[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020012829A1 - 圧縮機及び監視システム - Google Patents

圧縮機及び監視システム Download PDF

Info

Publication number
WO2020012829A1
WO2020012829A1 PCT/JP2019/022181 JP2019022181W WO2020012829A1 WO 2020012829 A1 WO2020012829 A1 WO 2020012829A1 JP 2019022181 W JP2019022181 W JP 2019022181W WO 2020012829 A1 WO2020012829 A1 WO 2020012829A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pressure
normal range
predetermined normal
detected
Prior art date
Application number
PCT/JP2019/022181
Other languages
English (en)
French (fr)
Inventor
雄也 太田
智夫 鈴木
良郎 安齊
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US17/257,721 priority Critical patent/US11761443B2/en
Priority to JP2020530035A priority patent/JP7005766B2/ja
Publication of WO2020012829A1 publication Critical patent/WO2020012829A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/052Speed angular
    • F04C2270/0525Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/90Remote control, e.g. wireless, via LAN, by radio, or by a wired connection from a central computer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a compressor and a monitoring system including a low-pressure stage compressor main body, an intercooler, and a high-pressure stage compressor main body.
  • Multistage compressors are used.
  • Patent Document 1 is an example of a multi-stage compressor.
  • the multi-stage compressor detects, for example, a temperature sensor that detects the temperature of the compressed air at the discharge side of the low-pressure stage compressor main body and upstream of the intercooler, and detects the pressure of the compressed air at the discharge side of the low-pressure stage compressor main body.
  • a pressure sensor for detecting the pressure of the compressed air on the discharge side of the stage compressor body, a control device, and a notification device are provided.
  • the control device determines that an abnormality has occurred when any of the above-described sensors has a detected value higher than a predetermined normal range, and controls the notification device to notify the abnormality. Thereby, the user of the compressor can know the abnormality of the detection value of the sensor. However, it has not been easy to identify the cause of the abnormality in the detection value of the sensor.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to identify a cause of an abnormality in a detection value of a sensor.
  • the present invention includes a plurality of means for solving the above-described problems, but, for example, a low-pressure stage compressor body for compressing gas, and a compressed gas discharged from the low-pressure stage compressor body, for example.
  • a compressor including an intercooler cooled by a cooling medium and a high-pressure stage compressor body that further compresses the compressed gas cooled by the intercooler, a discharge side of the low-pressure stage compressor body and upstream of the intercooler
  • a first temperature sensor for detecting the temperature of the compressed gas on the pressure side
  • a first pressure sensor for detecting the pressure of the compressed gas on the discharge side of the low-pressure stage compressor main body, and a suction side of the high-pressure stage compressor main body.
  • a second temperature sensor for detecting the temperature of the compressed gas downstream of the intercooler, and a third temperature for detecting the temperature of the compressed gas at the discharge side of the high-pressure compressor body
  • a control device that determines the cause of the abnormality and estimates the cause of the abnormality; and a notification device that notifies the cause of the abnormality estimated by the control device.
  • the cause of the abnormality in the detection value of the sensor can be specified.
  • FIG. 4 is a diagram for explaining a method of estimating a cause of an abnormality by the control device according to the embodiment of the present invention. It is a flowchart showing the specific example of the estimation procedure of the leak of the compressed air by the control apparatus of one Embodiment of this invention. It is a flowchart showing the specific example of the estimation procedure of the rise or fall of the temperature of cooling water, and the fall of the rotation speed of a high pressure stage compressor main body by the control apparatus of one Embodiment of this invention. It is a schematic diagram showing the composition of the monitoring system of other embodiments of the present invention.
  • FIG. 1 is a schematic diagram illustrating a configuration of the compressor of the present embodiment.
  • the compressor 1 of the present embodiment is provided on an electric motor 2, a low-pressure stage compressor main body 3 driven by the electric motor 2 to suck and compress air (gas), and provided on a suction side of the low-pressure stage compressor main body 3.
  • the compressor 1 may be a package-type compressor unit that houses the above-described devices.
  • the low-pressure stage compressor main body 3 includes, for example, a pair of male and female screw rotors and a casing for housing the screw rotors, and a compression chamber is formed in the tooth space of the screw rotor.
  • the compression chamber moves in the axial direction of the rotor with the rotation of the rotor, and sequentially performs a suction process, a compression process, and a discharge process.
  • the configuration of the high-pressure stage compressor body 6 is also substantially the same as the configuration of the low-pressure stage compressor body 3.
  • the intercooler 5 and the aftercooler 7 cool the compressed air with the cooling water (cooling medium) supplied through the cooling water line 10.
  • the compressed air cooled by the aftercooler 7 is supplied to a device of a user who uses the compressed air.
  • the control device 8 has an arithmetic control unit (for example, CPU) for executing arithmetic processing and control processing based on a program, and a storage unit (for example, ROM, RAM) for storing the program and the result of the arithmetic processing.
  • arithmetic control unit for example, CPU
  • ROM read only memory
  • RAM random access memory
  • a temperature sensor 11A is provided on the discharge side of the low-pressure stage compressor main body 3 and on the upstream side of the intercooler 5, and the temperature T1 (low-pressure stage discharge temperature) of the compressed air detected by the temperature sensor 11A is sent to the control device 8. Is output.
  • a pressure sensor 12A is provided on the discharge side of the low-pressure stage compressor main body 3 (specifically, it may be on the upstream side of the intercooler 5 as shown, or may be on the downstream side of the intercooler 5). The pressure P1 (low pressure stage) of the compressed air detected by the pressure sensor 12A is output to the control device 8.
  • a temperature sensor 11B is provided on the suction side of the high-pressure compressor body 6 and downstream of the intercooler 5, and the temperature T2 of the compressed air detected by the temperature sensor 11B is output to the control device 8.
  • a temperature sensor 11C is provided on the discharge side of the high-pressure stage compressor main body 6 (specifically, it may be on the upstream side of the after cooler 7 as shown in the drawing, or may be on the downstream side of the after cooler 7).
  • the temperature T3 of the compressed air detected by the temperature sensor 11C is output to the control device 8.
  • a pressure sensor 12B is provided on the discharge side of the high-pressure stage compressor main body 6 (specifically, it may be on the downstream side of the aftercooler 7 as shown in the figure or on the upstream side of the aftercooler 7).
  • the pressure P2 of the compressed air detected by the pressure sensor 12B is output to the control device 8.
  • the control device 8 controls the electric motor 2 according to, for example, operation of an operation switch (not shown). Further, the control device 8 detects an abnormality in the detected temperature T1 of the temperature sensor 11A, the detected pressure P1 of the pressure sensor 12A, the detected temperature T2 of the temperature sensor 11B, the detected temperature T3 of the temperature sensor 11C, and the detected pressure P2 of the pressure sensor 12B. It is determined whether or not it has occurred, and the cause of the abnormality is estimated. More specifically, the control device 8 stores a predetermined normal range set in advance corresponding to the detected value of each sensor, and determines whether the detected value of each sensor is within the predetermined normal range. If it is not within the predetermined normal range, it is determined whether it is higher or lower than the predetermined normal range. Then, as shown in FIG. 2, the cause of the abnormality (specifically, leakage of compressed air, increase or decrease in the temperature of the cooling water, decrease in the rotation speed of the high-pressure stage compressor body 6, etc. ).
  • the cause of the abnormality specifically, leak
  • FIG. 3 is a flowchart illustrating a specific example of a procedure for estimating a compressed air leak by the control device 8 of the present embodiment.
  • the control device 8 may change the order of steps S101 to S104, S106, and S108 to S112, which will be described later, or, for example, compare a combination of the determination results with respect to the detection values of the sensors with the table shown in FIG. It goes without saying that the estimation may be made by the method.
  • the control device 8 determines that the detected temperature T1 of the temperature sensor 11A is within a predetermined normal range, the detected pressure P1 of the pressure sensor 12A is lower than the predetermined normal range, and the detected temperature T3 of the temperature sensor 11C is higher than the predetermined normal range. In this case, the determinations in steps S101, S102, and S103 are YES, and the process proceeds to step S104. Further, when the detected temperature T2 of the temperature sensor 11B is lower than the predetermined normal range, the determination in Step S104 becomes YES and the process proceeds to Step S105.
  • control device 8 estimates, as the cause of the abnormality, a leak of compressed air upstream of intercooler 5 or clogging of intake filter 4, and outputs a command to notify display device 9 of this. .
  • the display device 9 displays, for example, a message of “leakage of compressed air upstream of the intercooler or clogging of the intake filter” in response to the command.
  • control device 8 can estimate the leakage of the compressed air upstream of the intercooler 5 or the clogging of the intake filter 4 as the cause of the abnormality based on the above-described determination result.
  • the leakage of the compressed air on the upstream side of the intercooler 5 occurs, the amount of air in the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 decreases.
  • the intake filter 4 is clogged, the amount of intake air of the low-pressure stage compressor main body 3 decreases, so that the amount of air supplied to the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 decreases. Less.
  • the pressure P1 decreases as the amount of air decreases.
  • the amount of air supplied to the intercooler 5 is reduced, excessive cooling is performed in the intercooler 5, and the temperature T2 decreases downstream of the intercooler 5.
  • the pressure P1 decreases, the compression ratio of the high-pressure compressor body 6 increases, and the temperature T3 increases.
  • the control device 8 determines that the detected temperature T1 of the temperature sensor 11A is within a predetermined normal range, the detected pressure P1 of the pressure sensor 12A is lower than the predetermined normal range, and the detected temperature T3 of the temperature sensor 11C is higher than the predetermined normal range. In this case, the determinations in steps S101, S102, and S103 are YES, and the process proceeds to step S104. Further, when the detected temperature T2 of the temperature sensor 11B is within the predetermined normal range, the determination in step S104 is NO and the process proceeds to step S106, and the determination in step S106 is YES and the process proceeds to step S107.
