[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020008621A1 - Method for producing hydrogen using biomass as raw material - Google Patents

Method for producing hydrogen using biomass as raw material Download PDF

Info

Publication number
WO2020008621A1
WO2020008621A1 PCT/JP2018/025701 JP2018025701W WO2020008621A1 WO 2020008621 A1 WO2020008621 A1 WO 2020008621A1 JP 2018025701 W JP2018025701 W JP 2018025701W WO 2020008621 A1 WO2020008621 A1 WO 2020008621A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
raw material
outer cylinder
combustion
pyrolysis gas
Prior art date
Application number
PCT/JP2018/025701
Other languages
French (fr)
Japanese (ja)
Inventor
俊一 内藤
白水 渡
和幸 原田
後藤 賢一
Original Assignee
株式会社 翼エンジニアリングサービス
俊一 内藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 翼エンジニアリングサービス, 俊一 内藤 filed Critical 株式会社 翼エンジニアリングサービス
Priority to JP2019513470A priority Critical patent/JP6590359B1/en
Priority to PCT/JP2018/025701 priority patent/WO2020008621A1/en
Priority to CN201880095346.0A priority patent/CN112368236B/en
Publication of WO2020008621A1 publication Critical patent/WO2020008621A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/008Reducing the tar content by cracking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/049Composition of the impurity the impurity being carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a method for producing hydrogen using biomass as a raw material.
  • Biomass combustion power generation Biomass is directly burned, and steam is generated using this combustion heat, and power is generated by this steam.
  • Biomass gasification power generation Combustible pyrolysis gas is generated from biomass raw material, and power is generated using this gas as fuel.
  • This method has advantages such as low generation of greenhouse gas (N 2 O: nitrous oxide and the like) and low generation of DXN (dioxin), (1) Tar generated during thermal decomposition causes blockage of downstream piping, making it difficult to continue continuous operation (Global Environmental Symposium Proceedings, 13 (2005), 225), (2) It requires a lot of energy to dry the biomass raw material, (3) In the power generation by the gas engine, maintenance is complicated due to the presence of tar, and the recovery of hydrogen cannot be stably performed due to the clogging of equipment due to tar and the trouble of cleaning. And there was a problem.
  • the first problem is a technical problem that must be solved, but the second problem is an economic problem, and it is preferable to solve it.
  • First problem When pyrolyzing a biomass raw material, tar is contained in a pyrolysis gas, and this tar blocks a pipe of a downstream (backstream) plant, so that the plant cannot be operated stably.
  • Second problem The cost for drying the biomass raw material is high, and commercial application is difficult.
  • Patent Document 1 In order to solve the first problem, when the removal of tar from biomass raw materials described in Patent Documents 1 to 4 is examined, there are the following problems.
  • the tar removal method described in Patent Document 1 requires a new vertical shaft furnace separately, and since only oxidizing gas is blown, hydrogen is burned, so that only a small amount of hydrogen can be recovered, and a large amount of hydrogen can be recovered. Had the problem of being difficult.
  • the temperature inside the retort is set to a temperature (600 ° C.) required to exceed the normal operating temperature and to remove tar in order to suppress the volatilization and disappearance of organic combustible components.
  • the purpose is to temporarily raise the tar several times a day until the tar is peeled off from the inner wall of the inner cylinder to reduce the tar discharging work.
  • the present invention generates a pyrolysis gas having a first tar in an inner cylinder, guides the gas to an outer cylinder, and regulates the outer cylinder temperature by blowing a specified amount of steam and oxygen. It controls the temperature within the temperature, produces a second pyrolysis gas without tar, prevents clogging in the latter stage, and enables stable recovery of hydrogen gas. to differ greatly.
  • the method for removing tar from organic raw materials described in Patent Documents 1 to 4 does not solve the first problem, and removes tar from a pyrolysis gas. It is difficult to stably recover the purpose of collecting hydrogen gas.
  • the second object of the present invention is to improve the economic efficiency by a method in which a part of the second pyrolysis gas is introduced into a combustion chamber and the produced combustion exhaust gas is directly or indirectly used as a heat source for drying the raw material.
  • a raw material drying step of drying the raw material by a raw material dryer (2) a raw material drying step of drying the raw material by a raw material dryer; A material supply step of supplying a raw material having passed through the raw material drying step to the inner cylinder of an external combustion rotary kiln having an inner cylinder and an outer cylinder, A step of thermally decomposing the raw material supplied to the inner cylinder in the inner cylinder by heat of the outer cylinder to generate a first pyrolysis gas; A step of introducing the first pyrolysis gas into the outer cylinder to introduce the first pyrolysis gas into the outer cylinder; A step of decomposing tar in the first pyrolysis gas with the outer cylinder to obtain a second pyrolysis gas; Removing the second pyrolysis gas from the outer cylinder and introducing it to a reforming furnace and a combustion furnace; A reforming step of increasing the gas temperature of the reforming furnace to obtain a crude reformed gas having an increased hydrogen content from the second pyrolysis gas; A hydrogen recovery
  • a raw material drying step of drying the raw material by a raw material dryer A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
  • a first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided.
  • Combustion process to obtain combustion exhaust gas by burning in Has, Part of the combustion exhaust gas is introduced into the first outer cylinder, Heating the kiln inner cylinder, After the other part of the combustion exhaust gas is heated to the remaining part of the drying circulating gas, which is charged into the raw material dryer and used for circulation, Gather with a part of the combustion gas, Surplus flue gas boilers produce steam for power generation by steam turbine generators, which are released to the atmosphere, A method for producing hydrogen using biomass as a raw material.
  • a raw material drying step of drying the raw material by a raw material dryer A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
  • a first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided.
  • Combustion process to obtain combustion exhaust gas by combustion, Has, Part of the combustion exhaust gas is introduced into the first outer cylinder, The kiln inner wall is heated, and the remaining portion of the combustion exhaust gas that is introduced into the exhaust gas side pipe of the raw material dryer is partially charged into the raw material dryer, The remainder is used in a surplus flue gas boiler to use steam for power generation by a steam turbine generator for production, and then discharged to the atmosphere to discharge the humidifier of the dryer to the outside of the system.
  • a raw material drying step of drying the raw material A material supply step of supplying a dried raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
  • a first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided.
  • the tar contained in the first pyrolysis gas can be completely decomposed in the nearest outer cylinder, and the second pyrolysis gas obtained by decomposing the tar, that is, no tar is obtained from the biomass raw material. Since the pyrolysis gas can be obtained stably and efficiently over a long period of time, stable recovery of hydrogen can be realized in a reforming furnace in which the temperature is increased and the amount of hydrogen is increased. Further, regarding the second problem, efficient drying of the raw material having a high moisture content can be achieved by utilizing waste heat of the combustion exhaust gas 90 obtained by burning the second pyrolysis gas in the combustion furnace 8.
