[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020013333A1 - Pick-up device, mounting device, pick-up method, and mounting method - Google Patents

Pick-up device, mounting device, pick-up method, and mounting method Download PDF

Info

Publication number
WO2020013333A1
WO2020013333A1 PCT/JP2019/027799 JP2019027799W WO2020013333A1 WO 2020013333 A1 WO2020013333 A1 WO 2020013333A1 JP 2019027799 W JP2019027799 W JP 2019027799W WO 2020013333 A1 WO2020013333 A1 WO 2020013333A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
sheet
stage
heat
conductive sheet
Prior art date
Application number
PCT/JP2019/027799
Other languages
French (fr)
Japanese (ja)
Inventor
荒巻 慶輔
弘幸 良尊
セルゲイ ボロトフ
佑介 久保
真理奈 戸端
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020217000279A priority Critical patent/KR20210016037A/en
Priority to CN201980045544.0A priority patent/CN112352476A/en
Priority claimed from JP2019130427A external-priority patent/JP6821749B2/en
Publication of WO2020013333A1 publication Critical patent/WO2020013333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Definitions

  • the present technology relates to a pickup device and a pickup method for picking up and transferring a heat conductive sheet, and a mounting device and a mounting method for a heat conductive sheet.
  • This application is based on Japanese Patent Application No. 2018-132740 filed on July 12, 2018 in Japan and Japanese Patent Application No. 2019-130427 filed on July 12, 2019 in Japan. Claiming priority as a basis, these applications are hereby incorporated by reference.
  • a heat sink, a heat pipe, a heat sink, or the like made of a metal material having high thermal conductivity such as copper or aluminum is widely used.
  • These heat radiating components having excellent thermal conductivity are arranged close to electronic components, such as semiconductor packages, which are heat generating portions in the electronic device, in order to achieve a heat radiating effect or reduce the temperature inside the device.
  • these heat radiating components having excellent heat conductivity are arranged from the electronic components, which are heat generating parts, to a low-temperature place.
  • Patent Literature 1 discloses a technique of a heat conductive sheet used between a semiconductor such as a CPU and a heat sink.
  • the component supplied from the component supply unit is vacuum-sucked and picked up by a suction nozzle provided in the transfer head, and the transfer head is moved based on the control data to mount the component on the substrate.
  • Methods are known.
  • the heat conductive sheet cut into small pieces of a predetermined size is placed on the stage of the mounting machine. Then, a predetermined heat conductive sheet is sucked and held by a suction nozzle of the transfer head, picked up, and mounted on a predetermined electronic component or electronic device.
  • a pickup device includes a stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed, A transfer head that picks up and moves the heat conductive sheet from the heat conductive molded sheet placed thereon, wherein the heat conductive molded sheet has magnetism, and the stage or the transfer head Is provided with a holding mechanism for magnetizing and holding at least one of the thermally conductive molded sheet and the thermally conductive sheet.
  • a mounting device is a mounting device that picks up a heat conductive sheet and mounts the heat conductive sheet on an electronic component or an electronic device, wherein the mounting device includes a plurality of heat conductive sheets that are cut into small pieces by being provided with cuts.
  • the formable sheet has magnetism, and at least one of the stage and the transfer head is provided with a holding mechanism for magnetizing and holding at least one of the heat conductive formed sheet or the heat conductive sheet. Things.
  • the pickup method includes a stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are fragmented by being provided with a cut is placed, and a stage that is placed on the stage.
  • a holding mechanism magnetizes and holds at least one of the thermally conductive molded sheet and the thermally conductive sheet, and picks up the thermally conductive sheet by the transfer head.
  • the mounting method according to the present technology is a mounting method in which a heat conductive sheet is picked up and mounted on an electronic component or an electronic device, wherein the heat conductive sheet includes a plurality of heat conductive sheets that are cut into small pieces by being provided with cuts.
  • the heat conductive formed sheet is By having a magnetism, by a holding mechanism provided on at least one of the stage or the transfer head, at least one of the thermally conductive molded sheet or the heat conductive sheet is magnetized and held.
  • the heat conductive sheet is picked up and mounted on an electronic component or electronic device.
  • the pickup method includes a plurality of heat-conducting molded sheets having a plurality of heat-conducting sheets or a plurality of accommodating recesses for accommodating the heat-conducting sheets, which are cut into small pieces, and Has a carrier tape sealed with a cover film, and a transfer head that picks up the heat conductive sheet from the accommodation recess, wherein the heat conductive molded sheet and the heat conductive sheet have magnetism,
  • the heat conductive molded sheet or the heat conductive sheet is magnetized and held by a holding mechanism provided on at least one of the stage on which the carrier tape is mounted and the transfer head, and the heat is transferred by the transfer head. This is to pick up the conductive sheet.
  • the present technology it is possible to prevent the adjacent heat conductive sheet from adhering to and pulling up together with the heat conductive sheet sucked by the transfer head, and only the heat conductive sheet sucked by the transfer head is placed on the stage. From the heat conductive molded sheet.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a pickup device to which the present technology is applied.
  • FIG. 2 is a cross-sectional view illustrating an example of a semiconductor device using a heat conductive sheet.
  • FIG. 3 is a perspective view showing a carrier tape provided with a housing recess for housing a heat conductive sheet.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of a modified example of the pickup device to which the present technology is applied.
  • FIG. 5 is a cross-sectional view illustrating a schematic configuration of a modified example of the pickup device to which the present technology is applied.
  • FIG. 6 is an external perspective view showing a thermally conductive molded sheet having a plurality of fragmented thermal conductive sheets.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet stored in a storage recess of a carrier tape by a transfer head provided with a holding mechanism.
  • FIG. 8 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet accommodated in an accommodation recess of a carrier tape placed on a stage having a holding mechanism by a transfer head.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet housed in a housing recess of a carrier tape mounted on a stage equipped with a holding mechanism by a transfer head equipped with a holding mechanism. .
  • a pickup device 1 to which the present technology is applied includes a stage 2 on which a thermally conductive molded body sheet 20 formed in a sheet shape is placed, and a heat conductive member placed on the stage 2. And a transfer head 3 for picking up and moving the heat conductive sheet 21 from the compliant molded body sheet 20.
  • the thermally conductive molded sheet 20 has a plurality of thermal conductive sheets 21 which are cut into small pieces by being cut (FIG. 6).
  • the thermally conductive molded sheet 20 has magnetism and is magnetized when a magnetic field is applied from the outside.
  • a holding mechanism 4 for magnetizing and holding at least one of the thermally conductive molded sheet 20 and the thermally conductive sheet 21 is provided on at least one of the stage 2 and the transfer head 3.
  • the pickup device 1 can prevent the heat conductive sheet 21 adsorbed by the transfer head 3 from being attached and pulled up together with the heat conductive sheet 21 adsorbed by the transfer head 3. Only the heat conductive molded body sheet 20 placed on the stage 2 can be picked up.
  • the pickup device 1 by providing the transfer mechanism 3 with the holding mechanism 4, the holding force is increased by magnetically attracting the heat conductive sheet 21, so that the size of the heat conductive sheet 21 increases. Also, there is no need to increase the suction force applied to the heat conductive sheet 21 as compared with the case where suction is performed only by vacuum suction, and deformation of the heat conductive sheet 21 can be prevented. Further, even when the holding mechanism 4 is provided on the stage 2, the pickup device 1 can prevent the heat conductive sheet 21 adjacent to the heat conductive sheet 21 adsorbed by the transfer head 3 from adhering. The heat conductive sheet 21 can be taken up without increasing the applied suction force, and deformation of the heat conductive sheet 21 can be prevented.
  • each configuration of the pickup device 1 will be described by taking a case where the holding mechanism 4 is provided on the stage 2 as an example.
  • stage 2 holds the heat conductive sheet 21 other than the heat conductive sheet 21 picked up when the heat conductive sheet 21 is picked up.
  • the stage 2 has a mounting surface 2a on which the thermally conductive molded sheet 20 is placed, and a holding mechanism 4 for applying a magnetic field to the thermally conductive molded sheet 20 placed on the mounting surface 2a is provided.
  • the stage 2 is formed of a material such as iron and ferritic stainless steel that does not hinder the magnetic field applied by the holding mechanism 4.
  • the holding mechanism 4 has a magnetic field applying unit that applies a magnetic field to the thermally conductive molded sheet 20 placed on the placement surface 2a.
  • Known means can be used as the magnetic field applying means, and examples thereof include a permanent magnet, a solenoid, and an electromagnet.
  • the magnetic flux density of the magnetic field applying means can be appropriately set in accordance with the thickness of the thermally conductive molded sheet 20, the size of the thermally conductive sheet 21, the magnetic permeability, and the like, and is, for example, 1 to 13 gauss.
  • the holding mechanism 4 may be capable of controlling on / off of the application of the magnetic field by the magnetic field applying unit as needed.
  • the holding mechanism 4 may be capable of adjusting the strength of the magnetic field by the magnetic field applying means. Adjustment of the strength of the magnetic field is appropriately performed by a method according to the configuration of the magnetic field applying means, such as adjusting the strength of the current flowing through the coil, the distance to the mounting surface 2a, and interposing a demagnetizing member for shielding the magnetic field. be able to.
  • the transfer head 3 that picks up the heat conductive sheet 21 has a suction portion 3a at the tip of the head that sucks the heat conductive sheet 21. Take up from sheet 20.
  • the suction unit 3a is formed of a suction nozzle that suctions the heat conductive sheet 21 by, for example, sucking it under a negative pressure.
  • the transfer head 3 is movable by a moving mechanism (not shown), and transfers the heat conductive sheet 21 picked up from the heat conductive molded sheet 20 to a predetermined position, for example, an electronic component such as a semiconductor device. .
  • the thermally conductive molded sheet 20 is formed by molding the thermally conductive resin composition into a sheet, and has the thermally conductive sheet 21 which is cut into a plurality of pieces by being cut. Therefore, the heat transfer sheet 21 can be individually picked up by the transfer head 3.
  • the heat conductive sheet 21 has a slight adhesive property and is in close contact with the adjacent heat conductive sheet 21 even when the heat conductive sheet 21 is cut into small pieces. May also be attached and taken up together.
  • the thermally conductive molded sheet 20 has magnetism, and is magnetized by applying a magnetic field by the holding mechanism 4. Accordingly, the holding mechanism 4 can hold the thermally conductive molded sheet 20 on the mounting surface 2a of the stage 2.
  • the pickup device 1 can prevent the heat conductive sheet 21 adsorbed by the transfer head 3 from being attached and pulled up together with the heat conductive sheet 21 adsorbed by the transfer head 3. Only the heat conductive molded body sheet 20 placed on the stage 2 can be picked up.
  • the heat transfer sheet 21 picked up by the transfer head 3 is also magnetized in the same manner as other heat transfer sheets, but the strength and location of the magnetic field of the magnetic field applying means and the suction force of the transfer head 3 are affected by the heat. By adjusting so that only the conductive sheet 21 can be picked up from the mounting surface 2a, the pickup can be performed.
  • the transfer head 3 may pick up one heat conductive sheet 21 and include a plurality of suction portions 3a so that a plurality of adjacent or non-adjacent heat conductive sheets 21 are picked up by one pick-up operation. You may.
  • the transfer head 3 can mount the picked-up heat conductive sheet 21 in an electronic component such as a semiconductor device or various electronic devices.
  • the pickup device 1 functions as a mounting device.
  • the heat conductive sheet 21 picked up by the transfer head 3 is mounted on a semiconductor device incorporated in various electronic devices, and is sandwiched between a heat source and a heat radiating member.
  • FIG. 2 illustrates an example of a semiconductor device.
  • the semiconductor device 50 shown in FIG. 2 includes at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 21, and the heat conductive sheet 21 is sandwiched between the heat spreader 52 and the electronic component 51.
  • the semiconductor device 50 has a high heat radiation property and also has an excellent effect of suppressing electromagnetic waves.
  • the electronic component 51 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include a CPU, an MPU, a graphic operation element, and an image sensor.
  • the heat spreader 52 is not particularly limited as long as it is a member that radiates heat generated by the electronic component 51, and can be appropriately selected according to the purpose.
  • the heat conductive sheet 21 is sandwiched between the heat spreader 52 and the electronic component 51. Further, the heat conductive sheet 21 constitutes, together with the heat spreader 52, a heat radiating member that radiates heat of the electronic component 51 by being sandwiched between the heat spreader 52 and the heat sink 53.
  • the mounting position of the heat conductive sheet 21 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, and can be appropriately selected according to the configuration of the electronic device or the semiconductor device.
  • the heat radiating member is not limited to the heat spreader 52 and the heat sink 53, and may be any member that conducts heat generated from a heat source and radiates the heat to the outside. For example, a radiator, a cooler, a die pad, a printed circuit board, a cooling fan , A Peltier element, a heat pipe, a metal cover, a housing, and the like.
  • the transfer head 3 may house the heat conductive sheet 21 in a storage recess of a supply member such as a carrier tape 60 that supplies the heat conductive sheet 21 by a moving mechanism.
  • the carrier tape 60 is formed in a long shape, a plurality of accommodation recesses 61 are formed in the longitudinal direction, and the accommodation recesses 61 are sealed with a cover film 62.
  • the carrier tape 60 accommodates the heat conductive sheet 21 in the accommodation recess 61, is sealed with the cover film 62, and is supplied as a reel wound around a reel.
  • the heat conductive sheet 21 is pulled out from the reel body, and after the cover film 62 is peeled off, the heat conductive sheet 21 is automatically mounted by manual operation or by a pickup mechanism such as a vacuum nozzle.
  • the holding mechanism 4 is provided on the stage 2. However, in the pickup device to which the present technology is applied, the holding mechanism 4 may be provided on the transfer head 3.
  • the same members as those of the above-described pickup device 1 are denoted by the same reference numerals, and the details thereof are omitted.
  • a holding mechanism 4 is formed on the transfer head 3, and a magnetic field can be applied to a predetermined heat conductive sheet 21 to be picked up.
  • the heat conductive sheet 21 has magnetism and is magnetized by applying a magnetic field from a holding mechanism 4 provided on the transfer head 3.
  • the holding mechanism 4 is not provided on the stage 2, the thermally conductive molded sheet 20 has a slight adhesive property and is held on the mounting surface 2a of the stage 2. Therefore, in the pickup device 30, only the predetermined heat conductive sheet 21 is magnetized and absorbed by the holding mechanism 4 of the transfer head 3, and can be separated from the heat conductive molded sheet 20 and picked up.
  • the holding mechanism 4 of the pickup device 30 can switch on / off the application of the magnetic field, and when mounting the picked-up heat conductive sheet 21, the magnetic field can be turned off and the heat conductive sheet 21 can be released.
  • the pickup device 30 may be provided with a holding means for holding the thermally conductive sheet 20 on the stage 2.
  • a holding means for holding the thermally conductive sheet 20 on the stage 2 As a result, the thermally conductive molded sheet 20 can be held on the mounting surface 2a, and only the thermally conductive sheet 21 magnetically attracted by the transfer head 3 can be picked up.
  • a holding mechanism 4 may be provided on the stage 2 and the transfer head 3 so that the thermally conductive molded sheet 20 is magnetically attracted to the mounting surface 2a.
  • the balance between the magnetic field strength of the holding mechanism 4 provided on the transfer head 3 and the magnetic field strength of the holding mechanism 4 provided on the stage 2 is adjusted, and the predetermined heat magnetically attracted by the holding mechanism 4 of the transfer head 3 is adjusted. It is necessary to take up only the conductive sheet 21.
  • the transfer head 3 provided with the holding mechanism 4 picks up the heat conductive sheet 21 stored in the storage recess 61 and provides it for mounting. Is also good.
  • the heat conductive sheet 21 has magnetism and is magnetized by applying a magnetic field from the holding mechanism 4 provided on the transfer head 3.
  • the holding mechanism 4 is capable of switching on / off of application of a magnetic field, thereby magnetizing the heat conductive sheet 21 and adsorbing it to the transfer head 3, and turning off the magnetic field to release the heat conductive sheet 21. It can be released.
  • the transfer head 3 can adsorb the heat conductive sheet 21 by the holding mechanism 4 and store the heat conductive sheet 21 in the housing concave portion 61 of the carrier tape 60.
  • the transfer head 3 can be used for mounting, for example, by picking up the heat conductive sheet 21 housed in the housing recess 61 by the holding mechanism 4 and transporting the heat conductive sheet 21 to a predetermined mounting position.
  • the carrier tape 60 is placed on the stage 2 provided with the holding mechanism 4, and the back surface of the housing recess 61, that is, the side opposite to the side sealed with the cover film 62 is set.
  • the predetermined heat conductive sheet 21 may be picked up by the suction nozzle 3a of the transfer head 3 provided with the holding mechanism 4 or the transfer head 3 not provided with the holding mechanism 4.
  • the magnetic field strength of the holding mechanism 4 provided on the transfer head 3 and the strength of the holding mechanism 4 provided on the stage 2 are different.
  • the balance of the magnetic field strength only the predetermined heat conductive sheet 21 magnetically attracted by the holding mechanism 4 of the transfer head 3 can be picked up.
  • the transfer mechanism 3 is provided with the transfer head 3 and / or the stage 2 and the heat conductive sheet 21 is picked up from the housing recess 61 of the carrier tape 60
  • the heat conductive sheet 20 is adhered to one surface of the sheet 20.
  • An adhesive layer may be formed, and the surface on which the pressure-sensitive adhesive layer is formed may be accommodated facing the bottom surface 61a of the accommodation recess 61.
  • the pressure-sensitive adhesive layer is formed, for example, by mixing and curing a silicone A liquid (base agent) and a silicone B liquid (curing agent) of a two-component addition-reaction type liquid silicone resin at a predetermined compounding ratio, and thermally curing a silicone film. It can be formed by superimposing on one surface of the body sheet 20 and applying surface pressure.
  • the pressure-sensitive adhesive layer may be formed by spray-coating an acrylic or silicone-based pressure-sensitive adhesive on one surface of the thermally conductive molded sheet 20.
  • the pressure-sensitive adhesive layer is formed by pressing the thermally conductive molded sheet 20 having both surfaces sandwiched by the supporting film to expose the uncured component of the polymer matrix component to both sides of the sheet. It may be formed by peeling the support film on one side.
  • the heat conductive molded sheet 20 is formed by slicing a molded body obtained by curing the heat conductive resin composition into a sheet.
  • the heat conductive sheet 21 is formed by cutting the heat conductive molded body sheet 20 into a plurality of small pieces.
  • the heat conductive sheet 21 includes a polymer matrix component, a fibrous heat conductive filler, and a magnetic metal powder.
  • the polymer matrix component contained in the heat conductive sheet 21 is a polymer component that becomes a base material of the heat conductive sheet 21.
  • the type is not particularly limited, and a known polymer matrix component can be appropriately selected.
  • one of the polymer matrix components is a thermosetting polymer.
  • thermosetting polymer for example, crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type Examples include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used alone or in combination of two or more.
  • crosslinked rubber for example, natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine Rubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber and the like. These may be used alone or in combination of two or more.
  • thermosetting polymers it is preferable to use a silicone resin from the viewpoint of excellent moldability and weatherability, as well as adhesion and followability to electronic components.
  • the silicone resin is not particularly limited, and the type of the silicone resin can be appropriately selected depending on the purpose.
  • the silicone resin is preferably a silicone resin composed of a liquid silicone gel base and a curing agent.
  • a silicone resin include an addition-reaction-type liquid silicone resin and a heat-curable millable silicone resin using a peroxide for vulcanization.
  • an addition-reaction-type liquid silicone resin is particularly preferable as a heat-radiating member of an electronic device, since it is required that the heat-generating surface and the heat-sink surface of the electronic component be in close contact with each other.
