[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020014960A1 - 波束故障恢复请求发送方法、响应方法、装置及存储介质 - Google Patents

波束故障恢复请求发送方法、响应方法、装置及存储介质 Download PDF

Info

Publication number
WO2020014960A1
WO2020014960A1 PCT/CN2018/096439 CN2018096439W WO2020014960A1 WO 2020014960 A1 WO2020014960 A1 WO 2020014960A1 CN 2018096439 W CN2018096439 W CN 2018096439W WO 2020014960 A1 WO2020014960 A1 WO 2020014960A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
pucch resource
bfrq
candidate beam
Prior art date
Application number
PCT/CN2018/096439
Other languages
English (en)
French (fr)
Inventor
刘春花
朱亚军
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/096439 priority Critical patent/WO2020014960A1/zh
Priority to US17/261,166 priority patent/US11856422B2/en
Priority to CN201880001086.6A priority patent/CN109076365A/zh
Publication of WO2020014960A1 publication Critical patent/WO2020014960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam failure recovery request sending method, a response method, a device, and a storage medium.
  • the beam failure recovery process includes four steps: the first step is beam failure detection.
  • the base station displays or implicitly configures a beam fault detection reference signal set, and a UE (User Equipment) monitors all beams in the set. If these beams fail, it is considered that a beam fault has occurred.
  • the second step is candidate beam identification.
  • the base station explicitly configures a candidate beam reference signal set, and the UE monitors all beams in the set. If it finds that the quality of at least one beam is higher than a pre-configured threshold, it considers that a new candidate beam is found.
  • the third step is the transmission of BFRQ (Beam Failure Recovery Request).
  • BFRQ Beam Failure Recovery Request
  • the UE transmits a BFRQ to the base station, so as to inform the base station of the beam failure event and the available candidate beam information found.
  • the UE monitors the response of the base station to the BFRQ.
  • PRACH Physical Random Access Channel
  • the period of the PRACH resource is long, the period for transmitting BFRQ is long and the delay is large.
  • the present disclosure provides a beam failure recovery request sending method, a response method, a device, and a storage medium.
  • a method for transmitting a beam failure recovery request is provided.
  • the method is applied to a terminal.
  • the method includes: after a beam failure event occurs on the terminal, searching for a candidate beam; After one candidate beam, the physical uplink control channel PUCCH resource is used to send a beam failure recovery request BFRQ to the base station, where the PUCCH resource includes a PUCCH resource or a PUCCH resource of a preset format allocated by the base station to the terminal in advance.
  • the method further includes: receiving first control signaling sent by a base station, where the first control signaling indicates a PUCCH resource allocated to the terminal for sending BFRQ.
  • the first control signaling further indicates a correspondence relationship between the PUCCH resource and an identifier of a terminal and an index of a candidate beam terminal of the terminal, and using the PUCCH resource to send a BFRQ to a base station includes: using and The PUCCH resource corresponding to the identifier of the terminal and corresponding to the index of the candidate beam of the terminal sends the BFRQ to the base station.
  • the first control signaling further indicates a correspondence between the PUCCH resource and an identifier of the terminal, and using the PUCCH resource to send a BFRQ to the base station includes: using a corresponding to the identifier of the terminal.
  • the PUCCH resource sends the BFRQ to the base station.
  • the method further includes: receiving second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; when sending the BFRQ to the base station, or sending all the After the BFRQ is described, a transmission resource in the unlicensed transmission resource pool is used to send a physical uplink shared channel PUSCH message to the base station, where the PUSCH message includes an identifier of the terminal and an index of a candidate beam selected by the terminal.
  • the method further includes: receiving second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; when sending the BFRQ to the base station, or sending all the After the BFRQ is described, a PUSCH message is sent to a base station using transmission resources in the unlicensed transmission resource pool, where the PUSCH message includes an identifier of the terminal, an index of at least one candidate beam selected by the terminal, and the Quality information of each candidate beam in the at least one candidate beam.
  • using a transmission resource in the unlicensed transmission resource pool to send a PUSCH message to the base station includes: repeatedly transmitting a PUSCH message to the base station using the transmission resource in the unlicensed transmission resource pool until the PUSCH message is sent. The number of times reaches the threshold or the base station receives a feedback message on the PUSCH message.
  • the PUCCH resource in the preset format includes a PUCCH resource in a PUCCH format that can carry multiple bits
  • the BFRQ when the BFRQ is sent to a base station using the PUCCH resource in the preset format, the BFRQ includes: An index of at least one candidate beam selected by the terminal and quality information of each candidate beam in the at least one candidate beam.
  • a beam failure recovery request response method the method being applied to a base station, the method including: receiving a beam failure recovery request BFRQ based on a physical uplink control channel PUCCH resource transmission,
  • the PUCCH resource includes a PUCCH resource allocated by a base station to a terminal in advance or a PUCCH resource of a preset format; determining a terminal that has a beam failure and a candidate beam of the terminal; and sending the BFRQ to the terminal through the candidate beam.
  • the PUCCH resource includes a PUCCH resource allocated by a base station to a terminal in advance or a PUCCH resource of a preset format; determining a terminal that has a beam failure and a candidate beam of the terminal; and sending the BFRQ to the terminal through the candidate beam.
  • Response message the method including: receiving a beam failure recovery request BFRQ based on a physical uplink control channel PUCCH resource transmission,
  • the PUCCH resource includes a PUCCH resource allocated by a base station to a terminal
  • the method further includes: sending first control signaling to at least one terminal, where the first control signaling indicates a PUCCH resource allocated to the at least one terminal for sending BFRQ.
  • the first control signaling further indicates a correspondence between a terminal identifier, the PUCCH resource, and a candidate beam of the terminal, and determining the terminal where the beam fails and the candidate beam of the terminal includes: Determining a terminal identified by the identifier corresponding to the PUCCH resource transmitting the BFRQ as a terminal having a beam failure; determining an index of a candidate beam corresponding to the PUCCH resource transmitting the BFRQ and corresponding to the terminal identifier; according to The index of the candidate beam determines a candidate beam of the terminal.
  • the first control signaling further indicates a correspondence between a terminal identifier and the PUCCH resource, and determining a terminal where a beam failure occurs includes determining the identifier corresponding to a PUCCH resource transmitting the BFRQ.
  • the identified terminal is the terminal where the beam failure occurred.
  • the method further includes: sending a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool; receiving the terminal on the transmission resources in the unauthorized transmission resource pool A PUSCH message sent, where the PUSCH message includes an identifier of a terminal and an index of a candidate beam selected by the terminal.
  • determining a terminal that has a beam failure and a candidate beam of the terminal includes: determining that the terminal identified by the identifier in the PUSCH message is a terminal that has a beam failure; and according to the candidate beam in the PUSCH message The index of is the candidate beam of the terminal.
  • the method further includes: sending a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool; receiving the terminal on the transmission resources in the unauthorized transmission resource pool A PUSCH message sent, where the PUSCH message includes an identifier of a terminal, an index of at least one candidate beam selected by the terminal, and quality information of each candidate beam in the at least one candidate beam.
  • a beam failure recovery request sending device is provided.
  • the device is applied to a terminal, and the device includes a searching module for finding a candidate beam after a beam failure event occurs on the terminal.
  • a first sending module configured to send a beam failure recovery request BFRQ to a base station using a physical uplink control channel PUCCH resource after finding at least one candidate beam, the PUCCH resource including a PUCCH resource allocated by the base station to the terminal in advance Or a PUCCH resource in a preset format.
  • the apparatus further includes: a first receiving module, configured to receive first control signaling sent by the base station, where the first control signaling indicates a PUCCH resource allocated to the terminal for sending BFRQ. .
  • the first control signaling further indicates a correspondence relationship between the PUCCH resource and the identifier of the terminal and the index of the candidate beam of the terminal
  • the sending module is configured to: use the identifier with the terminal
  • the PUCCH resource corresponding to and corresponding to the index of the candidate beam of the terminal sends the BFRQ to the base station.
  • the first control signaling further indicates a correspondence between the PUCCH resource and an identifier of the terminal
  • the sending module is configured to: use the PUCCH resource corresponding to the identifier of the terminal to send to the base station The BFRQ.
  • the apparatus further includes: a second receiving module configured to receive second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; and a second sending module configured to: When sending the BFRQ to the base station, or after sending the BFRQ to the base station, use the transmission resources in the unlicensed transmission resource pool to send a physical uplink shared channel PUSCH message to the base station, where the PUSCH message includes the terminal ’s The identifier and the index of the candidate beam selected by the terminal.
  • a second receiving module configured to receive second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool
  • a second sending module configured to: When sending the BFRQ to the base station, or after sending the BFRQ to the base station, use the transmission resources in the unlicensed transmission resource pool to send a physical uplink shared channel PUSCH message to the base station, where the PUSCH message includes the terminal ’s The identifier and the index of the candidate beam selected by the terminal.
  • the apparatus further includes: a third receiving module, configured to receive second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; and a third sending module is configured to: When sending the BFRQ to the base station, or after sending the BFRQ to the base station, use a transmission resource in the unlicensed transmission resource pool to send a PUSCH message to the base station, where the PUSCH message includes an identifier of the terminal, An index of at least one candidate beam selected by the terminal and quality information of each candidate beam in the at least one candidate beam.
  • the third sending module is configured to: repeatedly use the transmission resources in the unlicensed transmission resource pool to send a PUSCH message to the base station until the number of times the PUSCH message is sent reaches a threshold or the base station receives the PUSCH message from the base station. Feedback message.
  • the PUCCH resource in the preset format includes a PUCCH resource in a PUCCH format that can carry multiple bits
  • the BFRQ when the BFRQ is sent to a base station using the PUCCH resource in the preset format, the BFRQ includes: An index of at least one candidate beam selected by the terminal and quality information of each candidate beam in the at least one candidate beam.
  • a device for responding to a beam failure recovery request the device being applied to a base station, the device including: a fourth receiving module for receiving a PUCCH resource transmission based on a physical uplink control channel A beam failure recovery request BFRQ, the PUCCH resource includes a PUCCH resource allocated in advance by a base station to a terminal or a PUCCH resource of a preset format; a determining module for determining a terminal where a beam failure occurs and a candidate beam of the terminal; fourth A sending module, configured to send a response message to the BFRQ to the terminal through the candidate beam.
  • the apparatus further includes: a fifth sending module, configured to send first control signaling to at least one terminal, where the first control signaling indicates that the at least one terminal is allocated for sending BFRQ. PUCCH resources.
