[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020015566A1 - Led lighting system, apparatus and dimming method - Google Patents

Led lighting system, apparatus and dimming method Download PDF

Info

Publication number
WO2020015566A1
WO2020015566A1 PCT/CN2019/095421 CN2019095421W WO2020015566A1 WO 2020015566 A1 WO2020015566 A1 WO 2020015566A1 CN 2019095421 W CN2019095421 W CN 2019095421W WO 2020015566 A1 WO2020015566 A1 WO 2020015566A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
input power
dimming
phase
circuit
Prior art date
Application number
PCT/CN2019/095421
Other languages
French (fr)
Inventor
Aiming Xiong
Lin Zhou
Original Assignee
Jiaxing Super Lighting Electric Appliance Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Super Lighting Electric Appliance Co., Ltd filed Critical Jiaxing Super Lighting Electric Appliance Co., Ltd
Priority to EP19837611.3A priority Critical patent/EP3824695A4/en
Priority to CN201980047234.2A priority patent/CN112913327A/en
Publication of WO2020015566A1 publication Critical patent/WO2020015566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation

Definitions

  • the disclosed embodiments relate to the features of light emitting diode (LED) lighting. More particularly, the disclosed embodiments describe various improvements for LED lighting systems, an LED lighting apparatus, and LED dimming method thereof.
  • LED light emitting diode
  • LED lighting technology is rapidly developing to replace traditional incandescent and fluorescent lighting.
  • LED tube lamps are mercury-free in comparison with fluorescent tube lamps that need to be filled with inert gas and mercury.
  • LED lamp such as an LED tube lamp, an LED bulb lamp, an LED filament lamp, a high power LED lamp, an integral LED lamp, etc.
  • LED tube lamps are becoming a highly desired illumination option among different available lighting systems used in homes and workplaces, which used to be dominated by traditional lighting options such as compact fluorescent light bulbs (CFLs) and fluorescent tube lamps.
  • Benefits of LED tube lamps include improved durability and longevity and far less energy consumption. Therefore, when taking into account all factors, they would typically be considered as a cost effective lighting option.
  • the present disclosure may actually include one or more inventions claimed currently or not yet claimed, and for avoiding confusion due to unnecessarily distinguishing between those possible inventions at the stage of preparing the specification, the possible plurality of inventions herein may be collectively referred to as “the (present) invention” herein.
  • the disclosure presents an LED lighting system including a dimmer and at least one LED lighting apparatus.
  • the dimmer receives input power from an external power grid and varies a phase-cut angle of the input power within a dimming phase range/interval according to a dimming signal, in order to generate a dimmer-adjusted input power.
  • the LED lighting apparatus receives the dimmer-adjusted input power and then is driven to light according to the dimmer-adjusted input power, wherein a maximum phase-cut angle of the dimming phase range/interval is less than 90 degrees.
  • the LED lighting apparatus upon receiving the dimmer-adjusted input power of the maximum phase-cut angle, the LED lighting apparatus is then driven to light with a maximum value or minimum value of its lighting luminance.
  • the maximum phase-cut angle of the dimming phase range/interval is smaller than 45 degrees.
  • the dimming phase range/interval is a phase angle of between 15 and 20 degrees.
  • the disclosure presents an LED lighting apparatus configured to light in response to an input power signal and including a power supply module and an LED module.
  • the power supply module is configured to receive the input power signal in order to generate a driving power signal.
  • the LED module is configured to light in response to the driving power signal.
  • the power supply module includes a demodulating circuit.
  • the demodulating circuit is configured to receive the input power signal and demodulate the received input power signal, in order to generate a dimming control signal for controlling luminance of the LED module.
  • the demodulating circuit demodulates the input power signal based on a phase-cut angle of the input power signal.
  • the demodulating circuit is configured to obtain a dimming message corresponding to the phase-cut angle, and then to generate the dimming control signal according to the dimming message.
  • the phase-cut angle is smaller than 90 degrees when the LED module reaches a minimum luminance.
  • the phase-cut angle is smaller than 45 degrees when the LED module reaches the minimum luminance.
  • the LED module is dimmed to have a minimum luminance when the phase-cut angle is selected from one of the ranges of between 0 and 45 degrees, between 5 and 45 degrees, between 5 and 20 degrees, between 15 and 20 degrees, and between 15 and 45 degrees.
  • a dimming level of the LED module is correlated to the phase-cut angle.
  • the dimming level of the LED module is substantially irrelevant to the peak voltage of the input power signal.
  • the dimming level of the LED module is substantially irrelevant to an effective value of the input power signal.
  • the dimming level of the LED module is not directly proportional to an effective value of the input power signal.
  • the effective value refers to root-means-square (RMS) value.
  • ascope ratio of the effective value of the input power signal is smaller than a scope ratio of the luminance of the LED module, wherein the scope ratio of the effective value refers to the ratio of the maximum value to the minimum value of the effective value of the input power signal, and the scope ratio of the luminance refers to the ratio of the maximum value to the minimum value of the luminance.
  • the scope ratio of the effective value of the modulated input power signal is smaller than or equal to 2
  • the scope ratio of the luminance of the LED module is larger than or equal to 10.
  • the phase-cut angle is varied within a default phase range such that the total harmonic distortion of the power supply module is smaller than 25%and/or the power factor of the power supply module is larger than 0.9.
  • the scope ratio of the luminance of the LED module is larger than or equal to 10.
  • the luminance of the LED module is negative correlated to the phase-cut angle of the modulated input power signal.
  • the luminance of the LED module is in negative correlation with the voltage level of the dimming control signal.
  • the voltage level of the dimming control signal is in positive correlation with the phase-cut angle.
  • the phase-cut angle is varied within a default phase range such that a total harmonic distortion of the power supply module is smaller than 25%and/or a power factor of the power supply module is larger than 0.9.
  • the total harmonic distortion of the power supply module is smaller than 25%when the phase-cut angle of the input power signal corresponds to a minimum luminance.
  • the power factor of the power supply module is larger than 0.9 when the phase-cut angle of the input power signal corresponds to a minimum luminance.
  • the demodulating circuit is configured to demodulate the phase-cut angle by counting for a period, sampling the input power signal within the period, and is configured to generate the dimming control signal according to the demodulated phase-cut angle.
  • the LED lighting apparatus performing analog dimming or digital dimming of the LED module based on the dimming control signal.
  • the analog dimming is current-control dimming.
  • the digital dimming is PWM-control dimming.
  • the dimming control signal has a default number of different signal states corresponding to the phase-cut angle, in order to control dimming of the LED module to the default number of different dimming levels respectively.
  • the power supply module further includes a rectifying circuit and a filtering circuit.
  • the rectifying circuit configured to rectify the input power signal to produce a rectified signal.
  • the filtering circuit coupled to the rectifying circuit and configured to electrically filter the rectified signal to produce a filtered signal.
  • the power supply module further comprises a dimming switch configured for conducting or cutting off the driving power signal according to the dimming control signal, for dimming of the LED module.
  • the power supply module further includes a driving circuit.
  • the driving circuit is coupled to the filtering circuit and configured to perform power conversion on the filtered signal to produce the driving power signal.
  • the driving circuit is configured to adjust its operation of power conversion according to the dimming control signal, in order to adjust the magnitude of the driving power signal in response to the dimming message.
  • the driving circuit includes a power switch and an energy storage circuit; the power switch is configured to control switching between operations of the energy storage circuit for performing power conversion on the filtered signal, in order to produce the driving power signal; and the power switch is configured for adjusting the magnitude of the driving power signal in response to the dimming control signal, for dimming of the LED module.
  • the input power signal is phase cut from a leading-edge or a trailing-edge to form the phase-cut angle.
  • the dimming control signal does not transmit in a power loop which the driving power signal passing through.
  • an LED lighting system including a dimmer and an LED lighting apparatus.
  • the dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a dimmer-adjusted input power signal.
  • the LED lighting apparatus as mentioned above paragraph [0011] is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal.
  • the dimmer includes a controllable electronic element configured to adjust the phase-cut angle in response to the dimming signal in order to produce the modulated input power signal, wherein the controllable electronic element comprises a bidirectional triode thyristor, a single-chip microcomputer, or a transistor.
  • an LED lighting system including a dimmer and an LED lighting apparatus.
  • the dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a modulated input power signal.
  • the LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal.
  • a dimming level of the LED lighting apparatus is varied along with a phase-cut angle of the dimmer-adjusted input power signal.
  • a scope ratio of an effective value of the dimmer-adjusted input power signal is smaller than a scope ratio of the luminance of the LED lighting apparatus.
  • the scope ratio of the effective value refers to the ratio of the maximum value to the minimum value of the effective value of the dimmer-adjusted input power signal
  • the scope ratio of the luminance refers to the ratio of maximum value to the minimum value of the luminance.
  • the scope ratio of the effective value of the modulated input power signal is smaller than or equal to 2
  • the scope ratio of the luminance of the LED module is larger than or equal to 10.
  • the dimmer controls the phase-cut angle to vary within a default phase range such that the total harmonic distortion of the power supply module is smaller than 25%and/or the power factor of the power supply module is larger than 0.9.
  • the scope ratio of the luminance of the LED module is larger than or equal to 10.
  • an LED lighting system including a dimmer and an LED lighting apparatus.
  • the dimmer is configured to receive an input power signal from an external power grid, and is configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a dimmer-adjusted input power signal.
  • the LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal,
  • the phase-cut angle is varied within a default phase range, in order to cause the LED lighting apparatus to have different dimming levels corresponding to the default phase range,
  • a total harmonic distortion of the LED lighting apparatus is smaller than 25%and/or a power factor of the LED lighting apparatus is larger than 0.9 under all of the dimming levels.
  • the total harmonic distortion is smaller than 25%when the LED lighting apparatus illuminates in a dimming level corresponding to a minimum luminance.
  • the power factor is larger than 0.9 when the LED lighting apparatus illuminates in a dimming level corresponding to a minimum luminance.
  • an LED lighting system including a dimmer and at least one LED lighting apparatus.
  • the dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle within a default phase range according to a dimming signal, in order to produce a dimmer-adjusted input power signal.
  • the LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal, in which the maximum cut-off phase angle of the default phase range is smaller than 90 degrees.
  • the LED lighting apparatus is configured to light with its maximum or minimum luminance upon receiving the dimmer-adjusted input power signal of the maximum phase-cut angle.
  • the maximum phase-cut angle of the default phase range is smaller than 45 degrees.
  • the default phase range is between 15 and 20 degrees.
  • an LED lighting system including a dimmer and at least one LED lighting apparatus.
  • the dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle within a default phase range according to a dimming signal, in order to produce a dimmer-adjusted input power signal.
  • the at least one LED lighting apparatus configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal.
  • the maximum phase-cut angle within the default phase range is smaller than 90 degrees.
  • the maximum phase-cut angle within the default phase range is smaller than 45 degrees.
  • the default phase range is between 15 degrees and 20 degrees.
  • the disclosure also presents an LED lighting apparatus including a rectifying circuit, a filtering circuit, a driving circuit, an LED module, and a demodulating circuit.
  • the rectifying circuit is configured to receive an input power through first and second connection terminals, in order to rectify the input power and then output a rectified signal.
  • the filtering circuit is coupled to the rectifying circuit, in order to electrically filter the rectified signal to produce a filtered signal.
  • the driving circuit is coupled to the filtering circuit, in order to perform power conversion on the filtered signal to produce a driving power.
  • the LED module is coupled to the driving circuit and is configured to light up and emit light according to the received driving power.
  • the demodulating circuit is coupled to the first and second connection terminals, and is configured to obtain or extract a signal feature of the input power signal and then demodulate the signal feature in order to obtain a corresponding dimming message.
  • the demodulating circuit then generates a dimming control signal according to the obtained dimming message and then provides the dimming control signal for the driving circuit.
  • the driving circuit adjusts its operation of power conversion according to the received dimming control signal, in order to change/adjust the magnitude of the driving power in response to the dimming message.
  • Benefits or advantages resulting from the disclosed way (s) of dimming control herein may include a benefit that dimming control is achieved while maintaining or not hindering power conversion efficiency of the LED lighting apparatus.
  • FIG. 1A is a block diagram of an LED lighting system according to an embodiment of the disclosure.
  • FIG. 1B is a block diagram of an LED lighting system according to another embodiment of the disclosure.
  • FIG. 2 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus;
  • FIG. 3 is a circuit block diagram of an LED lighting apparatus according to an embodiment of the disclosure.
  • FIG. 4 is a circuit block diagram of a driving circuit according to an embodiment of the disclosure.
  • FIG. 5 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of luminance according to an embodiment of the disclosure
  • FIG. 6 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to an embodiment of the disclosure
  • FIG. 7 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to another embodiment of the disclosure
  • FIG. 8 is a signal waveform diagram of signal waveforms of input power signal of an LED lighting apparatus under different power grid voltages according to an embodiment of the disclosure
  • FIG. 9 is a flow chart of steps of a dimming control method for an LED lighting system according to an embodiment of the disclosure.
  • FIG. 10 is a flow chart of steps of a dimming control method for an LED lighting apparatus according to an embodiment of the disclosure.
  • the present disclosure provides a novel LED lighting system, an LED lighting apparatus, and a dimming control method related thereto.
  • the present disclosure will now be described in the following embodiments with reference to the drawings.
  • the following descriptions of various embodiments of this invention are presented herein for purpose of illustration and giving examples only. It is not intended to be exhaustive or to be limited to the precise form disclosed. These example embodiments are just that –examples –and many implementations and variations are possible that do not require the details provided herein. It should also be emphasized that the disclosure provides details of alternative examples, but such listing of alternatives is not exhaustive. Furthermore, any consistency of detail between various examples should not be interpreted as requiring such detail –it is impracticable to list every possible variation for every feature described herein. The language of the claims should be referenced in determining the requirements of the invention.
  • first, second, third etc. may be used herein to describe various elements, components, regions, layers, or steps, these elements, components, regions, layers, and/or steps should not be limited by these terms. Unless the context indicates otherwise, these terms are only used to distinguish one element, component, region, layer, or step from another element, component, region, or step, for example as a naming convention. Thus, a first element, component, region, layer, or step discussed below in one section of the specification could be termed a second element, component, region, layer, or step in another section of the specification or in the claims without departing from the teachings of the present invention.
  • Embodiments described herein will be described referring to plan views and/or cross-sectional views by way of ideal schematic views. Accordingly, the exemplary views may be modified depending on manufacturing technologies and/or tolerances. Therefore, the disclosed embodiments are not limited to those shown in the views, but include modifications in configuration formed on the basis of manufacturing processes. Therefore, regions exemplified in figures may have schematic properties, and shapes of regions shown in figures may exemplify specific shapes of regions of elements to which aspects of the invention are not limited.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element (s) or feature (s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but are intended to encompass nearly identical orientation, layout, location, shapes, sizes, amounts, or other measures within acceptable variations that may occur, for example, due to manufacturing processes.
  • the term “substantially” may be used herein to emphasize this meaning, unless the context or other statements indicate otherwise.
  • items described as “substantially the same, ” “substantially equal, ” or “substantially planar, ” may be exactly the same, equal, or planar, or may be the same, equal, or planar within acceptable variations that may occur, for example, due to manufacturing processes.
  • Terms such as “about” or “approximately” may reflect sizes, orientations, or layouts that vary only in a small relative manner, and/or in a way that does not significantly alter the operation, functionality, or structure of certain elements.
  • a range from “about 0.1 to about 1” may encompass a range such as a 0%-5%deviation around 0.1 and a 0%to 5%deviation around 1, especially if such deviation maintains the same effect as the listed range.
  • transistor used herein may include, for example, a field-effect transistor (FET) of any appropriate type such as N-type metal-oxide-semiconductor field-effect transistor (MOSFET) , P-type MOSFET, GaN FET, SiC FET, bipolar junction transistor (BJT) , Darlington BJT, heterojunction bipolar transistor (HBT) , etc.
  • FET field-effect transistor
  • items described as being “electrically connected” are configured such that an electrical signal can be passed from one item to the other. Therefore, a passive electrically conductive component (e.g., a wire, pad, internal electrical line, etc. ) physically connected to a passive electrically insulative component (e.g., a prepreg layer of a printed circuit board, an electrically insulative adhesive connecting two devices, an electrically insulative underfill or mold layer, etc. ) is not electrically connected to that component.
  • items that are “directly electrically connected, ” to each other are electrically connected through one or more passive elements, such as, for example, wires, pads, internal electrical lines, etc.
  • directly electrically connected components do not include components electrically connected through active elements, such as transistors or diodes, or through capacitors. Directly electrically connected elements may be directly physically connected and directly electrically connected.
  • Components described as thermally connected or in thermal communication are arranged such that heat will follow a path between the components to allow the heat to transfer from the first component to the second component. Simply because two components are part of the same device or board does not make them thermally connected.
  • components which are heat-conductive and directly connected to other heat-conductive or heat-generating components or connected to those components through intermediate heat-conductive components or in such close proximity as to permit a substantial transfer of heat
  • thermally connected to those components or in thermal communication with those components.
  • two components with heat-insulative materials therebetween which materials significantly prevent heat transfer between the two components, or only allow for incidental heat transfer, are not described as thermally connected or in thermal communication with each other.
  • heat-conductive or “thermally-conductive” do not apply to any material that provides incidental heat conduction, but are intended to refer to materials that are typically known as good heat conductors or known to have utility for transferring heat, or components having similar heat conducting properties as those materials.
  • Embodiments may be described, and illustrated in the drawings, in terms of functional blocks, units and/or modules.
  • these blocks, units and/or modules are physically implemented by electronic (or optical) circuits such as logic circuits, discrete components, analog circuits, hard-wired circuits, memory elements, wiring connections, and the like, which may be formed using semiconductor-based fabrication techniques or other manufacturing technologies.
  • electronic circuits such as logic circuits, discrete components, analog circuits, hard-wired circuits, memory elements, wiring connections, and the like, which may be formed using semiconductor-based fabrication techniques or other manufacturing technologies.
  • microprocessors In the case of the blocks, units and/or modules being implemented by microprocessors or similar, they may be programmed using software (e.g., microcode) to perform various functions discussed herein and may optionally be driven by firmware and/or software.
  • each block, unit and/or module may be implemented by dedicated hardware, or as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions.
  • each block, unit and/or module of the embodiments may be physically separated into two or more interacting and discrete blocks, units and/or modules. Further, the blocks, units and/or modules of the various embodiments may be physically combined into more complex blocks, units and/or modules.