  • control device 8 estimates the leakage of the compressed air inside or downstream of intercooler 5 as the cause of the abnormality, and outputs a command to notify display device 9 of the leakage.
  • the display device 9 displays, for example, a message of “leakage of compressed air inside or downstream of the intercooler” in response to the instruction.
  • the control device 8 can estimate the leakage of the compressed air inside or downstream of the intercooler 5 as the cause of the abnormality based on the above determination result.
  • the leakage of the compressed air inside or downstream of the intercooler 5 occurs, the amount of air in the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 decreases. Since the volume of the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 is constant, if the temperature T1 is constant, the pressure P1 decreases as the amount of air decreases. Further, since the cooling is normally performed by the intercooler 5, the temperature T2 indicates a normal value. Then, as the pressure P1 decreases, the compression ratio of the high-pressure compressor body 6 increases, and the temperature T3 increases.
  • step S101 YES
  • step S102 the determination in step S101 YES
  • step S102 the determination in step S102 is NO and the process proceeds to step S108
  • step S108 the determination in step S108 is YES and the process proceeds to step S109.
  • step S109, S110, and S111 are YES, and the process moves to step S112.
  • step S112 the control device 8 determines whether or not the amount of compressed air used by the user has increased. More specifically, the control device 8 stores information on statistics and schedules of the user's compressed air usage, and based on this information, calculates a lower limit of a predetermined normal range for the detected pressure P2 of the pressure sensor 12B. A low threshold is calculated and set. If the detected pressure P2 of the pressure sensor 12B is less than the lower limit value of the predetermined normal range and equal to or more than the threshold value, it is determined that the compressed air usage of the user has increased. On the other hand, if the detection pressure P2 of the pressure sensor 12B is less than the threshold, it is determined that the amount of compressed air used by the user has not increased, and the process proceeds to step S113.
  • step S113 the control device 8 estimates the leakage of the compressed air downstream of the high-pressure compressor body 6 as the cause of the abnormality, and outputs a command to notify the display device 9 of the leakage.
  • the display device 9 displays, for example, a message of “leakage of compressed air downstream of the high-pressure stage compressor body” in response to the command.
  • control device 8 can estimate the leakage of the compressed air downstream of the high-pressure stage compressor main body 6 based on the above-described determination result.
  • the temperatures T1, T2, T3 and the pressure P1 indicate normal values, no clogging of the intake filter 4 has occurred, and a leak of compressed air upstream, inside, or downstream of the intercooler 5 has also occurred. It is thought that there is no.
  • the pressure P2 indicates a low value, it is expected that the amount of compressed air used by the user has increased or that the compressed air is leaking downstream of the high-pressure stage compressor main body 6. If the amount of compressed air used by the user has not increased, it is considered that the compressed air leaks downstream of the high-pressure stage compressor body 6.
  • control device 8 may proceed to step S113 without performing the determination in step S112 described above, that is, without determining whether the amount of compressed air usage by the user has increased.
  • the control device 8 estimates, as a cause of the abnormality, a leak of the compressed air downstream of the high-pressure stage compressor main body 6 or an increase in the amount of the compressed air used, and issues a command to notify this.
  • the display device 9 displays, for example, a message of “leakage of compressed air downstream of the high-pressure stage compressor body or an increase in the amount of compressed air used”.
  • the control device 8 After estimating the cause of the abnormality in step S105, S107, or S113 and informing the display device 9 of the abnormality, the control device 8 returns to step S101 immediately or after a lapse of a predetermined time to determine whether the abnormality has occurred in the detection value of the sensor. Continue to determine whether or not. In addition, even if the control device 8 estimates the cause of the same abnormality, it may be set so that the display device 9 does not notify the user again until a predetermined time elapses. The control device 8 determines that an abnormality has occurred in the detection value of the sensor, but when the cause of the abnormality cannot be estimated (that is, when it does not reach step S106, S108, or S113), the display device 9 displays the sensor.
  • step S101 when the determination in step S101 is NO, the process may proceed to step S114.
  • step S114 the control device 8 outputs a command to notify the abnormality of the detection value of the sensor to the display device 9.
  • the display device 9 displays an abnormality in the detection value of the sensor according to the command.
  • FIG. 4 is a flowchart illustrating a specific example of a procedure for estimating a rise or fall in the temperature of the cooling water and a decrease in the rotational speed of the high-pressure stage compressor body 6 by the control device 8 of the present embodiment.
  • the control device 8 may change the order of steps S121 to S124, S126 to S128, S130, and S131, which will be described later, or, for example, combine the determination result with the detection value of the sensor with the table shown in FIG. It is needless to say that the estimation may be performed by a comparison method.
  • the control device 8 makes the determinations of steps S121 and S122 YES and returns to step S122. Move to S123. Further, when the detected pressure P1 of the pressure sensor 12A is higher than the predetermined normal range and the detected temperature T3 of the temperature sensor 11C is higher than the predetermined normal range, the determinations in steps S123 and S124 become YES and the process proceeds to step S125. .
  • control device 8 causes the temperature of the cooling water supplied to intercooler 5 to increase, the cooling performance to decrease due to contamination of intercooler 5, the shortage of the cooling water, or the freezing of the cooling water at the step S125. And outputs a command to notify the display device 9 of this. In response to the command, the display device 9 displays, for example, a message such as “Cooling water temperature rise, cooling performance drop due to contamination of the intercooler, cooling water shortage, or cooling water freezing”.
  • the controller 8 may determine that the cause of the abnormality is an increase in the temperature of the cooling water supplied to the intercooler 5, a decrease in the cooling performance due to contamination of the intercooler 5, a shortage of the cooling water, or The reason why the freezing can be estimated will be described.
  • An increase in the temperature of the cooling water, a decrease in the cooling performance due to contamination of the intercooler 5, a shortage of the cooling water, or a freeze of the cooling water all indicate insufficient cooling of the intercooler 5. Therefore, although the temperature T1 of the compressed air upstream of the intercooler 5 shows a normal value, the temperature T2 of the compressed air downstream of the intercooler 5 shows a high value.
  • the pressure P1 also increases. Further, since the temperature T2 of the air sucked into the high-pressure compressor body 6 is high, the temperature T3 of the compressed air discharged from the high-pressure compressor body 6 also shows a high value.
  • step S121 If the detected temperature T1 of the temperature sensor 11A is within the predetermined normal range, the control device 8 makes the determination in step S121 YES and proceeds to step S122. Further, when the detected temperature T2 of the temperature sensor 11B is lower than the predetermined normal range, the determination in step S122 is NO and the process proceeds to step S126, and the determination in step S126 is YES and the process proceeds to step S127. Further, when the detected pressure P1 of the pressure sensor 12A is lower than the predetermined normal range and the detected temperature T3 of the temperature sensor 11C is lower than the predetermined normal range, the determinations in steps S127 and S128 become YES and the process proceeds to step S129. .
  • control device 8 estimates a decrease in the temperature of the cooling water supplied to intercooler 5 as a cause of the abnormality, and outputs a command to notify display device 9 of the decrease.
  • the display device 9 displays, for example, a message of “a drop in the temperature of the cooling water” in response to the command.
  • the reason why the control device 8 can estimate a decrease in the temperature of the cooling water supplied to the intercooler 5 as a cause of the abnormality based on the above-described determination result will be described.
  • a decrease in the temperature of the cooling water indicates excessive cooling of the intercooler 5. Therefore, although the temperature T1 of the compressed air upstream of the intercooler 5 shows a normal value, the temperature T2 of the compressed air downstream of the intercooler 5 shows a low value. Since the volume of the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 is constant, when the temperature T2 decreases, the pressure P1 also decreases. Further, since the temperature T2 of the air sucked into the high-pressure compressor body 6 is low, the temperature T3 of the compressed air discharged from the high-pressure compressor body 6 also shows a low value.
  • step S121 If the detected temperature T1 of the temperature sensor 11A is within the predetermined normal range, the control device 8 makes the determination in step S121 YES and proceeds to step S122. Further, when the detected temperature T2 of the temperature sensor 11B is within the predetermined normal range, the determinations in steps S122 and S126 are NO, and the process proceeds to step S130. Further, when the detected pressure P1 of the pressure sensor 12A is higher than the predetermined normal range and the detected temperature T3 of the temperature sensor 11C is lower than the predetermined normal range, the determinations in steps S130 and S131 become YES and the process proceeds to step S132. .
  • control device 8 estimates that the rotational speed of high-pressure stage compressor body 6 has dropped below a predetermined normal range as the cause of the abnormality, and outputs a command to notify display device 9 of this fact.
  • the display device 9 displays, for example, a message of “decrease in the rotation speed of the high-pressure stage compressor body” in response to the command.
  • control device 8 can estimate a decrease in the rotation speed of the high-pressure stage compressor main body 6 as the cause of the abnormality based on the above-described determination result.
  • the suction air volume of the high-pressure stage compressor body 6 decreases.
  • the amount of air in the pipe from the compressor to the high-pressure stage compressor body 6 increases. Since the volume of the pipe from the low-pressure stage compressor main body 3 to the high-pressure stage compressor main body 6 is constant, if the temperature T1 is in a constant state, the pressure P1 increases as the amount of air increases.
  • the temperature T2 falls within the normal range because the influence of the increase in the amount of air in this case is small. Further, when the rotation speed of the high-pressure stage compressor body 6 decreases, the air leaking from the compression chamber increases, and the compression efficiency decreases. As a result, the pressure P2 and the temperature T3 decrease.