  • the first control signaling further indicates a correspondence between a terminal identifier, the PUCCH resource, and a candidate beam of the terminal
  • the determining module includes a first determining submodule for determining The terminal identified by the identifier corresponding to the PUCCH resource transmitting the BFRQ is a terminal having a beam failure; a second determining submodule is configured to determine that it corresponds to the PUCCH resource transmitting the BFRQ and corresponds to the identifier of the terminal An index of a candidate beam of the terminal; a third determining submodule, configured to determine a candidate beam of the terminal according to the index of the candidate beam.
  • the first control signaling further indicates a correspondence between a terminal identifier and the PUCCH resource
  • the determining module is configured to determine a terminal identified by the identifier corresponding to the PUCCH resource transmitting the BFRQ. For a terminal that has a beam failure.
  • the apparatus further includes: a sixth sending module configured to send a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool; and a fifth receiving module configured to A PUSCH message sent by a terminal is received on a transmission resource in the unlicensed transmission resource pool, where the PUSCH message includes an identifier of a terminal and an index of a candidate beam selected by the terminal.
  • a sixth sending module configured to send a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool
  • a fifth receiving module configured to A PUSCH message sent by a terminal is received on a transmission resource in the unlicensed transmission resource pool, where the PUSCH message includes an identifier of a terminal and an index of a candidate beam selected by the terminal.
  • the determining module includes: a fourth determining submodule, configured to determine that the terminal identified by the identifier in the PUSCH message is a terminal having a beam failure; and a fifth determining submodule, configured to determine The index of the candidate beam in the PUSCH message determines the candidate beam of the terminal.
  • the apparatus further includes: a seventh sending module, configured to send a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool; and a sixth receiving module, configured to Receiving a PUSCH message sent by a terminal on a transmission resource in the unlicensed transmission resource pool, wherein the PUSCH message includes an identifier of a terminal, an index of at least one candidate beam selected by the terminal, and the at least one candidate beam Quality information for each candidate beam.
  • a seventh sending module configured to send a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool
  • a sixth receiving module configured to Receiving a PUSCH message sent by a terminal on a transmission resource in the unlicensed transmission resource pool, wherein the PUSCH message includes an identifier of a terminal, an index of at least one candidate beam selected by the terminal, and the at least one candidate beam Quality information for each candidate beam.
  • a beam failure recovery request sending device the device being applied to a terminal, the device including: a processor; a memory for storing processor-executable instructions; wherein, the device The processor is configured to: after a beam failure event occurs on the terminal, search for a candidate beam; after finding at least one candidate beam, use a physical uplink control channel PUCCH resource to send a beam failure recovery request BFRQ to the base station, the PUCCH
  • the resources include a PUCCH resource allocated in advance by the base station to the terminal or a PUCCH resource in a preset format.
  • a non-transitory computer-readable storage medium is provided, and when an instruction in the storage medium is executed by a processor, the processor is enabled to execute the method according to the first aspect of the present disclosure. Methods.
  • a beam failure recovery request response apparatus the apparatus being applied to a base station, the apparatus including: a processor; a memory for storing processor-executable instructions; wherein, the The processor is configured to: receive a beam failure recovery request BFRQ based on a physical uplink control channel PUCCH resource transmission, the PUCCH resource including a PUCCH resource allocated by the base station to the terminal in advance or a PUCCH resource of a preset format; determining that a beam failure occurs And a candidate beam of the terminal; sending a response message to the BFRQ to the terminal through the candidate beam.
  • a non-transitory computer-readable storage medium is provided, and when instructions in the storage medium are executed by a processor, the processor is enabled to execute the method according to the second aspect of the present disclosure. Methods.
  • the terminal uses a PUCCH resource allocated by the base station to the terminal in advance or sends a BFRQ to the base station using a PUCCH resource of a preset format, thereby achieving the use of
  • the purpose of transmitting BFRQ by PUCCH resources is to make the delay of transmitting BFRQ small, and also allow the base station to know the terminal where the beam failure occurred and the candidate beam of the terminal in time, which is convenient for the base station to perform the beam failure recovery process in time.
  • Fig. 1 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 9 is a schematic diagram illustrating a terminal identifier corresponding to an index of a candidate beam and an SR resource according to an exemplary embodiment.
  • Fig. 10 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 11 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 12 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 13 is a flow chart showing a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a device for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a device for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 16 is a block diagram of an apparatus for responding to a beam fault recovery request according to an exemplary embodiment.
  • Fig. 17 is a block diagram of an apparatus for responding to a beam fault recovery request according to an exemplary embodiment.
  • Fig. 18 is a block diagram of a device for responding to a beam fault recovery request according to an exemplary embodiment.
  • Fig. 19 is a block diagram of an apparatus for sending a beam fault recovery request according to an exemplary embodiment.
  • Fig. 20 is a block diagram of an apparatus for responding to a beam fault recovery request according to an exemplary embodiment.
  • Fig. 1 is a flowchart illustrating a method for sending a beam fault recovery request according to an exemplary embodiment.
  • the method is applied to a terminal, that is, the method can be executed by the terminal.
  • the method includes:
  • Step 101 After a beam failure event occurs at the terminal, search for a candidate beam.
  • the candidate beams searched by the terminal are currently available candidate beams.
  • Step 102 After finding at least one candidate beam, use a PUCCH (Physical Uplink Control Channel) resource to send a BFRQ to the base station, where the PUCCH resource includes a PUCCH resource or a preset format allocated by the base station to the terminal in advance. PUCCH resources.
  • PUCCH Physical Uplink Control Channel
  • the BFRQ may include at least a beam failure event, and may further include an index of a candidate beam selected by the terminal.
  • the base station may use RRC (Radio Resource Control) signaling, MAC (Medium / Media Access Control) CE (Control Element) or physical layer signaling to semi-statically or
  • the terminal is dynamically configured with a PUCCH resource for transmitting BFRQ.
  • the PUCCH resources allocated by the base station to the terminal in advance for transmitting BFRQ may include SR (Scheduling Request, scheduling request) resources.
  • the terminal may use the PUCCH resource to send a BFRQ to the base station after finding a candidate beam, or may use the PUCCH resource to send to the base station after finding multiple candidate beams BFRQ.
  • the terminal may monitor the response message of the base station to the BFRQ, and after listening to the response message, receive the response message.
  • the terminal uses a PUCCH resource allocated by the base station to the terminal in advance or sends a BFRQ to the base station using a PUCCH resource of a preset format, thereby realizing the use of
  • the purpose of transmitting BFRQ by PUCCH resources is to make the delay of transmitting BFRQ small, and also allow the base station to know the terminal where the beam failure occurred and the candidate beam of the terminal in time, which is convenient for the base station to perform the beam failure recovery process in time.
  • Fig. 2 is a flowchart illustrating a method for sending a beam fault recovery request according to an exemplary embodiment.
  • the method may further include steps 101 and 102, and in step 103, Receiving first control signaling sent by a base station, where the first control signaling indicates a PUCCH resource allocated to a terminal for sending BFRQ, and the PUCCH resource may include at least one of time domain resources, frequency domain resources, or code domain resources
  • the base station can configure PUCCH resources for transmitting BFRQ to the terminal semi-statically or dynamically through RRC signaling, MAC CE, or physical layer signaling.
  • This embodiment does not limit the sequence of execution of step 103, step 101, and step 102, and FIG. 2 only shows a case where step 103 is performed before step 101 and step 102.
  • the first control signaling sent by the base station to the terminal may further indicate the correspondence between the PUCCH resource and the terminal ’s identifier and the terminal ’s candidate beam index.
  • the first control signal The order indicates that each PUCCH resource corresponds to a certain candidate beam of a certain terminal.
  • the corresponding relationship may also be predetermined by the base station and the terminal, for example, the corresponding relationship may be stipulated in an agreement. Based on the correspondence, when the terminal wants to send a BFRQ to the base station, it can find the PUCCH resource allocated by the base station for transmitting the BFRQ according to its own identity.
  • Fig. 3 is a flow chart showing a method for sending a beam fault recovery request according to an exemplary embodiment.
  • sending a BFRQ to a base station using a PUCCH resource may include: In step 1021, using a method corresponding to the identity of the terminal and The PUCCH resource corresponding to the index of the candidate beam of the terminal sends a BFRQ to the base station. Based on this, after receiving the BFRQ, the base station can learn the index of the candidate beam of the terminal according to the correspondence between the index of the candidate beam and the PUCCH resource. In this case, when the terminal sends the BFRQ to the base station, the BFRQ does not need to be The information of the candidate beam is carried in the base station.
  • the base station After receiving the BFRQ, the base station can determine the identity of the terminal based on the correspondence between the PUCCH resource that sent the BFRQ and the identity of the terminal, thereby determining that the terminal identified by the identity is a beam occurrence.
  • the faulty terminal may also determine the index of the candidate beam corresponding to the PUCCH resource, and then the candidate beam of the terminal where the beam failure occurs may be determined according to the index.
  • the first control signaling sent by the base station to the terminal may further indicate a correspondence relationship between the PUCCH resource and the identity of the terminal, and the correspondence may also be predetermined by the base station and the terminal in advance, for example, The corresponding relationship may be specified in the agreement. Based on the corresponding relationship, when the terminal wants to send a BFRQ to the base station, it can find the PUCCH resource allocated by the base station for transmitting the BFRQ according to its own identity.
  • Fig. 4 is a flowchart illustrating a method for sending a beam fault recovery request according to an exemplary embodiment. As shown in Fig.
  • sending a BFRQ to a base station using a PUCCH resource may include: in step 1022, using The PUCCH resource corresponding to the identity of the terminal sends a BFRQ to the base station. Based on this, after receiving the BFRQ, the base station can determine the identity of the terminal according to the correspondence between the PUCCH resource that sent the BFRQ and the identity of the terminal, so as to determine that the terminal identified by the identity is a terminal with a beam failure.
  • Fig. 5 is a flowchart illustrating a method for sending a beam fault recovery request according to an exemplary embodiment.
  • the method includes steps 101 and 102, and may further include: in step 104 Receiving a second control signaling sent by the base station, where the second control signaling indicates an authorization-free transmission resource pool (also called a grant-free transmission resource pool, or a scheduling-free transmission resource pool), and the resource pool may be the base station.
  • the license-free transmission resource pool allocated by the terminal may also be a license-free transmission resource pool allocated by the base station to multiple terminals. When the terminal needs to transmit data, it can use the transmission resources in the resource pool for transmission.