  • FIG. 1A is a block diagram of an LED lighting system according to an embodiment of the disclosure.
  • the LED lighting system 10 includes a dimmer 50 and an LED lighting apparatus 100 including a power supply module PM and an LED module LM.
  • an input terminal or input terminals of the dimmer 50 are electrically connected to an external power grid or power supply EP, in order to receive input power Pin (also can be referred to input power signal Pin) from the external power grid EP.
  • Output terminals of the dimmer 50 are electrically connected to the LED lighting apparatus 100 through first and second connection terminals 101 and 102 of the LED lighting apparatus 100, in order to transmit/provide input power Pin_C resulting from a dimming process to the LED lighting apparatus 100.
  • the external power grid EP is electrically connected to the LED lighting apparatus 100 through the dimmer 50, in order to provide power for the LED lighting apparatus 100 to use.
  • the input power Pin or Pin_C may be AC power source or DC power source; may refer to at least one of input voltage, input current, or rate of inputting electrical energy; and may be referred to as input power signal Pin or Pin_C hereinafter.
  • a power loop formed between the external power grid EP and the LED lighting apparatus 100 may be regarded or defined as comprising the power line for the LED lighting system 10 or the LED lighting apparatus 100.
  • the LED lighting apparatus 100 is configured to receive the input power Pin_C through its first and second connection terminals 101 and 102, and the power supply module PM is configured to generate driving power Sdrv (also can be referred to driving power signal Sdrv) , based on the received input power Pin_C, for the LED module LM, in order for the LED module LM to light up in response to the driving power Sdrv.
  • the LED lighting apparatus 100 may comprise or be any of various types of LED lamps, such as LED spotlight, LED downlight, LED bulb lamp/light, LED track light, LED panel light, LED ceiling light, LED tube lamp/light, or LED filament lamp/light, but the present invention is not limited to any of these types.
  • the LED lighting apparatus 100 comprises an LED tube lamp, which can be referred to a ballast-compatible type (i.e., Type-A) LED tube lamp, a ballast-bypass type (i.e., Type-B) LED tube lamp, or an external driving type (i.e., Type-C) LED tube lamp.
  • a ballast-compatible type i.e., Type-A
  • a ballast-bypass type i.e., Type-B
  • an external driving type i.e., Type-C
  • the dimmer 50 is configured to perform a dimming process on the received input power Pin according to a signal Sdim for dimming, herein below a dimming signal Sdim, and configured to generate the input power Pin_C resulting from the dimming process (referred to herein for convenience as a dimmer-adjusted input power Pin_C) .
  • a control interface (not illustrated) a user can cause a suitable dimming signal Sdim to be provided to the dimmer 50.
  • the control interface may comprise or be implemented by various structures such as a switch, a knob, or a wireless signal receiver, but the present invention is not limited to any of these structures.
  • the dimming process may be directed to changing or adjusting any signal feature of the input power Pin, such as its phase conduction angle, frequency, amplitude, phase, or any combination thereof.
  • the dimmer 50 includes at least one controllable electronic element, such as a bidirectional triode thyristor (or TRIAC) , a single-chip microcomputer, or a transistor, coupled or connected to the power line, generally referred to as a dimmer circuit.
  • the controllable electronic element may be configured to adjust a chosen signal feature of the input power Pin in response to the dimming signal Sdim, in order to transform the received input power Pin into the input power Pin_C resulting from the adjusting.
  • the dimmer-adjusted input power Pin_C may be the same as the input power Pin.
  • the power supply module PM When the LED lighting apparatus 100 receives the input power Pin_C, the power supply module PM then transforms the received input power Pin_C into a stable driving power Sdrv for the LED module LM to use, wherein the power supply module PM may generate the signal of driving power Sdrv in the form of voltage (referred to as driving voltage) and/or current (referred to as driving current) corresponding to or based on the signal feature of the received input power Pin_C.
  • driving voltage voltage
  • driving current referred to as driving current
  • the luminance or brightness of the LED module LM is related to the magnitude of the driving voltage and/or driving current of the driving power Sdrv, which is/are adjusted based on the signal feature of the received input power Pin_C, and the signal feature of the received input power Pin_C is controlled by the dimming signal Sdim. Therefore, the dimming signal Sdim is directly related to the luminance or brightness of the LED module LM.
  • the signal processing involved in the operation of the power supply module PM for converting the received input power Pin_C into the driving power Sdrv includes, but is not limited to, electrical rectification, electrical filtering, and DC-to-DC conversion.
  • FIG. 1B is a block diagram of an LED lighting system according to another embodiment of the disclosure, showing the LED lighting system 20 in this embodiment includes a plurality of LED lighting apparatuses for operation with a dimmer.
  • the LED lighting system 20 includes a dimmer 50 and a plurality of LED lighting apparatuses 100_1 –100_n, wherein the symbol n is a positive integer larger than or equal to 2.
  • configuration (s) and function (s) of the dimmer 50 and each of the plurality of LED lighting apparatuses 100_1 –100_n can be, and are assumed to be, the same as those of the dimmer 50 and the LED lighting apparatus 100 in the embodiment of FIG. 1A.
  • a main difference between the embodiments of FIG. 1A and FIG. 1B is that the LED lighting apparatuses 100_1 –100_n in the embodiment of FIG. 1B are arranged or connected in parallel with each other, i.e., first connection terminals 101 respectively of the LED lighting apparatuses 100_1 –100_n are electrically connected together, and second connection terminals 102 respectively of the LED lighting apparatuses 100_1 –100_n are electrically connected together.
  • the input power Pin_C in FIG. 1B may be concurrently provided to every one of the LED lighting apparatuses 100_1 –100_n, which are then concurrently caused to light up. So, in some embodiments, when a dimming signal Sdim in FIG. 1B is applied or adjusted, the luminance respectively of the LED lighting apparatuses 100_1 –100_n are then concurrently caused to change. Since the dimming control of the LED lighting system 20 of FIG.
  • 1B can be implemented by adjusting or modulating a signal feature of the input power Pin, a separate signal line connected to each of the LED lighting apparatuses 100_1 –100_n and for receiving a dimming signal is not needed, thus greatly simplifying the layout of electrical wiring (s) between included elements and reducing complexity of installations thereof for control of a plurality of LED lighting apparatuses in the application environment of the LED lighting system 20.
  • FIGS. 1A and 2 are signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus. Referring to FIGS. 1A and 2, wherein FIG. 2 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus. Referring to FIGS. 1A and 2, wherein FIG. 2 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus. Referring to FIGS.
  • the external power grid EP is assumed to provide AC power as the input power Pin for example
  • the signal waveforms of FIG. 2 illustrate voltage waveforms for a (positive) half cycle of the input power Pin having an amplitude VPK for example.
  • the signal waveforms from top to bottom are respectively voltage waveforms WF1, WF2, and WF3 corresponding to three different dimming control states or situations of the luminance Lux (of the LED lighting apparatus 100 of FIG. 1A) being at its maximum Lmax, being at 50%of its maximum Lmax, and being at 17%of its maximum Lmax, respectively.
  • the dimmer of FIG. 1A may be configured to cut off the controllable electronic element at or within 1/4 cycle of the input power signal Pin and then maintain or keep the controllable electronic element at the current conduction state for the rest of the half cycle of the input power signal Pin.
  • the resulting voltage waveform has a value of zero for the phase angle of 0 -90 degrees of the input power signal Pin and then has part of a sinusoidal waveform following that for the phase angle of 90 -180 degrees of the input power signal Pin, but the invention is not limited to the forward phase-cut (i.e., the leading-edge dimming control) . Accordingly, the input power signal Pin undergoes the cutting off of phase angle performed by the dimmer 50 to produce or result in the input power signal Pin_C with a phase conduction angle of 90 degrees. There are other embodiments of modulating the input power signal Pin to have a phase-cut angle that have principles similar to the described principle of this example.
  • the dimmer 50 when the dimmer 50in response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 0 degree, meaning the input power Pin has a phase conduction angle of 180 degrees, the dimmer 50 directly provides or reproduces the input power signal Pin to the LED lighting apparatus 100 of FIG. 1A, so the input power signal Pin_C is the same as or corresponds to the input power signal Pin.
  • the dimmer 50 when the dimmer 50in response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 90 degrees, meaning the input power Pin has a phase conduction angle of 90 degrees, the dimmer 50 cuts off the power line for the phase angle of 0 -90 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of 90 -180 degrees of the input power signal Pin.
  • the effective value of the input power signal Pin_C is smaller than the effective value Vrms1 and assumed to be Vrms2, and the input power signal Pin_C of the effective value Vrms2 causes the luminance Lux of the LED module LM to be at 50%of its maximum level Lmax.
  • the dimmer 50in response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 150 degrees, meaning the input power Pin has a phase conduction angle of 30 degrees
  • the dimmer 50 cuts off the power line for the phase angle of 0 -150 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of 150 -180 degrees of the input power signal Pin.
  • the effective value of the input power signal Pin_C is smaller than the effective value Vrms2 and assumed to be Vrms3, and the input power signal Pin_C of the effective value Vrms3 causes the luminance Lux of the LED module LM to be at 17%of its maximum level Lmax.
  • the dimmer 50 of FIG. 1A can cause corresponding variation in the effective value of the input power signal Pin_C, which may be varied to be e.g. Vrms1, Vrms2, or Vrms3.
  • the caused variation in the effective value of the input power signal Pin_C is typically in positive correlation with the variation in its phase conduction angle, that is, the larger the phase conduction angle of the input power signal Pin_C the larger its effective value. Accordingly, the caused variation in the effective value of the input power signal Pin_C is typically in negative correlation with the variation in its phase-cut angle.
  • the described common way of dimming control realizes the function of dimming control by adjusting the effective value of the input power signal Pin.
  • An advantage of this common way is that because the generated driving power Sdrv varies directly corresponding to the variation in the effective value of the input power signal Pin_C, original hardware structures or parts of a regular LED lighting apparatus 100 need not be retrofitted or adapted for realizing dimming control, for which purpose mainly adding a dimmer 50 is needed in an LED lighting system.
  • the dimmer 50 in order to cause a sufficient variation in the effective value of the input power signal Pin_C for tuning the luminance/brightness of the LED module, the dimmer 50 must adjust or modulate the phase-cut angle (or the phase conduction angle) in a relative wide range to adjust the effective value of the input power signal Pin_C.
  • the relative wide range of the phase-cut angle can refer to, for example, from 0 degree to 180 degrees as illustrated in FIG. 2.
  • the operating power supply module PM might be negatively impacted by significant effects of characteristics such as total harmonic distortion (THD) and power factor (PF) such that the power conversion efficiency of the power supply module PM is significantly small or reduced, which may even cause the problem of light-flickering of the LED module LM. So, under this common way of the dimming control, it’s hard to improve the power conversion efficiency of the power supply module PM, due to such limitations of the dimmer 50.
  • TDD total harmonic distortion
  • PF power factor
  • a dimmer 50 using the described common way of realizing dimming control may not be compatible with various voltage specifications of standard power grids, such as AC voltage specifications of 120V, 230V, and 277V. Therefore a designer likely needs to adjust parameters or hardware designs according to the application environment of an LED lighting system 10, which will increase the overall production cost of products of the LED lighting system 10.
  • the present disclosure presents a new dimming control method, and an LED lighting system and an LED lighting apparatus using the same.
  • Each of the LED lighting system and LED lighting apparatus is configured to receive a dimmer-adjusted signal (also can be referred to modulated signal) produced by varying the phase-cut angle or phase conduction angle of the input power Pin, then to obtain actual dimming message by demodulating the dimmer-adjusted signal, and then according to the obtained dimming message to control circuit operation (s) of the power supply module PM to generate the driving power Sdrv.
  • a dimmer-adjusted signal also can be referred to modulated signal
  • the dimmer 50 may vary the phase-cut angle or phase conduction angle of the input power Pin within a relatively small phase angle/range so as to cause a relatively small difference between effective values respectively of the dimmer-adjusted input power Pin_C and the input power Pin provided by the external power grid EP.
  • the phase conduction angle of the input power Pin will be similar to that of the modulating input power Pin_C, and therefore the characteristics of total harmonic distortion (THD) and power factor (PF) can be maintained/controlled, meaning the power conversion efficiency of the power supply module PM may not be inhibited or hindered by the dimmer 50.
  • TDD total harmonic distortion
  • PF power factor
  • FIG. 3 is a circuit block diagram of an LED lighting apparatus according to an embodiment of the disclosure.
  • the LED lighting apparatus 200 may be applied in the LED lighting system 10 or 20 of FIGS. 1A and 1B.
  • the LED lighting apparatus 200 includes a power supply module PM and an LED module LM, wherein the power supply module PM includes a rectifying circuit 210, a filtering circuit 220, a driving circuit 230, and a demodulating circuit 240.
  • the rectifying circuit 210 is configured to receive an input power Pin_C through first and second connection terminals 101 and 102, in order to rectify the input power Pin_C and then output a rectified signal Srec through first and second rectifying output terminals 211 and 212.
  • the input power Pin_C may be or comprise an AC signal or DC signal, either type of signal can be compatible with designed operations of the LED lighting apparatus 200.
  • the rectifying circuit 210 in the power supply module PM may be omitted.
  • the rectifying circuit 210 When the rectifying circuit 210 is omitted, the first and second connection terminals 101 and 102 would be coupled directly to input terminal (s) of the filtering circuit 220, which would be the first and second rectifying output terminals 211 and 212 if the rectifying circuit 210 were present.
  • the rectifying circuit 210 may comprise a full-wave rectifying circuit, a half-wave rectifying circuit, a bridge-type rectifying circuit, or other type of rectifying circuit, and the disclosed invention is not limited to any of these types.
  • the filtering circuit 220 is electrically connected to the rectifying circuit 210, in order to electrically filter the rectified signal Srec, wherein input terminals of the filtering circuit 220 are coupled to the first and second rectifying output terminals 211 and 212 in order to receive and then electrically filter the rectified signal Srec.
  • a resulting filtered signal Sflr is output at first and second filtering output terminals 221 and 222. It’s noted that the first rectifying output terminal 211 may be regarded as the first filtering output terminal 221 and the second rectifying output terminal 212 may be regarded as the second filtering output terminal 222.
  • the filtering circuit 220 can filter out ripples of the rectified signal Srec, causing the waveform of the filtered signal Sflr to be smoother than that of the rectified signal Srec.
  • circuit configurations of the filtering circuit 220 may be designed so as to filter as to a specific frequency, for example, to filter out circuit response to a specific frequency of an input external driving signal.
  • the filtering circuit 220 is a circuit comprising at least one of a resistor, a capacitor, or an inductor, such as a parallel-connected capacitor filter or a pi-shape filter, but the invention is not limited to any of these types of filtering circuit.
  • a pi-shape filter looks like the symbol ⁇ in its shape of circuit schematic.
  • the driving circuit 230 is electrically connected to the filtering circuit 220, in order to receive, and then perform power conversion on, the filtered signal Sflr, to produce a driving power signal Sdrv, wherein input terminals of the driving circuit 230 are coupled to the first and second filtering output terminals 221 and 222 in order to receive the filtered signal Sflr and then produce the driving power signal Sdrv for driving the LED module LM to emit light.
  • the first filtering output terminal 221 may be regarded as a first driving output terminal 231 of the driving circuit 230 and the second filtering output terminal 222 may be regarded as a second driving output terminal 232 of the driving circuit 230.
  • the driving power signal Sdrv produced by the driving circuit 230 is then provided to the LED module LM through the first driving output terminal 231 and second driving output terminal 232, to cause the LED module LM to light up in response to the received driving power signal Sdrv. Further explanation of embodiment of the driving circuit 230 is as follows with reference to FIG. 4.
  • FIG. 4 is a circuit block diagram of a driving circuit according to an embodiment of the disclosure.
  • a driving circuit 330 of FIG. 4 is an embodiment of the driving circuit 230 of FIG. 3, and includes a switching control circuit 331 and a conversion circuit 332 for power conversion based on a current source, for driving the LED module LM to emit light.
  • the conversion circuit 332 includes a switching circuit PSW (also known as a power switch) and an energy storage circuit ESE.
  • the conversion circuit 332 is coupled to the first and second filtering output terminals 221 and 222 in order to receive and then convert the filtered signal Sflr, under the control by the switching control circuit 331, into a driving power signal Sdrv output at the first and second driving output terminals 231 and 232 for driving the LED module LM.
  • the driving power output by the conversion circuit 332 comprises a steady current, making the LED module LM emit steady light.
  • the driving circuit 330 may include a bias circuit 333 (not shown in FIG.
  • 4) which may be configured to generate a working voltage Vcc based on a power line voltage of the power supply module PM and to be used by the switching control circuit 331, for the switching control circuit 331 to be activated and operate in response to the working voltage Vcc.
  • the switching control circuit 331 in this embodiment of FIG. 4 is configured to perform real-time regulation or adjusting of the duty cycle of a lighting control signal Slc according to current operational states of the LED module LM, in order to conduct or cut off the switching circuit PSW according to or in response to the lighting control signal Slc.
  • the switching control circuit 331 can determine or judge a current operational state of the LED module LM by detecting one or more of an input voltage (such as a voltage level on the first connection terminal 101 or the second connection terminal 102, on the first rectifying output terminal 211, or on the first filtering output terminal 221) , an output voltage (such as a voltage level on the first driving output terminal 231) , an input current (such as a current on the input power line or flowing through the rectifying output terminal 211/212 and the filtering output terminal 221/222) , and an output current (such as a current flowing through the driving output terminal 231/232 or energy storage circuit ESE or the switching circuit PSW) .
  • an input voltage such as a voltage level on the first connection terminal 101 or the second connection terminal 102, on the first rectifying output terminal 211, or on the first filtering output terminal 221
  • an output voltage such as a voltage level on the first driving output terminal 231
  • an input current such as a current on the input power line or flowing through the rectifying output terminal 211/2
  • the energy storage circuit ESE is configured to alternate or switch its operation between being charged with energy and discharging energy, according to the state of the switching circuit PSW being conducted or cut off, in order to maintain or make the driving power signal Sdrv received by the LED module LM be stably above a predefined current value Ipred.
  • the demodulating circuit 240 of FIG. 3 has input terminals electrically connected to the first and second connection terminals 101 and 102 in order to receive an input power Pin_C, and has output terminal electrically connected to the driving circuit 230 in order to provide a dimming control signal Sdc to the driving circuit 230.
  • the demodulating circuit 240 is configured to generate the dimming control signal Sdc according to the magnitude of the phase-cut angle or conduction phase angle applied for each cycle or half-cycle of the input power signal Pin_C, wherein the switching control circuit 331 is configured to adjust its output of the lighting control signal Slc according to the dimming control signal Sdc so as to cause the driving power signal Sdrv to vary in response to variation of the lighting control signal Slc.
  • the switching control circuit 331 is configured to adjust the duty cycle of the lighting control signal Slc according to the dimming control signal Sdc, so as to cause the driving power signal Sdrv to increase or decrease in response to a luminance message indicated by the dimming control signal Sdc.
  • the switching control circuit 331 may increase the duty cycle of the lighting control signal Slc according to the dimming control signal Sdc, so as to cause the energy storage circuit ESE to output a higher driving power signal Sdrv for the LED module LM.
  • the switching control circuit 331 may decrease the duty cycle of the lighting control signal Slc according to the dimming control signal Sdc, so as to cause the energy storage circuit ESE to output a lower driving power signal Sdrv for the LED module LM.
  • the demodulation process performed by the demodulating circuit 240 may comprise a signal conversion method such as sampling, time counting, or mapping or functioning between signals. For example, for each cycle or half cycle of the input power signal Pin_C, the demodulating circuit 240 may count for a period, sample the input power signal Pin_C within the period to obtain the time length of the input power signal Pin_C remains at a zero voltage level. Since the cycle of the input power signal Pin_C is fixed, the phase-cut angle can be obtained by calculating the ratio of the time length of the input power signal Pin_C remains at the zero voltage level to the cycle of the input power signal Pin_C, which means the time length of the time length of the input power signal Pin_C remains at the zero voltage level corresponds to the phase-cut angle directly.
