[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020008845A1 - シャント装置 - Google Patents

シャント装置 Download PDF

Info

Publication number
WO2020008845A1
WO2020008845A1 PCT/JP2019/023819 JP2019023819W WO2020008845A1 WO 2020008845 A1 WO2020008845 A1 WO 2020008845A1 JP 2019023819 W JP2019023819 W JP 2019023819W WO 2020008845 A1 WO2020008845 A1 WO 2020008845A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
shunt device
shunt
frame
frame terminal
Prior art date
Application number
PCT/JP2019/023819
Other languages
English (en)
French (fr)
Inventor
健司 亀子
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2020008845A1 publication Critical patent/WO2020008845A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids

Definitions

  • the present invention relates to a shunt resistor for current detection, and in particular, to a shunt resistor in which electrodes made of metal are joined to both ends of a resistor made of a resistance alloy, and an extraction terminal for detecting a voltage generated at both ends of the resistor. And a shunt device connected to the shunt device.
  • Shunt resistors have been widely used for large current detection applications, such as monitoring the charge / discharge current of onboard batteries.
  • a shunt resistor includes a resistor made of a resistance alloy plate and electrodes made of a copper material fixed to both ends thereof.A detection electrode portion is provided at an appropriate place of the electrode, and for example, an aluminum wire is provided there. , The voltage generated at both ends of the resistor is detected (see JP-A-2016-054224, JP-A-2015-184206, JP-A-2017-00419, JP-A-2001-118701). .
  • Such a shunt resistor has excellent detection accuracy for a large current, has a small temperature drift, does not generate excessive heat even when a large current is applied, and has a low resistance value of 1 m ⁇ or less. Is required.
  • the position of a terminal for detecting a voltage generated at both ends of the resistor is related.
  • the present invention has been made based on the above circumstances, and a shunt device in which a wide metal frame terminal is connected as a voltage detection extraction terminal to a low resistance shunt resistor to improve current detection accuracy.
  • the purpose is to provide.
  • One embodiment of the present invention provides a shunt resistor including a resistor made of a resistance alloy, and a pair of electrodes made of a high-conductivity metal joined to both ends of the resistor, and a pair of the shunt resistor.
  • a shunt device connected to the voltage detection unit.
  • the connection position (fixed position) of the frame terminal to the electrode is specified.
  • the steps it is possible to suppress a phenomenon in which the variation in the temperature coefficient of resistance increases.
  • the frame terminal is arranged at a specific position adjacent to the resistor, and even if the frame terminal protrudes, it is possible to suppress a phenomenon that the variation of the temperature coefficient of resistance increases.
  • the shunt device can improve the current detection accuracy.
  • FIG. 4 is a diagram illustrating a relationship between a connection position of a frame terminal and a voltage detection position of the frame terminal. It is a top view of a shunt device.
  • FIG. 4 is a sectional view taken along line AA of FIG. 3. It is a figure showing other embodiments of a crevice. It is a figure showing other embodiments of a level difference. It is a figure explaining an effect by formation of a level difference. 9 is a graph showing an effect of forming a step. It is a figure showing still another embodiment of a level difference. It is a figure showing still another embodiment of a level difference. It is a figure showing still another embodiment of a level difference. It is a figure showing still another embodiment of a level difference. It is a figure which shows the electric current which advances to S-shaped direction.
  • FIG. 1 is a perspective view showing an embodiment of the shunt device 1.
  • the shunt device 1 includes a shunt resistor 2 and a pair of wide metal frame terminals (lead frame terminals) 3 and 4 fixed to the shunt resistor 2.
  • the shunt resistor 2 may be simply referred to as the resistor 2.
  • the resistor 2 includes a resistor 5 made of a resistance alloy having a predetermined thickness and width, and a pair of electrodes 6 and 7 made of a high conductivity metal joined to both ends of the resistor 5. Both end faces of the resistor 5 are joined to end faces of the electrodes 6 and 7 by means of welding (for example, electron beam welding, laser beam welding, or brazing).
  • welding for example, electron beam welding, laser beam welding, or brazing.
  • a low-resistance alloy such as a Cu—Mg—Ni-based alloy can be given.
  • An example of the material of the electrodes 6 and 7 is copper (Cu).
  • Examples of the material of the frame terminals 3 and 4 include copper (Cu) plated with tin (Sn) or unplated copper.
  • FIG. 2 is a diagram illustrating the relationship between the connection positions of the frame terminals and the voltage detection positions of the frame terminals.