  • the second control signaling is, for example, RRC signaling.
  • the base station may configure the transmission resource pool for the terminal semi-statically through the RRC signaling.
  • the transmission resources in the transmission resource pool may include time domain resources and code domain resources.
  • step 105 When sending a BFRQ to the base station, or after sending the BFRQ to the base station, use the transmission resources in the unlicensed transmission resource pool to send a PUSCH (Physical Uplink Shared Channel) message to the base station, where the PUSCH message includes the identity of the terminal And the index of the candidate beam selected by the terminal.
  • PUSCH Physical Uplink Shared Channel
  • the index of the candidate beam in the PUSCH message is the index of the candidate beam found by the terminal.
  • the terminal finds multiple candidate beams and then sends BFRQ to the base station PUSCH
  • the index of the candidate beam in the message is the index of one candidate beam selected by the terminal from among the multiple candidate beams found.
  • the base station may determine the candidate beam corresponding to the index of the candidate beam in the PUSCH message as the candidate beam of the terminal. The base station may also determine the terminal where the beam failure occurs according to the identity of the terminal in the PUSCH message.
  • the method for sending a beam fault recovery request may include: the terminal reports a beam fault event to the base station using a PUCCH resource configured by the base station, and uses the transmission resources in the scheduling-free transmission resource pool configured for the base station to the base station to the base station. Report the index of a candidate beam selected by the terminal.
  • the base station configures SR resources for transmitting BFRQ to the terminal semi-statically through RRC signaling, where different UE (same terminal) IDs (identifications) correspond to different time domain resources and / Or frequency domain resources.
  • the base station also configures a grant free transmission resource pool for the UE through RRC signaling.
  • the UE detects a beam failure event and finds an available candidate beam
  • the UE finds a corresponding SR resource to transmit a BFRQ according to its UE ID, and the BFRQ can only be used to notify the base station that the UE has a beam failure event.
  • the UE sends a BFRQ on the SR resource
  • the UE will send a PUSCH message to the base station on the grant free transmission resource pool.
  • the PUSCH message may include the UE ID and the index of the candidate beam selected by the UE.
  • the base station blindly detects the SR.
  • the base station After receiving the BFRQ transmitted through the SR resources and finding that a certain UE has a beam failure, it receives the PUSCH message sent by the UE on the grant free resource pool.
  • the PUSCH message is used to identify the UE with the beam failure and its report After the index of the candidate beams is calculated, the base station may perform a subsequent beam failure recovery process.
  • the present disclosure also provides a method for transmitting a beam fault recovery request, which is substantially the same as the method shown in FIG. 5 except that in this method, the PUSCH message includes the terminal ’s The identifier and the index of the at least one candidate beam selected by the terminal, and the quality information of each candidate beam in the at least one candidate beam.
  • the PUSCH message includes the terminal ’s The identifier and the index of the at least one candidate beam selected by the terminal, and the quality information of each candidate beam in the at least one candidate beam.
  • the method may further include receiving steps 101 and 102, including receiving second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; when sending a BFRQ to the base station, or to the base station After sending the BFRQ, use the transmission resources in the unlicensed transmission resource pool to send a PUSCH message to the base station.
  • the PUSCH message includes the identifier of the terminal and the index of at least one candidate beam selected by the terminal, and the Quality information, such as L1-RSRP (RSRP (Reference Signaling and Receiving Power) measured on the physical layer) corresponding to the candidate beam).
  • RSRP Reference Signaling and Receiving Power
  • the method for sending a beam fault recovery request may include: the terminal reports a beam fault event to the base station using a PUCCH resource configured by the base station, and uses the transmission resources in the scheduling-free transmission resource pool configured for the base station to the base station to the base station.
  • the quality information of multiple candidate beams selected by the terminal is reported, and the method is described below by using an example.
  • the base station configures SR resources for transmitting BFRQ for the UE semi-statically through RRC signaling, which may include time domain resources and / or frequency domain resources, and different UE IDs correspond to different time domain resources and / or frequency
  • the base station also configures a grant free transmission resource pool for the UE semi-statically through RRC signaling. After the UE finds a beam failure event and finds an available candidate beam, the UE finds a corresponding SR resource to transmit a BFRQ according to its UE ID, and the BFRQ can only be used to notify the base station that the UE has a beam failure event.
  • the UE After the UE sends a BFRQ on the SR resource, the UE will transmit the PUSCH on the grant free transmission resource pool.
  • the PUSCH includes the UE ID and the specific information of the candidate beam selected by the UE, such as the L1-RSRP corresponding to each candidate beam. Wait.
  • the base station blindly checks the SR. When a UE fails to detect a beam failure, it receives the candidate beam information reported by the UE on the grant free resource pool. After identifying the UE that has the beam failure and the candidate beam information reported by it, the base station starts to perform the subsequent beam failure recovery process.
  • a terminal When a terminal sends a message to a base station using transmission resources in the scheduling-free transmission resource pool, on the one hand, because the base station does not know when the terminal sends a message, it may lead to missed detection of terminal messages; on the other hand, multiple terminals may When sending a message on one resource, the base station may not be able to correctly decode the message sent by the terminal. In order to ensure that the message sent by the terminal can be correctly decoded by the base station, the terminal may repeatedly send the PUSCH message multiple times when using the transmission resources in the scheduling-free transmission resource pool. As shown in FIG.
  • using a transmission resource in the unlicensed transmission resource pool to send a PUSCH message to the base station may further include: in step 1051, repeatedly using a transmission resource in the unlicensed transmission resource pool to send a PUSCH message to the base station until the PUSCH is sent The number of times the message reaches the threshold or the base station receives a feedback message on the PUSCH message.
  • the threshold may be predetermined by the terminal and the base station, and the threshold may also be configured by the base station for the terminal.
  • the PUCCH resource in the preset format may include: a PUCCH resource in the PUCCH format that can carry multiple bits.
  • the terminal sends the BFRQ to the base station.
  • the method includes: an index of at least one candidate beam selected by the terminal and quality information of each candidate beam in the at least one candidate beam, such as L1-RSRP. Because the PUCCH transmission resources of each terminal are different, after receiving the BFRQ sent by the terminal, the base station can obtain the terminal identity according to the PUCCH resource, thereby determining the terminal where the beam failure occurs.
  • the PUCCH resources in a preset format for example, the PUCCH resources in the PUCCH format for reporting candidate beams in related technologies.
  • the A flag (flag bit) is defined in a PUCCH format of a PUCCH resource, for example, a 1-bit flag bit is defined, and the flag bit is used to identify a PUCCH resource used for transmitting BFRQ.
  • Fig. 8 is a flowchart illustrating a method for responding to a beam fault recovery request according to an exemplary embodiment.
  • the method is applied to a base station, that is, the method can be executed by the base station.
  • the method includes:
  • Step 701 Receive a BFRQ transmitted based on a PUCCH resource, where the PUCCH resource is a PUCCH resource previously allocated by the base station to the terminal or a PUCCH resource of a preset format.
  • the base station may semi-statically or dynamically configure the terminal with PUCCH resources for transmitting BFRQ through RRC signaling, MAC CE, or physical layer signaling, and the PUCCH resources in the preset format may include portable
  • the multi-bit PUCCH resource enables the base station to know the terminal where the beam failure occurred and the candidate beam of the terminal in time, which facilitates the base station to perform the beam failure recovery process in time.
  • the PUCCH resources allocated by the base station to the terminal in advance may include SR resources.
  • the base station may obtain a BFRQ sent by the terminal by performing a blind detection on the PUCCH message from the terminal to determine whether the content of the PUCCH message includes a BFRQ.
  • Step 702 Determine a terminal where a beam failure occurs and a candidate beam of the terminal.
  • the base station may determine the terminal where the beam failure occurs based on the PUCCH resource sending the BFRQ, and may also determine the terminal where the failure occurs based on the terminal identity in the BFRQ.
  • Step 703 Send a response message to the BFRQ to the terminal through the candidate beam.
  • the base station receives a BFRQ transmitted by the terminal through a PUCCH resource or a preset format PUCCH resource allocated by the base station in advance, thereby achieving the purpose of transmitting the BFRQ through the PUCCH resource, so that the BFRQ is transmitted.
  • the delay is small.
  • Fig. 9 is a flowchart illustrating a method for responding to a beam fault recovery request according to an exemplary embodiment.
  • the method may further include steps 701 to 703, and in step 704, At least one terminal sends first control signaling, and the first control signaling indicates a PUCCH resource allocated to the at least one terminal for sending BFRQ.
  • This embodiment does not limit the execution order between step 704 and steps 701 to 703, and FIG. 9 only shows a case where step 704 is performed before step 701.
  • the PUCCH resources may include time domain resources, frequency domain resources, or code domain resources, and the base station may configure the terminal to use PUCCH resources for transmitting BFRQ semi-statically or dynamically through RRC signaling, MAC CE, or physical layer signaling.
  • a PUCCH resource allocated to a terminal for sending BFRQ is an SR resource
  • the base station may semi-statically configure the terminal to transmit an SR resource for transmitting BFRQ through RRC signaling, including time-frequency domain resources, etc., where each The SR resource can correspond to the index of a candidate beam of a certain terminal.
  • SR resource A corresponds to the candidate beam numbered 1 and the UE identified by 1
  • SR resource B corresponds to the number 2
  • the candidate beam corresponds to the UE identified by 1.
  • the first control signaling may further indicate the correspondence between the identity of the terminal and the PUCCH resource and the candidate beam of the terminal.
  • each PUCCH resource is indicated in the first control signaling.
  • the correspondence relationship may also be predetermined by the base station and the terminal.
  • Fig. 11 is a flowchart illustrating a method for responding to a beam failure recovery request according to an exemplary embodiment. As shown in Fig.
  • determining a terminal where a beam failure occurs and a candidate beam of the terminal may include: in step 7021, determining The terminal identified by the identifier corresponding to the PUCCH resource transmitting the BFRQ is a terminal having a beam failure; the PUCCH resource transmitting the BFRQ is one of the PUCCH resources allocated by the base station to the terminal through the first control signaling for transmitting the BFRQ.
  • the base station The identity of the terminal can be obtained according to the correspondence between the PUCCH resource and the identity of the terminal, so that it is determined that the terminal identified by the identity is the terminal where the beam failure occurs.
  • an index of a candidate beam corresponding to the PUCCH resource transmitting the BFRQ and corresponding to the identity of the terminal is determined; in step 7023, a candidate beam of the terminal is determined according to the index of the candidate beam.
  • the first control signaling may further indicate the correspondence between the identity of the terminal and the PUCCH resource.
