WO2020009310A1 - Cooling system comprising insulator for cooling outer walls of nuclear reactor - Google Patents
Cooling system comprising insulator for cooling outer walls of nuclear reactor Download PDFInfo
- Publication number
- WO2020009310A1 WO2020009310A1 PCT/KR2019/002783 KR2019002783W WO2020009310A1 WO 2020009310 A1 WO2020009310 A1 WO 2020009310A1 KR 2019002783 W KR2019002783 W KR 2019002783W WO 2020009310 A1 WO2020009310 A1 WO 2020009310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- insulator
- space
- water
- cooling
- Prior art date
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 52
- 238000001816 cooling Methods 0.000 title claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000498 cooling water Substances 0.000 claims abstract description 6
- 238000009413 insulation Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 19
- 239000002826 coolant Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000048 melt cooling Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C11/00—Shielding structurally associated with the reactor
- G21C11/08—Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation
- G21C11/088—Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation consisting of a stagnant or a circulating fluid
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a cooling system comprising a thermal insulation for reactor outer wall cooling.
- the core melt refers to a high-temperature molten material in which the enriched uranium, the nuclear fuel of the reactor core installed inside the reactor pressure vessel, the zirconium used for the cladding, and a plurality of materials in the pressure vessel are mixed.
- core reactor cooling apparatus called core catcher
- core catcher is composed of a free catcher for collecting core melt, core melt transfer channel, core melt spreading and cooling space, which is complicated, and has a small flow path area and a relatively large flow resistance. As a result, a time for cooling the core melt of high temperature is delayed, which makes it difficult to cope quickly.
- a nuclear reactor insulator capable of cooling the outer wall of the reactor vessel, which does not exist in the existing nuclear power plant, was newly designed.
- An object of the present invention is to provide a reactor cooling system comprising: a reactor; An insulator surrounding the reactor and forming a first space with the reactor; And a shielding wall surrounding the insulator and forming a second space with the insulator, wherein the insulator comprises: a water outlet through which the coolant in the first space is discharged into the second space; A water inlet located below the water outlet and into which the water of the second space flows into the first space; And a steam outlet positioned higher than the water outlet and discharging water vapor of the first space into the second space.
- the water inlet may include a first water inlet formed on the lower plate of the insulator and spaced apart from the lower center of the reactor to the side.
- the water inlet may further include a second water inlet formed in the side plate of the heat insulator.
- the first insulation portion having a first thickness; It may include a second insulating portion having a second thickness less than the first thickness and surrounds the shear key.
- the heat insulator further includes a support for supporting the support, the portion from the support toward the reactor may be chamfered.
- An interval between the second insulation portion and the reactor may be smaller than an interval between the first insulation portion and the reactor adjacent to the second insulation portion.
- the reactor further includes a nozzle unit protruding to the outside, and the steam outlet may include a first steam outlet and a second steam outlet located at the top and bottom with respect to the center of the nozzle unit, respectively.
- the total area of the water outlet may be four times larger than the total area of the steam outlet.
- the reactor insulator is designed to smoothly cool the outer wall of the reactor in the event of a serious accident, thereby sufficiently cooling the core melt, a material in which nuclear fuel is melted, to prevent the containment from being damaged and to prevent radiation exposure to the public.
- the Fukushima nuclear power plant in Japan is reported to cause serious accidents, resulting in hundreds of trillion won in national economic losses.
- the present invention by greatly securing the safety of nuclear power plants, it contributes greatly to the promotion of domestic and foreign nuclear power projects, and has a very significant contribution to the company's management revenue generation.
- FIG. 1 is a schematic diagram of a reactor cooling apparatus according to an embodiment of the present invention
- FIG. 2 shows the operation of the reactor cooling apparatus according to an embodiment of the present invention
- FIG. 3 is an enlarged view of a portion A of FIG. 1;
- FIG. 4 is a view showing the portion A of FIG. 1 from below;
- FIG. 5 is an enlarged view of a portion B of FIG. 1,
- FIG. 6 is an enlarged view of a portion C of FIG. 1,
- FIG. 7 is a longitudinal cross-sectional view of the nozzle of FIG. 6.
- the outer wall cooling of the reactor vessel is SIP (Safety Injection Pump), SCP (Shutdown Cooling) to supply cooling water to the reactor joint structure in a short time to cool the core melt in the reactor in most serious accidents.
- Pump and BAMP (Boric Acid Make-up Pump) were used.
- the reactor insulator is designed to naturally secure the flow path between the reactor vessel and the reactor insulator (insulation), and also improves the factor that obstructs the flow path by the interference between the insulator and the reactor joint structure. The flow path was improved to keep the flow smooth, and through this, the core melt could be sufficiently cooled to significantly improve the safety of the nuclear power plant.
- Reactor vessel wall cooling performs the function of submerging the outer surface of the reactor vessel to prevent the reactor vessel damage by cooling the core melt in the reactor vessel under a virtual core melting serious accident conditions.
- the present invention has devised a reactor insulator so that the outer wall cooling of the reactor vessel can be effectively performed in a natural accident situation in which a core melt occurs in a nuclear power plant.
- the insulator was devised to secure a space so that a flow path can be formed inside and outside the insulator for the external cooling of the reactor vessel during a serious accident.
- the water inlet is placed under the insulator and designed to maximize the inlet area as much as possible so that the coolant can enter the insulator maximum.
