值得到该指标。
S1050:根据每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度。
在一实施例中,根据线路l的可靠度,即线路正常工作的概率,以及线路l故障后电力系统的平均传输电气距离、局部电压变化量、局部无功变化量和可靠性变化量,计算线路l的脆弱度。
在一实施例中,根据表达式
确定线路l的脆弱度IV
l,其中,rel(l)表示线路l的可靠度,即线路l正常工作的概率,通过历史统计数据得到,
表示归一化的线路l故障后电力系统的平均传输电气距离,通过表达式
确定,
表示归一化的线路l故障后电力系统的局部电压变化量,通过表达式
确定,
表示归一化的线路l故障后电力系统的局部无功变化量,通过表达式
确定,
表示归一化的线路l故障后电力系统的可靠性变化量,通过表达式
确定,
和
分别表示归一化的D
l、V
l、QQ
l和RR
l的指标值,M表示电力系统中的线路总数。
S1060:根据每条线路的脆弱度定位所述电力系统的薄弱环节。
按照所有线路的脆弱度的大小进行排序,脆弱度越高的线路越脆弱,根据脆弱度较高的线路定位出电力系统的薄弱环节。
从以上描述可知,本申请电力系统脆弱性评估方法,解决了相关技术中脆弱性评估欠缺对电气特性及电力系统实际运行物理意义考虑的问题,从支路、电气路径及电力系统参数变化三个方面,将电力系统可靠性评估、元件自身特 性、元件对系统运行的影响等,用于脆弱性评估中,不仅考虑了支路、电气路径在拓扑连接关系中的重要性,更考虑线路故障后对电力系统运行造成的影响,使电力系统中线路脆弱度评估的结果具有综合性,可以体现实际电力系统的真实问题,同时分析出电力系统脆弱线路,提升可靠性水平,可以进一步指导电网的后期升级改造,应用于电网规划及运行阶段。
此外,在一个实施例中,上述电力系统脆弱性评估方法还包括:在所述每条线路故障后所述电力系统产生多个连通子网的情况下,确定产生的多个连通子网中最大的连通子网;所述根据电力系统中每条线路故障后电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后电力系统的平均传输电气距离包括:根据电力系统中每条线路故障后所述最大的连通子网所有传输路径的权重和电气长度,以及该连通子网中传输的有功功率总量,确定所述每条线路故障后电力系统的平均传输电气距离。本实施例中,故障后产生多个连通子网时,仅评估最大连通子网的平均传输电气距离,简单、方便,加快后续处理。
对应于上文实施例所述的电力系统脆弱性评估方法,图2示出了本申请实施例提供的一种电力系统脆弱性评估装置的示意性框图。本实施例的电力系统脆弱性评估装置200包括的多个单元用于执行图1对应的实施例中的多个步骤,请参阅图1及图1对应的实施例中的相关描述,此处不赘述。本实施例的电力系统脆弱性评估装置200包括平均传输电气距离确定单元201、局部电压变化量确定单元202、局部无功变化量确定单元203、可靠性变化量确定单元204、脆弱度确定单元205及系统薄弱环节定位单元206。本实施例中,平均传输电气距离确定单元201,设置为根据电力系统中每条线路故障后电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述线路故障后电力系统 的平均传输电气距离。局部电压变化量确定单元202,设置为根据所述每条线路故障后电力系统中目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后电力系统的局部电压变化量,其中,所述目标负荷节点为线路故障后电压变化量超过预设电压阈值的负荷节点。。局部无功变化量确定单元203,设置为根据所述每条线路故障后电力系统中目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述电力系统的局部无功变化量,其中,所述目标发电机节点为线路故障后无功出力增加量超过自身无功容量预设倍数的发电机节点。可靠性变化量确定单元204,设置为根据所述每条线路故障后电力系统中所有负荷节点的可靠性指标和所述每条故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后电力系统的可靠性变化量。脆弱度确定单元205,设置为根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度。系统薄弱环节定位单元206,设置为根据所述每条线路的脆弱度定位所述电力系统的薄弱环节。
在一实施例中,平均传输电气距离确定单元201、局部电压变化量确定单元202、局部无功变化量确定单元203、可靠性变化量确定单元204、脆弱度确定单元205及系统薄弱环节定位单元206,可分别通过步骤S1010、S1020、S1030、S1040、S1050、S1060中的具体表达式确定对应的平均传输电气距离、局部电压变化量、局部无功变化量、可靠性变化量、综合脆弱度和系统薄弱环节,在此不做赘述。
