WO2020008941A1 - Internal combustion engine control system and control device for same - Google Patents
Internal combustion engine control system and control device for same Download PDFInfo
- Publication number
- WO2020008941A1 WO2020008941A1 PCT/JP2019/025053 JP2019025053W WO2020008941A1 WO 2020008941 A1 WO2020008941 A1 WO 2020008941A1 JP 2019025053 W JP2019025053 W JP 2019025053W WO 2020008941 A1 WO2020008941 A1 WO 2020008941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intake
- internal combustion
- combustion engine
- timing
- ignition timing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D15/00—Varying compression ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a control system for an internal combustion engine and a control device therefor, and more particularly to a control system for an internal combustion engine that implements an Atkinson cycle and a control device therefor.
- the pressure in the cylinder (combustion chamber) before the exhaust valve is opened is relatively high, and the pressure in the cylinder is increased by opening the exhaust valve.
- the pressure drops, for example, to atmospheric pressure levels.
- the expansion ratio is increased as an Atkinson cycle, the pressure in the cylinder becomes lower than the atmospheric pressure in the latter half of the expansion stroke, and then the exhaust valve opens and the pressure in the cylinder increases due to the pressure in the exhaust port. .
- Patent Document 1 discloses a variable compression ratio mechanism capable of changing a mechanical compression ratio and a variable compression ratio mechanism capable of controlling an opening timing of an exhaust valve.
- An internal combustion engine provided with a valve timing mechanism has been proposed.
- the mechanical compression ratio is maximized so as to obtain the maximum expansion ratio.
- the exhaust valve is controlled so that the pressure in the cylinder does not become lower than the atmospheric pressure.
- the valve opening timing is advanced to suppress pumping loss.
- the intake valve closing timing (IVC) of the intake valve is compressed beyond 90 ° at the crank angle after the intake bottom dead center (BDC).
- BDC intake bottom dead center
- the intake valve closing timing IVC
- the execution region of the Atkinson cycle is expanded to the low load side, the fuel consumption can be reduced as a whole operating load.
- the ignition timing is controlled to an advanced side in order to suppress a decrease in engine torque in a low load region and to increase thermal efficiency.
- the combustible mixture in the cylinder is ignited by the ignition of the ignition plug, and the flame generated by this ignition flows into the intake system because the intake valve is still open, and the flammable mixture remaining in the intake system side. May explode, causing a phenomenon called backfire.
- An object of the present invention is to provide a control system for an internal combustion engine and a control device therefor, which suppress the occurrence of backfire and reduce the fuel consumption by the Atkinson cycle.
- the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake side variable valve mechanism, and the ignition timing (IgT ) Is advanced, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle difference between the intake closing timing (IVC) and the ignition timing (IgT) is corrected by a predetermined amount. Angle ( ⁇ cmp) or more.
- the intake closing timing (IVC) of the intake valve is greatly retarded by the intake-side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and to advance the ignition timing (IgT).
- IVC intake closing timing
- IgT ignition timing
- FIG. 1 is an overall schematic diagram of a control system for an internal combustion engine according to the present invention.
- FIG. 2 is a perspective view illustrating an external configuration of an intake-side variable valve mechanism and an exhaust-side variable valve mechanism.
- FIG. 6 is an explanatory diagram illustrating a relationship between an opening / closing timing of an exhaust valve and an intake valve at a fourth load and an ignition timing according to the first embodiment of the present invention.
- FIG. 4 is an explanatory diagram illustrating a relationship between an opening / closing timing of an exhaust valve and an intake valve at a third load and an ignition timing according to the first embodiment of the present invention.
- FIG. 4 is an explanatory diagram illustrating a relationship between an opening / closing timing of an exhaust valve and an intake valve under a second load, and an ignition timing according to the first embodiment of the present invention.
- FIG. 2 is an explanatory diagram illustrating a relationship between an opening / closing timing of an exhaust valve and an intake valve at a first load and an ignition timing according to the first embodiment of the present invention.
- FIG. 4 is an explanatory diagram illustrating a relationship between lifts, opening / closing timings, and ignition timings of an exhaust valve and an intake valve from a first load to a fourth load corresponding to progress of a rotation angle according to the first embodiment of the present invention. is there.
- FIG. 1 is there.
- 4 is a diagram illustrating a change in the opening / closing timing of an exhaust valve and an intake valve from a first load to a fourth load and a change in an ignition timing according to the first embodiment of the present invention.
- 4 is a flowchart illustrating a first half of a control flow for executing control in the control system for an internal combustion engine according to the first embodiment of the present invention.
- 4 is a flowchart illustrating the latter half of the control flow for executing control in the control system for an internal combustion engine according to the first embodiment of the present invention. It is a flowchart which shows the control flow which becomes 2nd Embodiment of this invention. It is a flowchart which shows the control flow which becomes 3rd Embodiment of this invention.
- FIG. 14 is an explanatory diagram illustrating a relationship between a rotation speed of an internal combustion engine and a rotation correction cow degree according to a fifth embodiment of the present invention.
- FIG. 14 is a diagram illustrating a change in the opening / closing timing of an exhaust valve and an intake valve from a first load to a fourth load and a change in an ignition timing according to a fifth embodiment of the present invention. It is a flowchart which shows the control flow which becomes 5th Embodiment of this invention.
- FIG. 16 is an explanatory diagram illustrating a relationship between a seating detection signal and a knock detection signal according to a sixth embodiment of the present invention. It is a flowchart which shows the control flow which becomes 6th Embodiment of this invention.
- FIG. 17 is an explanatory diagram illustrating a change in the opening / closing timing of the exhaust valve and the intake valve from the first load to the fourth load and a change in the ignition timing according to the seventh embodiment of the present invention.
- a combustion chamber 04 is formed between a cylinder block 01 and a cylinder head 02 via a piston 03, and an ignition plug 05 is provided at a substantially central position of the cylinder head 02.
- the piston 03 is connected to a crankshaft 07 via a connecting rod 06 having one end connected to a piston pin.
- the crankshaft 07 is designed such that a normal start in cold operation and an automatic start after idling stop are performed by a starter motor 08 via a pinion gear mechanism 09.
- the crankshaft 07 is configured to detect a crank angle and a rotation speed by a crank angle sensor 010 described later.
- a knock sensor 015 for detecting occurrence of knock and a water temperature sensor 011 for detecting water temperature in the water jacket are attached to the cylinder block 01, and fuel is injected into the combustion chamber 04 to the cylinder head 02.
- a fuel injection valve 012 is provided.
- two intake valves 4 and two exhaust valves 5 are provided for each cylinder for opening and closing an intake port 013 and an exhaust port 014 formed inside the cylinder head 02, respectively.
- a variable valve mechanism is provided on the exhaust valve 5 side.
- An intake valve timing control mechanism (hereinafter referred to as an intake VTC mechanism) 3 is provided on the intake valve side, and an exhaust valve lift control mechanism (hereinafter referred to as an exhaust VEL mechanism) 1 is provided on the exhaust valve side.
- an exhaust side valve timing control mechanism (hereinafter referred to as an exhaust side VTC mechanism) 2.
- the control means (controller) 22 receives a sensor signal as shown in the figure and outputs a drive signal for the control element.
- a starter motor 08 shown in FIG. 1 is a general motor comprising a motor body powered by a battery, a pinion gear mechanism 09 that meshes with a ring gear fitted on the outer periphery of a flywheel and transmits power. is there. Only when the starter motor 08 is energized at the time of starting or restarting, the pinion gear of the pinion gear mechanism 09 moves forward, meshes with the ring gear of the internal combustion engine, and transmits the rotation of the starter motor 08 to a well-known ring gear to crank. Done. When the internal combustion engine is successfully started and power supply to the starter motor 08 is stopped, the pinion gear is pushed back, and the engagement with the ring gear is released.
- the present embodiment is directed to controlling the exhaust valve 5 to a predetermined opening / closing timing and controlling the intake valve 4 to a predetermined opening / closing timing, as described later.
- the crank pulley may be rotated by a belt drive using a starter in which the pinion gear and the ring gear are always meshed, a motor for a hybrid vehicle, or the like.
- variable valve mechanism controls the exhaust-side VEL mechanism 1 that controls the valve lift and the operating angle (open period) of the exhaust valve 5 of the internal combustion engine, and the opening / closing timing (valve timing) of the exhaust valve 5.
- An exhaust-side VTC mechanism 2 for controlling and an intake-side VTC mechanism 3 for controlling the opening / closing timing of the intake valve 4 are provided.
- the operation of the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 is controlled by the control unit 22 in accordance with the engine operating state.
- the exhaust-side VEL mechanism 1 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2003-172112 (applied to the intake valve side) previously filed by the present applicant. I want to be.
- the intake-side VTC mechanism 3 also has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2012-127219 filed earlier by the present applicant. For details, refer to this publication.
- the exhaust-side VTC mechanism 2 has substantially the same configuration as the intake-side VTC mechanism 3.
- the exhaust-side VEL mechanism 1 will be briefly described with reference to FIG. 2.
- a hollow drive shaft 6 rotatably supported by a bearing provided at an upper portion of a cylinder head 02 and a drive shaft 6 are fixed to the outer peripheral surface by press fitting or the like.
- the exhaust valve 5 is opened by being slidably supported on the provided rotary cam 7 and the outer peripheral surface of the drive shaft 6 and in sliding contact with the upper surface of a valve lifter 8 disposed at the upper end of the exhaust valve 5.
- a transmission that is interposed between the two swing cams 9 and between the rotation cam 7 and the swing cam 9, converts the rotational force of the rotation cam 7 into a swing motion, and transmits the swing force to the swing cam 9 as a swing power.
- the drive shaft 6 (exhaust side) is transmitted a rotational force from a crankshaft 07 via a timing sprocket 31A provided at one end by a timing chain, and the rotational direction is clockwise (arrow direction) in FIG. Is set.
- a system in which the phase between the drive shaft 6 and the timing sprocket 31A does not change may be adopted.
- the exhaust-side VTC mechanism 2 is mounted but not used, and no phase conversion is performed. Therefore, the exhaust-side VTC mechanism 2 may be omitted, and the timing sprocket 31A may be fixed.
- the rotating cam 7 on the exhaust side has a substantially ring shape, is fixed to the driving shaft 6 through a driving shaft insertion hole formed in the inner axial direction, and the axis of the cam body is the axis of the driving shaft 6. Is offset by a predetermined amount in the radial direction.
- the swing cam 9 is integrally provided at both ends of a cylindrical camshaft 10, and the camshaft 10 is rotatably supported on the drive shaft 6 via an inner peripheral surface.
- a cam surface including a base circle surface, a ramp surface, and a lift surface is formed on the lower surface, and the base circle surface, the ramp surface, and the lift surface correspond to the swing position of the swing cam 9 of each valve lifter 8. It comes into contact with a predetermined position on the upper surface.
- the transmission mechanism includes a rocker arm 11 disposed above the drive shaft 6, a link arm 12 for linking one end 11 a of the rocker arm 11 and the rotating cam 7, and another end 11 b of the rocker arm 11 and the swing cam 9. And a link rod 13 for linking.
- the rocker arm 11 has a cylindrical base at the center rotatably supported by a control cam, which will be described later, via a support hole, and one end 11 a is rotatably connected to the link arm 12 by a pin 14. The other end 11 b is rotatably connected to one end 13 a of the link rod 13 via a pin 15.
- the cam body of the rotary cam 7 is rotatably fitted in a fitting hole formed at the center position of the annular base end 12a, while a protruding end 12b protruding from the base end 12a has a pin.
- 14 is connected to the rocker arm end 11a.
- the other end of the link rod 13 is rotatably connected to a cam nose portion of the swing cam 9 via a pin 16.
- the control shaft 17 is rotatably supported by the same bearing member at a position above the drive shaft 6, and is slidably fitted in the support hole of the rocker arm 11 on the outer periphery of the control shaft 17 to swing the rocker arm 11.
- a control cam 18 serving as a fulcrum is fixed.
- the control shaft 17 is disposed in the engine front-rear direction in parallel with the drive shaft 6, and the rotation of the control shaft 17 is controlled by a drive mechanism 19.
- the control cam 18 has a cylindrical shape, and the axial center position is deviated by a predetermined amount from the axial center of the control shaft 17.
- the drive mechanism 19 includes an electric motor 20 fixed to one end of the casing, and a ball screw transmission mechanism 21 that transmits the rotational driving force of the electric motor 20 to the control shaft 17.
- the electric motor 20 is constituted by a proportional DC motor, and is driven by a control signal from a control means 22 for detecting an operating state of the engine.
- the ball screw transmission mechanism 21 includes a ball screw shaft 23 disposed substantially coaxially with a drive shaft of the electric motor 20, a ball nut that is a moving member screwed around the outer periphery of the ball screw shaft 23, and one end of the control shaft 17. It mainly includes a link arm 25 connected to the portion along the diameter direction, and a link member 26 linking the link arm 25 and the ball nut 24.
- the ball screw shaft 23 has a ball circulation groove having a predetermined width continuously formed in a spiral shape on the entire outer peripheral surface except for both end portions, and is connected to one end portion via a motor drive shaft, and is rotationally driven by the electric motor 20. It is supposed to be.
- the ball nut 24 is formed in a substantially cylindrical shape, and a guide groove for rotatably holding a plurality of balls in cooperation with a ball circulation groove is formed continuously in a spiral shape on the inner peripheral surface. , The rotational motion of the ball screw shaft 23 is converted into the linear motion of the ball nut 24, and an axial moving force is applied.
- the ball nut 24 is urged toward the electric motor 20 (minimum lift side) by the spring force of a coil spring 30 as urging means. Therefore, when the engine is stopped, the ball nut 24 moves to the minimum lift side along the axial direction of the ball screw shaft 23 by the spring force of the coil spring 30.
- the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3 are of a so-called vane type. Since the configuration is the same as that described in Japanese Patent Application Laid-Open Publication No. H10-209, the description is omitted here.
- the "most advanced position" is the default position for the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3.
- the default position is a position that is mechanically stable when not operating, that is, when no hydraulic pressure is applied.
- the lift, the operating angle, and the opening / closing timing of the exhaust valve 5 are controlled in accordance with the operations of the exhaust-side VEL mechanism 1 and the exhaust-side VTC mechanism 2.
- the opening and closing timing of the intake valve 4 is controlled in accordance with the operation of the intake-side VTC mechanism 3, but the lift and operating angle of the intake valve 4 do not change.
- the lift / operating angle of the intake valve is set to be substantially the same as the lift / operating angle by the exhaust-side VEL mechanism 1 in the second load region shown in FIG.
- control means 22 is incorporated inside the control unit (ECU), and detects a detection signal from the crank angle sensor 010 for detecting the crank angle, a detection signal from the accelerator opening sensor, and a detection signal from the vehicle speed sensor.
- the current engine operating state and the vehicle operating state are detected from the detection signal from the gear position sensor, the detection signal from the brake depression sensor, the detection signal from the water temperature sensor 011, the detection signal from the knock sensor 015, and the like.
- a detection signal from a drive shaft angle sensor 28 that detects the rotation angle of the drive shaft 6 and a detection signal from a potentiometer 29 that detects the rotation position of the control shaft 17 are input to determine the relative position of the drive shaft 6 with respect to the crank angle. The rotation angle, the valve lift of the exhaust valve 5 and the operating angle are detected.
- the control means 22 includes a microcomputer as a main component.
- the microcomputer includes an arithmetic unit that executes arithmetic processing according to a control program, and a ROM area unit that stores a control program, constants used for the arithmetic operation, and the like. And a RAM area as a work area for temporarily storing data required during the execution of the program. Further, there is provided an I / OLSI or the like that captures sensor signals and supplies drive signals to drive actuators such as the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3.
- the microcomputer performs various arithmetic processes related to control executed by the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, the intake-side VTC mechanism 3, and the like according to a control program.
- the processing executed by the calculation is regarded as a function.
- the microcomputer is provided with an ignition timing control function for controlling the ignition timing of the ignition plug 05, a fuel injection control function for controlling the injection amount and the injection timing of the fuel injection valve 012, and the like.
- control means 22 is configured in one of at least two forms described below.
- variable valve mechanism control means for controlling the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3, and an ignition timing control means for controlling the ignition timing of the spark plug (fuel injection control means).
- ignition timing control means for controlling the ignition timing of the spark plug (fuel injection control means).
- variable valve mechanism control means and the ignition timing control means are connected via a communication line, and respective control information is transmitted and received by communication, and a control flow described later is executed.
- variable valve mechanism control means for controlling the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, and an ignition timing control means (fuel injection control means) for controlling the ignition timing of the spark plug.
- ignition timing control means fuel injection control means
- the ignition timing control will be briefly described.
- a basic ignition timing determined by the rotational speed and the load is obtained, and various correction ignition timings are added or subtracted from the basic ignition timing to obtain a final ignition timing.
- a corrected ignition timing such as water temperature correction, acceleration correction, deceleration correction, and knock feedback correction is used.
- the load table stores advance correction side ignition timing that advances as the load decreases, and from this table, the correction ignition timing corresponding to the load is stored. Is read and added to the basic ignition timing to calculate the final ignition timing.
- the corrected ignition timing in the load table may be reflected in the basic ignition timing map in which the basic ignition timing is stored.
- the following Atkinson cycle is executed by using the exhaust VEL mechanism 1, the exhaust VTC mechanism 2, and the intake-side VTC mechanism 3 that perform such operations in combination.
- FIG. 3 shows the opening / closing timing and ignition timing of the intake / exhaust valve of the fourth load (full load) with a load factor of 100%
- FIG. 4 shows the intake / exhaust of the third load (medium load) with a load factor of 50%
- FIG. 5 shows the opening / closing timing and ignition timing of the intake / exhaust valve of the second load (low load) having a load factor of 20%
- FIG. 6 shows the opening / closing timing and ignition timing of the valve at a load factor of 0%. It shows the opening / closing timing and ignition timing of the intake / exhaust valve for one load (idle, light load).
- FIG. 7 shows the valve lifts and open states of the exhaust valve 5 and the intake valve 4 and the ignition timing corresponding to the advance of the rotation angle at the load described above.
- FIG. 8 shows the first to fourth loads. Up to the change in the opening and closing timing of the exhaust valve and the intake valve, and the change in the ignition timing.
- the point (TDC) includes exhaust (intake) top dead center (TDC) and compression top dead center (TDC).
- TDC top dead center
- BDC compression top dead center
- BDC bottom dead center
- BDC intake bottom
- IVO hereinafter referred to as an intake opening timing
- IVO4 intake opening timing
- TDC intake top dead center
- IVC intake closing timing
- BDC intake bottom dead center
- IVC4 intake closing timing
- the valve opening timing of the exhaust valve 5 (EVO: hereinafter referred to as the exhaust opening timing) is set to the exhaust opening timing (EVO4) slightly advanced from the exhaust (expansion) bottom dead center (BDC).
- the valve closing timing (EVC: hereinafter referred to as exhaust closing timing) of the valve 5 is set to the exhaust closing timing (EVC4) having the same angle as the intake opening timing (IVO4) of the intake valve 4.
- the opening timing (IVO4) of the intake valve 4 and the closing timing (EVC4) of the exhaust valve 5 have the same angle, and a zero overlap is formed. As a result, a reduction in combustion speed due to internal EGR can be suppressed, and thermal efficiency can be improved.
- the ignition timing (IgT) of the fourth load is set to the ignition timing (IgT4) on the advance side from the compression top dead center (TDC).
- the ignition timing (IgT4) is the most retarded side and close to the compression top dead center (TDC) and slightly advanced from the compression top dead center (TDC) among the first to third loads described later. Is set.
- the intake closing timing (IVC4) of the intake valve is set at a position close to the intake bottom dead center (BDC), so that the charging efficiency can be increased, and sufficient engine torque can be obtained. Can be obtained.
- Third Load (Medium Load) >> In FIGS. 4 and 7, the third load (medium load: a load factor of 50%), and in FIG. 8, the third load, which is a middle load, has a larger intake air than the fourth load.
- the intake timing (IVO3) of the valve 4 is shifted to the retard side to be set to the intake opening timing (IVO3) which coincides with the intake (exhaust) top dead center (TDC).
- IVC) is also shifted to the retard side, and is set to the intake closing timing (IVC3) which is an intermediate point between the intake bottom dead center (BDC) and the compression top dead center (TDC).
- the exhaust valve opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the fourth load, and the exhaust valve is opened.
- the timing (EVO3) is set, and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side as compared with the fourth load, and is set as the exhaust closing timing (EVC3).
- the ignition timing (IgT) of the third load is set to an ignition timing (IgT3) on the advance side as compared with the ignition timing of the fourth load (IgT4).
- the intake closing timing (IVC3) is retarded compared to the intake closing timing (IVC4) of the intake valve 4 of the fourth load, so that pump loss can be suppressed.
- the exhaust opening timing (EVO3) of the exhaust valve 5 is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke is advanced with the decrease in load compared to the fourth load. Is opened at the exhaust opening timing (EVO3), so that the pump loss in the so-called expansion stroke can be suppressed, and the fuel efficiency under a medium load can be reduced.
- the exhaust valve closing timing (EVC3) of the exhaust valve 5 is also retarded by the same angle in accordance with the retard of the intake opening timing (IVO3) of the intake valve 4, so that the zero valve overlap can be maintained. .
- EVC3 exhaust valve closing timing
- IVO3 intake opening timing
- the ignition timing (IgT3) is set on the advance side as compared with the fourth load.
- the intake closing timing (IVC3) is greatly separated from the intake bottom dead center (BDC).
- the effective compression ratio is reduced, and the mixed gas is reduced to decrease the combustion speed. Therefore, the ignition timing (IgT3) is advanced from the ignition timing (IgT4) of the fourth load, so that the peak combustion pressure is reduced. This is because the time of occurrence is adjusted to the time when high thermal efficiency is obtained.
- the intake closing timing (IVC) shifts in a direction of retarding.
- the intake closing timing (IVC) is controlled to the retard side, the pump loss can be suppressed, so that the fuel consumption can be reduced.
- Second Load (Low Load) In the second load (low load: load factor 20%) shown in FIGS. 5 and 7, and in FIG. 8, the low load second load is larger than the third load.
- the intake opening timing (IVO2) of the valve 4 is shifted to the retard side from the intake (exhaust) top dead center (TDC) and is set to the intake opening timing (IVO2), and the intake closing timing (IVC2) of the intake valve 4 is set.
- the exhaust opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the third load, and the exhaust opening timing is increased. (EVO3), and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side exceeding the exhaust top dead center (TDC) compared to the third load, and the exhaust closing timing (EVC3) Is set to
- the ignition timing (IgT) of the second load is set to (IgT2) at the ignition timing on the more advanced side as compared with the ignition timing of the third load (IgT3).
- the intake closing timing (IVC2) is retarded compared to the intake closing timing (IVC3) of the intake valve 4 of the third load, pump loss can be further suppressed.
- the exhaust opening timing (EVO2) of the exhaust valve 5 is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke with the decrease in the load is advanced as compared with the third load. By opening at the exhaust opening timing (EVO2), it is possible to suppress a pump loss in a so-called expansion stroke, and to reduce fuel consumption at a low load.
- the ignition timing (IgT2) is set on the advance side as compared with the third load.
- the intake closing timing (IVC2) is greatly separated from the intake bottom dead center (BDC). Since the effective compression ratio is reduced and the mixed gas is reduced to lower the combustion speed, a peak combustion pressure is generated by advancing the ignition timing (IgT2) from the ignition timing (IgT3) of the third load. This is because the time is adjusted to the time when high thermal efficiency is obtained.
- the ignition timing (IgT) is controlled so that the ignition is always performed on the retard side with respect to the intake closing timing (IVC).