- the steam outlet and the water outlet are separated from the upper part of the reactor insulator, and the insulator shape is designed to form the maximum flow path area in the shear key portion where the narrowest flow path is expected to be formed.
- An insulator was devised considering the reduction of the flow path area due to thermal expansion of the reactor vessel in the event of a serious accident.
- the flow path interference due to the interference between the reactor insulator and the reactor cavity structure is reduced to facilitate the cooling of the outer wall of the reactor vessel.
- the in- reactor core melt cooling strategy aims to close the incident without the reactor's external emissions. In other words, the decay heat generated in the core melt is continuously removed without damaging the reactor vessel.
- the nuclear power plant was selected to conserve and cool the core melt in the reactor vessel by performing the outer wall cooling of the reactor vessel to secure the integrity of the reactor vessel.
- the inlet flow path is operated by operating SIP, SCP, and BAMP to supply sufficient cooling water between the reactor vessel outer wall and the insulator in a short time so that the heat transferred from the core melt to the reactor hemisphere can be completely removed from the reactor vessel outer wall. Secure. If necessary, inlet flow paths are obtained from HVT with in-reactor recharging to operate coolant in less time and operate valves driven by DC power or driven driven valves.
- the cross section of the heat insulator 30 has a U shape.
- the water inlets 31a and 31b are located under the heat insulator 30 and are installed around the signal wiring 41 as shown in FIGS. 3 and 4.
- the first water inlet 31a is provided on the lower plate of the heat insulator 30, and the second water inlet 31b is provided on the side plate of the heat insulator 30.
- a lower streaming shield 61 and a reactor vessel support 53 are installed just above the water outlet 32 so that the gap between the reactor 10 and the insulator 30 is narrowed.
- the movement of steam is restricted.
- four lower streaming shields 61 are cut around the reactor 10.
- the insulator 30 along the curved portion when installing the insulator 30 according to the reactor 10 and the nozzle 11 (inlet nozzle) weld as shown in FIG. Since there exists a gap, the steam moved to the nozzle 11 can move to the upper part of the nozzle 11.
- the steam outlets 33a and 33b are installed in this part so that steam is discharged onto the lower streaming shield 61 of the reactor cavity outside the insulator 30.
- the steam outlets 33a and 33b are designed to be positioned above the water level in order to improve the natural circulation cooling performance.
- a gap between the reactor 10 and the insulator 30 (d3 in FIG. 6) and a gap between the insulator 30 and the reactor vessel support 53 (d2 in FIG. 6) around the steam outlets 33a and 33b. May be 1 inch or more, for example, 1 inch to 3 inches or 1 inch to 5 inches.
- the first steam outlet 33a may be provided in plural and positioned in the lower region of the nozzle 11, and the second steam outlet 33b may also be provided in plural and located in the upper region of the nozzle 11.
- the total area (section area) of the water outlet 32 may be four times or more than the total area of the steam outlets 33a and 33b, and may be, for example, 4 to 6 times or 4 to 10 times.
- the shear key 51 is a portion that forms the smallest cross-sectional area between the water inlet 31 and the water outlet 32, and is designed as shown in FIG. 5 to improve the flow path between the reactor 10 and the heat insulator 30. .
- a shear key is formed between the reactor 10 and the heat insulator 30 so that the heat insulator 30 enters between the support 21 and the reactor 10 for fixing the base plate 52 and the anchor bolt 54.
- the reactor insulator 30 is connected to the first insulation portion 301 to improve the flow path.
- the second heat insulating part 302 may be provided to have a smaller thickness than the first heat insulating part 301, and may be made of the same material.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
The present invention relates to a nuclear reactor cooling system comprising: a nuclear reactor; an insulator surrounding the nuclear reactor and forming a first space with the nuclear reactor; and shielding walls surrounding the insulator and forming a second space with the insulator. The insulator comprises: a water discharge port through which a cooling water in the first space is discharged to the second space; a water inlet port which is positioned lower than the water discharge port and through which the water in the second space flows into the first space; and a steam discharge port which is positioned higher than the water discharge port and through which steam in the first space is discharged to the second space.
Description
본 발명은 원자로 외벽냉각용 단열체를 포함하는 냉각 시스템에 관한 것이다.The present invention relates to a cooling system comprising a thermal insulation for reactor outer wall cooling.
일본 후쿠시마 원전에서와 같은 노심이 녹는 중대사고가 발생 시 이에 대한 심층방어를 할 수 있을 정도의 충분한 중대사고 대처장치가 없어 원자로용기가 파손되거나, 원자로건물이 파손되어 일반 대중들이 심각하게 방사선 피폭되었다. 이에 일반 대중들이 원자력발전소 안전성에 심한 우려를 표하고 있는 실정이다.In the event of a serious accident that melts the core, such as in the Fukushima nuclear power plant in Japan, there is no sufficient serious accident response device to provide defense in depth. . Therefore, the general public has expressed serious concern about the safety of nuclear power plants.
노심 용융물이란 원자로 압력용기 내부에 설치되어 있는 원자로노심의 핵연료인 농축우라늄과 피복재로 사용되는 지르코늄 및 압력용기 내부 다수의 물질이 혼합된 고온의 용융물질을 말한다.The core melt refers to a high-temperature molten material in which the enriched uranium, the nuclear fuel of the reactor core installed inside the reactor pressure vessel, the zirconium used for the cladding, and a plurality of materials in the pressure vessel are mixed.