本申请实施例电力系统脆弱性评估装置,解决了相关技术中脆弱性评估欠缺对电气特性及电力系统实际运行物理意义考虑的问题,,从支路、电气路径 及电力系统参数变化三个方面,将电力系统可靠性评估、元件自身特性、元件对系统运行的影响等,用于脆弱性评估中,不仅考虑了支路、电气路径在拓扑连接关系中的重要性,更考虑线路故障后对电力系统运行造成的影响,使电力系统中线路脆弱度评估的结果具有综合性,可以体现实际电力系统的真实问题,同时分析出电力系统脆弱线路,提升可靠性水平,可以进一步指导电网的后期升级改造,应用于电网规划及运行阶段。参见图3,图3是本申请另一实施例提供的另一种电力系统脆弱性评估装置的示意性框图。本实施例的电力系统脆弱性评估装置300包括平均传输电气距离确定单元301、局部电压变化量确定单元302、局部无功变化量确定单元303、可靠性变化量确定单元304、脆弱度确定单元305、系统薄弱环节定位单元306和连通子网确定单元307。
本实施例中,平均传输电气距离确定单元301、局部电压变化量确定单元302、局部无功变化量确定单元303、可靠性指标确定单元304、脆弱度确定单元305及系统薄弱环节定位单元306具体请参阅图2及图2对应的实施例中平均传输电气距离确定单元201、局部电压变化量确定单元202、局部无功变化量确定单元203、可靠性变化量确定单元204、脆弱度确定单元205及系统薄弱环节定位单元206的相关描述,此处不赘述。
在一实施例中,所述电力系统脆弱性评估装置300还包括连通子网确定单元307。连通子网确定单元307,设置为在所述每条线路故障后所述电力系统产生多个连通子网的情况下,确定产生的多个连通子网中最大的连通子网。所述平均传输电气距离确定单元301是设置为根据所述每条线路故障后所述最大的连通子网所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电路系统的平均传输电气距离。
在一实施例中,平均传输电气距离确定单元是设置为根据表达式
确定线路l故障后所述电力系统的平均传输电气距离D
l,其中,w
t表示线路l故障后所述电力系统中线路t的权重,len
t表示线路t的电气长度,T(l)表示线路l故障后所述电力系统的所有线路的集合,P
n表示线路l故障后节点n吸收的有功功率,N指表示所述电力系统的所有节点的集合。
在一实施例中,局部电压变化量确定单元302是设置为根据表达式
确定线路l故障后所述电力系统的局部电压变化量V
l,其中,U
s和U
s0分别表示线路l故障后目标负荷节点s的电压和线路l故障前目标负荷节点s的电压,S(l)表示受线路l故障影响的目标负荷节点集合,其中,所述目标负荷节点集合中的目标负荷节点在线路l故障后电压变化量超过预设电压阈值α
1。
在一实施例中,局部无功变化量确定单元是设置为根据表达式
确定线路l故障后所述电力系统的局部无功变化量QQ
l,其中,Q
g和Q
g0分别表示线路l故障后目标发电机节点g的无功出力和线路l故障前所述发电机节点g的无功出力,Q
gmax表示所述发电机节点g的无功容量,G(l)表示受线路l故障影响的目标发电机节点集合,其中,所述目标发电机节点集合中的发电机节点在线路l故障后无功出力增加量超过发电机节点自身无功容量预设倍数α
2。
在一实施例中,可靠性变化量确定单元304设置为根据表达式
确定线路l故障后所述电力系统的可靠性变化量RR
l,其中,R
n和R
n0分别表示线路l故障后负荷节点n的可靠性指标和线路l故障前所述负荷节点n的可靠性指标,NL表示所述电力系统的所有负荷节点的集合。
在一实施例中,脆弱度确定单元305是设置为根据表达式
确定线路l的脆弱度IV
l,其中,rel(l)表示线路l的可靠度,
表示归一化的线路l故障后所述电力系统的平均传输电气距离,
表示归一化的线路l故障后所述电力系统的局部电压变化量,
表示归一化的线路l故障后所述电力系统的局部无功变化量,
表示归一化的线路l故障后所述电力系统的可靠性变化量。根据计算所得的每条线路的脆弱度进行脆弱度排序,可以定位电力系统中的薄弱环节,指导电力系统的升级改造。
从以上描述可知,本申请实施例解决了相关技术中脆弱性评估装置中欠缺对电气特性及电力系统实际运行物理意义考虑的问题,不仅考虑了支路、电气路径在拓扑连接关系中的重要性,更考虑了这些电气元件故障后对电力系统运行造成的影响,使电力系统中线路脆弱度评估的结果具有综合性,可以体现实际电力系统的真实问题,同时分析出电力系统脆弱线路,提升可靠性水平,可以进一步指导电网的后期升级改造,应用于电网规划及运行阶段。
参见图4,图4是本申请实施例提供的一种电力系统脆弱性评估终端设备的示意框图。如图4所示,该实施例的电力系统脆弱性评估终端设备4包括:处理器40、存储器41以及存储在所述存储器41中并可在所述处理器40上运行的计算机程序42,例如电力系统脆弱性评估程序。所述处理器40执行所述计算机程序42时实现上述任意实施例提供的电力系统脆弱性评估方法,例如图1所示的步骤1010至1060。或者,所述处理器40执行所述计算机程序42时实现上述装置实施例中多个单元的功能,例如图3所示单元301至307的功能。