- the ignition timing (IgT2) is greatly advanced, and the ignition timing (IgT2) is set to the angle difference threshold ( ⁇ sld) to the intake closing timing (IVC2). If it is assumed that the ignition timing (IgT2) has advanced beyond the intake closing timing (IVC2), the ignition timing (IgT2) becomes as shown in the second load of FIG. 5 and FIG. Starting from the intake valve closing timing (IVC2) of the intake valve, a new ignition timing (IgT2new) having a predetermined correction angle ( ⁇ cmp) on the retard side is set.
- the correction angle ( ⁇ cmp) is set to the same value as the angle difference threshold value ( ⁇ sld), but is not limited thereto, and the correction angle ( ⁇ cmp) may be set to a value larger than the angle difference threshold value ( ⁇ sld). Is also possible.
- the currently calculated ignition timing (IgT2) is advanced beyond the intake closing timing (IVC2)
- the currently calculated intake closing timing (IVC2) of the intake valve 4 is calculated.
- a value obtained by retarding only the predetermined correction angle ( ⁇ cmp) as the starting point may be reset as a new ignition timing (IgT2new).
- the mixed gas can be ignited without the ignition timing (IgT) always exceeding the intake closing timing (IVC).
- First load (idle / light load)) >> In the first load (idle / light load: 0% load factor) shown in FIGS. 6 and 7, and in FIG.
- the intake timing (IVO1) of the intake valve 4 is shifted to the retard side, and further shifted to the retard side from the intake top dead center (TDC).
- the intake opening timing (IVO1) approaching the middle point of the intake bottom dead center (BDC) is set, and the intake closing timing (IVC) of the intake valve 4 is also shifted to the retard side, so that the intake bottom dead center (BDC) And is retarded from the middle point between the compression top dead center (TDC) and the intake closing timing (IVC1).
- the exhaust opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the second load, and the exhaust valve is opened.
- the timing (EVO1) is set, and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side as compared with the second load, and is set as the exhaust closing timing (EVC1).
- the ignition timing of the first load (IgT) is set to the same ignition timing as the ignition timing of the second load (IgT2).
- the intake closing timing (IVC1) is retarded compared to the intake closing timing (IVC2) of the intake valve of the second load, pump loss can be further suppressed.
- the exhaust valve opening timing (EVO1) of the exhaust valve is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke is earlier than the second load as the load decreases. By opening at the timing (EVO1), it is possible to suppress the pump loss in the so-called expansion stroke and to reduce the fuel consumption at a partial load.
- the exhaust valve closing timing (EVC1) of the exhaust valve 5 is also retarded by the same angle in accordance with the retardation of the intake opening timing (IVO1) of the intake valve 4, so that the zero valve overlap can be maintained. .
- EVC1 exhaust valve closing timing
- IVO1 intake opening timing
- the ignition timing (IgT1) is such that, at the first load, the intake closing timing (IVC1) is greatly separated from the intake bottom dead center (BDC), and the effective compression ratio is lowered. Since the ignition timing (IgT1) is advanced in the same manner as the ignition timing (IgT2) of the second load, the timing at which the peak combustion pressure occurs is matched with the timing at which high thermal efficiency is obtained.
- the intake closing timing (IVC1) is largely shifted to the retard side, and the ignition timing (IgT1) is advanced greatly.
- the ignition timing (IgT) is controlled so as not to be smaller than a predetermined angle difference threshold value ( ⁇ sld).
- the ignition timing (IgT1) approaches the intake closing timing (IVC1) beyond the angle difference threshold value ( ⁇ sld), or when the ignition timing (IgT1) is advanced beyond the intake closing timing (IVC1), As shown in the first load of FIGS. 6 and 7, the ignition timing (IgT1) is the ignition timing (IgT1new) delayed from the intake valve closing timing (IVC1) of the intake valve by a predetermined correction angle ( ⁇ cmp). ) Is set.
- the intake valve calculated at the present time is advanced.
- a value delayed from the intake closing timing (IVC1) by a predetermined correction angle ( ⁇ cmp) may be reset as a new ignition timing (IgT1new).
- the retardation of the ignition timing (IgT1) also retards the peak combustion pressure generation timing and lowers the thermal efficiency by that amount, but the retard amount (correction angle ⁇ cmp) prevents the occurrence of backfire. Is suppressed to only a small amount, so that the reduction in the effect of reducing the fuel consumption at the first load can be reduced as much as possible.
- the retardation of the ignition timing (IgT1), the temperature of the exhaust gas rises, and it is possible to suppress an increase in harmful exhaust components due to a decrease in the temperature of the exhaust gas purifying catalyst, which is a problem during idling or light load.
- the correction angle ( ⁇ cmp) is set to 4 to 8 in terms of crank angle. According to this, even if the intake closing timing (IVC) fluctuates due to the intake-side VTC mechanism 3, the backfire is reliably prevented, and the excessive retardation of the ignition timing (IgT) is suppressed to suppress the fuel. An increase in consumption can be suppressed.
- the fluctuation of the intake closing timing (IVC) due to the rotation fluctuation or the like is about 2 to 4 in crank angle. Therefore, it is desirable that the correction angle ( ⁇ cmp) be 4 or more.
- the correction angle ( ⁇ cmp) is increased unnecessarily, the ignition timing (IgT) is retarded by that amount, which causes an increase in fuel consumption.
- the crank angle is suppressed to a range of 8 ° in consideration of a safety factor.
- the correction angle ( ⁇ cmp) is set to 4 to 8 in terms of the crank angle
- the fluctuation of the intake closing timing (IVC) due to the rotation fluctuation and the like, and the fuel consumption due to the retardation of the ignition timing (IgT) are taken into consideration.
- An increase in the amount can be suppressed as much as possible.
- This control flow is executed by the control means 22 every time a predetermined time elapses.
- a control flow when starting the operation of the internal combustion engine will be described based on FIGS. 9A and 9B.
- the ignition timing (IgT) approaches the intake closing timing (IVC) or the ignition timing (IgT) changes the intake closing timing (IVC) over all the operating load states. It is to judge whether it has exceeded.
- step S10 engine start information for starting the internal combustion engine and operating state information of the internal combustion engine are read.
- the engine start information for starting the internal combustion engine typically includes a key-on signal or a starter start signal, and there are many signals indicating operation state information of the internal combustion engine.
- the information includes rotational speed information, intake air amount information, water temperature information, required load information (accelerator opening), and the like, and further includes actual position information of the exhaust-side VTC mechanism 1B and the intake-side VTC mechanism 1A.
- step S11 it is determined whether an engine start condition is satisfied. This determination can be made, for example, by monitoring the starter start signal. If the starter start signal is not input, the process returns to the start and waits for the next start timing. On the other hand, when the starter start signal is input, it is determined that an engine start condition is satisfied, and the process proceeds to step S12.
- step S12 the cranking of the internal combustion engine by the starter motor is started in response to the starter start signal. Then, as soon as the cranking is started, the process proceeds to step S13.
- step S13 at least the exhaust opening / closing timing (EVO) of the exhaust valve 5 is set so that the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 shift to the default positions.
- EVC) and the conversion control signals of the intake opening / closing timing (IVO) of the intake valve 4 and (IVC) are output to the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3.
- the conversion control signal is output to the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, the process proceeds to step S14.
- Step 14 From the actual position information of the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism are used. It is determined whether 3 has moved to the default position.
- step S15 When it is determined that the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 have not shifted to the default positions, the process returns to step S13, and the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism, and so on. If it is determined that the VTC mechanism 2 and the intake-side VTC mechanism 3 are set to the default position, the process proceeds to step S15.
- step S15 an output control signal is supplied to the fuel injection valve and the ignition device to start the internal combustion engine in accordance with the rotation of the starter motor.
- the rotation speed of the internal combustion engine increases, and accordingly, the hydraulic pressure of the hydraulic oil of the hydraulic pump increases.
- the intake-side VTC mechanism 3 is at the “most advanced position” that is the default position, specifically, the intake closing timing (IVC4) close to the bottom dead center shown in FIG. 4 (high load). ), It is possible to increase the intake air charging efficiency, increase the combustion torque during a cold period in which the engine friction is large, and obtain good starting combustion that overcomes the engine friction.
- the exhaust side VEL mechanism 1 moves to the default position of “minimum lift / minimum operating angle position”.
- the exhaust-side VTC mechanism 2 is at a default position, ie, the “most advanced position”. Specifically, as shown in FIG. 4 (high load), the exhaust opening timing (EVO4) near the bottom dead center is reached. Therefore, by delaying the opening of the exhaust valve and sufficiently warming the engine body with the combustion gas, the warm-up property of the engine body at the time of cold is improved.
- variable valve mechanisms 1 to 3 are originally located near the default position, which is a mechanically stable position, so that the above-described cold-time effect can be obtained without delay from the initial stage of the start.
- step S16 the engine temperature (cooling water temperature) of the internal combustion engine is detected to determine whether or not the temperature has exceeded a predetermined temperature. If the temperature does not exceed the predetermined temperature, it is determined that the engine is in the cold state, and the process returns to wait for the next start timing or executes another control flow. On the other hand, if the temperature exceeds the predetermined temperature, it is determined that the warm-up from the cold state has been completed, and the process proceeds to step S17. It should be noted that FIG. 9B shows the steps after step S17.
- step S17 the opening / closing timing (EVO) and (EVC) of the exhaust valve 5 and the opening / closing timing (IVO) and (IVC) of the intake valve 4 are determined based on the operating state information detected in step S10. Calculate. This calculation is basically obtained from an opening / closing timing map of the exhaust valve 5 and an opening / closing timing map of the intake valve 4 mapped by the rotation speed and the load.
- the opening / closing timings (EVO) and (EVC) of the exhaust valve 5 and the opening / closing timings (IVO) and (IVC) of the intake valve 4 calculated from the map correspond to the corresponding exhaust-side VEL mechanism 1 and exhaust-side VTC mechanism 2. , And is sent to the intake side VTC mechanism 3 to drive and control the exhaust valve 5 and the intake valve 4. Upon completion of the process in the step S17, the process shifts to a step S18.
- step S18 an ignition timing (IgT) is calculated based on the operating state information detected in step S10.
- This ignition timing (IgT) is first obtained from a basic ignition timing map mapped by the rotation speed and the load.
- the final ignition timing (IgT) is obtained by adding and subtracting various corrected ignition timings to and from the basic ignition timing retrieved from the map.
- the ignition timing (IgT) needs to be advanced, so that the corrected ignition timing is read from the correction table which is corrected to the advanced side in accordance with the decrease in the load. Is reflected in the basic ignition timing.
- the ignition timing (IgT) is determined, the process proceeds to step S19.
- step S20 first, it is determined whether or not the actual angle difference ( ⁇ act) obtained in step 19 is smaller than a predetermined angle difference threshold value ( ⁇ sld). If the actual angle difference ( ⁇ act) has a plus (+) sign, it can be determined that the intake closing timing (IVC) is set to be more advanced than the ignition timing (IgT). In this case, if the actual angle difference ( ⁇ act) is larger than the angle difference threshold value ( ⁇ sld), it is determined that there is no risk of backfire. However, if the actual angle difference ( ⁇ act) is smaller than the angle difference threshold value ( ⁇ sld), it is determined that the ignition timing (IgT) approaches the intake closing timing (IVC) and the risk of backfire is high.
- ⁇ sld a predetermined angle difference threshold value
- step S20 in addition to the above-described determination operation, it is also determined whether or not the calculation result for obtaining the actual angle difference ( ⁇ act) has a minus ( ⁇ ) sign. Therefore, if the actual angle difference ( ⁇ act) has a minus ( ⁇ ) sign, the ignition timing (IgT) is set to be more advanced than the intake air ratio timing (IVC), which may cause a backfire. Is determined to be quite high.
- step S21 if the actual angle difference ( ⁇ act) has a plus (+) sign and the actual angle difference ( ⁇ act) is larger than the angle difference threshold value ( ⁇ sld), the process proceeds to step S21.
- the actual angle difference ( ⁇ act) has a plus (+) sign
- the actual angle difference ( ⁇ act) is smaller than the angle difference threshold ( ⁇ sld)
- the actual angle difference ( ⁇ act) has a minus ( ⁇ ) sign. If it is, the process moves to step S22.
- step S20 the actual angle difference ( ⁇ act) has a plus (+) sign, and it is determined that the actual angle difference ( ⁇ act) is larger than the angle difference threshold value ( ⁇ sld), and there is no possibility of backfire. Is considered to be.
- step S21 the ignition timing (IgT) calculated in step S18 is used as it is.
- the ignition timing (IgT) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is performed at a predetermined timing.
- step S20 the actual angle difference ( ⁇ act) has a plus (+) sign, and it is determined that the actual angle difference ( ⁇ act) is smaller than the angle difference threshold value ( ⁇ sld), or Since ⁇ act) has a minus ( ⁇ ) sign, it is considered that there is a risk of backfire.
- step S22 the ignition timing (IgT) calculated in step S18 is not used as it is, and the ignition timing (IgT) is retarded from the intake closing timing (IVC) and the intake closing timing (IVC).
- An ignition timing (IgTnew) delayed by a predetermined correction angle ( ⁇ cmp) is newly set.
- the new ignition timing (IgTnew) is always set to the retard side from the intake closing timing (IVC), so that the possibility of occurrence of backfire can be suppressed.
- This new ignition timing (IgTnew) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is executed at a predetermined timing.
- the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake-side variable valve mechanism.
- the ignition timing (IgT) is controlled to an advanced side by the ignition timing, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle between the intake closing timing (IVC) and the ignition timing (IgT). The difference is always maintained at or above a predetermined correction angle ( ⁇ cmp).
- the intake closing timing (IVC) of the intake valve is greatly retarded by the intake side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and the ignition timing (IgT) is advanced.
- the ignition timing (IgT) is not advanced beyond the intake closing timing (IVC), so that backfire can be suppressed.
- the load at which the ignition timing (IgT) approaches the intake closing timing (IVC) is known to be a load smaller than the predetermined load, so that the load is limited to the predetermined load or less. Steps 19 to S22 are executed.
- steps S26 and S27 show the response at the time of failure, which will be described later.
- Step S23 In FIG. 10, a step S23 is newly provided between steps S18 and S19.
- the current load is determined based on the operating state information detected in step S10. If it is determined that the load is larger than the second load, the process proceeds to step S24, where the load is changed from the second load. If it is determined that it is smaller, the process moves to step S19.
- step S19 to step S22 is the same as the processing shown in FIG. 9B, and a description thereof will not be repeated.
- Step S24 the ignition timing (IgT) does not become close to the intake closing timing (IVC) at the fourth load and the third load where the load is larger than the second load.
- the set ignition timing (IgT) is used as it is.
- the ignition timing (IgT) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is performed at a predetermined timing.
- the ignition timing (IgT) approaches the intake closing timing (IVC) or the ignition timing (IgT) changes to the intake closing timing only for a load smaller than the predetermined load, for example, the second load. Since it is determined whether or not the time (IVC) has been exceeded, the calculation load on the microcomputer can be reduced.
- step S23 the current load is determined based on the operating state information detected in step S10. If it is determined that the load is larger than the second load, the process proceeds to step S24. If it is determined that the load is smaller than the second load, the process proceeds to step S25.
- step S25 when the load is smaller than the second load, the ignition timing (IgT) approaches the intake closing timing (IVC), or the ignition timing (IgT) may exceed the intake closing timing (IVC). Considering this, a predetermined correction angle ( ⁇ cmp) is uniformly subtracted from the intake closing timing (IVC) obtained in step S17 to obtain a new ignition timing (IgTnew).
- the ignition timing (IgT) calculated in step S18 is not used, and the ignition timing (IgT) is corrected to the retard side at the correction angle ( ⁇ cmp) based on the intake closing timing (IVC).
- a new ignition timing (IgTnew) is used. This new ignition timing (IgTnew) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is executed at a predetermined timing.
- only the predetermined correction angle ( ⁇ cmp) is subtracted uniformly from the intake closing timing (IVC) for a predetermined load, for example, only the first load and the second load.
- the calculation load can be further reduced.
- This embodiment shows a method for dealing with a case where an abnormality occurs in the intake-side VTC mechanism 3 so that a normal ignition timing (IgT) cannot be obtained.
- IgT normal ignition timing
- the intake side VTC mechanism 3 is driven in an uncontrolled state between the most retarded stopper position and the most advanced stopper position of the intake closing timing (IVC). Is done. Therefore, the ignition timing (IgT) may not be accurate. In some cases, the ignition timing (IgT) may be advanced from the intake closing timing (IVC) in the uncontrolled state. Therefore, steps S26 and S27 indicated by broken lines in FIG. 10 are executed.
- step S26 indicated by a broken line in FIG. 10, an abnormal state of the intake-side VTC mechanism 3 is determined. If it is determined that no abnormality has occurred, the process proceeds to step S18, and if it is determined that an abnormality has occurred in the intake-side VTC mechanism 3, the process proceeds to step S27.
- step S27 since the intake-side VTC mechanism 3 is in an abnormal state, the fixed ignition timing (IgTm) on the retard side from the most retarded stopper position of the intake-side VTC mechanism 3 is set. In this case, the fixed ignition timing (IgTm) is set on the retard side from the compression top dead center (TDC). Therefore, due to the abnormality of the intake side VTC mechanism 3, even if the fixed ignition timing (IgTm) is not controlled between the most retarded stopper position and the most advanced stopper position of the intake closing timing (IVC), the fixed ignition timing (IgTm) is minimized. Since the advance is not made beyond the intake closing timing (IVC) at the retard stopper position, backfire can be suppressed.
- TDC compression top dead center
- steps S26 and S27 have been described in the second embodiment shown in FIG. 10, but what can be executed after step S17 shown in FIG. 9B of the first embodiment and FIG. 11 of the third embodiment will be described. Of course.
- This embodiment shows a method for coping with a case where the actual intake closing timing (IVC) of the intake valve 4 fluctuates in the high rotation range and the ignition timing (IgT) exceeds the intake closing timing (IVC). ing.
- the present embodiment is characterized in that the correction angle ( ⁇ cmp) is set to be large in response to an increase in the number of rotations.
- FIG. 13 shows values of a correction angle table in which the horizontal axis sets the rotation speed (N) and the vertical axis sets the rotation correction angle ( ⁇ cmpN).
- a rotation correction angle ( ⁇ cmpNL) of a constant value indicated by a broken line is set on the low rotation side and a gradually increasing rotation correction angle ( ⁇ cmpNH) indicated by a solid line is set on the high rotation side, for example, at 3000 rpm. is there.
- FIG. 15 shows a control flow for realizing the characteristics shown in FIG. This control flow is executed after the "YES” determination in step S20 shown in FIGS. 9B and 10, and is executed after the "YES” determination in step S23 shown in FIG.
- step S28 a rotation correction angle ( ⁇ cmpN) is read from a correction angle table in which the characteristics shown in FIG. 13 are stored, based on the rotation speed (N) detected in step S10.
- the read rotation correction angle ( ⁇ cmpN) is used for calculation in the next step S29.
- step S29 the ignition timing (IgT) calculated in step S18 is not used as it is, and the ignition timing (IgT) is retarded from the intake closing timing (IVC) and the intake closing timing (IVC). ) Is newly set to the ignition timing (IgTnewN) retarded by the rotation correction angle ( ⁇ cmpN).
- the new ignition timing (IgTnewN) is always set to a retard side from the intake closing timing (IVC), so that the possibility of occurrence of backfire can be suppressed.
- the rotation correction angle ( ⁇ cmpN) is set to be larger as the rotation speed (N) becomes higher, the ignition is not performed even when the intake valve 4 is opened due to the bounce phenomenon. The possibility of occurrence can be further suppressed.
- the valve train resiliently deforms to cause a valve jump or valve bounce (bounce), and the actual intake closing timing (IVC) of the intake valve 4 is changed based on the control of the intake side VTC mechanism 3. There is a case where it is later than the closing time (IVC).
- the ignition timing (IgT) is corrected to be further delayed, so that the ignition timing (IgT) is always on the retard side from the intake closing timing (IVC). Can be prevented.
- the intake closing timing (IVC) of the intake valve 4 is obtained from the intake closing timing (IVC) based on the opening / closing timing map of the intake valve 4 or the actual intake closing timing (IVC) using the angle sensor.
- the intake closing timing (IVC) is obtained by the knock sensor.
- a seating determination window for the intake valve 4 is set, and an actual closing signal (vibration signal) of the intake valve 4 detected in the seating determination window is used to determine the intake closing timing of the intake valve 4.
- (IVC) can be detected. That is, as shown in FIG. 16, when it is determined that the vibration signal of the knock sensor is higher than the seating determination level in the seating determination window, the intake valve 4 is seated on the valve seat and the intake closing timing of the intake valve 4 is determined. It can be determined that (IVC) has occurred.
- the intake closing timing (IVC) of the intake valve 4 can be detected with high accuracy even if a bounce phenomenon occurs in a high rotation range, so that the ignition timing (IgT) can be reliably determined. Can be set on the retard side from the intake closing timing (IVC). For this reason, the backfire can be prevented and the ignition timing (IgT) can be made as close to the advance side as possible toward the intake closing timing (IVC), so that the fuel consumption can be further reduced.
- a knock sensor that has been conventionally used can be used as the knock sensor. As shown in FIG. 16, since a section in which knock vibration occurs (corresponding to a knock determination window) and a section in which seat vibration of the intake valve occurs (corresponding to a seat determination window) are temporally shifted, knocking occurs. Both the occurrence determination and the intake closing timing (IVC) determination are possible.
- the knock determination window exceeds the knock determination level, it can be determined that knock has occurred, and if the seat determination window is exceeded, it can be determined that the intake closing timing (IVC) has occurred. It is advantageous to mount the knock sensor on the side of the cylinder block on the intake valve side of the cylinder block, because it is difficult to detect the seated vibration of the exhaust valve.
- FIG. 17 shows a control flow of a method for detecting the intake closing timing (IVC) by the knock sensor. This control flow is executed after step S18 shown in FIGS. 9B, 10, and 11.
- step S30 it is determined whether or not the vibration signal detected by the knock sensor has exceeded the seating determination level in the seating detection window. Then, when it is determined that the vibration signal of the knock sensor does not exceed the seating determination level, the process returns to step S30 again to execute the same determination operation. On the other hand, when it is determined that the vibration signal of the knock sensor has exceeded the sitting determination level, the process proceeds to step S31.
- Step S31 the crank angle corresponding to the time of occurrence of the vibration signal determined in step S30 is set as the intake closing timing (IVC) of the intake valve 4. Thereafter, it is used for the calculations in steps S19 and S20 in FIGS. 9B and 10 and in step S25 in FIG.
- IVC intake closing timing
- the intake closing timing (IVC) of the intake valve 4 can be detected with high accuracy even if a bounce phenomenon occurs in a high rotation range, so that the ignition timing (IgT) can be reliably determined.
- the knock sensor is used to detect the actual intake closing timing (IVC) of the intake valve 4.
- an actual intake closing timing (IVC) sensor may be provided separately from the knock sensor. Absent. Then, the frequency of detecting the vibration level can be suppressed, and the load on the sensor can be reduced.
- the correction angle ( ⁇ cmp) has a constant value from the second load to the first load, but in this embodiment, the correction angle ( ⁇ cmp) is set to be larger as the load becomes smaller. Things.
- the correction angle ( ⁇ cmp) is set to the correction angle ( ⁇ cmp2).
- This correction angle ( ⁇ cmp2) is set to the same value as the correction angle ( ⁇ cmp) in the first embodiment.