  • the shunt device 1 in order to improve current detection accuracy, includes a structure for specifying the connection position of the frame terminals 3 and 4.
  • the detailed structure of the shunt device 1 will be described with reference to the drawings.
  • FIG. 3 is a plan view of the shunt device 1.
  • FIG. 4 is a sectional view taken along line AA of FIG. In FIG. 3, white arrows indicate the current direction.
  • the electrodes 6, 7 are provided with steps 12, 13, which partition the voltage detectors 10, 11 extending in a direction perpendicular to the current direction.
  • the voltage detector 10 is a part of the electrode 6 adjacent to the resistor 5, and is a part between the resistor 5 and the step 12.
  • the frame terminal 3 is disposed on the voltage detection unit 10 and is connected to the voltage detection unit 10.
  • the frame terminal 4 is disposed on the voltage detection unit 11 and is connected to the voltage detection unit 11. In other words, each of the voltage detection units 10 and 11 forms a voltage detection area.
  • the electrode 6 has the concave groove 22 formed on the surface thereof, and the electrode 7 has the concave groove 23 formed on the surface thereof.
  • the step 12 constitutes a part of the groove 22 (more specifically, the wall on the resistor side), and the step 13 constitutes a part of the groove 23 (more specifically, the wall on the resistor side). are doing.
  • Each of the steps 12, 13 forms a hollow part (space) SP at an adjacent position.
  • FIG. 5 is a view showing another embodiment of the concave grooves 22 and 23.
  • the concave groove 22 may extend to the outer end face 6a of the electrode 6, and the concave groove 23 may extend to the outer end face 7a of the electrode 7.
  • the length L1 in the longitudinal direction of the resistor 2 is 40 mm
  • the length W1 in the width direction of the resistor 2 is 15 mm
  • the distance D1 between the resistor 5 and the step 12 is 2 mm.
  • the length W2 of the concave groove 22 in the width direction is 1 mm.
  • the depth Dp of the concave groove 22 (that is, the height of the step 12) is 0.5 mm.
  • the thickness t1 of the resistor 2 is 2 mm, and the thickness t2 of the frame terminal 3 is 0.6 mm.
  • the dimensions of the shunt device 1 are not limited to the embodiment shown in FIGS.
  • the concave grooves 22 and 23 are symmetrically arranged with respect to the resistor 5. Therefore, although not shown, the distance between the resistor 5 and the step 13 is the same as the distance D1, the horizontal length of the step 13 is the same as the length L2, and the length of the concave groove 23 in the width direction. The length is the same as the length W2, and the depth of the concave groove 23 is the same as the depth Dp.
  • the length L2 of the concave groove is smaller than the length W1, and the step 12 is formed in a part of the electrode 6 in the width direction of the resistor 2.
  • FIG. 6 is a view showing another embodiment of the step 12. In FIG. 6, illustration of the frame terminals 3 and 4 is omitted for easy viewing of the drawing. As shown in FIG. 6, the length L2 may be the same as the length W1. In this case, the step 12 is formed on the entire electrode 6 in the width direction of the resistor 2.
  • the frame terminal 3 includes a contact portion 3a that contacts the voltage detection portion 10 of the electrode 6, a vertical portion 3b perpendicular to the contact portion 3a, a vertical portion 3b, and a contact portion 3a. And a bent portion 3c that is parallel to the above.
  • the frame terminals 3 and 4 have the same structure. That is, similarly to the frame terminal 3, the frame terminal 4 includes the contact portion 4a, the vertical portion 4b, and the bent portion 4c.
  • the contact portions 3 a and 4 a of the frame terminals 3 and 4 are connected to the electrodes 6 and 7 on both sides of the resistor 5 so as to be adjacent to the resistor 5.
  • the user can arrange the frame terminal 3 in the voltage detection unit 10 based on the step 12. More specifically, it is preferable that the user connects the frame terminal 3 to the voltage detection unit 10 so that the step-side end face 3d of the contact portion 3a of the frame terminal 3 is located on the same plane as the step 12. As will be described later, there is no problem even if the connection is made so as to extend over the step 12 and protrude into the hollow portion SP and cover a part of the hollow portion SP.
  • the connection method of the frame terminal 4 to the voltage detection unit 11 is the same as the connection method of the frame terminal 3. It is preferable that the end surface 4 d on the step side of the contact portion 4 a of the frame terminal 4 be located on the same plane as the step 13. According to the present embodiment, since the electrodes 6 and 7 have the steps 12 and 13, the user can specify the connection position (arrangement position) of the frame terminals 3 and 4.
  • the shunt device 1 having the steps 12, 13 can provide the following effects.
  • the effect of the formation of the step 12 will be described with reference to FIG.
  • the frame terminal 3 is preferably connected to the voltage detection unit 10 such that the end surface 3d on the step side of the contact portion 3a is arranged in the same plane as the step 12.