종래 코어캐처라 불리는 원자로외 노심용융물냉각장치는 노심용융물을 수집하는 프리 캐처, 노심용융물 이송채널, 노심용융물 퍼짐 및 냉각공간으로 구성되어 있어 복잡하여, 유로단면적이 작고, 유로저항이 상대적으로 컸다. 이로 인해 고온의 노심용융물이 냉각하기 위한 시간이 지연되어 신속하게 대처하기 어려운 단점이 있다.Conventional core reactor cooling apparatus, called core catcher, is composed of a free catcher for collecting core melt, core melt transfer channel, core melt spreading and cooling space, which is complicated, and has a small flow path area and a relatively large flow resistance. As a result, a time for cooling the core melt of high temperature is delayed, which makes it difficult to cope quickly.
본 발명에서는 기존 원전에는 없는 기능인 원자로용기의 외벽냉각을 수행할 수 있는 원자로 단열체를 새로 고안하였다.In the present invention, a nuclear reactor insulator capable of cooling the outer wall of the reactor vessel, which does not exist in the existing nuclear power plant, was newly designed.
따라서 본 발명의 목적은 원자로 외벽냉각용 단열체를 포함하는 냉각 시스템을 제공하는 것이다.It is therefore an object of the present invention to provide a cooling system comprising a thermal insulation for reactor outer wall cooling.
상기 본 발명의 목적은, 원자로 냉각시스템에 있어서, 원자로와; 상기 원자로를 둘러싸고 있으며 상기 원자로와 제1공간을 형성하는 단열체; 상기 단열체를 둘러싸고 있으며 상기 단열체와 제2공간을 형성하는 차폐벽을 포함하며, 상기 단열체는, 상기 제1공간의 냉각수가 상기 제2공간으로 배출되는 물배출구; 상기 물배출구보다 낮게 위치하며 상기 제2공간의 물이 상기 제1공간으로 유입되는 물유입구; 및 상기 물배출구보다 높게 위치하며 상기 제1공간의 수증기가 상기 제2공간으로 배출되는 증기배출구를 포함하는 것에 의해 달성된다.An object of the present invention is to provide a reactor cooling system comprising: a reactor; An insulator surrounding the reactor and forming a first space with the reactor; And a shielding wall surrounding the insulator and forming a second space with the insulator, wherein the insulator comprises: a water outlet through which the coolant in the first space is discharged into the second space; A water inlet located below the water outlet and into which the water of the second space flows into the first space; And a steam outlet positioned higher than the water outlet and discharging water vapor of the first space into the second space.
상기 물유입구는 상기 단열체의 하부판에 형성되어 있으며 상기 원자로의 하부중심에서 측면으로 이격되어 배치되어 있는 제1물유입구를 포함할 수 있다.The water inlet may include a first water inlet formed on the lower plate of the insulator and spaced apart from the lower center of the reactor to the side.
상기 물유입구는 상기 단열체의 측면판에 형성되어 있는 제2물유입구를 더 포함할 수 있다.The water inlet may further include a second water inlet formed in the side plate of the heat insulator.
상기 원자로의 하부 측면에 연결되어 있는 전단키를 더 포함하며, 상기 단열체는, 제1두께를 가지는 제1단열부와; 상기 제1두께보다 작은 제2두께를 가지며 상기 전단키를 둘러싸고 있는 제2단열부를 포함할 수 있다.Further comprising a shear key connected to the lower side of the reactor, wherein the heat insulator, The first insulation portion having a first thickness; It may include a second insulating portion having a second thickness less than the first thickness and surrounds the shear key.
상기 전단키와 마주하는 지지대를 더 포함하고, 상기 단열체는 상기 지지대를 지지하는 지지부를 더 포함하며, 상기 지지부에서 상기 원자로를 향한 부분은 모따기 처리되어 있을 수 있다.Further comprising a support facing the shear key, the heat insulator further includes a support for supporting the support, the portion from the support toward the reactor may be chamfered.
상기 제2단열부와 상기 원자로 사이의 간격은, 상기 제2단열부와 인접한 상기 제1단열부와 상기 원자로 사이의 간격보다 작을 수 있다.An interval between the second insulation portion and the reactor may be smaller than an interval between the first insulation portion and the reactor adjacent to the second insulation portion.
상기 원자로는 외부로 돌출된 노즐부를 더 포함하며, 상기 증기배출구는 상기 노즐부 중심에 대해 각각 상부와 하부에 위치하는 제1증기배출구와 제2증기배출구를 포함할 수 있다.The reactor further includes a nozzle unit protruding to the outside, and the steam outlet may include a first steam outlet and a second steam outlet located at the top and bottom with respect to the center of the nozzle unit, respectively.
상기 물배출구의 전체 면적은 상기 증기배출구의 전체 면적보다 4배 이상 클 수 있다.The total area of the water outlet may be four times larger than the total area of the steam outlet.