- the correction angle ( ⁇ cmp) is set to be large and set to the correction angle ( ⁇ cmp1). Then, there is a relationship of ( ⁇ cmp1)> ( ⁇ cmp2). As the load decreases, the correction angle ( ⁇ cmp) is set to a value that gradually increases from the correction angle ( ⁇ cmp2) to the correction angle ( ⁇ cmp1).
- the ignition timing (IgT1) at the first load is greatly retarded, the temperature of the exhaust gas rises.
- the exhaust gas purifying catalyst can be warmed up at an extremely low load where the exhaust gas purifying catalyst is unlikely to warm, and the generation of exhaust gas harmful components can be suppressed.
- the exhaust gas temperature is likely to decrease.
- the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3 are of a hydraulic drive type.
- the present invention is not limited to the hydraulic pressure, and may be an electrically driven VTC mechanism.
- the specific form and configuration of the variable valve mechanism are not limited as long as they satisfy the gist of the present invention.
- the form of the applied internal combustion engine is not limited.
- the present invention may be applied to an internal combustion engine having a supercharger such as a turbocharger.
- the intake closing timing (IVC) at the same load as that of the naturally aspirated internal combustion engine is further retarded, so that the thermal efficiency is increased as compared with the naturally aspirated internal combustion engine. Will be able to
- the ignition timing (IgT) and the intake closing timing (IVC) approach each other due to the further retardation of the intake closing timing (IVC), so that backfire is likely to occur. Can be effectively suppressed.
- the present invention can be applied to a lean burn type internal combustion engine and an internal combustion engine which performs a large amount of EGR. It is possible to reduce the fuel consumption by lowering the combustion temperature and reducing the cooling loss by lean-burn combustion or low-temperature combustion by a large amount of EGR.
- the ignition timing (IgT) since the combustion speed is reduced by the low-temperature combustion, it is necessary to advance the ignition timing (IgT). Due to the advance of the ignition timing (IgT), the ignition timing (IgT) and the intake closing timing (IVC) are close to each other, so that a backfire is easily generated. However, the use of the present invention effectively suppresses the backfire. be able to.
- the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake-side variable valve mechanism.
- the ignition timing (IgT) is controlled to an advanced side by the ignition timing, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle between the intake closing timing (IVC) and the ignition timing (IgT).
- the difference is maintained at a predetermined correction angle ( ⁇ cmp) or more.
- the intake closing timing (IVC) of the intake valve is greatly retarded by the intake side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and the ignition timing (IgT) is advanced.
- the ignition timing (IgT) is not advanced beyond the intake closing timing (IVC), so that backfire can be suppressed.
- the present invention is not limited to the above-described embodiment, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
According to the present invention, as the load of an internal combustion engine drops, intake closing timing (IVC) for an intake valve is controlled to a retard side by an intake-side variable valve mechanism, and ignition timing (IgT) is controlled to an advance side by an ignition timing control means, the ignition timing (IgT) being further to the retard side than the intake closing timing (IVC), and the angle difference between the intake closing timing (IVC) and the ignition timing (IgT) being kept at or above a prescribed correction angle (Δθcmp). The intake closing timing (IVC) of the intake valve is significantly retarded by the intake-side variable valve mechanism so as to improve Atkinson-cycle-based fuel consumption reduction effects, and the ignition timing (IgT) is advanced so as to suppress reduction of engine torque, but the ignition timing (IgT) is not advanced past the intake closing timing (IVC), which makes it possible to suppress backfiring. The present invention can thereby suppress backfiring and achieve Atkinson-cycle-based fuel consumption reduction.
Description
本発明は内燃機関の制御システム及びその制御装置に係り、特にアトキンソンサイクルを実施する内燃機関の制御システム及びその制御装置に関するものである。
The present invention relates to a control system for an internal combustion engine and a control device therefor, and more particularly to a control system for an internal combustion engine that implements an Atkinson cycle and a control device therefor.
一般的な内燃機関では、膨張行程の後半において、排気バルブが開弁する前の筒内(燃焼室)の圧力は比較的高く、排気バルブの開弁により筒内の圧力は、排気ポート内の圧力、例えば大気圧レベルにまで低下する。ところが、アトキンソンサイクルとして膨張比を大きくしていくと、膨張行程の後半において筒内の圧力が大気圧以下となり、その後に排気バルブが開弁して排気ポートの圧力によって筒内の圧力が上昇する。
In a general internal combustion engine, in the latter half of the expansion stroke, the pressure in the cylinder (combustion chamber) before the exhaust valve is opened is relatively high, and the pressure in the cylinder is increased by opening the exhaust valve. The pressure drops, for example, to atmospheric pressure levels. However, when the expansion ratio is increased as an Atkinson cycle, the pressure in the cylinder becomes lower than the atmospheric pressure in the latter half of the expansion stroke, and then the exhaust valve opens and the pressure in the cylinder increases due to the pressure in the exhaust port. .
このように膨張比を大きくすると、膨張行程の後半において筒内の圧力が大気圧以下になることによってポンピング損失が発生する。このような問題に対処するために、例えば、特開2008-157128号公報(特許文献1)では、機械圧縮比を変更可能な可変圧縮比機構と、排気バルブの開弁時期を制御可能な可変バルブタイミング機構とを備えた内燃機関を提案している。
大 き く If the expansion ratio is increased in this way, pumping loss occurs because the pressure in the cylinder becomes equal to or lower than the atmospheric pressure in the latter half of the expansion stroke. In order to cope with such a problem, for example, Japanese Patent Application Laid-Open No. 2008-157128 (Patent Document 1) discloses a variable compression ratio mechanism capable of changing a mechanical compression ratio and a variable compression ratio mechanism capable of controlling an opening timing of an exhaust valve. An internal combustion engine provided with a valve timing mechanism has been proposed.
そして、内燃機関の低負荷運転時には最大の膨張比が得られるように機械圧縮比が最大にされるが、このとき膨張行程の後半において、筒内の圧力が大気圧以下にならないように排気バルブの開弁時期が早められて、ポンピング損失を抑制するようにしている。
During low load operation of the internal combustion engine, the mechanical compression ratio is maximized so as to obtain the maximum expansion ratio. At this time, in the latter half of the expansion stroke, the exhaust valve is controlled so that the pressure in the cylinder does not become lower than the atmospheric pressure. The valve opening timing is advanced to suppress pumping loss.
更に、上述した特許文献1においては、図13に示されているように、吸気バルブの吸気閉時期(IVC)を、吸気下死点(BDC)の後のクランク角で90ーを越えて圧縮行程側に大きく遅角して、アトキンソンサイクルによる燃料消費量の低減効果を高める例が示されている。
Further, in the above-mentioned Patent Document 1, as shown in FIG. 13, the intake valve closing timing (IVC) of the intake valve is compressed beyond 90 ° at the crank angle after the intake bottom dead center (BDC). An example is shown in which the stroke is greatly retarded to enhance the effect of reducing the fuel consumption by the Atkinson cycle.
このように、吸気バルブの吸気閉時期(IVC)を、吸気下死点(BDC)を起点として遅角側(圧縮行程側)に大きく遅角すると、アトキンソンサイクルによる大きな燃料消費量の低減効果が得られる。ところで、最近では自動車の燃料消費量や排気ガス有害成分に関する規制が強化されており、今後もますます厳しくなる傾向にある。特に燃料消費量については、排出される二酸化炭素が地球温暖化へ与える影響が大きいことから、更なる燃料消費量の低減が要請されている。
As described above, when the intake valve closing timing (IVC) of the intake valve is greatly retarded to the retard side (compression stroke side) starting from the intake bottom dead center (BDC), a large reduction in fuel consumption by the Atkinson cycle is achieved. can get. By the way, recently, regulations on fuel consumption of automobiles and harmful components of exhaust gas have been strengthened, and in the future, there is a tendency that the regulations will be stricter. In particular, with regard to fuel consumption, emitted carbon dioxide has a great effect on global warming, and therefore, further reduction in fuel consumption is required.
そして、燃料消費量の低減を推し進めるために、アトキンソンサイクルでの吸気バルブの吸気閉時期(IVC)を更に遅角させることが提案されている。また、アトキンソンサイクルの実行領域を低負荷側まで拡大すると、運転負荷全体として燃料消費量を低減することができる。一方で、アトキンソンサイクルでは低負荷領域での機関トルクの低下を抑制するため、熱効率を高めるために、点火時期を進角側に制御している。
In order to promote a reduction in fuel consumption, it has been proposed to further retard the intake valve closing timing (IVC) of the intake valve in the Atkinson cycle. Further, when the execution region of the Atkinson cycle is expanded to the low load side, the fuel consumption can be reduced as a whole operating load. On the other hand, in the Atkinson cycle, the ignition timing is controlled to an advanced side in order to suppress a decrease in engine torque in a low load region and to increase thermal efficiency.
このため、吸気行程においては、吸気ポート噴射や筒内直接噴射によって燃料が供給されているので、アトキンソンサイクルで吸気バルブの吸気閉時期(IVC)を圧縮行程側に大きく遅角させると、吸気系側に可燃混合気が逆流することになる。
For this reason, in the intake stroke, fuel is supplied by intake port injection or direct injection in a cylinder. Therefore, if the intake valve close timing (IVC) of the intake valve is greatly retarded toward the compression stroke in the Atkinson cycle, the intake system The combustible mixture flows back to the side.
この状態で、吸気バルブの吸気閉時期(IVC)が遅角側へ大きく移行され、逆に点火時期(IgT)が進角側に移行されると、点火時期(IgT)が吸気バルブの吸気閉時期(IVC)を超えるように進角されることがある。
In this state, when the intake valve closing timing (IVC) of the intake valve is largely shifted to the retard side, and conversely, when the ignition timing (IgT) is shifted to the advanced side, the ignition timing (IgT) is changed to the intake closing of the intake valve. The angle may be advanced beyond the time (IVC).
したがって、点火プラグの発火によって筒内の可燃混合気に点火され、この点火によって発生した火炎は、吸気バルブがまだ開いているので吸気系側に流れ込み、吸気系側に滞留している可燃混合気を爆発的に燃焼させる、バックファイアという現象を生じる恐れがある。
Therefore, the combustible mixture in the cylinder is ignited by the ignition of the ignition plug, and the flame generated by this ignition flows into the intake system because the intake valve is still open, and the flammable mixture remaining in the intake system side. May explode, causing a phenomenon called backfire.
本発明の目的は、バックファイアの発生を抑制してアトキンソンサイクルによる燃料消費量の低減を実現する内燃機関の制御システム及びその制御装置を提供することにある。
An object of the present invention is to provide a control system for an internal combustion engine and a control device therefor, which suppress the occurrence of backfire and reduce the fuel consumption by the Atkinson cycle.
本発明の特徴は、内燃機関の負荷が減少するにしたがって、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を遅角側に制御し、更に点火時期制御手段によって点火時期(IgT)を進角側に制御すると共に、点火時期(IgT)を吸気閉時期(IVC)より遅角側で、しかも吸気閉時期(IVC)と点火時期(IgT)の間の角度差を所定の補正角度(Δθcmp)以上に維持する、ところにある。
As a feature of the present invention, as the load on the internal combustion engine decreases, the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake side variable valve mechanism, and the ignition timing (IgT ) Is advanced, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle difference between the intake closing timing (IVC) and the ignition timing (IgT) is corrected by a predetermined amount. Angle (Δθcmp) or more.
本発明によれば、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を大きく遅角してアトキンソンサイクルによる燃料消費量の低減効果を高め、且つ点火時期(IgT)を進角して機関トルクの低下を抑制すると共に熱効率を高め、点火時期(IgT)が吸気閉時期(IVC)を超えて進角されないので、バックファイアを抑制することができる。
According to the present invention, the intake closing timing (IVC) of the intake valve is greatly retarded by the intake-side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and to advance the ignition timing (IgT). As a result, the reduction of the engine torque is suppressed, the thermal efficiency is increased, and the ignition timing (IgT) is not advanced beyond the intake closing timing (IVC), so that the backfire can be suppressed.
以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is included in the range.
本発明の具体的な実施形態を説明する前に、本発明が適用される内燃機関の制御システムの構成、及び可変動弁機構の構成を簡単に説明する。
Before describing a specific embodiment of the present invention, a configuration of a control system of an internal combustion engine to which the present invention is applied and a configuration of a variable valve mechanism will be briefly described.
図1において、シリンダブロック01とシリンダヘッド02との間に、ピストン03を介して燃焼室04が形成されていると共に、シリンダヘッド02のほぼ中央位置に点火プラグ05が設けられている。ピストン03は、ピストンピンに一端部が連結されたコネクチングロッド06を介してクランクシャフト07に連結されている。
In FIG. 1, a combustion chamber 04 is formed between a cylinder block 01 and a cylinder head 02 via a piston 03, and an ignition plug 05 is provided at a substantially central position of the cylinder head 02. The piston 03 is connected to a crankshaft 07 via a connecting rod 06 having one end connected to a piston pin.
このクランクシャフト07は、冷機時の通常の始動やアイドリングストップ後の自動的な始動がピニオンギア機構09を介してスタータモータ08によって行われるようになっている。尚、クランクシャフト07は、後述するクランク角センサ010によってクランク角及び回転数が検出されるようになっている。
ク ラ ン ク The crankshaft 07 is designed such that a normal start in cold operation and an automatic start after idling stop are performed by a starter motor 08 via a pinion gear mechanism 09. The crankshaft 07 is configured to detect a crank angle and a rotation speed by a crank angle sensor 010 described later.
シリンダブロック01には、ノックの発生を検出するノックセンサ015や、ウォータジャケット内の水温を検出する水温センサ011が取り付けられていると共に、シリンダヘッド02には、燃焼室04内に燃料を噴射する燃料噴射弁012が設けられている。
A knock sensor 015 for detecting occurrence of knock and a water temperature sensor 011 for detecting water temperature in the water jacket are attached to the cylinder block 01, and fuel is injected into the combustion chamber 04 to the cylinder head 02. A fuel injection valve 012 is provided.
更に、シリンダヘッド02の内部に形成された吸気ポート013や排気ポート014を開閉する1気筒当たりそれぞれ2つの吸気バルブ4及び排気バルブ5がそれぞれ摺動自在に設けられていると共に、吸気バルブ4側と排気バルブ5側には可変動弁機構が設けられている。
Further, two intake valves 4 and two exhaust valves 5 are provided for each cylinder for opening and closing an intake port 013 and an exhaust port 014 formed inside the cylinder head 02, respectively. A variable valve mechanism is provided on the exhaust valve 5 side.
吸気バルブ側には吸気側バルブタイミング制御機構(以下、吸気側VTC機構と表記する)3が設けられ、排気バルブ側には排気側バルブリフト制御機構(以下、排気側VEL機構と表記する)1、及び排気側バルブタイミング制御機構(以下、排気側VTC機構と表記する)2が設けられる。制御手段(コントローラ)22には図示したようなセンサ信号が入力され、また制御要素の駆動信号が出力されている。
An intake valve timing control mechanism (hereinafter referred to as an intake VTC mechanism) 3 is provided on the intake valve side, and an exhaust valve lift control mechanism (hereinafter referred to as an exhaust VEL mechanism) 1 is provided on the exhaust valve side. , And an exhaust side valve timing control mechanism (hereinafter referred to as an exhaust side VTC mechanism) 2. The control means (controller) 22 receives a sensor signal as shown in the figure and outputs a drive signal for the control element.
図1にあるスタータモータ08は、バッテリを動力源とするモ-タ本体と、フライホイ-ルの外周にはめこまれたリングギヤに噛み合い動力を伝達するピニオンギア機構09などから成る一般的なものである。始動時、或いは再始動時のスタータモータ08への通電時のみ、ピニオンギア機構09のピニオンギアが前進し、内燃機関のリングギヤに噛み合ってスタータモ-タ08の回転を周知のリングギヤに伝えクランキングが行なわれる。尚、内燃機関が始動に成功してスタータモータ08への通電を停止すると、ピニオンギアは押し戻され、リングギヤとの噛み合いは離脱されるようになっている。
A starter motor 08 shown in FIG. 1 is a general motor comprising a motor body powered by a battery, a pinion gear mechanism 09 that meshes with a ring gear fitted on the outer periphery of a flywheel and transmits power. is there. Only when the starter motor 08 is energized at the time of starting or restarting, the pinion gear of the pinion gear mechanism 09 moves forward, meshes with the ring gear of the internal combustion engine, and transmits the rotation of the starter motor 08 to a well-known ring gear to crank. Done. When the internal combustion engine is successfully started and power supply to the starter motor 08 is stopped, the pinion gear is pushed back, and the engagement with the ring gear is released.
ここで、本実施形態は、後述するように排気バルブ5を所定の開閉時期に制御し、また、吸気バルブ4を所定の開閉時期に制御することを対象としているので、スタータの方式は限定されず、ピニオンギアとリングギヤが常時噛み合っているスタータや、ハイブリッド車用モ-タ等を用いてベルト駆動でクランクプ-リを回転させるものであっても差し支えない。
Here, the present embodiment is directed to controlling the exhaust valve 5 to a predetermined opening / closing timing and controlling the intake valve 4 to a predetermined opening / closing timing, as described later. Instead, the crank pulley may be rotated by a belt drive using a starter in which the pinion gear and the ring gear are always meshed, a motor for a hybrid vehicle, or the like.
可変動弁機構は、図2に示すように、内燃機関の排気バルブ5のバルブリフト及び作動角(開期間)を制御する排気側VEL機構1と、排気バルブ5の開閉時期(バルブタイミング)を制御する排気側VTC機構2と、吸気バルブ4の開閉時期を制御する吸気側VTC機構3とを備えている。また、排気側VEL機構1と排気側VTC機構2、及び吸気側VTC機構3は、制御手段22によって機関運転状態に応じてそれぞれの作動が制御されるようになっている。
As shown in FIG. 2, the variable valve mechanism controls the exhaust-side VEL mechanism 1 that controls the valve lift and the operating angle (open period) of the exhaust valve 5 of the internal combustion engine, and the opening / closing timing (valve timing) of the exhaust valve 5. An exhaust-side VTC mechanism 2 for controlling and an intake-side VTC mechanism 3 for controlling the opening / closing timing of the intake valve 4 are provided. The operation of the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 is controlled by the control unit 22 in accordance with the engine operating state.
排気側VEL機構1は、本出願人が先に出願した、例えば特開2003-172112号公報(吸気バルブ側に適用)に記載されたものと同様の構成であるで、詳細はこの公報を参照されたい。また、吸気側VTC機構3も本出願人が先に出願した、例えば特開2012-127219号公報に記載されたものと同様の構成であるで、詳細はこの公報を参照されたい。尚、排気側VTC機構2も吸気側VTC機構3と実質的に同じ構成である。
The exhaust-side VEL mechanism 1 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2003-172112 (applied to the intake valve side) previously filed by the present applicant. I want to be. The intake-side VTC mechanism 3 also has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2012-127219 filed earlier by the present applicant. For details, refer to this publication. The exhaust-side VTC mechanism 2 has substantially the same configuration as the intake-side VTC mechanism 3.
排気側VEL機構1について図2に基づいて簡単に説明すると、シリンダヘッド02の上部に有する軸受に回転自在に支持された中空状の駆動軸6と、駆動軸6の外周面に圧入等により固設された回転カム7と、駆動軸6の外周面に揺動自在に支持されて、排気バルブ5の上端部に配設されたバルブリフター8の上面に摺接して排気バルブ5を開作動させる2つの揺動カム9と、回転カム7と揺動カム9との間に介装されて、回転カム7の回転力を揺動運動に変換して揺動カム9に揺動力として伝達する伝達機構とを備えている。
The exhaust-side VEL mechanism 1 will be briefly described with reference to FIG. 2. A hollow drive shaft 6 rotatably supported by a bearing provided at an upper portion of a cylinder head 02 and a drive shaft 6 are fixed to the outer peripheral surface by press fitting or the like. The exhaust valve 5 is opened by being slidably supported on the provided rotary cam 7 and the outer peripheral surface of the drive shaft 6 and in sliding contact with the upper surface of a valve lifter 8 disposed at the upper end of the exhaust valve 5. A transmission that is interposed between the two swing cams 9 and between the rotation cam 7 and the swing cam 9, converts the rotational force of the rotation cam 7 into a swing motion, and transmits the swing force to the swing cam 9 as a swing power. Mechanism.
駆動軸6(排気側)は、一端部に設けられたタイミングスプロケット31Aを介してクランクシャフト07からタイミングチェーンによって回転力が伝達されており、この回転方向は図2で時計方向(矢印方向)に設定されている。尚、駆動軸6とタイミングスプロケット31Aとの位相は変化しないシステムとしても良い。その場合、排気側VTC機構2は装着されているものの使用されず位相変換は行われない。したがって、排気側VTC機構2は省略し、固定のタイミングスプロケット31Aとしても良い。
The drive shaft 6 (exhaust side) is transmitted a rotational force from a crankshaft 07 via a timing sprocket 31A provided at one end by a timing chain, and the rotational direction is clockwise (arrow direction) in FIG. Is set. Note that a system in which the phase between the drive shaft 6 and the timing sprocket 31A does not change may be adopted. In this case, the exhaust-side VTC mechanism 2 is mounted but not used, and no phase conversion is performed. Therefore, the exhaust-side VTC mechanism 2 may be omitted, and the timing sprocket 31A may be fixed.
排気側の回転カム7はほぼリング状を呈し、内部軸方向に形成された駆動軸挿通孔を介して駆動軸6に貫通固定されていると共に、カム本体の軸心が駆動軸6の軸心から径方向へ所定量だけオフセットしている。
The rotating cam 7 on the exhaust side has a substantially ring shape, is fixed to the driving shaft 6 through a driving shaft insertion hole formed in the inner axial direction, and the axis of the cam body is the axis of the driving shaft 6. Is offset by a predetermined amount in the radial direction.
揺動カム9は円筒状のカムシャフト10の両端部に一体的に設けられていると共に、カムシャフト10が内周面を介して駆動軸6に回転自在に支持されている。また、下面にベースサークル面やランプ面及びリフト面からなるカム面が形成されており、ベースサークル面とランプ面及びリフト面が、揺動カム9の揺動位置に応じて各バルブリフター8の上面の所定位置に当接するようになっている。
The swing cam 9 is integrally provided at both ends of a cylindrical camshaft 10, and the camshaft 10 is rotatably supported on the drive shaft 6 via an inner peripheral surface. In addition, a cam surface including a base circle surface, a ramp surface, and a lift surface is formed on the lower surface, and the base circle surface, the ramp surface, and the lift surface correspond to the swing position of the swing cam 9 of each valve lifter 8. It comes into contact with a predetermined position on the upper surface.
伝達機構は、駆動軸6の上方に配置されたロッカアーム11と、ロッカアーム11の一端部11aと回転カム7とを連係するリンクアーム12と、ロッカアーム11の他端部11bと揺動カム9とを連係するリンクロッド13とを備えている。ロッカアーム11は、中央に有する筒状の基部が支持孔を介して後述する制御カムに回転自在に支持されていると共に、一端部11aがピン14によってリンクアーム12に回転自在に連結されている一方、他端部11bがリンクロッド13の一端部13aにピン15を介して回転自在に連結されている。
The transmission mechanism includes a rocker arm 11 disposed above the drive shaft 6, a link arm 12 for linking one end 11 a of the rocker arm 11 and the rotating cam 7, and another end 11 b of the rocker arm 11 and the swing cam 9. And a link rod 13 for linking. The rocker arm 11 has a cylindrical base at the center rotatably supported by a control cam, which will be described later, via a support hole, and one end 11 a is rotatably connected to the link arm 12 by a pin 14. The other end 11 b is rotatably connected to one end 13 a of the link rod 13 via a pin 15.