  • addition reaction type liquid silicone resin it is preferable to use a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main component and a polyorganosiloxane having a Si—H group as a curing agent. .
  • the content of the polymer matrix component in the heat conductive sheet of the present invention is not particularly limited and can be appropriately selected depending on the purpose. However, the formability of the sheet, the adhesion of the sheet, and the like are ensured. In view of this, the content is preferably about 15% by volume to 50% by volume, and more preferably 20% by volume to 45% by volume.
  • the heat conductive filler contained in the heat conductive sheet of the present invention is a component for improving the heat conductivity of the sheet.
  • a fibrous heat conductive filler and other known heat conductive fillers can be appropriately selected.
  • the type of the fibrous heat conductive filler is not particularly limited as long as it is a fibrous material having a high heat conductivity, and examples thereof include metals such as silver, copper, and aluminum, alumina, and nitride. Ceramics such as aluminum, silicon carbide, and graphite, and carbon fibers can be used. Among these fibrous heat conductive fillers, it is preferable to use carbon fibers from the viewpoint of obtaining higher heat conductivity.
  • the heat conductive filler may be used singly or as a mixture of two or more.
  • each of them may be a fibrous heat conductive filler or a fibrous heat conductive filler and another form of heat conductive filler.
  • a mixture with a filler may be used.
  • the type of the carbon fiber is not particularly limited, and can be appropriately selected depending on the purpose.
  • pitch-based, PAN-based, graphitized PBO fibers, arc discharge, laser evaporation, CVD (chemical vapor deposition), CCVD (catalytic chemical vapor deposition), etc. can be used.
  • carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable in that high thermal conductivity is obtained.
  • the carbon fiber can be used after part or all of its surface treatment, if necessary.
  • the surface treatment for example, an oxidation treatment, a nitridation treatment, a nitration, a sulfonation, or a metal, a metal compound, an organic compound, or the like attached to the surface of a functional group or carbon fiber introduced to the surface by these treatments or For example, a coupling process may be used.
  • the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, an amino group, and the like.
  • the average fiber length (average major axis length) of the carbon fibers is not particularly limited and can be appropriately selected. However, from the viewpoint of ensuring high thermal conductivity, the average fiber length is in the range of 50 ⁇ m to 300 ⁇ m. Is preferably in the range of 75 ⁇ m to 275 ⁇ m, and particularly preferably in the range of 90 ⁇ m to 250 ⁇ m.
  • the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be appropriately selected, but is in the range of 4 ⁇ m to 20 ⁇ m from the viewpoint of ensuring high thermal conductivity. It is more preferable that the thickness be in the range of 5 ⁇ m to 14 ⁇ m.
  • the aspect ratio (average major axis length / average minor axis length) of the carbon fiber is preferably 8 or more, more preferably 9 to 30, from the viewpoint of ensuring high thermal conductivity. . If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fiber is short, so that the thermal conductivity may be reduced. Since the dispersibility decreases, there is a possibility that a sufficient thermal conductivity cannot be obtained.
  • the average major axis length and average minor axis length of the carbon fibers can be measured by, for example, a microscope, a scanning electron microscope (SEM), or the like, and the average can be calculated from a plurality of samples.
  • SEM scanning electron microscope
  • the content of the fibrous heat conductive filler in the heat conductive sheet is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 4% by volume to 40% by volume. It is more preferably from 5% by volume to 35% by volume. If the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and if it exceeds 40% by volume, the moldability of the heat conductive sheet and the fibrous heat conduction There is a possibility that the orientation of the hydrophilic filler may be affected. Further, the content of the heat conductive filler containing a fibrous heat conductive filler in the heat conductive sheet is preferably 15% by volume to 75% by volume.
  • the heat conductive sheet 21 further includes an inorganic filler.
  • an inorganic filler It is preferable that the heat conductive sheet 21 further includes an inorganic filler. This is because the heat conductivity of the heat conductive sheet 21 can be further increased, and the strength of the sheet can be improved.
  • the shape, material, average particle size and the like of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include a spherical shape, an elliptical spherical shape, a block shape, a granular shape, a flat shape, and a needle shape. Among these, a spherical shape and an elliptical shape are preferred from the viewpoint of filling properties, and a spherical shape is particularly preferred.
  • Examples of the material of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, and metal particles. And the like. These may be used alone or in combination of two or more. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and alumina and aluminum nitride are particularly preferable in terms of thermal conductivity.
  • the inorganic filler that has been subjected to a surface treatment can be used.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved, and the flexibility of the heat conductive sheet is improved.
  • the average particle size of the inorganic filler can be appropriately selected according to the type of the inorganic material.
  • the average particle size is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 4 ⁇ m to 5 ⁇ m. If the average particle size is less than 1 ⁇ m, the viscosity may increase and mixing may be difficult. On the other hand, when the average particle size exceeds 10 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle size is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and more preferably 0.5 ⁇ m to 1. Particularly preferably, it is 5 ⁇ m. If the average particle size is less than 0.3 ⁇ m, the viscosity may increase and mixing may be difficult. If the average particle size exceeds 6.0 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
  • the magnetic metal powder contained in the heat conductive sheet 21 is a component for realizing magnetic adsorption to the heat conductive molded sheet 20 and the holding mechanism 4 of the heat conductive sheet 21.
  • the content of the magnetic metal powder may be any value as long as it can be magnetically attracted by the holding mechanism 4. Can be set.
  • the heat conductive sheet 21 may be provided with electromagnetic wave absorbing performance. For example, if the following magnetic metal powder is contained in the range of 1 to 30% by volume, it can be used as a normal heat conductive sheet. If the magnetic metal powder is contained in the range of 30 to 75% by volume, electromagnetic wave It can be used as a heat conductive sheet having absorption performance.
  • the type of the magnetic metal powder is not particularly limited except that it is a material that can take on magnetism, and a known magnetic metal powder can be appropriately selected.
  • amorphous metal powder or crystalline metal powder can be used.
  • the amorphous metal powder include Fe-Si-B-Cr, Fe-Si-B, Co-Si-B, Co-Zr, Co-Nb, and Co-Ta powders.
  • the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, and Fe-Si-Al-based. And Fe-Ni-Si-Al-based materials.
  • a microcrystalline metal obtained by adding a trace amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. Powder may be used.
  • the magnetic metal powder a powder of different materials or a powder of a mixture of two or more powders having different average particle diameters may be used.
  • a spherical magnetic metal powder having a particle size of several ⁇ m to several tens ⁇ m.
  • Such a magnetic metal powder can be produced by, for example, an atomizing method or a method of thermally decomposing metal carbonyl.
  • the atomizing method has an advantage that a spherical powder is easily produced, and the molten metal is caused to flow out of a nozzle, and a jet stream of air, water, an inert gas, or the like is sprayed on the discharged molten metal to solidify as a droplet. It is a method of making powder.
  • the cooling rate is preferably set to about 10 ⁇ 6 (K / s) in order to prevent the molten metal from being crystallized.
  • the surface of the amorphous alloy powder can be made smooth.
  • the filling property of the binder resin can be improved. Further, the filling property can be further improved by performing the coupling treatment.
  • the heat conductive sheet 21 may appropriately contain other components according to the purpose in addition to the above-described polymer matrix component, heat conductive filler, inorganic filler, and magnetic metal powder.
  • other components include a thixotropic agent, a dispersant, a curing accelerator, a retarder, a slight tackifier, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
  • the thickness of the heat conductive sheet 21 is not particularly limited, and can be appropriately changed depending on the place where the sheet is used, and for example, in the range of 0.2 mm to 5 mm in consideration of the adhesiveness and strength of the sheet. it can.
  • the method for producing the heat conductive sheet 21 includes a step of preparing a heat conductive resin composition containing a polymer matrix component, a fibrous heat conductive filler, and a magnetic metal powder (a sheet composition preparing step). Orienting the fibrous heat conductive filler (filler orientation step); curing the polymer matrix component while maintaining the orientation of the fibrous heat conductive filler; A step of producing a conductive resin molded article (a step of producing a thermally conductive resin molded article) and a predetermined angle (for example, 0 ° to 90 °) with respect to the major axis direction of the oriented fibrous heat conductive filler. ), The heat conductive resin molded body is cut to produce a sheet-like heat conductive molded body sheet 20 (a heat conductive molded body sheet preparation step); Heat conductive sheet 21 cut into small pieces (A step of preparing a heat conductive sheet).
  • the heat conductive sheet 21 can be obtained through the above steps. As described above, the heat conductive molded sheet 20 and the heat conductive sheet 21 have high thermal conductivity and magnetic susceptibility.
  • the method for producing the heat conductive sheet 21 includes a sheet composition preparing step.
  • this sheet composition preparing step the polymer matrix component, the fibrous heat conductive filler and the magnetic metal powder, and the inorganic filler and / or other components are blended to prepare a sheet composition.
  • the procedure for blending and preparing each component is not particularly limited. For example, a fibrous heat conductive filler, an inorganic filler, a magnetic metal powder, and other components are added to the polymer matrix component and mixed. By doing so, the composition for the sheet is prepared.
  • the method for manufacturing the heat conductive sheet 21 of the present invention includes a filler orientation step.
  • the method for orienting the fibrous heat conductive filler is not particularly limited as long as it is a means capable of orienting in one direction.
  • the method may be performed by extruding or press-fitting the sheet composition into a hollow mold under a high shear force.
  • the fibrous heat conductive filler can be relatively easily oriented, and the orientation of the fibrous heat conductive filler becomes the same (within ⁇ 10 °).
  • an extrusion molding method or a mold molding method As a method of extruding or press-fitting the sheet composition into the hollow mold under a high shearing force, specifically, an extrusion molding method or a mold molding method is mentioned.
  • the extrusion molding method when the sheet composition is extruded from a die, or in the mold molding method, when the heat conductive resin composition is pressed into a mold, the binder resin flows, and the flow direction thereof The fibrous thermally conductive filler is oriented along. At this time, if a slit is attached to the tip of the die, the fibrous heat conductive filler is more easily oriented.
  • the size and shape of the molded body can be determined according to the required size of the heat conductive sheet. For example, a rectangular parallelepiped having a cross section having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm can be given. The length of the rectangular parallelepiped may be determined as needed.
  • the method for manufacturing the heat conductive sheet 21 includes a heat conductive resin molded body manufacturing step.
  • the thermally conductive resin molded body refers to a base material (molded body) for cutting out a sheet, which is a base of the thermally conductive molded sheet 20 obtained by cutting into a predetermined size.
  • the production of the heat conductive resin molded body is performed by curing the polymer matrix component while maintaining the orientation state of the fibrous heat conductive filler performed in the filler orientation step described above. .
  • the method and conditions for curing the polymer matrix component can be changed according to the type of the polymer matrix component.
  • the curing temperature in thermosetting can be adjusted.
  • the thermosetting resin contains a liquid silicone gel base material and a curing agent, it is preferable to perform the curing at a curing temperature of 80 ° C. to 120 ° C.
  • the curing time in the thermal curing is not particularly limited, but may be 1 hour to 10 hours.
  • the method of manufacturing the heat conductive sheet 21 includes a step of preparing a heat conductive molded sheet.
  • the thermally conductive resin molded body is formed so as to form an angle of 0 ° to 90 ° with respect to a major axis direction of the oriented fibrous thermally conductive filler. Cut into sheets.
  • the cutting of the thermally conductive resin molded body is performed using a slicing apparatus.
  • the slicing apparatus is not particularly limited as long as it can cut the sheet compact, and a known slicing apparatus can be appropriately used.
  • a known slicing apparatus can be appropriately used.
  • an ultrasonic cutter, a plane, or the like can be used.
  • the method for manufacturing the heat conductive sheet 21 includes a heat conductive sheet forming step.
  • a plurality of heat conductive sheets 21 are obtained by cutting the heat conductive molded sheet 20 into small pieces.
  • Each of the small heat conductive sheets 21 has flexibility and slight adhesiveness, and is in close contact with the adjacent heat conductive sheet 21 through the cut.
  • the heat conductive sheet 21 is picked up from the heat conductive molded sheet 20 by the pickup device 1 as described above.
  • the method of manufacturing the heat conductive sheet 21 further includes the steps of: heat smoothing the surface of the heat conductive molded sheet 20 or the heat conductive sheet 21 to increase the adhesion and reduce the interface contact resistance under light load; A step of pressing the body sheet 20 or the heat conductive sheet 21 (press step) can be included.
  • the press can be performed using, for example, a pair of press devices including a flat plate and a press head having a flat surface. Pressing may be performed using a pinch roll.
  • the pressure at the time of the pressing is not particularly limited and can be appropriately selected depending on the purpose.However, if the pressure is too low, the heat resistance tends to be the same as when the pressing is not performed, and if the pressure is too high, the sheet is stretched. Due to the tendency, the pressure is preferably in the range of 0.1 MPa to 100 MPa, more preferably in the range of 0.5 MPa to 95 MPa.
  • the heat conductive molded sheet 20 and the heat conductive sheet 21 are made of a heat conductive layer containing a fibrous heat conductive filler in a polymer matrix component, and a magnetic material such as magnetic metal powder in a polymer matrix component. It may have a laminated structure in which a magnetic layer is contained. In the case of a two-layer structure of a heat conductive layer and a magnetic layer, for example, when the holding mechanism 4 is provided on the stage 2, the magnetic conductive layer is provided on the stage 2 side so that the heat conductive molded sheet 20 is held on the stage 2.
  • the heat conductive sheet 21 When the holding mechanism 4 is provided on the transfer head 3 side, by providing a magnetic layer on the transfer head 3 side, the heat conductive sheet 21 can be easily picked up.
  • the heat conductive sheet 21 may have a structure in which a magnetic layer is provided between two heat conductive layers, or a structure in which a heat conductive layer is provided between two magnetic layers.
  • a resin composition thermoally conductive resin composition
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm ⁇ 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • a cut was made in the obtained 40 mm ⁇ 40 mm thermally conductive sheet so that 16 10 mm ⁇ 10 mm thermally conductive sheets could be obtained, and placed on the stage of the pickup device.
  • a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. .
  • the magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 1, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm ⁇ 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • a 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 2, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm ⁇ 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • a 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the heat conductive molded sheet according to Example 3, the heat conductive sheet could be picked up with good yield without the adjacent heat conductive sheet adhering.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm ⁇ 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • a 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 4, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm ⁇ 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
  • a carrier tape was mounted on the stage, and the heat conductive sheet was picked up from the housing recess by a transfer head equipped with a suction nozzle while applying an electromagnet from the back of the stage to the back side of the housing recess with an electromagnet.
  • the magnetic flux density of the electromagnet was 2 Gauss.
  • the heat conductive sheet could be picked up with good yield.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm ⁇ 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • the silicone A liquid (main agent) and the silicone B liquid (curing agent) of the two-component addition reaction type liquid silicone resin were cured to obtain a silicone film having a thickness of 20 ⁇ m.
  • the obtained silicone film was pressed and transferred to a thermally conductive molded sheet of 50 mm ⁇ 50 mm to form an adhesive layer.
  • the condition of the silicone film transfer press was 0.5 MPa ⁇ 80 ° C. ⁇ 3 minutes.
  • a cut is made in the thermally conductive molded sheet to which the silicone film has been transferred so that 16 thermally conductive sheets of 10 mm ⁇ 10 mm can be removed (FIG. 6), and the surface to which the silicone film has been transferred is arranged on the stage of the pickup device. did.
  • the heat conductive sheet was picked up from the heat conductive molded sheet by a transfer head equipped with a suction nozzle, and the heat conductive sheet was placed in the receiving recess of the carrier tape wound in a reel shape. At this time, the heat conductive sheet was accommodated with the surface on which the silicone film was transferred facing the bottom of the accommodation recess. From the thermally conductive molded sheet according to Example 6, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering. When mounting the heat conductive sheet, the heat conductive sheet was picked up from the housing recess by the transfer head equipped with the electromagnet. The magnetic flux density of the electromagnet was 2 Gauss. At the time of mounting, the silicone film was transferred to one surface of the heat conductive sheet, so that it could be easily fixed to the adherend.
  • the two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm ⁇ 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body.
  • the obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product).
  • the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm.
  • a sample of a molded sheet was obtained.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • the heat conductive sheet could be picked up with good yield from the heat conductive molded sheet according to Example 7 without adhering the adjacent heat conductive sheet.
  • the heat conductive sheet was picked up from the housing recess by the transfer head equipped with the electromagnet.
  • the magnetic flux density of the electromagnet was 2 gauss. Also at the time of mounting, since the acrylic pressure-sensitive adhesive was applied to one surface of the heat conductive sheet, it was easily fixed to the adherend.
  • a predetermined heat conductive sheet in the heat conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle, but did not have a magnetic field applying means such as an electromagnet on the back surface of the stage, Since the magnetic powder was not contained in the thermally conductive molded sheet, the thermally conductive molded sheet could not be held on the stage, and the adjacent thermal conductive sheet was attached, so the evaluation was NG.
  • the two-component addition reaction type liquid silicone resin is obtained by mixing a silicone A liquid (base agent) and a silicone B liquid (curing agent) at a ratio of 17 vol%: 17 vol%. Other steps are the same as those in the first embodiment.
  • a predetermined heat conductive sheet in the heat conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle, but did not have a magnetic field applying means such as an electromagnet on the back surface of the stage, Since the magnetic powder was not contained in the thermally conductive molded sheet, the thermally conductive molded sheet could not be held on the stage, and the adjacent thermal conductive sheet was attached, so the evaluation was NG.
  • the thermally conductive molded sheet with magnetism
  • at least one of the stage and the transfer head is provided with a holding mechanism for magnetizing and holding the thermally conductive molded sheet. It can be seen that the heat conductive sheet adjacent to the heat conductive sheet to be picked up can be held on the stage to prevent adhesion, and the heat conductive sheet can be picked up with good yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention prevents the adhesion of adjacent heat conduction sheets when picking up the heat conduction sheets. The present invention is provided with: a stage 2 on which a heat-conductive molding sheet 20 having a plurality of heat conduction sheets 21 fragmented into small pieces by making a cut is mounted; and a moving head 3 for picking up and moving a heat conduction sheet 21 from the heat conductive molding sheet 20 mounted on the stage 2, wherein the heat conductive molding sheet 20 has magnetic properties, and a holding mechanism 4, which magnetizes and holds at least one among the heat conductive molding sheet 20 and the heat conduction sheets 21, is provided on at least one side of the stage 2 or the moving head 3.