所述计算机程序42可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器41中,并由所述处理器40执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序42在所述电力系统脆弱性评估终端设备 4中的执行过程。例如,所述计算机程序42可以被分割成平均传输电气距离确定单元、局部电压变化量确定单元、局部无功变化量确定单元、可靠性指标变化量确定单元、脆弱度确定单元和连通子网确定单元,多个单元功能如下:根据电力系统中每条线路故障后所述电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离;根据所述每条线路故障后目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后所述电力系统的局部电压变化量,其中,所述目标负荷节点为所述每条线路故障后电压变化量超过预设电压阈值的负荷节点;根据所述每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述每条线路故障后所述电力系统的局部无功变化量,其中,所述目标发电机节点为线路故障后无功出力增加量超过发电机节点自身无功容量预设倍数的发电机节点;根据所述每条线路故障后所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后所述电力系统的可靠性变化量;根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度;根据每条线路的脆弱度定位所述电力系统的薄弱环节。
在一实施例中,在所述每条线路故障后所述电力系统产生多个连通子网的情况下,确定产生的多个连通子网中最大的连通子网;所述根据电力系统中每条线路故障后电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后电力系统的平均传输电气距离包括:根据电力系统中每条线路故障后所述最大的连通子网所有传输路径的权重和电气长度,以及该连通子网中传输的有功功率总量,确定所述每条线路故障后电力系统的平均传输电气距离。
在一实施例中,根据表达式
确定线路l故障后所述电力系统的平均传输电气距离D
l,其中,w
t表示线路l故障后所述电力系统中线路t的权重,len
t表示线路t的电气长度,T(l)表示线路l故障后所述电力系统的所有线路的集合,Pn表示线路l故障后节点n吸收的有功功率,N指表示所述电力系统的所有节点的集合。
在一实施例中,根据表达式
确定线路l故障后所述电力系统的局部电压变化量Vl,其中,U
s和U
s0分别表示线路l故障后目标负荷节点s的电压和线路l故障前目标负荷节点s的电压,S(l)表示受线路l故障影响的目标负荷节点集合,其中,所述目标负荷节点集合中的目标负荷节点在线路l故障后电压变化量超过预设电压阈值α
1
在一实施例中,根据表达式
确定线路l故障后所述电力系统的局部无功变化量QQ
l,其中,Q
g和Q
g0分别表示线路l故障后目标发电机节点g的无功出力和线路l故障前所述发电机节点g的无功出力,Q
gmax表示所述发电机节点g的无功容量,G(l)表示受线路l故障影响的目标发电机节点集合,其中,所述目标发电机节点集合中的发电机节点在线路l故障后无功出力增加量超过发电机节点自身无功容量预设倍数α
2。
在一实施例中,根据表达式
确定线路l故障后所述电力系统的可靠性变化量RR
l,其中,R
n和R
n0分别表示线路l故障后负荷节点n的可靠性指标和线路l故障前所述负荷节点n的可靠性指标,NL表示所述电力系统的所有负荷节点的集合。
在一实施例中,根据表达式
确定线路l的脆 弱度IV
l,其中,rel(l)表示线路l的可靠度,
表示归一化的线路l故障后所述电力系统的平均传输电气距离,
表示归一化的线路l故障后所述电力系统的局部电压变化量,
表示归一化的线路l故障后所述电力系统的局部无功变化量,
表示归一化的线路l故障后所述电力系统的可靠性变化量
所述电力系统脆弱性评估终端设备4可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述电力系统脆弱性评估终端设备可包括,但不仅限于,处理器40、存储器41。本领域技术人员可以理解,图4仅仅是电力系统脆弱性评估终端设备4的示例,并不构成对电力系统脆弱性评估终端设备4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述电力系统脆弱性评估终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器41可以是所述电力系统脆弱性评估终端设备4的内部存储单元,例如电力系统脆弱性评估终端设备4的硬盘或内存。所述存储器41也可以是所述电力系统脆弱性评估终端设备4的外部存储设备,例如所述电力系统脆弱性评估终端设备4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器41还可以既包括所述电力系统脆弱性评估终端设备4的内部存 储单元也包括外部存储设备。所述存储器41设置为存储所述计算机程序以及所述电力系统脆弱性评估终端设备所需的其他程序和数据。所述存储器41还可以设置为暂时地存储已经输出或者将要输出的数据。
为了描述的方便和简洁,仅以上述多个功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的多个功能单元、模块可以集成在一个处理单元中,也可以是多个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,多个功能单元、模块的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对多个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的多个示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一 个系统。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择部分单元或者全部单元来实现本实施例方案的目的。