  • biomass raw material 30 used in one embodiment of the present invention is derived from living organisms such as sewage sludge, thinned wood, driftwood, wood pellets, straw pellets, paper sludge, garbage compost sludge, food waste, and sludge. Any type may be used as long as it contains carbon, hydrogen, and oxygen, but sewage sludge is more preferable because of availability and ease of securing the amount. Further, the raw material may be a mixture of plural types of biomass. Also, waste plastics may be included in biomass as a raw material (a biomass mixture or waste plastic 95 can be supplied together with the biomass raw material 30 as shown in FIG.
  • the size of the raw material may be a size that has undergone coarse pulverization.
  • the shape may be an individual shape such as a plate shape or a rod shape, or may be a granular shape or a sludge shape.
  • the amount of water contained may vary depending on the shape, but may be up to 85% by mass.
  • the external-combustion rotary kiln 1 used in one embodiment of the present invention is provided with, for example, as shown in FIG.
  • the inner cylinder 2 rotates around its axis, and is provided with a plurality of discharge pipes 21B for discharging the pyrolysis gas to the outer cylinder 3 except for the central portion in the longitudinal direction of the inner cylinder 2;
  • Injection port 9 for injecting a combination of at least one of oxygen or air and water vapor into the outer sheath 3 made of coated steel sheet, and a pyrolysis gas (first pyrolysis gas) discharged through a discharge pipe 21B. Is further thermally decomposed to discharge the outer cylinder 3 to the outside.
  • the outer cylinder 3 may be divided into a plurality of parts (FIGS. 2, 3, and 4).
  • the material of the discharge pipe 21B and the inner cylinder is desirably made of a heat-resistant steel plate in terms of tar thermal decomposition and heat transfer performance, but other materials producing the same effect are also possible.
  • the exhaust pipe 21 ⁇ / b> B is for discharging the pyrolysis gas (first pyrolysis gas) generated in the inner cylinder 2 to the outer cylinder 3 immediately.
  • the shape may be such that only the pyrolysis gas (first pyrolysis gas) can be discharged to the outer cylinder 3 without the biomass itself, which is a biomass raw material, being discharged to the outer cylinder 3 as a solid.
  • powdered biomass powder accompanying the gas is allowed.
  • the raw material moves toward the outlet of the inner cylinder 2 according to the rotation of the inner cylinder 2, and the temperature gradually rises in this moving process to generate a pyrolysis gas (first pyrolysis gas).
  • the thermal decomposition temperature in the inner cylinder 2 is desirably 300 to less than 640 ° C. More preferably, the temperature is 300 to 590 ° C. The reason is that if the temperature is lower than 300 ° C., a large amount of carbide residue is generated and the amount of volatile gas is reduced from about 20% to about 40%. If the temperature exceeds 640 ° C., a large increase in pyrolysis gas cannot be expected, and the temperature exceeds 740 ° C. This is because the thermal decomposition gas does not increase while the heat load increases.
  • a plurality of discharge conduits 21B are provided at locations where the inner cylinder thermal decomposition temperature is in the range of 300 to less than 640 ° C., and when the outer cylinder 3 is divided into plural parts. (FIGS. 3 and 4) are provided at locations corresponding to the respective outer cylinders 5, at locations where the thermal decomposition temperature of the inner cylinder 2 is in the range of 300 ° C. to less than 640 ° C., respectively.
  • the outer cylinder 3 at least one of air and oxygen gas and steam are supplied in combination from the inlet 9 so that the temperature in the outer cylinder becomes 640 to 740 ° C., and the pyrolysis gas introduced from the discharge pipe 21 B is introduced.
  • the (first pyrolysis gas) is partially oxidized to decompose the tar component to obtain a pyrolysis gas (second pyrolysis gas).
  • the reason for setting the thermal decomposition temperature range is that if the temperature is lower than 640 ° C, tar cannot be decomposed. If the temperature is higher than 740 ° C, an excessive heat source is supplied for decomposing the tar component.
  • the temperature outside the inner cylinder 2 becomes extremely high, and the heat resistance required for the steel sheet constituting the inner cylinder 2 becomes excessive.
  • the upper limit of 740 ° C. it goes without saying that if the development of the heat-resistant temperature of general-purpose materials proceeds in the future, it can be raised to a higher temperature (around 790 ° C.).
  • FIGS. As the form in which the outer cylinder is divided into a plurality of parts, those shown in FIGS.
  • FIGS. As a typical example, in the form shown in FIG. 2, at least one of air or oxygen gas and steam is supplied to only the second outer cylinder 5 in combination, and the second outer cylinder 4 is supplied with the second outer cylinder 4.
  • a combustion exhaust gas (outlet gas of the combustion furnace) 90 obtained by burning the pyrolysis gas (second pyrolysis gas) taken out of the cylinder 5 in the combustion furnace, and a part of the combustion exhaust gas 93 are supplied from the branch 39 to the inner cylinder 2.
  • the amount of oxidizing agent used in the outer cylinder 5 can be reduced and the efficiency of hydrogen production can be increased. is there. This has the attendant effect of increasing the temperature in the low temperature region (such as the portion at 200 ° C. or lower) before the temperature of the raw material of the inner cylinder 2 is increased to the dew condensation temperature or higher, thereby preventing dew condensation corrosion.
  • the molar ratio of the water vapor and the oxygen gas component supplied to the outer cylinder 3 of FIG. 1 and the second outer cylinder 5 of FIGS. is preferably 0.4 to 4.
  • the reason for the lower limit of the molar ratio of the steam / oxygen gas component to be blown is that if the ratio is less than 0.4, the temperature of the blown oxygen is so high that the oxygen blowing portion is locally heated to a high temperature. This is because a uniform temperature rise over the entire outer cylinder 5 cannot be achieved.
  • the reason for the upper limit of 4 is that if it exceeds 4, steam becomes oxidizable at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery.
  • the first pyrolysis gas containing tar generated in the inner cylinder 2 immediately moves to the outer cylinder 3 or the second outer cylinder 5 via the discharge pipe 21B, and 3 or the second outer cylinder 5 converts the gas into a second pyrolysis gas without tar.
  • the steam is desirably a high temperature steam.
  • Examples thereof include a steam having a temperature of 150 to 200 ° C. and superheated steam.