  • the control device 8 After estimating the cause of the abnormality in step S125, S129, or S132 and informing the display device 9 of the abnormality, the control device 8 returns to step S121 immediately or after a lapse of a predetermined time to determine whether an abnormality has occurred in the sensor detection value. Continue to determine whether or not. In addition, even if the control device 8 estimates the cause of the same abnormality, it may be set so that the display device 9 does not notify the user again until a predetermined time elapses. The control device 8 determines that an abnormality has occurred in the detection value of the sensor, but if the cause of the abnormality cannot be estimated (that is, does not reach step S125, S129, or S132), the control device 8 displays the sensor on the display device 9.
  • step S121 May be notified of an abnormality in the detected value. More specifically, for example, when the determination in step S121 is NO, the process may proceed to step S133.
  • the control device 8 outputs to the display device 9 a command to notify the abnormality of the detection value of the sensor.
  • the display device 9 displays an abnormality in the detection value of the sensor according to the command.
  • the cause of the abnormality can be specified. Further, in order to identify the cause of the abnormality, it is not necessary to add a sensor for detecting, for example, the temperature of the cooling water or the number of revolutions of the high-pressure stage compressor body 6, so that the cost can be reduced.
  • the pressure sensor 12A detects not only when the compressed air leaks upstream of the intercooler 5 or clogging of the intake filter 4 occurs, but also when the compressed air leaks inside or downstream of the intercooler 5.
  • the pressure P1 becomes lower than the predetermined normal range
  • the detected temperature T3 of the temperature sensor 11C becomes higher than the predetermined normal range. Therefore, in the present embodiment, in addition to the above-described conditions, if the detected temperature T2 of the temperature sensor 11B is lower than a predetermined normal range, the leakage of the compressed air on the upstream side of the intercooler 5 or the clogging of the intake filter 4 may occur. If the temperature T2 detected by the temperature sensor 11B is within a predetermined normal range in addition to the above-described conditions, it is estimated that compressed air is leaking from the inside or downstream of the intercooler 5. Therefore, the cause of the abnormality can be determined.
  • the pressure sensor 12A is used not only when leakage of compressed air upstream of the intercooler 5 or clogging of the intake filter 4 occurs, but also when the temperature of the cooling water supplied to the intercooler 5 decreases. Is lower than the predetermined normal range, and the detected temperature T2 of the temperature sensor 11B is lower than the predetermined normal range. Therefore, in the present embodiment, in addition to the above-described conditions, if the detected temperature T3 of the temperature sensor 11C is higher than a predetermined normal range, the leakage of the compressed air upstream of the intercooler 5 or the clogging of the intake filter 4 may occur. If the detected temperature T3 of the temperature sensor 11C is lower than a predetermined normal range in addition to the above-described conditions, it is estimated that the temperature of the cooling water has dropped. Therefore, the cause of the abnormality can be determined.
  • the temperature increases.
  • the detected temperature T2 of the sensor 11B is within a predetermined normal range, and the detected pressure P2 of the pressure sensor 12B is lower than the predetermined normal range.
  • the high-pressure compressor in addition to the above-described conditions, if the detected pressure P1 of the pressure sensor 12A is within a predetermined normal range and the detected temperature T3 of the temperature sensor 11C is within a predetermined normal range, the high-pressure compressor It is estimated that the compressed air leaks downstream of the main body 6, and in addition to the above-described conditions, the detected pressure P1 of the pressure sensor 12A is higher than a predetermined normal range, and the detected temperature T3 of the temperature sensor 11C is lower than the predetermined normal range. For example, it is estimated that the rotation speed of the high-pressure stage compressor main body 6 decreases. Therefore, the cause of the abnormality can be determined.
  • the control device 8 changes the predetermined normal range for the detection value of each sensor according to the operating state of the compressor, the installation environment, settings by the user, and the like. Is also good. Immediately after switching between the load operation and the no-load operation of the compressor, the temperature and the pressure inside the compressor are different from the steady state. Therefore, when the predetermined normal range is changed according to the operating state of the compressor, the above-described notification need not be performed for a predetermined time. Similarly, when the predetermined normal range is changed for other reasons, the above-described notification need not be performed for a predetermined time.
  • control device 8 may stop the electric motor 2 as necessary when it is determined that an abnormality has occurred in the detection value of the sensor. That is, the motor 2 may be stopped when the detection value of the sensor reaches the upper limit of the predetermined normal range or a predetermined threshold set higher than the upper limit. Further, the motor 2 may be stopped when the detection value of the sensor reaches a lower limit of a predetermined normal range or a predetermined threshold set lower than the lower limit.
  • FIG. 1 A monitoring system according to another embodiment of the present invention will be described with reference to FIG. Note that, in this embodiment, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the description will be appropriately omitted.
  • FIG. 5 is a schematic diagram illustrating the configuration of the monitoring system according to the present embodiment.
  • the monitoring system includes a compressor 1A, a monitoring server 21 that monitors the compressor 1A, and a terminal 31 that receives information transmitted from the monitoring server 21.
  • the compressor 1A has a motor 2, a low-pressure stage compressor body 3, an intake filter 4, an intercooler 5, a high-pressure stage compressor body 6, an aftercooler 7,
  • the apparatus includes a device 8, a display device 9, a cooling water line 10, temperature sensors 11A, 11B, 11C, and pressure sensors 12A, 12B.
  • the control device 8 of the present embodiment may not have the function of estimating the cause of the abnormality.
  • the compressor 1A includes a communication device 13 that transmits detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B.
  • the monitoring server 21 receives the detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B via a communication network 20 (specifically, for example, a wide area network such as the Internet or a narrow area network such as a LAN).
  • the device includes a device 22, a control device 23, a display device 24, and a storage device 25.
  • the control device 23 has an arithmetic control unit (for example, CPU) and a storage unit (for example, ROM, RAM) and the like, like the control device 8.
  • the control device 23 includes a detection temperature T1 of the temperature sensor 11A, a detection pressure P1 of the pressure sensor 12A, a detection temperature T2 of the temperature sensor 11B, a detection temperature T3 of the temperature sensor 11C, In addition, it is determined whether an abnormality has occurred in the detection pressure P2 of the pressure sensor 12B and the cause of the abnormality is estimated. Then, the estimated cause of the abnormality is displayed on the display device 24.
  • the storage device 25 stores the detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B received by the communication device 22 in time series, and also stores the cause of the abnormality estimated by the control device 23. It has become.
  • the communication device 22 of the monitoring server 21 transmits the cause of the abnormality estimated by the control device 23 together with the detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B.
  • the terminal device 31 includes a communication device 32 that receives information transmitted from the monitoring server 21 via the communication network 20, a control device 33, a display device 34, and a storage device 35.
  • the control device 33 has an arithmetic control unit (for example, CPU) and a storage unit (for example, ROM, RAM) and the like, like the control device 8. Further, the control device 33 processes the cause of the abnormality received by the communication device 32 and the detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B, and causes the display device 34 to display them.
  • the storage device 35 stores the cause of the abnormality received by the communication device 32 and the detection results of the temperature sensors 11A, 11B, 11C and the pressure sensors 12A, 12B in a time-series manner.
  • the notification device that notifies the cause of the abnormality is the display device 9, 24, or 34 that displays the cause of the abnormality.
  • the notification device may be, for example, a voice output device that outputs the cause of the abnormality by voice.
  • control device 8 or 23 causes the leakage of the compressed air on the upstream side of the intercooler 5 or the clogging of the intake filter 4 or the compressed air on the inside or downstream side of the intercooler 5 as the cause of the abnormality. Leakage, leakage of compressed air downstream of the high-pressure stage compressor body 6 or an increase in the amount of compressed air used, insufficient cooling of the intercooler 5, excessive cooling of the intercooler 5, and reduction in the number of revolutions of the high-pressure stage compressor body 6 Although the case of estimating the decrease has been described as an example, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention.
  • control device 8 or 23 controls the leakage of the compressed air upstream of the intercooler 5 or the clogging of the intake filter 4, the leakage of the compressed air inside or downstream of the intercooler 5, and the downstream of the high-pressure stage compressor body 6. Estimate any of leakage of compressed air on the side or increase in the amount of compressed air used, insufficient cooling of the intercooler 5, excessive cooling of the intercooler 5, and reduction in the rotation speed of the high-pressure stage compressor body 6. It may be. If the control device 8 or 23 does not estimate the leakage of the compressed air downstream of the high-pressure stage compressor body 6, the pressure sensor 12B may not be provided in the compressor 1 or 1A.
  • the intercooler 5 and the aftercooler 7 cool the compressed air with the cooling water supplied through the cooling water line 10
  • the intercooler and the aftercooler may cool the compressed air by, for example, cooling air induced by a cooling fan.
  • the control device 8 or 23 may estimate, as a cause of the abnormality, an increase or decrease in the temperature of the cooling air (cooling medium) supplied to the intercooler.
  • the compressor main body 3 or 6 is a screw rotor type and includes a pair of male and female screw rotors has been described as an example.
  • the compressor body 3 or 6 may include, for example, one or three or more screw rotors.
  • the compressor body 3 or 6 may be, for example, a scroll type.
  • the compressor body 3 or 6 may compress a gas other than air.
  • 1, 1A compressor, 3: low-pressure stage compressor body, 4: intake filter, 5: intercooler, 6: high-pressure stage compressor body, 8: control device, 9: display device (notification device), 10: cooling Water line, 11A temperature sensor (first temperature sensor), 11B temperature sensor (second temperature sensor), 11C temperature sensor (third temperature sensor), 12A pressure sensor (first pressure sensor) , 12B ... pressure sensor (second pressure sensor), 13 ... communication device, 21 ... monitoring server, 22 ... communication device, 23 ... control device, 24 ... display device (notification device), 31 ... terminal device, 34 ... display Device (notification device)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