  • the method of this embodiment is different from the method shown in FIG. 11 in that the first control signaling does not indicate the correspondence between the candidate beam of the terminal and the terminal ’s identifier and the PUCCH resource. Therefore, the method in this embodiment After the terminal sends a BFRQ to the base station, the terminal may also report its own candidate beam to the base station, and the base station learns the candidate beam of the terminal according to the content reported by the terminal.
  • Fig. 12 is a flowchart illustrating a method for responding to a beam fault recovery request according to an exemplary embodiment.
  • the method may further include, in step 701 to step 703, in step 705:
  • the terminal sends second control signaling, where the second control signaling indicates an unauthorized transmission resource pool.
  • the second control signaling such as RRC signaling, can be used by the base station to configure the terminal's transmission resource pool semi-statically through RRC signaling.
  • the transmission resources included in the transmission resource pool may include time domain resources and frequency domain resources.
  • step 706 the PUSCH message sent by the terminal is received on the transmission resources in the license-free transmission resource pool, where the PUSCH message includes the terminal.
  • the identifier of the candidate beam and the index of the candidate beam selected by the terminal can be achieved through steps 705 and 706 by the terminal reporting its candidate beam to the base station.
  • step 706 may be performed at the same time as step 701, or may be performed after step 701.
  • FIG. 12 shows only a case where step 706 is performed after step 701.
  • Fig. 13 is a flowchart illustrating a method for responding to a beam failure recovery request according to an exemplary embodiment.
  • determining a terminal where a beam failure occurs and a candidate beam of the terminal may include: In 7025, it is determined that the terminal identified by the identifier in the PUSCH message is a terminal where a beam failure occurs; in step 7026, the candidate beam of the terminal is determined according to the index of the candidate beam in the PUSCH message.
  • the base station receives the BFRQ reported by the terminal while receiving the PUSCH message or before receiving the PUSCH message, and the BFRQ may only include information of a beam failure event.
  • the base station combines the received BFRQ and PUSCH messages to determine the terminal where the beam failure occurs and the candidate beam corresponding to the terminal.
  • the present disclosure also provides another beam fault recovery request response method, which is different from the method shown in FIG. 12 in that, in the method, the PUSCH message includes an identifier of the terminal and at least one candidate beam selected by the terminal. 12 and the quality information of each candidate beam in the at least one candidate beam.
  • the PUSCH message includes an identifier of the terminal and at least one candidate beam selected by the terminal. 12 and the quality information of each candidate beam in the at least one candidate beam.
  • the method may further include, on the basis of steps 701 to 703, sending a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool; and receiving on the transmission resources in the unauthorized transmission resource pool
  • a PUSCH message sent by a terminal where the PUSCH message includes an identifier of the terminal and an index of at least one candidate beam selected by the terminal, and quality information of each candidate beam in the at least one candidate beam, such as L1 corresponding to the candidate beam -RSRP.
  • the base station may select a candidate beam indicated in the PUSCH message as a candidate beam of the terminal according to the quality information of each candidate beam and using a preset filtering rule of the base station.
  • Fig. 14 is a block diagram of an apparatus for sending a beam fault recovery request according to an exemplary embodiment.
  • the apparatus is applied to a terminal.
  • the apparatus 150 includes a search module 151 for generating a beam fault at the terminal. After the event, the candidate beam is searched.
  • the first sending module 152 is configured to send a BFRQ to the base station by using a PUCCH resource after finding at least one candidate beam.
  • the PUCCH resource includes a PUCCH resource allocated in advance by the base station to the terminal or a PUCCH resource in a preset format .
  • Fig. 15 is a block diagram of an apparatus for sending a beam fault recovery request according to an exemplary embodiment.
  • the apparatus 160 may further include a first receiving module 153 on the basis of the apparatus 150.
  • the first control signaling sent by the base station, and the first control signaling indicates a PUCCH resource allocated to the terminal for sending BFRQ.
  • the first control signaling may further indicate the correspondence between the PUCCH resource and the terminal ’s identifier and the terminal ’s candidate beam index.
  • the sending module may be used to: use the terminal ’s identifier
  • the PUCCH resource corresponding to and corresponding to the index of the candidate beam of the terminal sends a BFRQ to the base station.
  • the first control signaling may further indicate the correspondence between the PUCCH resource and the identity of the terminal.
  • the sending module may be configured to: use the PUCCH resource corresponding to the identity of the terminal to send to the base station. BFRQ.
  • the device 160 may further include: a second receiving module 154, configured to receive second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource
  • a second sending module 155 configured to send the physical uplink shared channel PUSCH message to the base station using the transmission resources in the unlicensed transmission resource pool when sending the BFRQ to the base station or after sending the BFRQ to the base station, where the PUSCH message includes The identifier of the terminal and the index of the candidate beam selected by the terminal.
  • the apparatus for sending a beam fault recovery request may further include: a third receiving module, configured to receive second control signaling sent by the base station, where the second control signaling indicates an unauthorized transmission resource pool; Three sending modules are used to send a PUSCH message to the base station using transmission resources in the unlicensed transmission resource pool when the BFRQ is sent to the base station or after the BFRQ is sent to the base station.
  • the PUSCH message includes at least one of the terminal identification and the terminal selection. An index of the candidate beam and quality information of each candidate beam in the at least one candidate beam.
  • the third sending module may be configured to repeatedly send the PUSCH message to the base station using the transmission resources in the unlicensed transmission resource pool until the number of times the PUSCH message is sent reaches the threshold or the base station receives the PUSCH message feedback message .
  • the PUCCH resources in the preset format may include: PUCCH resources in the PUCCH format that can carry multiple bits.
  • the BFRQ may include: terminal selection An index of at least one candidate beam and the quality information of each candidate beam in the at least one candidate beam.
  • Fig. 16 is a block diagram of a device for responding to a beam fault recovery request according to an exemplary embodiment.
  • the device is applied to a base station.
  • the device 170 includes a fourth receiving module 171 for receiving PUCCH-based resources.
  • the transmitted BFRQ and PUCCH resources include PUCCH resources allocated by the base station to the terminal in advance or PUCCH resources of a preset format; a determination module 172, which is used to determine a terminal that has a beam failure, and a candidate beam of the terminal; a fourth sending module 173, which is used to: Send a response message to the BFRQ to the terminal through the candidate beam.
  • Fig. 17 is a block diagram of a device for responding to a beam fault recovery request according to an exemplary embodiment.
  • the device 180 may further include a fifth sending module 174 on the basis of the device 170.
  • the first control signaling also indicates the correspondence between the identity of the terminal and the PUCCH resource and the candidate beam of the terminal.
  • the determining module 172 may include: A determining sub-module 1721 is used to determine that the terminal identified by the identifier corresponding to the PUCCH resource transmitting BFRQ is a terminal having a beam failure; a second determining sub-module 1722 is used to determine that it corresponds to the PUCCH resource transmitting BFRQ and is related to An index of a corresponding candidate beam is identified; a third determination submodule 1723 is used to determine a candidate beam of the terminal according to the index of the candidate beam.
  • the first control signaling also indicates the correspondence between the identity of the terminal and the PUCCH resource.
  • the determining module 172 may be configured to determine the terminal identified by the identity corresponding to the PUCCH resource transmitting the BFRQ. For a terminal that has a beam failure.
  • Fig. 18 is a block diagram of a device for responding to a beam failure request according to an exemplary embodiment.
  • the device 190 may further include a sixth sending module 175 on the basis of the device 170.
  • the terminal sends a second control signaling, where the second control signaling indicates an unauthorized transmission resource pool;
  • a fifth receiving module 176 is configured to receive a PUSCH message sent by the terminal on a transmission resource in the unauthorized transmission resource pool, where:
  • the PUSCH message includes the identity of the terminal and the index of the candidate beam selected by the terminal.
  • the determining module 172 may further include: a fourth determining submodule 1724, configured to determine that the terminal identified by the identifier in the PUSCH message is a terminal having a beam failure; a fifth determining A submodule 1725 is configured to determine a candidate beam of a terminal according to an index of a candidate beam in a PUSCH message.
  • the apparatus for responding to a beam fault recovery request may further include: a seventh sending module, configured to send a second control signaling to the terminal, where the second control signaling indicates an unauthorized transmission resource pool.
  • the seventh sending module may be the same as the sixth sending module described above; the sixth receiving module is configured to receive the PUSCH message sent by the terminal on the transmission resources in the unlicensed transmission resource pool, where the PUSCH message includes the identifier of the terminal, the terminal selected An index of at least one candidate beam and quality information of each candidate beam in the at least one candidate beam.
  • Fig. 19 is a block diagram of an apparatus for sending a beam fault recovery request according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input / output (I / O) interface 812, a sensor component 814, And communication component 816.
  • the processing component 802 generally controls the overall operation of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operation at the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage devices, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and / or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and / or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I / O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 814 includes one or more sensors for providing status assessment of various aspects of the device 800.
  • the sensor component 814 can detect the on / off state of the device 800 and the relative positioning of the components, such as the display and keypad of the device 800, and the sensor component 814 can also detect the change of the position of the device 800 or a component of the device 800 , The presence or absence of the user's contact with the device 800, the orientation or acceleration / deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 820 of the device 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 20 is a block diagram of an apparatus for responding to a beam fault recovery request according to an exemplary embodiment.
  • the device 1900 may be provided as a server. 20, the device 1900 includes a processing component 1922, which further includes one or more processors, and a memory resource represented by a memory 1932, for storing instructions executable by the processing component 1922, such as an application program.
  • the application program stored in the memory 1932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute instructions to perform the method beam failure recovery request response method described above.
  • the device 1900 may further include a power supply component 1926 configured to perform power management of the device 1900, a wired or wireless network interface 1950 configured to connect the device 1900 to a network, and an input / output (I / O) interface 1958.
  • the device 1900 can operate based on an operating system stored in the memory 1932, such as Windows ServerTM, Mac OSXTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processing component 1922 of the device 1900 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种波束故障恢复请求发送方法、响应方法、装置及存储介质。其中,波束故障恢复请求发送方法包括:在终端发生波束故障事件后,查找候选波束;在查找到至少一个候选波束后,使用PUCCH资源向基站发送波束故障恢复请求BFRQ,该PUCCH资源包括基站预先为终端分配的PUCCH资源或者预设格式的PUCCH资源。本公开实现了使用PUCCH资源传输BFRQ的目的,使得传输BFRQ的时延较小。