  • the oxygen gas is produced by, for example, room temperature air or an industrial oxygen generator. At least one of oxygen (for example, around 40 ° C.) can be used. In normal operation, it is preferable to use oxygen produced by a membrane or an oxygen generator using an adsorbent method.
  • one or more thermometers are installed in the inner cylinder 2 and the outer cylinder 3 in order to check temperature uniformity for use in temperature control.
  • a chamber 6 is provided at an outlet end of the inner cylinder 2, and a carbide residue 24 exposed to a temperature of 300 ° C. to less than 640 ° C. is collected from a lower portion thereof.
  • the temperature in the chamber 6 is supplied by combining at least one of air or oxygen gas and water vapor, and supplied from the nozzle 11 so that the molar number of water vapor / the molar number of oxygen gas component is 0.4 to 4. Can be.
  • the temperature in the chamber 6 can be controlled in a temperature range from 300 to less than 640 ° C.
  • the reason for the lower limit of the molar ratio of the steam / oxygen gas component to be blown is that if the ratio is less than 0.4, the temperature of the blown oxygen is so high that the oxygen blowing portion is locally heated to a high temperature. A uniform temperature rise over the entire outer cylinder 5 cannot be achieved.
  • the reason for the upper limit of 4 is that if it exceeds 4, steam becomes oxidizable at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery.
  • the balance between the recovery of the carbide residue 24 and the gas recovery from the outer cylinder 3 and the second outer cylinder 5 via the discharge pipe 21B for the volatile gas should be adjusted. Can be.
  • the collected carbide residue 24 is used as a fuel for power generation outside, a fuel for the combustion furnace 8, an auxiliary fuel for the hot blast stove (auxiliary fuel or a second thermal decomposition gas blowing point 38), and a combustion gas waste heat boiler 51B (FIG.
  • the fuel of 4) can be used as fuel for the surplus flue gas boiler 110 (FIGS. 1, 2, and 3).
  • the pyrolysis gas in this chamber is exhausted to the outer cylinder 3 or the outer cylinder 5 via the discharge pipe 21B. 39C in the figure shows the outlet of the carbide residue.
  • the pyrolysis gas (second pyrolysis gas) pyrolyzed in the outer cylinder 3 of the external combustion type rotary kiln 1 is as follows: 1) new air from the combustion furnace air inlet 13 introduced into the combustion furnace in the second system; 2) A part or all of the humidified exhaust gas from the dryer for drying the raw material is mixed and burned to produce a combustion exhaust gas 90.
  • the illustrated gas inlet 92 to the combustion furnace indicates the inlet of the second pyrolysis gas to the combustion furnace 8. 3)
  • fresh air can be blown into the air that has been heat-exchanged and preheated by the combustion exhaust gas 93.
  • This combustion exhaust gas 93 can be used in the following 1) to 4), can be used as a drying heat source for each raw material, and can generate electric power using surplus combustion exhaust gas.
  • 1) Heat source for drying raw materials (Figs. 1, 2, 3, 4) 2) Steam is produced by the surplus flue gas boiler 110 (FIGS. 1, 2 and 3) or the combustion gas waste heat boiler 51B (FIG. 4) and supplied to the steam generator 111. (FIGS. 1, 2, 3, 4). 3) ⁇ Explanation of power generation using combustion exhaust gas>
  • Reference numeral 20 indicates water-steam which is a working fluid of the boiler.
  • FIGS. 1, 2, and 3 show steam which is a working fluid of the surplus flue gas boiler 110, and FIG.
  • Reference numeral 21 denotes a combustion exhaust gas inducing fan, which regulates and controls the pressure of the combustion furnace 8 by a valve not provided with an upstream number.
  • the surplus flue gas boiler 110 and the steam power generator 111 are not shown in FIGS. 1, 2, and 3, but may be installed by branching downstream of the cyclone 15. 4) As shown in FIG. 4, a part of the combustion exhaust gas 93 is branched at the branch 39, the temperature of the outer cylinder 4 is raised, and then connected to a line in front of the drying exhaust gas fan 42 of the dryer exhaust gas discharging line.
  • this connection point may be re-injected into the flue gas pipe 36C on the upstream side of the combustion gas exhaust heat boiler 51B.
  • the other portion of the flue gas which is obtained by branching the flue gas at the branch 39, produces steam using a 51B combustion gas waste heat boiler, and the dried raw material is dried using the steam 102.
  • the steam 102 obtained by indirectly drying the raw material 30 becomes drain and returns from the steam return line 103 to the drain recovery device 104.
  • the steam 102 may be partially blown directly into the raw material dryer 32 to loosen the raw material.
  • reference numeral 106 denotes an air blowing port for the dryer, which blows an amount determined in consideration of the amount of the exhaust pipe 23 and the set moisture at the dryer outlet.
  • the air preheated by the combustion exhaust gas can be used.
  • the pyrolysis gas (second pyrolysis gas) is sent from the outer cylinder 3 (FIG. 1) or the second outer cylinder 5 (FIGS. 2, 3, and 4) to the reforming furnace 7 and the combustion furnace 8, 2, 3 and 4, when there are two outer cylinders, a part of the combustion exhaust gas 93 of the combustion furnace is passed through the branch 39 as shown in FIGS.
  • the inner cylinder 2 is supplied to the outer cylinder (first outer cylinder) 4 on the inlet side of the inner cylinder, and the temperature of the inner cylinder 2 and the low-temperature region raw material are constantly raised to reduce the amount of oxygen used in the outer cylinder 5.
  • the combustion exhaust gas (* 5) after heating the outer cylinder 4 is returned to the combustion exhaust gas conduit 112. 3 and 4, it is returned to the upstream of the drying exhaust gas fan 42.
  • it may be returned to the flue gas conduit 88, and in FIG. 4, it may be returned to the line 36C (FIGS. 1, 2). , 3, 4).
  • the steam generated from the combustion exhaust gas allows excess steam that is used for drying to flow to the steam generator 111 to generate power.
  • FIG. 1 the combustion exhaust gas
  • the flue gas 93 can be exhausted by raising the temperature of the flue gas (B) 83 in the flue gas-dry circulation gas (B) heat exchanger 18.
  • the flue gas may be directly circulated from the conduit 88 to the raw material dryer 32 without passing through the flue gas-drying circulating gas (B) heat exchanger 18 (18 shown in FIG. 2).
  • the drying circulation exhaust gas 83 heated by the combustion exhaust gas-drying circulation gas (B) heat exchanger 18 is recycled to the raw material dryer 32 via a pipe 88 in each case. It is circulated and used for drying raw materials.
  • the gas temperature of the reforming furnace 7 is desirably 900 to 1100 ° C.
  • oxygen gas and steam are supplied into the reforming furnace 7 from below the reforming furnace 7.