본 발명에 따르면 원자로 단열체는 중대사고시 원자로외벽냉각을 원활히 수행할 수 있도록 고안되어 있어 핵연료가 녹은 물질인 노심용융물을 충분히 냉각시켜 격납건물이 파손되는 것을 막아 대중에게 방사선 피폭되는 일이 없도록 한다.According to the present invention, the reactor insulator is designed to smoothly cool the outer wall of the reactor in the event of a serious accident, thereby sufficiently cooling the core melt, a material in which nuclear fuel is melted, to prevent the containment from being damaged and to prevent radiation exposure to the public.
예를 들면, 일본 후쿠시마 원자력발전소에서는 중대사고가 발생하여 국가적으로 경제적 손실이 수백조원 되는 것으로 보고되고 있다. 본 발명에 따르면 원전의 안전성을 획기적으로 확보하여 국내외 원전 사업 추진에 매우 크게 기여하고, 회사의 경영수익 창출에도 매우 크게 기여하는 이점이 있다.For example, the Fukushima nuclear power plant in Japan is reported to cause serious accidents, resulting in hundreds of trillion won in national economic losses. According to the present invention, by greatly securing the safety of nuclear power plants, it contributes greatly to the promotion of domestic and foreign nuclear power projects, and has a very significant contribution to the company's management revenue generation.
도 1은 본 발명의 일 실시예에 따른 원자로 냉각장치의 개략도이고,1 is a schematic diagram of a reactor cooling apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 원자로 냉각장치의 작동을 나타낸 것이고,Figure 2 shows the operation of the reactor cooling apparatus according to an embodiment of the present invention,
도 3은 도 1의 A 부분을 확대한 것이고,3 is an enlarged view of a portion A of FIG. 1;
도 4는 도 1의 A 부분을 아래에서 본 것을 나타낸 것이고,4 is a view showing the portion A of FIG. 1 from below;
도 5는 도 1의 B 부분을 확대한 것이고,5 is an enlarged view of a portion B of FIG. 1,
도 6은 도 1의 C 부분을 확대한 것이고,6 is an enlarged view of a portion C of FIG. 1,
도 7은 도 6의 노즐의 길이 수직방향의 단면도이다.FIG. 7 is a longitudinal cross-sectional view of the nozzle of FIG. 6.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다. 또한, 첨부된 도면은 각 구성요소 간의 관계를 설명하기 위해 크기와 간격 등이 실제와 달리 과장되어 있을 수 있다.The accompanying drawings are only examples as illustrated in order to more specifically describe the technical idea of the present invention, and thus the spirit of the present invention is not limited to the accompanying drawings. In addition, the accompanying drawings may be exaggerated differently from the actual size and spacing to explain the relationship between each component.
본 발명에서 원자로용기(원자로)의 외벽냉각은 대부분의 중대사고 경우에 원자로 내에서 노심용융물을 냉각시키기 위해서 빠른 시간 내 원자로공동구조물에 냉각수를 공급할 수 있도록 SIP(Safety Injection Pump), SCP(Shutdown Cooling Pump), BAMP(Boric Acid Make-up Pump)를 사용하였다. 원자로용기와 원자로 단열체(단열체) 사이에 자연적으로 유로를 확보할 수 있는 원자로단열체를 고안하였고, 또한 단열체와 원자로공동 구조물간 간섭에 의해 유로를 방해하는 인자를 개선하여 유입된 냉각수의 흐름을 원활히 유지되도록 유로를 개선하였으며, 이를 통해 노심용융물을 충분히 냉각할 수 있도록 하여 원전의 안전성을 획기적으로 향상시킨다. In the present invention, the outer wall cooling of the reactor vessel (nuclear reactor) is SIP (Safety Injection Pump), SCP (Shutdown Cooling) to supply cooling water to the reactor joint structure in a short time to cool the core melt in the reactor in most serious accidents. Pump) and BAMP (Boric Acid Make-up Pump) were used. The reactor insulator is designed to naturally secure the flow path between the reactor vessel and the reactor insulator (insulation), and also improves the factor that obstructs the flow path by the interference between the insulator and the reactor joint structure. The flow path was improved to keep the flow smooth, and through this, the core melt could be sufficiently cooled to significantly improve the safety of the nuclear power plant.
원자로용기 외벽냉각은 가상적인 노심용융 중대사고 조건에서 원자로용기내의 노심용융물을 냉각시켜 원자로용기 파손을 방지하도록 원자로용기의 외부표면을 침수시키는 기능을 수행한다.Reactor vessel wall cooling performs the function of submerging the outer surface of the reactor vessel to prevent the reactor vessel damage by cooling the core melt in the reactor vessel under a virtual core melting serious accident conditions.
본 발명은 원자력발전소에서 노심용융물이 발생하는 중대사고시 상황에서 자연 순환 방식에 의거 원자로용기외벽냉각을 효과적으로 수행할 수 있도록 원자로 단열체를 고안하였다. 즉, 중대사고시 원자로 용기 외부냉각을 위하여 단열체 내외부에 유로가 형성될 수 있도록 공간을 확보하도록 단열체를 고안하였다.The present invention has devised a reactor insulator so that the outer wall cooling of the reactor vessel can be effectively performed in a natural accident situation in which a core melt occurs in a nuclear power plant. In other words, the insulator was devised to secure a space so that a flow path can be formed inside and outside the insulator for the external cooling of the reactor vessel during a serious accident.