リンクアーム12は、円環状の基端部12aの中央位置に有する嵌合孔に回転カム7のカム本体が回転自在に嵌合している一方、基端部12aから突出した突出端12bがピン14によってロッカアーム一端部11aに連結されている。リンクロッド13は、他端部がピン16を介して揺動カム9のカムノーズ部に回転自在に連結されている。
In the link arm 12, the cam body of the rotary cam 7 is rotatably fitted in a fitting hole formed at the center position of the annular base end 12a, while a protruding end 12b protruding from the base end 12a has a pin. 14 is connected to the rocker arm end 11a. The other end of the link rod 13 is rotatably connected to a cam nose portion of the swing cam 9 via a pin 16.
また、駆動軸6の上方位置に同じ軸受部材に制御軸17が回転自在に支持されていると共に、制御軸17の外周にロッカアーム11の支持孔に摺動自在に嵌入されて、ロッカアーム11の揺動支点となる制御カム18が固定されている。制御軸17は、駆動軸6と並行に機関前後方向に配設されていると共に、駆動機構19によって回転制御されている。一方、制御カム18は、円筒状を呈し、軸心位置が制御軸17の軸心から所定分だけ偏倚している。
The control shaft 17 is rotatably supported by the same bearing member at a position above the drive shaft 6, and is slidably fitted in the support hole of the rocker arm 11 on the outer periphery of the control shaft 17 to swing the rocker arm 11. A control cam 18 serving as a fulcrum is fixed. The control shaft 17 is disposed in the engine front-rear direction in parallel with the drive shaft 6, and the rotation of the control shaft 17 is controlled by a drive mechanism 19. On the other hand, the control cam 18 has a cylindrical shape, and the axial center position is deviated by a predetermined amount from the axial center of the control shaft 17.
駆動機構19は、ケーシングの一端部に固定された電動モータ20と、電動モータ20の回転駆動力を制御軸17に伝達するボール螺子伝達機構21と、から構成されている。電動モ-タ20は、比例型のDCモータによって構成され、機関運転状態を検出する制御手段22からの制御信号によって駆動するようになっている。
The drive mechanism 19 includes an electric motor 20 fixed to one end of the casing, and a ball screw transmission mechanism 21 that transmits the rotational driving force of the electric motor 20 to the control shaft 17. The electric motor 20 is constituted by a proportional DC motor, and is driven by a control signal from a control means 22 for detecting an operating state of the engine.
ボール螺子伝達機構21は、電動モータ20の駆動シャフトとほぼ同軸上に配置されたボール螺子軸23と、ボール螺子軸23の外周に螺合する移動部材であるボールナットと、制御軸17の一端部に直径方向に沿って連結された連係アーム25と、連係アーム25とボールナット24とを連係するリンク部材26とから主として構成されている。
The ball screw transmission mechanism 21 includes a ball screw shaft 23 disposed substantially coaxially with a drive shaft of the electric motor 20, a ball nut that is a moving member screwed around the outer periphery of the ball screw shaft 23, and one end of the control shaft 17. It mainly includes a link arm 25 connected to the portion along the diameter direction, and a link member 26 linking the link arm 25 and the ball nut 24.
ボール螺子軸23は、両端部を除く外周面全体に所定幅のボール循環溝が螺旋状に連続して形成されていると共に、一端部にモータ駆動軸を介して連結され電動モータ20によって回転駆動されるようになっている。
The ball screw shaft 23 has a ball circulation groove having a predetermined width continuously formed in a spiral shape on the entire outer peripheral surface except for both end portions, and is connected to one end portion via a motor drive shaft, and is rotationally driven by the electric motor 20. It is supposed to be.
ボールナット24は、ほぼ円筒状に形成され、内周面にボール循環溝と共同して複数のボールを転動自在に保持するガイド溝が螺旋状に連続して形成されていると共に、各ボールを介してボール螺子軸23の回転運動をボールナット24の直線運動に変換しつつ軸方向の移動力が付与されるようになっている。
The ball nut 24 is formed in a substantially cylindrical shape, and a guide groove for rotatably holding a plurality of balls in cooperation with a ball circulation groove is formed continuously in a spiral shape on the inner peripheral surface. , The rotational motion of the ball screw shaft 23 is converted into the linear motion of the ball nut 24, and an axial moving force is applied.
また、このボールナット24は、付勢手段であるコイルスプリング30のばね力によって電動モータ20側(最小リフト側)に付勢されている。したがって、機関停止時には、かかるボールナット24が、コイルスプリング30のばね力によってボール螺子軸23の軸方向に沿って最小リフト側に移動するようになっている。
The ball nut 24 is urged toward the electric motor 20 (minimum lift side) by the spring force of a coil spring 30 as urging means. Therefore, when the engine is stopped, the ball nut 24 moves to the minimum lift side along the axial direction of the ball screw shaft 23 by the spring force of the coil spring 30.
次に、排気側VTC機構2、及び吸気側VTC機構3についてであるが、排気側VTC機構2、及び吸気側VTC機構3は、いわゆるベーンタイプのものであって、上述した特開2012-127219号公報に記載されたものと同様の構成であるので、ここでは説明は省略する。尚、排気側VTC機構2、及び吸気側VTC機構3は「最進角位置」がデフォルト位置になっている。ここで、デフォルト位置とは、非作動時、つまり、油圧が作用しない場合に機械的に安定する位置のことである。
Next, regarding the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3, the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3 are of a so-called vane type. Since the configuration is the same as that described in Japanese Patent Application Laid-Open Publication No. H10-209, the description is omitted here. Note that the "most advanced position" is the default position for the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3. Here, the default position is a position that is mechanically stable when not operating, that is, when no hydraulic pressure is applied.
以上に説明したように、排気バルブ5は、排気側VEL機構1と排気側VTC機構2の動作に対応して、排気バルブ5のリフトと作動角、及び開閉時期が制御される。一方、吸気バルブ4は、吸気側VTC機構3の動作に対応して開閉時期が制御されが、吸気バルブ4のリフトと作動角は変化しない。この吸気バルブのリフト/作動角は、図5に示す第2負荷領域における排気側VEL機構1によるにリフト/作動角と略同じに設定されている。
As described above, in the exhaust valve 5, the lift, the operating angle, and the opening / closing timing of the exhaust valve 5 are controlled in accordance with the operations of the exhaust-side VEL mechanism 1 and the exhaust-side VTC mechanism 2. On the other hand, the opening and closing timing of the intake valve 4 is controlled in accordance with the operation of the intake-side VTC mechanism 3, but the lift and operating angle of the intake valve 4 do not change. The lift / operating angle of the intake valve is set to be substantially the same as the lift / operating angle by the exhaust-side VEL mechanism 1 in the second load region shown in FIG.
次に、制御手段22は、コントロールユニット(ECU)の内部に組み込まれており、クランク角を検出するクランク角センサ010からの検出信号、アクセル開度センサからの検出信号、車速センサからの検出信号、ギア位置センサからの検出信号、ブレーキ踏込みセンサからの検出信号、水温センサ011からの検出信号、ノックセンサ015からの検出信号等から現在の機関運転状態や自動車の運転状態を検出している。
Next, the control means 22 is incorporated inside the control unit (ECU), and detects a detection signal from the crank angle sensor 010 for detecting the crank angle, a detection signal from the accelerator opening sensor, and a detection signal from the vehicle speed sensor. , The current engine operating state and the vehicle operating state are detected from the detection signal from the gear position sensor, the detection signal from the brake depression sensor, the detection signal from the water temperature sensor 011, the detection signal from the knock sensor 015, and the like.
また、駆動軸6の回転角度を検出する駆動軸角度センサ28からの検出信号や、制御軸17の回転位置を検出するポテンショメータ29からの検出信号を入力して、駆動軸6のクランク角に対する相対回転角度や排気バルブ5のバルブリフト量や作動角を検出するようになっている。
Also, a detection signal from a drive shaft angle sensor 28 that detects the rotation angle of the drive shaft 6 and a detection signal from a potentiometer 29 that detects the rotation position of the control shaft 17 are input to determine the relative position of the drive shaft 6 with respect to the crank angle. The rotation angle, the valve lift of the exhaust valve 5 and the operating angle are detected.
制御手段22は、マイクロコンピュータを主たる構成要素とするものであり、このマイクロコンピュータは、制御プログラムにしたがって演算処理を実行する演算部と、制御プログラムや演算に使用する定数等を記憶したROM領域部と、プログラムの実行過程で必要なデータを一時的に記憶するワークエリアとしてのRAM領域部を備えている。更にセンサ信号を取り込むと共に排気側VEL機構1、排気側VTC機構2、吸気側VTC機構3等の駆動アクチュエータに駆動信号を供給するI/OLSI等を備えている。
The control means 22 includes a microcomputer as a main component. The microcomputer includes an arithmetic unit that executes arithmetic processing according to a control program, and a ROM area unit that stores a control program, constants used for the arithmetic operation, and the like. And a RAM area as a work area for temporarily storing data required during the execution of the program. Further, there is provided an I / OLSI or the like that captures sensor signals and supplies drive signals to drive actuators such as the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3.
マイクロコンピュータは制御プログラムによって、排気側VEL機構1、排気側VTC機構2、吸気側VTC機構3等で実行される制御に関する種々の演算処理を行っているが、その演算は所定の制御機能を実行するためのものであり、本実施形態では演算によって実行される処理を機能として捉えるものとする。更に、マイクロコンピュータは点火プラグ05の点火時期を制御する点火時期制御機能や、燃料噴射弁012の噴射量や噴射時期を制御する燃料噴射制御機能等が設けられている。
The microcomputer performs various arithmetic processes related to control executed by the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, the intake-side VTC mechanism 3, and the like according to a control program. In this embodiment, the processing executed by the calculation is regarded as a function. Further, the microcomputer is provided with an ignition timing control function for controlling the ignition timing of the ignition plug 05, a fuel injection control function for controlling the injection amount and the injection timing of the fuel injection valve 012, and the like.
ここで、本実施形態になる制御手段22は、以下に述べる少なくとも2つの形態のいずれかに構成されている。
Here, the control means 22 according to the present embodiment is configured in one of at least two forms described below.
1つは、排気側VEL機構1、排気側VTC機構2、吸気側VTC機構3を制御する可変動弁機構制御手段と、点火プラグの点火時期を制御する点火時期制御手段(燃料噴射制御手段を含む場合もある)とを別々の制御手段として構成する形態である。
One is a variable valve mechanism control means for controlling the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3, and an ignition timing control means for controlling the ignition timing of the spark plug (fuel injection control means). Are included as separate control means.
この場合は、可変動弁機構制御手段と点火時期制御手段とは通信線を介して接続されており、夫々の制御情報が通信によって送受信されて、後述する制御フローが実行される。
In this case, the variable valve mechanism control means and the ignition timing control means are connected via a communication line, and respective control information is transmitted and received by communication, and a control flow described later is executed.
もう1つは、排気側VEL機構1、排気側VTC機構2、吸気側VTC機構3を制御する可変動弁機構制御手段と、点火プラグの点火時期を制御する点火時期制御手段(燃料噴射制御手段を含む場合もある)とを一体的に制御手段として構成する形態である。この場合は、可変動弁機構制御手段と点火時期制御手段とは相互に関連付けられて、後述する制御フローが実行される。
The other is a variable valve mechanism control means for controlling the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, and an ignition timing control means (fuel injection control means) for controlling the ignition timing of the spark plug. Is included as a control means. In this case, the variable valve mechanism control means and the ignition timing control means are associated with each other, and the control flow described later is executed.
また、本実施形態では、特に点火時期を制御するものであるので、点火時期制御について簡単に説明する。点火時期は、回転数と負荷によって定まる基本点火時期を求め、これに種々の補正点火時期を加算、或いは減算して最終点火時期を求めている。補正点火時期としては、水温補正、加速補正、減速補正、ノックフィードバック補正といった補正点火時期が用いられる。
In the present embodiment, since the ignition timing is particularly controlled, the ignition timing control will be briefly described. As the ignition timing, a basic ignition timing determined by the rotational speed and the load is obtained, and various correction ignition timings are added or subtracted from the basic ignition timing to obtain a final ignition timing. As the corrected ignition timing, a corrected ignition timing such as water temperature correction, acceleration correction, deceleration correction, and knock feedback correction is used.
更に、本実施形態では、アトキンソンサイクルの実行を行なう場合は、負荷テーブルに負荷が減少するにつれて進角する進角側の補正点火時期を記憶させておき、このテーブルから負荷に対応した補正点火時期を読み出し、基本点火時期に加算して最終点火時期の演算を行なうことができる。尚、基本点火時期が記憶されている基本点火時期マップに負荷テーブルの補正点火時期を反映させておくこともできる。
Further, in the present embodiment, when the Atkinson cycle is performed, the load table stores advance correction side ignition timing that advances as the load decreases, and from this table, the correction ignition timing corresponding to the load is stored. Is read and added to the basic ignition timing to calculate the final ignition timing. The corrected ignition timing in the load table may be reflected in the basic ignition timing map in which the basic ignition timing is stored.
このような動作を行う排気VEL1機構、排気VTC機構2、及び吸気側VTC機構3を併用して、本実施例では以下に示すようなアトキンソンサイクルを実行している。
In the present embodiment, the following Atkinson cycle is executed by using the exhaust VEL mechanism 1, the exhaust VTC mechanism 2, and the intake-side VTC mechanism 3 that perform such operations in combination.
図3は負荷率が100%の第4負荷(全負荷)の吸気/排気バルブの開閉時期と点火時期を示し、図4は負荷率が50%の第3負荷(中負荷)の吸気/排気バルブの開閉時期と点火時期を示し、図5は負荷率が20%の第2負荷(低負荷)の吸気/排気バルブの開閉時期と点火時期を示し、図6は負荷率が0%の第1負荷(アイドル、軽負荷負荷)の吸気/排気バルブの開閉時期と点火時期を示している。
FIG. 3 shows the opening / closing timing and ignition timing of the intake / exhaust valve of the fourth load (full load) with a load factor of 100%, and FIG. 4 shows the intake / exhaust of the third load (medium load) with a load factor of 50%. FIG. 5 shows the opening / closing timing and ignition timing of the intake / exhaust valve of the second load (low load) having a load factor of 20%, and FIG. 6 shows the opening / closing timing and ignition timing of the valve at a load factor of 0%. It shows the opening / closing timing and ignition timing of the intake / exhaust valve for one load (idle, light load).
また、図7は、上述した負荷での回転角の進行に対応した、排気バルブ5と吸気バルブ4のバルブリフトと開弁状態、及び点火時期を示し、図8は第1負荷から第4負荷までの排気バルブと吸気バルブの開閉時期の変化、及び点火時期の変化を示している。
FIG. 7 shows the valve lifts and open states of the exhaust valve 5 and the intake valve 4 and the ignition timing corresponding to the advance of the rotation angle at the load described above. FIG. 8 shows the first to fourth loads. Up to the change in the opening and closing timing of the exhaust valve and the intake valve, and the change in the ignition timing.
尚、図3~図6においては、4ストロークエンジンの、排気行程~吸入行程~圧縮行程~膨張行程~排気行程(戻り)に至る1サイクル/エンジン2回転の過程を示しているので、上死点(TDC)としては、排気(吸気)上死点(TDC)、圧縮上死点(TDC)があり、下死点(BDC)としては、排気(膨張)下死点(BDC)、吸気下死点(BDC)があるので、これらは動作行程に合せて区別して説明する。≪第4負荷(全負荷)≫ 図3、図7に示す第4負荷(全負荷:負荷率100%)、及び図8において、全負荷である第4負荷では、吸気バルブ4の開弁時期(IVO:以下、吸気開時期と表記する)は、吸気(排気)上死点(TDC)より大きく排気行程側に進角された吸気開時期(IVO4)に設定され、また、吸気バルブ4の閉弁時期(IVC:以下、吸気閉時期と表記する)は、吸気下死点(BDC)付近、ここでは吸気下死点(BDC)より少し圧縮行程側に遅角された吸気閉時期(IVC4)に設定されている。
3 to 6 show the process of one cycle / two engine revolutions from the exhaust stroke to the suction stroke to the compression stroke to the expansion stroke to the exhaust stroke (return) of the four-stroke engine. The point (TDC) includes exhaust (intake) top dead center (TDC) and compression top dead center (TDC). The bottom dead center (BDC) includes exhaust (expansion) bottom dead center (BDC) and intake bottom. Since there is a dead center (BDC), these will be described separately according to the operation process. << Fourth Load (Full Load) >> In the fourth load (full load: load factor 100%) shown in FIGS. 3 and 7, and in FIG. 8, the fourth load which is the full load indicates the opening timing of the intake valve 4. (IVO: hereinafter referred to as an intake opening timing) is set to an intake opening timing (IVO4) which is larger than the intake (exhaust) top dead center (TDC) and is advanced to the exhaust stroke side. The valve closing timing (IVC: hereinafter referred to as the intake closing timing) is near the intake bottom dead center (BDC), here, the intake closing timing (IVC4) slightly retarded to the compression stroke side from the intake bottom dead center (BDC). ) Is set to
一方、排気バルブ5の開弁時期(EVO:以下、排気開時期と表記する)は、排気(膨張)下死点(BDC)より少し進角された排気開時期(EVO4)に設定され、排気バルブ5の閉弁時期(EVC:以下、排気閉時期と表記する)は、吸気バルブ4の吸気開時期(IVO4)と同じ角度である排気閉時期(EVC4)に設定されている。このように、吸気バルブ4の開時期(IVO4)と排気バルブ5の閉時期(EVC4)は同じ角度となって、ゼロオーバーラップが形成される。これによって、内部EGRによる燃焼速度の低下を抑制して、熱効率を向上することができる。
On the other hand, the valve opening timing of the exhaust valve 5 (EVO: hereinafter referred to as the exhaust opening timing) is set to the exhaust opening timing (EVO4) slightly advanced from the exhaust (expansion) bottom dead center (BDC). The valve closing timing (EVC: hereinafter referred to as exhaust closing timing) of the valve 5 is set to the exhaust closing timing (EVC4) having the same angle as the intake opening timing (IVO4) of the intake valve 4. As described above, the opening timing (IVO4) of the intake valve 4 and the closing timing (EVC4) of the exhaust valve 5 have the same angle, and a zero overlap is formed. As a result, a reduction in combustion speed due to internal EGR can be suppressed, and thermal efficiency can be improved.
また、第4負荷の点火時期(IgT)は、圧縮上死点(TDC)より進角側で点火時期(IgT4)に設定されている。この点火時期(IgT4)は後述する第1負荷~第3負荷の中で、最も遅角側であり圧縮上死点(TDC)に近接し、圧縮上死点(TDC)より少し進角側に設定されている。
The ignition timing (IgT) of the fourth load is set to the ignition timing (IgT4) on the advance side from the compression top dead center (TDC). The ignition timing (IgT4) is the most retarded side and close to the compression top dead center (TDC) and slightly advanced from the compression top dead center (TDC) among the first to third loads described later. Is set.
このように、第4負荷では、吸気バルブの吸気閉時期(IVC4)は、吸気下死点(BDC)に近い位置に設定されているので、充填効率を高くすることができ、充分な機関トルクを得ることができる。≪第3負荷(中負荷)≫ 図4、図7に示す第3負荷(中負荷:負荷率50%)、及び図8において、中負荷である第3負荷では、第4負荷に比べて吸気バルブ4の吸気時期(IVO3)は、遅角側に移行されて吸気(排気)上死点(TDC)と一致する吸気開時期(IVO3)に設定され、また、吸気バルブ4の吸気閉時期(IVC)も遅角側に移行されて、吸気下死点(BDC)と圧縮上死点(TDC)の中間点である吸気閉時期(IVC3)に設定されている。
As described above, in the fourth load, the intake closing timing (IVC4) of the intake valve is set at a position close to the intake bottom dead center (BDC), so that the charging efficiency can be increased, and sufficient engine torque can be obtained. Can be obtained. << Third Load (Medium Load) >> In FIGS. 4 and 7, the third load (medium load: a load factor of 50%), and in FIG. 8, the third load, which is a middle load, has a larger intake air than the fourth load. The intake timing (IVO3) of the valve 4 is shifted to the retard side to be set to the intake opening timing (IVO3) which coincides with the intake (exhaust) top dead center (TDC). IVC) is also shifted to the retard side, and is set to the intake closing timing (IVC3) which is an intermediate point between the intake bottom dead center (BDC) and the compression top dead center (TDC).
一方、排気バルブ5は排気側VEL機構1によってリフトと作動角がやや増大されるので、排気バルブ5の排気開時期(EVO)は、第4負荷に比べて進角側に移行されて排気開時期(EVO3)に設定され、逆に排気バルブ5の閉時期(EVC)は、第4負荷に比べて遅角側に移行されて排気閉時期(EVC3)に設定されている。
On the other hand, since the exhaust valve 5 has its lift and operating angle slightly increased by the exhaust VEL mechanism 1, the exhaust valve opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the fourth load, and the exhaust valve is opened. The timing (EVO3) is set, and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side as compared with the fourth load, and is set as the exhaust closing timing (EVC3).
また、第3負荷の点火時期(IgT)は、第4負荷の点火時期(IgT4)に比べて進角側の点火時期(IgT3)に設定されている。
点火 The ignition timing (IgT) of the third load is set to an ignition timing (IgT3) on the advance side as compared with the ignition timing of the fourth load (IgT4).
この第3負荷では、第4負荷の吸気バルブ4の吸気閉時期(IVC4)に比べて吸気閉時期(IVC3)が遅角されているので、ポンプ損失を抑制することができる。更に、排気バルブ5の排気開時期(EVO3)が進角されるので、第4負荷に比べて負荷の低下に伴い、膨張行程で筒内圧が大気圧まで低下するタイミングが早まるが、排気バルブ5を排気開時期(EVO3)で開くことで、いわゆる膨張行程のポンプ損失を抑制して、中負荷での燃費を低減することができる。
In the third load, the intake closing timing (IVC3) is retarded compared to the intake closing timing (IVC4) of the intake valve 4 of the fourth load, so that pump loss can be suppressed. Further, since the exhaust opening timing (EVO3) of the exhaust valve 5 is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke is advanced with the decrease in load compared to the fourth load. Is opened at the exhaust opening timing (EVO3), so that the pump loss in the so-called expansion stroke can be suppressed, and the fuel efficiency under a medium load can be reduced.
また、吸気バルブ4の吸気開時期(IVO3)の遅角に合せて、排気バルブ5の排気閉時期(EVC3)も同じ角度だけ遅角しているので、ゼロバルブオーバーラップを維持することができる。これによって、内部EGRによる燃焼速度の低下を抑制して、熱効率の向上を図れ、結果的に燃料消費量を低減することができる。
Further, the exhaust valve closing timing (EVC3) of the exhaust valve 5 is also retarded by the same angle in accordance with the retard of the intake opening timing (IVO3) of the intake valve 4, so that the zero valve overlap can be maintained. . As a result, it is possible to suppress a decrease in the combustion speed due to the internal EGR, improve the thermal efficiency, and consequently reduce the fuel consumption.
ここで、点火時期(IgT3)は第4負荷に比べて進角側に設定しているが、これは第3負荷では、吸気閉時期(IVC3)が吸気下死点(BDC)から大きく離間して有効圧縮比が低下し、また、混合ガスが減少して燃焼速度が遅くなるため、点火時期(IgT3)を、第4負荷の点火時期(IgT4)より進角することで、ピーク燃焼圧が生じる時期を高熱効率が得られる時期に合せるためである。
Here, the ignition timing (IgT3) is set on the advance side as compared with the fourth load. However, at the third load, the intake closing timing (IVC3) is greatly separated from the intake bottom dead center (BDC). As a result, the effective compression ratio is reduced, and the mixed gas is reduced to decrease the combustion speed. Therefore, the ignition timing (IgT3) is advanced from the ignition timing (IgT4) of the fourth load, so that the peak combustion pressure is reduced. This is because the time of occurrence is adjusted to the time when high thermal efficiency is obtained.