  • the demodulating circuit 240 can convert the phase-cut angle into a dimming control signal Sdc capable of controlling the switching control circuit 331 by mapping the time length of the input power signal Pin_C remains at the zero voltage level, linearly or nonlinearly, into a voltage level. And the range of the voltage level after mapping may be selected according to the voltage rating of the switching control circuit 331, and is for example between 0V and 5V. Further description of signal waveforms and circuit operations in an LED lighting system including the LED lighting apparatus 200 under different dimming control states or situations is as follows with reference to FIG. 5, which is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of luminance according to an embodiment of the disclosure.
  • the dimmer 50 may for example vary the phase-cut angle of the input power signal Pin within a dimming phase range D_ITV.
  • the signal waveforms from top to bottom are respectively a voltage waveform WF4 showing the dimming phase angle D_ITV, a voltage waveform WF5 corresponding to the dimming control state of the luminance Lux (of the LED lighting apparatus 200 of FIG. 3) being at its maximum Lmax, and a voltage waveform WF6 corresponding to the dimming control state of the luminance Lux being at its minimum Lmin.
  • the dimming phase range D_ITV is the difference between a maximum phase-cut angle C2 and a minimum phase-cut angle C1, which minimum phase-cut angle C1 may be any number (such as 1, 2, or 3) of degrees in the range of between 0 and 15 degrees and which maximum phase-cut angle C2 may be any number (such as 21, 22, or 23) of degrees in the range of between 20 and 45 degrees, but the present invention is not limited to any of these ranges.
  • the dimming phase range D_ITV may be for example a phase difference between 0 and 45 degrees, between 5 and 45 degrees, between 5 and 20 degrees, between 15 and 20 degrees, or between 15 and 45 degrees, depending on the design needs.
  • the choice of the maximum phase-cut angle C2 is based on two factors or principles.
  • the first factor is that the size of the dimming phase range D_ITV should afford distinguishable states of luminance after mapping performed by the demodulating circuit 240.
  • the second factor is that when the dimmer 50 produces the input power signal Pin_C having the maximum phase-cut angle C2, the characteristics of total harmonic distortion (THD) and power factor (PF) of the power supply module PM of FIG.
  • the THD and PF can still be maintained/controlled, for example having values of the THD and PF no smaller than 80%of values of the THD and PF when the dimmer 50 produces the input power signal Pin_C having the minimum phase-cut angle C1, or preferably the value of the THD is larger than 25 and the value of the PF is larger than 0.9.
  • the dimmer 50 in response to the dimming signal Sdim modulates the input power Pin to result in the minimum phase-cut angle C1, meaning the input power signal Pin_C has a conduction phase angle of (180-C1) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 –C1 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C1 -180 degrees of the input power signal Pin.
  • the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its maximum Lmax, according to the input power signal Pin_C having the minimum phase-cut angle C1.
  • the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the maximum Lmax.
  • the dimmer 50 in response to the dimming signal Sdim modulates the input power Pin to result in the maximum phase-cut angle C2, meaning the input power Pin_C2 has a conduction phase angle of (180-C2) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 –C2 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C2 -180 degrees of the input power signal Pin.
  • the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its minimum Lmin, according to the input power signal Pin_C having the maximum phase-cut angle C2.
  • the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the minimum Lmin.
  • the minimum luminance Lmin is for example about 10%of the maximum luminance Lmax.
  • phase-cut angle or phase conduction angle is applied for dimming control
  • variation of the phase-cut angle or conduction phase angle of the resulting input power signal Pin_C in this embodiment of FIG. 5 is merely used as a reference signal indicative of a dimming message, rather than reflecting the effective value of the input power signal Pin_C in the luminance of the lighting LED module LM.
  • the chosen dimming phase range D_ITV would be apparently smaller than that under the dimming control method of the embodiment of FIG. 2.
  • the effective value of the resulting input power signal Pin_C will not be much different.
  • the effective value of the resulting input power signal Pin_C having the maximum phase-cut angle C2 such as the effective value of the voltage waveform WF6 of FIG. 5
  • the effective value of the resulting input power signal Pin_C having the minimum phase-cut angle C1 such as the effective value of the voltage waveform WF5 of FIG. 5.
  • the scope ratio of the effective value of the modulated input power signal Pin_C is not correlated with the scope ratio of the luminance of the lighting LED module. In some preferable embodiments, the scope ratio of the effective value of the modulated input power signal Pin_C is smaller than the scope ratio of the luminance of the lighting LED module. And in some preferable embodiments, the scope ratio of the effective value of the modulated input power signal Pin_C is smaller than or equal to 2, and the scope ratio of the luminance of the lighting LED module is larger than or equal to 10.
  • the described positive correlation of the luminance Lux of the LED module LM with respect to the variation of the phase-cut angle is only exemplary but not limiting, and in other embodiments the luminance Lux of the LED module LM may be in negative correlation with the cut-off phase angle of the modulated input power signal Pin_C.
  • the dimmer 50 in response to a dimming signal Sdim modulates the input power Pin to result in the minimum cut-off phase angle C1, meaning the input power Pin has a conduction phase angle of (180-C1) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 ⁇ C1 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C1 ⁇ 180 degrees of the input power signal Pin.
  • the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its minimum Lmin, according to the modulated input power signal Pin_C having the cut-off phase angle C1.
  • the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the minimum luminance Lmin.
  • the dimmer 50 in response to a dimming signal Sdim modulates the input power Pin to result in the cut-off phase angle C2, meaning the input power Pin has a conduction phase angle of (180-C2) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 to C2 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C2 degrees to 180 degrees of the input power signal Pin.
  • the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its maximum Lmax, according to the modulated input power signal Pin_C having the cut-off phase angle C2.
  • the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the maximum Lmax.
  • the cut-off phase angle C2 is larger than the cut-off phase angle C1.
  • the luminance Lux of the LED module LM is in negative correlation with the cut-off phase angle of the modulated input power Pin_C
  • the luminance Lux of the LED module LM is in positive correlation with the cut-off phase angle of the modulated input power Pin_C
  • the luminance Lux of the LED module LM is in positive correlation with the effective value of the modulated input power Pin_C
  • the luminance Lux of the LED module LM is in negative correlation with the effective value of the modulated input power Pin_C.
  • the luminance Lux of the LED module LM can only be in positive correlation with the effective value of the modulated input power Pin_C.
  • the type of correlation between the luminance Lux of the LED module LM and the effective value or the phase-cut angle of the modulated input power Pin_C may be selected preferably according to actual or practical needs. Therefore, according to this disclosure, for example, it may be that the luminance Lux of the LED module LM is not directly proportional to the effective value of the modulated input power Pin_C.
  • FIG. 6 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to an embodiment of the disclosure
  • FIG. 7 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to another embodiment of the disclosure.
  • the demodulating circuit 240 of this embodiment of FIG. 6 is configured to obtain and transform a dimming message by performing a signal processing method similar to analog signal processing. It can be seen from FIG. 6 that when the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C is varied within the range of between the minimum phase-cut angle C1 and the maximum phase-cut angle C2, the voltage level of the dimming control signal Sdc is correspondingly varied within the range of between voltages V1 and V2.
  • phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C varied within the dimming range of phase-cut angle is in linear positive correlation with the voltage level of the dimming control signal Sdc.
  • the demodulating circuit 240 when judging that the dimmer-adjusted input power signal Pin_C has the minimum phase-cut angle C1, the demodulating circuit 240 correspondingly generates a dimming control signal Sdc of the voltage level V1; and similarly, when judging that the dimmer-adjusted input power signal Pin_C has the maximum phase-cut angle C2, the demodulating circuit 240 correspondingly generates a dimming control signal Sdc of the voltage level V2.
  • the dimming control signal Sdc in linear positive correlation with the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C is provided to the switching control circuit 331 to cause the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing it to have a corresponding luminance Lux.
  • the luminance Lux of the LED module LM is in linear negative correlation with the voltage level of the dimming control signal Sdc. As shown in FIG.
  • the switching control circuit 331 adjusts the lighting control signal Slc accordingly to cause the LED module LM to light with a luminance La when being driven by the driving power signal Sdrv.
  • the luminance La is inversely proportional to the voltage level Va of the dimming control signal Sdc, and can be expressed by, but not limited to,
  • the above described mechanism of generating a dimming control signal Sdc in order to reach a luminance Lux of the lighting LED module LM is only an embodiment to illustrate a signal conversion method, similar to analog signal processing, of how the demodulating circuit 240 obtains or extracts a signal feature, such as the phase-cut angle, of the dimmer-adjusted input power signal Pin_C and then transforms/maps the signal feature into a dimming control signal Sdc for enabling the driving circuit 230 to adjust the luminance Lux of the LED module LM according to the dimming control signal Sdc.
  • the above described mechanism is not intended to limit the scope of the disclosed invention herein.
  • the relationship between the dimming control signal Sdc and the phase-cut angle ANG_pc may be a non-linear relationship, such as an exponential relationship.
  • the relationship between the dimming control signal Sdc and the luminance Lux may be a non-linear relationship.
  • the disclosed invention herein is not limited to any of the described relationship herein.
  • the relationship between the phase-cut angle ANG_pc and the voltage level of the dimming control signal Sdc may be a negative correlation.
  • the relationship between the luminance La and the voltage level Va may be a positive correlation.
  • the demodulating circuit 240 of this embodiment of FIG. 7 is configured to obtain and transform a dimming message by performing a signal processing method similar to digital signal processing.
  • the dimming control signal may have a default number of different signal states corresponding to variations or values of the phase-cut angle, in order to control dimming of the LED module to the default number of different dimming levels respectively. It can be seen from FIG.
  • the dimming control signal Sdc can have 8 different signal states D1-D8 according to variation of the phase-cut angle ANG_pc. So the dimming range of between the minimum phase-cut angle C1 and the maximum phase-cut angle C2 may be divided into 8 sub-ranges among which the phase-cut angle ANG_pc can be varied and corresponding to the 8 different signal states D1-D8 of the dimming control signal Sdc respectively.
  • the different signal states of the dimming control signal Sdc may be indicated or represented by different voltage levels, wherein for example the signal state D1 of the dimming control signal Sdc corresponds to a voltage level of 1V and the signal state D8 corresponds to a voltage level of 5V.
  • the different signal states of the dimming control signal Sdc may be indicated or represented by logical voltage levels coded in multiple bits, wherein for example the signal state D1 of the dimming control signal Sdc corresponds to a logical voltage level coded as the three-bit “000” and the signal state D8 corresponds to a logical voltage level coded as the three-bit “111” .
  • the dimming control signal Sdc in the range of the 8 different signal states D1-D8 is provided to the switching control circuit 331 to cause the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing it to have a corresponding luminance Lux.
  • different values of the luminance Lux of the LED module LM are in one-to-one correspondence with the 8 different signal states D1-D8.
  • the 8 different signal states D1-D8 correspond to 100%, 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, and 10%of the maximum value Lmax of the luminance Lux respectively.
  • the described embodiment of logical voltage level representation uses three bits to code the distinguish ability of the 8 different signal states D1-D8 of the dimming control signal Sdc produced by the demodulating circuit 240, which is also known as an 8-section dimming, but the present invention disclosed herein is not limited to this number of bits.
  • FIG. 8 is a signal waveform diagram of signal waveforms of input power signal of an LED lighting apparatus under different power grid voltages according to an embodiment of the disclosure. Referring to the FIGS. 1A, 3, and 8, it can be seen that no matter whether the peak voltage or amplitude of the input power Pin is a1 or a2, if the dimmer 50 modulates the input power Pin to result in a phase-cut angle C3, the phase angle/interval of the zero voltage level in the dimmer-adjusted input power Pin_C (i.e. the phase angle between 0 degree and C3) generated by the dimmer 50 is the same.
  • the demodulating circuit 240 can demodulate any dimmer-adjusted input power Pin_C of the same phase-cut angle to produce the same dimming control signal Sdc. Therefore, no matter what the voltage amplitude of the external power grid EP supplying the LED lighting system 10 is, upon receiving the same dimming signal Sdim, the LED lighting system 10 can cause the LED lighting apparatus 100 to light with the same luminance or color temperature, and thus the LED lighting system 10 is compatible with various applications with different types of external power grid EP.
  • dimming of an LED module (with respect to e.g. its luminance or color temperature) is performed or achieved in response to the cut-off phase angle of the modulated input power signal Pin_C, but largely not in response to the peak voltage or amplitude of the external power grid (as EP) .
  • the described way of dimming control illustrated by FIG. 2 since the effective value of the dimmer-adjusted input power Pin_C even of the same phase-cut angle significantly varies according to different voltage amplitudes of types of applied input power, the described way of dimming control illustrated by FIG. 2 can only be customized or designed specifically for the actual application environment of an LED lighting system 10, which resulting design is not compatible with different types of applied input power.
  • FIG. 9 is a flow chart of steps of a dimming control method for an LED lighting system according to an embodiment of the disclosure. Referring to both FIGS. 1A and 9, a whole dimming control method is described here from the perspective of the LED lighting system 10.
  • the dimmer 50 modulates the input power Pin according to a dimming signal Sdim, in order to generate a dimmer-adjusted input power signal Pin_C (step S110) , wherein the dimmer-adjusted input power signal Pin_C carries a signal feature indicative of a dimming message, which the signal feature is for example a phase-cut angle or phase conduction angle of the dimmer-adjusted input power signal Pin_C.
  • the dimmer-adjusted input power signal Pin_C is then provided to the LED lighting apparatus 100, causing the LED lighting apparatus 100 to perform power conversion and light up the internal LED module according to the received input power Pin_C (step S120) .
  • the LED lighting apparatus 100 captures or extracts a signal feature of the received input power Pin_C (step S130) , and then demodulates the signal feature to obtain a corresponding dimming message (step S140) . And then the LED lighting apparatus 100 adjusts operation of power conversion according to the demodulated dimming message, in order to change/adjust the luminance or color temperature of the LED module (step S150) .
  • the step of obtaining a signal feature of the received input power Pin_C (step S130) , and the step of demodulating the received input power Pin_C (step S130) may be performed or achieved by a demodulating circuit 240 in the LED lighting apparatus 100/200.
  • the step of causing the LED lighting apparatus 100 to perform power conversion and light up the internal LED module according to the received input power Pin_C (step S120) , and the step of adjusting operation of power conversion according to the demodulated dimming message in order to adjust the luminance of the LED module (step S150) may be performed or achieved by a driving circuit 230 in the LED lighting apparatus 100/200.
  • FIG. 10 is a flow chart of steps of a dimming control method for an LED lighting apparatus according to an embodiment of the disclosure.
  • a rectifying circuit 210 and a filtering circuit 220 perform a rectification and a filtering on the received input power Pin_C respectively in order to generate a filtered signal Sflr for a driving circuit 230 (step S210) .
  • the driving circuit 230 then performs power conversion on the received filtered signal Sflr and then generates a driving power signal Sdrv for a later-stage LED module (step S220) .
  • a demodulating circuit 240 captures or extracts a signal feature of the received input power Pin_C (step S230) , and then demodulates the signal feature to obtain a dimming message and generate a corresponding dimming control signal Sdc (step S240) .
  • the driving circuit 230 adjusts operation of power conversion according to the dimming control signal Sdc, in order to adjust the magnitude of the driving power Sdrv in response to the obtained dimming message (step S250) , for adjusting/changing the luminance or color temperature of the LED module LM.
  • a way to adjust power conversion operation of a driving circuit 230 by using a dimming control signal Sdc may be an analog-signal control method.
  • the dimming control signal Sdc may be an analog signal used to control a reference value of voltage or current of the driving circuit 230 in an analog way, so as to adjust the magnitude of the driving power signal Sdrv in an analog way.
  • a way to adjust power conversion operation of a driving circuit 230 by using a dimming control signal Sdc may be a digital-signal control method.
  • the dimming control signal Sdc may have different duty cycles corresponding to variations or values of the phase-cut angle respectively.
  • the dimming control signal Sdc may be a digital signal having a first state (as a high logical state) and a second state (as a low logical state) .
  • the first state and the second state may be used to control the magnitude of the driving power signal Sdrv of the driving circuit 230 in a digital way, such that at the first state of the dimming control signal Sdc the driving circuit 230 outputs a current while at the second state of the dimming control signal Sdc the driving circuit 230 stops outputting a current, for performing dimming of the LED module LM.
  • the dimming control signal Sdc does not transmit on the power loop which the driving power signal passing through. That is, the dimming control signal Sdc does not use for driving the LED module directly.
  • the current intensity or the power level of the dimming control signal Sdc is much less than the driving power signal Sdrv. In some embodiments, the current intensity or the power level of the driving power signal Sdrv is at least 10 times larger than the dimming control signal Sdc.
  • the described embodiments in this disclosure related to modulating the input power to result in a phase cut-off or conduction angle all use the leading edge phase cutting (meaning the phase cutting of the input power signal starts from the phase of 0 degree) for example, the disclosed invention is not limited to this type of phase cutting.
  • the dimmer can instead use the trailing edge phase cutting, i.e. the phase cutting of the input power signal starts from a particular positive phase to the phase of 180 degrees, as a way to modulate the input power.
  • the described embodiments in this disclosure all aim to adjust the luminance of the lighting LED module
  • the described methods in these embodiments can be adapted or analogized for adjusting the color temperature of the lighting LED module.
  • the described way of dimming control can achieve the adjusting of color temperature of the LED lighting apparatus.
  • the rectifying circuit in the power supply module there may be a dual rectifying circuit.
  • First and second rectifying circuits of the dual rectifying circuit are respectively coupled to the two end caps disposed on two ends of the LED apparatus.
  • the dual rectifying circuit is applicable to the drive architecture of dual-end power supply.
  • the dual rectifying circuit may comprise, for example, two half-wave rectifier circuits, two full-wave bridge rectifying circuits or one half-wave rectifier circuit and one full-wave bridge rectifying circuit.
  • the pin in the LED apparatus there may be two pins in a single end (the other end has no pin) , two pins in corresponding ends of two ends, or four pins in corresponding ends of two ends.
  • the designs of two pins in single end and two pins in corresponding ends of two ends are applicable to a single rectifying circuit design of the rectifying circuit.
  • the design of four pins in corresponding ends of two ends is applicable to a dual rectifying circuit design of the rectifying circuit, and the external driving signal can be received by two pins in only one end or any pin in each of two ends.
  • the filtering circuit of the power supply module there may be a single capacitor, or ⁇ filter circuit.
  • the filtering circuit filers the high frequency component of the rectified signal for providing a DC signal with a low ripple voltage as the filtered signal.
  • the filtering circuit also further comprises the LC filtering circuit having a high impedance for a specific frequency for conforming to current limitations in specific frequencies of the UL standard.
  • the filtering circuit according to some embodiments further comprises a filtering unit coupled between a rectifying circuit and the pin (s) for reducing the EMI resulted from the circuit (s) of the LED apparatus.
  • the LED apparatus may omit the filtering circuit in the power supply module when the external driving signal is a DC signal.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