물유입구는 단열체 하부에 두고 유입구면적을 최대한 크게 되도록 고안하여 냉각수가 단열체 내로 최대로 들어가도록 고안한다. 냉각수 순환을 원활히 하기 위한 배출구는 원자로 단열체 상부에 증기배출구와 물배출구를 따로 두고, 가장 좁은 유로가 형성될 것으로 예상되는 전단키 부분에는 최대한 유로 면적이 형성되도록 단열체 형상을 고안하였다. 중대사고 발생시 원자로용기의 열팽창으로 인하여 유로면적이 감소하는 것을 고려한 단열체를 고안하였다. 또한, 원자로 단열체와 원자로공동구 구조물간의 간섭으로 인한 유로방해를 감소시켜 원자로용기 외벽냉각이 용이하도록 했다.The water inlet is placed under the insulator and designed to maximize the inlet area as much as possible so that the coolant can enter the insulator maximum. In order to facilitate the circulation of the cooling water, the steam outlet and the water outlet are separated from the upper part of the reactor insulator, and the insulator shape is designed to form the maximum flow path area in the shear key portion where the narrowest flow path is expected to be formed. An insulator was devised considering the reduction of the flow path area due to thermal expansion of the reactor vessel in the event of a serious accident. In addition, the flow path interference due to the interference between the reactor insulator and the reactor cavity structure is reduced to facilitate the cooling of the outer wall of the reactor vessel.
원자력 발전소 대부분의 중대사고 경우에 원자로 내 노심용융물 냉각 전략은 노심용융물의 원자로 외부 방출없이 사고를 종결시키는 것을 목적으로 한다. 즉, 노심용융물에서 발생하는 붕괴열을 원자로 용기의 파손없이 지속적으로 열을 제거해주는 것이다. 원자력 발전소에서는 노심물질이 용융하는 중대사고 발생 시 원자로용기 건전성을 확보하기 위하여 원자로용기 외벽냉각을 수행하여 노심용융물을 원자로용기 내에 가두어 두고 냉각하는 방안을 중대사고 대처방안으로 선정하였다. In most serious accidents of nuclear power plants, the in- reactor core melt cooling strategy aims to close the incident without the reactor's external emissions. In other words, the decay heat generated in the core melt is continuously removed without damaging the reactor vessel. In the case of a serious accident in which a core material melts, the nuclear power plant was selected to conserve and cool the core melt in the reactor vessel by performing the outer wall cooling of the reactor vessel to secure the integrity of the reactor vessel.
본 발명에서는 노심용융물에서 원자로용기 하반구로 전달되는 열량이 원자로용기 외벽에서 완전히 제거될 수 있도록 냉각수가 원자로용기 외벽과 단열체 사이로 빠른 시간에 충분히 공급하고자 SIP, SCP, 및 BAMP를 가동시켜 유입유로를 확보한다. 필요시 더 빠른 시간 내 냉각수를 공급하기 위해 원자로내 재장수가 있는 HVT에서 유입유로를 확보하고 DC 전원으로 구동되는 밸브 혹은 피동 구동 밸브를 작동한다.In the present invention, the inlet flow path is operated by operating SIP, SCP, and BAMP to supply sufficient cooling water between the reactor vessel outer wall and the insulator in a short time so that the heat transferred from the core melt to the reactor hemisphere can be completely removed from the reactor vessel outer wall. Secure. If necessary, inlet flow paths are obtained from HVT with in-reactor recharging to operate coolant in less time and operate valves driven by DC power or driven driven valves.
이하, 도 1 내지 도 6을 참조하여 본 발명의 제1실시예에 따른 원자로 냉각시스템(1)을 설명한다.Hereinafter, the reactor cooling system 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
단열체(30)의 단면은 ㄷ자 형태이다. 물유입구(31a, 31b)는 단열체(30)의 하부에 위치하며 도 3 및 도 4와 같이 신호배선(41)의 주위에 설치되어 있다. 제1물유입구(31a)는 단열체(30)의 하단판에 설치되어 있으며, 제2물유입구(31b)는 단열체(30)의 측면판에 설치되어 있다. 도 2와 같이 중대사고시 물유입구(31a, 31b)를 통해 외부 냉각수가 유입되면, 자연순환에 의해 냉각수는 물배출구(32)를 통해 재순환된다.The cross section of the heat insulator 30 has a U shape. The water inlets 31a and 31b are located under the heat insulator 30 and are installed around the signal wiring 41 as shown in FIGS. 3 and 4. The first water inlet 31a is provided on the lower plate of the heat insulator 30, and the second water inlet 31b is provided on the side plate of the heat insulator 30. When the external coolant is introduced through the water inlets 31a and 31b during a major accident as shown in FIG. 2, the coolant is recycled through the water outlet 32 by natural circulation.
그러나 냉각수가 원자로(10) 외부에서 급속히 가열되면 증기폭발 및 공동화 현상이 발생될 수 있으며, 이때 발생한 증기는 급속히 상부로 이동한다. 이때에는 가열된 원자로(10)와 단열체(30) 사이가 열팽창 차이로 틈새가 좁아지므로, 통로가 막힌 공기는 물배출구(32) 주변에 쌓여 냉각수의 원활한 재순환을 방해하여 원자로외벽냉각성능을 떨어뜨린다.However, if the coolant is rapidly heated outside the reactor 10, steam explosion and cavitation may occur, and the generated steam is rapidly moved upward. At this time, the gap between the heated reactor 10 and the heat insulator 30 is narrowed due to the difference in thermal expansion, so that the blocked air is accumulated around the water outlet 32 to prevent the smooth recirculation of the cooling water, thereby reducing the reactor outer wall cooling performance. Drop.