Description

ピックアップ装置、実装装置、ピックアップ方法、実装方法Pickup device, mounting device, pickup method, mounting method
 本技術は、熱伝導シートをピックアップして移載するピックアップ装置及びピックアップ方法、及び熱伝導シートの実装装置及び実装方法に関する。本出願は、日本国において2018年7月12日に出願された日本特許出願番号特願2018-132740及び日本国において2019年7月12日に出願された日本特許出願番号特願2019-130427を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。 The present technology relates to a pickup device and a pickup method for picking up and transferring a heat conductive sheet, and a mounting device and a mounting method for a heat conductive sheet. This application is based on Japanese Patent Application No. 2018-132740 filed on July 12, 2018 in Japan and Japanese Patent Application No. 2019-130427 filed on July 12, 2019 in Japan. Claiming priority as a basis, these applications are hereby incorporated by reference.
 近年、電子機器は、小型化の傾向をたどる一方、アプリケーションの多様性のために電力消費量をそれほど変化させることができないため、機器内における放熱対策がより一層重要視されている。 In recent years, electronic devices have been following the trend of miniaturization, but since the power consumption cannot be changed so much due to the variety of applications, measures to dissipate heat in the devices have become even more important.
 上述した電子機器における放熱対策として、銅やアルミ等といった熱伝導率の高い金属材料で作製された放熱板やヒートパイプ、あるいはヒートシンク等が広く利用されている。これらの熱伝導性に優れた放熱部品は、放熱効果又は機器内の温度緩和を図るため、電子機器内における発熱部である半導体パッケージ等の電子部品に近接するようにして配置される。また、これらの熱伝導性に優れた放熱部品は、発熱部である電子部品から低温の場所へ亘って配置される。 放熱 As a measure for heat dissipation in the electronic devices described above, a heat sink, a heat pipe, a heat sink, or the like made of a metal material having high thermal conductivity such as copper or aluminum is widely used. These heat radiating components having excellent thermal conductivity are arranged close to electronic components, such as semiconductor packages, which are heat generating portions in the electronic device, in order to achieve a heat radiating effect or reduce the temperature inside the device. In addition, these heat radiating components having excellent heat conductivity are arranged from the electronic components, which are heat generating parts, to a low-temperature place.
 電子機器内における発熱部には、熱伝導シートや熱伝導グリスが使用されている。例えば、特許文献1には、CPU等の半導体とヒートシンクとの間に挟んで用いる熱伝導シートの技術が開示されている。 熱 Heat-conducting sheets and heat-conducting grease are used for heat-generating parts in electronic devices. For example, Patent Literature 1 discloses a technique of a heat conductive sheet used between a semiconductor such as a CPU and a heat sink.
特開2015-35580号公報JP 2015-35580 A
 電子部品の実装方法として、部品供給部から供給された部品を移載ヘッドが備える吸着ノズルにより真空吸着してピックアップし、制御データに基づいて移載ヘッドを移動させて部品を基板上に搭載する方法が知られている。 As a mounting method of the electronic component, the component supplied from the component supply unit is vacuum-sucked and picked up by a suction nozzle provided in the transfer head, and the transfer head is moved based on the control data to mount the component on the substrate. Methods are known.
 熱伝導シートの実装方法においては、先ず、所定のサイズの小片に型抜きした熱伝導シートを実装機のステージ上に配置する。そして、移載ヘッドが備える吸着ノズルによって所定の熱伝導シートを吸引して保持し、ピックアップした後、所定の電子部品や電子機器に実装する。 In the method for mounting the heat conductive sheet, first, the heat conductive sheet cut into small pieces of a predetermined size is placed on the stage of the mounting machine. Then, a predetermined heat conductive sheet is sucked and held by a suction nozzle of the transfer head, picked up, and mounted on a predetermined electronic component or electronic device.
 このとき、柔軟性が高い熱伝導シートは、型抜きした後に隣接する熱伝導シートが付着してしまい、ステージ上の熱伝導シートの小片を吸着してピックアップすると隣接する熱伝導シートの小片が付着してくるという問題があった。 At this time, if the heat conductive sheet having high flexibility, the adjacent heat conductive sheet adheres after die-cutting, and the small heat conductive sheet on the stage is attracted and picked up, the adjacent heat conductive sheet adheres. There was a problem of coming.
 そこで、本技術は、熱伝導シートのピックアップ時に、隣接する熱伝導シートの付着を防止できるピックアップ装置、実装装置、ピックアップ方法、実装方法を提供することを目的とする。 Accordingly, it is an object of the present technology to provide a pickup device, a mounting device, a pickup method, and a mounting method that can prevent an adjacent heat conductive sheet from adhering when picking up a heat conductive sheet.
 上述した課題を解決するために、本技術に係るピックアップ装置は、切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、上記熱伝導性成形体シートは磁性を有し、上記ステージ又は上記移載ヘッドの少なくとも一方に、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持する保持機構が設けられているものである。 In order to solve the above-described problem, a pickup device according to the present technology includes a stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed, A transfer head that picks up and moves the heat conductive sheet from the heat conductive molded sheet placed thereon, wherein the heat conductive molded sheet has magnetism, and the stage or the transfer head Is provided with a holding mechanism for magnetizing and holding at least one of the thermally conductive molded sheet and the thermally conductive sheet.
 また、本技術に係る実装装置は、熱伝導シートをピックアップして電子部品又は電子機器に実装する実装装置において、上記実装装置は、切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、上記熱伝導性成形体シートは磁性を有し、上記ステージ又は上記移載ヘッドの少なくとも一方に、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持する保持機構が設けられているものである。 Further, a mounting device according to the present technology is a mounting device that picks up a heat conductive sheet and mounts the heat conductive sheet on an electronic component or an electronic device, wherein the mounting device includes a plurality of heat conductive sheets that are cut into small pieces by being provided with cuts. A stage on which the thermally conductive molded sheet is mounted, and a transfer head for picking up and moving the thermally conductive sheet from the thermally conductive molded sheet placed on the stage, The formable sheet has magnetism, and at least one of the stage and the transfer head is provided with a holding mechanism for magnetizing and holding at least one of the heat conductive formed sheet or the heat conductive sheet. Things.
 また、本技術に係るピックアップ方法は、切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、上記熱伝導性成形体シートは磁性を有し、上記ステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持し、上記移載ヘッドによって上記熱伝導シートをピックアップするものである。 Further, the pickup method according to the present technology includes a stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are fragmented by being provided with a cut is placed, and a stage that is placed on the stage. A transfer head for picking up and moving the heat conductive sheet from the heat conductive molded sheet, wherein the heat conductive molded sheet has magnetism, and is provided on at least one of the stage or the transfer head. A holding mechanism magnetizes and holds at least one of the thermally conductive molded sheet and the thermally conductive sheet, and picks up the thermally conductive sheet by the transfer head.
 また、本技術に係る実装方法は、熱伝導シートをピックアップして電子部品又は電子機器に実装する実装方法において、切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、上記熱伝導性成形体シートは磁性を有し、上記ステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持し、上記移載ヘッドによって上記熱伝導シートをピックアップし、電子部品又は電子機器に実装するものである。 Further, the mounting method according to the present technology is a mounting method in which a heat conductive sheet is picked up and mounted on an electronic component or an electronic device, wherein the heat conductive sheet includes a plurality of heat conductive sheets that are cut into small pieces by being provided with cuts. A stage on which a body sheet is mounted, and a transfer head for picking up and moving a heat conductive sheet from the heat conductive formed sheet mounted on the stage, wherein the heat conductive formed sheet is By having a magnetism, by a holding mechanism provided on at least one of the stage or the transfer head, at least one of the thermally conductive molded sheet or the heat conductive sheet is magnetized and held. The heat conductive sheet is picked up and mounted on an electronic component or electronic device.
 また、本技術に係るピックアップ方法は、切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シート又は熱伝導シートが収容される収容凹部を複数備え、上記収容凹部がカバーフィルムによって封止されたキャリアテープと、上記収容凹部から上記熱伝導シートをピックアップする移載ヘッドとを有し、上記熱伝導性成形体シート及び上記熱伝導シートは磁性を有し、上記キャリアテープが載置されるステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートを磁化して保持し、上記移載ヘッドによって上記熱伝導シートをピックアップするものである。 Further, the pickup method according to the present technology includes a plurality of heat-conducting molded sheets having a plurality of heat-conducting sheets or a plurality of accommodating recesses for accommodating the heat-conducting sheets, which are cut into small pieces, and Has a carrier tape sealed with a cover film, and a transfer head that picks up the heat conductive sheet from the accommodation recess, wherein the heat conductive molded sheet and the heat conductive sheet have magnetism, The heat conductive molded sheet or the heat conductive sheet is magnetized and held by a holding mechanism provided on at least one of the stage on which the carrier tape is mounted and the transfer head, and the heat is transferred by the transfer head. This is to pick up the conductive sheet.
 本技術によれば、移載ヘッドによって吸着した熱伝導シートに、隣接する熱伝導シートが付着して共に引き上げられることを防止でき、移載ヘッドによって吸着した熱伝導シートのみをステージに載置された熱伝導性成形体シートからピックアップすることができる。 According to the present technology, it is possible to prevent the adjacent heat conductive sheet from adhering to and pulling up together with the heat conductive sheet sucked by the transfer head, and only the heat conductive sheet sucked by the transfer head is placed on the stage. From the heat conductive molded sheet.
図1は、本技術が適用されたピックアップ装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a schematic configuration of a pickup device to which the present technology is applied. 図2は、熱伝導シートが使用された半導体装置の一例を示す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a semiconductor device using a heat conductive sheet. 図3は、熱伝導シートを収容する収容凹部が設けられたキャリアテープを示す斜視図である。FIG. 3 is a perspective view showing a carrier tape provided with a housing recess for housing a heat conductive sheet. 図4は、本技術が適用されたピックアップ装置の変形例の概略構成を示す断面図である。FIG. 4 is a cross-sectional view illustrating a schematic configuration of a modified example of the pickup device to which the present technology is applied. 図5は、本技術が適用されたピックアップ装置の変形例の概略構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a schematic configuration of a modified example of the pickup device to which the present technology is applied. 図6は、小片化された複数の熱伝導シートを有する熱伝導性成形体シートを示す外観斜視図である。FIG. 6 is an external perspective view showing a thermally conductive molded sheet having a plurality of fragmented thermal conductive sheets. 図7は、保持機構を備えた移載ヘッドによってキャリアテープの収容凹部に収容された熱伝導シートをピックアップするピックアップ装置の概略構成を示す断面図である。FIG. 7 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet stored in a storage recess of a carrier tape by a transfer head provided with a holding mechanism. 図8は、移載ヘッドによって保持機構を備えたステージに載置されたキャリアテープの収容凹部に収容された熱伝導シートをピックアップするピックアップ装置の概略構成を示す断面図である。FIG. 8 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet accommodated in an accommodation recess of a carrier tape placed on a stage having a holding mechanism by a transfer head. 図9は、保持機構を備えた移載ヘッドによって保持機構を備えたステージに載置されたキャリアテープの収容凹部に収容された熱伝導シートをピックアップするピックアップ装置の概略構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a schematic configuration of a pickup device that picks up a heat conductive sheet housed in a housing recess of a carrier tape mounted on a stage equipped with a holding mechanism by a transfer head equipped with a holding mechanism. .
 以下、本技術が適用されたピックアップ装置、実装装置、ピックアップ方法、実装方法について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a pickup device, a mounting device, a pickup method, and a mounting method to which the present technology is applied will be described in detail with reference to the drawings. Note that the present technology is not limited to only the following embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present technology. Also, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions and the like should be determined in consideration of the following description. In addition, it is needless to say that the drawings include portions having different dimensional relationships and ratios.
 <ピックアップ装置>
 本技術が適用されたピックアップ装置1は、図1に示すように、シート状に形成された熱伝導性成形体シート20が載置されるステージ2と、ステージ2上に載置された熱伝導性成形体シート20から熱伝導シート21をピックアップして移動させる移載ヘッド3とを備える。
<Pickup device>
As shown in FIG. 1, a pickup device 1 to which the present technology is applied includes a stage 2 on which a thermally conductive molded body sheet 20 formed in a sheet shape is placed, and a heat conductive member placed on the stage 2. And a transfer head 3 for picking up and moving the heat conductive sheet 21 from the compliant molded body sheet 20.
 熱伝導性成形体シート20は、切れ込みが入れられることにより小片化された複数の熱伝導シート21を有する(図6)。また、熱伝導性成形体シート20は、磁性を有し、外部より磁場をかけられることにより磁化する。 The thermally conductive molded sheet 20 has a plurality of thermal conductive sheets 21 which are cut into small pieces by being cut (FIG. 6). The thermally conductive molded sheet 20 has magnetism and is magnetized when a magnetic field is applied from the outside.
 そして、ピックアップ装置1は、ステージ2又は移載ヘッド3の少なくとも一方に、熱伝導性成形体シート20又は熱伝導シート21の少なくとも一方を磁化して保持する保持機構4が設けられている。これにより、ピックアップ装置1は、移載ヘッド3によって吸着した熱伝導シート21に、隣接する熱伝導シート21が付着して共に引き上げられることを防止でき、移載ヘッド3によって吸着した熱伝導シート21のみをステージ2に載置された熱伝導性成形体シート20からピックアップすることができる。 In the pickup device 1, a holding mechanism 4 for magnetizing and holding at least one of the thermally conductive molded sheet 20 and the thermally conductive sheet 21 is provided on at least one of the stage 2 and the transfer head 3. Thus, the pickup device 1 can prevent the heat conductive sheet 21 adsorbed by the transfer head 3 from being attached and pulled up together with the heat conductive sheet 21 adsorbed by the transfer head 3. Only the heat conductive molded body sheet 20 placed on the stage 2 can be picked up.
 また、ピックアップ装置1は、移載ヘッド3に保持機構4を設けることにより、熱伝導シート21を磁気により吸着することで保持力が増加するため、熱伝導シート21のサイズが大きくなった場合にも、真空吸着のみで吸引する場合に比して熱伝導シート21に加える吸引力を高める必要が無く、熱伝導シート21の変形を防止できる。また、ピックアップ装置1は、ステージ2に保持機構4を設けた場合にも、移載ヘッド3によって吸着した熱伝導シート21に隣接する熱伝導シート21の付着を防止できることから、熱伝導シート21に加える吸引力を高めることなく取り上げることが可能となり、熱伝導シート21の変形を防止できる。 In addition, in the pickup device 1, by providing the transfer mechanism 3 with the holding mechanism 4, the holding force is increased by magnetically attracting the heat conductive sheet 21, so that the size of the heat conductive sheet 21 increases. Also, there is no need to increase the suction force applied to the heat conductive sheet 21 as compared with the case where suction is performed only by vacuum suction, and deformation of the heat conductive sheet 21 can be prevented. Further, even when the holding mechanism 4 is provided on the stage 2, the pickup device 1 can prevent the heat conductive sheet 21 adjacent to the heat conductive sheet 21 adsorbed by the transfer head 3 from adhering. The heat conductive sheet 21 can be taken up without increasing the applied suction force, and deformation of the heat conductive sheet 21 can be prevented.
 以下では、ステージ2に保持機構4を設けた場合を例にピックアップ装置1の各構成について説明する。 Hereinafter, each configuration of the pickup device 1 will be described by taking a case where the holding mechanism 4 is provided on the stage 2 as an example.
 [ステージ]
 ステージ2は、熱伝導性成形体シート20が載置され、熱伝導シート21のピックアップ時にピックアップされる熱伝導シート21以外の熱伝導シート21を保持する。また、ステージ2は、熱伝導性成形体シート20が載置される載置面2aを有し、載置面2aに載置された熱伝導性成形体シート20に磁場をかける保持機構4が内蔵されている。ステージ2は、鉄、フェライト系ステンレス鋼などの保持機構4によって印加される磁界を阻害しない材料によって形成される。
[stage]
The stage 2 holds the heat conductive sheet 21 other than the heat conductive sheet 21 picked up when the heat conductive sheet 21 is picked up. The stage 2 has a mounting surface 2a on which the thermally conductive molded sheet 20 is placed, and a holding mechanism 4 for applying a magnetic field to the thermally conductive molded sheet 20 placed on the mounting surface 2a is provided. Built-in. The stage 2 is formed of a material such as iron and ferritic stainless steel that does not hinder the magnetic field applied by the holding mechanism 4.
 [保持機構]
 保持機構4は、載置面2aに載置された熱伝導性成形体シート20に磁場をかける磁界印加手段を有する。磁界印加手段としては公知の手段を用いることができ、例えば永久磁石、ソレノイド、電磁石などを例示できる。磁界印加手段の磁束密度は、熱伝導性成形体シート20の厚さや熱伝導シート21のサイズ、透磁率等に応じて適宜設定することができ、例えば1~13ガウスとする。また、保持機構4は、必要に応じて磁界印加手段による磁界の印加のオン/オフの制御を可能としてもよい。これにより、ステージ2に熱伝導性成形体シート20を載置する際や除去する際には、磁界の印加をオフにして熱伝導性成形体シート20の載置や除去の作業を容易に行うことができる。また、保持機構4は、磁界印加手段による磁界の強度を調整可能としてもよい。磁界の強度の調整は、例えばコイルに流れる電流の強さや、載置面2aまでの距離を調整する、磁界を遮蔽する消磁部材を介在させる等、磁界印加手段の構成に応じた方法により適宜行うことができる。
[Holding mechanism]
The holding mechanism 4 has a magnetic field applying unit that applies a magnetic field to the thermally conductive molded sheet 20 placed on the placement surface 2a. Known means can be used as the magnetic field applying means, and examples thereof include a permanent magnet, a solenoid, and an electromagnet. The magnetic flux density of the magnetic field applying means can be appropriately set in accordance with the thickness of the thermally conductive molded sheet 20, the size of the thermally conductive sheet 21, the magnetic permeability, and the like, and is, for example, 1 to 13 gauss. Further, the holding mechanism 4 may be capable of controlling on / off of the application of the magnetic field by the magnetic field applying unit as needed. Thereby, when placing or removing the thermally conductive molded sheet 20 on the stage 2, the application of the magnetic field is turned off and the work of placing and removing the thermally conductive molded sheet 20 is easily performed. be able to. Further, the holding mechanism 4 may be capable of adjusting the strength of the magnetic field by the magnetic field applying means. Adjustment of the strength of the magnetic field is appropriately performed by a method according to the configuration of the magnetic field applying means, such as adjusting the strength of the current flowing through the coil, the distance to the mounting surface 2a, and interposing a demagnetizing member for shielding the magnetic field. be able to.
 [移載ヘッド]
 熱伝導シート21をピックアップする移載ヘッド3は、ヘッド先端に熱伝導シート21を吸着する吸着部3aが形成され、例えば熱伝導シート21を負圧吸引することにより吸着し、熱伝導性成形体シート20から取り上げる。吸着部3aは、例えば熱伝導シート21を負圧吸引することにより吸着する吸着ノズルからなる。また、移載ヘッド3は、図示しない移動機構によって移動可能とされ、熱伝導性成形体シート20から取り上げた熱伝導シート21を、所定の位置、例えば、半導体装置等の電子部品に移載する。
[Transfer head]
The transfer head 3 that picks up the heat conductive sheet 21 has a suction portion 3a at the tip of the head that sucks the heat conductive sheet 21. Take up from sheet 20. The suction unit 3a is formed of a suction nozzle that suctions the heat conductive sheet 21 by, for example, sucking it under a negative pressure. The transfer head 3 is movable by a moving mechanism (not shown), and transfers the heat conductive sheet 21 picked up from the heat conductive molded sheet 20 to a predetermined position, for example, an electronic component such as a semiconductor device. .
 ここで、熱伝導性成形体シート20は、熱伝導性樹脂組成物がシート状に成形されたものであり、切れ込みが入れられることにより複数に小片化された熱伝導シート21を有する。したがって、移載ヘッド3によって個別に熱伝導シート21をピックアップ可能とされている。熱伝導シート21は微粘着性を有し、切れ込みによって小片化された場合にも、隣接する熱伝導シート21と密着しており、一つの熱伝導シート21をピックアップすると、隣接する熱伝導シート21も付着して共に取り上げられる恐れがある。 Here, the thermally conductive molded sheet 20 is formed by molding the thermally conductive resin composition into a sheet, and has the thermally conductive sheet 21 which is cut into a plurality of pieces by being cut. Therefore, the heat transfer sheet 21 can be individually picked up by the transfer head 3. The heat conductive sheet 21 has a slight adhesive property and is in close contact with the adjacent heat conductive sheet 21 even when the heat conductive sheet 21 is cut into small pieces. May also be attached and taken up together.
 しかし、熱伝導性成形体シート20は、磁性を有し、保持機構4によって磁場がかけられることにより磁化される。したがって、保持機構4は、熱伝導性成形体シート20をステージ2の載置面2a上に保持しておくことができる。これにより、ピックアップ装置1は、移載ヘッド3によって吸着した熱伝導シート21に、隣接する熱伝導シート21が付着して共に引き上げられることを防止でき、移載ヘッド3によって吸着した熱伝導シート21のみをステージ2に載置された熱伝導性成形体シート20からピックアップすることができる。 However, the thermally conductive molded sheet 20 has magnetism, and is magnetized by applying a magnetic field by the holding mechanism 4. Accordingly, the holding mechanism 4 can hold the thermally conductive molded sheet 20 on the mounting surface 2a of the stage 2. Thus, the pickup device 1 can prevent the heat conductive sheet 21 adsorbed by the transfer head 3 from being attached and pulled up together with the heat conductive sheet 21 adsorbed by the transfer head 3. Only the heat conductive molded body sheet 20 placed on the stage 2 can be picked up.
 なお、移載ヘッド3によってピックアップされる熱伝導シート21も、他の熱伝導シートと同様に磁化されるが、磁界印加手段の磁界の強度及び場所並びに移載ヘッド3の吸引力を、当該熱伝導シート21のみを載置面2aから取り上げることができるように調整することにより、ピックアップ可能となる。 The heat transfer sheet 21 picked up by the transfer head 3 is also magnetized in the same manner as other heat transfer sheets, but the strength and location of the magnetic field of the magnetic field applying means and the suction force of the transfer head 3 are affected by the heat. By adjusting so that only the conductive sheet 21 can be picked up from the mounting surface 2a, the pickup can be performed.