Description

波束故障恢复请求发送方法、响应方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种波束故障恢复请求发送方法、响应方法、装置及存储介质。
背景技术
在NR(New Radio,新空口)技术中,波束故障恢复流程包括四个步骤:第一步,波束故障探测。基站显示或隐式地配置一个波束故障探测参考信号集合,UE(User Equipment,用户设备)监听该集合内的所有波束,如果这些波束都出现了故障,则认为出现了波束故障。第二步,候选波束识别。基站显示地配置一个候选波束参考信号集合,UE监听该集合内的所有波束,如果发现至少有一个波束的质量高于预配置的门限值,则认为发现了新的候选波束。第三步,BFRQ(Beam Failure Recovery Request,波束故障恢复请求)传输。当第一步和第二步都成立后,UE传输BFRQ给基站,以便将波束故障事件以及发现的可用的候选波束信息告知基站。第四步,UE监听基站对BFRQ的响应。
目前,可通过PRACH(Physical Random Access Channel,物理随机接入信道)用于BFRQ的传输。但由于PRACH资源的周期较长,导致传输BFRQ的周期长、时延大。
发明内容
为克服相关技术中存在的问题,本公开提供一种波束故障恢复请求发送方法、响应方法、装置及存储介质。
根据本公开的第一个方面,提供了一种波束故障恢复请求发送方法,所述方法应用于终端,所述方法包括:在所述终端发生波束故障事件后,查找候选波束;在查找到至少一个候选波束后,使用物理上行链路控制信道PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
可选地,所述方法还包括:接收基站发送的第一控制信令,所述第一控制信令中指示了为所述终端分配的用于发送BFRQ的PUCCH资源。
可选地,所述第一控制信令中还指示了所述PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,使用所述PUCCH资源向基站发送BFRQ,包括:使用与所述终端的标识对应且与所述终端的候选波束的索引对应的PUCCH资源向基站发送所述BFRQ。
可选地,所述第一控制信令中还指示了所述PUCCH资源与终端的标识之间的对应关系,使用所述PUCCH资源向基站发送BFRQ,包括:使用与所述终端的标识对应的PUCCH资源向基站发送所述BFRQ。
可选地,所述方法还包括:接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送物理上行共享信道PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
可选地,所述方法还包括:接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,其中,所述PUSCH消息中包括所述终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
可选地,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,包括:使用所述免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送所述PUSCH消息的次数达到阈值或接收到基站对所述PUSCH消息的反馈消息。
可选地,所述预设格式的PUCCH资源包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用所述预设格式的PUCCH资源向基站发送所述BFRQ时,所述BFRQ中包括:所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
根据本公开的第二个方面,提供了一种波束故障恢复请求响应方法,所述方法应用于基站,所述方法包括:接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;确定发生波束故障的终端以及所述终端的候选波束;通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
可选地,所述方法还包括:向至少一个终端发送第一控制信令,所述第一控制信令中指示了为所述至少一个终端分配的用于发送BFRQ的PUCCH资源。
可选地,所述第一控制信令中还指示了终端的标识与所述PUCCH资源以及终端的候选波束之间的对应关系,确定发生波束故障的终端以及所述终端的候选波束,包括:确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端;确定与传输所述BFRQ的PUCCH资源对应且与所述终端的标识对应的候选波束的索引;根据所述候选波束的索引确定所述终端的候选波束。
可选地,所述第一控制信令中还指示了终端的标识与所述PUCCH资源的对应关系,确定发生波束故障的终端,包括:确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端。
可选地,所述方法还包括:向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
可选地,确定发生波束故障的终端以及所述终端的候选波束,包括:确定所述PUSCH消息中的所述标识所标识的终端为发生波束故障的终端;根据所述PUSCH消息中的候选波束的索引确定所述终端的候选波束。
可选地,所述方法还包括:向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
根据本公开的第三个方面,提供了一种波束故障恢复请求发送装置,所述装置应用于终端,所述装置包括:查找模块,用于在所述终端发生波束故障事件后,查找候选波束;第一发送模块,用于在查找到至少一个候选波束后,使用物理上行链路控制信道PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
可选地,所述装置还包括:第一接收模块,用于接收基站发送的第一控制信令,所述第一控制信令中指示了为所述终端分配的用于发送BFRQ的PUCCH资源。
可选地,所述第一控制信令中还指示了所述PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,所述发送模块用于:使用与所述终端的标识对应且与所述终端的候选波束的索引对应的PUCCH资源向基站发送所述BFRQ。
可选地,所述第一控制信令中还指示了所述PUCCH资源与终端的标识之间的对应关系,所述发送模块用于:使用与所述终端的标识对应的PUCCH资源向基站发送所述BFRQ。
可选地,所述装置还包括:第二接收模块,用于接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;第二发送模块,用于在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送物理上行共享信道PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
可选地,所述装置还包括:第三接收模块,用于接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;第三发送模块,用于在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,其中,所述PUSCH消息中包括所述终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
可选地,第三发送模块用于:使用所述免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送所述PUSCH消息的次数达到阈值或接收到基站对所述PUSCH消息的反馈消息。
可选地,所述预设格式的PUCCH资源包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用所述预设格式的PUCCH资源向基站发送所述BFRQ时,所述BFRQ中包括:所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
根据本公开的第四个方面,提供了一种波束故障恢复请求响应装置,所述装置应用于基站,所述装置包括:第四接收模块,用于接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;确定模块,用于确定发生波束故障的终端以及所述终端的候选波束;第四发送模块,用于通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
可选地,所述装置还包括:第五发送模块,用于向至少一个终端发送第一控制信令,所述第一控制信令中指示了为所述至少一个终端分配的用于发送BFRQ的PUCCH资源。
可选地,所述第一控制信令中还指示了终端的标识与所述PUCCH资源以及终端的候选波束之间的对应关系,所述确定模块,包括:第一确定子模块,用于确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端;第二确定子模块,用于确定与传输所述BFRQ的PUCCH资源对应且与所述终端的标识对应的候选波束的索引;第三确定子模块,用于根据所述候选波束的索引确定所述终端的候选波束。
可选地,所述第一控制信令中还指示了终端的标识与所述PUCCH资源的对应关系,确定模块用于:确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端。
可选地,所述装置还包括:第六发送模块,用于向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;第五接收模块,用于在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
可选地,所述确定模块,包括:第四确定子模块,用于确定所述PUSCH消息中的所述标识所标识的终端为发生波束故障的终端;第五确定子模块,用于根据所述PUSCH消息中的候选波束的索引确定所述终端的候选波束。
可选地,所述装置还包括:第七发送模块,用于向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;第六接收模块,用于在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
根据本公开的第五个方面,提供了一种波束故障恢复请求发送装置,所述装置应用于终端,所述装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:在所述终端发生波束故障事件后,查找候选波束;在查找到至少一个候选波束后,使用物理上行链路控制信道 PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
根据本公开的第六个方面,提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开第一个方面所述的方法。
根据本公开的第七个方面,提供了一种波束故障恢复请求响应装置,所述装置应用于基站,所述装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;确定发生波束故障的终端以及所述终端的候选波束;通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
根据本公开的第八个方面,提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开第二个方面所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开的实施例的波束故障恢复请求发送方法,在终端发生波束故障并查找到候选波束后,使用基站预先为终端分配的PUCCH资源或使用预设格式的PUCCH资源向基站发送BFRQ,实现了使用PUCCH资源传输BFRQ的目的,使得传输BFRQ的时延较小,也使得基站可及时获知发生波束故障的终端以及该终端的候选波束,便于基站及时进行波束故障恢复流程。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图2是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图3是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图4是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图5是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图6是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图。
图7是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图8是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图9是根据一示例性实施例示出的终端标识与候选波束的索引以及SR资源对应的示意图。
图10是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图11是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图12是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图13是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图。
图14是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图。
图15是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图。
图16是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图。
图17是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图。
图18是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图。
图19是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图。
图20是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图,该方法应用于终端,即该方法可由终端执行,如图1所示,该方法包括:
步骤101:在终端发生波束故障事件后,查找候选波束。
在一种可实现方式中,终端查找的候选波束为当前可用的候选波束。
步骤102:在查找到至少一个候选波束后,使用PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)资源向基站发送BFRQ,其中,PUCCH资源包括基站预先为终端分配的PUCCH资源或者预设格式的PUCCH资源。
在一种可实现方式中,BFRQ至少可包括波束故障事件,还可包括终端选择的候选波束的索引。
在一种可实现方式中,基站可以通过RRC(Radio Resource Control,无线资源控制)信令、MAC(Medium/Media Access Control,媒体访问控制)CE(控制元素)或物理层信令半静态地或动态地为终端配置用于传输BFRQ的PUCCH资源。
在一种可实现方式中,基站预先为终端分配的用于传输BFRQ的PUCCH资源可包括SR(Scheduling Request,调度请求)资源。
在一种可实现方式中,终端在发生波束故障事件后,可以在查找到一个候选波束后,使用PUCCH资源向基站发送BFRQ,还可以是查找到多个候选波束后,使用PUCCH资源向基站发送BFRQ。
在一种可实现方式中,在步骤102之后,终端可监听基站对BFRQ的响应消息,在监听到该响应消息后,接收该响应消息。
本公开的实施例的波束故障恢复请求发送方法,在终端发生波束故障并查找到候选波束后,使用基站预先为终端分配的PUCCH资源或使用预设格式的PUCCH资源向基站发送BFRQ,实现了使用PUCCH资源传输BFRQ的目的,使得传输BFRQ的时延较小,也使得基站可及时获知发生波束故障的终端以及该终端的候选波束,便于基站及时进行波束故障恢复流程。
图2是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图,如图2所示,该方法在步骤101以及步骤102的基础上,还可包括:在步骤103中,接收基站发送的第一控制信令,该第一控制信令中指示了为终端分配的用于发送BFRQ的PUCCH资源,该PUCCH资源可包括时域资源、频域资源或码域资源中的至少一种,基站可以通过RRC信令、MAC CE或物理层信令半静态地或动态地为终端配置用于传输BFRQ的PUCCH资源。本实施例并不限定步骤103与步骤101、步骤102执行的先后顺序,图2仅示出了步骤103在步骤101以及步骤102之前执行的一种情况。