このように、アトキンソンサイクルにおいては、第4負荷から第3負荷に移行するように負荷を減少させていくと、吸気閉時期(IVC)を遅角する方向に移行することになる。吸気閉時期(IVC)を遅角側に制御すると、ポンプ損失を抑制できるので燃料消費量を低減することができる。
As described above, in the Atkinson cycle, when the load is decreased so as to shift from the fourth load to the third load, the intake closing timing (IVC) shifts in a direction of retarding. When the intake closing timing (IVC) is controlled to the retard side, the pump loss can be suppressed, so that the fuel consumption can be reduced.
ところが、吸気閉時期(IVC)を負荷の減少に対応させて遅角させていくと、有効圧縮比が低下していき、圧縮上死点(TDC)で混合ガスの温度が低下し、更に充填混合気ガス量の減少とも相俟って、混合気の燃焼速度が遅くなって熱効率が低下する。
However, if the intake closing timing (IVC) is retarded in response to the decrease in load, the effective compression ratio will decrease, and the temperature of the mixed gas will decrease at the compression top dead center (TDC), and further charging will occur. Combined with the decrease in the gaseous mixture amount, the combustion speed of the gaseous mixture is reduced, and the thermal efficiency is reduced.
この場合、熱効率を高めるには点火時期(IgT)を進角することがもっと効果的である。つまり、ピーク燃焼圧の発生時期を熱効率の高くなる、例えば圧縮上死点(TDC)の後の10~15ー付近に合わせるためには、低下した燃焼速度に合せて点火時期(IgT)を進角してやれば良い。≪第2負荷(低負荷)≫ 図5、図7に示す第2負荷(低負荷:負荷率20%)、及び図8において、低負荷である第2負荷では、第3負荷に比べて吸気バルブ4の吸気開時期(IVO2)は、吸気(排気)上死点(TDC)より遅角側に移行されて吸気開時期(IVO2)に設定され、また、吸気バルブ4の吸気閉時期(IVC)もさらに遅角側に移行されて、吸気下死点(BDC)と圧縮上死点(TDC)の中間点より遅角されて吸気閉時期(IVC2)に設定されている。
In this case, it is more effective to advance the ignition timing (IgT) to increase the thermal efficiency. In other words, in order to match the peak combustion pressure generation timing with a higher thermal efficiency, for example, around 10 to 15 after compression top dead center (TDC), the ignition timing (IgT) is advanced in accordance with the reduced combustion speed. You can do it. << Second Load (Low Load) >> In the second load (low load: load factor 20%) shown in FIGS. 5 and 7, and in FIG. 8, the low load second load is larger than the third load. The intake opening timing (IVO2) of the valve 4 is shifted to the retard side from the intake (exhaust) top dead center (TDC) and is set to the intake opening timing (IVO2), and the intake closing timing (IVC2) of the intake valve 4 is set. ) Is further shifted to the retard side, and is retarded from an intermediate point between the intake bottom dead center (BDC) and the compression top dead center (TDC), and is set to the intake closing timing (IVC2).
一方、排気バルブ5は排気側VEL機構1によってリフトと作動角が増大されるので、排気バルブ5の排気開時期(EVO)は、第3負荷に比べて進角側に移行されて排気開時期(EVO3)に設定され、逆に排気バルブ5の閉時期(EVC)は、第3負荷に比べて、排気上死点(TDC)を超える遅角側に移行されて、排気閉時期(EVC3)に設定されている。
On the other hand, since the lift and the operating angle of the exhaust valve 5 are increased by the exhaust-side VEL mechanism 1, the exhaust opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the third load, and the exhaust opening timing is increased. (EVO3), and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side exceeding the exhaust top dead center (TDC) compared to the third load, and the exhaust closing timing (EVC3) Is set to
また、第2負荷の点火時期(IgT)は、第3負荷の点火時期(IgT3)に比べて、更に進角側の点火時期に(IgT2)に設定されている。
The ignition timing (IgT) of the second load is set to (IgT2) at the ignition timing on the more advanced side as compared with the ignition timing of the third load (IgT3).
この第2負荷では、第3負荷の吸気バルブ4の吸気閉時期(IVC3)に比べて吸気閉時期(IVC2)が遅角されているので、さらにポンプ損失を抑制することができる。更に、排気バルブ5の排気開時期(EVO2)が進角されるので、第3負荷に比べて負荷の低下に伴い膨張行程で筒内圧が大気圧まで低下するタイミングが早まるが、排気バルブ5を排気開時期(EVO2)で開くことで、いわゆる膨張行程のポンプ損失を抑制して、低負荷での燃費を低減することができる。
In the second load, since the intake closing timing (IVC2) is retarded compared to the intake closing timing (IVC3) of the intake valve 4 of the third load, pump loss can be further suppressed. Further, since the exhaust opening timing (EVO2) of the exhaust valve 5 is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke with the decrease in the load is advanced as compared with the third load. By opening at the exhaust opening timing (EVO2), it is possible to suppress a pump loss in a so-called expansion stroke, and to reduce fuel consumption at a low load.
また吸気バルブ4の吸気開時期(IVO2)の遅角に合せて、排気バルブ5の排気閉時期(EVC2)も同じ角度だけ遅角しているので、ゼロバルブオーバーラップを維持することができる。これによって、内部EGRによる燃焼速度の低下を抑制して、熱効率の向上を図れ、結果的に燃料消費量を低減することができる。
(4) Since the exhaust closing timing (EVC2) of the exhaust valve 5 is also retarded by the same angle in accordance with the retard of the intake opening timing (IVO2) of the intake valve 4, the zero valve overlap can be maintained. As a result, it is possible to suppress a decrease in the combustion speed due to the internal EGR, improve the thermal efficiency, and consequently reduce the fuel consumption.
ここで、点火時期(IgT2)は第3負荷に比べて進角側に設定しているが、これは第2負荷では吸気閉時期(IVC2)が吸気下死点(BDC)から大きく離間して有効圧縮比が低下し、また、混合ガスが減少して燃焼速度が遅くなるため、点火時期(IgT2)を、第3負荷の点火時期(IgT3)より進角することで、ピーク燃焼圧が生じる時期を高熱効率が得られる時期に合せるためである。
Here, the ignition timing (IgT2) is set on the advance side as compared with the third load. However, this is because, at the second load, the intake closing timing (IVC2) is greatly separated from the intake bottom dead center (BDC). Since the effective compression ratio is reduced and the mixed gas is reduced to lower the combustion speed, a peak combustion pressure is generated by advancing the ignition timing (IgT2) from the ignition timing (IgT3) of the third load. This is because the time is adjusted to the time when high thermal efficiency is obtained.
ところで、上述したように、吸気閉時期(IVC2)は遅角側に大きく移行され、逆に点火時期(IgT2)は大きく進角されていくので、吸気閉時期(IVC2)と点火時期(IgT2)が接近し、その実角度差Δθact(=IVC-IgT)が小さくなり、場合によっては、点火時期(IgT2)が吸気閉時期(IVC2)より進角されることがある。
By the way, as described above, the intake closing timing (IVC2) is greatly shifted to the retard side, and conversely, the ignition timing (IgT2) is advanced greatly, so that the intake closing timing (IVC2) and the ignition timing (IgT2) Approach, the actual angle difference Δθact (= IVC−IgT) becomes smaller, and in some cases, the ignition timing (IgT2) is advanced from the intake closing timing (IVC2).
この状態で、アトキンソンサイクルで吸気バルブの吸気閉時期(IVC2)が圧縮行程側に大きく遅角されると、吸気系側に可燃混合気が逆流する。したがって、点火時期(IgT2)が吸気閉時期(IVC2)を超える位置に進角されて可燃混合気に点火されると、この点火によって発生した火炎は、吸気バルブがまだ開いているので吸気系側に流れ込み、吸気系側に滞留している可燃混合気を爆発的に燃焼させる、バックファイアという現象を生じる。
In this state, if the intake valve closing timing (IVC2) of the intake valve is greatly retarded to the compression stroke side in the Atkinson cycle, the combustible air-fuel mixture flows back to the intake system side. Therefore, when the ignition timing (IgT2) is advanced to a position exceeding the intake closing timing (IVC2) and the combustible mixture is ignited, the flame generated by this ignition is generated by the ignition system because the intake valve is still open. Backfire, which causes the combustible mixture remaining in the intake system to explosively burn.
このような課題に対応するために、本実施形態では吸気バルブ4の吸気閉時期(IVC)と点火時期(IgT)の実角度差(Δθact(=IVC-IgT))を求め、実角度差(Δθact)が予め定めた所定の角度差閾値(Δθsld)より小さくならないように、吸気閉時期(IVC)、或いは点火時期(IgT)、或いは吸気閉時期(IVC)と点火時期(IgT)の両方を制御することができる。本実施形態では、点火時期(IgT)を制御することで吸気閉時期(IVC)に対して常に遅角側で点火する形態としている。
In order to cope with such a problem, in the present embodiment, the actual angle difference (Δθact (= IVC−IgT)) between the intake closing timing (IVC) of the intake valve 4 and the ignition timing (IgT) is calculated, and the actual angle difference ( Δθact) is not smaller than a predetermined angle difference threshold value (Δθsld), and the intake closing timing (IVC), or the ignition timing (IgT), or both the intake closing timing (IVC) and the ignition timing (IgT) are set. Can be controlled. In the present embodiment, the ignition timing (IgT) is controlled so that the ignition is always performed on the retard side with respect to the intake closing timing (IVC).
仮に吸気閉時期(IVC2)が遅角側に大きく移行され、逆に点火時期(IgT2)が大きく進角されて、点火時期(IgT2)が吸気閉時期(IVC2)に角度差閾値(Δθsld)を超えて接近した、或いは点火時期(IgT2)が吸気閉時期(IVC2)を超えて進角されたと想定した場合、図5及び図7の第2負荷に示すように、点火時期(IgT2)は、吸気バルブの吸気閉時期(IVC2)を起点として、遅角側で所定の補正角度(Δθcmp)を有する新たな点火時期(IgT2new)に設定される。
Assuming that the intake closing timing (IVC2) is largely shifted to the retard side, the ignition timing (IgT2) is greatly advanced, and the ignition timing (IgT2) is set to the angle difference threshold (Δθsld) to the intake closing timing (IVC2). If it is assumed that the ignition timing (IgT2) has advanced beyond the intake closing timing (IVC2), the ignition timing (IgT2) becomes as shown in the second load of FIG. 5 and FIG. Starting from the intake valve closing timing (IVC2) of the intake valve, a new ignition timing (IgT2new) having a predetermined correction angle (Δθcmp) on the retard side is set.
ここで、補正角度(Δθcmp)は、角度差閾値(Δθsld)と同じ値に設定されているが、これに限らず、補正角度(Δθcmp)を角度差閾値(Δθsld)より大きい値に設定することも可能である。
Here, the correction angle (Δθcmp) is set to the same value as the angle difference threshold value (Δθsld), but is not limited thereto, and the correction angle (Δθcmp) may be set to a value larger than the angle difference threshold value (Δθsld). Is also possible.
例えば、現時点で演算された点火時期(IgT2)が、吸気閉時期(IVC2)を超えて進角されていると判断されると、現時点で演算された吸気バルブ4の吸気閉時期(IVC2)を起点として所定の補正角度(Δθcmp)だけを遅角した値を、新たな点火時期(IgT2new)と再設定すれば良い。これによって、点火時期(IgT)は吸気閉時期(IVC)を常に超えることなく、混合ガスに点火することができる。≪第1負荷(アイドル/軽負荷))≫ 図6、図7に示す第1負荷(アイドル/軽負荷:負荷率0%)、及び図8において、アイドルや軽負荷である第1負荷では、第2負荷に比べて、吸気バルブ4の吸気時期(IVO1)は、遅角側に移行されて吸気上死点(TDC)より更に遅角側に移行されて、吸気上死点(TDC)と吸気下死点(BDC)の中間点に近づく吸気開時期(IVO1)に設定され、また、吸気バルブ4の吸気閉時期(IVC)も遅角側に移行されて、吸気下死点(BDC)と圧縮上死点(TDC)の中間点より遅角されて吸気閉時期(IVC1)に設定されている。
For example, if it is determined that the currently calculated ignition timing (IgT2) is advanced beyond the intake closing timing (IVC2), the currently calculated intake closing timing (IVC2) of the intake valve 4 is calculated. A value obtained by retarding only the predetermined correction angle (Δθcmp) as the starting point may be reset as a new ignition timing (IgT2new). Thus, the mixed gas can be ignited without the ignition timing (IgT) always exceeding the intake closing timing (IVC). << First load (idle / light load)) >> In the first load (idle / light load: 0% load factor) shown in FIGS. 6 and 7, and in FIG. Compared to the second load, the intake timing (IVO1) of the intake valve 4 is shifted to the retard side, and further shifted to the retard side from the intake top dead center (TDC). The intake opening timing (IVO1) approaching the middle point of the intake bottom dead center (BDC) is set, and the intake closing timing (IVC) of the intake valve 4 is also shifted to the retard side, so that the intake bottom dead center (BDC) And is retarded from the middle point between the compression top dead center (TDC) and the intake closing timing (IVC1).
一方、排気バルブ5は排気側VEL機構1によってリフトと作動角が更に増大されるので、排気バルブ5の排気開時期(EVO)は、第2負荷に比べて進角側に移行されて排気開時期(EVO1)に設定され、逆に排気バルブ5の閉時期(EVC)は、第2負荷に比べて遅角側に移行されて排気閉時期(EVC1)に設定されている。
On the other hand, since the lift and the operating angle of the exhaust valve 5 are further increased by the exhaust-side VEL mechanism 1, the exhaust opening timing (EVO) of the exhaust valve 5 is shifted to the advanced side as compared with the second load, and the exhaust valve is opened. The timing (EVO1) is set, and conversely, the closing timing (EVC) of the exhaust valve 5 is shifted to the retard side as compared with the second load, and is set as the exhaust closing timing (EVC1).
また、第1負荷の点火時期(IgT)は、第2負荷の点火時期(IgT2)と同じ点火時期に設定されている。
The ignition timing of the first load (IgT) is set to the same ignition timing as the ignition timing of the second load (IgT2).
この第1負荷では、第2負荷の吸気バルブの吸気閉時期(IVC2)に比べて吸気閉時期(IVC1)が遅角されているので、ポンプ損失を更に抑制することができる。また、排気バルブの排気開時期(EVO1)が進角されるので、第2負荷に比べて負荷の低下に伴い膨張行程で筒内圧が大気圧まで低下するタイミングが早まるが、排気バルブを排気開時期(EVO1)で開くことで、いわゆる膨張行程のポンプ損失を抑制して、部分負荷での燃費を低減することができる。
In the first load, since the intake closing timing (IVC1) is retarded compared to the intake closing timing (IVC2) of the intake valve of the second load, pump loss can be further suppressed. Further, since the exhaust valve opening timing (EVO1) of the exhaust valve is advanced, the timing at which the in-cylinder pressure decreases to the atmospheric pressure in the expansion stroke is earlier than the second load as the load decreases. By opening at the timing (EVO1), it is possible to suppress the pump loss in the so-called expansion stroke and to reduce the fuel consumption at a partial load.
また、吸気バルブ4の吸気開時期(IVO1)の遅角に合せて、排気バルブ5の排気閉時期(EVC1)も同じ角度だけ遅角しているので、ゼロバルブオーバーラップを維持することができる。これによって、内部EGRによる燃焼速度の低下を抑制して、熱効率の向上を図れ、結果的に燃料消費量を低減することができる。
Further, the exhaust valve closing timing (EVC1) of the exhaust valve 5 is also retarded by the same angle in accordance with the retardation of the intake opening timing (IVO1) of the intake valve 4, so that the zero valve overlap can be maintained. . As a result, it is possible to suppress a decrease in the combustion speed due to the internal EGR, improve the thermal efficiency, and consequently reduce the fuel consumption.
ここで、点火時期(IgT1)は、第1負荷では吸気閉時期(IVC1)が吸気下死点(BDC)から大きく離間して有効圧縮比が低下し、また、混合ガスが減少して燃焼速度が遅くなるため、点火時期(IgT1)を第2負荷の点火時期(IgT2)と同じように進角させることで、ピーク燃焼圧が生じる時期を高熱効率が得られる時期に合せている。
Here, the ignition timing (IgT1) is such that, at the first load, the intake closing timing (IVC1) is greatly separated from the intake bottom dead center (BDC), and the effective compression ratio is lowered. Since the ignition timing (IgT1) is advanced in the same manner as the ignition timing (IgT2) of the second load, the timing at which the peak combustion pressure occurs is matched with the timing at which high thermal efficiency is obtained.
第2負荷の項で説明したように、吸気閉時期(IVC1)は遅角側に大きく移行され、逆に点火時期(IgT1)は大きく進角されていくので、吸気閉時期(IVC1)と点火時期(IgT1)が接近し、その実角度差(Δθact(=IVC-IgT))が小さくなり、場合によっては点火時期(IgT1)が吸気閉時期(IVC1)より進角されることがある。したがって、点火時期(IgT1)が吸気閉時期(IVC1)を超える位置に進角されて可燃混合気が点火されると、この点火によって発生した火炎は、吸気バルブがまだ開いているので吸気系側に流れ込み、吸気系側に滞留している可燃混合気を爆発的に燃焼させる、バックファイアという現象を生じる。
As described in the section of the second load, the intake closing timing (IVC1) is largely shifted to the retard side, and the ignition timing (IgT1) is advanced greatly. As the timing (IgT1) approaches, the actual angle difference (Δθact (= IVC−IgT)) decreases, and in some cases, the ignition timing (IgT1) is advanced from the intake closing timing (IVC1). Therefore, when the ignition timing (IgT1) is advanced to a position beyond the intake closing timing (IVC1) and the combustible mixture is ignited, the flame generated by this ignition is transmitted to the intake system because the intake valve is still open. Backfire, which causes the combustible mixture remaining in the intake system to explosively burn.
このため、第1負荷の場合も吸気バルブの吸気閉時期(IVC)と点火時期(IgT)の実角度差(Δθact(=IVC-IgT))を求め、実角度差(Δθact)が予め定めた所定の角度差閾値(Δθsld)より小さくならないように、点火時期(IgT)を制御している。
Therefore, also in the case of the first load, the actual angle difference (Δθact (= IVC−IgT)) between the intake valve closing timing (IVC) and the ignition timing (IgT) of the intake valve is obtained, and the actual angle difference (Δθact) is determined in advance. The ignition timing (IgT) is controlled so as not to be smaller than a predetermined angle difference threshold value (Δθsld).
したがって、点火時期(IgT1)が、吸気閉時期(IVC1)に角度差閾値(Δθsld)を超えて接近した、或いは点火時期(IgT1)が吸気閉時期(IVC1)を超えて進角された場合、図6及び図7の第1負荷に示すように、点火時期(IgT1)は、吸気バルブの吸気閉時期(IVC1)を起点として、所定の補正角度(Δθcmp)だけ遅角された点火時期(IgT1new)に設定される。
Therefore, when the ignition timing (IgT1) approaches the intake closing timing (IVC1) beyond the angle difference threshold value (Δθsld), or when the ignition timing (IgT1) is advanced beyond the intake closing timing (IVC1), As shown in the first load of FIGS. 6 and 7, the ignition timing (IgT1) is the ignition timing (IgT1new) delayed from the intake valve closing timing (IVC1) of the intake valve by a predetermined correction angle (Δθcmp). ) Is set.
この場合も第2負荷と同様に、現時点で演算された点火時期(IgT1)が、吸気閉時期(IVC1)を超えて進角されていると判断されると、現時点で演算された吸気バルブの吸気閉時期(IVC1)を起点として、所定の補正角度(Δθcmp)だけ遅角した値を、新たな点火時期(IgT1new)と再設定すれば良い。これによって、点火時期(IgT)は吸気閉時期(IVC)を常に超えることなく、混合ガスに点火することができる。
Also in this case, similarly to the second load, when it is determined that the ignition timing (IgT1) calculated at the present time is advanced beyond the intake closing timing (IVC1), the intake valve calculated at the present time is advanced. A value delayed from the intake closing timing (IVC1) by a predetermined correction angle (Δθcmp) may be reset as a new ignition timing (IgT1new). Thus, the mixed gas can be ignited without the ignition timing (IgT) always exceeding the intake closing timing (IVC).
ここで、点火時期(IgT1)の遅角補正によりピーク燃焼圧の発生時期も遅角して熱効率もその分だけ低下するが、その遅角量(補正角度Δθcmp)はバックファイアの発生を防止するだけの僅かな量に抑制されるので、第1負荷での燃料消費量の低減効果の目減りを可及的に小さくすることができる。一方、この点火時期(IgT1)の遅角により、排気ガスの温度が上昇し、アイドル時や軽負荷時で問題となる排気ガス浄化用触媒の温度の低下による排気有害成分の増加を抑制できる。
Here, the retardation of the ignition timing (IgT1) also retards the peak combustion pressure generation timing and lowers the thermal efficiency by that amount, but the retard amount (correction angle Δθcmp) prevents the occurrence of backfire. Is suppressed to only a small amount, so that the reduction in the effect of reducing the fuel consumption at the first load can be reduced as much as possible. On the other hand, due to the retardation of the ignition timing (IgT1), the temperature of the exhaust gas rises, and it is possible to suppress an increase in harmful exhaust components due to a decrease in the temperature of the exhaust gas purifying catalyst, which is a problem during idling or light load.
ここで、補正角度(Δθcmp)は、クランク角で4ー~8ーに設定されている。これによれば、吸気側VTC機構3により吸気閉時期(IVC)が変動した場合であっても、バックファイアを確実に防止しつつ、点火時期(IgT)の過度な遅角を抑制して燃料消費量の増大を抑制することができる。
Here, the correction angle (Δθcmp) is set to 4 to 8 in terms of crank angle. According to this, even if the intake closing timing (IVC) fluctuates due to the intake-side VTC mechanism 3, the backfire is reliably prevented, and the excessive retardation of the ignition timing (IgT) is suppressed to suppress the fuel. An increase in consumption can be suppressed.
すなわち、一般的な吸気側VTC機構3では、回転変動等による吸気閉時期(IVC)の変動はクランク角でア2ー~ア4ー程度である。したがって、補正角度(Δθcmp)を4ー以上とすることが望ましい。一方で、補正角度(Δθcmp)をむやみに増加させると、その分だけ点火時期(IgT)が遅角していくので、燃料消費量の増大を招く。
That is, in the general intake-side VTC mechanism 3, the fluctuation of the intake closing timing (IVC) due to the rotation fluctuation or the like is about 2 to 4 in crank angle. Therefore, it is desirable that the correction angle (Δθcmp) be 4 or more. On the other hand, if the correction angle (Δθcmp) is increased unnecessarily, the ignition timing (IgT) is retarded by that amount, which causes an increase in fuel consumption.
そこで、種々の内燃機関毎の最大ばらつきを考慮し、更に安全率を想定してクランク角で8ーの範囲に抑えている。このように、補正角度(Δθcmp)をクランク角で4ー~8ーに設定すると、回転変動等による吸気閉時期(IVC)の変動を考慮し、且つ点火時期(IgT)の遅角による燃料消費量の増大をできるだけ抑制することができる。
Therefore, in consideration of the maximum variation among various internal combustion engines, the crank angle is suppressed to a range of 8 ° in consideration of a safety factor. As described above, when the correction angle (Δθcmp) is set to 4 to 8 in terms of the crank angle, the fluctuation of the intake closing timing (IVC) due to the rotation fluctuation and the like, and the fuel consumption due to the retardation of the ignition timing (IgT) are taken into consideration. An increase in the amount can be suppressed as much as possible.