 また、移載ヘッド3は、1つの熱伝導シート21をピックアップしてもよく、複数の吸着部3aを備え、一度のピックアップ操作により、隣接する又は隣接しない複数の熱伝導シート21を取り上げるようにしてもよい。 Further, the transfer head 3 may pick up one heat conductive sheet 21 and include a plurality of suction portions 3a so that a plurality of adjacent or non-adjacent heat conductive sheets 21 are picked up by one pick-up operation. You may.
 [半導体装置]
 移載ヘッド3は、ピックアップした熱伝導シート21を半導体装置等の電子部品や、各種電子機器の内部に実装することができる。この場合、ピックアップ装置1は、実装装置として機能することとなる。
[Semiconductor device]
The transfer head 3 can mount the picked-up heat conductive sheet 21 in an electronic component such as a semiconductor device or various electronic devices. In this case, the pickup device 1 functions as a mounting device.
 例えば、移載ヘッド3によってピックアップされた熱伝導シート21は、各種電子機器に内蔵される半導体装置に実装され、熱源と放熱部材との間に挟持される。図2に半導体装置の一例を示す。図2に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート21とを少なくとも有し、熱伝導シート21がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート21を用いることによって、半導体装置50は、高い放熱性を有しつつ、電磁波抑制効果にも優れる。 For example, the heat conductive sheet 21 picked up by the transfer head 3 is mounted on a semiconductor device incorporated in various electronic devices, and is sandwiched between a heat source and a heat radiating member. FIG. 2 illustrates an example of a semiconductor device. The semiconductor device 50 shown in FIG. 2 includes at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 21, and the heat conductive sheet 21 is sandwiched between the heat spreader 52 and the electronic component 51. By using the heat conductive sheet 21, the semiconductor device 50 has a high heat radiation property and also has an excellent effect of suppressing electromagnetic waves.
 電子部品51としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU、MPU、グラフィック演算素子、イメージセンサ等が挙げられる。ヒートスプレッダ52は、電子部品51の発する熱を放熱する部材であれば、特に制限はなく、目的に応じて適宜選択することができる。熱伝導シート21は、ヒートスプレッダ52と電子部品51との間に挟持される。また熱伝導シート21は、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。 The electronic component 51 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include a CPU, an MPU, a graphic operation element, and an image sensor. The heat spreader 52 is not particularly limited as long as it is a member that radiates heat generated by the electronic component 51, and can be appropriately selected according to the purpose. The heat conductive sheet 21 is sandwiched between the heat spreader 52 and the electronic component 51. Further, the heat conductive sheet 21 constitutes, together with the heat spreader 52, a heat radiating member that radiates heat of the electronic component 51 by being sandwiched between the heat spreader 52 and the heat sink 53.
 熱伝導シート21の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できることは勿論である。また、放熱部材としては、ヒートスプレッダ52やヒートシンク53以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等が挙げられる。 The mounting position of the heat conductive sheet 21 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, and can be appropriately selected according to the configuration of the electronic device or the semiconductor device. . The heat radiating member is not limited to the heat spreader 52 and the heat sink 53, and may be any member that conducts heat generated from a heat source and radiates the heat to the outside. For example, a radiator, a cooler, a die pad, a printed circuit board, a cooling fan , A Peltier element, a heat pipe, a metal cover, a housing, and the like.
 [キャリアテープ]
 その他、移載ヘッド3は、図3に示すように、移動機構によって熱伝導シート21を、熱伝導シート21を供給するキャリアテープ60などの供給部材の収納凹部に収容してもよい。キャリアテープ60は、長尺状に形成され、長手方向にわたって複数の収容凹部61が形成され、収容凹部61がカバーフィルム62によって封止されてなる。
[Carrier tape]
Alternatively, as shown in FIG. 3, the transfer head 3 may house the heat conductive sheet 21 in a storage recess of a supply member such as a carrier tape 60 that supplies the heat conductive sheet 21 by a moving mechanism. The carrier tape 60 is formed in a long shape, a plurality of accommodation recesses 61 are formed in the longitudinal direction, and the accommodation recesses 61 are sealed with a cover film 62.
 キャリアテープ60は、収容凹部61に熱伝導シート21を収容し、カバーフィルム62で封止された後、リール状に巻回されたリール体として供給される。そして、熱伝導シート21の使用時にはリール体から引き出されて、カバーフィルム62が剥離された後、手作業あるいはバキュームノズル等のピックアップ機構により自動的に実装に供される。 (4) The carrier tape 60 accommodates the heat conductive sheet 21 in the accommodation recess 61, is sealed with the cover film 62, and is supplied as a reel wound around a reel. When the heat conductive sheet 21 is used, the heat conductive sheet 21 is pulled out from the reel body, and after the cover film 62 is peeled off, the heat conductive sheet 21 is automatically mounted by manual operation or by a pickup mechanism such as a vacuum nozzle.
 [変形例1]
 上述したピックアップ装置1ではステージ2に保持機構4を設けたが、本技術が適用されたピックアップ装置は、移載ヘッド3に保持機構4を設けてもよい。なお、以下の説明において、上述したピックアップ装置1と同一の部材は、同一の符号を付してその詳細を省略する。
[Modification 1]
In the above-described pickup device 1, the holding mechanism 4 is provided on the stage 2. However, in the pickup device to which the present technology is applied, the holding mechanism 4 may be provided on the transfer head 3. In the following description, the same members as those of the above-described pickup device 1 are denoted by the same reference numerals, and the details thereof are omitted.
 図4に示すピックアップ装置30は、移載ヘッド3に保持機構4が形成され、ピックアップする所定の熱伝導シート21に磁場をかけることが可能とされている。熱伝導シート21は、磁性を有し、移載ヘッド3に設けられた保持機構4より磁場をかけられることにより磁化する。 (4) In the pickup device 30 shown in FIG. 4, a holding mechanism 4 is formed on the transfer head 3, and a magnetic field can be applied to a predetermined heat conductive sheet 21 to be picked up. The heat conductive sheet 21 has magnetism and is magnetized by applying a magnetic field from a holding mechanism 4 provided on the transfer head 3.
 また、ステージ2には保持機構4が設けられていないが、熱伝導性成形体シート20は、微粘着性を有するため、ステージ2の載置面2aに保持される。したがって、ピックアップ装置30は、移載ヘッド3の保持機構4によって所定の熱伝導シート21のみを磁化させて吸着し、熱伝導性成形体シート20から引き離して取り上げることができる。 (4) Although the holding mechanism 4 is not provided on the stage 2, the thermally conductive molded sheet 20 has a slight adhesive property and is held on the mounting surface 2a of the stage 2. Therefore, in the pickup device 30, only the predetermined heat conductive sheet 21 is magnetized and absorbed by the holding mechanism 4 of the transfer head 3, and can be separated from the heat conductive molded sheet 20 and picked up.
 ピックアップ装置30の保持機構4は、磁界の印加のオン/オフを切り替えることが可能とされ、ピックアップした熱伝導シート21を実装等する際には、磁界をオフにして熱伝導シート21をリリース可能とする。 The holding mechanism 4 of the pickup device 30 can switch on / off the application of the magnetic field, and when mounting the picked-up heat conductive sheet 21, the magnetic field can be turned off and the heat conductive sheet 21 can be released. And
 なお、ピックアップ装置30は、ステージ2に熱伝導性成形体シート20を保持する保持手段を設けてもよい。これにより、熱伝導性成形体シート20を載置面2aに保持し、移載ヘッド3によって磁気吸着された熱伝導シート21のみをピックアップすることができる。ステージ2に設ける熱伝導性成形体シート20の保持手段としては、例えばステージ2の載置面2aに無数の吸引孔を設けてバキュームによって保持する方法が挙げられる。 The pickup device 30 may be provided with a holding means for holding the thermally conductive sheet 20 on the stage 2. As a result, the thermally conductive molded sheet 20 can be held on the mounting surface 2a, and only the thermally conductive sheet 21 magnetically attracted by the transfer head 3 can be picked up. As means for holding the thermally conductive molded body sheet 20 provided on the stage 2, for example, there is a method in which countless suction holes are provided on the mounting surface 2 a of the stage 2 and held by vacuum.
 また、図5に示すピックアップ装置40のように、ステージ2及び移載ヘッド3に保持機構4を設けて、熱伝導性成形体シート20を載置面2aに磁気吸着させてもよい。この場合、移載ヘッド3に設けた保持機構4の磁界強度と、ステージ2に設けた保持機構4の磁界強度のバランスを調整し、移載ヘッド3の保持機構4によって磁気吸着した所定の熱伝導シート21のみを取り上げるようにする必要がある。 Also, as in the pickup device 40 shown in FIG. 5, a holding mechanism 4 may be provided on the stage 2 and the transfer head 3 so that the thermally conductive molded sheet 20 is magnetically attracted to the mounting surface 2a. In this case, the balance between the magnetic field strength of the holding mechanism 4 provided on the transfer head 3 and the magnetic field strength of the holding mechanism 4 provided on the stage 2 is adjusted, and the predetermined heat magnetically attracted by the holding mechanism 4 of the transfer head 3 is adjusted. It is necessary to take up only the conductive sheet 21.
 [変形例2]
 また、本技術が適用されたピックアップ方法は、図7に示すように、保持機構4が設けられた移載ヘッド3によって、収容凹部61に収容された熱伝導シート21をピックアップし実装に供してもよい。上述したように、熱伝導シート21は磁性を有し、移載ヘッド3に設けられた保持機構4より磁場をかけられることにより磁化する。保持機構4は、磁界の印加のオン/オフを切り替えることが可能とされ、これにより熱伝導シート21を磁化させて移載ヘッド3に吸着し、また、磁界をオフにして熱伝導シート21をリリース可能とされている。
[Modification 2]
Further, in the pickup method to which the present technology is applied, as shown in FIG. 7, the transfer head 3 provided with the holding mechanism 4 picks up the heat conductive sheet 21 stored in the storage recess 61 and provides it for mounting. Is also good. As described above, the heat conductive sheet 21 has magnetism and is magnetized by applying a magnetic field from the holding mechanism 4 provided on the transfer head 3. The holding mechanism 4 is capable of switching on / off of application of a magnetic field, thereby magnetizing the heat conductive sheet 21 and adsorbing it to the transfer head 3, and turning off the magnetic field to release the heat conductive sheet 21. It can be released.
 このように、移載ヘッド3は、保持機構4によって熱伝導シート21を吸着しキャリアテープ60の収容凹部61に熱伝導シート21を収容することができる。また、移載ヘッド3は、保持機構4によって収容凹部61に収容された熱伝導シート21をピックアップし、所定の実装位置に搬送して配置する等、実装に供することができる。 As described above, the transfer head 3 can adsorb the heat conductive sheet 21 by the holding mechanism 4 and store the heat conductive sheet 21 in the housing concave portion 61 of the carrier tape 60. In addition, the transfer head 3 can be used for mounting, for example, by picking up the heat conductive sheet 21 housed in the housing recess 61 by the holding mechanism 4 and transporting the heat conductive sheet 21 to a predetermined mounting position.
 また、図8に示すように、キャリアテープ60を保持機構4が設けられたステージ2に載置して、収容凹部61の裏面、すなわち、カバーフィルム62で封止されている側と反対側の面から磁界を印加しながら、保持機構4が設けられた移載ヘッド3又は保持機構4が設けられていない移載ヘッド3の吸着ノズル3aによって所定の熱伝導シート21をピックアップしてもよい。ステージ2に設けた保持機構4によって収容凹部61内の熱伝導シート21が磁化されることにより、例えば、隣接する収容凹部61に収容された熱伝導シート21を磁気吸着することなく、また、収容凹部61に複数の小片化された熱伝導シート21や熱伝導性成形体シート20が収容されている場合にも、所定の熱伝導シート21のみを移載ヘッド3に吸着させてピックアップすることができ、実装に供することができ、他の熱伝導シート21を収容凹部61内に存置させておくことができる。 Further, as shown in FIG. 8, the carrier tape 60 is placed on the stage 2 provided with the holding mechanism 4, and the back surface of the housing recess 61, that is, the side opposite to the side sealed with the cover film 62 is set. While applying a magnetic field from the surface, the predetermined heat conductive sheet 21 may be picked up by the suction nozzle 3a of the transfer head 3 provided with the holding mechanism 4 or the transfer head 3 not provided with the holding mechanism 4. By magnetizing the heat conductive sheet 21 in the housing recess 61 by the holding mechanism 4 provided on the stage 2, for example, the heat conductive sheet 21 housed in the adjacent housing recess 61 can be stored without magnetically attracting. Even when the plurality of small heat conductive sheets 21 and the heat conductive molded sheet 20 are accommodated in the recess 61, only the predetermined heat conductive sheet 21 can be adsorbed to the transfer head 3 and picked up. It can be provided for mounting, and another heat conductive sheet 21 can be kept in the accommodation recess 61.
 また、図9に示すように、移載ヘッド3及びステージ2に保持機構4を設けた場合は、移載ヘッド3に設けた保持機構4の磁界強度と、ステージ2に設けた保持機構4の磁界強度のバランスを調整することにより、移載ヘッド3の保持機構4によって磁気吸着した所定の熱伝導シート21のみを取り上げることができる。 As shown in FIG. 9, when the holding mechanism 4 is provided on the transfer head 3 and the stage 2, the magnetic field strength of the holding mechanism 4 provided on the transfer head 3 and the strength of the holding mechanism 4 provided on the stage 2 are different. By adjusting the balance of the magnetic field strength, only the predetermined heat conductive sheet 21 magnetically attracted by the holding mechanism 4 of the transfer head 3 can be picked up.
 移載ヘッド3及び/又はステージ2に保持機構4を設け、キャリアテープ60の収容凹部61から熱伝導シート21をピックアップする上述した各構成において、熱伝導性成形体シート20の一方の面に粘着剤層を形成し、粘着剤層が形成された面を収容凹部61の底面61aに向けて収容するようにしてもよい。これにより、移載ヘッド3によって所定の熱伝導シート21を収容凹部61からピックアップする際に、他の熱伝導シート21が粘着剤層の粘着力によっても収容凹部61内に存置され、所定の熱伝導シート21のみをピックアップすることができる。 In each of the above-described configurations in which the transfer mechanism 3 is provided with the transfer head 3 and / or the stage 2 and the heat conductive sheet 21 is picked up from the housing recess 61 of the carrier tape 60, the heat conductive sheet 20 is adhered to one surface of the sheet 20. An adhesive layer may be formed, and the surface on which the pressure-sensitive adhesive layer is formed may be accommodated facing the bottom surface 61a of the accommodation recess 61. Thus, when the transfer head 3 picks up the predetermined heat conductive sheet 21 from the housing recess 61, the other heat conductive sheet 21 is also placed in the housing recess 61 by the adhesive force of the adhesive layer, and the predetermined thermal conductivity is obtained. Only the conductive sheet 21 can be picked up.
 粘着剤層は、例えば、2液性付加反応型液状シリコーン樹脂のシリコーンA液(主剤)、シリコーンB液(硬化剤)を所定の配合比率で混合、硬化させてなるシリコーンフィルムを熱伝導性成形体シート20の一方の面に重ねて、面圧を掛けることにより形成することができる。 The pressure-sensitive adhesive layer is formed, for example, by mixing and curing a silicone A liquid (base agent) and a silicone B liquid (curing agent) of a two-component addition-reaction type liquid silicone resin at a predetermined compounding ratio, and thermally curing a silicone film. It can be formed by superimposing on one surface of the body sheet 20 and applying surface pressure.
 また、粘着剤層は、熱伝導性成形体シート20の一方の面にアクリル系又はシリコーン系などの粘着剤をスプレー塗布することにより形成してもよい。 The pressure-sensitive adhesive layer may be formed by spray-coating an acrylic or silicone-based pressure-sensitive adhesive on one surface of the thermally conductive molded sheet 20.
 あるいは、粘着剤層は、両面が支持フィルムで挟持された熱伝導性成形体シート20をプレスして高分子マトリックス成分の未硬化成分をシート両面に涌出させ、熱伝導性成形体シート20の一方の面の支持フィルムを剥離することで形成してもよい。 Alternatively, the pressure-sensitive adhesive layer is formed by pressing the thermally conductive molded sheet 20 having both surfaces sandwiched by the supporting film to expose the uncured component of the polymer matrix component to both sides of the sheet. It may be formed by peeling the support film on one side.
 [熱伝導性成形体シート/熱伝導シート]
 次いで、熱伝導性成形体シート20及び熱伝導シート21について説明する。熱伝導性成形体シート20は、熱伝導性樹脂組成物が硬化された成形体をシート状にスライスすることにより形成されたものである。熱伝導シート21は、熱伝導性成形体シート20に切れ込みが入れられ、複数に小片化されることにより形成されたものである。熱伝導シート21は、高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含む。
[Thermal conductive sheet / thermal conductive sheet]
Next, the heat conductive molded sheet 20 and the heat conductive sheet 21 will be described. The heat conductive molded sheet 20 is formed by slicing a molded body obtained by curing the heat conductive resin composition into a sheet. The heat conductive sheet 21 is formed by cutting the heat conductive molded body sheet 20 into a plurality of small pieces. The heat conductive sheet 21 includes a polymer matrix component, a fibrous heat conductive filler, and a magnetic metal powder.
 (高分子マトリックス成分)
 熱伝導シート21に含まれる高分子マトリックス成分は、熱伝導シート21の基材となる高分子成分のことである。その種類については、特に限定されず、公知の高分子マトリックス成分を適宜選択することができる。例えば、高分子マトリックス成分の一つとして、熱硬化性ポリマーが挙げられる。
(Polymer matrix component)
The polymer matrix component contained in the heat conductive sheet 21 is a polymer component that becomes a base material of the heat conductive sheet 21. The type is not particularly limited, and a known polymer matrix component can be appropriately selected. For example, one of the polymer matrix components is a thermosetting polymer.
 前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 As the thermosetting polymer, for example, crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type Examples include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used alone or in combination of two or more.
 なお、前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 As the crosslinked rubber, for example, natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine Rubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber and the like. These may be used alone or in combination of two or more.
 また、これら熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。前記シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。 シ リ コ ー ン Also, among these thermosetting polymers, it is preferable to use a silicone resin from the viewpoint of excellent moldability and weatherability, as well as adhesion and followability to electronic components. The silicone resin is not particularly limited, and the type of the silicone resin can be appropriately selected depending on the purpose.
 上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。 From the viewpoint of obtaining the above-mentioned moldability, weather resistance, adhesion, and the like, the silicone resin is preferably a silicone resin composed of a liquid silicone gel base and a curing agent. Examples of such a silicone resin include an addition-reaction-type liquid silicone resin and a heat-curable millable silicone resin using a peroxide for vulcanization. Among these, an addition-reaction-type liquid silicone resin is particularly preferable as a heat-radiating member of an electronic device, since it is required that the heat-generating surface and the heat-sink surface of the electronic component be in close contact with each other.
 前記付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。 As the addition reaction type liquid silicone resin, it is preferable to use a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main component and a polyorganosiloxane having a Si—H group as a curing agent. .
 なお、前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、質量比で、主剤:硬化剤=35:65~65:35であることが好ましい。 In the combination of the main component of the liquid silicone gel and the curing agent, the mixing ratio of the main component and the curing agent may be, as a mass ratio, the main component: the curing agent = 35: 65 to 65:35. preferable.
 また、本発明の熱伝導シートにおける前記高分子マトリックス成分の含有量は、特に制限されず、目的に応じて適宜選択することができるが、シートの成形加工性や、シートの密着性等を確保する観点からは、15体積%~50体積%程度であることが好ましく、20体積%~45体積%であることがより好ましい。 Further, the content of the polymer matrix component in the heat conductive sheet of the present invention is not particularly limited and can be appropriately selected depending on the purpose. However, the formability of the sheet, the adhesion of the sheet, and the like are ensured. In view of this, the content is preferably about 15% by volume to 50% by volume, and more preferably 20% by volume to 45% by volume.
 (熱伝導性充填剤)
 本発明の熱伝導シートに含まれる熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。熱伝導性充填剤の種類については、繊維状の熱伝導性充填剤、その他、公知の熱伝導性充填剤を適宜選択することができる。
(Thermal conductive filler)
The heat conductive filler contained in the heat conductive sheet of the present invention is a component for improving the heat conductivity of the sheet. As for the kind of the heat conductive filler, a fibrous heat conductive filler and other known heat conductive fillers can be appropriately selected.
 ここで、前記繊維状の熱伝導性充填剤の種類については、繊維状で且つ熱伝導性の高い材料であれば特に限定はされず、例えば、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス、炭素繊維等が挙げられる。これらの繊維状の熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。 Here, the type of the fibrous heat conductive filler is not particularly limited as long as it is a fibrous material having a high heat conductivity, and examples thereof include metals such as silver, copper, and aluminum, alumina, and nitride. Ceramics such as aluminum, silicon carbide, and graphite, and carbon fibers can be used. Among these fibrous heat conductive fillers, it is preferable to use carbon fibers from the viewpoint of obtaining higher heat conductivity.
 なお、前記熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも繊維状の熱伝導性充填剤であってもよいし、繊維状の熱伝導性充填剤と別の形状の熱伝導性充填剤とを混合して用いてもよい。 The heat conductive filler may be used singly or as a mixture of two or more. When two or more kinds of heat conductive fillers are used, each of them may be a fibrous heat conductive filler or a fibrous heat conductive filler and another form of heat conductive filler. A mixture with a filler may be used.
 前記炭素繊維の種類について特に制限はなく、目的に応じて適宜選択することができる。例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、高い熱伝導性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。 種類 The type of the carbon fiber is not particularly limited, and can be appropriately selected depending on the purpose. For example, pitch-based, PAN-based, graphitized PBO fibers, arc discharge, laser evaporation, CVD (chemical vapor deposition), CCVD (catalytic chemical vapor deposition), etc. Can be used. Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable in that high thermal conductivity is obtained.