在一种可实现方式中,基站向终端发送的第一控制信令中还可以指示了PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,例如,在该第一控制信令中指示各PUCCH资源分别与某一终端的某一个候选波束对应。此外,该对应关系还可以是基站预先与终端约定好的,例如,该对应关系可以是协议中规定的。基于该对应关系,终端在要向基站发送BFRQ时,可根据自身的标识查找到基站为其分配的用于传输BFRQ的PUCCH资源。图3是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图,在该方法中,使用PUCCH资源向基站发送BFRQ可包括:在步骤1021中,使用与终端的标识对应且与终端的候选波束的索引对应的PUCCH资源向基站发送BFRQ。基于此,基站在接收到该BFRQ后,即可根据候选波束的索引与PUCCH资源的对应关系获知终端的候选波束的索引,在该种情况下,终端在向基站发送BFRQ时,则无需在BFRQ中携带候选波束的信 息,而基站在接收到BFRQ后,基于发送该BFRQ的PUCCH资源与终端的标识之间的对应关系,可确定终端的标识,从而确定出该标识所标识的终端为发生波束故障的终端,还可确定出与该PUCCH资源对应的候选波束的索引,进而可根据该索引确定出发生波束故障的终端的候选波束。
在一种可实现方式中,基站向终端发送的第一控制信令中还可指示了PUCCH资源与终端的标识之间的对应关系,该对应关系还可以是基站预先与终端约定的,例如,该对应关系可以是协议中规定的。基于该对应关系,终端在要向基站发送BFRQ时,可根据自身标识查找基站为其分配的用于传输BFRQ的PUCCH资源。图4是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图,如图4所示,在该方法中,使用PUCCH资源向基站发送BFRQ可包括:在步骤1022中,使用与终端的标识对应的PUCCH资源向基站发送BFRQ。基于此,基站在接收到BFRQ后,根据发送该BFRQ的PUCCH资源与终端的标识之间的对应关系可确定终端的标识,从而确定该标识所标识的终端为发生波束故障的终端。
图5是根据一示例性实施例示出的一种波束故障恢复请求发送方法的流程图,如图5所示,该方法在包括步骤101以及步骤102的基础上,还可包括:在步骤104中,接收基站发送的第二控制信令,该第二控制信令中指示了免授权传输资源池(也称grant free传输资源池,或免调度传输资源池),该资源池可以是基站为该终端分配的免授权传输资源池,还可以是基站为多个终端分配的免授权传输资源池。在终端有数据需要传输时,即可使用该资源池内的传输资源进行传输。第二控制信令例如RRC信令,基站可通过RRC信令半静态地为终端配置该传输资源池,该传输资源池中的传输资源可包括时域资源以及码域资源;在步骤105中,在向基站发送BFRQ时,或向基站发送BFRQ之后,使用免授权传输资源池中的传输资源向基站发送PUSCH(Physical Uplink Shared Channel,物理上行共享信道)消息,其中,PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。需要说明的是,步骤104以及步骤105可发生在步骤101以及步骤102之前,还可发生在步骤101以及步骤102之后,图5仅示出了步骤104以及步骤105发生在步骤101以及步骤102之后的一种情况。在终端查找到一个候选波束即向基站发送BFRQ时,PUSCH消息中的候选波束的索引即为终端查找到的候选波束的索引,在终端查找到多个候选波束后再向基站发送BFRQ时,PUSCH消息中的候选波束的索引为终端从查找到的多个候选波束中选择的一个候选波束的索引。基站接收到该PUSCH消息后,可将PUSCH消息中的候选波束的索引对应的候选波束确定为终端的候选波束。基站还可根据PUSCH消息中的终端的标识来确定发生波束故障的终端。
在一种可实现方式中,波束故障恢复请求发送方法可包括:终端使用基站为其配置的PUCCH资源向基站上报波束故障事件,使用基站为其配置的免调度传输资源池中的传输资源向基站上报终端选择的一个候选波束的索引。以下结合图6,通过一个例子对该方法进行说明。如图6所示,在该例子中,基站通过RRC信令半静态地为终端配置用于传输BFRQ的SR资源,其中不同的UE(同终端)ID(标识)对应不同的时域资源和/或频域资源,除此之外,基站还通过RRC信令半静态地为UE配置一个grant free传输资源池。当UE发现波束故障事件并找到一个可用的候选波束后,UE根据自身的UE ID找到对应的SR资源传输BFRQ,该BFRQ可仅用于告知基站UE出现了波束故障事件。当UE在SR资源上发送BFRQ后,UE将在grant free传输资源池上发送PUSCH消息给基站,该PUSCH消息中可包括UE ID以及UE所选择的候选波束的索引。基站盲检SR,当接收到通过SR资源传输的BFRQ,发现某一个UE出现波束故障后,在grant free资源池上接收UE发送的PUSCH消息,当根据PUSCH消息识别出出现波束故障的UE以及其上报的候选波束的索引之后,基站可执行后续的波束故障恢复流程。
基于一种可实现方式,本公开还提供了一种波束故障恢复请求发送方法,该方法与图5所示的方法大致相同,其不同之处在于,在该方法中,PUSCH消息中包括终端的标识以及终端选择的至少一个 候选波束的索引,以及至少一个候选波束中每个候选波束的质量信息,该方法与图5所示的方法相同之处可参考上述对图5的所示的方法的描述。该方法在包括步骤101以及步骤102的基础上还可包括,接收基站发送的第二控制信令,第二控制信令中指示了免授权传输资源池;在向基站发送BFRQ时,或向基站发送BFRQ之后,使用免授权传输资源池中的传输资源向基站发送PUSCH消息,该PUSCH消息中包括终端的标识以及终端选择的至少一个候选波束的索引,以及至少一个候选波束中每个候选波束的质量信息,该质量信息例如候选波束对应的L1-RSRP(在物理层上测量出的RSRP(Reference Signal Receiving Power,参考信号接收功率))。
在一种可实现方式中,波束故障恢复请求发送方法可包括:终端使用基站为其配置的PUCCH资源向基站上报波束故障事件,使用基站为其配置的免调度传输资源池中的传输资源向基站上报终端选择的多个候选波束的质量信息,以下通过一个例子对该方法进行说明。在该例子中,基站通过RRC信令半静态地为UE配置用于传输BFRQ的SR资源,可包括时域资源和/或频域资源,不同的UE ID对应不同的时域资源和/或频域资源,除此之外,基站还通过RRC信令半静态地为UE配置一个grant free传输资源池。当UE发现波束故障事件并找到可用的候选波束后,UE根据自身的UE ID找到对应的SR资源传输BFRQ,该BFRQ可只用于告知基站UE出现了波束故障事件。当UE在SR资源上发送BFRQ后,UE将在grant free传输资源池上传输PUSCH,其中PUSCH上包括UE ID以及UE所选择的候选波束的具体信息,例如包括每一个候选波束所对应的L1-RSRP等。基站盲检SR,当发现某一个UE出现波束故障后,在grant free资源池上接收UE上报的候选波束的信息。当识别出出现波束故障的UE以及其上报的候选波束信息后,基站开始执行后续的波束故障恢复流程。
在终端使用免调度传输资源池中的传输资源向基站发送消息时,一方面由于基站不知道终端何时发送消息,可能会导致对终端消息的漏检;另一方面由于多个终端可能同时在一个资源上发送消息,基站可能不能正确解码终端发送的消息,为了确保终端发送的消息能够被基站正确解码,终端在使用免调度传输资源池中的传输资源发送PUSCH消息时可重复发送多次。如图7所示,使用免授权传输资源池中的传输资源向基站发送PUSCH消息还可包括:在步骤1051中,使用免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送PUSCH消息的次数达到阈值或接收到基站对PUSCH消息的反馈消息。该阈值可由终端与基站预先约定,还可以由基站为终端配置该阈值。
在一种可实现方式中,预设格式的PUCCH资源可包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用该预设格式的PUCCH资源向基站发送BFRQ时,终端向基站发送的BFRQ中包括:终端选择的至少一个候选波束的索引以及该至少一个候选波束中每个候选波束的质量信息,该质量信息例如L1-RSRP。由于每个终端的PUCCH传输资源不同,因此基站在接收到终端发送的BFRQ后,可根据PUCCH资源获得终端的标识,从而确定发生波束故障的终端。其中,预设格式的PUCCH资源例如相关技术中用于上报候选波束的PUCCH格式的PUCCH资源,为了对用于传输BFRQ的PUCCH与用于上报候选波束的PUCCH进行区分,可在用于传输BFRQ的PUCCH资源的PUCCH格式中定义一个flag(标志位),例如定义一个1比特的标志位,使用该标志位来标识用于传输BFRQ的PUCCH资源。
图8是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图,该方法应用于基站,即该方法可由基站执行,如图8所示,该方法包括:
步骤701:接收基于PUCCH资源传输的BFRQ,该PUCCH资源为基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源。
在一种可实现方式中,基站可以通过RRC信令、MAC CE或物理层信令半静态地或动态地为终端配置用于传输BFRQ的PUCCH资源,而预设格式的PUCCH资源可以包括可携带多个比特的PUCCH资源,使得基站可及时获知发生波束故障的终端以及该终端的候选波束,便于基站及时进行波束故障 恢复流程。
在一种可实现方式中,基站预先为终端分配的PUCCH资源可包括SR资源。
在一种可实现方式中,基站可通过对来自终端的PUCCH消息进行盲检,确定PUCCH消息的内容是否包括BFRQ来获取到终端发送的BFRQ。
步骤702:确定发生波束故障的终端以及终端的候选波束。
在一种可实现方式中,基站可基于发送BFRQ的PUCCH资源来确定发生波束故障的终端,还可基于BFRQ中的终端标识来确定发生故障的终端。
步骤703:通过候选波束向终端发送对BFRQ的响应消息。
通过本公开的实施例的波束故障恢复请求响应方法,基站接收终端通过基站预先为其分配的PUCCH资源或预设格式的PUCCH资源传输的BFRQ,实现了通过PUCCH资源传输BFRQ的目的,使得传输BFRQ的时延较小。
图9是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图,如图9所示,该方法在步骤701至步骤703的基础上还可包括:在步骤704中,向至少一个终端发送第一控制信令,该第一控制信令中指示了为至少一个终端分配的用于发送BFRQ的PUCCH资源。本实施例不对步骤704与步骤701至步骤703之间的执行顺序进行限定,图9仅示出了步骤704在步骤701之前执行的一种情况。该PUCCH资源可包括时域资源、频域资源或码域资源等,基站可以通过RRC信令、MAC CE或物理层信令半静态地或动态地为终端配置用于传输BFRQ的PUCCH资源。例如,当为终端分配的用于发送BFRQ的PUCCH资源为SR资源时,基站可以通过RRC信令半静态地为终端配置用于传输BFRQ的SR资源,包括时频域资源等,其中,每一个SR资源可与某一个终端的某一个候选波束的索引一一对应,如图10所示,SR资源A与编号为1的候选波束以及标识为1的UE对应,SR资源B与编号为2的候选波束以及标识为1的UE对应。
在一种可实现方式中,第一控制信令中还可指示了终端的标识与PUCCH资源以及终端的候选波束之间的对应关系,例如,在该第一控制信令中指示了各PUCCH资源与某一终端的某一个候选波束对应,此外,该对应关系还可以是基站预先与终端约定的。图11是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图,如图11所示,确定发生波束故障的终端以及终端的候选波束可包括:在步骤7021中,确定与传输BFRQ的PUCCH资源对应的标识所标识的终端为发生波束故障的终端;传输BFRQ的PUCCH资源即为基站通过第一控制信令为终端分配的用于传输BFRQ的PUCCH资源中的一者,基站根据该PUCCH资源与终端的标识的对应关系可获知终端的标识,从而确定该标识所标识的终端即为发生波束故障的终端。在步骤7022中,确定与传输BFRQ的PUCCH资源对应且与终端的标识对应的候选波束的索引;在步骤7023中,根据候选波束的索引确定终端的候选波束。
在一种可实现方式中,第一控制信令中还可指示了终端的标识与PUCCH资源的对应关系,例如,该第一控制信令中可包括一个终端的标识与多个PUCCH资源的对应关系,该第一信令中还可包括多个终端的标识分别与多个PUCCH资源的对应关系。确定发生波束故障的终端可包括:确定与传输BFRQ的PUCCH资源对应的标识所标识的终端为发生波束故障的终端。本实施例的方法与图11所示的方法的不同之处在于,第一控制信令中并未指示终端的候选波束与终端的标识以及PUCCH资源的对应关系,故,在本实施例的方法中,在终端向基站发送BFRQ之后,终端还可向基站上报其自身的候选波束,基站根据终端上报的内容来获知终端的候选波束。
图12是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图,如图12所示,该方法在步骤701至步骤703的基础上还可包括:在步骤705中,向终端发送第二控制信令,该第二控制信令中指示了免授权传输资源池;该第二控制信令例如RRC信令,基站可通过RRC信令半静态地为终端配置该传输资源池,该传输资源池中包括的传输资源可包括时域资源以及频域资源;在步骤706 中,在免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,PUSCH消息中包括终端的标识以及终端选择的候选波束的索引,通过步骤705以及步骤706即可实现终端向基站上报其候选波束的目的。此处的PUSCH消息可参考上述对图5所示的方法中对PUSCH消息的描述。需要说明的是,步骤706可以与步骤701同时执行,也可在步骤701之后执行,图12仅示出了步骤706在步骤701之后执行的一种情况。
图13是根据一示例性实施例示出的一种波束故障恢复请求响应方法的流程图,如图13所示,在该方法中,确定发生波束故障的终端以及终端的候选波束可包括:在步骤7025中,确定PUSCH消息中的标识所标识的终端为发生波束故障的终端;在步骤7026中,根据PUSCH消息中的候选波束的索引确定终端的候选波束。在该方法中,基站在接收PUSCH消息的同时,或接收到该PUSCH消息之前,接收终端上报的BFRQ,该BFRQ中可仅包括波束故障事件的信息。基站结合接收到的BFRQ以及PUSCH消息,即可确定发生波束故障的终端以及该终端对应的候选波束。
本公开还提供了另一种波束故障恢复请求响应方法,该方法与图12所示的方法的不同之处在于,在该方法中,PUSCH消息中包括终端的标识以及终端选择的至少一个候选波束的索引,以及该至少一个候选波束中每个候选波束的质量信息,该方法与图12所示的方法相同之处可参考上述对图12的所示的方法的描述。该方法在步骤701至703的基础上还可包括:向终端发送第二控制信令,该第二控制信令中指示了免授权传输资源池;在免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,该PUSCH消息中包括终端的标识以及终端选择的至少一个候选波束的索引,以及该至少一个候选波束中每个候选波束的质量信息,该质量信息例如候选波束所对应的L1-RSRP。基站在接收到该PUSCH消息后,可根据各候选波束的质量信息以基站预设的筛选规则选择PUSCH消息中所指示的一个候选波束作为终端的候选波束。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图,该装置应用于终端,如图14所示,该装置150包括:查找模块151,用于在终端发生波束故障事件后,查找候选波束;第一发送模块152,用于在查找到至少一个候选波束后,使用PUCCH资源向基站发送BFRQ,PUCCH资源包括基站预先为终端分配的PUCCH资源或者预设格式的PUCCH资源。
图15是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图,如图15所示,该装置160在装置150的基础上还可包括:第一接收模块153,用于接收基站发送的第一控制信令,第一控制信令中指示了为终端分配的用于发送BFRQ的PUCCH资源。
在一种可实现方式中,第一控制信令中还可指示了PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,基于此,发送模块可用于:使用与终端的标识对应且与终端的候选波束的索引对应的PUCCH资源向基站发送BFRQ。
在一种可实现方式中,第一控制信令中还可指示了PUCCH资源与终端的标识之间的对应关系,基于此,发送模块可用于:使用与终端的标识对应的PUCCH资源向基站发送BFRQ。
在一种可实现方式中,如图15所示,装置160还可包括:第二接收模块154,用于接收基站发送的第二控制信令,第二控制信令中指示了免授权传输资源池;第二发送模块155,用于在向基站发送BFRQ时,或向基站发送BFRQ之后,使用免授权传输资源池中的传输资源向基站发送物理上行共享信道PUSCH消息,其中,PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
在一种可实现方式中,波束故障恢复请求发送装置还可包括:第三接收模块,用于接收基站发送的第二控制信令,第二控制信令中指示了免授权传输资源池;第三发送模块,用于在向基站发送BFRQ时,或向基站发送BFRQ之后,使用免授权传输资源池中的传输资源向基站发送PUSCH消息,该 PUSCH消息中包括终端的标识、终端选择的至少一个候选波束的索引以及至少一个候选波束中每个候选波束的质量信息。
在一种可实现方式中,第三发送模块可用于:使用免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送PUSCH消息的次数达到阈值或接收到基站对PUSCH消息的反馈消息。