LED lighting systems, an LED lighting apparatus, and LED dimming method are provided. The LED lighting system includes a rectifying circuit, a filtering circuit, a driving circuit, an LED module, and a demodulating circuit. The demodulating circuit is coupled to the first and second connection terminals, and is configured to obtain a signal feature of the input power signal and then demodulate the signal feature in order to obtain a corresponding dimming message. The demodulating circuit is configured to generate a dimming control signal according to the obtained dimming message and then provide the dimming control signal for the driving circuit, and the driving circuit is configured to adjust its operation of power conversion according to the received dimming control signal, in order to change/adjust the magnitude of the driving power signal in response to the dimming message. The signal feature is a phase-cut angle of the input power signal, and wherein the phase-cut angle is not larger than 90 degrees when the LED module lighting up with a minimum luminance.

Description

LED LIGHTING SYSTEM, APPARATUS AND DIMMING METHOD TECHNICAL FIELD
The disclosed embodiments relate to the features of light emitting diode (LED) lighting. More particularly, the disclosed embodiments describe various improvements for LED lighting systems, an LED lighting apparatus, and LED dimming method thereof.
BACKGROUND
LED lighting technology is rapidly developing to replace traditional incandescent and fluorescent lighting. LED tube lamps are mercury-free in comparison with fluorescent tube lamps that need to be filled with inert gas and mercury. Thus, it is not surprising that various types of LED lamp, such as an LED tube lamp, an LED bulb lamp, an LED filament lamp, a high power LED lamp, an integral LED lamp, etc., are becoming a highly desired illumination option among different available lighting systems used in homes and workplaces, which used to be dominated by traditional lighting options such as compact fluorescent light bulbs (CFLs) and fluorescent tube lamps. Benefits of LED tube lamps include improved durability and longevity and far less energy consumption. Therefore, when taking into account all factors, they would typically be considered as a cost effective lighting option.
In common solutions for LED lighting, an issue that has been widely discussed is about how to achieve dimming control of the luminance of an LED lamp. In current dimming techniques, a common way is to perform phase cutting to adjust the effective value, i.e., root-mean-square (RMS) value, of an input voltage for an LED lamp, in order to achieve the dimming effects. However, because such a common way of dimming control typically significantly affects or interferes with the completeness or accuracy of the waveform of the modulated input voltage, such a common way may inevitably cause problems such as lowered lighting efficiency or light-flickering of the LED lamp under this way of dimming control.
In view of above mentioned issues, an invention is disclosed herein and illustrated by its disclosed embodiments.
SUMMARY
It’s specially noted that the present disclosure may actually include one or more inventions claimed currently or not yet claimed, and for avoiding confusion due to unnecessarily distinguishing between those possible inventions at the stage of preparing the specification, the possible plurality of inventions herein may be collectively referred to as “the (present) invention” herein.
Various embodiments are summarized in this section, and may be described with respect to the “present invention, ” which terminology is used to describe certain presently disclosed embodiments, whether claimed or not, and is not necessarily an exhaustive description of all possible embodiments, but rather is merely a summary of certain embodiments. Certain of the embodiments described below as various aspects of the “present invention” can be combined in different manners to form an LED lighting system, LED lighting apparatus, or a portion thereof.
According to certain embodiments, the disclosure presents an LED lighting system including a dimmer and at least one LED lighting apparatus. The dimmer receives input power from an external power grid and varies a phase-cut angle of the input power within a dimming phase range/interval according to a dimming signal, in order to generate a dimmer-adjusted input power. The LED lighting apparatus receives the dimmer-adjusted input power and then is driven to light according to the dimmer-adjusted input power, wherein a maximum phase-cut angle of the dimming phase range/interval is less than 90 degrees.
In some embodiments of the disclosure, upon receiving the dimmer-adjusted input power of the maximum phase-cut angle, the LED lighting apparatus is then driven to light with a maximum value or minimum value of its lighting luminance.
In some embodiments of the disclosure, the maximum phase-cut angle of the dimming phase range/interval is smaller than 45 degrees.
In some embodiments of the disclosure, the dimming phase range/interval is a phase angle of between 15 and 20 degrees.
According to certain embodiments, the disclosure presents an LED lighting apparatus configured to light in response to an input power signal and including a power supply module and an LED module. The power supply module is configured to receive the input power signal in order to generate a driving power signal. The LED module is configured to light in response to the driving power signal. The power supply module includes a demodulating circuit. The demodulating circuit is configured to receive the input power signal and demodulate the received input power signal, in order to generate a dimming control signal for controlling luminance of the LED module. The demodulating circuit demodulates the input power signal based on a phase-cut angle of the input power signal.
In some embodiments of the disclosure, the demodulating circuit is configured to obtain a dimming message corresponding to the phase-cut angle, and then to generate the dimming control signal according to the dimming message.
In some embodiments of the disclosure, the phase-cut angle is smaller than 90 degrees when the LED module reaches a minimum luminance.
In some embodiments of the disclosure, the phase-cut angle is smaller than 45 degrees when the LED module reaches the minimum luminance.
In some embodiments of the disclosure, the LED module is dimmed to have a minimum luminance when the phase-cut angle is selected from one of the ranges of between 0 and 45 degrees, between 5 and 45 degrees, between 5 and 20 degrees, between 15 and 20 degrees, and between 15 and 45 degrees.
In some embodiments of the disclosure, a dimming level of the LED module is correlated to the phase-cut angle.
In some embodiments of the disclosure, the dimming level of the LED module is substantially irrelevant to the peak voltage of the input power signal.
In some embodiments of the disclosure, the dimming level of the LED module is substantially irrelevant to an effective value of the input power signal.
In some embodiments of the disclosure, the dimming level of the LED module is not directly proportional to an effective value of the input power signal.
In some embodiments of the disclosure, the effective value refers to root-means-square (RMS) value.
In some embodiments of the disclosure, ascope ratio of the effective value of the input power signal is smaller than a scope ratio of the luminance of the LED module, wherein the scope ratio of the effective value refers to the ratio of the maximum value to the minimum value of the effective value of the input power signal, and the scope ratio of the luminance refers to the ratio of the maximum value to the minimum value of the luminance.
In some embodiments of the disclosure, the scope ratio of the effective value of the modulated input power signal is smaller than or equal to 2, and the scope ratio of the luminance of the LED module is larger than or equal to 10.
In some embodiments of the disclosure, the phase-cut angle is varied within a default phase range such that the total harmonic distortion of the power supply module is smaller than 25%and/or the power factor of the power supply module is larger than 0.9.
In some embodiments of the disclosure, the scope ratio of the luminance of the LED module is larger than or equal to 10.
In some embodiments of the disclosure, the luminance of the LED module is negative correlated to the phase-cut angle of the modulated input power signal.
In some embodiments of the disclosure, the luminance of the LED module is in negative correlation with the voltage level of the dimming control signal.
In some embodiments of the disclosure, the voltage level of the dimming control signal is in positive correlation with the phase-cut angle.
In some embodiments of the disclosure, the phase-cut angle is varied within a default phase range such that a total harmonic distortion of the power supply module is smaller than 25%and/or a power factor of the power supply module is larger than 0.9.
In some embodiments of the disclosure, the total harmonic distortion of the power supply module is smaller than 25%when the phase-cut angle of the input power  signal corresponds to a minimum luminance.
In some embodiments of the disclosure, the power factor of the power supply module is larger than 0.9 when the phase-cut angle of the input power signal corresponds to a minimum luminance.
In some embodiments of the disclosure, the demodulating circuit is configured to demodulate the phase-cut angle by counting for a period, sampling the input power signal within the period, and is configured to generate the dimming control signal according to the demodulated phase-cut angle.
In some embodiments of the disclosure, the LED lighting apparatus performing analog dimming or digital dimming of the LED module based on the dimming control signal.
In some embodiments of the disclosure, the analog dimming is current-control dimming.
In some embodiments of the disclosure, the digital dimming is PWM-control dimming.
In some embodiments of the disclosure, the dimming control signal has a default number of different signal states corresponding to the phase-cut angle, in order to control dimming of the LED module to the default number of different dimming levels respectively.
In some embodiments of the disclosure, the power supply module further includes a rectifying circuit and a filtering circuit. The rectifying circuit configured to rectify the input power signal to produce a rectified signal. The filtering circuit coupled to the rectifying circuit and configured to electrically filter the rectified signal to produce a filtered signal.
In some embodiments of the disclosure, the power supply module further comprises a dimming switch configured for conducting or cutting off the driving power signal according to the dimming control signal, for dimming of the LED module.
In some embodiments of the disclosure, the power supply module further includes a driving circuit. The driving circuit is coupled to the filtering circuit and  configured to perform power conversion on the filtered signal to produce the driving power signal.
In some embodiments of the disclosure, the driving circuit is configured to adjust its operation of power conversion according to the dimming control signal, in order to adjust the magnitude of the driving power signal in response to the dimming message.
the driving circuit includes a power switch and an energy storage circuit; the power switch is configured to control switching between operations of the energy storage circuit for performing power conversion on the filtered signal, in order to produce the driving power signal; and the power switch is configured for adjusting the magnitude of the driving power signal in response to the dimming control signal, for dimming of the LED module.
In some embodiments of the disclosure, the input power signal is phase cut from a leading-edge or a trailing-edge to form the phase-cut angle.
In some embodiments of the disclosure, the dimming control signal does not transmit in a power loop which the driving power signal passing through.
According to certain embodiments, an LED lighting system including a dimmer and an LED lighting apparatus is provided. The dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a dimmer-adjusted input power signal. The LED lighting apparatus as mentioned above paragraph [0011] is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal.
In some embodiments of the disclosure, the dimmer includes a controllable electronic element configured to adjust the phase-cut angle in response to the dimming signal in order to produce the modulated input power signal, wherein the controllable electronic element comprises a bidirectional triode thyristor, a single-chip microcomputer, or a transistor.
According to certain embodiments, an LED lighting system including a dimmer and an LED lighting apparatus is provided. The dimmer is configured to receive an input  power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a modulated input power signal. The LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal. A dimming level of the LED lighting apparatus is varied along with a phase-cut angle of the dimmer-adjusted input power signal. A scope ratio of an effective value of the dimmer-adjusted input power signal is smaller than a scope ratio of the luminance of the LED lighting apparatus. The scope ratio of the effective value refers to the ratio of the maximum value to the minimum value of the effective value of the dimmer-adjusted input power signal, and the scope ratio of the luminance refers to the ratio of maximum value to the minimum value of the luminance.
In some embodiments of the disclosure, the scope ratio of the effective value of the modulated input power signal is smaller than or equal to 2, and the scope ratio of the luminance of the LED module is larger than or equal to 10.
In some embodiments of the disclosure, the dimmer controls the phase-cut angle to vary within a default phase range such that the total harmonic distortion of the power supply module is smaller than 25%and/or the power factor of the power supply module is larger than 0.9.
In some embodiments of the disclosure, the scope ratio of the luminance of the LED module is larger than or equal to 10.
According to certain embodiments, an LED lighting system including a dimmer and an LED lighting apparatus is provided. The dimmer is configured to receive an input power signal from an external power grid, and is configured to modulate the input power signal to result in a phase-cut angle according to a dimming signal, in order to produce a dimmer-adjusted input power signal. The LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal, The phase-cut angle is varied within a default phase range, in order to cause the LED lighting apparatus to have different dimming levels corresponding to the default phase range, A total harmonic distortion of the LED  lighting apparatus is smaller than 25%and/or a power factor of the LED lighting apparatus is larger than 0.9 under all of the dimming levels.
In some embodiments of the disclosure, the total harmonic distortion is smaller than 25%when the LED lighting apparatus illuminates in a dimming level corresponding to a minimum luminance.
In some embodiments of the disclosure, the power factor is larger than 0.9 when the LED lighting apparatus illuminates in a dimming level corresponding to a minimum luminance.
According to certain embodiments, an LED lighting system including a dimmer and at least one LED lighting apparatus is provided. The dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle within a default phase range according to a dimming signal, in order to produce a dimmer-adjusted input power signal. The LED lighting apparatus is configured to receive the dimmer-adjusted input power signal and to be driven to emit light according to the dimmer-adjusted input power signal, in which the maximum cut-off phase angle of the default phase range is smaller than 90 degrees.
In some embodiments of the disclosure, the LED lighting apparatus is configured to light with its maximum or minimum luminance upon receiving the dimmer-adjusted input power signal of the maximum phase-cut angle.
In some embodiments of the disclosure, the maximum phase-cut angle of the default phase range is smaller than 45 degrees.
In some embodiments of the disclosure, the default phase range is between 15 and 20 degrees.
According to certain embodiments, an LED lighting system including a dimmer and at least one LED lighting apparatus is provided. The dimmer is configured to receive an input power signal from an external power grid, and configured to modulate the input power signal to result in a phase-cut angle within a default phase range according to a dimming signal, in order to produce a dimmer-adjusted input power signal. The at least one LED lighting apparatus configured to receive the dimmer-adjusted input power  signal and to be driven to emit light according to the dimmer-adjusted input power signal. The maximum phase-cut angle within the default phase range is smaller than 90 degrees.
In some embodiments of the disclosure, the maximum phase-cut angle within the default phase range is smaller than 45 degrees.
In some embodiments of the disclosure, the default phase range is between 15 degrees and 20 degrees.
According to certain embodiments, the disclosure also presents an LED lighting apparatus including a rectifying circuit, a filtering circuit, a driving circuit, an LED module, and a demodulating circuit. The rectifying circuit is configured to receive an input power through first and second connection terminals, in order to rectify the input power and then output a rectified signal. The filtering circuit is coupled to the rectifying circuit, in order to electrically filter the rectified signal to produce a filtered signal. The driving circuit is coupled to the filtering circuit, in order to perform power conversion on the filtered signal to produce a driving power. The LED module is coupled to the driving circuit and is configured to light up and emit light according to the received driving power. The demodulating circuit is coupled to the first and second connection terminals, and is configured to obtain or extract a signal feature of the input power signal and then demodulate the signal feature in order to obtain a corresponding dimming message. The demodulating circuit then generates a dimming control signal according to the obtained dimming message and then provides the dimming control signal for the driving circuit. And the driving circuit adjusts its operation of power conversion according to the received dimming control signal, in order to change/adjust the magnitude of the driving power in response to the dimming message.
Benefits or advantages resulting from the disclosed way (s) of dimming control herein may include a benefit that dimming control is achieved while maintaining or not hindering power conversion efficiency of the LED lighting apparatus.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1A is a block diagram of an LED lighting system according to an embodiment of the disclosure;
FIG. 1B is a block diagram of an LED lighting system according to another embodiment of the disclosure;
FIG. 2 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus;
FIG. 3 is a circuit block diagram of an LED lighting apparatus according to an embodiment of the disclosure;
FIG. 4 is a circuit block diagram of a driving circuit according to an embodiment of the disclosure;
FIG. 5 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of luminance according to an embodiment of the disclosure;
FIG. 6 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to an embodiment of the disclosure;
FIG. 7 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to another embodiment of the disclosure;
FIG. 8 is a signal waveform diagram of signal waveforms of input power signal of an LED lighting apparatus under different power grid voltages according to an embodiment of the disclosure;
FIG. 9 is a flow chart of steps of a dimming control method for an LED lighting system according to an embodiment of the disclosure; and
FIG. 10 is a flow chart of steps of a dimming control method for an LED lighting apparatus according to an embodiment of the disclosure.
DETAILED DESCRIPTION
The present disclosure provides a novel LED lighting system, an LED lighting apparatus, and a dimming control method related thereto. The present disclosure will  now be described in the following embodiments with reference to the drawings. The following descriptions of various embodiments of this invention are presented herein for purpose of illustration and giving examples only. It is not intended to be exhaustive or to be limited to the precise form disclosed. These example embodiments are just that –examples –and many implementations and variations are possible that do not require the details provided herein. It should also be emphasized that the disclosure provides details of alternative examples, but such listing of alternatives is not exhaustive. Furthermore, any consistency of detail between various examples should not be interpreted as requiring such detail –it is impracticable to list every possible variation for every feature described herein. The language of the claims should be referenced in determining the requirements of the invention.
In the drawings, the size and relative sizes of components may be exaggerated for clarity. Like numbers refer to like elements throughout.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a" , "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items and may be abbreviated as "/" .