  • the steam and oxygen gas supplied to the reforming furnace 7 preferably have a molar ratio of steam / oxygen gas (mol number of steam / mol number of oxygen gas component) of 0.4 to 4. .
  • the reason for this is that if it is less than 0.4, the temperature of the oxygen blowing portion becomes locally high due to the temperature sensitivity due to the oxygen being blown, and the uniform temperature increase over the entire reforming furnace 7 cannot be achieved.
  • the temperature of the reforming furnace 7 is preferably from 900 ° C. to 1100 ° C. More preferably, it is 1000 to 1050 ° C.
  • the reason why the temperature is more preferably 1000 ° C. or more is that the steam reforming reaction and the shift reaction below become dominant at 1000 ° C. or more and the amount of CO increases, and the upper limit of 1100 ° C. is that the heat load is too high. This is because the amount of oxygen blown for increasing the temperature increases, and the amount of recovered hydrogen decreases.
  • the concentration of H 2 gas increases.
  • Typical steam reforming reaction CH 4 + H 2 O ⁇ CO + 3H 2 Shift reaction: CO + H 2 O ⁇ CO 2 + H 2
  • the typical steam reforming reaction proceeds when the residence time in the reforming furnace 7 is 2 seconds or more, for example, 2.5 to 3 seconds.
  • the crude reformed gas 50 thus obtained has a H 2 gas content of 50 to 54% by volume (dry basis). It is to be noted that the supply of steam is performed not only to advance the steam reforming reaction, but also to alleviate the above-mentioned temperature sensitivity (rapid rise in temperature due to oxygen injection).
  • the reformed gas cooler 53 to the activated carbon adsorption treatment device 56B, 81 and 80 are collectively referred to as a reformed gas gas treatment device 53B.
  • the reformed gas processing apparatus 53B will be described in detail with reference to FIG. 1, but the same applies to other drawings.
  • the reformed gas processing device 53B can be configured by a conventionally known technique, and after being subjected to water spray cooling 84 by the reformed gas cooler 53 and dust removal by the reformed gas bag filter 54, each device (the acid gas processing device 55, In the alkaline gas treatment device 56 and the activated carbon adsorption treatment device 56B), removal processing of trace harmful components such as HCl, CN, and NH 3 is performed.
  • each removal process is illustrated only briefly, it can be performed by appropriately combining conventionally known techniques.
  • water containing a small amount of tar is separated by a separation water pot 80 and transferred to a wastewater treatment 81 in case of emergency.
  • the crude reformed gas that has passed through the reformed gas processing device 53B is first heated by the reformed gas heater 57 by the steam 58. This has a function of preventing naphthalene and the like from being deposited in the gas due to a pressure drop and a temperature drop downstream of the CO 2 recovery device 60, the crude hydrogen gas compressor 61, the hydrogen separation device 70, and the like. Then, the pressure of the reforming furnace 7 and the outer cylinder 3 (or the second outer cylinder 5 in FIGS. 2, 3 and 4) is increased by the crude reforming gas inducing fan 59 by the pressure control valve 59B.
  • the crude reformed gas is sent to the hydrogen separator 70 side while controlling based on the detection data of the control detector.
  • CO 2 when the S content in the raw material is 0.2% by mass or less (dry base), CO 2 can be economically recovered from the crude reformed gas by the CO 2 recovery device 60 before hydrogen recovery. It is possible. However, when the S content exceeds 0.2% by mass (dry basis), it is preferable not to perform CO 2 recovery in consideration of economy.
  • the recovered CO 2 may be used for promoting plant growth.
  • the CO 2 recovery from the crude reformed gas can be achieved by a well-known technique, such as an amine absorption method or PSA (using an adsorbent such as zeolite), although not shown in detail.
  • the hydrogen separator 57B 1, 2, 3, and 4 from the reformed gas heater 57 to the point before the product pure hydrogen 77 are collectively referred to as a hydrogen separator 57B.
  • the crude reformed gas is compressed by the crude hydrogen gas compressor 61, and is introduced into the hydrogen separator 70, where the offgas 71 is separated to obtain the product pure hydrogen 77.
  • the hydrogen separation device 70 may employ a known technique, for example, a hydrogen PSA.
  • the entire device from the off-gas storage tank 72 for storing the off-gas 71 in the gas engine / off-gas device 72B to the flare stack 74 is shown.
  • the off-gas 71 from which hydrogen has been recovered by the hydrogen separator 70 contains a CO component and the remaining hydrogen component of the recovered hydrogen component, and thus can be used as fuel for a gas engine.
  • the fuel was able to generate 94-167 kW / 206 kg of raw material / hr-DRY.
  • the auxiliary fuel 38 is supplied to the auxiliary fuel 38 for direct heating and indirect heating for drying the raw material, the auxiliary burner fuel 14 of the combustion furnace 8, and the hot blast furnace 35.
  • the auxiliary fuel 38 can be used when the raw material to be dried and dried has a large amount of water.
  • the off-gas 71 is temporarily stored in an off-gas storage tank 72, and is boosted in pressure by an off-gas high-pressure compressor 73 to be supplied to a gas engine generator 75 to generate electric power in preparation for the average use of production off-gas.
  • the case where the off-gas 76 is used in an auxiliary burner or the like is also exemplified by the off-gas 76 in the figure.
  • the flare stack 74 is for combustion exhaust when off-gas is not used.
  • the temperature of the combustion furnace 8 is more preferably 850 to 900 ° C., and the residence time is more preferably 2.5 seconds or more. At this time, since the second pyrolysis gas that has been pyrolyzed at 740 ° C.
  • the combustion furnace uses: 1) Even when burning at a high temperature of 850 to 900 ° C., there is no volatilization of phosphorus (P 2 O 5 ) or the like, and there is no problem of blockage in the wake. 2) Since combustible gas is burned in a reducing atmosphere, DXN (dioxin) generation is small. 3) The generation of greenhouse gas (N 2 O: nitrous oxide) is low because it is pyrolyzed at low temperature and burned at high temperature after pyrolysis. This has the effect. In the combustion furnace 8, air is introduced from the combustion furnace air inlet 13 to burn the pyrolysis gas (second pyrolysis gas). The use of the combustion furnace auxiliary burner fuel 14 during startup is permitted regardless of the essence of the present invention.
  • the outlet gas (combustion exhaust gas) 90 of the combustion furnace discharged from the combustion furnace 8 is a heat source for indirectly heating the dryer circulation gas (B) 83. That is, the flue gas 90 passes through the flue gas cyclone 15, passes through the flue gas-drying circulating gas (B) heat exchanger 18, passes through the surplus flue gas boiler 110, and passes through the known environmentally harmful substance removing means 22. The exhaust gas is exhausted to the atmosphere through the exhaust pipe 23.