另外,在本申请多个实施例中的多个功能单元可以集成在一个处理单元中,也可以是多个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述任意方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。
Claims (10)
- 一种电力系统脆弱性评估方法,包括:根据电力系统中每条线路故障后所述电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离;根据所述每条线路故障后目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后所述电力系统的局部电压变化量,其中,所述目标负荷节点为所述每条线路故障后电压变化量超过预设电压阈值的负荷节点;根据所述每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述每条线路故障后所述电力系统的局部无功变化量,其中,所述目标发电机节点为线路故障后无功出力增加量超过发电机节点自身无功容量预设倍数的发电机节点;根据所述每条线路故障后所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后所述电力系统的可靠性变化量;根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度;根据每条线路的脆弱度定位所述电力系统的薄弱环节。
- 如权利要求1所述的方法,还包括:在所述每条线路故障后所述电力系统产生多个连通子网的情况下,确定产生的多个连通子网中最大的连通子网;所述根据电力系统中每条线路故障后电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平 均传输电气距离包括:根据电力系统中每条线路故障后所述最大的连通子网的所有传输路径的权重和电气长度,以及所述最大的连通子网中传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离。
- 一种电力系统脆弱性评估装置,包括:平均传输电气距离确定单元,设置为根据电力系统中每条线路故障后所述电力系统所有传输路径的权重和电气长度,以及传输的有功功率总量,确定所述每条线路故障后所述电力系统的平均传输电气距离;局部电压变化量确定单元,设置为根据所述每条线路故障后目标负荷节点的电压和所述每条线路故障前所述目标负荷节点的电压,确定所述每条线路故障后所述电力系统的局部电压变化量,其中,所述目标负荷节点为线路故障后电压变化量超过预设电压阈值的负荷节点;局部无功变化量确定单元,设置为根据所述每条线路故障后目标发电机节点的无功出力和所述每条线路故障前所述目标发电机节点的无功出力,以及所述目标发电机节点的无功容量,确定所述电力系统的局部无功变化量,其中,所述目标发电机节点为线路故障后无功出力增加量超过自身无功容量预设倍数的发电机节点;可靠性变化量确定单元,设置为根据所述每条线路故障后所有负荷节点的可靠性指标和所述每条线路故障前所述所有负荷节点的可靠性指标,确定所述每条线路故障后所述电力系统的可靠性变化量;脆弱度确定单元,设置为根据所述每条线路故障后的所述平均传输电气距离、所述局部电压变化量、所述局部无功变化量和所述可靠性变化量,确定所述每条线路的脆弱度;系统薄弱环节定位单元,设置为根据每条线路的脆弱度定位所述电力系统的薄弱环节。
- 一种电力系统脆弱性评估终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的方法。
- 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810778095.8 | 2018-07-16 | ||
CN201810778095.8A CN109066650B (zh) | 2018-07-16 | 2018-07-16 | 电力系统脆弱性评估方法及终端设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020015625A1 true WO2020015625A1 (zh) | 2020-01-23 |
Family
ID=64816614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/096120 WO2020015625A1 (zh) | 2018-07-16 | 2019-07-16 | 电力系统脆弱性评估方法及终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109066650B (zh) |
WO (1) | WO2020015625A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109066650B (zh) * | 2018-07-16 | 2021-05-04 | 国网河北省电力有限公司经济技术研究院 | 电力系统脆弱性评估方法及终端设备 |