次に、上述した本実施形態になるバルブタイミング特性を実行するための制御フローについて説明するが、この制御フローは制御手段22によって、所定時間の経過毎に実行されるものである。図9A、図9Bに基づき内燃機関の運転を開始する場合の制御フローから説明する。尚、この制御フローは、全ての運転負荷状態に亘って、点火時期(IgT)が、吸気閉時期(IVC)に接近するか、或いは、点火時期(IgT)が、吸気閉時期(IVC)を超えているかどうかを判断するものである。
Next, a control flow for executing the valve timing characteristics according to the above-described embodiment will be described. This control flow is executed by the control means 22 every time a predetermined time elapses. A control flow when starting the operation of the internal combustion engine will be described based on FIGS. 9A and 9B. In this control flow, the ignition timing (IgT) approaches the intake closing timing (IVC) or the ignition timing (IgT) changes the intake closing timing (IVC) over all the operating load states. It is to judge whether it has exceeded.
≪ステップS10≫まず図9Aにおいて、ステップS10においては、内燃機関を始動する機関始動情報や、内燃機関の運転状態情報を読み込む。内燃機機関を始動する機関始動情報としては、代表的にはキーオン信号、或いはスタータ起動信号があり、また、内燃機関の運転状態情報を示す信号としては数多くあるが、本実施形態では、内燃機関の回転数情報、吸気量情報、水温情報、要求負荷情報(アクセル開度)等があり、更に排気側VTC機構1Bや吸気側VTC機構1Aの実位置情報等がある。このステップS10で各種情報を読み込むとステップS11に移行する。
{Step S10} First, in FIG. 9A, in step S10, engine start information for starting the internal combustion engine and operating state information of the internal combustion engine are read. The engine start information for starting the internal combustion engine typically includes a key-on signal or a starter start signal, and there are many signals indicating operation state information of the internal combustion engine. The information includes rotational speed information, intake air amount information, water temperature information, required load information (accelerator opening), and the like, and further includes actual position information of the exhaust-side VTC mechanism 1B and the intake-side VTC mechanism 1A. When various information is read in step S10, the process proceeds to step S11.
≪ステップS11≫ステップS11においては、機関始動条件かどうかを判断する。この判断は、例えば、スタータ起動信号を監視しておけばよく、スタータ起動信号が入力されないとリターンに抜けて次の起動タイミングを待つことになる。一方、スタータ起動信号が入力されると、機関始動条件と判断してステップS12に移行する。
{Step S11} In step S11, it is determined whether an engine start condition is satisfied. This determination can be made, for example, by monitoring the starter start signal. If the starter start signal is not input, the process returns to the start and waits for the next start timing. On the other hand, when the starter start signal is input, it is determined that an engine start condition is satisfied, and the process proceeds to step S12.
≪ステップS12≫ステップS12においては、スタータ起動信号を受けてスタータモータによる内燃機関のクランキングを開始する。そして、クランキングが開始されるや否やステップS13に移行する。
{Step S12} In step S12, the cranking of the internal combustion engine by the starter motor is started in response to the starter start signal. Then, as soon as the cranking is started, the process proceeds to step S13.
≪ステップS13≫ステップS13においては、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3にデフォルト位置に移行するように、少なくとも排気バルブ5の排気開閉閉時期(EVO)、(EVC)、及び吸気バルブ4の吸気開閉時期(IVO)、(IVC)の変換制御信号を、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3に出力する。そして、変換制御信号を排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3に出力するとステップS14に移行する。
{Step S13} In step S13, at least the exhaust opening / closing timing (EVO) of the exhaust valve 5 is set so that the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 shift to the default positions. EVC) and the conversion control signals of the intake opening / closing timing (IVO) of the intake valve 4 and (IVC) are output to the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3. When the conversion control signal is output to the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, the process proceeds to step S14.
≪ステップS14≫ステップ14においては、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3の実位置情報から、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3がデフォルト位置に移行したかどうかが判断される。
{Step S14} In step 14, from the actual position information of the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism 3, the exhaust side VEL mechanism 1, the exhaust side VTC mechanism 2, and the intake side VTC mechanism are used. It is determined whether 3 has moved to the default position.
そして、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3がデフォルト位置に移行していないと判断されると、再びステップS13に戻り、排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3がデフォルト位置に設定されていると判断されるとステップS15に移行する。
When it is determined that the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism 2, and the intake-side VTC mechanism 3 have not shifted to the default positions, the process returns to step S13, and the exhaust-side VEL mechanism 1, the exhaust-side VTC mechanism, and so on. If it is determined that the VTC mechanism 2 and the intake-side VTC mechanism 3 are set to the default position, the process proceeds to step S15.
≪ステップS15≫ステップS15においては、スタータモータの回転に合せて内燃機関を始動するため燃料噴射弁や点火装置へ出力制御信号を供給する。これによって内燃機関の回転数が増加していき、これに伴って油圧ポンプの作動油の油圧が上昇することになる。燃料噴射弁や点火装置へ出力制御信号を供給するとステップS16に移行する。
{Step S15} In step S15, an output control signal is supplied to the fuel injection valve and the ignition device to start the internal combustion engine in accordance with the rotation of the starter motor. As a result, the rotation speed of the internal combustion engine increases, and accordingly, the hydraulic pressure of the hydraulic oil of the hydraulic pump increases. When the output control signal is supplied to the fuel injection valve and the ignition device, the process proceeds to step S16.
なお、ここで、前述のように、吸気側VTC機構3はデフォルト位置である「最進角位置」、すなわち具体的には図4(高負荷)に示す下死点に近い吸気閉時期(IVC4)になっているので、吸気充填効率を高め、機関フリクションの大きい冷機時において、燃焼トルクを高め、機関フリクションに打ち勝つ良好な始動燃焼を得ることができる。
Note that, as described above, the intake-side VTC mechanism 3 is at the “most advanced position” that is the default position, specifically, the intake closing timing (IVC4) close to the bottom dead center shown in FIG. 4 (high load). ), It is possible to increase the intake air charging efficiency, increase the combustion torque during a cold period in which the engine friction is large, and obtain good starting combustion that overcomes the engine friction.
また、前述のように、排気側VEL機構1はデフォルト位置である「最小リフト・最小作動角位置」に、
排気側VTC機構2はデフォルト位置である「最進角位置」になっており、具体的には、図4(高負荷)に示すように下死点に近い排気開時期(EVO4)になっているので、排気弁が開くのを遅らせて充分機関本体を燃焼ガスで暖めることで、冷機時における機関本体の暖機性を向上している。 Further, as described above, the exhaust side VEL mechanism 1 moves to the default position of “minimum lift / minimum operating angle position”.
The exhaust-side VTC mechanism 2 is at a default position, ie, the “most advanced position”. Specifically, as shown in FIG. 4 (high load), the exhaust opening timing (EVO4) near the bottom dead center is reached. Therefore, by delaying the opening of the exhaust valve and sufficiently warming the engine body with the combustion gas, the warm-up property of the engine body at the time of cold is improved.
排気側VTC機構2はデフォルト位置である「最進角位置」になっており、具体的には、図4(高負荷)に示すように下死点に近い排気開時期(EVO4)になっているので、排気弁が開くのを遅らせて充分機関本体を燃焼ガスで暖めることで、冷機時における機関本体の暖機性を向上している。 Further, as described above, the exhaust side VEL mechanism 1 moves to the default position of “minimum lift / minimum operating angle position”.
The exhaust-
また、図4(高負荷)に示すように上死点前の排気閉時期(EVC4)になっているので、同じく上死点前の吸気開時期(IVO4)とほぼ一致することで、ゼロバルブオーバーラップを実現して、不活性のEGRガスを減らして良好な冷機燃焼も実現できる。ここで、始動前から、これらの可変動弁機構1~3は機械的安定位置であるデフォルト位置付近に元々位置することから、始動の初期段階から上記冷機時効果を遅れなく得ることができる。
Also, as shown in FIG. 4 (high load), since the exhaust closing timing (EVC4) is before the top dead center, the intake valve opening timing (IVO4) before the top dead center is almost the same. By realizing the overlap, the inactive EGR gas can be reduced and good cold combustion can be realized. Here, before the start, these variable valve mechanisms 1 to 3 are originally located near the default position, which is a mechanically stable position, so that the above-described cold-time effect can be obtained without delay from the initial stage of the start.
≪ステップS16≫ステップS16においては、内燃機関の機関温度(冷却水温度)を検出して所定温度を超えたかどうかを判断する。所定温度を超えていなければ冷機状態と判断してリターンに抜けて次の起動タイミングを待つ、或いは別の制御フローを実行することになる。一方、所定温度を超えていれば冷機状態から暖機完了したと判断して、ステップS17に移行する。尚、ステップS17より以降は図9Bに示している。
{Step S16} In step S16, the engine temperature (cooling water temperature) of the internal combustion engine is detected to determine whether or not the temperature has exceeded a predetermined temperature. If the temperature does not exceed the predetermined temperature, it is determined that the engine is in the cold state, and the process returns to wait for the next start timing or executes another control flow. On the other hand, if the temperature exceeds the predetermined temperature, it is determined that the warm-up from the cold state has been completed, and the process proceeds to step S17. It should be noted that FIG. 9B shows the steps after step S17.
≪ステップS17≫ステップS17においては、ステップS10で検出された運転状態情報に基づいて排気バルブ5の開閉時期(EVO)、(EVC)、及び吸気バルブ4の開閉時期(IVO)、(IVC)を演算する。この演算は基本的には回転数と負荷によってマッピングされた、排気バルブ5の開閉時期マップ、及び吸気バルブ4の開閉時期マップから求められている。
{Step S17} In step S17, the opening / closing timing (EVO) and (EVC) of the exhaust valve 5 and the opening / closing timing (IVO) and (IVC) of the intake valve 4 are determined based on the operating state information detected in step S10. Calculate. This calculation is basically obtained from an opening / closing timing map of the exhaust valve 5 and an opening / closing timing map of the intake valve 4 mapped by the rotation speed and the load.
そして、マップから演算された排気バルブ5の開閉時期(EVO)、(EVC)、及び吸気バルブ4の開閉時期(IVO)、(IVC)は、対応する排気側VEL機構1、排気側VTC機構2、及び吸気側VTC機構3に送られて、排気バルブ5と吸気バルブ4を駆動、制御する。ステップS17の処理を完了するとステップS18に移行する。
The opening / closing timings (EVO) and (EVC) of the exhaust valve 5 and the opening / closing timings (IVO) and (IVC) of the intake valve 4 calculated from the map correspond to the corresponding exhaust-side VEL mechanism 1 and exhaust-side VTC mechanism 2. , And is sent to the intake side VTC mechanism 3 to drive and control the exhaust valve 5 and the intake valve 4. Upon completion of the process in the step S17, the process shifts to a step S18.
≪ステップS18≫ステップS18においては、ステップS10で検出された運転状態情報に基づいて点火時期(IgT)を演算する。この点火時期(IgT)は、まず回転数と負荷によってマッピングされた基本点火時期マップから求められる。マップから検索された基本点火時期は、種々の補正点火時期が加算、減算されて最終的な点火時期(IgT)が求められる。
{Step S18} In step S18, an ignition timing (IgT) is calculated based on the operating state information detected in step S10. This ignition timing (IgT) is first obtained from a basic ignition timing map mapped by the rotation speed and the load. The final ignition timing (IgT) is obtained by adding and subtracting various corrected ignition timings to and from the basic ignition timing retrieved from the map.
このとき、アトキンソンサイクルを実行する場合は、点火時期(IgT)を進角する必要があるので、負荷の減少に対応して進角側に補正される補正テーブルから補正点火時期が読み出されて、基本点火時期に反映されている。点火時期(IgT)が求まるとステップS19に移行する。
At this time, when the Atkinson cycle is executed, the ignition timing (IgT) needs to be advanced, so that the corrected ignition timing is read from the correction table which is corrected to the advanced side in accordance with the decrease in the load. Is reflected in the basic ignition timing. When the ignition timing (IgT) is determined, the process proceeds to step S19.
≪ステップS19≫ステップS19においては、ステップS17の演算で求めた吸気バルブの吸気閉時期(IVC)と、ステップS18の演算で求めた点火時期(IgT)の実角度差(Δθact)を求める。通常は、吸気バルブの吸気閉時期(IVC)の方が点火時期(IgT)より進角側に位置するため、演算式は(Δθact)=(IVC)-(IgT)とされている。
{Step S19} In step S19, the actual angle difference (Δθact) between the intake valve closing timing (IVC) of the intake valve calculated in step S17 and the ignition timing (IgT) calculated in step S18 is calculated. Normally, since the intake valve closing timing (IVC) of the intake valve is located on the more advanced side than the ignition timing (IgT), the arithmetic expression is (Δθact) = (IVC) − (IgT).
したがって、実角度差(Δθact)にマイナス(-)の符号が付けば、点火時期(IgT)の方が吸気閉時期(IVC)より進角側に設定されていることが判定できる。この判定は次のステップS20で実行される。
Therefore, if a sign of minus (-) is given to the actual angle difference (Δθact), it can be determined that the ignition timing (IgT) is set more advanced than the intake closing timing (IVC). This determination is performed in the next step S20.
尚、吸気側VTC機構3に角度センサを取り付けて、実際の吸気閉時期(IVC)を実測して、吸気バルブの吸気閉時期(IVC)とすることもできる。これによれば、吸気閉時期(IVC)の実閉時期を高精度に検出できるので、バックファイアを確実に回避する制御を実行できる。また、後述する補正角度(Δθcmp)を小さくすることができ、この分だけ燃料消費量を低減できる。
It is also possible to attach an angle sensor to the intake-side VTC mechanism 3 and measure the actual intake closing timing (IVC) to obtain the intake closing timing (IVC) of the intake valve. According to this, since the actual closing timing of the intake closing timing (IVC) can be detected with high accuracy, it is possible to execute control for reliably avoiding backfire. In addition, a correction angle (Δθcmp) described later can be reduced, and the fuel consumption can be reduced accordingly.
≪ステップS20≫ステップS20においては、先ずステップ19で求めた実角度差(Δθact)が、予め定めた所定の角度差閾値(Δθsld)より小さいかどうかを判断している。実角度差(Δθact)がプラス(+)の符号が付けば、吸気閉時期(IVC)の方が点火時期(IgT)より進角側に設定されることが判定できる。この場合、実角度差(Δθact)が角度差閾値(Δθsld)より大きければ、バックファイアの恐れはないと判定される。しかしながら、実角度差(Δθact)が角度差閾値(Δθsld)より小さければ、点火時期(IgT)が、吸気閉時期(IVC)に接近してバックファイアの恐れが高いと判定される。
{Step S20} In step S20, first, it is determined whether or not the actual angle difference (Δθact) obtained in step 19 is smaller than a predetermined angle difference threshold value (Δθsld). If the actual angle difference (Δθact) has a plus (+) sign, it can be determined that the intake closing timing (IVC) is set to be more advanced than the ignition timing (IgT). In this case, if the actual angle difference (Δθact) is larger than the angle difference threshold value (Δθsld), it is determined that there is no risk of backfire. However, if the actual angle difference (Δθact) is smaller than the angle difference threshold value (Δθsld), it is determined that the ignition timing (IgT) approaches the intake closing timing (IVC) and the risk of backfire is high.
更に、このステップS20においては、上述した判定動作の他に、実角度差(Δθact)を求める演算結果が、マイナス(-)の符号が付いているかどうかも併せ判断されている。したがって、実角度差(Δθact)にマイナス(-)の符号が付いていると、点火時期(IgT)の方が吸気比時期(IVC)より進角側に設定されているので、バックファイアの恐れがかなり高いと判定される。
In addition, in step S20, in addition to the above-described determination operation, it is also determined whether or not the calculation result for obtaining the actual angle difference (Δθact) has a minus (−) sign. Therefore, if the actual angle difference (Δθact) has a minus (−) sign, the ignition timing (IgT) is set to be more advanced than the intake air ratio timing (IVC), which may cause a backfire. Is determined to be quite high.
このように、実角度差(Δθact)がプラス(+)の符号が付き、実角度差(Δθact)が角度差閾値(Δθsld)より大きければ、ステップS21に移行する。一方、実角度差(Δθact)がプラス(+)の符号が付き、実角度差(Δθact)が角度差閾値(Δθsld)より小さい場合、及び、実角度差(Δθact)にマイナス(-)の符号が付いている場合は、ステップS22に移行する。
As described above, if the actual angle difference (Δθact) has a plus (+) sign and the actual angle difference (Δθact) is larger than the angle difference threshold value (Δθsld), the process proceeds to step S21. On the other hand, the actual angle difference (Δθact) has a plus (+) sign, the actual angle difference (Δθact) is smaller than the angle difference threshold (Δθsld), and the actual angle difference (Δθact) has a minus (−) sign. If it is, the process moves to step S22.
≪ステップS21≫ステップS20においては、実角度差(Δθact)がプラス(+)の符号が付き、実角度差(Δθact)が角度差閾値(Δθsld)より大きいと判断され、バックファイアの恐れはないと見做されている。
{Step S21} In step S20, the actual angle difference (Δθact) has a plus (+) sign, and it is determined that the actual angle difference (Δθact) is larger than the angle difference threshold value (Δθsld), and there is no possibility of backfire. Is considered to be.
このため、ステップS21においては、ステップS18で演算された点火時期(IgT)がそのまま使用される。この点火時期(IgT)は、マイクロコンピュータのI/OLSIの点火用レジスタにセットされ、所定のタイミングで点火動作が実行される。
Therefore, in step S21, the ignition timing (IgT) calculated in step S18 is used as it is. The ignition timing (IgT) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is performed at a predetermined timing.
≪ステップS22≫ステップS20においては、実角度差(Δθact)がプラス(+)の符号が付き、実角度差(Δθact)が角度差閾値(Δθsld)より小さいと判断されるか、実角度差(Δθact)がマイナス(-)の符号が付いているので、バックファイアの恐れがあると見做されている。
{Step S22} In step S20, the actual angle difference (Δθact) has a plus (+) sign, and it is determined that the actual angle difference (Δθact) is smaller than the angle difference threshold value (Δθsld), or Since Δθact) has a minus (−) sign, it is considered that there is a risk of backfire.
このため、ステップS22においては、ステップS18で演算された点火時期(IgT)はそのまま使用されず、点火時期(IgT)が吸気閉時期(IVC)より遅角側で、しかも吸気閉時期(IVC)から所定の補正角度(Δθcmp)だけ遅角された点火時期(IgTnew)が新たに設定される。新たな点火時期(IgTnew)は、例えば、(IgTnew)=(IVC)-(Δθcmp)の演算式で求めることができる。更に、補正角度(Δθcmp)は角度差閾値(Δθsld)と同じ値とすることができる。
Therefore, in step S22, the ignition timing (IgT) calculated in step S18 is not used as it is, and the ignition timing (IgT) is retarded from the intake closing timing (IVC) and the intake closing timing (IVC). , An ignition timing (IgTnew) delayed by a predetermined correction angle (Δθcmp) is newly set. The new ignition timing (IgTnew) can be obtained by, for example, an arithmetic expression of (IgTnew) = (IVC)-(Δθcmp). Further, the correction angle (Δθcmp) can be set to the same value as the angle difference threshold value (Δθsld).
この演算によって、新たな点火時期(IgTnew)は、常に吸気閉時期(IVC)より遅角側に設定されるので、バックファイアを生じる恐れを抑制することができる。この新たな点火時期(IgTnew)は、マイクロコンピュータのI/OLSIの点火用レジスタにセットされ、所定のタイミングで点火動作が実行される。
(4) By this calculation, the new ignition timing (IgTnew) is always set to the retard side from the intake closing timing (IVC), so that the possibility of occurrence of backfire can be suppressed. This new ignition timing (IgTnew) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is executed at a predetermined timing.
以上の通り、本実施形態によれば、内燃機関の負荷が減少するにしたがって、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を遅角側に制御し、更に点火時期制御手段によって点火時期(IgT)を進角側に制御すると共に、点火時期(IgT)を吸気閉時期(IVC)より遅角側で、しかも吸気閉時期(IVC)と点火時期(IgT)の間の角度差を常に所定の補正角度(Δθcmp)以上に維持している。
As described above, according to the present embodiment, as the load on the internal combustion engine decreases, the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake-side variable valve mechanism. The ignition timing (IgT) is controlled to an advanced side by the ignition timing, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle between the intake closing timing (IVC) and the ignition timing (IgT). The difference is always maintained at or above a predetermined correction angle (Δθcmp).
これによれば、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を大きく遅角してアトキンソンサイクルによる燃料消費量の低減効果を高め、且つ点火時期(IgT)を進角して機関トルクの低下を抑制すると共に、点火時期(IgT)が吸気閉時期(IVC)を超えて進角されないので、バックファイアを抑制することができる。
According to this, the intake closing timing (IVC) of the intake valve is greatly retarded by the intake side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and the ignition timing (IgT) is advanced. In addition to suppressing the engine torque from decreasing, the ignition timing (IgT) is not advanced beyond the intake closing timing (IVC), so that backfire can be suppressed.
次に、本発明の第2の実施形態を図10に基づき説明する。上述した第1の実施形態は全ての運転負荷状態に亘って、点火時期(IgT)が、吸気閉時期(IVC)に接近するか、或いは点火時期(IgT)が、吸気閉時期(IVC)超えているかどうかを判断している。一方、以下に説明する第2の実施形態は、点火時期(IgT)が吸気閉時期(IVC)に接近する負荷は、所定の負荷より小さい負荷と判明しているので、所定負荷以下に限ってステップ19~ステップS22を実行する形態としている。
Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment described above, the ignition timing (IgT) approaches the intake closing timing (IVC) or the ignition timing (IgT) exceeds the intake closing timing (IVC) over all operating load states. You have determined whether or not. On the other hand, in the second embodiment described below, the load at which the ignition timing (IgT) approaches the intake closing timing (IVC) is known to be a load smaller than the predetermined load, so that the load is limited to the predetermined load or less. Steps 19 to S22 are executed.
尚、参照番号が図9Bと同一の制御ステップは、制御内容が同じであるので詳細な説明は省略する。ここで、ステップS26、S27は故障時の対応を示しており、これについては後述する。
Note that the control steps having the same reference numbers as those in FIG. 9B have the same control content, and thus detailed description is omitted. Here, steps S26 and S27 show the response at the time of failure, which will be described later.
≪ステップS23≫図10において、ステップS18とステップS19の間には、ステップS23が新たに設けられている。このステップS23は、ステップS10で検出された運転状態情報に基づいて現在の負荷を判別しており、負荷が第2負荷より大きいと判定されるとステップS24に移行し、負荷が第2負荷より小さいと判定されるとステップS19に移行する。
{Step S23} In FIG. 10, a step S23 is newly provided between steps S18 and S19. In step S23, the current load is determined based on the operating state information detected in step S10. If it is determined that the load is larger than the second load, the process proceeds to step S24, where the load is changed from the second load. If it is determined that it is smaller, the process moves to step S19.
尚、ステップS19からステップS22の処理は、図9Bに示す処理と同じなので、ここでは説明を省略する。
Note that the processing from step S19 to step S22 is the same as the processing shown in FIG. 9B, and a description thereof will not be repeated.