 また、前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理等が挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。 炭素 Further, the carbon fiber can be used after part or all of its surface treatment, if necessary. As the surface treatment, for example, an oxidation treatment, a nitridation treatment, a nitration, a sulfonation, or a metal, a metal compound, an organic compound, or the like attached to the surface of a functional group or carbon fiber introduced to the surface by these treatments or For example, a coupling process may be used. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, an amino group, and the like.
 さらに、前記炭素繊維の平均繊維長(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm~300μmの範囲であることが好ましく、75μm~275μmの範囲であることがより好ましく、90μm~250μmの範囲であることが特に好ましい。 Further, the average fiber length (average major axis length) of the carbon fibers is not particularly limited and can be appropriately selected. However, from the viewpoint of ensuring high thermal conductivity, the average fiber length is in the range of 50 μm to 300 μm. Is preferably in the range of 75 μm to 275 μm, and particularly preferably in the range of 90 μm to 250 μm.
 さらにまた、前記炭素繊維の平均繊維径(平均短軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。 Furthermore, the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be appropriately selected, but is in the range of 4 μm to 20 μm from the viewpoint of ensuring high thermal conductivity. It is more preferable that the thickness be in the range of 5 μm to 14 μm.
 前記炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)については、確実に高い熱伝導性を得る点から、8以上であることが好ましく、9~30であることがより好ましい。前記アスペクト比が8未満であると、炭素繊維の繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうおそれがあり、一方、30を超えると、熱伝導シート中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。 The aspect ratio (average major axis length / average minor axis length) of the carbon fiber is preferably 8 or more, more preferably 9 to 30, from the viewpoint of ensuring high thermal conductivity. . If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fiber is short, so that the thermal conductivity may be reduced. Since the dispersibility decreases, there is a possibility that a sufficient thermal conductivity cannot be obtained.
 ここで、前記炭素繊維の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。 Here, the average major axis length and average minor axis length of the carbon fibers can be measured by, for example, a microscope, a scanning electron microscope (SEM), or the like, and the average can be calculated from a plurality of samples.
 また、前記熱伝導シートにおける前記繊維状の熱伝導性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%~40体積%であることが好ましく、5体積%~35体積%であることがより好ましい。前記含有量が、4体積%未満であると、十分に低い熱抵抗を得ることが困難になるおそれがあり、40体積%を超えると、前記熱伝導シートの成型性及び前記繊維状の熱伝導性充填剤の配向性に影響を与えてしまうおそれがある。また、前記熱伝導シートにおける繊維状の熱伝導性充填剤を含む熱伝導フィラーの含有量は、15体積%~75体積%であることが好ましい。 Further, the content of the fibrous heat conductive filler in the heat conductive sheet is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 4% by volume to 40% by volume. It is more preferably from 5% by volume to 35% by volume. If the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and if it exceeds 40% by volume, the moldability of the heat conductive sheet and the fibrous heat conduction There is a possibility that the orientation of the hydrophilic filler may be affected. Further, the content of the heat conductive filler containing a fibrous heat conductive filler in the heat conductive sheet is preferably 15% by volume to 75% by volume.
 (無機物フィラー)
 熱伝導シート21は、無機物フィラーをさらに含むことが好ましい。熱伝導シート21の熱伝導性をより高め、シートの強度を向上できるからである。前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
(Inorganic filler)
It is preferable that the heat conductive sheet 21 further includes an inorganic filler. This is because the heat conductivity of the heat conductive sheet 21 can be further increased, and the strength of the sheet can be improved. The shape, material, average particle size and the like of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include a spherical shape, an elliptical spherical shape, a block shape, a granular shape, a flat shape, and a needle shape. Among these, a spherical shape and an elliptical shape are preferred from the viewpoint of filling properties, and a spherical shape is particularly preferred.
 前記無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、金属粒子等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。 Examples of the material of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, and metal particles. And the like. These may be used alone or in combination of two or more. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and alumina and aluminum nitride are particularly preferable in terms of thermal conductivity.
 また、前記無機物フィラーは、表面処理が施されたものを用いることができる。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シートの柔軟性が向上する。 Also, the inorganic filler that has been subjected to a surface treatment can be used. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved, and the flexibility of the heat conductive sheet is improved.
 前記無機物フィラーの平均粒径については、無機物の種類等に応じて適宜選択することができる。前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、4μm~5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、前記熱伝導シートの熱抵抗が大きくなるおそれがある。 平均 The average particle size of the inorganic filler can be appropriately selected according to the type of the inorganic material. When the inorganic filler is alumina, the average particle size is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm, and particularly preferably 4 μm to 5 μm. If the average particle size is less than 1 μm, the viscosity may increase and mixing may be difficult. On the other hand, when the average particle size exceeds 10 μm, the thermal resistance of the heat conductive sheet may increase.
 さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmであることが好ましく、0.3μm~2.0μmであることがより好ましく、0.5μm~1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、前記熱伝導シートの熱抵抗が大きくなるおそれがある。 Further, when the inorganic filler is aluminum nitride, the average particle size is preferably 0.3 μm to 6.0 μm, more preferably 0.3 μm to 2.0 μm, and more preferably 0.5 μm to 1. Particularly preferably, it is 5 μm. If the average particle size is less than 0.3 μm, the viscosity may increase and mixing may be difficult. If the average particle size exceeds 6.0 μm, the thermal resistance of the heat conductive sheet may increase.
 なお、前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。 The average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
 (磁性金属粉)
 熱伝導シート21に含まれる磁性金属粉は、熱伝導性成形体シート20及び熱伝導シート21の保持機構4のへの磁気吸着を実現するための成分である。磁性金属粉の含有量は、保持機構4による磁気吸着が可能であればよく、熱伝導シート21を構成する樹脂材料や、熱伝導シート21の大きさ、保持機構4の構成等に応じて適宜設定することができる。また、磁性金属粉の含有量を調整することにより、熱伝導シート21に電磁波吸収性能を付与してもよい。例えば、以下に示す磁性金属粉を1~30体積%の範囲で含有させれば、通常の熱伝導性シートとして使用でき、磁性金属粉を30~75体積%の範囲で含有させれば、電磁波吸収性能を有する熱伝導性シートとして使用できる。
(Magnetic metal powder)
The magnetic metal powder contained in the heat conductive sheet 21 is a component for realizing magnetic adsorption to the heat conductive molded sheet 20 and the holding mechanism 4 of the heat conductive sheet 21. The content of the magnetic metal powder may be any value as long as it can be magnetically attracted by the holding mechanism 4. Can be set. Further, by adjusting the content of the magnetic metal powder, the heat conductive sheet 21 may be provided with electromagnetic wave absorbing performance. For example, if the following magnetic metal powder is contained in the range of 1 to 30% by volume, it can be used as a normal heat conductive sheet. If the magnetic metal powder is contained in the range of 30 to 75% by volume, electromagnetic wave It can be used as a heat conductive sheet having absorption performance.
 磁性金属粉の種類については、磁性を帯びることが可能な材料であること以外は、特に限定されず、公知の磁性金属粉を適宜選択することができる。例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いてもよい。 種類 The type of the magnetic metal powder is not particularly limited except that it is a material that can take on magnetism, and a known magnetic metal powder can be appropriately selected. For example, amorphous metal powder or crystalline metal powder can be used. Examples of the amorphous metal powder include Fe-Si-B-Cr, Fe-Si-B, Co-Si-B, Co-Zr, Co-Nb, and Co-Ta powders. Examples of the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, and Fe-Si-Al-based. And Fe-Ni-Si-Al-based materials. Further, as the crystalline metal powder, a microcrystalline metal obtained by adding a trace amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. Powder may be used.
 なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。 As the magnetic metal powder, a powder of different materials or a powder of a mixture of two or more powders having different average particle diameters may be used.
 また、磁性金属粉については、球状、扁平状等を調整することが好ましい。例えば、充填性を高くする場合には、粒径が数μm~数十μmであって、球状である磁性金属粉を用いることが好ましい。このような磁性金属粉末は、例えばアトマイズ法や、金属カルボニルを熱分解する方法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法により磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を10-6(K/s)程度にすることが好ましい。 Further, it is preferable to adjust the spherical shape, the flat shape and the like of the magnetic metal powder. For example, in order to enhance the filling property, it is preferable to use a spherical magnetic metal powder having a particle size of several μm to several tens μm. Such a magnetic metal powder can be produced by, for example, an atomizing method or a method of thermally decomposing metal carbonyl. The atomizing method has an advantage that a spherical powder is easily produced, and the molten metal is caused to flow out of a nozzle, and a jet stream of air, water, an inert gas, or the like is sprayed on the discharged molten metal to solidify as a droplet. It is a method of making powder. When producing magnetic metal powder by the atomizing method, the cooling rate is preferably set to about 10 −6 (K / s) in order to prevent the molten metal from being crystallized.
 上述したアトマイズ法により、アモルファス合金粉を製造した場合には、アモルファス合金粉の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス合金粉を磁性金属粉として用いると、バインダ樹脂に対して充填性を高めることができる。さらに、カップリング処理を行うことで充填性をより向上できる。 (4) When the amorphous alloy powder is manufactured by the above-described atomizing method, the surface of the amorphous alloy powder can be made smooth. When the amorphous alloy powder having a small surface unevenness and a small specific surface area is used as the magnetic metal powder, the filling property of the binder resin can be improved. Further, the filling property can be further improved by performing the coupling treatment.
 (その他成分)
 熱伝導シート21は、上述した、高分子マトリックス成分、熱伝導性充填剤、無機物フィラー及び磁性金属粉に加えて、目的に応じてその他の成分を適宜含むこともできる。その他の成分としては、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
(Other components)
The heat conductive sheet 21 may appropriately contain other components according to the purpose in addition to the above-described polymer matrix component, heat conductive filler, inorganic filler, and magnetic metal powder. Examples of other components include a thixotropic agent, a dispersant, a curing accelerator, a retarder, a slight tackifier, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
 なお、熱伝導シート21の厚さについては、特に限定はされず、シートを用いる場所等によって適宜変更でき、例えばシートの密着性や強度を考慮すると、0.2mm~5mmの範囲にすることができる。 The thickness of the heat conductive sheet 21 is not particularly limited, and can be appropriately changed depending on the place where the sheet is used, and for example, in the range of 0.2 mm to 5 mm in consideration of the adhesiveness and strength of the sheet. it can.
 <熱伝導シートの製造方法>
 次に、熱伝導シート21の製造方法について説明する。熱伝導シート21の製造方法は、高分子マトリックス成分と、繊維状の熱伝導性充填剤と、磁性金属粉とを含む熱伝導性樹脂組成物を調製する工程(シート用組成物調製工程)と、前記繊維状の熱伝導性充填剤を配向させる工程(充填剤配向工程)と、前記繊維状の熱伝導性充填剤の配向を維持した状態で、前記高分子マトリックス成分を硬化させて、熱伝導性樹脂成形体を作製する工程(熱伝導性樹脂成形体作製工程)と、前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、所定の角度(例えば0°~90°)となるように、前記熱伝導性樹脂成形体を切断し、シート状の熱伝導性成形体シート20を作製する工程(熱伝導性成形体シート作製工程)と、熱伝導性成形体シート20に切れ込みを入れて小片化された熱伝導シート21を得る工程(熱伝導シート作成工程)とを含む。
<Production method of heat conductive sheet>
Next, a method for manufacturing the heat conductive sheet 21 will be described. The method for producing the heat conductive sheet 21 includes a step of preparing a heat conductive resin composition containing a polymer matrix component, a fibrous heat conductive filler, and a magnetic metal powder (a sheet composition preparing step). Orienting the fibrous heat conductive filler (filler orientation step); curing the polymer matrix component while maintaining the orientation of the fibrous heat conductive filler; A step of producing a conductive resin molded article (a step of producing a thermally conductive resin molded article) and a predetermined angle (for example, 0 ° to 90 °) with respect to the major axis direction of the oriented fibrous heat conductive filler. ), The heat conductive resin molded body is cut to produce a sheet-like heat conductive molded body sheet 20 (a heat conductive molded body sheet preparation step); Heat conductive sheet 21 cut into small pieces (A step of preparing a heat conductive sheet).
 上記各工程を経ることで、熱伝導シート21を得ることができる。熱伝導成形体シート20及び熱伝導シート21については、上述したように、高い熱伝導性及び磁化率を有する。 熱 The heat conductive sheet 21 can be obtained through the above steps. As described above, the heat conductive molded sheet 20 and the heat conductive sheet 21 have high thermal conductivity and magnetic susceptibility.
 (シート用組成物調製工程)
 熱伝導シート21の製造方法は、シート用組成物調製工程を含む。このシート用組成物調製工程では、上述した、高分子マトリックス成分、繊維状の熱伝導性充填剤及び磁性金属粉、さらに、無機物フィラー及び/又はその他成分を配合し、シート用組成物を調製する。なお、各成分を配合、調製する手順については特に限定はされず、例えば、前記高分子マトリックス成分に、繊維状の熱伝導性充填剤、無機物フィラー、磁性金属粉、その他成分を添加し、混合することにより、シート用組成物の調製が行われる。
(Sheet composition preparing step)
The method for producing the heat conductive sheet 21 includes a sheet composition preparing step. In this sheet composition preparing step, the polymer matrix component, the fibrous heat conductive filler and the magnetic metal powder, and the inorganic filler and / or other components are blended to prepare a sheet composition. . The procedure for blending and preparing each component is not particularly limited. For example, a fibrous heat conductive filler, an inorganic filler, a magnetic metal powder, and other components are added to the polymer matrix component and mixed. By doing so, the composition for the sheet is prepared.
 (充填剤配向工程)
 本発明の熱伝導シート21の製造方法は、充填剤配向工程を含む。前記繊維状の熱伝導性充填剤を配向させる方法については、一方向に配向させることができる手段であれば特に限定はされない。
(Filler orientation step)
The method for manufacturing the heat conductive sheet 21 of the present invention includes a filler orientation step. The method for orienting the fibrous heat conductive filler is not particularly limited as long as it is a means capable of orienting in one direction.
 前記繊維状の熱伝導性充填剤を一方向に配向させるための方法として、中空状の型内に、前記シート用組成物を、高剪断力下で押し出すこと又は圧入することによって行うことが挙げられる。この方法によって、比較的容易に前記繊維状の熱伝導性充填剤を配向させることができ、前記繊維状の熱伝導性充填剤の配向は同一(±10°以内)となる。 As a method for orienting the fibrous heat conductive filler in one direction, the method may be performed by extruding or press-fitting the sheet composition into a hollow mold under a high shear force. Can be According to this method, the fibrous heat conductive filler can be relatively easily oriented, and the orientation of the fibrous heat conductive filler becomes the same (within ± 10 °).
 上述した、中空状の型内に、前記シート用組成物を、高剪断力下で押し出す方法又は圧入する方法として、具体的には、押出し成型法又は金型成型法が挙げられる。前記押出し成型法において、前記シート用組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、前記バインダ樹脂が流動し、その流動方向に沿って繊維状熱伝導性充填剤が配向する。この際、ダイの先端にスリットを取り付けると繊維状熱伝導性充填剤がより配向されやすくなる。 方法 As a method of extruding or press-fitting the sheet composition into the hollow mold under a high shearing force, specifically, an extrusion molding method or a mold molding method is mentioned. In the extrusion molding method, when the sheet composition is extruded from a die, or in the mold molding method, when the heat conductive resin composition is pressed into a mold, the binder resin flows, and the flow direction thereof The fibrous thermally conductive filler is oriented along. At this time, if a slit is attached to the tip of the die, the fibrous heat conductive filler is more easily oriented.
 成形体(ブロック状の成形体)の大きさ及び形状は、求められる熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 大 き The size and shape of the molded body (block-shaped molded body) can be determined according to the required size of the heat conductive sheet. For example, a rectangular parallelepiped having a cross section having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm can be given. The length of the rectangular parallelepiped may be determined as needed.
(熱伝導性樹脂成形体作製工程)
 熱伝導シート21の製造方法は、熱伝導性樹脂成形体作製工程を含む。ここで、前記熱伝導性樹脂成形体とは、所定のサイズに切断して得られる熱伝導性成形体シート20の元となるシート切り出し用の母材(成形体)のことをいう。前記熱伝導性樹脂成形体の作製は、上述した充填剤配向工程にて行われた繊維状の熱伝導性充填剤の配向状態を維持したまま、前記高分子マトリックス成分を硬化させることによって行われる。
(Heat conductive resin molded body manufacturing process)
The method for manufacturing the heat conductive sheet 21 includes a heat conductive resin molded body manufacturing step. Here, the thermally conductive resin molded body refers to a base material (molded body) for cutting out a sheet, which is a base of the thermally conductive molded sheet 20 obtained by cutting into a predetermined size. The production of the heat conductive resin molded body is performed by curing the polymer matrix component while maintaining the orientation state of the fibrous heat conductive filler performed in the filler orientation step described above. .
 前記高分子マトリックス成分を硬化させる方法や条件については、高分子マトリックス成分の種類に応じて変えることができる。例えば、前記高分子マトリックス成分が熱硬化性樹脂の場合、熱硬化における硬化温度を調整することができる。さらに、該熱硬化性樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有するものである場合、80℃~120℃の硬化温度で硬化を行うことが好ましい。また、熱硬化における硬化時間としては、特に制限はないが、1時間~10時間とすることができる。 The method and conditions for curing the polymer matrix component can be changed according to the type of the polymer matrix component. For example, when the polymer matrix component is a thermosetting resin, the curing temperature in thermosetting can be adjusted. Further, when the thermosetting resin contains a liquid silicone gel base material and a curing agent, it is preferable to perform the curing at a curing temperature of 80 ° C. to 120 ° C. The curing time in the thermal curing is not particularly limited, but may be 1 hour to 10 hours.
 (熱伝導性成形体シート作製工程)
 熱伝導シート21の製造方法は、熱伝導性成形体シート作製工程を含む。前記熱伝導性成形体シート作製工程では、前記配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°~90°の角度となるように、前記熱伝導性樹脂成形体をシート状に切断する。
(Heat conductive molded sheet production process)
The method of manufacturing the heat conductive sheet 21 includes a step of preparing a heat conductive molded sheet. In the step of preparing a thermally conductive molded sheet, the thermally conductive resin molded body is formed so as to form an angle of 0 ° to 90 ° with respect to a major axis direction of the oriented fibrous thermally conductive filler. Cut into sheets.
 また、前記熱伝導性樹脂成形体の切断については、スライス装置を用いて行われる。スライス装置については、前記シート用成形体を切断できる手段であれば特に限定はされず、公知のスライス装置を適宜用いることができる。例えば、超音波カッター、かんな(鉋)等を用いることができる。 切断 In addition, the cutting of the thermally conductive resin molded body is performed using a slicing apparatus. The slicing apparatus is not particularly limited as long as it can cut the sheet compact, and a known slicing apparatus can be appropriately used. For example, an ultrasonic cutter, a plane, or the like can be used.
 (熱伝導シート作成工程)
 熱伝導シート21の製造方法は、熱伝導シート作成工程を含む。前記熱伝導シート作成工程は、熱伝導性成形体シート20に切れ込みを入れることにより小片化し、複数の熱伝導シート21を得る。小片化された各熱伝導シート21は、柔軟性、微粘着性を有し、切れ込みを介して隣接する熱伝導シート21と密着している。その後、熱伝導シート21は、上述したように、ピックアップ装置1によって熱伝導性成形体シート20から熱伝導シート21をピックアップされる。
(Heat conduction sheet making process)
The method for manufacturing the heat conductive sheet 21 includes a heat conductive sheet forming step. In the heat conductive sheet forming step, a plurality of heat conductive sheets 21 are obtained by cutting the heat conductive molded sheet 20 into small pieces. Each of the small heat conductive sheets 21 has flexibility and slight adhesiveness, and is in close contact with the adjacent heat conductive sheet 21 through the cut. Thereafter, the heat conductive sheet 21 is picked up from the heat conductive molded sheet 20 by the pickup device 1 as described above.
 (プレス工程)
 熱伝導シート21の製造方法は、さらに、熱伝導性成形体シート20又は熱伝導シート21の表面を平滑化し、密着性を増し、軽荷重時の界面接触抵抗を軽減するべく、熱伝導性成形体シート20又は熱伝導シート21をプレスする工程(プレス工程)を含むことができる。前記プレスについては、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用してプレスを行ってもよい。
(Pressing process)
The method of manufacturing the heat conductive sheet 21 further includes the steps of: heat smoothing the surface of the heat conductive molded sheet 20 or the heat conductive sheet 21 to increase the adhesion and reduce the interface contact resistance under light load; A step of pressing the body sheet 20 or the heat conductive sheet 21 (press step) can be included. The press can be performed using, for example, a pair of press devices including a flat plate and a press head having a flat surface. Pressing may be performed using a pinch roll.