도 6 및 도 7과 같이 물배출구(32) 바로 위에는 방사선 차폐를 위해 lower streaming shield(61) 및 원자로 용기 지지대(53)가 설치되어 있어 원자로(10)와 단열체(30)의 간격이 좁게 되어 있어 증기의 이동이 제한받는다. 원자로 용기 지지대(53)와의 간섭을 피하기 위해 원자로(10) 둘레에 4군데에는 lower streaming shield(61)가 단절되어 있다. 이 부분을 이용하여 증기 통로가 생성되도록 도 6과 같이 원자로(10)와 노즐(11, 입구 노즐) 용접부에 따라 단열체(30)를 설치할 때 곡선부를 따라 각진 단열체(30)를 배치하기에 틈새가 존재하므로 노즐(11)까지 이동된 증기가 노즐(11)의 상부까지 이동할 수 있게 된다.6 and 7, a lower streaming shield 61 and a reactor vessel support 53 are installed just above the water outlet 32 so that the gap between the reactor 10 and the insulator 30 is narrowed. The movement of steam is restricted. In order to avoid interference with the reactor vessel holder 53, four lower streaming shields 61 are cut around the reactor 10. In order to arrange the insulator 30 along the curved portion when installing the insulator 30 according to the reactor 10 and the nozzle 11 (inlet nozzle) weld as shown in FIG. Since there exists a gap, the steam moved to the nozzle 11 can move to the upper part of the nozzle 11.
본 발명에서는 이 부분에 증기배출구(33a, 33b)를 설치하여 증기가 단열체(30) 외부 원자로공동의 lower streaming shield(61)위로 배출되도록 고안하였다. 또한, 자연 순환 냉각성능을 향상하기 위해 증기배출구(33a, 33b)의 위치를 수위보다 높은 위치에 두도록 고안하였다.In the present invention, the steam outlets 33a and 33b are installed in this part so that steam is discharged onto the lower streaming shield 61 of the reactor cavity outside the insulator 30. In addition, the steam outlets 33a and 33b are designed to be positioned above the water level in order to improve the natural circulation cooling performance.
증기배출구(33a, 33b) 주변에서 원자로(10)와 단열체(30) 사이의 간격(도 6의 d3) 및 단열체(30)와 원자로 용기 지지대(53) 사이의 간격(도 6의 d2)은 1인치 이상일 수 있으며, 예를 들어 1인치 내지 3인치 또는 1인치 내지 5인치일 수 있다.A gap between the reactor 10 and the insulator 30 (d3 in FIG. 6) and a gap between the insulator 30 and the reactor vessel support 53 (d2 in FIG. 6) around the steam outlets 33a and 33b. May be 1 inch or more, for example, 1 inch to 3 inches or 1 inch to 5 inches.
제1증기배출구(33a)는 복수로 마련될 수 있으며 노즐(11)의 하부영역에 위치하고 제2증기배출구(33b) 역시 복수로 마련될 수 있으며 노즐(11)의 상부영역에 위치한다.The first steam outlet 33a may be provided in plural and positioned in the lower region of the nozzle 11, and the second steam outlet 33b may also be provided in plural and located in the upper region of the nozzle 11.
본 발명에 물배출구(32)의 전체 면적(단면적)은 증기배출구(33a, 33b)의 전체 면적보다 4배 이상일 수 있으며, 예를 들어 4배 내지 6배 또는 4배 내지 10배일 수 있다.In the present invention, the total area (section area) of the water outlet 32 may be four times or more than the total area of the steam outlets 33a and 33b, and may be, for example, 4 to 6 times or 4 to 10 times.
전단키(51) 부분은 물유입구(31)와 물배출구(32) 사이에서 가장 작은 유로 단면적을 형성하는 부분이며, 원자로(10)와 단열체(30) 사이 유로를 개선하고자 도 5와 같이 고안하였다.The shear key 51 is a portion that forms the smallest cross-sectional area between the water inlet 31 and the water outlet 32, and is designed as shown in FIG. 5 to improve the flow path between the reactor 10 and the heat insulator 30. .
베이스 플레이트(지지대, 52)와 앵커볼트(54)를 고정하기 위한 지지부(21)과 원자로(10) 사이에 단열체(30)가 들어가도록 원자로(10)와 단열체(30) 사이는 전단키(51)부분(도 5의 d1)에서 최소 2인치이상, 나머지 부분(도 5의 d2)에서는 6인치 이상 간격을 확보하여 유로를 개선하도록 원자로 단열체(30)를 제1단열부(301)와 제2단열부(302)로 고안하였다. 제2단열부(302)는 제1단열부(301)보다 두께가 작게 마련되며, 동일한 재질로 마련될 수 있다.A shear key is formed between the reactor 10 and the heat insulator 30 so that the heat insulator 30 enters between the support 21 and the reactor 10 for fixing the base plate 52 and the anchor bolt 54. At least 2 inches in the portion (d1 of FIG. 5) and at least 6 inches in the remaining portion (d2 of FIG. 5), the reactor insulator 30 is connected to the first insulation portion 301 to improve the flow path. Designed as a second heat insulating portion 302. The second heat insulating part 302 may be provided to have a smaller thickness than the first heat insulating part 301, and may be made of the same material.