在一种可实现方式中,预设格式的PUCCH资源可包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用预设格式的PUCCH资源向基站发送BFRQ时,BFRQ中可包括:终端选择的至少一个候选波束的索引以及该至少一个候选波束中每个候选波束的质量信息。
图16是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图,装置应用于基站,如图16所示,该装置170包括:第四接收模块171,用于接收基于PUCCH资源传输的BFRQ,PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;确定模块172,用于确定发生波束故障的终端以及终端的候选波束;第四发送模块173,用于通过候选波束向终端发送对BFRQ的响应消息。
图17是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图,如图17所示,该装置180在装置170的基础上,还可包括:第五发送模块174,用于向至少一个终端发送第一控制信令,该第一控制信令中指示了为至少一个终端分配的用于发送BFRQ的PUCCH资源。
在一种可实现方式中,第一控制信令中还指示了终端的标识与PUCCH资源以及终端的候选波束之间的对应关系,基于此,如图17所示,确定模块172可包括:第一确定子模块1721,用于确定与传输BFRQ的PUCCH资源对应的标识所标识的终端为发生波束故障的终端;第二确定子模块1722,用于确定与传输BFRQ的PUCCH资源对应且与终端的标识对应的候选波束的索引;第三确定子模块1723,用于根据候选波束的索引确定终端的候选波束。
在一种可实现方式中,第一控制信令中还指示了终端的标识与PUCCH资源的对应关系,基于此,确定模块172可用于:确定与传输BFRQ的PUCCH资源对应的标识所标识的终端为发生波束故障的终端。
图18是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图,如图18所示,该装置190在装置170的基础上还可包括:第六发送模块175,用于向终端发送第二控制信令,第二控制信令中指示了免授权传输资源池;第五接收模块176,用于在免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
在一种可实现方式中,如图18所示,确定模块172还可包括:第四确定子模块1724,用于确定PUSCH消息中的标识所标识的终端为发生波束故障的终端;第五确定子模块1725,用于根据PUSCH消息中的候选波束的索引确定终端的候选波束。
在一种可实现方式中,波束故障恢复请求响应装置还可包括:第七发送模块,用于向终端发送第二控制信令,第二控制信令中指示了免授权传输资源池,该第七发送模块可与上述第六发送模块相同;第六接收模块,用于在免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,PUSCH消息中包括终端的标识、终端选择的至少一个候选波束的索引以及至少一个候选波束中每个候选波束的质量信息。
图19是根据一示例性实施例示出的一种波束故障恢复请求发送装置的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图19,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记 录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可 读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图20是根据一示例性实施例示出的一种波束故障恢复请求响应装置的框图。例如,装置1900可以被提供为一服务器。参照图20,装置1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法波束故障恢复请求响应方法。
装置1900还可以包括一个电源组件1926被配置为执行装置1900的电源管理,一个有线或无线网络接口1950被配置为将装置1900连接到网络,和一个输入输出(I/O)接口1958。装置1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1932,上述指令可由装置1900的处理组件1922执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种波束故障恢复请求发送方法,其特征在于,所述方法应用于终端,所述方法包括:
    在所述终端发生波束故障事件后,查找候选波束;
    在查找到至少一个候选波束后,使用物理上行链路控制信道PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站发送的第一控制信令,所述第一控制信令中指示了为所述终端分配的用于发送BFRQ的PUCCH资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一控制信令中还指示了所述PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,使用所述PUCCH资源向基站发送BFRQ,包括:使用与所述终端的标识对应且与所述终端的候选波束的索引对应的PUCCH资源向基站发送所述BFRQ。
  4. 根据权利要求2所述的方法,其特征在于,所述第一控制信令中还指示了所述PUCCH资源与终端的标识之间的对应关系,
    使用所述PUCCH资源向基站发送BFRQ,包括:
    使用与所述终端的标识对应的PUCCH资源向基站发送所述BFRQ。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送物理上行共享信道PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,其中,所述PUSCH消息中包括所述终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  7. 根据权利要求5或6所述的方法,其特征在于,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,包括:
    使用所述免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送所述PUSCH消息的次数达到阈值或接收到基站对所述PUSCH消息的反馈消息。
  8. 根据权利要求1所述的方法,其特征在于,所述预设格式的PUCCH资源包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用所述预设格式的PUCCH资源向基站发送所述BFRQ时,所述BFRQ中包括:所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  9. 一种波束故障恢复请求响应方法,其特征在于,所述方法应用于基站,所述方法包括:
    接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;
    确定发生波束故障的终端以及所述终端的候选波束;
    通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向至少一个终端发送第一控制信令,所述第一控制信令中指示了为所述至少一个终端分配的用于发送BFRQ的PUCCH资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第一控制信令中还指示了终端的标识与所述PUCCH资源以及终端的候选波束之间的对应关系,确定发生波束故障的终端以及所述终端的候选波束,包括:
    确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端;
    确定与传输所述BFRQ的PUCCH资源对应且与所述终端的标识对应的候选波束的索引;
    根据所述候选波束的索引确定所述终端的候选波束。
  12. 根据权利要求10所述的方法,其特征在于,所述第一控制信令中还指示了终端的标识与所述PUCCH资源的对应关系,确定发生波束故障的终端,包括:
    确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端。
  13. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
  14. 根据权利要求13所述的方法,其特征在于,确定发生波束故障的终端以及所述终端的候选波束,包括:
    确定所述PUSCH消息中的所述标识所标识的终端为发生波束故障的终端;
    根据所述PUSCH消息中的候选波束的索引确定所述终端的候选波束。
  15. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  16. 一种波束故障恢复请求发送装置,其特征在于,所述装置应用于终端,所述装置包括:
    查找模块,用于在所述终端发生波束故障事件后,查找候选波束;
    第一发送模块,用于在查找到至少一个候选波束后,使用物理上行链路控制信道PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    第一接收模块,用于接收基站发送的第一控制信令,所述第一控制信令中指示了为所述终端分配的用于发送BFRQ的PUCCH资源。
  18. 根据权利要求17所述的装置,其特征在于,所述第一控制信令中还指示了所述PUCCH资源与终端的标识以及终端的候选波束的索引之间的对应关系,所述发送模块用于:使用与所述终端的标识对应且与所述终端的候选波束的索引对应的PUCCH资源向基站发送所述BFRQ。
  19. 根据权利要求17所述的装置,其特征在于,所述第一控制信令中还指示了所述PUCCH资源与终端的标识之间的对应关系,所述发送模块用于:使用与所述终端的标识对应的PUCCH资源向基站发送所述BFRQ。
  20. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    第二接收模块,用于接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源 池;
    第二发送模块,用于在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送物理上行共享信道PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
  21. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    第三接收模块,用于接收基站发送的第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    第三发送模块,用于在向基站发送所述BFRQ时,或向基站发送所述BFRQ之后,使用所述免授权传输资源池中的传输资源向基站发送PUSCH消息,其中,所述PUSCH消息中包括所述终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  22. 根据权利要求20或21所述的装置,其特征在于,第三发送模块用于:
    使用所述免授权传输资源池中的传输资源重复向基站发送PUSCH消息,直到发送所述PUSCH消息的次数达到阈值或接收到基站对所述PUSCH消息的反馈消息。
  23. 根据权利要求16所述的装置,其特征在于,所述预设格式的PUCCH资源包括:可携带多个比特的PUCCH格式的PUCCH资源,在使用所述预设格式的PUCCH资源向基站发送所述BFRQ时,所述BFRQ中包括:所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  24. 一种波束故障恢复请求响应装置,其特征在于,所述装置应用于基站,所述装置包括:
    第四接收模块,用于接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;
    确定模块,用于确定发生波束故障的终端以及所述终端的候选波束;
    第四发送模块,用于通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
  25. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    第五发送模块,用于向至少一个终端发送第一控制信令,所述第一控制信令中指示了为所述至少一个终端分配的用于发送BFRQ的PUCCH资源。
  26. 根据权利要求25所述的装置,其特征在于,所述第一控制信令中还指示了终端的标识与所述PUCCH资源以及终端的候选波束之间的对应关系,所述确定模块,包括:
    第一确定子模块,用于确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端;
    第二确定子模块,用于确定与传输所述BFRQ的PUCCH资源对应且与所述终端的标识对应的候选波束的索引;
    第三确定子模块,用于根据所述候选波束的索引确定所述终端的候选波束。
  27. 根据权利要求24所述的装置,其特征在于,所述第一控制信令中还指示了终端的标识与所述PUCCH资源的对应关系,确定模块用于:
    确定与传输所述BFRQ的PUCCH资源对应的所述标识所标识的终端为发生波束故障的终端。
  28. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    第六发送模块,用于向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    第五接收模块,用于在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识以及终端选择的候选波束的索引。
  29. 根据权利要求28所述的装置,其特征在于,所述确定模块,包括:
    第四确定子模块,用于确定所述PUSCH消息中的所述标识所标识的终端为发生波束故障的终端;
    第五确定子模块,用于根据所述PUSCH消息中的候选波束的索引确定所述终端的候选波束。
  30. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    第七发送模块,用于向终端发送第二控制信令,所述第二控制信令中指示了免授权传输资源池;
    第六接收模块,用于在所述免授权传输资源池中的传输资源上接收终端发送的PUSCH消息,其中,所述PUSCH消息中包括终端的标识、所述终端选择的至少一个候选波束的索引以及所述至少一个候选波束中每个候选波束的质量信息。
  31. 一种波束故障恢复请求发送装置,其特征在于,所述装置应用于终端,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在所述终端发生波束故障事件后,查找候选波束;
    在查找到至少一个候选波束后,使用物理上行链路控制信道PUCCH资源向基站发送波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为所述终端分配的PUCCH资源或者预设格式的PUCCH资源。
  32. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求的1至8任一项所述的方法。
  33. 一种波束故障恢复请求响应装置,其特征在于,所述装置应用于基站,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基于物理上行链路控制信道PUCCH资源传输的波束故障恢复请求BFRQ,所述PUCCH资源包括基站预先为终端分配的PUCCH资源或者为预设格式的PUCCH资源;
    确定发生波束故障的终端以及所述终端的候选波束;
    通过所述候选波束向所述终端发送对所述BFRQ的响应消息。
  34. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求9至15任一项所述的方法。
PCT/CN2018/096439 2018-07-20 2018-07-20 波束故障恢复请求发送方法、响应方法、装置及存储介质 WO2020014960A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/096439 WO2020014960A1 (zh) 2018-07-20 2018-07-20 波束故障恢复请求发送方法、响应方法、装置及存储介质
US17/261,166 US11856422B2 (en) 2018-07-20 2018-07-20 Beam failure recovery request sending and response methods and devices, and storage medium
CN201880001086.6A CN109076365A (zh) 2018-07-20 2018-07-20 波束故障恢复请求发送方法、响应方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/096439 WO2020014960A1 (zh) 2018-07-20 2018-07-20 波束故障恢复请求发送方法、响应方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020014960A1 true WO2020014960A1 (zh) 2020-01-23