センサの検出値の異常の原因を特定することができる圧縮機及び監視システムを提供する。圧縮機(1)は、低圧段圧縮機本体(3)の吐出側かつインタークーラ(5)の上流側における圧縮空気の温度を検出する温度センサ(11A)と、低圧段圧縮機本体(3)の吐出側における圧縮空気の圧力を検出する圧力センサ(12A)と、高圧段圧縮機本体(6)の吸入側かつインタークーラ(5)の下流側における圧縮空気の温度を検出する温度センサ(11B)と、高圧段圧縮機本体(6)の吐出側における圧縮空気の温度を検出する温度センサ(11C)と、センサ(11A),(11B),(11C),(12A)の検出値に異常が生じているか否かを判定すると共に、異常の原因を推定する制御装置(8)と、制御装置(8)で推定された異常の原因を表示する表示装置(9)とを備える。

Description

圧縮機及び監視システム
 本発明は、低圧段圧縮機本体、インタークーラ、及び高圧段圧縮機本体を備えた圧縮機と監視システムに関する。
 空気を圧縮する低圧段圧縮機本体と、低圧段圧縮機本体から吐出された圧縮空気を冷却するインタークーラと、インタークーラで冷却された圧縮空気を更に圧縮する高圧段圧縮機本体とを備えた多段型の圧縮機が利用されている。特許文献1は多段型圧縮機の一例である。
特開2001-153080号公報
 多段型圧縮機は、例えば、低圧段圧縮機本体の吐出側かつインタークーラの上流側における圧縮空気の温度を検出する温度センサと、低圧段圧縮機本体の吐出側における圧縮空気の圧力を検出する圧力センサと、高圧圧縮機本体の吸入側かつインタークーラの下流側における圧縮空気の温度を検出する温度センサと、高圧段圧縮機本体の吐出側における圧縮空気の温度を検出する温度センサと、高圧段圧縮機本体の吐出側における圧縮空気の圧力を検出する圧力センサと、制御装置と、報知装置とを備える。制御装置は、前述したセンサのうちのいずれかの検出値が所定の正常範囲より高い場合に異常が生じていると判定し、報知装置を制御して異常を報知する。これにより、圧縮機の使用者は、センサの検出値の異常を知ることができる。しかしながら、センサの検出値の異常の原因を特定することが容易でなかった。
 本発明は、上記事柄に鑑みてなされたものであり、センサの検出値の異常の原因を特定することを課題の一つとするものである。
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、気体を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体から吐出された圧縮気体を冷却媒体によって冷却するインタークーラと、前記インタークーラで冷却された圧縮気体を更に圧縮する高圧段圧縮機本体とを備えた圧縮機において、前記低圧段圧縮機本体の吐出側かつ前記インタークーラの上流側における圧縮気体の温度を検出する第1の温度センサと、前記低圧段圧縮機本体の吐出側における圧縮気体の圧力を検出する第1の圧力センサと、前記高圧段圧縮機本体の吸入側かつ前記インタークーラの下流側における圧縮気体の温度を検出する第2の温度センサと、前記高圧段圧縮機本体の吐出側における圧縮気体の温度を検出する第3の温度センサと、前記第1の温度センサの検出温度、前記第1の圧力センサの検出圧力、前記第2の温度センサの検出温度、及び前記第3の温度センサの検出温度に異常が生じているか否かを判定すると共に、異常の原因を推定する制御装置と、前記制御装置で推定された異常の原因を報知する報知装置とを備える。
 本発明によれば、センサの検出値の異常の原因を特定することができる。
 なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。
本発明の一実施形態の圧縮機の構成を表す概略図である。 本発明の一実施形態の制御装置による異常の原因の推定方法を説明するための図である。 本発明の一実施形態の制御装置による圧縮空気の漏れの推定手順の具体例を表すフローチャートである。 本発明の一実施形態の制御装置による冷却水の温度の上昇又は低下と高圧段圧縮機本体の回転数の低下の推定手順の具体例を表すフローチャートである。 本発明の他の実施形態の監視システムの構成を表す概略図である。
 本発明の一実施形態の圧縮機を、図面を参照しつつ説明する。
 図1は、本実施形態の圧縮機の構成を表す概略図である。
 本実施形態の圧縮機1は、電動機2と、電動機2によって駆動され、空気(気体)を吸入して圧縮する低圧段圧縮機本体3と、低圧段圧縮機本体3の吸入側に設けられた吸気フィルタ4と、低圧段圧縮機本体3から吐出された圧縮空気(圧縮気体)を冷却するインタークーラ5と、電動機2によって駆動され、インタークーラ5で冷却された圧縮空気を吸入して更に圧縮する高圧段圧縮機本体6と、高圧段圧縮機本体6から吐出された圧縮空気を冷却するアフタークーラ7と、制御装置8と、表示装置9とを備える。なお、圧縮機1は、前述した機器を収納したパッケージ形の圧縮機ユニットであってもよい。
 低圧段圧縮機本体3は、図示しないものの、例えば雌雄一対のスクリューロータと、スクリューロータを収納するケーシングとを備えており、スクリューロータの歯溝に圧縮室が形成されている。圧縮室は、ロータの回転に伴ってロータの軸方向に移動すると共に、吸入過程、圧縮過程、及び吐出過程を順次行う。高圧段圧縮機本体6の構成も、低圧段圧縮機本体3の構成とほぼ同じである。
 インタークーラ5及びアフタークーラ7は、冷却水ライン10を介し供給された冷却水(冷却媒体)によって圧縮空気を冷却する。アフタークーラ7で冷却された圧縮空気は、その使用先であるユーザの機器に供給される。
 制御装置8は、プログラムに基づいて演算処理や制御処理を実行する演算制御部(例えばCPU)と、プログラムや演算処理の結果を記憶する記憶部(例えばROM、RAM)等を有するものである。
 低圧段圧縮機本体3の吐出側かつインタークーラ5の上流側には温度センサ11Aが設けられており、温度センサ11Aで検出された圧縮空気の温度T1(低圧段吐出温度)が制御装置8へ出力される。低圧段圧縮機本体3の吐出側(詳細には、図示のようにインタークーラ5の上流側でもよいし、あるいは、インタークーラ5の下流側でもよい)には圧力センサ12Aが設けられており、圧力センサ12Aで検出された圧縮空気の圧力P1(低圧段)が制御装置8へ出力される。高圧段圧縮機本体6の吸入側かつインタークーラ5の下流側には温度センサ11Bが設けられており、温度センサ11Bで検出された圧縮空気の温度T2が制御装置8へ出力される。
 高圧段圧縮機本体6の吐出側(詳細には、図示のようにアフタークーラ7の上流側でもよいし、あるいは、アフタークーラ7の下流側でもよい)には温度センサ11Cが設けられており、温度センサ11Cで検出された圧縮空気の温度T3が制御装置8へ出力される。高圧段圧縮機本体6の吐出側(詳細には、図示のようにアフタークーラ7の下流側でもよいし、あるいは、アフタークーラ7の上流側でもよい)には圧力センサ12Bが設けられており、圧力センサ12Bで検出された圧縮空気の圧力P2が制御装置8へ出力される。
 制御装置8は、例えば運転スイッチ(図示せず)の操作に応じて、電動機2を制御する。また、制御装置8は、温度センサ11Aの検出温度T1、圧力センサ12Aの検出圧力P1、温度センサ11Bの検出温度T2、温度センサ11Cの検出温度T3、及び圧力センサ12Bの検出圧力P2に異常が生じているか否かを判定すると共に、異常の原因を推定する。詳しく説明すると、制御装置8は、各センサの検出値に対応して予め設定された所定の正常範囲を記憶しており、各センサの検出値が所定の正常範囲にあるか否かを判定し、所定の正常範囲になければ、所定の正常範囲より高いか低いかを判定する。そして、図2で示すように、それらの判定結果に基づいて異常の原因(詳細には、圧縮空気の漏れ、冷却水の温度の上昇又は低下、高圧段圧縮機本体6の回転数の低下など)を推定する。