 前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるため、0.1MPa~100MPaの圧力範囲とすることが好ましく、0.5MPa~95MPaの圧力範囲とすることがより好ましい。 The pressure at the time of the pressing is not particularly limited and can be appropriately selected depending on the purpose.However, if the pressure is too low, the heat resistance tends to be the same as when the pressing is not performed, and if the pressure is too high, the sheet is stretched. Due to the tendency, the pressure is preferably in the range of 0.1 MPa to 100 MPa, more preferably in the range of 0.5 MPa to 95 MPa.
 [熱伝導性成形体シート及び熱伝導シートの変形例]
 なお、熱伝導性成形体シート20及び熱伝導シート21は、高分子マトリックス成分に繊維状熱伝導性充填剤が含有された熱伝導層と、高分子マトリックス成分に磁性金属粉等の磁性材料が含有された磁性層とを積層させた積層構造としてもよい。熱伝導層と磁性層の2層構造とする場合において、例えば保持機構4をステージ2に設ける場合は、磁性層をステージ2側に設けることで、熱伝導性成形体シート20をステージ2に保持しやすくすることができ、また、保持機構4を移載ヘッド3側に設ける場合は、磁性層を移載ヘッド3側に設けることで、熱伝導シート21をピックアップしやすくすることができる。その他、熱伝導シート21は、2層の熱伝導層の間に磁性層を設ける構成としてもよく、2層の磁性層の間に熱伝導層を設ける構成としてもよい。
[Modified Example of Thermally Conductive Molded Sheet and Thermally Conductive Sheet]
The heat conductive molded sheet 20 and the heat conductive sheet 21 are made of a heat conductive layer containing a fibrous heat conductive filler in a polymer matrix component, and a magnetic material such as magnetic metal powder in a polymer matrix component. It may have a laminated structure in which a magnetic layer is contained. In the case of a two-layer structure of a heat conductive layer and a magnetic layer, for example, when the holding mechanism 4 is provided on the stage 2, the magnetic conductive layer is provided on the stage 2 side so that the heat conductive molded sheet 20 is held on the stage 2. When the holding mechanism 4 is provided on the transfer head 3 side, by providing a magnetic layer on the transfer head 3 side, the heat conductive sheet 21 can be easily picked up. In addition, the heat conductive sheet 21 may have a structure in which a magnetic layer is provided between two heat conductive layers, or a structure in which a heat conductive layer is provided between two magnetic layers.
 次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。 Next, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
 [実施例1]
 実施例1では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維=35vol%:45vol%:20vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 1]
In Example 1, two-component addition-reaction-type liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle diameter of 5 µm and pitch-based carbon fibers having an average fiber length of 200 µm (thermal conductive fiber: Japan). (Available from Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition-reaction liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber = 35 vol%: 45 vol%: 20 vol%. A resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型40mm×40mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm × 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 図6に示すように、得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ、ピックアップ装置のステージに配置した。ステージ裏面から電磁石で磁性粉を含有する熱伝導性成形体シートを固定し、吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実施例1に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。 切 れ As shown in FIG. 6, a cut was made in the obtained 40 mm × 40 mm thermally conductive sheet so that 16 10 mm × 10 mm thermally conductive sheets could be obtained, and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 1, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
 [実施例2]
 実施例2では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:12vol%:8vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 2]
In Example 2, two-component addition-reaction-type liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle diameter of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (thermal conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition reaction type liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 12 vol%: 8 vol%. By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型40mm×40mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm × 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、ピックアップ装置のステージに配置した。ステージ裏面から電磁石で磁性粉を含有する熱伝導性成形体シートを固定し、吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実施例2に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。 A 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 2, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
 [実施例3]
 実施例3では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:6vol%:14vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 3]
In Example 3, two-component addition-reaction liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle diameter of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (thermally conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) such that the two-component addition reaction type liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 6 vol%: 14 vol% By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型40mm×40mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm × 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、ピックアップ装置のステージに配置した。ステージ裏面から電磁石で磁性粉を含有する熱伝導性成形体シートを固定し、吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実施例3に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。 A 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the heat conductive molded sheet according to Example 3, the heat conductive sheet could be picked up with good yield without the adjacent heat conductive sheet adhering.
 [実施例4]
 実施例4では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:4vol%:16vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 4]
In Example 4, two-component addition-reaction-type liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle diameter of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (heat conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition-reaction liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 4 vol%: 16 vol%. By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型40mm×40mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 40 mm × 40 mm in which a PET film subjected to a peeling treatment was adhered to the inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、ピックアップ装置のステージに配置した。ステージ裏面から電磁石で磁性粉を含有する熱伝導性成形体シートを固定し、吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実施例4に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。 A 16 mm x 10 mm heat conductive sheet was cut out of the obtained 40 mm x 40 mm thermally conductive sheet (Fig. 6), and placed on the stage of the pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder was fixed with an electromagnet, and a predetermined thermal conductive sheet in the thermally conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle. . The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 4, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering.
 [実施例5]
 実施例5では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:4vol%:16vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 5]
In Example 5, two-component addition reaction type liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle size of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (thermal conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition-reaction liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 4 vol%: 16 vol%. By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型50mm×50mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm × 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 得られた50mm×50mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、ピックアップ装置のステージに配置した。ステージ裏面から電磁石で磁性粉を含有する熱伝導性成形体シートを固定し、吸着ノズルを備えた移載ヘッドにより熱伝導シートをピックアップし、リール状に巻回されたキャリアテープの収容凹部に熱伝導シートを入れた。電磁石の磁束密度は2ガウスとした。実施例5に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。熱伝導シートの実装時には、ステージ上にキャリアテープを載置し、ステージ裏面から電磁石で収容凹部の裏側に電磁石を当てながら吸着ノズルを備えた移載ヘッドにより収容凹部から熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実装時においても、同様に、歩留り良く熱伝導シートをピックアップすることができた。 (4) A cut was made from the obtained 50 mm × 50 mm thermally conductive sheet so that 16 10 mm × 10 mm thermally conductive sheets could be obtained (FIG. 6), and the sheet was placed on the stage of a pickup device. From the back of the stage, a thermally conductive molded sheet containing magnetic powder is fixed by an electromagnet, the thermally conductive sheet is picked up by a transfer head equipped with a suction nozzle, and the heat is transferred to a receiving recess of the carrier tape wound in a reel shape. The conductive sheet was put. The magnetic flux density of the electromagnet was 2 Gauss. From the thermally conductive molded sheet according to Example 5, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering. When mounting the heat conductive sheet, a carrier tape was mounted on the stage, and the heat conductive sheet was picked up from the housing recess by a transfer head equipped with a suction nozzle while applying an electromagnet from the back of the stage to the back side of the housing recess with an electromagnet. The magnetic flux density of the electromagnet was 2 Gauss. At the time of mounting, similarly, the heat conductive sheet could be picked up with good yield.
 [実施例6]
 実施例6では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:4vol%:16vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 6]
In Example 6, two-component addition-reaction-type liquid silicone resin was prepared by adding Fe-Si-B-Cr amorphous magnetic particles having an average particle diameter of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (thermal conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition-reaction liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 4 vol%: 16 vol%. By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型50mm×50mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm × 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 2液性付加反応型液状シリコーン樹脂のシリコーンA液(主剤)及びシリコーンB液(硬化剤)を硬化させて、厚み20μmのシリコーンフィルムを得た。得られたシリコーンフィルムを、50mm×50mmの熱伝導性成形体シートにプレスして転写し、粘着剤層を形成した。シリコーンフィルムの転写プレスの条件は0.5MPa×80℃×3分とした。次いで、シリコーンフィルムが転写された熱伝導性成形体シートに10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、シリコーンフィルムが転写された面をピックアップ装置のステージに配置した。吸着ノズルを備えた移載ヘッドにより熱伝導性成形体シートから熱伝導シートをピックアップし、リール状に巻回されたキャリアテープの収容凹部に熱伝導シートを入れた。このとき、シリコーンフィルムが転写された面を収容凹部の底面に向けて熱伝導シートを収容した。実施例6に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。また、熱伝導シートの実装時には、電磁石を搭載した移載ヘッドにより収容凹部から熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実装時においても、熱伝導シートの一方の面にシリコーンフィルムが転写されているので被着体に容易に固定ができた。 (4) The silicone A liquid (main agent) and the silicone B liquid (curing agent) of the two-component addition reaction type liquid silicone resin were cured to obtain a silicone film having a thickness of 20 μm. The obtained silicone film was pressed and transferred to a thermally conductive molded sheet of 50 mm × 50 mm to form an adhesive layer. The condition of the silicone film transfer press was 0.5 MPa × 80 ° C. × 3 minutes. Next, a cut is made in the thermally conductive molded sheet to which the silicone film has been transferred so that 16 thermally conductive sheets of 10 mm × 10 mm can be removed (FIG. 6), and the surface to which the silicone film has been transferred is arranged on the stage of the pickup device. did. The heat conductive sheet was picked up from the heat conductive molded sheet by a transfer head equipped with a suction nozzle, and the heat conductive sheet was placed in the receiving recess of the carrier tape wound in a reel shape. At this time, the heat conductive sheet was accommodated with the surface on which the silicone film was transferred facing the bottom of the accommodation recess. From the thermally conductive molded sheet according to Example 6, the thermal conductive sheet could be picked up with good yield without the adjacent thermal conductive sheet adhering. When mounting the heat conductive sheet, the heat conductive sheet was picked up from the housing recess by the transfer head equipped with the electromagnet. The magnetic flux density of the electromagnet was 2 Gauss. At the time of mounting, the silicone film was transferred to one surface of the heat conductive sheet, so that it could be easily fixed to the adherend.
 [実施例7]
 実施例7では、2液性の付加反応型液状シリコーン樹脂に、平均粒径5μmのFe-Si-B-Crアモルファス磁性粒子と、平均繊維長200μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アモルファス磁性粒子:ピッチ系炭素繊維:アルミナ=35vol%:45vol%:4vol%:16vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
[Example 7]
In Example 7, two-component addition reaction type liquid silicone resin was prepared by adding Fe—Si—B—Cr amorphous magnetic particles having an average particle diameter of 5 μm and pitch-based carbon fibers having an average fiber length of 200 μm (thermal conductive fiber: Japan). (Manufactured by Graphite Fiber Co., Ltd.) in a volume ratio of two-component addition-reaction liquid silicone resin: amorphous magnetic particles: pitch-based carbon fiber: alumina = 35 vol%: 45 vol%: 4 vol%: 16 vol%. By dispersing, a silicone resin composition (thermally conductive resin composition) was prepared.
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を19vol%:16vol%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型50mm×50mmの中に押し出してシリコーン成形体を成型した。得られたシリコーン成形体をオーブンにて100℃で6時間硬化してシリコーン硬化物(熱伝導性樹脂成形体)とした。次に、得られたシリコーン硬化物を、配向された炭素繊維の長軸に対し垂直、すなわち切断角度:90°(配向角度:90°)にて超音波カッターで切断し、厚み1mmの熱伝導性成形体シートのサンプルを得た。超音波カッターのスライス速度は、毎秒50mmとした。 The two-component addition reaction type liquid silicone resin is a mixture of a silicone A liquid (base) and a silicone B liquid (curing agent) in a ratio of 19 vol%: 16 vol%. The obtained silicone resin composition was extruded into a rectangular parallelepiped mold 50 mm × 50 mm in which a PET film subjected to a release treatment was adhered to an inner wall to form a silicone molded body. The obtained silicone molded product was cured in an oven at 100 ° C. for 6 hours to obtain a cured silicone product (a thermally conductive resin molded product). Next, the obtained cured silicone material is cut by an ultrasonic cutter perpendicular to the long axis of the oriented carbon fiber, that is, at a cutting angle of 90 ° (orientation angle: 90 °), and the heat conduction is performed with a thickness of 1 mm. A sample of a molded sheet was obtained. The slicing speed of the ultrasonic cutter was 50 mm per second.
 得られた50mm×50mmの熱伝導性成形体シートの一方の面にアクリル粘着剤をスプレー塗布し、粘着剤層を形成した。次いで、10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ(図6)、粘着剤の塗布面をピックアップ装置のステージに配置した。吸着ノズルを備えた移載ヘッドにより熱伝導性成形体シートから熱伝導シートをピックアップし、リール状に巻回されたキャリアテープの収容凹部に熱伝導シートを入れた。このとき、アクリル粘着剤が塗布された面を収容凹部の底面に向けて熱伝導シートを収容した。実施例7に係る熱伝導性成形体シートからは、隣接する熱伝導シートが付着してくることなく、歩留り良く熱伝導シートをピックアップすることができた。また、熱伝導シートの実装時には、電磁石を搭載した移載ヘッドにより収容凹部から熱伝導シートをピックアップした。電磁石の磁束密度は2ガウスとした。実装時においても、熱伝導シートの一方の面にアクリル粘着剤が塗布されているので被着体に容易に固定ができた。 ア ク リ ル An acrylic pressure-sensitive adhesive was spray-coated on one surface of the obtained 50 mm × 50 mm thermally conductive molded sheet to form a pressure-sensitive adhesive layer. Next, a cut was made so that 16 heat conductive sheets of 10 mm × 10 mm could be taken out (FIG. 6), and the coated surface of the adhesive was placed on the stage of the pickup device. The heat conductive sheet was picked up from the heat conductive molded sheet by a transfer head equipped with a suction nozzle, and the heat conductive sheet was placed in the receiving recess of the carrier tape wound in a reel shape. At this time, the heat conductive sheet was accommodated with the surface on which the acrylic pressure-sensitive adhesive was applied facing the bottom of the accommodation recess. The heat conductive sheet could be picked up with good yield from the heat conductive molded sheet according to Example 7 without adhering the adjacent heat conductive sheet. When mounting the heat conductive sheet, the heat conductive sheet was picked up from the housing recess by the transfer head equipped with the electromagnet. The magnetic flux density of the electromagnet was 2 gauss. Also at the time of mounting, since the acrylic pressure-sensitive adhesive was applied to one surface of the heat conductive sheet, it was easily fixed to the adherend.
 [比較例1]
 比較例1では、磁性粉の代わりに3~5μmのシリカ粉末を用いており、配合は体積比で、2液性の付加反応型液状シリコーシ樹脂:シリカ:ピッチ系炭素繊維=35vol%:53vol%:12vol%となるように分散させて、シリコーシ樹脂組成物(熱伝導性樹脂組成物)を調製した。他の工程は実施例1と同じ条件とした。
[Comparative Example 1]
In Comparative Example 1, silica powder of 3 to 5 μm was used instead of the magnetic powder, and the mixture was in a volume ratio of two-component addition-reaction-type liquid silicone resin: silica: pitch-based carbon fiber = 35 vol%: 53 vol% : 12 vol% to prepare a silicone resin composition (thermally conductive resin composition). Other steps were the same as in Example 1.
 得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ、ピックアップ装置のステージに配置した。吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップしたが、ステージ裏面に電磁石等の磁界印加手段を有しておらず、また、熱伝導性成形体シートに磁性粉を含有しないため、熱伝導性成形体シートをステージ上に保持できず、隣接する熱伝導シートが付着してきたため評価はNGであった。 A cut was made in the obtained 40 mm × 40 mm thermally conductive sheet so that 16 10 mm × 10 mm thermally conductive sheets could be obtained, and placed on the stage of the pickup device. A predetermined heat conductive sheet in the heat conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle, but did not have a magnetic field applying means such as an electromagnet on the back surface of the stage, Since the magnetic powder was not contained in the thermally conductive molded sheet, the thermally conductive molded sheet could not be held on the stage, and the adjacent thermal conductive sheet was attached, so the evaluation was NG.
 [比較例2]
 比較例2では、2液性の付加反応型液状シリコーン樹脂に、シラシカップリング剤でカップリング処理した平均粒径4μmのアルミナと、平均繊維長150μmのピッチ系炭素繊維(熱伝導性織維:日本グラファイトファイバー株式会社製)と、シランカップリング剤でカップリング処理した平均粒径1μmの窒化アルミとを、体積比で、2液性の付加反応型液状シリコーン樹脂:アルミナ粒子:ピッチ系炭素繊維:室化アルミ=34vo1%:20vo1%:22vo1%:24vo1%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)、シリコーンB液(硬化剤)を17vol%:17vol%の比率で混合したものである。他の工程は実施例1と同じ条件としている。
[Comparative Example 2]
In Comparative Example 2, alumina having an average particle diameter of 4 μm, which had been subjected to a coupling treatment with a silicic coupling agent, and pitch-based carbon fibers having an average fiber length of 150 μm (a thermally conductive fiber: Nippon Graphite Fiber Co., Ltd.) and aluminum nitride having an average particle size of 1 μm, which has been subjected to a coupling treatment with a silane coupling agent, in a volume ratio of two liquid addition reaction type liquid silicone resin: alumina particles: pitch-based carbon fiber : Room temperature aluminum = 34 vo 1%: 20 vo 1%: 22 vo 1%: 24 vo 1% to prepare a silicone resin composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone resin is obtained by mixing a silicone A liquid (base agent) and a silicone B liquid (curing agent) at a ratio of 17 vol%: 17 vol%. Other steps are the same as those in the first embodiment.
 得られた40mm×40mmの熱伝導性成形体シートから10mm×10mmの熱伝導シートが16個取れるように切れ目を入れ、ピックアップ装置のステージに配置した。吸着ノズルを備えた移載ヘッドによりステージに配置された熱伝導性成形体シート内の所定の熱伝導シートをピックアップしたが、ステージ裏面に電磁石等の磁界印加手段を有しておらず、また、熱伝導性成形体シートに磁性粉を含有しないため、熱伝導性成形体シートをステージ上に保持できず、隣接する熱伝導シートが付着してきたため評価はNGであった。 A cut was made in the obtained 40 mm × 40 mm thermally conductive sheet so that 16 10 mm × 10 mm thermally conductive sheets could be obtained, and placed on the stage of the pickup device. A predetermined heat conductive sheet in the heat conductive molded sheet placed on the stage was picked up by a transfer head equipped with a suction nozzle, but did not have a magnetic field applying means such as an electromagnet on the back surface of the stage, Since the magnetic powder was not contained in the thermally conductive molded sheet, the thermally conductive molded sheet could not be held on the stage, and the adjacent thermal conductive sheet was attached, so the evaluation was NG.
 以上の実施例及び比較例より、熱伝導性成形体シートに磁性を具備させるとともに、ステージ又は移載ヘッドの少なくとも一方に、熱伝導性成形体シートを磁化して保持する保持機構を設けることにより、ピックアップする熱伝導シートに隣接する熱伝導シートをステージに保持して付着を防止でき、歩留りよく熱伝導シートのピックアップを行うことができることが分かる。 From the above Examples and Comparative Examples, by providing the thermally conductive molded sheet with magnetism, at least one of the stage and the transfer head is provided with a holding mechanism for magnetizing and holding the thermally conductive molded sheet. It can be seen that the heat conductive sheet adjacent to the heat conductive sheet to be picked up can be held on the stage to prevent adhesion, and the heat conductive sheet can be picked up with good yield.
1 ピックアップ装置、2 ステージ、3 移載ヘッド、4 保持機構、20 熱伝導性成形体シート、21 熱伝導シート 1 pickup device, 2 stage, 3 transfer head, 4 holding mechanism, 20 thermally conductive molded sheet, 21 thermal conductive sheet