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, or steps, these elements, components, regions, layers, and/or steps should not be limited by these terms. Unless the context indicates otherwise, these terms are only used to distinguish one element, component, region, layer, or step from another element, component, region, or step, for example as a naming convention. Thus, a first element, component, region, layer, or step discussed below in one section of the specification could be termed a second element, component, region, layer, or step in another section of the specification or in the claims without departing from the teachings of the present invention. In addition, in certain cases, even if a term is not described using “first, ” “second, ” etc., in the  specification, it may still be referred to as “first” or “second” in a claim in order to distinguish different claimed elements from each other.
It will be further understood that the terms "comprises" and/or "comprising, " or "includes" and/or "including" when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that when an element is referred to as being "connected" or "coupled" to or “on” another element, it can be directly connected or coupled to or on the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between, " "adjacent" versus "directly adjacent, " etc. ) . However, the term “contact, ” as used herein refers to direct connection (i.e., touching) unless the context indicates otherwise.
Embodiments described herein will be described referring to plan views and/or cross-sectional views by way of ideal schematic views. Accordingly, the exemplary views may be modified depending on manufacturing technologies and/or tolerances. Therefore, the disclosed embodiments are not limited to those shown in the views, but include modifications in configuration formed on the basis of manufacturing processes. Therefore, regions exemplified in figures may have schematic properties, and shapes of regions shown in figures may exemplify specific shapes of regions of elements to which aspects of the invention are not limited.
Spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element (s) or feature (s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the  figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Terms such as “same, ” “equal, ” “planar, ” or “coplanar, ” as used herein when referring to orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but are intended to encompass nearly identical orientation, layout, location, shapes, sizes, amounts, or other measures within acceptable variations that may occur, for example, due to manufacturing processes. The term “substantially” may be used herein to emphasize this meaning, unless the context or other statements indicate otherwise. For example, items described as “substantially the same, ” “substantially equal, ” or “substantially planar, ” may be exactly the same, equal, or planar, or may be the same, equal, or planar within acceptable variations that may occur, for example, due to manufacturing processes.
Terms such as “about” or “approximately” may reflect sizes, orientations, or layouts that vary only in a small relative manner, and/or in a way that does not significantly alter the operation, functionality, or structure of certain elements. For example, a range from “about 0.1 to about 1” may encompass a range such as a 0%-5%deviation around 0.1 and a 0%to 5%deviation around 1, especially if such deviation maintains the same effect as the listed range.
Terms such as “transistor” , used herein may include, for example, a field-effect transistor (FET) of any appropriate type such as N-type metal-oxide-semiconductor field-effect transistor (MOSFET) , P-type MOSFET, GaN FET, SiC FET, bipolar junction transistor (BJT) , Darlington BJT, heterojunction bipolar transistor (HBT) , etc.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as  those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present application, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used herein, items described as being “electrically connected” are configured such that an electrical signal can be passed from one item to the other. Therefore, a passive electrically conductive component (e.g., a wire, pad, internal electrical line, etc. ) physically connected to a passive electrically insulative component (e.g., a prepreg layer of a printed circuit board, an electrically insulative adhesive connecting two devices, an electrically insulative underfill or mold layer, etc. ) is not electrically connected to that component. Moreover, items that are “directly electrically connected, ” to each other are electrically connected through one or more passive elements, such as, for example, wires, pads, internal electrical lines, etc. As such, directly electrically connected components do not include components electrically connected through active elements, such as transistors or diodes, or through capacitors. Directly electrically connected elements may be directly physically connected and directly electrically connected.
Components described as thermally connected or in thermal communication are arranged such that heat will follow a path between the components to allow the heat to transfer from the first component to the second component. Simply because two components are part of the same device or board does not make them thermally connected. In general, components which are heat-conductive and directly connected to other heat-conductive or heat-generating components (or connected to those components through intermediate heat-conductive components or in such close proximity as to permit a substantial transfer of heat) will be described as thermally connected to those components, or in thermal communication with those components. On the contrary, two components with heat-insulative materials therebetween, which materials significantly prevent heat transfer between the two components, or only allow for incidental heat transfer, are not described as thermally connected or in thermal  communication with each other. The terms “heat-conductive” or “thermally-conductive” do not apply to any material that provides incidental heat conduction, but are intended to refer to materials that are typically known as good heat conductors or known to have utility for transferring heat, or components having similar heat conducting properties as those materials.
Embodiments may be described, and illustrated in the drawings, in terms of functional blocks, units and/or modules. Those skilled in the art will appreciate that these blocks, units and/or modules are physically implemented by electronic (or optical) circuits such as logic circuits, discrete components, analog circuits, hard-wired circuits, memory elements, wiring connections, and the like, which may be formed using semiconductor-based fabrication techniques or other manufacturing technologies. In the case of the blocks, units and/or modules being implemented by microprocessors or similar, they may be programmed using software (e.g., microcode) to perform various functions discussed herein and may optionally be driven by firmware and/or software. Alternatively, each block, unit and/or module may be implemented by dedicated hardware, or as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions. Also, each block, unit and/or module of the embodiments may be physically separated into two or more interacting and discrete blocks, units and/or modules. Further, the blocks, units and/or modules of the various embodiments may be physically combined into more complex blocks, units and/or modules.
If any terms in this application conflict with terms used in any application (s) from which this application claims priority, or terms incorporated by reference into this application or the application (s) from which this application claims priority, a construction based on the terms as used or defined in this application should be applied.
It should be noted that, the following description of various embodiments of the present disclosure is described herein in order to clearly illustrate the inventive features of the present disclosure. However, it is not intended that various embodiments can only be implemented alone. Rather, it is contemplated that various of the different  embodiments can be and are intended to be used together in a final product, and can be combined in various ways to achieve various final products. Thus, people having ordinary skill in the art may combine the possible embodiments together or replace the components/modules between the different embodiments according to design requirements. The embodiments taught herein are not limited to the form described in the following examples, any possible replacement and arrangement between the various embodiments are included.
FIG. 1A is a block diagram of an LED lighting system according to an embodiment of the disclosure. Referring to FIG. 1A, the LED lighting system 10 includes a dimmer 50 and an LED lighting apparatus 100 including a power supply module PM and an LED module LM.
In the LED lighting system 10 of FIG. 1A, an input terminal or input terminals of the dimmer 50 are electrically connected to an external power grid or power supply EP, in order to receive input power Pin (also can be referred to input power signal Pin) from the external power grid EP. Output terminals of the dimmer 50 are electrically connected to the LED lighting apparatus 100 through first and  second connection terminals  101 and 102 of the LED lighting apparatus 100, in order to transmit/provide input power Pin_C resulting from a dimming process to the LED lighting apparatus 100. Accordingly, the external power grid EP is electrically connected to the LED lighting apparatus 100 through the dimmer 50, in order to provide power for the LED lighting apparatus 100 to use. The input power Pin or Pin_C may be AC power source or DC power source; may refer to at least one of input voltage, input current, or rate of inputting electrical energy; and may be referred to as input power signal Pin or Pin_C hereinafter. Also, in the LED lighting system 10 of FIG. 1A, a power loop formed between the external power grid EP and the LED lighting apparatus 100 may be regarded or defined as comprising the power line for the LED lighting system 10 or the LED lighting apparatus 100.
The LED lighting apparatus 100 is configured to receive the input power Pin_C through its first and  second connection terminals  101 and 102, and the power supply module PM is configured to generate driving power Sdrv (also can be referred to driving  power signal Sdrv) , based on the received input power Pin_C, for the LED module LM, in order for the LED module LM to light up in response to the driving power Sdrv. In various embodiments, the LED lighting apparatus 100 may comprise or be any of various types of LED lamps, such as LED spotlight, LED downlight, LED bulb lamp/light, LED track light, LED panel light, LED ceiling light, LED tube lamp/light, or LED filament lamp/light, but the present invention is not limited to any of these types. In some embodiments the LED lighting apparatus 100 comprises an LED tube lamp, which can be referred to a ballast-compatible type (i.e., Type-A) LED tube lamp, a ballast-bypass type (i.e., Type-B) LED tube lamp, or an external driving type (i.e., Type-C) LED tube lamp.
From the perspective of overall operation of the LED lighting system 10, the dimmer 50 is configured to perform a dimming process on the received input power Pin according to a signal Sdim for dimming, herein below a dimming signal Sdim, and configured to generate the input power Pin_C resulting from the dimming process (referred to herein for convenience as a dimmer-adjusted input power Pin_C) . By a control interface (not illustrated) a user can cause a suitable dimming signal Sdim to be provided to the dimmer 50. The control interface may comprise or be implemented by various structures such as a switch, a knob, or a wireless signal receiver, but the present invention is not limited to any of these structures. Also, according to the chosen way to perform dimming, the dimming process may be directed to changing or adjusting any signal feature of the input power Pin, such as its phase conduction angle, frequency, amplitude, phase, or any combination thereof. The dimmer 50 includes at least one controllable electronic element, such as a bidirectional triode thyristor (or TRIAC) , a single-chip microcomputer, or a transistor, coupled or connected to the power line, generally referred to as a dimmer circuit. And the controllable electronic element may be configured to adjust a chosen signal feature of the input power Pin in response to the dimming signal Sdim, in order to transform the received input power Pin into the input power Pin_C resulting from the adjusting. In some cases, such as where the dimmer 50 is set to NOT cause dimming of the light, the dimmer-adjusted input power Pin_C may be the same as the input power Pin.
When the LED lighting apparatus 100 receives the input power Pin_C, the power supply module PM then transforms the received input power Pin_C into a stable driving power Sdrv for the LED module LM to use, wherein the power supply module PM may generate the signal of driving power Sdrv in the form of voltage (referred to as driving voltage) and/or current (referred to as driving current) corresponding to or based on the signal feature of the received input power Pin_C. Upon the driving power Sdrv being generated, the LED module LM is configured to light up or emit light in response to the driving power Sdrv. The luminance or brightness of the LED module LM is related to the magnitude of the driving voltage and/or driving current of the driving power Sdrv, which is/are adjusted based on the signal feature of the received input power Pin_C, and the signal feature of the received input power Pin_C is controlled by the dimming signal Sdim. Therefore, the dimming signal Sdim is directly related to the luminance or brightness of the LED module LM. The signal processing involved in the operation of the power supply module PM for converting the received input power Pin_C into the driving power Sdrv includes, but is not limited to, electrical rectification, electrical filtering, and DC-to-DC conversion. Some description is presented below of some embodiments of performing these steps for generating the driving power Sdrv.
FIG. 1B is a block diagram of an LED lighting system according to another embodiment of the disclosure, showing the LED lighting system 20 in this embodiment includes a plurality of LED lighting apparatuses for operation with a dimmer. Referring to FIG. 1B, the LED lighting system 20 includes a dimmer 50 and a plurality of LED lighting apparatuses 100_1 –100_n, wherein the symbol n is a positive integer larger than or equal to 2. In the LED lighting system 20, configuration (s) and function (s) of the dimmer 50 and each of the plurality of LED lighting apparatuses 100_1 –100_n can be, and are assumed to be, the same as those of the dimmer 50 and the LED lighting apparatus 100 in the embodiment of FIG. 1A. A main difference between the embodiments of FIG. 1A and FIG. 1B is that the LED lighting apparatuses 100_1 –100_n in the embodiment of FIG. 1B are arranged or connected in parallel with each other, i.e., first connection terminals 101 respectively of the LED lighting apparatuses 100_1 –100_n are  electrically connected together, and second connection terminals 102 respectively of the LED lighting apparatuses 100_1 –100_n are electrically connected together.
Under the configurations of the embodiment of FIG. 1B, the input power Pin_C in FIG. 1B may be concurrently provided to every one of the LED lighting apparatuses 100_1 –100_n, which are then concurrently caused to light up. So, in some embodiments, when a dimming signal Sdim in FIG. 1B is applied or adjusted, the luminance respectively of the LED lighting apparatuses 100_1 –100_n are then concurrently caused to change. Since the dimming control of the LED lighting system 20 of FIG. 1B can be implemented by adjusting or modulating a signal feature of the input power Pin, a separate signal line connected to each of the LED lighting apparatuses 100_1 –100_n and for receiving a dimming signal is not needed, thus greatly simplifying the layout of electrical wiring (s) between included elements and reducing complexity of installations thereof for control of a plurality of LED lighting apparatuses in the application environment of the LED lighting system 20.
Specifically, there are various applicable ways to implement dimming control by adjusting a signal feature of the input power Pin. A common way is to vary or adjust the effective or RMS (root-mean-square) value of the input power signal Pin by adjusting the phase conduction angle of the input power signal Pin, in order to adjust the magnitude of the driving power Sdrv. A description follows of a method of dimming control and corresponding circuit operations in such a common way with reference to FIGS. 1A and 2, wherein FIG. 2 is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of brightness/luminance in a lighting system of an LED lighting apparatus. Referring to FIGS. 1A and 2, in the description of the present embodiment, the external power grid EP is assumed to provide AC power as the input power Pin for example, and the signal waveforms of FIG. 2 illustrate voltage waveforms for a (positive) half cycle of the input power Pin having an amplitude VPK for example. In FIG. 2, the signal waveforms from top to bottom are respectively voltage waveforms WF1, WF2, and WF3 corresponding to three different dimming control states or situations of the luminance Lux (of the LED lighting apparatus 100 of FIG. 1A) being at its maximum Lmax, being at  50%of its maximum Lmax, and being at 17%of its maximum Lmax, respectively. In these embodiments of FIG. 2, the dimmer 50 of FIG. 1A may be configured to adjust the phase-cut angle (or phase conduction angle) of the input power Pin by controlling the current conduction or cutoff state of the controllable electronic element electrically connected on the power line in series. For example, in order to modulate the input power Pin to have a phase-cut angle of 90 degrees, the dimmer of FIG. 1A may be configured to cut off the controllable electronic element at or within 1/4 cycle of the input power signal Pin and then maintain or keep the controllable electronic element at the current conduction state for the rest of the half cycle of the input power signal Pin. In this way, for the half cycle of the input power signal Pin, the resulting voltage waveform has a value of zero for the phase angle of 0 -90 degrees of the input power signal Pin and then has part of a sinusoidal waveform following that for the phase angle of 90 -180 degrees of the input power signal Pin, but the invention is not limited to the forward phase-cut (i.e., the leading-edge dimming control) . Accordingly, the input power signal Pin undergoes the cutting off of phase angle performed by the dimmer 50 to produce or result in the input power signal Pin_C with a phase conduction angle of 90 degrees. There are other embodiments of modulating the input power signal Pin to have a phase-cut angle that have principles similar to the described principle of this example.
Respecting the voltage waveform WF1 of FIG. 2 first, when the dimmer 50in response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 0 degree, meaning the input power Pin has a phase conduction angle of 180 degrees, the dimmer 50 directly provides or reproduces the input power signal Pin to the LED lighting apparatus 100 of FIG. 1A, so the input power signal Pin_C is the same as or corresponds to the input power signal Pin. In this case, assuming the effective value of the input power signal Pin_C to be Vrms1, the power supply module PM of FIG. 1A then generates a corresponding driving power Sdrv, based on the input power signal Pin_C of the effective value Vrms1, in order to drive the LED module LM of FIG. 1A so that the luminance Lux of the LED module LM is at its maximum level Lmax.
Respecting the voltage waveform WF2 of FIG. 2, when the dimmer 50in  response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 90 degrees, meaning the input power Pin has a phase conduction angle of 90 degrees, the dimmer 50 cuts off the power line for the phase angle of 0 -90 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of 90 -180 degrees of the input power signal Pin. In this case, the effective value of the input power signal Pin_C is smaller than the effective value Vrms1 and assumed to be Vrms2, and the input power signal Pin_C of the effective value Vrms2 causes the luminance Lux of the LED module LM to be at 50%of its maximum level Lmax.
Next respecting the voltage waveform WF3 of FIG. 2, when the dimmer 50in response to the dimming signal Sdim modulates the input power Pin to have a phase-cut angle of 150 degrees, meaning the input power Pin has a phase conduction angle of 30 degrees, the dimmer 50 cuts off the power line for the phase angle of 0 -150 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of 150 -180 degrees of the input power signal Pin. In this case, the effective value of the input power signal Pin_C is smaller than the effective value Vrms2 and assumed to be Vrms3, and the input power signal Pin_C of the effective value Vrms3 causes the luminance Lux of the LED module LM to be at 17%of its maximum level Lmax.
According to the dimming method described above with reference to FIGS. 1A and 2, by modulating the input power signal Pin to have a phase-cut angle or a phase conduction angle the dimmer 50 of FIG. 1A can cause corresponding variation in the effective value of the input power signal Pin_C, which may be varied to be e.g. Vrms1, Vrms2, or Vrms3. In practice, the caused variation in the effective value of the input power signal Pin_C is typically in positive correlation with the variation in its phase conduction angle, that is, the larger the phase conduction angle of the input power signal Pin_C the larger its effective value. Accordingly, the caused variation in the effective value of the input power signal Pin_C is typically in negative correlation with the variation in its phase-cut angle. Thus, the described common way of dimming control realizes the  function of dimming control by adjusting the effective value of the input power signal Pin. An advantage of this common way is that because the generated driving power Sdrv varies directly corresponding to the variation in the effective value of the input power signal Pin_C, original hardware structures or parts of a regular LED lighting apparatus 100 need not be retrofitted or adapted for realizing dimming control, for which purpose mainly adding a dimmer 50 is needed in an LED lighting system.