  • a part of 3 may be disposed so as to extend over the step 12 and protrude into the hollow part SP.
  • FIG. 7 is a diagram for explaining the effect of the formation of the step 12.
  • the voltage detection position P1 is at the center of the contact surface of the frame terminal 3 with the electrode 6.
  • a part of the frame terminal 3 is arranged so as to protrude from the step 12.
  • the voltage detection position P2 is the center of the contact surface of the frame terminal 3 with the electrode 6. Therefore, the distance Da between the resistor 5 and the voltage detection position P2 is smaller than the distance Db between the resistor 5 and the voltage detection position P1.
  • the step 12 can limit the contact surface of the frame terminal 3 with the electrode 6 to the inside of the step 12 (that is, the resistor 5 side). Therefore, even if the frame terminal 3 is arranged apart from the resistor 5, the voltage is detected at a position closer to the resistor 5, and the variation occurring at the connection position of the frame terminals 3 and 4 is reduced. Therefore, the shunt device 1 can improve the current detection accuracy.
  • FIG. 8 is a graph showing the effect of forming the step 12. 8, the horizontal axis represents the relative position of the frame terminal 3 to the electrode 6, and the vertical axis represents the temperature coefficient of resistance.
  • the reference (zero) on the horizontal axis is the position of the frame terminal 3 when the end face of the frame terminal 3 (that is, the end face 3 d on the step side) is located on the same plane as the step 12.
  • the numerical value indicating the position of the frame terminal 3 becomes a positive number.
  • the numerical value indicating the position of the frame terminal 3 becomes a negative number.
  • the frame terminal 3 when the step 12 is provided, and the frame terminal 3 is arranged at a position separated from the resistor 5, the frame terminal 3 protrudes from the step 12.
  • the resistance temperature coefficient in this case is smaller than the resistance temperature coefficient when the step 12 is not provided.
  • the change in the temperature coefficient of resistance when the frame terminal 3 is arranged at a position close to the resistor 5 is as follows.
  • the temperature coefficient of resistance when the step 12 is provided is closer to zero than the temperature coefficient of resistance when the step 12 is not provided (see FIG. 8).
  • the reason is that the potential distribution generated by the formation of the step 12 is different from the potential distribution generated when the step 12 is not formed, and the amount of change in the resistance temperature coefficient with respect to the displacement of the connection position of the frame terminal 3 is This is because it differs depending on the presence or absence.
  • by providing the step 12 it is possible to suppress a phenomenon in which the variation in the temperature coefficient of resistance increases.
  • the steps 12, 13 are formed linearly when viewed from above. More specifically, the steps 12, 13 extend in parallel with the width direction of the resistor 2 (see FIG. 3). However, the shapes of the steps 12, 13 are not limited to the present embodiment.
  • FIGS. 9 to 11 are views showing still another embodiment of the steps 12 and 13.
  • FIG. 9 to 11, illustration of the frame terminals 3 and 4 is omitted to make the drawings easy to see.
  • the steps 12, 13 may be formed in an arc shape when viewed from above.
  • each of the steps 12 and 13 has a shape curved in a direction away from the resistor 5.
  • the voltage detector 10 is formed between the step 12 and the resistor 5
  • the voltage detector 11 is formed between the step 13 and the resistor 5.
  • the steps 12, 13 may be formed in a U-shape when viewed from above.
  • each of the steps 12 and 13 has a shape protruding in a direction away from the resistor 5.
  • the voltage detector 10 is formed between the step 12 and the resistor 5
  • the voltage detector 11 is formed between the step 13 and the resistor 5.
  • the steps 12, 13 may be arranged diagonally across the resistor 5 when viewed from above.
  • the steps 12, 13 are opposed to each other with the resistor 5 interposed therebetween, but in the embodiment shown in FIG. 11, the steps 12, 13 are 5 are arranged diagonally.
  • This arrangement is suitably applied when the current I flows in the S-shaped direction as shown in FIG.
  • the shunt device 1 can improve the current detection accuracy.
  • the present invention can be suitably used for a shunt device in which a shunt resistor in which electrodes made of metal are joined to both ends of a resistor made of a resistance alloy and a lead terminal for detecting a voltage generated at both ends of the resistor is connected. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Resistors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流の検出精度を向上させた、幅広の金属フレーム端子をシャント抵抗器に接続したシャント装置を提供する。シャント装置(1)は、抵抗合金からなる抵抗体(5)と、抵抗体(5)の両端に接合された高導電率金属からなる一対の電極(6,7)と、を備えたシャント抵抗器(2)と、シャント抵抗器(2)に接続された一対の幅広の金属フレーム端子(3,4)と、を備える。電極(6,7)は、電圧検出部(10,11)を区画する段差(12,13)を備えている。フレーム端子(3,4)は、段差(12,13)と抵抗体(5)との間に位置する電圧検出部(10,11)に接続されている。