  • the boiler working fluid (water-steam) 20 manufactured here generates electric power in the power generation device 111.
  • the flue gas-drying circulation gas (B) heat exchanger 18 indirectly heats the dryer circulation gas (B) 83 to serve as a heat source for drying the raw material.
  • the combustion gas-air heat exchanger 16 heats the air taken in from the air inlet 17 with the gas obtained by branching the combustion exhaust gas 93 at the branch 39, and blows it into the hot stove 35 via the hot stove fan 37. .
  • heated air is blown into the hot stove 35 from the heated air blowing port 36B, but the hot stove burner 36 is used as an auxiliary only at startup and when the moisture evaporation energy in the raw material dryer 32 is insufficient. I do.
  • the auxiliary combustion fuel or the second pyrolysis gas can be supplied to the hot blast stove burner 36 by extracting a part of the auxiliary combustion fuel or the second pyrolysis gas, not shown, from the gas exhaust pipe 21C. Alternatively, it can be blown using the off gas 76.
  • a heating gas of substantially the same amount as the amount exhausted by the exhaust pipe 23 is injected into the conduit 88 of the drying circulation gas (B) 83. That is, moisture is exhausted by the exhaust pipe 23, and a heated gas with little moisture is blown into the raw material dryer 32 from the outlet 88 of the hot stove 35 from the conduit 88 of the drying circulation gas (B) 83 before the raw material dryer 32. It is also possible to supply the branch gas at the branch 39 of the combustion exhaust gas 93 introduced into the combustion gas-air heat exchanger 16 between the drying exhaust gas cyclone 40 and the drying exhaust gas bag filter 41. This is shown in FIGS.
  • the raw material dryer exhaust gas has a higher drying efficiency when the outlet temperature is low, and mixes a high-temperature gas in front of the dry exhaust gas bag filter 41 to raise the temperature of the dryer outlet gas 89, so that the dry exhaust gas Corrosion due to low-temperature condensation in the bag filter 41 can be prevented.
  • the biomass raw material 30 is supplied to the dewatering raw material hopper 31 and, via the raw material dryer 32, becomes a dry raw material 33 having a water content of, for example, 80% by mass to 20% by mass, and is supplied to the dry raw material supply hopper 34.
  • the outlet gas of the raw material dryer 32 that is, the dryer outlet gas 89 flows to the pipe 86 and is introduced into the combustion furnace at the branch point into the dryer circulation gas (A) 82 and the dryer circulation gas ( B) Branch to 83.
  • the dryer circulating gas (B) 83 is clockwise (clockwise) starting from the branch point, and in this order, the combustion gas-dry circulating gas (B) heat exchanger 18, the raw material dryer 32, the drying exhaust gas cyclone 40, The circulating gas returns to the branch point via the drying exhaust gas bag filter 41 and the drying exhaust gas fan 42.
  • the combustion exhaust gas 90 discharged from the combustion furnace 8 is used as the following heat source as the combustion exhaust gas 93 having passed through the combustion gas cyclone 15. 1) After passing through the combustion gas cyclone 15, a part of the gas is blown in a branch 39 in front of a dry exhaust gas filter 41 that takes the dust of the dry circulating gas, and the temperature of the dryer outlet gas 89 is increased to thereby increase the dry exhaust gas filter.
  • Heat source for producing steam for drying raw materials in combustion gas exhaust heat boiler 51B (FIG. 4) 7)
  • the heat source is introduced into the first outer cylinder 4 from the branch 39 to raise the temperature of the steel shell and the raw material of the inner cylinder to reduce the amount of oxygen used in the outer cylinder and improve the efficiency of hydrogen recovery (FIGS. 2, 3). 4)
  • the particles collected from the dry exhaust gas cyclone 40 and the dry exhaust gas bag filter 41 are organic substances, and thus are sent to the dewatering material hopper 31.
  • a part of the pyrolysis gas (second pyrolysis gas) generated from the outer cylinder 3 and the second outer cylinder 5 may be used as the fuel 38 of the hot stove burner 36 of the hot stove 35.
  • a part of the combustion exhaust gas 93 is branched at the branch 39, and is the same up to the combustion gas-air heat exchanger 16, but after passing through the heat exchanger, the first portion of the external combustion type rotary kiln 1.
  • the configuration is changed in such a way that it is introduced into the outer cylinder 4 and used as a heat source for the steel plate and the raw material of the inner cylinder 2 and then re-entered into the pipeline 112 in front of the combustion exhaust gas induction fan 21.
  • the discharge pipe 21B is arranged only between the inner cylinder and the second outer cylinder 5.
  • the second pyrolysis gas is generated only in the second outer cylinder 5.
  • Other configurations are the same as those in FIG.
  • the wall temperature of the inner cylinder 2 near the inner cylinder inlet and the temperature of the raw material in the inner cylinder can be increased, and the amount of oxygen used in the outer cylinder 5 can be reduced. Since it can be reduced, the efficiency of hydrogen recovery can be improved.
  • the steel sheet serving as a low-temperature portion at the beginning of the supply of the raw material of the inner cylinder 2 does not cool down, it is possible to prevent the raw material from being placed in a low temperature range (180 ° C.
  • FIG. 3 differs from FIG. 2 in the following points.
  • the dryer circulation gas is branched into two, and the dryer circulation exhaust gas B is heated by the heat exchanger 18 and circulated to the raw material dryer 32.
  • the whole is injected into the combustion furnace and the combustion exhaust gas 93 is directly injected into the raw material dryer 32.
  • Oxygen required for generating the second pyrolysis gas in the outer cylinder 5 is the temperature rise due to the partial combustion carried by oxygen, because the heat from the outer cylinder 4 heats the raw material and the inner cylinder steel plate. Therefore, the amount of oxygen used is reduced and the recovery rate of the hydrogen component is increased.
  • the steam generator 111 using the combustion exhaust gas may be provided by branching at the pipe 93 (the downstream side of the combustion exhaust gas cyclone 15) or provided after branching to the raw material dryer 32. It becomes.
  • FIG. 4 steam is produced in the combustion gas waste heat boiler 51B using the combustion exhaust gas, and the raw material is dried with the steam.
  • the surplus combustion exhaust gas boiler 110 is provided, but in the embodiment shown in FIG. 4, the function of the surplus combustion exhaust gas boiler 110 in FIG.
  • the raw material is mainly indirectly heated by steam, but a small amount of steam can be directly blown to loosen the raw material.