≪ステップS24≫ステップS24においては、負荷が第2負荷より大きい第4負荷、及び第3負荷では、点火時期(IgT)は吸気閉時期(IVC)に接近する状態にならないので、ステップS18で演算された点火時期(IgT)がそのまま使用される。この点火時期(IgT)は、マイクロコンピュータのI/OLSIの点火用レジスタにセットされ、所定のタイミングで点火動作が実行される。
<< Step S24 >> In step S24, the ignition timing (IgT) does not become close to the intake closing timing (IVC) at the fourth load and the third load where the load is larger than the second load. The set ignition timing (IgT) is used as it is. The ignition timing (IgT) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is performed at a predetermined timing.
このように、この実施形態では所定負荷、例えば第2負荷より小さい負荷に限って、点火時期(IgT)が、吸気閉時期(IVC)に接近するか、或いは点火時期(IgT)が、吸気閉時期(IVC)を超えているかどうかを判断しているので、マイクロコンピュータの演算負荷を軽減できる。
As described above, in this embodiment, the ignition timing (IgT) approaches the intake closing timing (IVC) or the ignition timing (IgT) changes to the intake closing timing only for a load smaller than the predetermined load, for example, the second load. Since it is determined whether or not the time (IVC) has been exceeded, the calculation load on the microcomputer can be reduced.
次に、本発明の第3の実施形態を図11に基づき説明する。上述した第1及び第2の実施形態では、点火時期(IgT)が、吸気閉時期(IVC)に接近するか、或いは点火時期(IgT)が、吸気閉時期(IVC)を超えているかどうかを判断している。一方、以下に説明する第3の実施形態は、点火時期(IgT)が、吸気閉時期(IVC)に接近するか、或いは進角側に超えているかどうかを判断する制御ステップを省略したものである。尚、参照番号が図10と同一の制御ステップは、制御内容が同じであるので詳細な説明は省略する。
Next, a third embodiment of the present invention will be described with reference to FIG. In the first and second embodiments described above, it is determined whether the ignition timing (IgT) approaches the intake closing timing (IVC) or whether the ignition timing (IgT) exceeds the intake closing timing (IVC). Deciding. On the other hand, the third embodiment described below omits a control step for determining whether the ignition timing (IgT) approaches the intake closing timing (IVC) or exceeds the advance timing. is there. The control steps having the same reference numbers as those in FIG.
≪ステップS25≫図11において、ステップS23は、ステップS10で検出された運転状態情報に基づいて現在の負荷を判別しており、負荷が第2負荷より大きいと判定されるとステップS24に移行し、負荷が第2負荷より小さいと判定されるとステップS25に移行する。
{Step S25} In FIG. 11, in step S23, the current load is determined based on the operating state information detected in step S10. If it is determined that the load is larger than the second load, the process proceeds to step S24. If it is determined that the load is smaller than the second load, the process proceeds to step S25.
ステップS25においては、第2負荷より小さい負荷では、点火時期(IgT)は吸気閉時期(IVC)に接近する、或いは、点火時期(IgT)が、吸気閉時期(IVC)を超える恐れがあると見做して、ステップS17で求められた吸気閉時期(IVC)に対して、一律に所定の補正角度(Δθcmp)を減算して新たな点火時期(IgTnew)としている。
In step S25, when the load is smaller than the second load, the ignition timing (IgT) approaches the intake closing timing (IVC), or the ignition timing (IgT) may exceed the intake closing timing (IVC). Considering this, a predetermined correction angle (Δθcmp) is uniformly subtracted from the intake closing timing (IVC) obtained in step S17 to obtain a new ignition timing (IgTnew).
したがって、第2負荷、及び第1負荷では、ステップS18で演算された点火時期(IgT)は使用されず、吸気閉時期(IVC)を基に補正角度(Δθcmp)で遅角側に補正された新たな点火時期(IgTnew)が使用される。この新たな点火時期(IgTnew)は、マイクロコンピュータのI/OLSIの点火用レジスタにセットされ、所定のタイミングで点火動作が実行される。
Therefore, in the second load and the first load, the ignition timing (IgT) calculated in step S18 is not used, and the ignition timing (IgT) is corrected to the retard side at the correction angle (Δθcmp) based on the intake closing timing (IVC). A new ignition timing (IgTnew) is used. This new ignition timing (IgTnew) is set in an ignition register of the I / OLSI of the microcomputer, and the ignition operation is executed at a predetermined timing.
このように、この実施形態においては、所定負荷、例えば第1負荷と第2負荷に限って、一律に吸気閉時期(IVC)に所定の補正角度(Δθcmp)を減算するだけなので、マイクロコンピュータの演算負荷を更に軽減できる。
As described above, in this embodiment, only the predetermined correction angle (Δθcmp) is subtracted uniformly from the intake closing timing (IVC) for a predetermined load, for example, only the first load and the second load. The calculation load can be further reduced.
次に、本発明の第4の実施形態を、図10、図12に基づき説明する。この実施形態は、吸気側VTC機構3に異常が生じて、点火時期(IgT)が正常な値を得られなくなる場合の対応方法を示している。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. This embodiment shows a method for dealing with a case where an abnormality occurs in the intake-side VTC mechanism 3 so that a normal ignition timing (IgT) cannot be obtained.
図12に示している通り、吸気側VTC機構3は何らかの異常があった場合には、吸気閉時期(IVC)の最遅角ストッパ位置と最進角ストッパ位置の間で、非制御状態で駆動される。このため、点火時期(IgT)も正確な点火時期とはならない恐れがある。場合によっては点火時期(IgT)が、非制御状態の吸気閉時期(IVC)より進角してしまう場合がある。このため、図10の破線で示すステップS26、S27が実行される。
As shown in FIG. 12, when there is any abnormality, the intake side VTC mechanism 3 is driven in an uncontrolled state between the most retarded stopper position and the most advanced stopper position of the intake closing timing (IVC). Is done. Therefore, the ignition timing (IgT) may not be accurate. In some cases, the ignition timing (IgT) may be advanced from the intake closing timing (IVC) in the uncontrolled state. Therefore, steps S26 and S27 indicated by broken lines in FIG. 10 are executed.
≪ステップS26≫図10の破線で示すステップS26においては、吸気側VTC機構3の異常状態を判断している。そして、異常が発生していないと判断されるとステップS18に移行し、吸気側VTC機構3に異常が発生していると判断されるとステップS27に移行する。
{Step S26} In step S26 indicated by a broken line in FIG. 10, an abnormal state of the intake-side VTC mechanism 3 is determined. If it is determined that no abnormality has occurred, the process proceeds to step S18, and if it is determined that an abnormality has occurred in the intake-side VTC mechanism 3, the process proceeds to step S27.
≪ステップS27≫ステップS27においては、吸気側VTC機構3が異常状態となっているので、吸気側VTC機構3の最遅角ストッパ位置より遅角側の固定点火時期(IgTm)を設定する。この場合では圧縮上死点(TDC)より遅角側に固定点火時期(IgTm)が設定されている。したがって、吸気側VTC機構3の異常によって、吸気閉時期(IVC)の最遅角ストッパ位置と最進角ストッパ位置の間で、非制御状態で駆動されても、固定点火時期(IgTm)が最遅角ストッパ位置の吸気閉時期(IVC)を超えて進角されないので、バックファイアを抑制することができる。
{Step S27} In step S27, since the intake-side VTC mechanism 3 is in an abnormal state, the fixed ignition timing (IgTm) on the retard side from the most retarded stopper position of the intake-side VTC mechanism 3 is set. In this case, the fixed ignition timing (IgTm) is set on the retard side from the compression top dead center (TDC). Therefore, due to the abnormality of the intake side VTC mechanism 3, even if the fixed ignition timing (IgTm) is not controlled between the most retarded stopper position and the most advanced stopper position of the intake closing timing (IVC), the fixed ignition timing (IgTm) is minimized. Since the advance is not made beyond the intake closing timing (IVC) at the retard stopper position, backfire can be suppressed.
ここで、ステップS26、S27は図10に示す第2の実施形態で説明したが、第1の実施形態の図9B、及び第3の実施形態の図11に示すステップS17の後で実行できることはもちろんである。
Here, steps S26 and S27 have been described in the second embodiment shown in FIG. 10, but what can be executed after step S17 shown in FIG. 9B of the first embodiment and FIG. 11 of the third embodiment will be described. Of course.
次に、本発明の第5の実施形態を、図13、図14、及び図15に基づき説明する。この実施形態は、高回転域で吸気バルブ4の実際の吸気閉時期(IVC)が変動して、点火時期(IgT)が吸気閉時期(IVC)を超える現象が発生する場合の対応方法を示している。
Next, a fifth embodiment of the present invention will be described with reference to FIG. 13, FIG. 14, and FIG. This embodiment shows a method for coping with a case where the actual intake closing timing (IVC) of the intake valve 4 fluctuates in the high rotation range and the ignition timing (IgT) exceeds the intake closing timing (IVC). ing.
実際の内燃機関の動作においては、高回転域で吸気バルブ4がバルブシートに着座すると動的なバウンス現象が発生して、最終的に着座するタイミングが僅かに遅れる可能性がある。このため、制御上は点火時期(IgT)を吸気閉時期(IVC)より遅角側に設定していたとしても、バウンス現象によって吸気バルブ4が開いている時に点火が実行されるとバックファイアが発生する恐れがある。
In the actual operation of the internal combustion engine, when the intake valve 4 is seated on the valve seat in the high rotation range, a dynamic bounce phenomenon occurs, and the timing of finally seating may be slightly delayed. For this reason, even if the ignition timing (IgT) is set to a retard side from the intake closing timing (IVC) in terms of control, if the ignition is executed when the intake valve 4 is opened due to the bounce phenomenon, the backfire will occur. May occur.
このような課題に対応するため、本実施形態では、回転数の増加に対応して、補正角度(Δθcmp)を大きく設定することを特徴としている。例えば、図13は横軸に回転数(N)、縦軸に回転補正角度(ΔθcmpN)を設定した補正角度テーブルの値を示している。そして、例えば、3000rpmを境として、低回転側では破線で示す一定値の回転補正角度(ΔθcmpNL)が設定してあり、高回転側では実線で示す漸増する回転補正角度(ΔθcmpNH)が設定してある。
In order to cope with such a problem, the present embodiment is characterized in that the correction angle (Δθcmp) is set to be large in response to an increase in the number of rotations. For example, FIG. 13 shows values of a correction angle table in which the horizontal axis sets the rotation speed (N) and the vertical axis sets the rotation correction angle (ΔθcmpN). For example, a rotation correction angle (ΔθcmpNL) of a constant value indicated by a broken line is set on the low rotation side and a gradually increasing rotation correction angle (ΔθcmpNH) indicated by a solid line is set on the high rotation side, for example, at 3000 rpm. is there.
このため、図14にある通り、3000rpm以下の低回転側では、回転補正角度(ΔθcmpNL)を使用して、破線で示す新たな点火時期(IgTnewNL)が求められ、3000rpm以上の高回転側では、回転補正角度(ΔθcmpH)を使用して、実線で示す新たな点火時期(IgTnewNH)が求められる。
For this reason, as shown in FIG. 14, on the low rotation speed below 3000 rpm, a new ignition timing (IgTnewNL) indicated by a broken line is obtained using the rotation correction angle (ΔθcmpNL), and on the high rotation speed above 3000 rpm, Using the rotation correction angle (ΔθcmpH), a new ignition timing (IgTnewNH) indicated by a solid line is obtained.
図15は、図14に示す特性を実現するための制御フローを示している。この制御フローは、図9B、図10に示すステップS20の「YES」判定の後で実行され、また、図11に示すステップS23の「YES」判定の後で実行される。
FIG. 15 shows a control flow for realizing the characteristics shown in FIG. This control flow is executed after the "YES" determination in step S20 shown in FIGS. 9B and 10, and is executed after the "YES" determination in step S23 shown in FIG.
≪ステップS28≫ステップS28においては、ステップS10で検出された回転数(N)に基づいて、図13に示す特性が記憶された補正角度テーブルから回転補正角度(ΔθcmpN)を読み出す。この読み出された回転補正角度(ΔθcmpN)は、次のステップS29の演算に使用される。
{Step S28} In step S28, a rotation correction angle (ΔθcmpN) is read from a correction angle table in which the characteristics shown in FIG. 13 are stored, based on the rotation speed (N) detected in step S10. The read rotation correction angle (ΔθcmpN) is used for calculation in the next step S29.
≪ステップS29≫ステップS29においては、ステップS18で演算された点火時期(IgT)はそのまま使用されず、点火時期(IgT)が吸気閉時期(IVC)より遅角側で、しかも吸気閉時期(IVC)から回転補正角度(ΔθcmpN)だけ遅角された点火時期(IgTnewN)が新たに設定される。新たな点火時期(IgTnewN)は、例えば、(IgTnew)=(IVC)-(ΔθcmpN)の演算式で求めることができる。この新たな点火時期(IgTnewN)は、マイクロコンピュータのI/OLSIの点火用レジスタにセットされ、所定のタイミングで点火動作が実行される。
{Step S29} In step S29, the ignition timing (IgT) calculated in step S18 is not used as it is, and the ignition timing (IgT) is retarded from the intake closing timing (IVC) and the intake closing timing (IVC). ) Is newly set to the ignition timing (IgTnewN) retarded by the rotation correction angle (ΔθcmpN). The new ignition timing (IgTnewN) can be obtained by, for example, an arithmetic expression of (IgTnew) = (IVC)-(ΔθcmpN). This new ignition timing (IgTnewN) is set in the ignition register of the I / OLSI of the microcomputer, and the ignition operation is executed at a predetermined timing.
このような演算によって、新たな点火時期(IgTnewN)は、常に吸気閉時期(IVC)より遅角側に設定されるので、バックファイアを生じる恐れを抑制することができる。更には、回転数(N)が高くなるほど回転補正角度(ΔθcmpN)は大きく設定されているため、バウンス現象によって吸気バルブ4が開いている時にも点火が実行されることがないので、バックファイアが発生する恐れを更に抑制することができる。
演算 By such a calculation, the new ignition timing (IgTnewN) is always set to a retard side from the intake closing timing (IVC), so that the possibility of occurrence of backfire can be suppressed. Further, since the rotation correction angle (ΔθcmpN) is set to be larger as the rotation speed (N) becomes higher, the ignition is not performed even when the intake valve 4 is opened due to the bounce phenomenon. The possibility of occurrence can be further suppressed.
つまり、回転上昇とともに吸気バルブ4の挙動に不整状態が発生した場合であっても、バックファイアを確実に防止できる。すなわち、回転上昇とともに、動弁系が弾性変形してバルブジャンプやバルブバウンス(跳ね返り)が発生し、実際の吸気バルブ4の吸気閉時期(IVC)が、吸気側VTC機構3の制御に基づく吸気閉時期(IVC)より遅れてしまう場合がある。これに対して、本実施形態では点火時期(IgT)が更に遅れる方向に補正されるので、点火時期(IgT)が吸気閉時期(IVC)より常に遅角側となるので、バックファイアを確実に防止できる。
That is, even if the behavior of the intake valve 4 becomes irregular due to the rotation increase, backfire can be reliably prevented. That is, as the rotation increases, the valve train resiliently deforms to cause a valve jump or valve bounce (bounce), and the actual intake closing timing (IVC) of the intake valve 4 is changed based on the control of the intake side VTC mechanism 3. There is a case where it is later than the closing time (IVC). On the other hand, in the present embodiment, the ignition timing (IgT) is corrected to be further delayed, so that the ignition timing (IgT) is always on the retard side from the intake closing timing (IVC). Can be prevented.
次に、本発明の第6の実施形態を、図16に基づき説明する。今まで説明した実施形態では、吸気バルブ4の吸気閉時期(IVC)を、吸気バルブ4の開閉時期マップによる吸気閉時期(IVC)、或いは角度センサによる実吸気閉時期(IVC)から求めているが、本実施形態ではノックセンサによって吸気閉時期(IVC)を求めるものである。
Next, a sixth embodiment of the present invention will be described with reference to FIG. In the embodiments described so far, the intake closing timing (IVC) of the intake valve 4 is obtained from the intake closing timing (IVC) based on the opening / closing timing map of the intake valve 4 or the actual intake closing timing (IVC) using the angle sensor. However, in the present embodiment, the intake closing timing (IVC) is obtained by the knock sensor.
ノックセンサを使用する場合においては、吸気バルブ4の着座判定ウインドウを設定し、この着座判定ウインドウ内で検出された実際の吸気バルブ4の着座信号(振動信号)から、吸気バルブ4の吸気閉時期(IVC)を検出することができる。つまり、図16にあるように、ノックセンサの振動信号が、着座判定ウインドウ内の着座判定レベルより高いと判定されると、吸気バルブ4がバルブシートに着座して、吸気バルブ4の吸気閉時期(IVC)が発生したと判断できる。
When the knock sensor is used, a seating determination window for the intake valve 4 is set, and an actual closing signal (vibration signal) of the intake valve 4 detected in the seating determination window is used to determine the intake closing timing of the intake valve 4. (IVC) can be detected. That is, as shown in FIG. 16, when it is determined that the vibration signal of the knock sensor is higher than the seating determination level in the seating determination window, the intake valve 4 is seated on the valve seat and the intake closing timing of the intake valve 4 is determined. It can be determined that (IVC) has occurred.
このように、ノックセンサの着座信号を用いると、高回転域でのバウンス現象が生じても、高精度で吸気バルブ4の吸気閉時期(IVC)を検出できるので、確実に点火時期(IgT)を吸気閉時期(IVC)より遅角側に設定できる。このため、バックファイアを防止できると共に、点火時期(IgT)を吸気閉時期(IVC)に向けて可能な限り進角側に近づけることができるので、更に燃料消費量の低減が可能となる。
As described above, when the seating signal of the knock sensor is used, the intake closing timing (IVC) of the intake valve 4 can be detected with high accuracy even if a bounce phenomenon occurs in a high rotation range, so that the ignition timing (IgT) can be reliably determined. Can be set on the retard side from the intake closing timing (IVC). For this reason, the backfire can be prevented and the ignition timing (IgT) can be made as close to the advance side as possible toward the intake closing timing (IVC), so that the fuel consumption can be further reduced.
更に、動弁系におけるバルブクリアランス(カム-リフタ間のクリアランス)が、経時変化した場合にも着座位置は変化するが、この着座位置の変化も反映した吸気バルブ4の吸気閉時期(IVC)を検出できる。
Further, even if the valve clearance (clearance between the cam and the lifter) in the valve operating system changes with time, the seating position changes, but the intake closing timing (IVC) of the intake valve 4 reflecting the change in the seating position is also reflected. Can be detected.
ノックセンサは、従来から使用されているノックセンサを使用することができる。図16に示すように、ノック振動が発生する区間(ノック判定ウインドウに対応)と、吸気バルブの着座振動が発生する区間(着座判定ウインドウに対応)とが、時間的にずれているため、ノック発生の判定と吸気閉時期(IVC)の判定の両方が可能である。
A knock sensor that has been conventionally used can be used as the knock sensor. As shown in FIG. 16, since a section in which knock vibration occurs (corresponding to a knock determination window) and a section in which seat vibration of the intake valve occurs (corresponding to a seat determination window) are temporally shifted, knocking occurs. Both the occurrence determination and the intake closing timing (IVC) determination are possible.
つまり、ノック判定ウインドウで、ノック判定レベルを超えたらノック発生と判断でき、かつ、着座判定ウインドウで、着座判定レベルを超えたら吸気閉時期(IVC)と判断できる。尚、ノックセンサの装着位置は、シリンダブロックの吸気バルブ側のシリンダブロックの側面に取り付ければ、排気バルブの着座振動を検出し難いので有利である。
In other words, if the knock determination window exceeds the knock determination level, it can be determined that knock has occurred, and if the seat determination window is exceeded, it can be determined that the intake closing timing (IVC) has occurred. It is advantageous to mount the knock sensor on the side of the cylinder block on the intake valve side of the cylinder block, because it is difficult to detect the seated vibration of the exhaust valve.
図17は、ノックセンサによる吸気閉時期(IVC)の検出方法の制御フローを示している。この制御フローは、図9B、図10、及び図11に示すステップS18の後で実行される。
FIG. 17 shows a control flow of a method for detecting the intake closing timing (IVC) by the knock sensor. This control flow is executed after step S18 shown in FIGS. 9B, 10, and 11.
≪ステップS30≫ステップS30においては、着座検出ウインドウ内で、ノックセンサによって検出された振動信号が着座判定レベルを超えたかどうかが判定される。そして、ノックセンサの振動信号が着座判定レベルを超えないと判定されると、再びステップS30に戻って同様の判定動作を実行する。一方、ノックセンサの振動信号が着座判定レベルを超えたと判定されると、ステップS31に移行する。
{Step S30} In step S30, it is determined whether or not the vibration signal detected by the knock sensor has exceeded the seating determination level in the seating detection window. Then, when it is determined that the vibration signal of the knock sensor does not exceed the seating determination level, the process returns to step S30 again to execute the same determination operation. On the other hand, when it is determined that the vibration signal of the knock sensor has exceeded the sitting determination level, the process proceeds to step S31.
≪ステップS31≫ステップS31においては、ステップS30で判定した振動信号の発生時刻に対応したクランク角を、吸気バルブ4の吸気閉時期(IVC)と見做して設定する。この後は図9B、図10のステップS19、S20や、図11のステップS25の演算に使用される。
<< Step S31 >> In step S31, the crank angle corresponding to the time of occurrence of the vibration signal determined in step S30 is set as the intake closing timing (IVC) of the intake valve 4. Thereafter, it is used for the calculations in steps S19 and S20 in FIGS. 9B and 10 and in step S25 in FIG.
このように、ノックセンサの着座信号を用いると、高回転域でのバウンス現象が生じても、高精度で吸気バルブ4の吸気閉時期(IVC)を検出できるので、確実に点火時期(IgT)を吸気閉時期(IVC)より遅角側に設定できる。なお、本実施例では、吸気バルブ4の実吸気閉時期(IVC)検出をノックセンサで兼用させる例を示したが、ノックセンサとは別に、実吸気閉時期(IVC)センサを設けても構わない。そうすると、振動レベル検出頻度を抑えられ、センサへの負担が軽減される。
As described above, when the seating signal of the knock sensor is used, the intake closing timing (IVC) of the intake valve 4 can be detected with high accuracy even if a bounce phenomenon occurs in a high rotation range, so that the ignition timing (IgT) can be reliably determined. Can be set on the retard side from the intake closing timing (IVC). In this embodiment, an example is shown in which the knock sensor is used to detect the actual intake closing timing (IVC) of the intake valve 4. However, an actual intake closing timing (IVC) sensor may be provided separately from the knock sensor. Absent. Then, the frequency of detecting the vibration level can be suppressed, and the load on the sensor can be reduced.
次に、本発明の第7の実施形態を、図18に基づき説明する。第1の実施形態においては、第2負荷から第1負荷まで補正角度(Δθcmp)は一定の値であったが、本実施形態では負荷が小さくなるにしたがって、補正角度(Δθcmp)を大きく設定するものである。
Next, a seventh embodiment of the present invention will be described with reference to FIG. In the first embodiment, the correction angle (Δθcmp) has a constant value from the second load to the first load, but in this embodiment, the correction angle (Δθcmp) is set to be larger as the load becomes smaller. Things.