Description

シャント装置
 本発明は、電流検出用のシャント抵抗器に係り、特に抵抗合金からなる抵抗体の両端部に金属からなる電極を接合したシャント抵抗器に、抵抗体の両端部に生じる電圧を検出する引出端子を接続したシャント装置に関する。
 従来から、シャント抵抗器は、車載用バッテリーの充放電の電流を監視するなどの大電流の電流検出用途に広く用いられている。このようなシャント抵抗器は、抵抗合金板材からなる抵抗体と、その両端に固着した銅材からなる電極とを備えており、電極の適当な場所に検出電極部を設け、例えばそこにアルミワイヤーを接続することにより抵抗体両端部で発生した電圧を検出する(特開2016-054224号公報、特開2015-184206号公報、特開2017-009419号公報、特開2001-118701号公報参照)。
 このようなシャント抵抗器では、大電流の検出精度に優れていること、温度ドリフトが小さいこと、大電流が印加されても過剰な発熱をしないこと、1mΩ以下の低抵抗値であること、などが要求される。このような低抵抗値の抵抗器に生じる電圧を高精度で検出するには、抵抗体両端部に生じる電圧を検出する端子の位置が関係する。
 すなわち、1mΩ以下の低抵抗値の抵抗器では、電極の内部抵抗を無視することができず、電圧検出端子の接続位置に対応して、電圧測定結果にばらつきが生じ、結果として、電流の検出精度が安定しないという問題がある。
 ところで、近年、大電流回路で用いられる電流検出用抵抗器では、幅広の金属フレーム端子を、電圧を検出する引出端子とする要求がみられるようになってきている。係る幅広の金属フレーム端子を引出端子とすると、ワイヤボンディングのような細い径の端子と異なり、幅広の金属フレーム端子の取付け位置によって、その電圧検出値はバラツキやすい。
 本発明は、上述の事情に基づいてなされたもので、低抵抗値のシャント抵抗器に、幅広の金属フレーム端子を電圧検出引出端子として接続して、電流の検出精度を向上させたシャント装置を提供することを目的とする。
 本発明の一態様は、抵抗合金からなる抵抗体と、前記抵抗体の両端に接合された高導電率金属からなる一対の電極と、を備えたシャント抵抗器と、前記シャント抵抗器の一対の電極に接続された一対の幅広の金属フレーム端子と、を備え、前記電極は、電圧検出部を区画する段差を備えており、前記フレーム端子は、前記段差と前記抵抗体との間に位置する前記電圧検出部に接続されていることを特徴とするシャント装置である。
 電極は段差を備えているため、フレーム端子の電極への接続位置(固定位置)は特定される。そして、段差を設けることにより、抵抗温度係数のばらつきが大きくなる現象を抑制することができる。すなわち、フレーム端子は抵抗体に隣接して特定位置に配置され、かつ段差をはみ出しても、抵抗温度係数のばらつきが大きくなる現象を抑制することができる。結果として、シャント装置は、電流の検出精度を向上させることができる。
シャント装置の一実施形態を示す斜視図である。 フレーム端子の接続位置とフレーム端子の電圧検出位置との関係を説明する図である。 シャント装置の平面図である。 図3のA-A線断面図である。 凹溝の他の実施形態を示す図である。 段差の他の実施形態を示す図である。 段差の形成による効果を説明する図である。 段差の形成による効果を示すグラフである。 段差のさらに他の実施形態を示す図である。 段差のさらに他の実施形態を示す図である。 段差のさらに他の実施形態を示す図である。 S字方向に進む電流を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下で説明する図面において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、シャント装置1の一実施形態を示す斜視図である。図1に示すように、シャント装置1は、シャント抵抗器2と、シャント抵抗器2に固定された一対の幅広の金属フレーム端子(リードフレーム端子)3,4を備えている。以下、本明細書において、シャント抵抗器2を単に抵抗器2と呼ぶことがある。