또한, 도 5처럼 원자로 단열체(30)와 원자로공동구 구조물(차폐벽, 20)간의 간섭으로 인한 유로방해를 피하기 위해 원자로 용기 지지대 base plate(52) 아래의 콘크리트 구조물(지지부, 21)의 모따기 방식(도 5의 D 부분)으로 유로를 개선하여 냉각이 용이하도록 한다.In addition, as shown in FIG. 5, the chamfering method of the concrete structure (support) 21 under the reactor vessel support base plate 52 to avoid the flow path caused by the interference between the reactor insulator 30 and the reactor tool structure (shielding wall) 20. (D part of FIG. 5) to improve the flow path to facilitate cooling.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are examples for explaining the present invention, but the present invention is not limited thereto. Those skilled in the art to which the present invention pertains will be capable of carrying out the present invention by various modifications therefrom, and the technical protection scope of the present invention should be defined by the appended claims.
Claims (8)
- 원자로 냉각시스템에 있어서,In a reactor cooling system,원자로와;A nuclear reactor;상기 원자로를 둘러싸고 있으며 상기 원자로와 제1공간을 형성하는 단열체;An insulator surrounding the reactor and forming a first space with the reactor;상기 단열체를 둘러싸고 있으며 상기 단열체와 제2공간을 형성하는 차폐벽을 포함하며,A shielding wall surrounding the insulator and forming a second space with the insulator;상기 단열체는,The heat insulator,상기 제1공간의 냉각수가 상기 제2공간으로 배출되는 물배출구;A water outlet for discharging the cooling water of the first space into the second space;상기 물배출구보다 낮게 위치하며 상기 제2공간의 물이 상기 제1공간으로 유입되는 물유입구; 및A water inlet located below the water outlet and into which the water of the second space flows into the first space; And상기 물배출구보다 높게 위치하며 상기 제1공간의 수증기가 상기 제2공간으로 배출되는 증기배출구를 포함하는 원자로 냉각시스템.A reactor cooling system located above the water outlet and including a steam outlet through which water vapor in the first space is discharged into the second space.
- 제1항에 있어서,The method of claim 1,상기 물유입구는 상기 단열체의 하부판에 형성되어 있으며 상기 원자로의 하부중심에서 측면으로 이격되어 배치되어 있는 제1물유입구를 포함하는 것을 특징으로 하는 원자로 냉각시스템.The water inlet is formed in the lower plate of the insulator, and the reactor cooling system, characterized in that it comprises a first water inlet spaced apart from the lower center of the nuclear reactor.
- 제2항에 있어서,The method of claim 2,상기 물유입구는 상기 단열체의 측면판에 형성되어 있는 제2물유입구를 더 포함하는 것을 특징으로 하는 원자로 냉각시스템.The water inlet further comprises a second water inlet formed in the side plate of the heat insulator.
- 제1항에 있어서,The method of claim 1,상기 원자로의 하부 측면에 연결되어 있는 전단키를 더 포함하며,Further comprising a shear key connected to the lower side of the reactor,상기 단열체는,The heat insulator,제1두께를 가지는 제1단열부와;A first heat insulating part having a first thickness;상기 제1두께보다 작은 제2두께를 가지며 상기 전단키를 둘러싸고 있는 제2단열부를 포함하는 것을 특징으로 하는 원자로 냉각시스템.And a second heat insulating part surrounding the shear key and having a second thickness less than the first thickness.
- 제4항에 있어서,The method of claim 4, wherein상기 전단키와 마주하는 지지대를 더 포함하고,Further comprising a support facing the shear key,상기 단열체는 상기 지지대를 지지하는 지지부를 더 포함하며,The insulator further includes a support for supporting the support,상기 지지부에서 상기 원자로를 향한 부분은 모따기 처리되어 있는 것을 특징으로 하는 원자로 냉각시스템.And a portion of the support portion facing the reactor is chamfered.
- 제5항에 있어서,The method of claim 5,상기 제2단열부와 상기 원자로 사이의 간격은,The interval between the second insulation and the reactor,상기 제2단열부와 인접한 상기 제1단열부와 상기 원자로 사이의 간격보다 작은 것을 특징으로 하는 원자로 냉각시스템.Reactor cooling system, characterized in that less than the distance between the first insulation and the reactor adjacent to the second insulation.
- 제5항에 있어서,The method of claim 5,상기 원자로는 외부로 돌출된 노즐부를 더 포함하며,The reactor further includes a nozzle portion protruding to the outside,상기 증기배출구는 상기 노즐부 중심에 대해 각각 상부와 하부에 위치하는 제1증기배출구와 제2증기배출구를 포함하는 것을 특징으로 하는 원자로 냉각시스템.The steam outlet comprises a first steam outlet and a second steam outlet located in the upper and lower with respect to the center of the nozzle portion, respectively.