Claims (15)

  1.  切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、
     上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、
     上記熱伝導性成形体シートは磁性を有し、
     上記ステージ又は上記移載ヘッドの少なくとも一方に、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持する保持機構が設けられている
    ピックアップ装置。
    A stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed,
    A transfer head for picking up and moving a heat conductive sheet from the heat conductive molded sheet placed on the stage,
    The heat conductive molded sheet has magnetism,
    A pickup device provided with a holding mechanism for magnetizing and holding at least one of the thermally conductive molded sheet or the thermally conductive sheet on at least one of the stage and the transfer head.
  2.  上記保持機構は、上記熱伝導シートのピックアップの際に、上記熱伝導性成形体又は上記熱伝導シートの少なくとも一方を磁化し、
     上記熱伝導シートのピックアップ後に、磁化を解除する請求項1に記載のピックアップ装置。
    The holding mechanism, at the time of pickup of the heat conductive sheet, magnetizes at least one of the heat conductive molded body or the heat conductive sheet,
    2. The pickup device according to claim 1, wherein magnetization is released after picking up the heat conductive sheet.
  3.  上記保持機構は、永久磁石またはソレノイド電磁石を含むことを特徴とする請求項1又は2に記載のピックアップ装置。 (3) The pickup device according to (1) or (2), wherein the holding mechanism includes a permanent magnet or a solenoid electromagnet.
  4.  熱伝導シートをピックアップして電子部品又は電子機器に実装する実装装置において、
     上記実装装置は、
     切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、
     上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、
     上記熱伝導性成形体シートは磁性を有し、
     上記ステージ又は上記移載ヘッドの少なくとも一方に、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持する保持機構が設けられている
    実装装置。
    In a mounting device that picks up a heat conductive sheet and mounts it on an electronic component or electronic device,
    The above mounting device,
    A stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed,
    A transfer head for picking up and moving a heat conductive sheet from the heat conductive molded sheet placed on the stage,
    The heat conductive molded sheet has magnetism,
    A mounting apparatus, wherein at least one of the stage and the transfer head is provided with a holding mechanism for magnetizing and holding at least one of the thermally conductive molded sheet and the thermally conductive sheet.
  5.  切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、
     上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、
     上記熱伝導性成形体シートは磁性を有し、
     上記ステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持し、
     上記移載ヘッドによって上記熱伝導シートをピックアップする
    ピックアップ方法。
    A stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed,
    A transfer head for picking up and moving a heat conductive sheet from the heat conductive molded sheet placed on the stage,
    The heat conductive molded sheet has magnetism,
    By a holding mechanism provided on at least one of the stage or the transfer head, at least one of the heat conductive molded sheet or the heat conductive sheet is magnetized and held,
    A pickup method for picking up the heat conductive sheet by the transfer head.
  6.  上記熱伝導成形体シートは磁性粉を含有する請求項5に記載のピックアップ方法。 6. The pickup method according to claim 5, wherein the thermally conductive molded sheet contains a magnetic powder.
  7.  上記熱伝導成形体シートは磁性粉を含有し、さらに熱伝導フィラーを含有する請求項5に記載のピックアップ方法。 6. The pickup method according to claim 5, wherein the heat conductive molded sheet contains a magnetic powder and further contains a heat conductive filler.
  8.  上記熱伝導フィラーは、繊維状の熱伝導フィラーを少なくとも有する請求項7に記載のピックアップ方法。 The pickup method according to claim 7, wherein the thermal conductive filler has at least a fibrous thermal conductive filler.
  9.  上記繊維状の熱伝導フィラーが、一方向に配向している請求項8に記載のピックアップ方法。 The pick-up method according to claim 8, wherein the fibrous heat conductive filler is oriented in one direction.
  10.  上記繊維状の熱伝導フィラーが、炭素繊維であることを特徴とする請求項8又は9に記載のピックアップ方法。 10. The pickup method according to claim 8, wherein the fibrous heat conductive filler is a carbon fiber.
  11.  上記熱伝導フィラーは、さらに無機フィラーを含有する請求項7~9のいずれか1項に記載のピックアップ方法。 (10) The pickup method according to any one of (7) to (9), wherein the heat conductive filler further contains an inorganic filler.
  12.  上記繊維状の熱伝導フィラーの含有量が4~40体積%、上記熱伝導フィラーの含有量が15~75体積%である請求項11に記載のピックアップ方法。 12. The pickup method according to claim 11, wherein the content of the fibrous heat conductive filler is 4 to 40% by volume, and the content of the heat conductive filler is 15 to 75% by volume.
  13.  熱伝導シートをピックアップして電子部品又は電子機器に実装する実装方法において、
     切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シートが載置されるステージと、
     上記ステージ上に載置された上記熱伝導性成形体シートから熱伝導シートをピックアップして移動させる移載ヘッドとを備え、
     上記熱伝導性成形体シートは磁性を有し、
     上記ステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートの少なくとも一方を磁化して保持し、
     上記移載ヘッドによって上記熱伝導シートをピックアップし、電子部品又は電子機器に実装する
    実装方法。
    In a mounting method of picking up a heat conductive sheet and mounting it on an electronic component or electronic device,
    A stage on which a thermally conductive molded sheet having a plurality of thermally conductive sheets that are cut into small pieces by being provided with cuts is placed,
    A transfer head for picking up and moving a heat conductive sheet from the heat conductive molded sheet placed on the stage,
    The heat conductive molded sheet has magnetism,
    By a holding mechanism provided on at least one of the stage or the transfer head, at least one of the heat conductive molded sheet or the heat conductive sheet is magnetized and held,
    A mounting method of picking up the heat conductive sheet by the transfer head and mounting the heat conductive sheet on an electronic component or electronic device.
  14.  切れ込みが設けられることにより小片化された複数の熱伝導シートを有する熱伝導性成形体シート又は熱伝導シートが収容される収容凹部を複数備え、上記収容凹部がカバーフィルムによって封止されたキャリアテープと、
     上記収容凹部から上記熱伝導シートをピックアップする移載ヘッドとを有し、
     上記熱伝導性成形体シート及び上記熱伝導シートは磁性を有し、
     上記キャリアテープが載置されるステージ又は上記移載ヘッドの少なくとも一方に設けられた保持機構によって、上記熱伝導性成形体シート又は上記熱伝導シートを磁化して保持し、上記移載ヘッドによって上記熱伝導シートをピックアップするピックアップ方法。
    A carrier tape comprising a plurality of heat conductive molded sheets having a plurality of heat conductive sheets cut into small pieces by being provided with notches or a plurality of housing recesses for housing the heat conductive sheets, wherein the housing recesses are sealed with a cover film. When,
    A transfer head for picking up the heat conductive sheet from the accommodation recess,
    The heat conductive molded sheet and the heat conductive sheet have magnetism,
    A holding mechanism provided on at least one of the stage or the transfer head on which the carrier tape is mounted, magnetizes and holds the thermally conductive molded sheet or the thermally conductive sheet, and the transfer head A pickup method for picking up a heat conductive sheet.
  15.  上記熱伝導成形体シートは一方の面に粘着剤層が形成され、上記粘着剤層が形成された面を上記収容凹部の底面に向けて収容される請求項14に記載のピックアップ方法。 The pick-up method according to claim 14, wherein the heat conductive molded sheet has a pressure-sensitive adhesive layer formed on one surface thereof, and is accommodated with the surface on which the adhesive layer is formed facing the bottom surface of the accommodation recess.
PCT/JP2019/027799 2018-07-12 2019-07-12 Pick-up device, mounting device, pick-up method, and mounting method WO2020013333A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217000279A KR20210016037A (en) 2018-07-12 2019-07-12 Pickup device, mounting device, pickup method, mounting method
CN201980045544.0A CN112352476A (en) 2018-07-12 2019-07-12 Pickup apparatus, mounting apparatus, pickup method, and mounting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-132740 2018-07-12
JP2018132740 2018-07-12
JP2019-130427 2019-07-12
JP2019130427A JP6821749B2 (en) 2018-07-12 2019-07-12 Pickup device, mounting device, pickup method, mounting method