 まず、本実施形態の制御装置8による圧縮空気の漏れの推定手順を、図3を用いて説明する。図3は、本実施形態の制御装置8による圧縮空気の漏れの推定手順の具体例を表すフローチャートである。なお、制御装置8は、後述するステップS101~S104、S106,S108~S112の順番を変更してもよいし、あるいは、例えばセンサの検出値に対する判定結果の組み合わせを図2で示すテーブルと比較する方式で推定してもよいことは言うまでもない。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にあり、圧力センサ12Aの検出圧力P1が所定の正常範囲より低く、かつ温度センサ11Cの検出温度T3が所定の正常範囲より高い場合に、ステップS101、S102、及びS103の判定がYESとなってステップS104に移る。更に、温度センサ11Bの検出温度T2が所定の正常範囲より低い場合に、ステップS104の判定がYESとなってステップS105に移る。制御装置8は、ステップS105にて、異常の原因として、インタークーラ5の上流側の圧縮空気の漏れ、若しくは吸気フィルタ4の目詰りを推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「インタークーラの上流側の圧縮空気の漏れ、若しくは吸気フィルタの目詰り」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、異常の原因として、インタークーラ5の上流側の圧縮空気の漏れ、若しくは吸気フィルタ4の目詰りを推定できる理由について説明する。インタークーラ5の上流側の圧縮空気の漏れが発生すると、低圧段圧縮機本体3から高圧段圧縮機本体6までの配管内の空気量が少なくなる。あるいは、吸気フィルタ4の目詰りが発生すると、低圧段圧縮機本体3の吸入空気量が減少するため、低圧段圧縮機本体3から高圧段圧縮機本体6までの配管に供給される空気量が少なくなる。低圧段圧縮機本体3から高圧段圧縮機本体6までの配管の体積は一定であることから、温度T1が一定の状態であれば、空気量の減少に伴い圧力P1が減少する。また、インタークーラ5に供給される空気量が少なくなるため、インタークーラ5で過剰に冷却が行われ、インタークーラ5の下流側では温度T2が低下する。更に、圧力P1の減少に伴い高圧段圧縮機本体6の圧縮比が上昇して温度T3が高くなる。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にあり、圧力センサ12Aの検出圧力P1が所定の正常範囲より低く、かつ温度センサ11Cの検出温度T3が所定の正常範囲より高い場合に、ステップS101、S102、及びS103の判定がYESとなってステップS104に移る。更に、温度センサ11Bの検出温度T2が所定の正常範囲にある場合に、ステップS104の判定がNOとなってステップS106に移り、ステップS106の判定がYESとなってステップS107に移る。制御装置8は、ステップS107にて、異常の原因として、インタークーラ5の内部若しくは下流側の圧縮空気の漏れを推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「インタークーラの内部若しくは下流側の圧縮空気の漏れ」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、異常の原因として、インタークーラ5の内部若しくは下流側の圧縮空気の漏れを推定できる理由について説明する。インタークーラ5の内部若しくは下流側の圧縮空気の漏れが発生すると、低圧段圧縮機本体3から高圧段圧縮機本体6までの配管内の空気量が少なくなる。低圧段圧縮機本体3から高圧段圧縮機本体6までの配管の体積は一定であることから、温度T1が一定の状態であれば、空気量の減少に伴い圧力P1が減少する。また、インタークーラ5で正常に冷却が行われるため、温度T2は正常値を示す。そして、圧力P1の減少に伴い高圧段圧縮機本体6の圧縮比が上昇して温度T3が高くなる。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にある場合に、ステップS101の判定がYESとなってステップS102に移る。更に、圧力センサ12Aの検出圧力P1が所定の正常範囲にある場合に、ステップS102の判定がNOとなってステップS108に移り、ステップS108の判定がYESとなってステップS109に移る。更に、温度センサ11Bの検出温度T2が所定の正常範囲にあり、温度センサ11Cの検出温度T3が所定の正常範囲にあり、かつ圧力センサ12Bの検出圧力P2が所定の正常範囲より低い場合に、ステップS109、S110及びS111の判定がYESとなってステップS112に移る。
 制御装置8は、ステップS112にて、ユーザの圧縮空気使用量が増大したか否かを判定する。詳しく説明すると、制御装置8は、ユーザの圧縮空気使用量の統計やスケジュール等に関する情報を記憶しており、この情報に基づいて、圧力センサ12Bの検出圧力P2に対する所定の正常範囲の下限値より低い閾値を演算して設定する。そして、圧力センサ12Bの検出圧力P2が所定の正常範囲の下限値未満かつ閾値以上であれば、ユーザの圧縮空気使用量が増加したと判定する。一方、圧力センサ12Bの検出圧力P2が閾値未満であれば、ユーザの圧縮空気使用量が増加していないと判定して、ステップS113に移る。制御装置8は、ステップS113にて、異常の原因として、高圧段圧縮機本体6の下流側の圧縮空気の漏れを推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「高圧段圧縮機本体の下流側の圧縮空気の漏れ」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、高圧段圧縮機本体6の下流側の圧縮空気の漏れを推定できる理由について説明する。温度T1、T2、T3と圧力P1が正常値を示す場合は、吸気フィルタ4の目詰まりが発生していなく、インタークーラ5の上流側、内部、若しくは下流側の圧縮空気の漏れも発生していないと考えられる。そして、圧力P2が低い値を示す場合は、ユーザの圧縮空気の使用量が増大したか、若しくは、高圧段圧縮機本体6の下流側で圧縮空気が漏れていることが予想される。そして、ユーザの圧縮空気の使用量が増大していないのであれば、高圧段圧縮機本体6の下流側の圧縮空気の漏れが発生していると考えられる。
 なお、制御装置8は、上述したステップS112の判定、すなわち、ユーザの圧縮空気使用量が増大したか否かの判定を行わずに、ステップS113に移ってもよい。この場合、制御装置8は、ステップS113にて、異常の原因として、高圧段圧縮機本体6の下流側の圧縮空気の漏れ、若しくは圧縮空気使用量の増大を推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「高圧段圧縮機本体の下流側の圧縮空気の漏れ、若しくは圧縮空気使用量の増大」のメッセージを表示する。
 制御装置8は、ステップS105、S107、又はS113にて異常の原因を推定して表示装置9で報知した後、ステップS101に直ちに若しくは所定時間経過後に戻り、センサの検出値に異常が生じているか否かの判定を継続する。なお、制御装置8は、同じ異常の原因を推定しても、所定時間が経過するまでは表示装置9で再報知しないように設定されてもよい。また、制御装置8は、センサの検出値に異常が生じていると判定するものの、異常の原因を推定できない場合(すなわち、ステップS106、S108、又はS113に到達しない場合)、表示装置9でセンサの検出値の異常を報知してもよい。詳しく説明すると、例えばステップS101の判定がNOとなる場合などに、ステップS114に移ってもよい。制御装置8は、ステップS114にて、センサの検出値の異常を報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、センサの検出値の異常を表示する。