 抵抗器2は、所定の厚みと幅を有する抵抗合金からなる抵抗体5と、抵抗体5の両端に接合された高導電率金属からなる一対の電極6,7とを備えている。抵抗体5の両端面は、電極6,7の端面に溶接(例えば、電子ビーム溶接、レーザービーム溶接、または、ろう接)などの手段によって接合されている。
 抵抗体5の材質の一例として、Cu-Mg-Ni系合金などの低抵抗合金を挙げることができる。電極6,7の材質の一例として、銅(Cu)を挙げることができる。フレーム端子3,4の材質の一例として、錫(Sn)めっきされた銅(Cu)またはめっきされていない銅を挙げることができる。
 一般的に、1mΩ以下の低抵抗値を有する抵抗器では、電極内部の抵抗成分によって生じる電位分布を無視することができない。そして、電極6,7の材質である銅(Cu)は高い抵抗温度係数(TCR)を有する。したがって、フレーム端子3,4の接続位置が抵抗体5から外側に離れるほど、温度による抵抗値の変化の割合を示す抵抗温度係数(TCR)が増加してしまう。結果として、電流を精度よく検出することができない。そこで、2つの検出端子は抵抗体により近接した位置で、かつ、抵抗体からほぼ等しい距離地点で電圧を検出することが理想的である。
 上述したシャント装置の場合、フレーム端子の接続位置がずれて接続されることにより生じるばらつきは、電流の検出精度に大きな影響を及ぼし、結果として、電流の検出精度にばらつきが生じてしまう。図2は、フレーム端子の接続位置とフレーム端子の電圧検出位置との関係を説明する図である。
 幅広のフレーム端子3,4が電極6,7に接続されている場合、図2の黒丸Xに示すように、実質的な電圧の検出位置は、フレーム端子の電極との接触面の中央である(A=A’)。したがって、フレーム端子の接続位置が明確に定まっていない場合、抵抗体とその両側のフレーム端子との間の距離が異なる場合がある。図2に示す例では、抵抗体とフレーム端子4の検出位置との間の距離Bは、抵抗体とフレーム端子3の検出位置との間の距離B’よりも小さい(B<B’)。
 ボンディングワイヤ(例えば、特許文献1参照)などの小さな径を有する端子を接続する場合とは異なり、フレーム端子の接続位置を明確に特定することは一般的に困難であり、フレーム端子の接続位置には、ばらつきが生じやすい。特に、フレーム端子を電極に溶接する場合、フレーム端子の接続位置を精度よく決定することは困難であり、ばらつきの影響が顕著に生じやすい。
 そこで、本発明では、電流の検出精度を向上させるために、シャント装置1は、フレーム端子3,4の接続位置を特定するための構造を備えている。以下、シャント装置1の詳細な構造について、図面を参照しつつ説明する。
 図3は、シャント装置1の平面図である。図4は、図3のA-A線断面図である。図3において、白抜き矢印は電流方向を表している。図1、図3、および図4に示すように、電極6,7は、電流方向と垂直な方向に延びる電圧検出部10,11を区画する段差12,13を備えている。
 電圧検出部10は、抵抗体5に隣接する電極6の一部分であり、抵抗体5と段差12との間の部分である。フレーム端子3は、電圧検出部10上に配置されており、電圧検出部10に接続されている。フレーム端子4は、電圧検出部11上に配置されており、電圧検出部11に接続されている。電圧検出部10,11のそれぞれは、言い換えれば、電圧検出領域を構成している。
 本実施形態では、電極6は、その表面に形成された凹溝22を有しており、電極7は、その表面に形成された凹溝23を有している。段差12は凹溝22の一部(より具体的には、抵抗体側の壁)を構成しており、段差13は凹溝23の一部(より具体的には、抵抗体側の壁)を構成している。段差12,13のそれぞれは、その隣接する位置に中空部(空間)SPを形成している。