  • the amount of exhaust gas from the raw material dryer 32 which is dried by the steam-using method shown in FIG. 4 has the advantage of being reduced to about ⁇ , but since there is much moisture, a scrubber is used instead of the cyclone 40 and the bag filter 41 shown in the figure. You can do it. In that case, wastewater treatment occurs and joins with the wastewater treatment 81 in FIG. This scrubber can eliminate harmful gas components such as HCl, but has the disadvantage of losing the heat of the dry circulating gas and has the advantage of reducing the amount of processing gas.
  • reference numeral 111 denotes a steam generator using surplus steam.
  • the biomass raw material commonly used in Examples and Comparative Examples is sewage sludge, which is as follows. Supply amount: 1720 kg / hr Water content: 80% by mass (however, dried to 20% by mass by the raw material dryer 32) Tables 1 and 2 show the results of the raw material dewatered sludge analysis (analysis of ash, volatile matter and fixed carbon ratio) and the raw material dewatered sludge elemental analysis, respectively.
  • Example 1, 1-1 and Comparative Example 1 Temperature of outer cylinder>
  • the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1.
  • the case of 600 ° C. which is less than the lower limit of the specified value of one embodiment of the present invention
  • Example 1-1 shows a case where the upper limit of the specified value of one embodiment of the present invention is 740 ° C.
  • Table 3 shows the amount of water vapor and oxygen blown into the outer cylinder 3 of the external combustion type rotary kiln 1 in each of the above examples. I do.
  • Example 1 which satisfies the temperature range of the outer cylinder 3 of the external combustion type rotary kiln defined in one embodiment of the present invention, shows that the pyrolysis gas (No. The amount of tar (in the outer cylinder) in (2 pyrolysis gas) is less than the detection limit of less than 0.001 g / Nm 3 .
  • Comparative Example 1 in which the outer cylinder temperature is 600 ° C., which is less than the lower limit of 640 ° C. specified in one embodiment of the present invention, tar remains in the outer cylinder 3 remarkably.
  • Example 1-1 where the outer cylinder temperature is the upper limit of 740 ° C.
  • the tar amount in the outer cylinder is below the detection limit as in Example 1, but the creep rupture of the inner cylinder steel plate It has a strength of 20 Mpa at 740 ° C. in SUS310S (creep strength at a rupture time of 5 to 10 hours), and creep rupture strength under operating conditions at 740 ° C. even for high-grade materials such as high oxidation-resistant austenitic stainless steel ASTM NUSS 31060. Is 40 Mpa (creep strength when the rupture time is 10 5 hr), 740 ° C. is close to the boundary where long-term operation is possible from the viewpoint of high-temperature strength. In Example 1 and Example 1-1, approximately 52% by volume (dry base) of hydrogen gas was obtained in the reformed gas.
  • Example 2 a preferred example within the molar ratio regulation of the present invention, the molar ratio was 1.99, In Example 2-1, the lower limit of the molar ratio of the present invention was set to 0.4, In Example 2-2, the molar ratio of the present invention was set at 3.91, which is near the upper limit of 4; Table 4 shows the results (temperature control sensitivity (outer cylinder temperature change), pyrolysis gas component and amount in outer cylinder 3).
  • Example 2 the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1.
  • FIG. 9 is a graph showing the change in the thermal decomposition temperature of the outer cylinder 3 with respect to the change in the oxygen gas flow rate in 2-1) and 4 (Example 2-2).
  • the higher the molar ratio the more the sensitivity (temperature change of the outer cylinder) of the temperature change caused by the fluctuation of the oxygen gas flow rate is improved.
  • the sensitivity is improved, but the oxygen blowing amount is increased.
  • the lower limit of the molar ratio is 0.4 (Example 2-1), the sensitivity is deteriorated, but the oxygen blowing amount is reduced.
  • the upper and lower limits of the molar ratio were determined from these two balances.
  • Example 3 and Examples 3-1 and 3-2 Temperature of outer cylinder and control temperature of reforming furnace> Example 1 was described as Example 3, and Examples 3-1 and 3-2 were compared under the following conditions. That is, in the embodiment shown in FIG. 1, the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1. In Examples 3, 3-1, and 3-2, the outer cylinder 3 commonly thermally decomposes at the preferred control temperature of 650 ° C. of the present invention, but the temperature of the reforming furnace is different. In the case of the reforming furnace temperature of 1050 ° C. which is more preferable in the range specified by the present invention in Example 3, Example 3-1 is the case of the lower limit of 900 ° C. specified in the present invention, Example 3-2 is a case where the upper limit specified by the present invention is 1100 ° C., And the results are shown in Table 5.
  • the thermal decomposition temperature in the outer cylinder is 650 ° C. in Example 3 and Examples 3-1 and 3-2, the amount and composition of the thermal decomposition gas are the same.
  • the lower limit of the reforming furnace reaction temperature of one embodiment of the present invention is 900 ° C. in Example 3-1, and the upper limit of the reforming furnace reaction temperature is 1100 ° C. in Example 3-2. From this result, it was confirmed that the hydrogen component can be recovered at a reforming furnace temperature of 900 to 1100 ° C. with a yield of about 50 to 53% by volume. In addition, it was found that the vicinity of 1050 ° C. in Example 3 was desirable from both aspects of yield and energy consumption.
  • Example 4 Use of off-gas>
  • the pyrolysis gas obtained in Example 1 was supplied to the reforming furnace 7 to obtain a crude reformed gas, which was then cooled and dust-removed to remove trace harmful components such as HCl, CN, and NH 3.
  • a hydrogen separator to separate off-gas. Table 6 shows the composition of this off-gas.
  • this off-gas has a calorific value of 2,616 kcal / Nm 3 , it is possible to generate 94 to 167 kW / raw material 206 kg / hr-Dry using a gas engine (generating from raw material sewage sludge 344 kg / hr-Dry).
  • a gas engine generating from raw material sewage sludge 344 kg / hr-Dry.
  • hydrogen is produced from the reformed gas at 60% of the second pyrolysis gas and the off-gas is used).
  • it can be used as a fuel 14 for a combustion furnace auxiliary burner of the combustion furnace 8.
  • Example 5 uses the second pyrolysis gas generated in Example 1 to reduce the amount of auxiliary fuel for drying the raw material, and Comparative Example 5 (where the second pyrolysis gas is not used as a heat source). Compared. As described above, in one embodiment of the present invention, in the flue gas-drying circulating gas (B) heat exchanger 18, the flue gas 93 indirectly heats the dryer circulating gas (B) 83 to produce biomass as a raw material. Since it is a heat source for drying (water content is set to 20% by mass), the amount of auxiliary fuel in the hot blast stove 35 for this drying is reduced by an example of operating conditions (Example 1).