 次に、本実施形態の制御装置8による冷却水の温度の上昇又は低下と高圧段圧縮機本体6の回転数の低下の推定手順を、図4を用いて説明する。図4は、本実施形態の制御装置8による冷却水の温度の上昇又は低下と高圧段圧縮機本体6の回転数の低下の推定手順の具体例を表すフローチャートである。なお、制御装置8は、後述するステップS121~S124、S126~S128、S130、S131の順番を変更してもよいし、あるいは、例えばセンサの検出値に対する判定結果の組み合わせを図2で示すテーブルと比較する方式で推定してもよいことは言うまでもない。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にあり、かつ温度センサ11Bの検出温度T2が所定の正常範囲より高い場合に、ステップS121及びS122の判定がYESとなってステップS123に移る。更に、圧力センサ12Aの検出圧力P1が所定の正常範囲より高く、かつ温度センサ11Cの検出温度T3が所定の正常範囲より高い場合に、ステップS123及びS124の判定がYESとなってステップS125に移る。制御装置8は、ステップS125にて、異常の原因として、インタークーラ5に供給された冷却水の温度の上昇、インタークーラ5の汚れによる冷却性能の低下、冷却水の不足、若しくは冷却水の凍結を推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「冷却水の温度の上昇、インタークーラの汚れによる冷却性能の低下、冷却水の不足、若しくは冷却水の凍結」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、異常の原因として、インタークーラ5に供給された冷却水の温度の上昇、インタークーラ5の汚れによる冷却性能の低下、冷却水の不足、若しくは冷却水の凍結を推定できる理由について説明する。冷却水の温度の上昇、インタークーラ5の汚れによる冷却性能の低下、冷却水の不足、若しくは冷却水の凍結は、いずれもインタークーラ5の冷却不足を示している。そのため、インタークーラ5の上流側における圧縮空気の温度T1が正常値を示すものの、インタークーラ5の下流側における圧縮空気の温度T2が高い値を示す。低圧段圧縮機本体3から高圧段圧縮機本体6までの配管の体積は一定であるから、温度T2が高くなると圧力P1も高くなる。また、高圧段圧縮機本体6に吸入される空気の温度T2が高いため、高圧段圧縮機本体6から吐出される圧縮空気の温度T3も高い値を示す。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にある場合に、ステップS121の判定がYESとなってステップS122に移る。更に、温度センサ11Bの検出温度T2が所定の正常範囲より低い場合に、ステップS122の判定がNOとなってステップS126に移り、ステップS126の判定がYESとなってステップS127に移る。更に、圧力センサ12Aの検出圧力P1が所定の正常範囲より低く、かつ温度センサ11Cの検出温度T3が所定の正常範囲より低い場合に、ステップS127及びS128の判定がYESとなってステップS129に移る。制御装置8は、ステップS129にて、異常の原因として、インタークーラ5に供給された冷却水の温度の低下を推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「冷却水の温度の低下」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、異常の原因として、インタークーラ5に供給された冷却水の温度の低下を推定できる理由について説明する。冷却水の温度の低下は、インタークーラ5の冷却過剰を示している。そのため、インタークーラ5の上流側における圧縮空気の温度T1が正常値を示すものの、インタークーラ5の下流側における圧縮空気の温度T2が低い値を示す。低圧段圧縮機本体3から高圧段圧縮機本体6までの配管の体積は一定であるから、温度T2が低くなると圧力P1も低くなる。また、高圧段圧縮機本体6に吸入される空気の温度T2が低いため、高圧段圧縮機本体6から吐出される圧縮空気の温度T3も低い値を示す。
 制御装置8は、温度センサ11Aの検出温度T1が所定の正常範囲にある場合に、ステップS121の判定がYESとなってステップS122に移る。更に、温度センサ11Bの検出温度T2が所定の正常範囲にある場合に、ステップS122及びS126の判定がNOとなってステップS130に移る。更に、圧力センサ12Aの検出圧力P1が所定の正常範囲より高く、かつ温度センサ11Cの検出温度T3が所定の正常範囲より低い場合に、ステップS130及びS131の判定がYESとなってステップS132に移る。制御装置8は、ステップS132にて、異常の原因として、高圧段圧縮機本体6の回転数が所定の正常範囲より低下したことを推定し、これを報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、例えば「高圧段圧縮機本体の回転数の低下」のメッセージを表示する。
 制御装置8が、上述した判定結果に基づき、異常の原因として、高圧段圧縮機本体6の回転数の低下を推定できる理由について説明する。低圧段圧縮機本体3が正常に動作しているものの、高圧段圧縮機本体6の回転数が低下した場合、高圧段圧縮機本体6の吸込風量が減少することから、低圧段圧縮機本体3から高圧段圧縮機本体6までの配管内の空気量が多くなる。低圧段圧縮機本体3から高圧段圧縮機本体6までの配管の体積は一定であることから、温度T1が一定の状態であれば、空気量の増加に伴い圧力P1が高くなる。温度T2は、この場合の空気量の増加に伴う影響が小さいため、正常範囲に収まる。また、高圧段圧縮機本体6の回転数が低下した場合、圧縮室から漏れる空気が増大して、圧縮効率が低下する。これにより、圧力P2及び温度T3が低下する。
 制御装置8は、ステップS125、S129、又はS132にて異常の原因を推定して表示装置9で報知した後、ステップS121に直ちに若しくは所定時間経過後に戻り、センサの検出値に異常が生じているか否かの判定を継続する。なお、制御装置8は、同じ異常の原因を推定しても、所定時間が経過するまでは表示装置9で再報知しないように設定されてもよい。また、制御装置8は、センサの検出値に異常が生じていると判定するものの、異常の原因を推定できない場合(すなわち、ステップS125、S129、又はS132に到達しない場合)、表示装置9でセンサの検出値の異常を報知してもよい。詳しく説明すると、例えばステップS121の判定がNOとなる場合などに、ステップS133に移ってもよい。制御装置8は、ステップS133にて、センサの検出値の異常を報知する指令を表示装置9へ出力する。表示装置9は、その指令に応じて、センサの検出値の異常を表示する。
 以上のように本実施形態においては、センサ11A,11B,11C,12A,12Bのうちのいずれかの検出値に異常が生じた場合に、異常の原因を特定することができる。また、異常の原因を特定するために、例えば冷却水の温度や高圧段圧縮機本体6の回転数を検出するセンサを追加する必要がないので、コストの低減を図ることができる。
 本実施形態の効果について補足説明する。インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まりが発生した場合だけでなく、インタークーラ5の内部若しくは下流側の圧縮空気の漏れが発生した場合も、圧力センサ12Aの検出圧力P1が所定の正常範囲より低くなり、温度センサ11Cの検出温度T3が所定の正常範囲より高くなる。そこで、本実施形態においては、前述した条件に加えて、温度センサ11Bの検出温度T2が所定の正常範囲より低ければ、インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まりと推定し、前述した条件に加えて、温度センサ11Bの検出温度T2が所定の正常範囲にあれば、インタークーラ5の内部若しくは下流側の圧縮空気の漏れと推定する。したがって、異常の原因を判別することができる。
 また、インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まりが発生した場合だけでなく、インタークーラ5に供給された冷却水の温度の低下が発生した場合も、圧力センサ12Aの検出圧力P1が所定の正常範囲より低くなり、温度センサ11Bの検出温度T2が所定の正常範囲より低くなる。そこで、本実施形態においては、前述した条件に加えて、温度センサ11Cの検出温度T3が所定の正常範囲より高ければ、インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まりと推定し、前述した条件に加えて、温度センサ11Cの検出温度T3が所定の正常範囲より低ければ、冷却水の温度の低下と推定する。したがって、異常の原因を判別することができる。