 図5は、凹溝22,23の他の実施形態を示す図である。図5に示すように、凹溝22は電極6の外側端面6aまで延びていてもよく、凹溝23は電極7の外側端面7aまで延びていてもよい。
 シャント装置1の寸法の一例について、図3および図4を参照しつつ説明する。図3および図4では、図面を見やすくするために、シャント装置1の構成要素の一部は誇張して描かれている。図3に示すように、抵抗器2の長手方向の長さL1は40mmであり、抵抗器2の幅方向の長さW1は15mmである。抵抗体5と段差12との間の距離(すなわち、電圧検出部10の幅方向の長さ)D1は2mmである。
 凹溝22の幅方向の長さW2は1mmである。図4に示すように、凹溝22の深さ(すなわち、段差12の高さ)Dpは0.5mmである。抵抗器2の厚さt1は2mmであり、フレーム端子3の厚さt2は0.6mmである。なお、シャント装置1の寸法は、図3および図4に示す実施形態には限定されない。
 凹溝22,23は抵抗体5に関して対称的に配置されている。したがって、図示しないが、抵抗体5と段差13との間の距離は距離D1と同一であり、段差13の水平方向の長さは長さL2と同一であり、凹溝23の幅方向の長さは長さW2と同一であり、凹溝23の深さは深さDpと同一である。
 本実施形態では、凹溝の長さL2は長さW1よりも小さく、段差12は、抵抗器2の幅方向において、電極6の一部に形成されている。図6は、段差12の他の実施形態を示す図である。図6では、図面を見やすくするために、フレーム端子3,4の図示は省略されている。図6に示すように、長さL2は長さW1と同じであってもよい。この場合、段差12は、抵抗器2の幅方向において、電極6の全体に形成されている。
 図1に示すように、フレーム端子3は、電極6の電圧検出部10と接触する接触部3aと、接触部3aと垂直な垂直部3bと、垂直部3bと垂直であり、かつ接触部3aと平行な屈曲部3cとを備えている。フレーム端子3,4は同一の構造を有している。つまり、フレーム端子4は、フレーム端子3と同様に、接触部4aと、垂直部4bと、屈曲部4cとを備えている。フレーム端子3,4の接触部3a,4aは、抵抗体5に隣接するように抵抗体5の両側の電極6,7に接続されている。
 ユーザーは、段差12に基づいて、フレーム端子3を電圧検出部10に配置することができる。より具体的には、ユーザーは、フレーム端子3の接触部3aの段差側の端面3dが段差12と同一平面内に位置するように、フレーム端子3を電圧検出部10に接続することが好ましいが、後述するように、段差12に跨がって、中空部SPにはみ出して、中空部SPの一部を覆うように接続しても支障がない。フレーム端子4の電圧検出部11への接続方法も、フレーム端子3の接続方法と同様である。フレーム端子4の接触部4aの段差側の端面4dが段差13と同一平面内に位置することが好ましい。本実施形態によれば、電極6,7は段差12,13を備えているため、ユーザーはフレーム端子3,4の接続位置(配置位置)を特定することができる。
 段差12,13を備えたシャント装置1は以下の効果を奏することができる。以下、段差12の形成による効果について、図7を参照しつつ説明する。上述したように、段差12は、その隣接する位置に中空部SPを形成している。上述した実施形態では、フレーム端子3は、その接触部3aの段差側の端面3dが段差12と同一平面内に配置されるように、電圧検出部10に接続されることが好ましいが、フレーム端子3の一部は、段差12に跨がって、中空部SPにはみ出して配置されてもよい。
 図7は、段差12の形成による効果を説明する図である。段差12が設けられていない場合、電圧の検出位置P1はフレーム端子3の電極6との接触面の中央である。これに対し、図7に示すように、段差12が形成されている場合、フレーム端子3の一部は段差12からはみ出して配置される。電圧の検出位置P2はフレーム端子3の電極6との接触面の中央である。したがって、抵抗体5と電圧検出位置P2との間の距離Daは、抵抗体5と電圧検出位置P1との間の距離Dbよりも小さい。