  • Example 5 This is compared with the case where 100% of the second pyrolysis gas generated in (2) is used (Example 5) and the comparative example 5 in which indirect heating is not performed in the flue gas-drying circulation gas (B) heat exchanger 18.
  • Table 7 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

A method for producing hydrogen from a biomass raw material, the method being characterized in that: after generation of a first pyrolysis gas in an inner cylinder of an external-combustion rotary kiln by heat generated in an outer cylinder of the external-combustion rotary kiln and introduction of a biomass raw material supplied to the inner cylinder into the outer cylinder, water vapor and at least one of oxygen and air are combined in the outer cylinder and introduced into the outer cylinder such that the ratio of the number of mol of water vapor relative to the number of mol of oxygen gas component is 0.4-4; the temperature inside the outer cylinder is controlled to 640-740°C to obtain a second pyrolysis gas; some of the second pyrolysis gas is introduced into a reforming furnace, the temperature in the reforming furnace is raised to obtain a crude reformed gas having an increased hydrogen content, and the hydrogen is recovered; and the remainder of the second pyrolysis gas is introduced into a combustion furnace, the biomass raw material is dried utilizing the combustion exhaust gas as a heat source, and surplus combustion exhaust gas is utilized to generate power.

Description

バイオマスを原料とする水素製造方法Hydrogen production method using biomass as raw material
 本発明は、バイオマスを原料とする水素製造方法に関する。 The present invention relates to a method for producing hydrogen using biomass as a raw material.
 バイオマス等の再生可能なエネルギー源の利用方法として以下のものが試みられている。
1.バイオマス燃焼発電
 バイオマスを直接燃焼し、この燃焼熱でスチームを発生させて、このスチームで発電するもの。
2.バイオマスガス化発電
 バイオマス原料から可燃性の熱分解ガスを発生させ、このガスを燃料として発電をするものである。この方法は、温室ガス(NO:亜酸化窒素等)の発生が少ないこと、DXN(ダイオキシン)発生が少ないこと等の長所を有する反面、
(1)熱分解時に発生するタールが下流配管の閉塞をおこし、連続運転継続が難しく(地球環境シンポジウム講演論文集、13巻(2005)、225頁)、
(2)バイオマス原料を乾燥するために多大なエネルギーを必要とし、
(3)ガスエンジンでの発電は、タール分が存在するため、メンテナンスが煩雑で、また、水素回収することは、タールによる設備閉塞、クリーニングの手間で安定的に操業出来ない、
との問題があった。
The following has been attempted as a method of using a renewable energy source such as biomass.
1. Biomass combustion power generation Biomass is directly burned, and steam is generated using this combustion heat, and power is generated by this steam.
2. Biomass gasification power generation Combustible pyrolysis gas is generated from biomass raw material, and power is generated using this gas as fuel. This method has advantages such as low generation of greenhouse gas (N 2 O: nitrous oxide and the like) and low generation of DXN (dioxin),
(1) Tar generated during thermal decomposition causes blockage of downstream piping, making it difficult to continue continuous operation (Global Environmental Symposium Proceedings, 13 (2005), 225),
(2) It requires a lot of energy to dry the biomass raw material,
(3) In the power generation by the gas engine, maintenance is complicated due to the presence of tar, and the recovery of hydrogen cannot be stably performed due to the clogging of equipment due to tar and the trouble of cleaning.
And there was a problem.
 そこで、種々のタール発生防止、分解方法が検討されている。 Therefore, various methods for preventing tar generation and decomposition are being studied.
 特許文献1には、外燃式ロータリーキルンの熱分解炉とその出側にシャフト炉を設け、そのシャフト炉の中間にくびれ部(図2の領域AとCの境界として視認されるもの)を設けて、酸化ガス吹き込みとそのガスの抜き出し後の特殊構造で、タールを分解するバイオマスガス化装置が提案されている。 In Patent Document 1, a pyrolysis furnace of an external combustion type rotary kiln and a shaft furnace are provided on the outlet side, and a constricted portion (visible as a boundary between regions A and C in FIG. 2) is provided in the middle of the shaft furnace. In addition, a biomass gasifier that decomposes tar with a special structure after blowing an oxidizing gas and extracting the gas has been proposed.
 特許文献2には、回転する筒状レトルト(内筒)内へ被処理材を供給し、当該レトルトが収容される外熱室からの加熱によって被処理材を炭化するようにした外燃式ロータリーキルンのタール除去方法であって、レトルト(内筒)内の温度を有機可燃成分の揮発消失を抑制する通常操業温度を越えてタールの剥離に必要な温度(600℃)まで1日に数回一時的に上昇させ、タールを内筒内壁から剥離しタールの排出作業頻度を減らす方法が提案されている。 Patent Document 2 discloses an external-combustion rotary kiln in which a material to be treated is supplied into a rotating cylindrical retort (inner cylinder), and the material to be treated is carbonized by heating from an external heat chamber in which the retort is stored. A method of removing tar from the temperature inside a retort (inner cylinder) several times a day to a temperature (600 ° C.) required for tar peeling exceeding a normal operating temperature at which volatilization of organic combustible components is suppressed. A method has been proposed in which the tar is discharged from the inner wall of the inner cylinder to reduce the frequency of tar discharging work.
 特許文献3には、原料を、流動層炉でガス化、熱分解又は部分酸化して、生成ガスを得るシステムにおいて、前記原料から生成するタールを、油浸造粒法で製造されたアルミナ系粒子である吸着性粒子を用いて吸着・分解し、及び/又は、前記吸着性粒子に付着させて燃焼することを含む流動層炉におけるタールの除去方法が記載されている。 Patent Literature 3 discloses a system in which a raw material is gasified, thermally decomposed, or partially oxidized in a fluidized-bed furnace to obtain a product gas. A method for removing tar in a fluidized-bed furnace including adsorbing and decomposing using adsorbent particles, and / or adhering to the adsorbent particles and burning the adsorbent particles is described.
 特許文献4には、Fe担持のBaTiOからなる触媒によるタールの除去方法が記載されている。 Patent Literature 4 describes a method for removing tar using a catalyst composed of Fe-supported BaTiO 3 .