 また、高圧段圧縮機本体6の下流側の圧縮空気の漏れ若しくは圧縮空気の使用量の増大が発生した場合だけでなく、高圧段圧縮機本体6の回転数の低下が発生した場合も、温度センサ11Bの検出温度T2が所定の正常範囲にあり、圧力センサ12Bの検出圧力P2が所定の正常範囲より低くなる。そこで、本実施形態においては、前述した条件に加えて、圧力センサ12Aの検出圧力P1が所定の正常範囲にあり、温度センサ11Cの検出温度T3が所定の正常範囲にあれば、高圧段圧縮機本体6の下流側の圧縮空気の漏れと推定し、前述した条件に加えて、圧力センサ12Aの検出圧力P1が所定の正常範囲より高く、温度センサ11Cの検出温度T3が所定の正常範囲より低ければ、高圧段圧縮機本体6の回転数の低下と推定する。したがって、異常の原因を判別することができる。
 なお、上記一実施形態において特に説明しなかったが、制御装置8は、圧縮機の運転状態や設置環境、ユーザによる設定などに応じて、各センサの検出値に対する所定の正常範囲を変更してもよい。圧縮機の負荷運転と無負荷運転が切り替わった直後は、圧縮機内の温度や圧力が定常状態とは異なる。そのため、圧縮機の運転状態に応じて所定の正常範囲を変更した場合に、所定時間、上述した報知を行わなくてもよい。同様に、他の理由によって所定の正常範囲を変更した場合も、所定時間、上述した報知を行わなくてもよい。
 また、上記一実施形態において特に説明しなかったが、制御装置8は、センサの検出値に異常が生じていると判定した場合に、必要に応じて、電動機2を停止させてもよい。すなわち、センサの検出値が、所定の正常範囲の上限値又はこれより高く設定された所定の閾値に達した場合に、電動機2を停止させてもよい。また、センサの検出値が、所定の正常範囲の下限値又はこれより低く設定された所定の閾値に達した場合に、電動機2を停止させてもよい。
 本発明の他の実施形態の監視システムを、図5を用いて説明する。なお、本実施形態において、上記一実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。
 図5は、本実施形態の監視システムの構成を表す概略図である。
 本実施形態の監視システムは、圧縮機1Aと、この圧縮機1Aを監視する監視サーバ21と、監視サーバ21から送信された情報を受信する端末機31と、を備える。
 圧縮機1Aは、図5で示さないものの、上述した圧縮機1と同様、電動機2、低圧段圧縮機本体3、吸気フィルタ4、インタークーラ5、高圧段圧縮機本体6、アフタークーラ7、制御装置8、表示装置9、冷却水ライン10、温度センサ11A,11B,11C、及び圧力センサ12A,12Bを備える。但し、本実施形態の制御装置8は、異常の原因を推定する機能を有しなくてもよい。圧縮機1Aは、図5で示すように、温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果を送信する通信装置13を備える。
 監視サーバ21は、通信網20(詳細には、例えばインターネット等の広域ネットワークやLAN等の狭域ネットワーク)を介して温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果を受信する通信装置22と、制御装置23と、表示装置24と、記憶装置25とを備える。制御装置23は、制御装置8と同様、演算制御部(例えばCPU)と記憶部(例えばROM、RAM)等を有する。また、制御装置23は、上記一実施形態の制御装置8と同様、温度センサ11Aの検出温度T1、圧力センサ12Aの検出圧力P1、温度センサ11Bの検出温度T2、温度センサ11Cの検出温度T3、及び圧力センサ12Bの検出圧力P2に異常が生じているか否かを判定すると共に、異常の原因を推定する。そして、推定した異常の原因を表示装置24に表示させる。記憶装置25は、通信装置22で受信された温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果を時系列的に記憶すると共に、制御装置23で推定された異常の原因を記憶するようになっている。
 監視サーバ21の通信装置22は、制御装置23で推定された異常の原因を、温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果などと共に送信する。端末機31は、監視サーバ21から送信された情報を通信網20を介して受信する通信装置32と、制御装置33と、表示装置34と、記憶装置35とを備える。制御装置33は、制御装置8と同様、演算制御部(例えばCPU)と記憶部(例えばROM、RAM)等を有する。また、制御装置33は、通信装置32で受信された異常の原因や温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果などを処理し、それらを表示装置34に表示させる。記憶装置35は、通信装置32で受信された異常の原因や温度センサ11A,11B,11C及び圧力センサ12A,12Bの検出結果を時系列的に記憶するようになっている。
 以上のように構成された本実施形態においても、上記一実施形態と同様、センサ11A,11B,11C,12A,12Bのうちのいずれかの検出値に異常が生じた場合に、異常の原因を特定することができる。
 なお、上記実施形態において、異常の原因を報知する報知装置は、異常の原因を表示する表示装置9、24、又は34である場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。報知装置は、例えば異常の原因を音声出力する音声出力装置でもよい。
 また、上記実施形態において、制御装置8又は23は、異常の原因として、インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まり、インタークーラ5の内部若しくは下流側の圧縮空気の漏れ、高圧段圧縮機本体6の下流側の圧縮空気の漏れ若しくは圧縮空気の使用量の増大、インタークーラ5の冷却不足、インタークーラ5の冷却過剰、及び高圧段圧縮機本体6の回転数の低下を推定する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、制御装置8又は23は、インタークーラ5の上流側の圧縮空気の漏れ若しくは吸気フィルタ4の目詰まり、インタークーラ5の内部若しくは下流側の圧縮空気の漏れ、高圧段圧縮機本体6の下流側の圧縮空気の漏れ若しくは圧縮空気の使用量の増大、インタークーラ5の冷却不足、インタークーラ5の冷却過剰、及び高圧段圧縮機本体6の回転数の低下のうちのいずれかを推定するものであってもよい。制御装置8又は23が高圧段圧縮機本体6の下流側の圧縮空気の漏れを推定しないのであれば、圧縮機1又は1Aに圧力センサ12Bが設けられなくてもよい。
 また、上記実施形態において、インタークーラ5及びアフタークーラ7は、冷却水ライン10を介し供給された冷却水によって圧縮空気を冷却する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。インタークーラ及びアフタークーラは、例えば、冷却ファンで誘起された冷却風によって圧縮空気を冷却してもよい。このような変形例では、制御装置8又は23は、異常の原因として、インタークーラに供給された冷却風(冷却媒体)の温度の上昇又は低下などを推定してもよい。
 また、上記実施形態において、圧縮機本体3又は6は、スクリューロータ型であって、雌雄一対のスクリューロータを備えた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。圧縮機本体3又は6は、例えば1つ又は3つ以上のスクリューロータを備えてもよい。また、圧縮機本体3又は6は、例えばスクロール型であってもよい。また、圧縮機本体3又は6は、空気以外の気体を圧縮するものであってもよい。
 1,1A…圧縮機、3…低圧段圧縮機本体、4…吸気フィルタ、5…インタークーラ、6…高圧段圧縮機本体、8…制御装置、9…表示装置(報知装置)、10…冷却水ライン、11A…温度センサ(第1の温度センサ)、11B…温度センサ(第2の温度センサ)、11C…温度センサ(第3の温度センサ)、12A…圧力センサ(第1の圧力センサ)、12B…圧力センサ(第2の圧力センサ)、13…通信装置、21…監視サーバ、22…通信装置、23…制御装置、24…表示装置(報知装置)、31…端末機、34…表示装置(報知装置)