Publications (1)

Publication Number Publication Date
WO2020013333A1 true WO2020013333A1 (en) 2020-01-16

Family

ID=69142438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027799 WO2020013333A1 (en) 2018-07-12 2019-07-12 Pick-up device, mounting device, pick-up method, and mounting method

Country Status (1)

Country Link
WO (1) WO2020013333A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793589B (en) * 2021-05-05 2023-02-21 艾姆勒科技股份有限公司 Heat-dissipation substrate structure and method for manufacturing the same
AT525662A4 (en) * 2021-12-21 2023-06-15 Systemrocket Gmbh Process for removing at least one SMD component from an SMD tape
US12140386B2 (en) 2022-09-06 2024-11-12 Amulaire Thermal Technology, Inc. Heat-dissipating substrate structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123766A (en) * 2007-11-12 2009-06-04 Kitagawa Ind Co Ltd Thermal interface material and manufacturing method thereof
JP2014069823A (en) * 2012-09-28 2014-04-21 Polymatech Japan Co Ltd Conductive rubber component packaging body and method for supplying conductive rubber component
JP2015139835A (en) * 2014-01-27 2015-08-03 株式会社安川電機 Robot system, suction hand, and manufacturing method of product including workpiece
JP2017175080A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conductive sheet, method of producing electromagnetic wave absorbing heat conductive sheet, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123766A (en) * 2007-11-12 2009-06-04 Kitagawa Ind Co Ltd Thermal interface material and manufacturing method thereof
JP2014069823A (en) * 2012-09-28 2014-04-21 Polymatech Japan Co Ltd Conductive rubber component packaging body and method for supplying conductive rubber component
JP2015139835A (en) * 2014-01-27 2015-08-03 株式会社安川電機 Robot system, suction hand, and manufacturing method of product including workpiece
JP2017175080A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conductive sheet, method of producing electromagnetic wave absorbing heat conductive sheet, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793589B (en) * 2021-05-05 2023-02-21 艾姆勒科技股份有限公司 Heat-dissipation substrate structure and method for manufacturing the same
AT525662A4 (en) * 2021-12-21 2023-06-15 Systemrocket Gmbh Process for removing at least one SMD component from an SMD tape
AT525662B1 (en) * 2021-12-21 2023-06-15 Systemrocket Gmbh Process for removing at least one SMD component from an SMD tape
US12140386B2 (en) 2022-09-06 2024-11-12 Amulaire Thermal Technology, Inc. Heat-dissipating substrate structure

Similar Documents

Publication Publication Date Title
US20190246521A1 (en) Heat conductive sheet, method of producing heat conductive sheet, and semiconductor device
US20070001292A1 (en) Heat radiation member and production method for the same
WO2017164406A1 (en) Electromagnetic wave-absorbing heat conductive sheet, method for producing electromagnetic wave-absorbing heat conductive sheet and semiconductor device
WO2015002084A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
US20160104657A1 (en) Thermally Conductive Sheet, Method for Producing Same, and Semiconductor Device
JP2002080617A (en) Thermoconductive sheet
US11597196B2 (en) Method for producing thermally conductive sheet
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
JP6379320B1 (en) Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device
WO2020017350A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
WO2020013333A1 (en) Pick-up device, mounting device, pick-up method, and mounting method
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2020013871A (en) Manufacturing method of thermal conductive sheet
JP2022000903A (en) Thermally conductive sheet and method for producing the same, and method for mounting thermally conductive sheet
KR101706756B1 (en) Heat-spreading adhesive tape and method of the same
JP6821749B2 (en) Pickup device, mounting device, pickup method, mounting method
JP2011035221A (en) Heat-transfer sheet, and method of manufacturing the same
US20240120254A1 (en) Thermally-conductive sheet and electronic device
KR20140094294A (en) Heat discharging sheet of electrically insulative
WO2022176823A1 (en) Heat conductive sheet
WO2022172795A1 (en) Thermal conductive sheet supply mode, and thermal conductive sheet body
EP3961696A1 (en) Thermally conductive sheet, method for manufacturing same, heat-dissipating structure, and electronic apparatus
CN113348076A (en) Thermal conductive sheet and method for producing thermal conductive sheet
JP2019204933A (en) Electronic component supply body and electronic component supply reel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217000279

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834572

Country of ref document: EP

Kind code of ref document: A1