CN111178667A (zh) * | 2019-11-21 | 2020-05-19 | 慈溪市输变电工程有限公司 | 基于脆弱性的电力系统风险评估方法及装置 |
CN111160716A (zh) * | 2019-12-10 | 2020-05-15 | 国网经济技术研究院有限公司 | 基于潮流介数的大电网脆弱性评估方法 |
CN112350312B (zh) * | 2020-10-29 | 2022-10-04 | 广东稳峰电力科技有限公司 | 电力线路鲁棒性分析方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103107535A (zh) * | 2013-01-17 | 2013-05-15 | 中国电力科学研究院 | 一种基于熵权法的电网结构安全性综合评估方法 |
CN104156769A (zh) * | 2013-05-31 | 2014-11-19 | 贵州电网公司电力调度控制中心 | 电力系统脆弱性评估方法 |
CN105678432A (zh) * | 2014-11-17 | 2016-06-15 | 三峡大学 | 一种基于网络脆弱性综合因子的风险评估系统 |
CN105976257A (zh) * | 2015-12-17 | 2016-09-28 | 国家电网公司 | 基于隶属度函数的模糊综合评价法的电网脆弱性评估方法 |
CN107679744A (zh) * | 2017-09-29 | 2018-02-09 | 国网湖南省电力公司 | 基于线路脆弱性指标的大电网战略通道动态辨识方法 |
CN109066650A (zh) * | 2018-07-16 | 2018-12-21 | 国网河北省电力有限公司经济技术研究院 | 电力系统脆弱性评估方法及终端设备 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9197071B2 (en) * | 2009-12-04 | 2015-11-24 | Kevin R. Williams | Energy storage system for supplying power to loads of a drilling rig |
CN103150687B (zh) * | 2013-03-22 | 2016-04-27 | 电子科技大学 | 电网结构脆弱性实时评估系统 |
US10389117B2 (en) * | 2014-05-13 | 2019-08-20 | Georgia Tech Research Corporation | Dynamic modeling and resilience for power distribution |
CN104269846B (zh) * | 2014-09-26 | 2016-08-17 | 华北电力大学 | 电网故障分区方法 |
CN104466959B (zh) * | 2014-12-31 | 2017-06-13 | 广东电网有限责任公司电力调度控制中心 | 电力系统关键线路辨识方法和系统 |
CN106253270B (zh) * | 2016-08-18 | 2018-12-25 | 西南交通大学 | 电力系统脆弱线路辨识方法和系统 |
CN107394785B (zh) * | 2017-07-03 | 2019-09-27 | 中国南方电网有限责任公司电网技术研究中心 | 配电网脆弱性评估的方法及装置 |
CN107274110A (zh) * | 2017-07-06 | 2017-10-20 | 广东电网有限责任公司电力调度控制中心 | 在信息层网络影响下的电力网络脆弱性评估方法 |
CN107785889B (zh) * | 2017-10-18 | 2020-08-21 | 中国电力科学研究院有限公司 | 一种支撑大容量直流馈入的弱受端电网最小开机优化方法 |
CN107846014B (zh) * | 2017-11-09 | 2021-03-30 | 电子科技大学 | 一种基于随机特征和级数计算的电网概率脆弱性评估方法 |
-
2018
- 2018-07-16 CN CN201810778095.8A patent/CN109066650B/zh active Active
-
2019
- 2019-07-16 WO PCT/CN2019/096120 patent/WO2020015625A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103107535A (zh) * | 2013-01-17 | 2013-05-15 | 中国电力科学研究院 | 一种基于熵权法的电网结构安全性综合评估方法 |
CN104156769A (zh) * | 2013-05-31 | 2014-11-19 | 贵州电网公司电力调度控制中心 | 电力系统脆弱性评估方法 |
CN105678432A (zh) * | 2014-11-17 | 2016-06-15 | 三峡大学 | 一种基于网络脆弱性综合因子的风险评估系统 |
CN105976257A (zh) * | 2015-12-17 | 2016-09-28 | 国家电网公司 | 基于隶属度函数的模糊综合评价法的电网脆弱性评估方法 |