Claims (15)

  1.  気体を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体から吐出された圧縮気体を冷却媒体によって冷却するインタークーラと、前記インタークーラで冷却された圧縮気体を更に圧縮する高圧段圧縮機本体とを備えた圧縮機において、
     前記低圧段圧縮機本体の吐出側かつ前記インタークーラの上流側における圧縮気体の温度を検出する第1の温度センサと、
     前記低圧段圧縮機本体の吐出側における圧縮気体の圧力を検出する第1の圧力センサと、
     前記高圧段圧縮機本体の吸入側かつ前記インタークーラの下流側における圧縮気体の温度を検出する第2の温度センサと、
     前記高圧段圧縮機本体の吐出側における圧縮気体の温度を検出する第3の温度センサと、
     前記第1の温度センサの検出温度、前記第1の圧力センサの検出圧力、前記第2の温度センサの検出温度、及び前記第3の温度センサの検出温度に異常が生じているか否かを判定すると共に、異常の原因を推定する制御装置と、
     前記制御装置で推定された異常の原因を報知する報知装置とを備えたことを特徴とする圧縮機。
  2.  請求項1に記載の圧縮機において、
     前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲より低く、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの上流側の圧縮気体の漏れ、若しくは前記低圧段圧縮機本体の吸入側に設けられた吸気フィルタの目詰まりを推定することを特徴とする圧縮機。
  3.  請求項1に記載の圧縮機において、
     前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲にあり、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの内部若しくは下流側の圧縮気体の漏れを推定することを特徴とする圧縮機。
  4.  請求項1に記載の圧縮機において、
     前記高圧段圧縮機本体の吐出側における圧縮気体の圧力を検出する第2の圧力センサを更に備え、
     前記制御装置は、
     前記第2の圧力センサの検出圧力に異常が生じているか否かを更に判定し、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲にあり、前記第2の温度センサの検出温度が所定の正常範囲にあり、前記第3の温度センサの検出温度が所定の正常範囲にあり、かつ前記第2の圧力センサの検出圧力が所定の正常範囲より低い場合に、異常の原因として、前記高圧段圧縮機本体の下流側の圧縮気体の漏れ、若しくは圧縮気体の使用量の増大を推定することを特徴とする圧縮機。
  5.  請求項1に記載の圧縮機において、
     前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より高く、前記第2の温度センサの検出温度が所定の正常範囲より高く、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの冷却不足を推定することを特徴とする圧縮機。
  6.  請求項1に記載の圧縮機において、
     前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲より低く、かつ前記第3の温度センサの検出温度が所定の正常範囲より低い場合に、異常の原因として、前記インタークーラの冷却過剰を推定することを特徴とする圧縮機。
  7.  請求項1に記載の圧縮機において、
     前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より高く、前記第2の温度センサの検出温度が所定の正常範囲にあり、かつ前記第3の温度センサの検出温度が所定の正常範囲より低い場合に、異常の原因として、前記高圧段圧縮機本体の回転数が所定の正常範囲より低下したことを推定することを特徴とする圧縮機。
  8.  気体を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体から吐出された圧縮気体を冷却するインタークーラと、前記インタークーラで冷却された圧縮気体を更に圧縮する高圧段圧縮機本体と、前記低圧段圧縮機本体の吐出側かつ前記インタークーラの上流側における圧縮気体の温度を検出する第1の温度センサと、前記低圧段圧縮機本体の吐出側における圧縮気体の圧力を検出する第1の圧力センサと、前記高圧段圧縮機本体の吸入側かつ前記インタークーラの下流側における圧縮気体の温度を検出する第2の温度センサと、前記高圧段圧縮機本体の吐出側における圧縮気体の温度を検出する第3の温度センサと、前記第1の温度センサ、前記第1の圧力センサ、前記第2の温度センサ、及び前記第3の温度センサの検出結果を送信する通信装置とを備えた圧縮機と、
     前記第1の温度センサ、前記第1の圧力センサ、前記第2の温度センサ、及び前記第3の温度センサの検出結果を受信する通信装置と、前記第1の温度センサの検出温度、前記第1の圧力センサの検出圧力、前記第2の温度センサの検出温度、及び前記第3の温度センサの検出温度の検出圧力に異常が生じているか否かを判定すると共に、異常の原因を推定する制御装置と、前記制御装置で推定された異常の原因を報知する報知装置とを備えた監視サーバと、
     を備えたことを特徴とする監視システム。
  9.  請求項8に記載の監視システムにおいて、
     前記監視サーバの前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲より低く、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの上流側の圧縮気体の漏れ、若しくは前記低圧段圧縮機本体の吸入側に設けられた吸気フィルタの目詰まりを推定することを特徴とする監視システム。
  10.  請求項8に記載の監視システムにおいて、
     前記監視サーバの前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲にあり、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの内部若しくは下流側の圧縮気体の漏れを推定することを特徴とする監視システム。
  11.  請求項8に記載の監視システムにおいて、
     前記圧縮機は、前記高圧段圧縮機本体の吐出側における圧縮気体の圧力を検出する第2の圧力センサを更に備え、
     前記監視サーバの前記制御装置は、
     前記第2の圧力センサの検出圧力に異常が生じているか否かを更に判定し、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲にあり、前記第2の温度センサの検出温度が所定の正常範囲にあり、前記第3の温度センサの検出温度が所定の正常範囲にあり、かつ前記第2の圧力センサの検出圧力が所定の正常範囲より低い場合に、異常の原因として、前記高圧段圧縮機本体の下流側の圧縮気体の漏れ、若しくは圧縮気体の使用量の増大を推定することを特徴とする監視システム。
  12.  請求項8に記載の監視システムにおいて、
     前記監視サーバの前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より高く、前記第2の温度センサの検出温度が所定の正常範囲より高く、かつ前記第3の温度センサの検出温度が所定の正常範囲より高い場合に、異常の原因として、前記インタークーラの冷却不足を推定することを特徴とする監視システム。
  13.  請求項8に記載の監視システムにおいて、
     前記監視サーバの前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より低く、前記第2の温度センサの検出温度が所定の正常範囲より低く、かつ前記第3の温度センサの検出温度が所定の正常範囲より低い場合に、異常の原因として、前記インタークーラの冷却過剰を推定することを特徴とする監視システム。
  14.  請求項8に記載の監視システムにおいて、
     前記監視サーバの前記制御装置は、
     前記第1の温度センサの検出温度が所定の正常範囲にあり、前記第1の圧力センサの検出圧力が所定の正常範囲より高く、前記第2の温度センサの検出温度が所定の正常範囲にあり、かつ前記第3の温度センサの検出温度が所定の正常範囲より低い場合に、異常の原因として、前記高圧段圧縮機本体の回転数が所定の正常範囲より低下したことを推定することを特徴とする監視システム。
  15.  請求項8に記載の監視システムにおいて、
     端末機を更に備え、
     前記端末機は、前記監視サーバの前記通信装置から送信された情報として、前記監視サーバの前記制御装置で推定された異常の原因を受信する通信装置と、前記通信装置で受信された異常の原因を報知する報知装置とを備えたことを特徴とする監視システム。
PCT/JP2019/022181 2018-07-10 2019-06-04 圧縮機及び監視システム WO2020012829A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,721 US11761443B2 (en) 2018-07-10 2019-06-04 Compressor and monitoring system
JP2020530035A JP7005766B2 (ja) 2018-07-10 2019-06-04 圧縮機及び監視システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130429 2018-07-10
JP2018130429 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020012829A1 true WO2020012829A1 (ja) 2020-01-16

Family

ID=69142871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022181 WO2020012829A1 (ja) 2018-07-10 2019-06-04 圧縮機及び監視システム

Country Status (3)

Country Link
US (1) US11761443B2 (ja)
JP (1) JP7005766B2 (ja)
WO (1) WO2020012829A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177913A (zh) * 2020-09-25 2021-01-05 中铁二十局集团有限公司 空压机测试系统
WO2022245162A1 (ko) * 2021-05-20 2022-11-24 한온시스템 주식회사 압축기 및 압축기의 제어 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030885B (zh) * 2022-06-06 2023-12-26 浙江新富凌电气股份有限公司 一种空压机一体机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091313A (ja) * 2001-09-17 2003-03-28 Hitachi Ltd 圧縮機の遠隔監視システム
JP2018013319A (ja) * 2016-07-22 2018-01-25 三浦工業株式会社 熱回収システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975315B2 (ja) 1999-11-22 2007-09-12 株式会社日立産機システム 水冷式オイルフリースクリュー圧縮機
JP5179652B2 (ja) * 2009-04-01 2013-04-10 パナソニック株式会社 燃料電池システム
JP6276120B2 (ja) * 2014-06-27 2018-02-07 株式会社神戸製鋼所 ガス圧縮装置
TWI630361B (zh) * 2015-02-13 2018-07-21 旺矽科技股份有限公司 用於冷卻工作流體之適應性溫度控制系統
JP6385902B2 (ja) * 2015-08-14 2018-09-05 株式会社神戸製鋼所 油冷式スクリュ圧縮機及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091313A (ja) * 2001-09-17 2003-03-28 Hitachi Ltd 圧縮機の遠隔監視システム
JP2018013319A (ja) * 2016-07-22 2018-01-25 三浦工業株式会社 熱回収システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177913A (zh) * 2020-09-25 2021-01-05 中铁二十局集团有限公司 空压机测试系统
CN112177913B (zh) * 2020-09-25 2024-03-15 中铁二十局集团有限公司 空压机测试系统
WO2022245162A1 (ko) * 2021-05-20 2022-11-24 한온시스템 주식회사 압축기 및 압축기의 제어 방법

Also Published As

Publication number Publication date
US20210293239A1 (en) 2021-09-23
US11761443B2 (en) 2023-09-19
JP7005766B2 (ja) 2022-01-24
JPWO2020012829A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
US10697458B2 (en) Diagnostic system
WO2020012829A1 (ja) 圧縮機及び監視システム
US8151585B2 (en) System and method of disabling an HVAC compressor based on a low pressure cut out
CN102918274B (zh) 冷冻装置的异常检测方法及其装置
US11137179B2 (en) Refrigeration apparatus
CN114341495B (zh) 压缩机、监视系统和压缩机的监视方法
WO2019082552A1 (ja) 空気圧縮機
JP6742509B2 (ja) 給液式気体圧縮機
US8113789B2 (en) System and method of disabling an HVAC compressor based on a high pressure cut out
CN112752907B (zh) 气体压缩机
JP2016065679A (ja) 空調装置の動力伝達ベルト用異常検知装置及び動力伝達ベルト用異常検知方法
US11795949B2 (en) Liquid level height detection in a gas-liquid separator of a liquid supply type gas compressor
US20240369053A1 (en) Gas compressor
CN110100137B (zh) 涡旋卸载检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833145

Country of ref document: EP

Kind code of ref document: A1