 このように、段差12は、フレーム端子3の電極6との接触面を段差12の内側(すなわち、抵抗体5側)に制限することができる。したがって、フレーム端子3が抵抗体5から離間して配置されても、電圧は抵抗体5により近接した位置で検出され、かつフレーム端子3,4の接続位置に生じるばらつきは低減される。したがって、シャント装置1は電流の検出精度を向上させることができる。
 図8は、段差12の形成による効果を示すグラフである。図8において、横軸はフレーム端子3の電極6に対する相対位置を表しており、縦軸は抵抗温度係数を表している。
 図8では、横軸の基準(ゼロ)は、フレーム端子3の端面(すなわち、段差側の端面3d)が段差12と同一平面内に位置しているときのフレーム端子3の位置である。フレーム端子3が抵抗体5から離間する位置に配置されると、フレーム端子3の位置を示す数値は正数になる。フレーム端子3が抵抗体5に近接する位置に配置されると、フレーム端子3の位置を示す数値は負数になる。
 図8に示すように、段差12が設けられている場合、フレーム端子3が抵抗体5から離間する位置に配置されると、フレーム端子3は段差12からはみ出す。この場合の抵抗温度係数は段差12が設けられていない場合の抵抗温度係数よりも小さい。
 フレーム端子3が抵抗体5に近接する位置に配置された場合の抵抗温度係数の変化は次の通りである。段差12が設けられている場合の抵抗温度係数は段差12が設けられていない場合の抵抗温度係数よりもゼロに近接している(図8参照)。この理由は、段差12の形成によって生じる電位分布は、段差12が形成されていない場合に生じる電位分布と異なり、フレーム端子3の接続位置のずれ量に対する抵抗温度係数の変化量は、段差12の有無によって異なるためである。本実施形態では、図8から分かるように、段差12を設けることにより、抵抗温度係数のばらつきが大きくなる現象を抑制することができる。
 本実施形態では、段差12,13は、上から見たときに直線状に形成されている。より具体的には、段差12,13は抵抗器2の幅方向(図3参照)と平行に延びている。しかしながら、段差12,13の形状は本実施形態には限定されない。
 図9乃至図11は、段差12,13のさらに他の実施形態を示す図である。図9乃至図11において、図面を見やすくするために、フレーム端子3,4の図示は省略されている。
 図9に示すように、段差12,13は、上から見たときに円弧状に形成されてもよい。図9に示す実施形態では、段差12,13のそれぞれは、抵抗体5から離れる方向に湾曲した形状を有している。電圧検出部10は段差12と抵抗体5との間に形成されており、電圧検出部11は段差13と抵抗体5との間に形成されている。
 図10に示すように、段差12,13は、上から見たときにコの字状に形成されてもよい。図10に示す実施形態では、段差12,13のそれぞれは、抵抗体5から離れる方向に突出する形状を有している。電圧検出部10は段差12と抵抗体5との間に形成されており、電圧検出部11は段差13と抵抗体5との間に形成されている。
 図11に示すように、段差12,13は、上から見たときに抵抗体5を挟んで斜交いに配置されてもよい。図1、図3、および図4に示す実施形態では、段差12,13は、抵抗体5を挟んで互いに対向しているが、図11に示す実施形態では、段差12,13は、抵抗体5を挟んで斜めに配置されている。この配置は、図12に示すように、電流Iの流れ方向がS字方向である場合に好適に適用される。このように、電流方向に応じて段差12,13の形成位置を決定することにより、シャント装置1は電流の検出精度を向上させることができる。
 これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、抵抗合金からなる抵抗体の両端部に金属からなる電極を接合したシャント抵抗器に、抵抗体の両端部に生じる電圧を検出する引出端子を接続したシャント装置に好適に利用可能である。