図18に示す通り第2負荷においては、補正角度(Δθcmp)は補正角度(Δθcmp2)に設定されている。この補正角度(Δθcmp2)は、第1の実施形態にある補正角度(Δθcmp)と同じ値に設定されている。一方、第1負荷では補正角度(Δθcmp)は大きく設定されて補正角度(Δθcmp1)に設定されている。そして、(Δθcmp1)>(Δθcmp2)の関係を有している。尚、負荷が小さくなるにつれて、補正角度(Δθcmp)は、補正角度(Δθcmp2)から漸増して補正角度(Δθcmp1)に至る値に設定されている。
補正 As shown in FIG. 18, in the second load, the correction angle (Δθcmp) is set to the correction angle (Δθcmp2). This correction angle (Δθcmp2) is set to the same value as the correction angle (Δθcmp) in the first embodiment. On the other hand, for the first load, the correction angle (Δθcmp) is set to be large and set to the correction angle (Δθcmp1). Then, there is a relationship of (Δθcmp1)> (Δθcmp2). As the load decreases, the correction angle (Δθcmp) is set to a value that gradually increases from the correction angle (Δθcmp2) to the correction angle (Δθcmp1).
これによれば、第1負荷での点火時期(IgT1)が大きく遅角されるので排気ガスの温度が上昇する。このため、排気ガス浄化用触媒が温まり難い極低負荷において、排気ガス浄化用触媒を暖機することができ、排気ガス有害成分の発生を抑制することができる。特に、自動車の走行中に内燃機関の停止動作が頻繁に行われる、ハイブリッド車やアイドルストップ車では、排気ガス温度が低下し易いので、本実施形態を採用すると有利になる。
According to this, since the ignition timing (IgT1) at the first load is greatly retarded, the temperature of the exhaust gas rises. For this reason, the exhaust gas purifying catalyst can be warmed up at an extremely low load where the exhaust gas purifying catalyst is unlikely to warm, and the generation of exhaust gas harmful components can be suppressed. In particular, in the case of a hybrid vehicle or an idle stop vehicle in which the internal combustion engine is frequently stopped while the vehicle is running, the exhaust gas temperature is likely to decrease.
以上説明した実施形態においては、排気側VTC機構2、吸気側VTC機構3は油圧駆動式を示したが、油圧に限らず電動駆動式のVTC機構であっても差し支えない。本発明の主旨を満足するものであれば、可変動弁機構の具体的形態や構成等は限定されない。
In the embodiment described above, the exhaust-side VTC mechanism 2 and the intake-side VTC mechanism 3 are of a hydraulic drive type. However, the present invention is not limited to the hydraulic pressure, and may be an electrically driven VTC mechanism. The specific form and configuration of the variable valve mechanism are not limited as long as they satisfy the gist of the present invention.
また、適用される内燃機関の形態も限定されない。例えば、ターボチャージャのような過給器を備えた内燃機関に適用しても良い。その場合、過給による充填効率向上効果によって、自然吸気方式の内燃機関と同一負荷での吸気閉時期(IVC)が一層遅角されるので、自然吸気方式の内燃機関に比較して熱効率を高められるようになる。
形態 In addition, the form of the applied internal combustion engine is not limited. For example, the present invention may be applied to an internal combustion engine having a supercharger such as a turbocharger. In this case, due to the effect of improving the charging efficiency by the supercharging, the intake closing timing (IVC) at the same load as that of the naturally aspirated internal combustion engine is further retarded, so that the thermal efficiency is increased as compared with the naturally aspirated internal combustion engine. Will be able to
その際、この吸気閉時期(IVC)の更なる遅角により、点火時期(IgT)と吸気閉時期(IVC)が接近してバックファイアが発生し易くなるが、本発明を使用すればバックファイアを有効的に抑制することができる。
At this time, the ignition timing (IgT) and the intake closing timing (IVC) approach each other due to the further retardation of the intake closing timing (IVC), so that backfire is likely to occur. Can be effectively suppressed.
更に、リーンバーン式の内燃機関や、多量のEGRを行なう内燃機関にも適用することができる。リーンバーン燃焼や、多量のEGRによる低温燃焼によって、燃焼温度を低くして冷却損失を低減することで燃料消費量を低減することが可能である。
Furthermore, the present invention can be applied to a lean burn type internal combustion engine and an internal combustion engine which performs a large amount of EGR. It is possible to reduce the fuel consumption by lowering the combustion temperature and reducing the cooling loss by lean-burn combustion or low-temperature combustion by a large amount of EGR.
ところが、低温燃焼により燃焼速度が低下するので、点火時期(IgT)を進角する必要がでてくる。この点火時期(IgT)の進角により、点火時期(IgT)と吸気閉時期(IVC)が接近してバックファイアが発生し易くなるが、本発明を使用すればバックファイアを有効的に抑制することができる。
However, since the combustion speed is reduced by the low-temperature combustion, it is necessary to advance the ignition timing (IgT). Due to the advance of the ignition timing (IgT), the ignition timing (IgT) and the intake closing timing (IVC) are close to each other, so that a backfire is easily generated. However, the use of the present invention effectively suppresses the backfire. be able to.
以上述べた通り、本発明によれば、内燃機関の負荷が減少するにしたがって、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を遅角側に制御し、更に点火時期制御手段によって点火時期(IgT)を進角側に制御すると共に、点火時期(IgT)を吸気閉時期(IVC)より遅角側で、しかも吸気閉時期(IVC)と点火時期(IgT)の間の角度差を所定の補正角度(Δθcmp)以上に維持する、構成とした。
As described above, according to the present invention, as the load on the internal combustion engine decreases, the intake closing timing (IVC) of the intake valve is controlled to the retard side by the intake-side variable valve mechanism. The ignition timing (IgT) is controlled to an advanced side by the ignition timing, and the ignition timing (IgT) is retarded from the intake closing timing (IVC), and the angle between the intake closing timing (IVC) and the ignition timing (IgT). The difference is maintained at a predetermined correction angle (Δθcmp) or more.
これによれば、吸気側可変動弁機構によって吸気バルブの吸気閉時期(IVC)を大きく遅角してアトキンソンサイクルによる燃料消費量の低減効果を高め、且つ点火時期(IgT)を進角して機関トルクの低下を抑制すると共に、点火時期(IgT)が吸気閉時期(IVC)を超えて進角されないので、バックファイアを抑制することができる。
According to this, the intake closing timing (IVC) of the intake valve is greatly retarded by the intake side variable valve mechanism to increase the effect of reducing the fuel consumption by the Atkinson cycle, and the ignition timing (IgT) is advanced. In addition to suppressing the engine torque from decreasing, the ignition timing (IgT) is not advanced beyond the intake closing timing (IVC), so that backfire can be suppressed.
尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
08・スタータ、012・燃料噴射弁、1・リフト制御機構(排気VEL)、2・バルブタイミング制御機構(排気VTC)、3・バルブタイミング制御機構(吸気VTC)、4・吸気バルブ、5・排気バルブ、22・制御手段、IgT・点火時期、IVO・吸気開時期、IVC・吸気閉時期、EVO・排気開時期、EVC・排気閉時期。
08 · starter, 012 · fuel injection valve, 1 · lift control mechanism (exhaust VTC), 2 · valve timing control mechanism (exhaust VTC), 3 · valve timing control mechanism (intake VTC), 4 · intake valve, 5 · exhaust Valve, 22 / control means, IgT / ignition timing, IVO / intake open timing, IVC / intake close timing, EVO / exhaust open timing, EVC / exhaust close timing.
Claims (18)
- 内燃機関の燃焼室に燃料を供給する燃料噴射手段と、
前記燃焼室内に形成された可燃混合気を点火する点火手段と、
前記燃焼室に配置された吸気バルブの閉弁時期(以下、吸気閉時期(IVC)と表記する)を制御する可変動弁機構と、
前記点火手段の点火時期(以下、点火時期(IgT)と表記する)を制御する点火時期制御手段、及び前記可変動弁機構を制御する可変動弁制御手段とを備えた内燃機関の制御システムであって、
前記可変動弁制御手段は、前記内燃機関の負荷が減少するにしたがって、前記可変動弁機構によって前記吸気バルブの前記吸気閉時期(IVC)を遅角側に制御し、
前記点火時期制御手段は、前記内燃機関の負荷が減少するにしたがって、前記点火時期(IgT)を進角側に制御すると共に、前記点火時期(IgT)を前記吸気閉時期(IVC)より遅角側で、しかも前記吸気閉時期(IVC)と前記点火時期(IgT)の間の角度差を所定の補正角度(Δθcmp)以上に維持することを特徴とする内燃機関の制御システム。 Fuel injection means for supplying fuel to a combustion chamber of an internal combustion engine;
Ignition means for igniting a combustible mixture formed in the combustion chamber;
A variable valve mechanism that controls a closing timing of an intake valve disposed in the combustion chamber (hereinafter, referred to as an intake closing timing (IVC));
An internal combustion engine control system comprising: an ignition timing control unit that controls an ignition timing of the ignition unit (hereinafter, referred to as an ignition timing (IgT)); and a variable valve control unit that controls the variable valve mechanism. So,
The variable valve control means controls the intake valve closing timing (IVC) of the intake valve to the retard side by the variable valve mechanism as the load on the internal combustion engine decreases,
The ignition timing control means controls the ignition timing (IgT) to an advanced side as the load on the internal combustion engine decreases, and retards the ignition timing (IgT) from the intake closing timing (IVC). A control system for an internal combustion engine, wherein an angle difference between the intake closing timing (IVC) and the ignition timing (IgT) is maintained at a predetermined correction angle (Δθcmp) or more. - 請求項1に記載の内燃機関の制御システムにおいて、
前記補正角度(Δθcmp)は、負荷が減少しても一定値の補正角度(Δθcmp)に設定されているか、或いは負荷が減少するにしたがって大きくなる補正角度(Δθcmp)に設定されていることを特徴とする内燃機関の制御システム。 The control system for an internal combustion engine according to claim 1,
The correction angle (Δθcmp) is set to a correction angle (Δθcmp) having a constant value even if the load decreases, or set to a correction angle (Δθcmp) that increases as the load decreases. Internal combustion engine control system. - 請求項1に記載の内燃機関の制御システムにおいて、
前記補正角度(Δθcmp)は、クランク角で4ー~8ーに設定されていることを特徴とする内燃機関の制御システム。 In the control system of the internal combustion engine according to claim 1,
The control system for an internal combustion engine, wherein the correction angle (Δθcmp) is set in a range of 4 to 8 in terms of a crank angle. - 請求項1に記載の内燃機関の制御システムにおいて、
前記可変動弁機構が異常を生じた場合、前記点火時期制御手段は、前記可変動弁機構の機械的な最遅角位置での前記吸気閉時期(IVC)よりも遅角側に前記点火時期(IgT)を設定することを特徴とする内燃機関の制御システム。 In the control system of the internal combustion engine according to claim 1,
When the variable valve mechanism is abnormal, the ignition timing control means controls the ignition timing to be more retarded than the intake closing timing (IVC) at the mechanically most retarded position of the variable valve mechanism. (IgT) is set. - 請求項1に記載の内燃機関の制御システムにおいて、
前記補正角度(Δθcmp)は、前記内燃機関の回転数が高くなるにしたがって大きくなる補正角度(Δθcmp)に設定されていることを特徴とする内燃機関の制御システム。 In the control system of the internal combustion engine according to claim 1,
The control system for an internal combustion engine, wherein the correction angle (Δθcmp) is set to a correction angle (Δθcmp) that increases as the rotation speed of the internal combustion engine increases. - 請求項1に記載の内燃機関の制御システムにおいて、
前記吸気バルブの前記吸気閉時期(IVC)は、前記可変動弁機構に設けられた角度センサによって検出されていることを特徴とする内燃機関の制御システム。 The control system for an internal combustion engine according to claim 1,
The control system for an internal combustion engine, wherein the intake closing timing (IVC) of the intake valve is detected by an angle sensor provided in the variable valve mechanism. - 請求項1に記載の内燃機関の制御システムにおいて、
前記吸気バルブの前記吸気閉時期(IVC)は、前記内燃機関に設けられたノックセンサからの前記吸気バルブの着座によって生じる振動信号から検出されていることを特徴とする内燃機関の制御システム。 The control system for an internal combustion engine according to claim 1,
The control system for an internal combustion engine, wherein the intake closing timing (IVC) of the intake valve is detected from a vibration signal generated by a seating of the intake valve from a knock sensor provided in the internal combustion engine. - 請求項1に記載の内燃機関の制御システムにおいて、
前記内燃機関は、過給器を備えた内燃機関、或いはリーンバーン燃焼式の内燃機関、或いは多量のEGRを行なう内燃機関であることを特徴とする内燃機関の制御システム。 The control system for an internal combustion engine according to claim 1,
The control system for an internal combustion engine, wherein the internal combustion engine is an internal combustion engine equipped with a supercharger, a lean burn internal combustion engine, or an internal combustion engine that performs a large amount of EGR. - 内燃機関の燃焼室に燃料を供給する燃料噴射手段と、前記燃焼室内に形成された可燃混合気を点火する点火手段と、前記燃焼室に配置された吸気バルブの閉弁時期(以下、吸気閉時期(IVC)と表記する)を制御する可変動弁機構を備えた内燃機関に使用され、前記点火手段の点火時期(以下、点火時期(IgTと表記する)を制御する点火時期制御手段、及び前記可変動弁機構を制御する可変動弁制御手段を有する備えた内燃機関の制御装置であって、
前記可変動弁制御手段は、前記内燃機関の負荷が減少するにしたがって、前記可変動弁機構によって前記吸気バルブの前記吸気閉時期(IVC)を遅角側に制御し、
前記点火時期制御手段は、前記内燃機関の負荷が減少するにしたがって、前記点火時期(IgT)を進角側に制御すると共に、前記点火時期(IgT)を前記吸気閉時期(IVC)より遅角側で、しかも前記吸気閉時期(IVC)と前記点火時期(IgT)の間の角度差を所定の補正角度(Δθcmp)以上に維持することを特徴とする内燃機関の制御装置。 Fuel injection means for supplying fuel to a combustion chamber of an internal combustion engine; ignition means for igniting a combustible air-fuel mixture formed in the combustion chamber; and closing timing of an intake valve disposed in the combustion chamber (hereinafter referred to as intake closing). Ignition timing control means for controlling the ignition timing of the ignition means (hereinafter, referred to as IgT), which is used in an internal combustion engine having a variable valve mechanism for controlling the timing (referred to as IVC), and A control device for an internal combustion engine having variable valve operating means for controlling the variable valve operating mechanism,
The variable valve control means controls the intake valve closing timing (IVC) of the intake valve to the retard side by the variable valve mechanism as the load on the internal combustion engine decreases,
The ignition timing control means controls the ignition timing (IgT) to an advanced side as the load on the internal combustion engine decreases, and retards the ignition timing (IgT) from the intake closing timing (IVC). A control apparatus for an internal combustion engine, wherein an angle difference between the intake closing timing (IVC) and the ignition timing (IgT) is maintained at a predetermined correction angle (Δθcmp) or more. - 請求項9に記載の内燃機関の制御装置において、
前記点火時期制御手段は、
前記吸気バルブの前記吸気閉時期(IVC)と前記点火手段の前記点火時期(IgT)の間の角度差(Δθact)が所定の角度差閾値(Δθsld)より小さい場合に、前記吸気閉時期(IVC)を起点として前記補正角度(Δθcmp)分だけ遅角側に前記点火時期(IgTnew)を設定することを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The ignition timing control means includes:
When the angle difference (Δθact) between the intake valve closing timing (IVC) of the intake valve and the ignition timing (IgT) of the ignition means is smaller than a predetermined angle difference threshold value (Δθsld), the intake valve closing timing (IVC) ), And sets the ignition timing (IgTnew) on the retard side by the correction angle (Δθcmp). - 請求項9に記載の内燃機関の制御装置において、
前記点火時期制御手段は、
前記内燃機関の負荷が所定の負荷より小さいく、前記吸気バルブの前記吸気閉時期(IVC)と前記点火手段の前記点火時期(IgT)の間の角度差(Δθact)が所定の角度差閾値(Δθsld)より小さい場合に、前記吸気閉時期(IVC)を起点として前記補正角度(Δθcmp)分だけ遅角側に前記点火時期(IgTnew)を設定することを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The ignition timing control means includes:
When the load of the internal combustion engine is smaller than a predetermined load, an angle difference (Δθact) between the intake closing timing (IVC) of the intake valve and the ignition timing (IgT) of the ignition means is a predetermined angle difference threshold ( A control device for an internal combustion engine, wherein the ignition timing (IgTnew) is set to be retarded by the correction angle (Δθcmp) from the intake closing timing (IVC) when the intake timing is smaller than Δθsld). - 請求項9に記載の内燃機関の制御装置において、
前記点火時期制御手段は、
前記内燃機関の負荷が所定の負荷より小さい場合に、前記吸気閉時期(IVC)を起点として前記補正角度(Δθcmp)分だけ遅角側に前記点火時期(IgTnew)を設定することを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The ignition timing control means includes:
When the load of the internal combustion engine is smaller than a predetermined load, the ignition timing (IgTnew) is set to a retard side by the correction angle (Δθcmp) starting from the intake closing timing (IVC). Control device for internal combustion engine. - 請求項9に記載の内燃機関の制御装置において、
前記補正角度(Δθcmp)は、負荷が減少しても一定値の補正角度(Δθcmp)に設定されているか、或いは負荷が減少するにしたがって大きくなる補正角度(Δθcmp)に設定されていることを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The correction angle (Δθcmp) is set to a correction angle (Δθcmp) having a constant value even if the load decreases, or set to a correction angle (Δθcmp) that increases as the load decreases. Control device for an internal combustion engine. - 請求項9に記載の内燃機関の制御装置において、
前記補正角度(Δθcmp)は、クランク角で4ー~8ーに設定されていることを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The control device for an internal combustion engine, wherein the correction angle (Δθcmp) is set to 4 to 8 in terms of a crank angle. - 請求項9に記載の内燃機関の制御装置において、
前記可変動弁機構が異常を生じた場合、前記点火時期制御手段は、前記可変動弁機構の機械的な最遅角位置での前記吸気閉時期(IVC)よりも遅角側に前記点火時期(IgT)を設定することを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
When the variable valve mechanism is abnormal, the ignition timing control means controls the ignition timing to be more retarded than the intake closing timing (IVC) at the mechanically most retarded position of the variable valve mechanism. (IgT) is set. - 請求項9に記載の内燃機関の制御装置において、
前記補正角度(Δθcmp)は、前記内燃機関の回転数が高くなるにしたがって大きくなる補正角度(Δθcmp)に設定されていることを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The control device for an internal combustion engine, wherein the correction angle (Δθcmp) is set to a correction angle (Δθcmp) that increases as the rotation speed of the internal combustion engine increases. - 請求項9に記載の内燃機関の制御装置において、
前記吸気バルブの前記吸気閉時期(IVC)は、前記可変動弁機構に設けられた角度センサによって検出されていることを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The control device for an internal combustion engine, wherein the intake closing timing (IVC) of the intake valve is detected by an angle sensor provided in the variable valve mechanism. - 請求項9に記載の内燃機関の制御装置において、
前記吸気バルブの前記吸気閉時期(IVC)は、前記内燃機関に設けられたノックセンサからの前記吸気バルブの着座によって生じる振動信号から検出されていることを特徴とする内燃機関の制御装置。 The control device for an internal combustion engine according to claim 9,
The control device for an internal combustion engine, wherein the intake closing timing (IVC) of the intake valve is detected from a vibration signal generated by a seating of the intake valve from a knock sensor provided in the internal combustion engine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129247A JP2020007959A (en) | 2018-07-06 | 2018-07-06 | Control system of internal combustion engine and control device thereof |
JP2018-129247 | 2018-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020008941A1 true WO2020008941A1 (en) | 2020-01-09 |
Family
ID=69059635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025053 WO2020008941A1 (en) | 2018-07-06 | 2019-06-25 | Internal combustion engine control system and control device for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020007959A (en) |
WO (1) | WO2020008941A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173751A (en) * | 1992-12-04 | 1994-06-21 | Nippondenso Co Ltd | Electronic control device for internal combustion engine |
JP2005201209A (en) * | 2004-01-19 | 2005-07-28 | Toyota Motor Corp | Combustion control system of internal combustion engines |
JP2008274780A (en) * | 2007-04-26 | 2008-11-13 | Toyota Motor Corp | Control device of internal combustion engine |
JP2012225199A (en) * | 2011-04-15 | 2012-11-15 | Toyota Motor Corp | Spark ignition internal combustion engine |
JP2016070069A (en) * | 2014-09-26 | 2016-05-09 | アイシン精機株式会社 | Valve opening/closing timing control device |
JP2016125459A (en) * | 2015-01-08 | 2016-07-11 | トヨタ自動車株式会社 | Control device of internal combustion engine |
JP2017125435A (en) * | 2016-01-13 | 2017-07-20 | トヨタ自動車株式会社 | Internal combustion engine control device |
-
2018
- 2018-07-06 JP JP2018129247A patent/JP2020007959A/en active Pending
-
2019
- 2019-06-25 WO PCT/JP2019/025053 patent/WO2020008941A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173751A (en) * | 1992-12-04 | 1994-06-21 | Nippondenso Co Ltd | Electronic control device for internal combustion engine |
JP2005201209A (en) * | 2004-01-19 | 2005-07-28 | Toyota Motor Corp | Combustion control system of internal combustion engines |
JP2008274780A (en) * | 2007-04-26 | 2008-11-13 | Toyota Motor Corp | Control device of internal combustion engine |
JP2012225199A (en) * | 2011-04-15 | 2012-11-15 | Toyota Motor Corp | Spark ignition internal combustion engine |
JP2016070069A (en) * | 2014-09-26 | 2016-05-09 | アイシン精機株式会社 | Valve opening/closing timing control device |
JP2016125459A (en) * | 2015-01-08 | 2016-07-11 | トヨタ自動車株式会社 | Control device of internal combustion engine |
JP2017125435A (en) * | 2016-01-13 | 2017-07-20 | トヨタ自動車株式会社 | Internal combustion engine control device |
Also Published As
Publication number | Publication date |
---|---|
JP2020007959A (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7869929B2 (en) | Internal combustion engine having variable valve lift mechanism | |
US7509932B2 (en) | Control apparatus for controlling internal combustion engines | |
US7481199B2 (en) | Start control apparatus of internal combustion engine | |
US6840201B2 (en) | Variable valve timing control apparatus and method for an internal combustion engine | |
US7451739B2 (en) | Ignition timing control system and method for internal combustion engine, and engine control unit | |
US7444999B2 (en) | Control system and method for internal combustion engine | |
US6502535B2 (en) | Valve timing and lift control system | |
US20200232325A1 (en) | Variable operation system for internal combustion engine, and control device therefor | |
JP4136926B2 (en) | Start control device and start control method for internal combustion engine | |
JP6666232B2 (en) | Variable system for internal combustion engine and control method thereof | |
JP5035317B2 (en) | Internal combustion engine control method and internal combustion engine system | |
WO2016098768A1 (en) | Variable valve system and variable valve control device for internal combustion engine | |
JP5515793B2 (en) | Variable mechanism control system for internal combustion engine | |
JP4419800B2 (en) | Engine starter | |
WO2020008941A1 (en) | Internal combustion engine control system and control device for same | |
JP6666222B2 (en) | Variable valve operating device and controller of variable valve operating device | |
JP5092956B2 (en) | Method for controlling internal combustion engine for vehicle and internal combustion engine system | |
WO2018211853A1 (en) | Internal combustion engine variable operation system and control device therefor | |
JP2007154823A (en) | Internal combustion engine controller and vehicle | |
JP2007162664A (en) | Valve operation angle variable control device for internal combustion engine | |
JP2020148116A (en) | Multi-cylinder internal combustion engine control system and control device thereof | |
JP2020033937A (en) | Variable compression ratio system of internal combustion engine and its control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19830745 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19830745 Country of ref document: EP Kind code of ref document: A1 |