- 제7항에 있어서,The method of claim 7, wherein상기 물배출구의 전체 면적은 상기 증기배출구의 전체 면적보다 4배이상 큰 것을 특징으로 하는 원자로 냉각시스템.The total area of the water outlet is at least four times larger than the total area of the steam outlet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0078365 | 2018-07-05 | ||
KR1020180078365A KR101967583B1 (en) | 2018-07-05 | 2018-07-05 | Cooling system comprising thermal insulating barrier for external cooling in nuclear reactor vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020009310A1 true WO2020009310A1 (en) | 2020-01-09 |
Family
ID=66167474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/002783 WO2020009310A1 (en) | 2018-07-05 | 2019-03-11 | Cooling system comprising insulator for cooling outer walls of nuclear reactor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101967583B1 (en) |
WO (1) | WO2020009310A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2733591C1 (en) * | 2019-12-03 | 2020-10-05 | Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") | Device for installation of external heat insulation of housing of nuclear reactor |
KR102369705B1 (en) * | 2020-09-24 | 2022-03-03 | 한국원자력연구원 | Passive cooling installation and passive cooling method of ship |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003448A1 (en) * | 1995-07-13 | 1997-01-30 | Westinghouse Electric Corporation | Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel |
KR100668048B1 (en) * | 2005-05-13 | 2007-01-12 | 재단법인서울대학교산학협력재단 | System for cooling the exterior wall of a reactor vessel and the method thereof |
KR20110037497A (en) * | 2009-10-07 | 2011-04-13 | 한국수력원자력 주식회사 | Cooling device for external wall of reactor |
KR20120125012A (en) * | 2011-05-06 | 2012-11-14 | 국립대학법인 울산과학기술대학교 산학협력단 | Nuclear reactor |
KR101651576B1 (en) * | 2015-08-31 | 2016-08-26 | 경희대학교 산학협력단 | Nuclear reactor pressure vessel, modifying method of surface of nuclear reactor pressure vessel and movable type apparatus for modifing surface of the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120125011A (en) * | 2011-05-06 | 2012-11-14 | 국립대학법인 울산과학기술대학교 산학협력단 | Nuclear reactor with geometry at the outer wall |
-
2018
- 2018-07-05 KR KR1020180078365A patent/KR101967583B1/en active IP Right Grant
-
2019
- 2019-03-11 WO PCT/KR2019/002783 patent/WO2020009310A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003448A1 (en) * | 1995-07-13 | 1997-01-30 | Westinghouse Electric Corporation | Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel |
KR100668048B1 (en) * | 2005-05-13 | 2007-01-12 | 재단법인서울대학교산학협력재단 | System for cooling the exterior wall of a reactor vessel and the method thereof |
KR20110037497A (en) * | 2009-10-07 | 2011-04-13 | 한국수력원자력 주식회사 | Cooling device for external wall of reactor |
KR20120125012A (en) * | 2011-05-06 | 2012-11-14 | 국립대학법인 울산과학기술대학교 산학협력단 | Nuclear reactor |
KR101651576B1 (en) * | 2015-08-31 | 2016-08-26 | 경희대학교 산학협력단 | Nuclear reactor pressure vessel, modifying method of surface of nuclear reactor pressure vessel and movable type apparatus for modifing surface of the same |
Also Published As
Publication number | Publication date |
---|---|
KR101967583B1 (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5499277A (en) | Method and apparatus for enhancing reactor air-cooling system performance | |
CN110459333B (en) | Double-layer crucible reactor core melt trapping device with internal cooling pipe | |
WO2020009310A1 (en) | Cooling system comprising insulator for cooling outer walls of nuclear reactor | |
WO2012036334A1 (en) | Cold crucible induction melter integrating induction coil and melting furnace | |
KR101436497B1 (en) | Passive decay heat removal system for liquid metal cooled reactors with enhanced natural circulation cooling capability using a helical type sodium-to-sodium heat exchanger | |
Mitteau et al. | A shaped First Wall for ITER | |
WO2018217001A1 (en) | Cooling facility in a reactor vessel and electric power generation system | |
EP1555677B1 (en) | Core catcher cooling | |
US4382908A (en) | After-heat removal system for a gas-cooled nuclear reactor | |
EP0397509A2 (en) | Indirect passive cooling system for liquid metal cooled nuclear reactors | |
CN108053895B (en) | Reactor core melt trapping device for split-charging enhanced cooling | |
CN108550406B (en) | Reactor core melt trapping device | |
WO2011043513A1 (en) | Outer-wall cooling apparatus of reactor vessel | |
JPH07140288A (en) | Column shielding body | |
WO2022019554A1 (en) | Reactor cooling system for disaster accident, and reactor cooling method using same | |
US4175001A (en) | Gas turbine power plant with closed gas circuit | |
EP0965135B1 (en) | A nuclear plant | |
KR100319068B1 (en) | Safety Injection Flow Duct In Nuclear Reactor Vessel For Breaking Siphon Effect and Insolating Contact With Steam Flow | |
US5392326A (en) | Boiling water reactor | |
WO2018062918A1 (en) | Stepped core catcher having enhanced core spreading performance | |
WO2020050519A1 (en) | Nuclear reactor long-term cooling system and nuclear plant having the same | |
JP2015078948A (en) | Fast reactor nuclear reactor facilities | |
WO2020009308A1 (en) | Out-of-reactor cooling apparatus for corium | |
EP4250315A1 (en) | Safety system and safety control method for preventing molten corium from melting through rpv | |
WO2023177154A1 (en) | Cooling device and cooling method for small modular reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19829772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19829772 Country of ref document: EP Kind code of ref document: A1 |