More specifically, in the common way of implementing dimming control, in order to cause a sufficient variation in the effective value of the input power signal Pin_C for tuning the luminance/brightness of the LED module, the dimmer 50 must adjust or modulate the phase-cut angle (or the phase conduction angle) in a relative wide range to adjust the effective value of the input power signal Pin_C. The relative wide range of the phase-cut angle can refer to, for example, from 0 degree to 180 degrees as illustrated in FIG. 2. However, when the phase conduction angle of the input power signal Pin_C is small to a degree, the operating power supply module PM might be negatively impacted by significant effects of characteristics such as total harmonic distortion (THD) and power factor (PF) such that the power conversion efficiency of the power supply module PM is significantly small or reduced, which may even cause the problem of light-flickering of the LED module LM. So, under this common way of the dimming control, it’s hard to improve the power conversion efficiency of the power supply module PM, due to such limitations of the dimmer 50.
In another aspect, since the effective value of the modulating input power signal Pin_C is directly affected by the magnitude of the amplitude VPK, a dimmer 50 using the described common way of realizing dimming control may not be compatible with various voltage specifications of standard power grids, such as AC voltage specifications of 120V, 230V, and 277V. Therefore a designer likely needs to adjust parameters or hardware designs according to the application environment of an LED lighting system 10, which will increase the overall production cost of products of the LED lighting system 10.
In response to the above problems, the present disclosure presents a new  dimming control method, and an LED lighting system and an LED lighting apparatus using the same. Each of the LED lighting system and LED lighting apparatus is configured to receive a dimmer-adjusted signal (also can be referred to modulated signal) produced by varying the phase-cut angle or phase conduction angle of the input power Pin, then to obtain actual dimming message by demodulating the dimmer-adjusted signal, and then according to the obtained dimming message to control circuit operation (s) of the power supply module PM to generate the driving power Sdrv. Since variation of the phase-cut angle or phase conduction angle is intended for merely carrying the dimming message corresponding to a dimming signal Sdim, but not for directly adjusting the effective value of the input power Pin_C, the dimmer 50 may vary the phase-cut angle or phase conduction angle of the input power Pin within a relatively small phase angle/range so as to cause a relatively small difference between effective values respectively of the dimmer-adjusted input power Pin_C and the input power Pin provided by the external power grid EP. By this way of dimming control, no matter under what luminance state, the phase conduction angle of the input power Pin will be similar to that of the modulating input power Pin_C, and therefore the characteristics of total harmonic distortion (THD) and power factor (PF) can be maintained/controlled, meaning the power conversion efficiency of the power supply module PM may not be inhibited or hindered by the dimmer 50. Further explanations of relevant structures and operations of the dimming control method and corresponding LED lighting apparatus/system taught by the disclosure are presented below.
FIG. 3 is a circuit block diagram of an LED lighting apparatus according to an embodiment of the disclosure. Referring to FIG. 3, the LED lighting apparatus 200 may be applied in the  LED lighting system  10 or 20 of FIGS. 1A and 1B. The LED lighting apparatus 200 includes a power supply module PM and an LED module LM, wherein the power supply module PM includes a rectifying circuit 210, a filtering circuit 220, a driving circuit 230, and a demodulating circuit 240.
The rectifying circuit 210 is configured to receive an input power Pin_C through first and  second connection terminals  101 and 102, in order to rectify the input  power Pin_C and then output a rectified signal Srec through first and second  rectifying output terminals  211 and 212. The input power Pin_C may be or comprise an AC signal or DC signal, either type of signal can be compatible with designed operations of the LED lighting apparatus 200. When the LED lighting apparatus 200 is designed to light based on an input DC signal, the rectifying circuit 210 in the power supply module PM may be omitted. When the rectifying circuit 210 is omitted, the first and  second connection terminals  101 and 102 would be coupled directly to input terminal (s) of the filtering circuit 220, which would be the first and second  rectifying output terminals  211 and 212 if the rectifying circuit 210 were present. In various embodiments, the rectifying circuit 210 may comprise a full-wave rectifying circuit, a half-wave rectifying circuit, a bridge-type rectifying circuit, or other type of rectifying circuit, and the disclosed invention is not limited to any of these types.
The filtering circuit 220 is electrically connected to the rectifying circuit 210, in order to electrically filter the rectified signal Srec, wherein input terminals of the filtering circuit 220 are coupled to the first and second  rectifying output terminals  211 and 212 in order to receive and then electrically filter the rectified signal Srec. A resulting filtered signal Sflr is output at first and second  filtering output terminals  221 and 222. It’s noted that the first rectifying output terminal 211 may be regarded as the first filtering output terminal 221 and the second rectifying output terminal 212 may be regarded as the second filtering output terminal 222. In certain embodiments, the filtering circuit 220 can filter out ripples of the rectified signal Srec, causing the waveform of the filtered signal Sflr to be smoother than that of the rectified signal Srec. In addition, circuit configurations of the filtering circuit 220 may be designed so as to filter as to a specific frequency, for example, to filter out circuit response to a specific frequency of an input external driving signal. In some embodiments, the filtering circuit 220 is a circuit comprising at least one of a resistor, a capacitor, or an inductor, such as a parallel-connected capacitor filter or a pi-shape filter, but the invention is not limited to any of these types of filtering circuit. As is well known, a pi-shape filter looks like the symbol π in its shape of circuit schematic.
The driving circuit 230 is electrically connected to the filtering circuit 220, in order to receive, and then perform power conversion on, the filtered signal Sflr, to produce a driving power signal Sdrv, wherein input terminals of the driving circuit 230 are coupled to the first and second  filtering output terminals  221 and 222 in order to receive the filtered signal Sflr and then produce the driving power signal Sdrv for driving the LED module LM to emit light. It’s noted that the first filtering output terminal 221 may be regarded as a first driving output terminal 231 of the driving circuit 230 and the second filtering output terminal 222 may be regarded as a second driving output terminal 232 of the driving circuit 230. The driving power signal Sdrv produced by the driving circuit 230 is then provided to the LED module LM through the first driving output terminal 231 and second driving output terminal 232, to cause the LED module LM to light up in response to the received driving power signal Sdrv. Further explanation of embodiment of the driving circuit 230 is as follows with reference to FIG. 4.
FIG. 4 is a circuit block diagram of a driving circuit according to an embodiment of the disclosure. With reference to both FIGS. 3 and 4, a driving circuit 330 of FIG. 4 is an embodiment of the driving circuit 230 of FIG. 3, and includes a switching control circuit 331 and a conversion circuit 332 for power conversion based on a current source, for driving the LED module LM to emit light. The conversion circuit 332 includes a switching circuit PSW (also known as a power switch) and an energy storage circuit ESE. The conversion circuit 332 is coupled to the first and second  filtering output terminals  221 and 222 in order to receive and then convert the filtered signal Sflr, under the control by the switching control circuit 331, into a driving power signal Sdrv output at the first and second  driving output terminals  231 and 232 for driving the LED module LM. Under the control by the switching control circuit 331, the driving power output by the conversion circuit 332 comprises a steady current, making the LED module LM emit steady light. Further, the driving circuit 330 may include a bias circuit 333 (not shown in FIG. 4) , which may be configured to generate a working voltage Vcc based on a power line voltage of the power supply module PM and to be used by the switching control circuit 331, for the switching control circuit 331 to be activated and operate in response to  the working voltage Vcc.
The switching control circuit 331 in this embodiment of FIG. 4 is configured to perform real-time regulation or adjusting of the duty cycle of a lighting control signal Slc according to current operational states of the LED module LM, in order to conduct or cut off the switching circuit PSW according to or in response to the lighting control signal Slc. The switching control circuit 331 can determine or judge a current operational state of the LED module LM by detecting one or more of an input voltage (such as a voltage level on the first connection terminal 101 or the second connection terminal 102, on the first rectifying output terminal 211, or on the first filtering output terminal 221) , an output voltage (such as a voltage level on the first driving output terminal 231) , an input current (such as a current on the input power line or flowing through the rectifying output terminal 211/212 and the filtering output terminal 221/222) , and an output current (such as a current flowing through the driving output terminal 231/232 or energy storage circuit ESE or the switching circuit PSW) . The energy storage circuit ESE is configured to alternate or switch its operation between being charged with energy and discharging energy, according to the state of the switching circuit PSW being conducted or cut off, in order to maintain or make the driving power signal Sdrv received by the LED module LM be stably above a predefined current value Ipred.
The demodulating circuit 240 of FIG. 3has input terminals electrically connected to the first and  second connection terminals  101 and 102 in order to receive an input power Pin_C, and has output terminal electrically connected to the driving circuit 230 in order to provide a dimming control signal Sdc to the driving circuit 230. The demodulating circuit 240 is configured to generate the dimming control signal Sdc according to the magnitude of the phase-cut angle or conduction phase angle applied for each cycle or half-cycle of the input power signal Pin_C, wherein the switching control circuit 331 is configured to adjust its output of the lighting control signal Slc according to the dimming control signal Sdc so as to cause the driving power signal Sdrv to vary in response to variation of the lighting control signal Slc. For example, the switching control circuit 331 is configured to adjust the duty cycle of the lighting control signal Slc  according to the dimming control signal Sdc, so as to cause the driving power signal Sdrv to increase or decrease in response to a luminance message indicated by the dimming control signal Sdc. When the dimming control signal Sdc indicates a higher luminance or color temperature, the switching control circuit 331 may increase the duty cycle of the lighting control signal Slc according to the dimming control signal Sdc, so as to cause the energy storage circuit ESE to output a higher driving power signal Sdrv for the LED module LM. On the contrary, when the dimming control signal Sdc indicates a lower luminance or color temperature, the switching control circuit 331 may decrease the duty cycle of the lighting control signal Slc according to the dimming control signal Sdc, so as to cause the energy storage circuit ESE to output a lower driving power signal Sdrv for the LED module LM. By these ways of adjusting, effects of dimming control can be achieved.
More specifically, the demodulation process performed by the demodulating circuit 240 may comprise a signal conversion method such as sampling, time counting, or mapping or functioning between signals. For example, for each cycle or half cycle of the input power signal Pin_C, the demodulating circuit 240 may count for a period, sample the input power signal Pin_C within the period to obtain the time length of the input power signal Pin_C remains at a zero voltage level. Since the cycle of the input power signal Pin_C is fixed, the phase-cut angle can be obtained by calculating the ratio of the time length of the input power signal Pin_C remains at the zero voltage level to the cycle of the input power signal Pin_C, which means the time length of the time length of the input power signal Pin_C remains at the zero voltage level corresponds to the phase-cut angle directly. Therefore, the demodulating circuit 240 can convert the phase-cut angle into a dimming control signal Sdc capable of controlling the switching control circuit 331 by mapping the time length of the input power signal Pin_C remains at the zero voltage level, linearly or nonlinearly, into a voltage level. And the range of the voltage level after mapping may be selected according to the voltage rating of the switching control circuit 331, and is for example between 0V and 5V. Further description of signal waveforms and circuit operations in an LED lighting system including the LED  lighting apparatus 200 under different dimming control states or situations is as follows with reference to FIG. 5, which is a signal waveform diagram of signal waveforms illustrating dimming or adjusting of luminance according to an embodiment of the disclosure.
Referring to FIGS. 3 to 5, in this embodiment, the dimmer 50 may for example vary the phase-cut angle of the input power signal Pin within a dimming phase range D_ITV. In FIG. 5, the signal waveforms from top to bottom are respectively a voltage waveform WF4 showing the dimming phase angle D_ITV, a voltage waveform WF5 corresponding to the dimming control state of the luminance Lux (of the LED lighting apparatus 200 of FIG. 3) being at its maximum Lmax, and a voltage waveform WF6 corresponding to the dimming control state of the luminance Lux being at its minimum Lmin.
With regard to the voltage waveform WF4 of FIG. 5 first, the dimming phase range D_ITV is the difference between a maximum phase-cut angle C2 and a minimum phase-cut angle C1, which minimum phase-cut angle C1 may be any number (such as 1, 2, or 3) of degrees in the range of between 0 and 15 degrees and which maximum phase-cut angle C2 may be any number (such as 21, 22, or 23) of degrees in the range of between 20 and 45 degrees, but the present invention is not limited to any of these ranges. So the dimming phase range D_ITV may be for example a phase difference between 0 and 45 degrees, between 5 and 45 degrees, between 5 and 20 degrees, between 15 and 20 degrees, or between 15 and 45 degrees, depending on the design needs. Preferably the choice of the maximum phase-cut angle C2 is based on two factors or principles. The first factor is that the size of the dimming phase range D_ITV should afford distinguishable states of luminance after mapping performed by the demodulating circuit 240. And the second factor is that when the dimmer 50 produces the input power signal Pin_C having the maximum phase-cut angle C2, the characteristics of total harmonic distortion (THD) and power factor (PF) of the power supply module PM of FIG. 3 can still be maintained/controlled, for example having values of the THD and PF no smaller than 80%of values of the THD and PF when the dimmer  50 produces the input power signal Pin_C having the minimum phase-cut angle C1, or preferably the value of the THD is larger than 25 and the value of the PF is larger than 0.9.
With regard to the voltage waveform WF5 of FIG. 5, when the dimmer 50 in response to the dimming signal Sdim modulates the input power Pin to result in the minimum phase-cut angle C1, meaning the input power signal Pin_C has a conduction phase angle of (180-C1) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 –C1 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C1 -180 degrees of the input power signal Pin. In this case, the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its maximum Lmax, according to the input power signal Pin_C having the minimum phase-cut angle C1. Then upon receiving the generated dimming control signal Sdc the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the maximum Lmax.
Next, with regard to the voltage waveform WF6 of FIG. 5, when the dimmer 50 in response to the dimming signal Sdim modulates the input power Pin to result in the maximum phase-cut angle C2, meaning the input power Pin_C2 has a conduction phase angle of (180-C2) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 –C2 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C2 -180 degrees of the input power signal Pin. In this case, the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its minimum Lmin, according to the input power signal Pin_C having the maximum phase-cut angle C2. Then upon receiving the generated dimming control signal Sdc the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal  Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the minimum Lmin. In this embodiment, the minimum luminance Lmin is for example about 10%of the maximum luminance Lmax.
In comparison to the described dimming control method illustrated by FIG. 2, although the phase-cut angle or phase conduction angle is applied for dimming control, variation of the phase-cut angle or conduction phase angle of the resulting input power signal Pin_C in this embodiment of FIG. 5 is merely used as a reference signal indicative of a dimming message, rather than reflecting the effective value of the input power signal Pin_C in the luminance of the lighting LED module LM. So under the dimming control method of this embodiment of FIG. 5A the chosen dimming phase range D_ITV would be apparently smaller than that under the dimming control method of the embodiment of FIG. 2. From another perspective, under the dimming control method of this embodiment of FIG. 5A, no matter the dimmer 50 modulates the input power signal Pin by any particular phase-cut angle within the dimming phase range D_ITV, the effective value of the resulting input power signal Pin_C will not be much different. For example, in some embodiments, the effective value of the resulting input power signal Pin_C having the maximum phase-cut angle C2, such as the effective value of the voltage waveform WF6 of FIG. 5, is not lower than 50%of the effective value of the resulting input power signal Pin_C having the minimum phase-cut angle C1, such as the effective value of the voltage waveform WF5 of FIG. 5.
From another perspective, in the ordinary dimming control method described in FIG. 2, since the luminance of the LED module lighting based on the received modulated input power signal Pin_C is directly correlated with the effective value of the modulated input power signal Pin_C, therefore in the described common way the scope ratio of the effective value of the modulated input power signal Pin_C is substantially or roughly the same as the scope ratio of the luminance of the lighting LED module, wherein the scope ratio of the effective value of the modulated input power signal Pin_C refers to the ratio of the maximum value to the minimum value of the effective value of the modulated input power signal Pin_C, and the scope ratio of the  luminance of the lighting LED module refers to the ratio of the maximum value to the minimum value of the luminance. On the contrary, according to the embodiments described of FIG. 5A, the scope ratio of the effective value of the modulated input power signal Pin_C is not correlated with the scope ratio of the luminance of the lighting LED module. In some preferable embodiments, the scope ratio of the effective value of the modulated input power signal Pin_C is smaller than the scope ratio of the luminance of the lighting LED module. And in some preferable embodiments, the scope ratio of the effective value of the modulated input power signal Pin_C is smaller than or equal to 2, and the scope ratio of the luminance of the lighting LED module is larger than or equal to 10.
It should be noted that the described positive correlation of the luminance Lux of the LED module LM with respect to the variation of the phase-cut angle is only exemplary but not limiting, and in other embodiments the luminance Lux of the LED module LM may be in negative correlation with the cut-off phase angle of the modulated input power signal Pin_C.
Referring to FIG. 5B, respecting the voltage waveform WF7 in this embodiment, when the dimmer 50 in response to a dimming signal Sdim modulates the input power Pin to result in the minimum cut-off phase angle C1, meaning the input power Pin has a conduction phase angle of (180-C1) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 ~ C1 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C1 ~ 180 degrees of the input power signal Pin. In this case, the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its minimum Lmin, according to the modulated input power signal Pin_C having the cut-off phase angle C1. Then upon receiving the generated dimming control signal Sdc the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the minimum luminance Lmin.