CN107679744A (zh) * | 2017-09-29 | 2018-02-09 | 国网湖南省电力公司 | 基于线路脆弱性指标的大电网战略通道动态辨识方法 |
CN109066650A (zh) * | 2018-07-16 | 2018-12-21 | 国网河北省电力有限公司经济技术研究院 | 电力系统脆弱性评估方法及终端设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109066650B (zh) | 2021-05-04 |
CN109066650A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020015625A1 (zh) | 电力系统脆弱性评估方法及终端设备 | |
US11438212B2 (en) | Fault root cause analysis method and apparatus | |
Wang et al. | System islanding using minimal cutsets with minimum net flow | |
US20180375373A1 (en) | Impact increments-based state enumeration reliability assessment approach and device thereof | |
CN107871216A (zh) | 一种配电网脆弱节点的识别方法 | |
CN111697590A (zh) | 一种基于熵权法的电力系统关键节点识别方法及系统 | |
CN111884259B (zh) | 一种考虑系统小干扰稳定特性的场站级风电机组等值方法 | |
US20230054391A1 (en) | Calibration of quantum measurement device | |
CN109672554A (zh) | 确定故障根因的方法及装置 | |
CN109816113A (zh) | 基于分布式量子计算机的搜索方法及系统 | |
Huang et al. | Preventing outages under coordinated cyber–physical attack with secured PMUs | |
WO2022120995A1 (zh) | 一种基于PoW共识机制的设备算力评价方法及系统 | |
CN113094975A (zh) | 智能电网节点脆弱性的评估方法、系统、设备及存储介质 | |
US11935664B2 (en) | Dynamic characteristic analysis method of DET and RELAP5 coupling based on universal instrumental variable method | |
CN112653136B (zh) | 一种电力电子多馈入电力系统关键线路识别方法及系统 | |
CN114418226A (zh) | 电力通信系统的故障分析方法及装置 | |
Bi et al. | Efficient multiway graph partitioning method for fault section estimation in large-scale power networks | |
JP6516923B2 (ja) | ホワイトリスト生成器、ホワイトリスト評価器およびホワイトリスト生成・評価器、並びにホワイトリスト生成方法、ホワイトリスト評価方法およびホワイトリスト生成・評価方法 | |
Tostado-Véliz et al. | A three-stage algorithm based on a semi-implicit approach for solving the power-flow in realistic large-scale ill-conditioned systems | |
Lin et al. | Distributed-program reliability analysis: complexity and efficient algorithms | |
Ji et al. | Comprehensive vulnerability assessment and optimization method for smart grid communication transmission systems | |
Li et al. | Research on network protocol vulnerability discovery based on fuzz testing | |
CN104933636A (zh) | 多工况电力系统稳定性分析方法及装置 | |
CN110889614A (zh) | 基于scada大数据的电网系统重要用户供电风险分析方法 | |
CN108551364B (zh) | 光纤通信网络可靠性分析方法及终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19837871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19837871 Country of ref document: EP Kind code of ref document: A1 |