Claims (6)

  1.  抵抗合金からなる抵抗体と、前記抵抗体の両端に接合された高導電率金属からなる一対の電極と、を備えたシャント抵抗器と、
     前記シャント抵抗器に接続された一対の幅広の金属フレーム端子と、を備え、
     前記電極は、電圧検出部を区画する段差を備えており、
     前記フレーム端子は、前記段差と前記抵抗体との間に位置する前記電圧検出部に接続されていることを特徴とするシャント装置。
  2.  前記段差の長さは、前記電極の幅方向の長さよりも短いことを特徴とする請求項1に記載のシャント装置。
  3.  前記段差は、直線状、円弧状、またはコの字状に形成されていることを特徴とする請求項1に記載のシャント装置。
  4.  前記フレーム端子の一部は、前記段差に跨がって、前記段差によって形成された空間にはみ出して配置されていることを特徴とする請求項1に記載のシャント装置。
  5.  前記フレーム端子の一方の端面は、前記段差と同一平面内に位置していることを特徴とする請求項1に記載のシャント装置。
  6.  前記電圧検出部は、前記抵抗体に隣接しており、
     前記抵抗体と前記段差との間の距離は、前記フレーム端子の幅方向の長さよりも長いことを特徴とする請求項1に記載のシャント装置。
PCT/JP2019/023819 2018-07-04 2019-06-17 シャント装置 WO2020008845A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127772A JP7075297B2 (ja) 2018-07-04 2018-07-04 シャント装置
JP2018-127772 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020008845A1 true WO2020008845A1 (ja) 2020-01-09

Family

ID=69060950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023819 WO2020008845A1 (ja) 2018-07-04 2019-06-17 シャント装置

Country Status (2)

Country Link
JP (1) JP7075297B2 (ja)
WO (1) WO2020008845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115398567A (zh) * 2020-04-20 2022-11-25 Koa株式会社 分流电阻器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2017011087A (ja) * 2015-06-22 2017-01-12 Koa株式会社 電流検出用抵抗器、電流検出装置及びその製造方法
JP2018004263A (ja) * 2016-06-27 2018-01-11 Koa株式会社 電流測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2017011087A (ja) * 2015-06-22 2017-01-12 Koa株式会社 電流検出用抵抗器、電流検出装置及びその製造方法
JP2018004263A (ja) * 2016-06-27 2018-01-11 Koa株式会社 電流測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115398567A (zh) * 2020-04-20 2022-11-25 Koa株式会社 分流电阻器

Also Published As

Publication number Publication date
JP2020009838A (ja) 2020-01-16
JP7075297B2 (ja) 2022-05-25

Similar Documents

Publication Publication Date Title
US9378873B2 (en) Shunt resistor and method for manufacturing the same
CN104115241B (zh) 电阻器的端子连接构造
JP6384211B2 (ja) シャント抵抗器
US20230162894A1 (en) Shunt resistor
US20230170112A1 (en) Shunt resistor, method for manufacturing shunt resistor, and current detection device
WO2020031901A1 (ja) シャント装置
JP6064254B2 (ja) 電流検出用抵抗器
WO2020008845A1 (ja) シャント装置
US20230081784A1 (en) Resistor arrangement
US10444087B2 (en) Capacitive force sensor having improved attachment
WO2021220758A1 (ja) シャント抵抗器
JP5971562B2 (ja) バッテリ監視システムにおける短絡保護装置
JP4256404B2 (ja) 固体電解コンデンサ
US20230187105A1 (en) Shunt resistor and current detection apparatus
JP7567261B2 (ja) 電流検出装置
JP2007103976A (ja) チップ抵抗器
JP2019091824A (ja) シャント抵抗器
JP2023083751A (ja) 抵抗器
JP2020101542A (ja) バッテリーセンサーのための抵抗アセンブリ、および、バッテリーセンサー
JP4459081B2 (ja) 電流密度分布計測装置
CN113077950B (zh) 电阻器
JP2022030815A (ja) 電流検出装置
JP2018018915A (ja) 抵抗器
JP2023087721A (ja) シャント抵抗器および電流検出装置
CN114624607A (zh) 电阻元件和用于制造电阻元件的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830103

Country of ref document: EP

Kind code of ref document: A1