Next respecting the voltage waveform WF8 of FIG. 5B, when the dimmer 50 in response to a dimming signal Sdim modulates the input power Pin to result in the cut-off phase angle C2, meaning the input power Pin has a conduction phase angle of (180-C2) degrees, the dimmer 50 cuts off the power line for the phase angle of 0 to C2 degrees of the input power signal Pin and then causes current conduction through the power line for the phase angle of C2 degrees to 180 degrees of the input power signal Pin. In this case, the demodulating circuit 240 generates a dimming control signal Sdc indicative of adjusting the luminance Lux into its maximum Lmax, according to the modulated input power signal Pin_C having the cut-off phase angle C2. Then upon receiving the generated dimming control signal Sdc the switching control circuit 331 controls switching of the switching circuit PSW according to the dimming control signal Sdc as a reference, in order for the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing its luminance Lux to reach or stay at the maximum Lmax. And it’s noted that in the embodiments of both FIGS. 5A and 5B, the cut-off phase angle C2 is larger than the cut-off phase angle C1.
From one perspective, in the embodiment of FIG. 5A, the luminance Lux of the LED module LM is in negative correlation with the cut-off phase angle of the modulated input power Pin_C, and in the embodiment of FIG. 5B the luminance Lux of the LED module LM is in positive correlation with the cut-off phase angle of the modulated input power Pin_C. From another perspective, in the embodiment of FIG. 5A the luminance Lux of the LED module LM is in positive correlation with the effective value of the modulated input power Pin_C, and in the embodiment of FIG. 5B the luminance Lux of the LED module LM is in negative correlation with the effective value of the modulated input power Pin_C. In contrast, in the above described common way of varying or adjusting the effective value of the input power signal Pin the luminance Lux of the LED module LM can only be in positive correlation with the effective value of the modulated input power Pin_C. But with the present invention of this disclosure, the type of correlation between the luminance Lux of the LED module LM and the effective value or the phase-cut angle of the modulated input power Pin_C may be selected preferably  according to actual or practical needs. Therefore, according to this disclosure, for example, it may be that the luminance Lux of the LED module LM is not directly proportional to the effective value of the modulated input power Pin_C.
Next is a further description of circuit operations and mechanisms of signal generation in different embodiments of the demodulating circuit 240 illustrated by FIGS. 6 and 7. FIG. 6 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to an embodiment of the disclosure, and FIG. 7 illustrates a corresponding relationship between the three variables of a phase-cut angle for dimming, a demodulating signal, and the luminance of an LED module, according to another embodiment of the disclosure.
Referring to FIGS. 3, 4, and 6, the demodulating circuit 240 of this embodiment of FIG. 6 is configured to obtain and transform a dimming message by performing a signal processing method similar to analog signal processing. It can be seen from FIG. 6 that when the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C is varied within the range of between the minimum phase-cut angle C1 and the maximum phase-cut angle C2, the voltage level of the dimming control signal Sdc is correspondingly varied within the range of between voltages V1 and V2. So the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C varied within the dimming range of phase-cut angle is in linear positive correlation with the voltage level of the dimming control signal Sdc. From the perspective of operation of the demodulating circuit 240, when judging that the dimmer-adjusted input power signal Pin_C has the minimum phase-cut angle C1, the demodulating circuit 240 correspondingly generates a dimming control signal Sdc of the voltage level V1; and similarly, when judging that the dimmer-adjusted input power signal Pin_C has the maximum phase-cut angle C2, the demodulating circuit 240 correspondingly generates a dimming control signal Sdc of the voltage level V2.
Next, the dimming control signal Sdc in linear positive correlation with the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C is provided to  the switching control circuit 331 to cause the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing it to have a corresponding luminance Lux. In some embodiments, the luminance Lux of the LED module LM is in linear negative correlation with the voltage level of the dimming control signal Sdc. As shown in FIG. 6, when the dimming control signal Sdc received by the switching control circuit 331 has a voltage level Va in the range of between the voltage levels V1 and V2, the switching control circuit 331 adjusts the lighting control signal Slc accordingly to cause the LED module LM to light with a luminance La when being driven by the driving power signal Sdrv. In an embodiment, the luminance La is inversely proportional to the voltage level Va of the dimming control signal Sdc, and can be expressed by, but not limited to, 
Figure PCTCN2019095421-appb-000001
It should be noted that the above described mechanism of generating a dimming control signal Sdc in order to reach a luminance Lux of the lighting LED module LM is only an embodiment to illustrate a signal conversion method, similar to analog signal processing, of how the demodulating circuit 240 obtains or extracts a signal feature, such as the phase-cut angle, of the dimmer-adjusted input power signal Pin_C and then transforms/maps the signal feature into a dimming control signal Sdc for enabling the driving circuit 230 to adjust the luminance Lux of the LED module LM according to the dimming control signal Sdc. But the above described mechanism is not intended to limit the scope of the disclosed invention herein. In some embodiments, the relationship between the dimming control signal Sdc and the phase-cut angle ANG_pc may be a non-linear relationship, such as an exponential relationship. Similarly, the relationship between the dimming control signal Sdc and the luminance Lux may be a non-linear relationship. Although the disclosed invention herein is not limited to any of the described relationship herein. In some embodiments, the relationship between the phase-cut angle ANG_pc and the voltage level of the dimming control signal Sdc may be a negative correlation. And In some embodiments, the relationship between the luminance La and the voltage level Va may be a positive correlation.
Referring to FIGS. 3, 4, and 7, the demodulating circuit 240 of this  embodiment of FIG. 7 is configured to obtain and transform a dimming message by performing a signal processing method similar to digital signal processing. Specifically, when the phase-cut angle of the modulated input power signal Pin_C is adjusted/varied in a dimming phase range (also can be referred to default phase range) , the dimming control signal may have a default number of different signal states corresponding to variations or values of the phase-cut angle, in order to control dimming of the LED module to the default number of different dimming levels respectively. It can be seen from FIG. 7 that when the phase-cut angle ANG_pc of the dimmer-adjusted input power signal Pin_C is varied within the range of between the minimum phase-cut angle C1 and the maximum phase-cut angle C2, the dimming control signal Sdc can have 8 different signal states D1-D8 according to variation of the phase-cut angle ANG_pc. So the dimming range of between the minimum phase-cut angle C1 and the maximum phase-cut angle C2 may be divided into 8 sub-ranges among which the phase-cut angle ANG_pc can be varied and corresponding to the 8 different signal states D1-D8 of the dimming control signal Sdc respectively. In some embodiments, the different signal states of the dimming control signal Sdc may be indicated or represented by different voltage levels, wherein for example the signal state D1 of the dimming control signal Sdc corresponds to a voltage level of 1V and the signal state D8 corresponds to a voltage level of 5V. In some embodiments, the different signal states of the dimming control signal Sdc may be indicated or represented by logical voltage levels coded in multiple bits, wherein for example the signal state D1 of the dimming control signal Sdc corresponds to a logical voltage level coded as the three-bit “000” and the signal state D8 corresponds to a logical voltage level coded as the three-bit “111” .
Next, the dimming control signal Sdc in the range of the 8 different signal states D1-D8 is provided to the switching control circuit 331 to cause the conversion circuit 332 to generate a corresponding driving power signal Sdrv for driving the LED module LM and causing it to have a corresponding luminance Lux. In some embodiments, different values of the luminance Lux of the LED module LM are in one-to-one correspondence with the 8 different signal states D1-D8. As shown in FIG. 7,  in this embodiment the 8 different signal states D1-D8 correspond to 100%, 87.5%, 75%, 62.5%, 50%, 37.5%, 25%, and 10%of the maximum value Lmax of the luminance Lux respectively. It’s noted that the described embodiment of logical voltage level representation uses three bits to code the distinguish ability of the 8 different signal states D1-D8 of the dimming control signal Sdc produced by the demodulating circuit 240, which is also known as an 8-section dimming, but the present invention disclosed herein is not limited to this number of bits.
FIG. 8 is a signal waveform diagram of signal waveforms of input power signal of an LED lighting apparatus under different power grid voltages according to an embodiment of the disclosure. Referring to the FIGS. 1A, 3, and 8, it can be seen that no matter whether the peak voltage or amplitude of the input power Pin is a1 or a2, if the dimmer 50 modulates the input power Pin to result in a phase-cut angle C3, the phase angle/interval of the zero voltage level in the dimmer-adjusted input power Pin_C (i.e. the phase angle between 0 degree and C3) generated by the dimmer 50 is the same. Therefore, no matter what the peak voltage or amplitude of the input power Pin is, the demodulating circuit 240 can demodulate any dimmer-adjusted input power Pin_C of the same phase-cut angle to produce the same dimming control signal Sdc. Therefore, no matter what the voltage amplitude of the external power grid EP supplying the LED lighting system 10 is, upon receiving the same dimming signal Sdim, the LED lighting system 10 can cause the LED lighting apparatus 100 to light with the same luminance or color temperature, and thus the LED lighting system 10 is compatible with various applications with different types of external power grid EP.
From another perspective, in this disclosure, dimming of an LED module (with respect to e.g. its luminance or color temperature) is performed or achieved in response to the cut-off phase angle of the modulated input power signal Pin_C, but largely not in response to the peak voltage or amplitude of the external power grid (as EP) .
In contrast, if adopting the described way of dimming control illustrated by FIG. 2, since the effective value of the dimmer-adjusted input power Pin_C even of the  same phase-cut angle significantly varies according to different voltage amplitudes of types of applied input power, the described way of dimming control illustrated by FIG. 2 can only be customized or designed specifically for the actual application environment of an LED lighting system 10, which resulting design is not compatible with different types of applied input power.
It should be noted that in practice non-ideal conditions or situations often exist due to intrinsic parasitic effects and mismatches between electronic components. Therefore, although it’s intended/desirable that dimming of the LED module is performed not in response to the peak voltage or amplitude of the external power grid, in practice the effects of dimming in embodiments of the present invention are still somewhat in response to the peak voltage or amplitude of the external power grid. So, according to this disclosure, with the present invention it’s acceptable that dimming of the LED module is somewhat in response to the peak voltage or amplitude of the external power grid due to such non-ideal conditions or situations. These allowable practical effects and response to the peak voltage or amplitude of the external power grid are what was meant by the previous statements of being “largely” or “substantially” not in response to the peak voltage or amplitude of the external power grid and of “substantially or roughly the same” . And the above mentions of “somewhat” in one embodiment may each refer to the low degree of response that dimming of the LED module is impacted or affected by only less than 5%even when the peak voltage or amplitude of the external power grid is doubled.
FIG. 9 is a flow chart of steps of a dimming control method for an LED lighting system according to an embodiment of the disclosure. Referring to both FIGS. 1A and 9, a whole dimming control method is described here from the perspective of the LED lighting system 10. First, the dimmer 50 modulates the input power Pin according to a dimming signal Sdim, in order to generate a dimmer-adjusted input power signal Pin_C (step S110) , wherein the dimmer-adjusted input power signal Pin_C carries a signal feature indicative of a dimming message, which the signal feature is for example a phase-cut angle or phase conduction angle of the dimmer-adjusted input power signal  Pin_C. The dimmer-adjusted input power signal Pin_C is then provided to the LED lighting apparatus 100, causing the LED lighting apparatus 100 to perform power conversion and light up the internal LED module according to the received input power Pin_C (step S120) . On the other hand, the LED lighting apparatus 100 captures or extracts a signal feature of the received input power Pin_C (step S130) , and then demodulates the signal feature to obtain a corresponding dimming message (step S140) . And then the LED lighting apparatus 100 adjusts operation of power conversion according to the demodulated dimming message, in order to change/adjust the luminance or color temperature of the LED module (step S150) .
Referring to FIGS. 3 and 9, the step of obtaining a signal feature of the received input power Pin_C (step S130) , and the step of demodulating the received input power Pin_C (step S130) may be performed or achieved by a demodulating circuit 240 in the LED lighting apparatus 100/200. And the step of causing the LED lighting apparatus 100 to perform power conversion and light up the internal LED module according to the received input power Pin_C (step S120) , and the step of adjusting operation of power conversion according to the demodulated dimming message in order to adjust the luminance of the LED module (step S150) may be performed or achieved by a driving circuit 230 in the LED lighting apparatus 100/200.
Next a further description of a whole dimming control method from the perspective of the LED lighting apparatus 100 is presented with reference to FIG. 10. FIG. 10 is a flow chart of steps of a dimming control method for an LED lighting apparatus according to an embodiment of the disclosure. Referring to FIGS. 1A, 3, and 10, when the LED lighting apparatus 100 receives an input power Pin_C, a rectifying circuit 210 and a filtering circuit 220 perform a rectification and a filtering on the received input power Pin_C respectively in order to generate a filtered signal Sflr for a driving circuit 230 (step S210) . The driving circuit 230 then performs power conversion on the received filtered signal Sflr and then generates a driving power signal Sdrv for a later-stage LED module (step S220) . On the other hand, a demodulating circuit 240 captures or extracts a signal feature of the received input power Pin_C (step S230) , and  then demodulates the signal feature to obtain a dimming message and generate a corresponding dimming control signal Sdc (step S240) . And the driving circuit 230 adjusts operation of power conversion according to the dimming control signal Sdc, in order to adjust the magnitude of the driving power Sdrv in response to the obtained dimming message (step S250) , for adjusting/changing the luminance or color temperature of the LED module LM.
Further, in some embodiments, a way to adjust power conversion operation of a driving circuit 230 by using a dimming control signal Sdc may be an analog-signal control method. For example, the dimming control signal Sdc may be an analog signal used to control a reference value of voltage or current of the driving circuit 230 in an analog way, so as to adjust the magnitude of the driving power signal Sdrv in an analog way.
While in some embodiments, a way to adjust power conversion operation of a driving circuit 230 by using a dimming control signal Sdc may be a digital-signal control method. For example, the dimming control signal Sdc may have different duty cycles corresponding to variations or values of the phase-cut angle respectively. In such embodiments, the dimming control signal Sdc may be a digital signal having a first state (as a high logical state) and a second state (as a low logical state) . In one embodiment, the first state and the second state may be used to control the magnitude of the driving power signal Sdrv of the driving circuit 230 in a digital way, such that at the first state of the dimming control signal Sdc the driving circuit 230 outputs a current while at the second state of the dimming control signal Sdc the driving circuit 230 stops outputting a current, for performing dimming of the LED module LM.
It should be noted that, the dimming control signal Sdc, as described in FIG. 3 or FIG. 11, does not transmit on the power loop which the driving power signal passing through. That is, the dimming control signal Sdc does not use for driving the LED module directly. From another perspective, the current intensity or the power level of  the dimming control signal Sdc is much less than the driving power signal Sdrv. In some embodiments, the current intensity or the power level of the driving power signal Sdrv is at least 10 times larger than the dimming control signal Sdc.
It should be noted that, although the described embodiments in this disclosure related to modulating the input power to result in a phase cut-off or conduction angle all use the leading edge phase cutting (meaning the phase cutting of the input power signal starts from the phase of 0 degree) for example, the disclosed invention is not limited to this type of phase cutting. In some embodiments, the dimmer can instead use the trailing edge phase cutting, i.e. the phase cutting of the input power signal starts from a particular positive phase to the phase of 180 degrees, as a way to modulate the input power.
It should also be noted that, although the described embodiments in this disclosure all aim to adjust the luminance of the lighting LED module, the described methods in these embodiments can be adapted or analogized for adjusting the color temperature of the lighting LED module. For example, if the described way of dimming control is used for adjusting the driving power for the red-light LED chips, i.e. only the luminance of these red-light LED chips in the LED lighting apparatus is adjusted, the described way of dimming control can achieve the adjusting of color temperature of the LED lighting apparatus.
According to the design of the rectifying circuit in the power supply module, there may be a dual rectifying circuit. First and second rectifying circuits of the dual rectifying circuit are respectively coupled to the two end caps disposed on two ends of the LED apparatus. The dual rectifying circuit is applicable to the drive architecture of dual-end power supply.
The dual rectifying circuit may comprise, for example, two half-wave rectifier circuits, two full-wave bridge rectifying circuits or one half-wave rectifier circuit and one full-wave bridge rectifying circuit.
According to the design of the pin in the LED apparatus, there may be two pins in a single end (the other end has no pin) , two pins in corresponding ends of two  ends, or four pins in corresponding ends of two ends. The designs of two pins in single end and two pins in corresponding ends of two ends are applicable to a single rectifying circuit design of the rectifying circuit. The design of four pins in corresponding ends of two ends is applicable to a dual rectifying circuit design of the rectifying circuit, and the external driving signal can be received by two pins in only one end or any pin in each of two ends.
According to the design of the filtering circuit of the power supply module, there may be a single capacitor, orπ filter circuit. The filtering circuit filers the high frequency component of the rectified signal for providing a DC signal with a low ripple voltage as the filtered signal. The filtering circuit also further comprises the LC filtering circuit having a high impedance for a specific frequency for conforming to current limitations in specific frequencies of the UL standard. Moreover, the filtering circuit according to some embodiments further comprises a filtering unit coupled between a rectifying circuit and the pin (s) for reducing the EMI resulted from the circuit (s) of the LED apparatus. The LED apparatus may omit the filtering circuit in the power supply module when the external driving signal is a DC signal.
The above-mentioned exemplary features of the present invention can be accomplished in any combination to improve the LED apparatus, and the above embodiments are described by way of example only. The present invention is not herein limited, and many variations are possible without departing from the spirit of the present invention and the scope as defined in the appended claims.