Family

ID=64789240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096439 WO2020014960A1 (zh) 2018-07-20 2018-07-20 波束故障恢复请求发送方法、响应方法、装置及存储介质

Country Status (3)

Country Link
US (1) US11856422B2 (zh)
CN (1) CN109076365A (zh)
WO (1) WO2020014960A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385890B (zh) * 2018-12-29 2023-05-02 成都华为技术有限公司 一种波束失败恢复方法及装置
EP3681229B1 (en) * 2019-01-11 2021-06-16 ASUSTek Computer Inc. Method and apparatus for improving scheduling mode sidelink communication in a wireless communication system
CN111479333B (zh) * 2019-01-23 2022-09-02 华为技术有限公司 通信方法和通信装置
CN111278122B (zh) * 2019-01-25 2023-03-24 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
CN111278032B (zh) * 2019-01-25 2022-02-01 维沃移动通信有限公司 Pucch的发送方法、接收方法、终端和网络侧设备
CN113383502B (zh) * 2019-02-01 2024-03-01 Lg电子株式会社 在无线通信系统中终端报告状态信息的方法以及支持其的终端和基站
EP3925266B1 (en) 2019-02-15 2023-10-18 FG Innovation Company Limited Method and apparatus for acknowledging scell beam failure recovery request
WO2020172184A1 (en) * 2019-02-18 2020-08-27 Apple Inc. Methods and systems for secondary cell beam recovery
US11363516B2 (en) * 2019-03-27 2022-06-14 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery
CN113544980A (zh) * 2019-03-28 2021-10-22 苹果公司 波束故障恢复
US12101187B2 (en) 2019-05-02 2024-09-24 Apple Inc. System and method for beam failure recovery request
US11456793B2 (en) 2019-05-24 2022-09-27 Qualcomm Incorporated Beam failure recovery techniques
US11638255B2 (en) 2019-06-21 2023-04-25 Qualcomm Incorporated Techniques updating beams in periodic transmissions
CN115278920B (zh) * 2019-06-28 2024-08-20 中兴通讯股份有限公司 针对辅小区的波束故障恢复
EP3991486A4 (en) * 2019-06-28 2023-01-04 ZTE Corporation WIRELESS RADIO LINK RECOVERY METHODS
CN116156634A (zh) * 2019-07-11 2023-05-23 维沃移动通信有限公司 媒体接入控制控制元素的发送方法及装置、设备、介质
WO2021018259A1 (en) * 2019-08-01 2021-02-04 FG Innovation Company Limited Method of transmitting secondary cell beam failure recovery request information and related device
KR102514416B1 (ko) * 2019-08-15 2023-03-27 엘지전자 주식회사 무선 통신 시스템에서 빔 실패 복구 절차를 수행하는 방법 및 그 장치
US11778680B2 (en) * 2019-08-26 2023-10-03 Qualcomm Incorporated Beam failure recovery for secondary cell
EP4057670A4 (en) * 2019-11-05 2023-09-06 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR ALLOCATING RADIATION FALLOUT REQUIREMENT RESOURCES AND STORAGE MEDIUM
CN113079570B (zh) * 2020-01-03 2023-06-30 大唐移动通信设备有限公司 传输方法及设备
CN113259973B (zh) * 2020-02-07 2022-11-22 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
CN115642939A (zh) * 2020-03-25 2023-01-24 华为技术有限公司 信号传输方法及装置
US11711130B2 (en) * 2020-05-20 2023-07-25 Qualcomm Incorporated Enhanced measurement and report configuration for full-duplex operation
CN115918206A (zh) * 2020-08-04 2023-04-04 苹果公司 跨小区波束故障恢复

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929846B2 (en) * 2012-01-09 2018-03-27 Nokia Solutions And Networks Oy Allocation of communication resources for control signals in the uplink
CN108024366A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 一种基于免调度的数据传输方法和设备
KR20190120373A (ko) * 2017-03-09 2019-10-23 엘지전자 주식회사 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
CN113242571B (zh) * 2017-05-05 2022-11-15 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站
US10461994B2 (en) * 2017-06-16 2019-10-29 Futurewei Technologies, Inc. Method for response to beam failure recovery request
US10555307B2 (en) * 2017-06-16 2020-02-04 Futurewei Technologies, Inc. System and method for beam failure recovery request reporting
US10779350B2 (en) * 2017-08-10 2020-09-15 Futurewei Technologies, Inc. Beam failure recovery request
CN111758276B (zh) * 2017-12-27 2024-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
EP3753339B1 (en) * 2018-02-16 2022-12-14 Lenovo (Singapore) Pte. Ltd. Method and apparatus having power control for grant-free uplink transmission
TWI713397B (zh) * 2018-02-23 2020-12-11 聯發科技股份有限公司 預設上行鏈路波束確定之方法及其使用者設備
US11601181B2 (en) * 2018-03-16 2023-03-07 Lenovo (Beijing) Limited Beam failure recovery
BR112021000265A2 (pt) * 2018-07-12 2021-04-06 Ntt Docomo, Inc. Terminal de usuário

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Status Report to TSG", 3GPP TSG RAN MEETING #76 RP-171137, 29 May 2017 (2017-05-29), XP055551172 *
HUAWEI: "Beam failure recovery", 3GPP TSG RAN WG1 MEETING #89 R1-1708135, 6 May 2017 (2017-05-06), XP051262270 *

Also Published As

Publication number Publication date
CN109076365A (zh) 2018-12-21
US11856422B2 (en) 2023-12-26
US20210289372A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2020014960A1 (zh) 波束故障恢复请求发送方法、响应方法、装置及存储介质
US11825467B2 (en) Uplink transmission method and apparatus
WO2020019217A1 (zh) 传输配置方法及装置
WO2020019218A1 (zh) 传输配置方法及装置
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
WO2019205061A1 (zh) Harq反馈方法及装置
WO2020082307A1 (zh) 混合自动重传请求harq反馈方法及装置
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2020006746A1 (zh) 识别下行传输的方法及装置
WO2020097845A1 (zh) 网络切片的使用方法及装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
WO2020034072A1 (zh) 上行调度请求的发送方法、装置、设备及存储介质
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2020034196A1 (zh) 调度请求传输方法、装置及存储介质
US11722283B2 (en) Information transmission method, device, system, and storage medium
WO2019232807A1 (zh) 下行控制信令检测方法、装置及存储介质
WO2021035561A1 (zh) 过热处理方法及装置
WO2020042116A1 (zh) 指示、确定传输单元的传输方向的方法、装置及存储介质
WO2019148465A1 (zh) 控制信令的传输方法、终端及基站
US11310694B2 (en) Method and device for receiving downlink data during RRC inactive state
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
WO2019227428A1 (zh) 下行控制信令检测方法、装置及存储介质
US11089537B2 (en) Method and device for broadcasting system information for supporting network communication of terminal
WO2020042010A1 (zh) 接入控制限制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926426

Country of ref document: EP

Kind code of ref document: A1