Claims (10)

  1. An LED lighting apparatus, comprising a rectifying circuit, a filtering circuit, a driving circuit, an LED module, and a demodulating circuit, wherein
    the rectifying circuit is configured to receive an input power signal through first and second connection terminals, in order to rectify the input power signal and then output a rectified signal;
    the filtering circuit is coupled to the rectifying circuit, in order to electrically filter the rectified signal to produce a filtered signal;
    the driving circuit is coupled to the filtering circuit, in order to perform power conversion on the filtered signal to produce a driving power signal;
    the LED module is coupled to the driving circuit and is configured to light up and emit light according to the driving power signal;
    the demodulating circuit is coupled to the first and second connection terminals, and is configured to obtain a signal feature of the input power signal and then demodulate the signal feature in order to obtain a corresponding dimming message;
    the demodulating circuit is configured to generate a dimming control signal according to the obtained dimming message and then provide the dimming control signal for the driving circuit; and
    the driving circuit is configured to adjust its operation of power conversion according to the received dimming control signal, in order to change/adjust the magnitude of the driving power signal in response to the dimming message,
    wherein the signal feature is a phase-cut angle of the input power signal, and wherein the phase-cut angle is not larger than 90 degrees when the LED module lighting  up with a minimum luminance.
  2. The LED lighting apparatus according to claim 1, wherein the phase-cut angle is smaller than 45 degrees when the LED module reaches the minimum luminance.
  3. The LED lighting apparatus according to claim 1, wherein the LED module is dimmed to have a minimum luminance when the phase-cut angle is selected from one of the ranges of between 0 and 45 degrees, between 5 and 45 degrees, between 5 and 20 degrees, between 15 and 20 degrees, and between 15 and 45 degrees.
  4. The LED lighting apparatus according to claim 1, wherein a dimming level of the LED module is substantially irrelevant to the peak voltage of the input power signal.
  5. The LED lighting apparatus according to claim 1, wherein a dimming level of the LED module is substantially irrelevant to an effective value of the input power signal.
  6. The LED lighting apparatus according to claim 1, wherein a dimming level of the LED module is not directly proportional to an effective value of the input power signal.
  7. The LED lighting apparatus according to claim 6, wherein the effective value refers to root-means-square (RMS) value.
  8. The LED lighting apparatus according to claim 7, wherein a scope ratio of the effective value of the input power signal is smaller than a scope ratio of the luminance of the LED module, wherein the scope ratio of the effective value refers to the ratio of the maximum value to the minimum value of the effective value of the input power signal, and the scope ratio of the luminance refers to the ratio of the maximum value to the minimum value of the luminance.
  9. The LED lighting apparatus according to claim8, wherein the scope ratio of the effective value of the modulated input power signal is smaller than or equal to 2, and the scope ratio of the luminance of the LED module is larger than or equal to 10.
  10. The LED lighting apparatus according to claim 8, wherein the phase-cut angle is varied within a default phase range such that the total harmonic distortion of the power supply module is smaller than 25%and/or the power factor of the power supply module is larger than 0.9.
PCT/CN2019/095421 2018-07-16 2019-07-10 Led lighting system, apparatus and dimming method WO2020015566A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19837611.3A EP3824695A4 (en) 2018-07-16 2019-07-10 Led lighting system, apparatus and dimming method
CN201980047234.2A CN112913327A (en) 2018-07-16 2019-07-10 LED lighting system, LED lighting device and dimming control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810777596 2018-07-16
CN201810777596.4 2018-07-16

Publications (1)

Publication Number Publication Date
WO2020015566A1 true WO2020015566A1 (en) 2020-01-23

Family

ID=69164036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095421 WO2020015566A1 (en) 2018-07-16 2019-07-10 Led lighting system, apparatus and dimming method

Country Status (3)

Country Link
EP (1) EP3824695A4 (en)
CN (2) CN112913327A (en)
WO (1) WO2020015566A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228259A1 (en) * 2020-05-15 2021-11-18 嘉兴山蒲照明电器有限公司 Light-emitting diode lamp illumination system, and dimmer and light-emitting diode lamp thereof
US11838999B2 (en) 2018-07-16 2023-12-05 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED lighting system, apparatus, and dimming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160369A1 (en) 2007-12-21 2009-06-25 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
CN103369802A (en) * 2013-08-02 2013-10-23 叶鸣 Design method of LED (light-emitting diode) dimming driving switching power supply applied to various traditional dimmers
CN103561503A (en) * 2013-11-19 2014-02-05 无锡安特源科技有限公司 LED drive power supply suitable for AC phase-cut dimming
CN204350401U (en) * 2015-01-26 2015-05-20 无锡硅动力微电子股份有限公司 The small size LED drive power of adjustable current
CN105191499A (en) * 2013-05-08 2015-12-23 皇家飞利浦有限公司 Method and apparatus for digital detection of the phase-cut angle of a phase-cut dimming signal
CN105873269A (en) * 2016-03-31 2016-08-17 深圳市九洲光电科技有限公司 Intelligent light emitting diode (LED) lamp, system and method compatible with silicon-controlled rectifier dimming
US20170223794A1 (en) * 2016-02-03 2017-08-03 Ketra, Inc. Illumination device and method for decoupling power delivered to an led load from a phase-cut dimming angle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127721A (en) * 2002-10-02 2004-04-22 Matsushita Electric Works Ltd Illuminating apparatus
US9155174B2 (en) * 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US9066403B2 (en) * 2011-11-29 2015-06-23 GE Lighting Solutions, LLC LED lamp with half wave dimming
TWI478627B (en) * 2012-04-20 2015-03-21 Lextar Electronics Corp Illumination device with adjustable luminance and luminance adjustment method thereof
US9237610B2 (en) * 2012-08-17 2016-01-12 GE Lighting Solutions, LLC LED lamp with duty cycle dimming
US10470263B2 (en) * 2013-12-10 2019-11-05 Ideal Industries Lighting Llc Dimmable lighting systems and methods of dimming lighting systems
EP2911482B1 (en) * 2014-02-20 2017-03-29 Dialog Semiconductor (UK) Limited Dual mode analog and digital LED dimming via mains voltage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160369A1 (en) 2007-12-21 2009-06-25 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
CN105191499A (en) * 2013-05-08 2015-12-23 皇家飞利浦有限公司 Method and apparatus for digital detection of the phase-cut angle of a phase-cut dimming signal
CN103369802A (en) * 2013-08-02 2013-10-23 叶鸣 Design method of LED (light-emitting diode) dimming driving switching power supply applied to various traditional dimmers
CN103561503A (en) * 2013-11-19 2014-02-05 无锡安特源科技有限公司 LED drive power supply suitable for AC phase-cut dimming
CN204350401U (en) * 2015-01-26 2015-05-20 无锡硅动力微电子股份有限公司 The small size LED drive power of adjustable current
US20170223794A1 (en) * 2016-02-03 2017-08-03 Ketra, Inc. Illumination device and method for decoupling power delivered to an led load from a phase-cut dimming angle
CN105873269A (en) * 2016-03-31 2016-08-17 深圳市九洲光电科技有限公司 Intelligent light emitting diode (LED) lamp, system and method compatible with silicon-controlled rectifier dimming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3824695A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838999B2 (en) 2018-07-16 2023-12-05 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED lighting system, apparatus, and dimming method
WO2021228259A1 (en) * 2020-05-15 2021-11-18 嘉兴山蒲照明电器有限公司 Light-emitting diode lamp illumination system, and dimmer and light-emitting diode lamp thereof

Also Published As

Publication number Publication date
CN211481534U (en) 2020-09-11
EP3824695A1 (en) 2021-05-26
CN112913327A (en) 2021-06-04
EP3824695A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US11838999B2 (en) LED lighting system, apparatus, and dimming method
US11191136B2 (en) LED lighting system, apparatus, and dimming method
US9131581B1 (en) Solid-state lighting control with dimmability and color temperature tunability
US9024537B2 (en) Dimming method and system for LED lamp assemblies
TWI452937B (en) Led control device for phase cut dimming system and control method thereof
CN102821518A (en) LED drive circuit, led illumination component, led illumination device, and led illumination system
JP6617099B2 (en) Stabilization circuit for low voltage lighting
US20110115391A1 (en) Led lamp and led lamp module
US20120091907A1 (en) Lighting circuit for lighting led, lamp and lighting device
US20220201817A1 (en) Led lighting system, and dimmer, lighting apparatus, and dimming control method thereof
TW201019795A (en) Light-emitting device
WO2020015566A1 (en) Led lighting system, apparatus and dimming method
TWI444097B (en) Dimmer system and damper circuit thereof
CN108901098B (en) Linear LED drive circuit with replaceable working mode
CN107580396B (en) A kind of compatible silicon controlled linear LED drive circuit of light modulation of high efficiency
US20140346963A1 (en) Light source driving apparatus and light source system
US10612731B2 (en) LED tube lamp
CN109309985A (en) Lighting system
US8847505B2 (en) Illumination control circuit and illumination control method
CN107071966A (en) A kind of LED light adjusting system
CN208434144U (en) LED drive circuit and lamps and lanterns including the LED drive circuit
CN101702859B (en) Lamp cup type cold light lamp control system capable of adjusting light one by one
CN202068612U (en) Driving device of light emitting diode and illumination device
CN201986219U (en) Driving device of LED and lighting equipment
US8716951B2 (en) Illumination controlling circuit and illumination system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837611

Country of ref document: EP

Effective date: 20210216