特許第4790412号公報Japanese Patent No. 4790412 特開2008-32299号公報JP 2008-32299 A 特許第4505247号公報Japanese Patent No. 4505247 特許第5516932号公報Japanese Patent No. 5516932
 安定した水素製造のための課題は、以下の2つである。ここで、第1の課題は解決が必須な技術的なものであるが、第2の課題は経済性の課題であり解決することが好ましいものである。
第1の課題:バイオマス原料を熱分解するとき、熱分解ガス中にタールが含まれ、このタールが下流(後流)プラントの配管を閉塞しプラントの安定した操業ができない。
第2の課題:バイオマス原料の乾燥のための費用が高く、商業的な実用化が難しい。
Problems for stable hydrogen production are the following two. Here, the first problem is a technical problem that must be solved, but the second problem is an economic problem, and it is preferable to solve it.
First problem: When pyrolyzing a biomass raw material, tar is contained in a pyrolysis gas, and this tar blocks a pipe of a downstream (backstream) plant, so that the plant cannot be operated stably.
Second problem: The cost for drying the biomass raw material is high, and commercial application is difficult.
 第1の課題解決のために、前記特許文献1~4に記載されたバイオマス原料からのタール除去を検討すると、以下のような問題があった。
 特許文献1に記載されたタール除去方法は、新たな竪型シャフト炉を別途必要とし、酸化ガスのみの吹き込みなので、水素が燃焼するため、水素の回収は微量しかできず、多量の水素回収は、困難であるとの問題を有していた。
In order to solve the first problem, when the removal of tar from biomass raw materials described in Patent Documents 1 to 4 is examined, there are the following problems.
The tar removal method described in Patent Document 1 requires a new vertical shaft furnace separately, and since only oxidizing gas is blown, hydrogen is burned, so that only a small amount of hydrogen can be recovered, and a large amount of hydrogen can be recovered. Had the problem of being difficult.
 特許文献2に記載されたタール除去方法は、レトルト(内筒)内の温度を有機可燃成分の揮発消失を抑制するために、通常操業温度を越えてタールの剥離に必要な温度(600℃)まで1日に数回一時的に上昇させ、タールを内筒内壁から剥離しタールの排出作業を減らすことを目的としている。一方、後述するように、本発明は、内筒で第1のタールを有する熱分解ガスを発生させ、このガスを外筒に導き、外筒温度を蒸気と酸素を規定量吹き込みことで、規定温度内に温度制御し、タールのない第2の熱分解ガスを製造し、後段の閉塞を防止し、水素ガスの安定的回収を可能にするもので、特許文献2とは、目的と手段が大きく異なる。 In the tar removal method described in Patent Document 2, the temperature inside the retort (inner cylinder) is set to a temperature (600 ° C.) required to exceed the normal operating temperature and to remove tar in order to suppress the volatilization and disappearance of organic combustible components. The purpose is to temporarily raise the tar several times a day until the tar is peeled off from the inner wall of the inner cylinder to reduce the tar discharging work. On the other hand, as will be described later, the present invention generates a pyrolysis gas having a first tar in an inner cylinder, guides the gas to an outer cylinder, and regulates the outer cylinder temperature by blowing a specified amount of steam and oxygen. It controls the temperature within the temperature, produces a second pyrolysis gas without tar, prevents clogging in the latter stage, and enables stable recovery of hydrogen gas. to differ greatly.
 特許文献3に記載されたタールの除去方法は、熱媒体による熱分解温度制御方式のため温度制御が迅速に行えず、特許文献3の記載内容によれば、800℃での熱分解例でタール残存率が15%と高いため、下流にある機器を連続運転することが困難であり、さらに、アルミナ系粒子に付着したタールを燃焼させるために別途の熱源を必要との問題がある。 In the method for removing tar described in Patent Document 3, temperature control cannot be performed quickly because of a thermal decomposition temperature control method using a heat medium. According to the contents described in Patent Document 3, tar is decomposed at 800 ° C. Since the residual ratio is as high as 15%, it is difficult to continuously operate the downstream equipment, and further, there is a problem that a separate heat source is required to burn the tar attached to the alumina-based particles.
特許文献4に記載されたタールの除去方法は、高価なFe担持のBaTiOからなる触媒がガス化炉から飛散してしまったり、炭素分の析出により分解効果が減少するため、その補充頻度が高くなってしまう。 In the method for removing tar described in Patent Literature 4, an expensive catalyst comprising Fe-supported BaTiO 3 is scattered from a gasification furnace, or a decomposition effect is reduced due to deposition of carbon. Will be expensive.
 すなわち、安定した水素製造のためには、特許文献1~4に記載された有機原料からのタール除去方法では、前記第1の課題は解決されず、熱分解ガスからタール除去し、本発明の目的である、水素ガスの回収を安定して行うことが難しい。 That is, in order to stably produce hydrogen, the method for removing tar from organic raw materials described in Patent Documents 1 to 4 does not solve the first problem, and removes tar from a pyrolysis gas. It is difficult to stably recover the purpose of collecting hydrogen gas.
 また、本発明の前記第2の課題は、第2熱分解ガスの一部を燃焼室に導き製造した燃焼排ガスを直接または間接に原料乾燥の熱源とする方法で経済性を向上できる。 The second object of the present invention is to improve the economic efficiency by a method in which a part of the second pyrolysis gas is introduced into a combustion chamber and the produced combustion exhaust gas is directly or indirectly used as a heat source for drying the raw material.
 本発明の一形態に係るバイオマスを原料とする水素製造方法は、
(1) 内筒と外筒とを有する外燃式ロータリーキルンの該内筒に、原料を供給する原料供給工程、
 前記内筒に供給された前記原料を、前記外筒の熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
 前記第1熱分解ガスを前記外筒に導入する第1熱分解ガスの外筒への導入工程、
 前記外筒で、前記第1熱分解ガス内のタールを分解し、第2熱分解ガスを得る工程、
 前記第2熱分解ガスを前記外筒から取り出し改質炉に導入する工程、
 導入された前記第2熱分解ガスを前記改質炉で昇温させて水素含有割合を高めた粗改質ガスを得る改質工程、
及び
 前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
を有し、
 前記第2熱分解ガスを得る工程は、
前記外筒に、酸素または空気の少なくとも一方と水蒸気とを組み合わせて、水蒸気のモル数/酸素ガス成分のモル数の比が0.4~4の範囲内で注入し、
 前記外筒内で前記第1熱分解ガスを部分酸化させ、前記外筒内を640~740℃に温度制御し、
前記第1熱分解ガス内のタールを分解すること、
を特徴とするバイオマスを原料とする水素製造方法。
Hydrogen production method using biomass as a raw material according to one embodiment of the present invention,
(1) a raw material supply step of supplying a raw material to the inner cylinder of an external combustion type rotary kiln having an inner cylinder and an outer cylinder;
A step of thermally decomposing the raw material supplied to the inner cylinder in the inner cylinder by heat of the outer cylinder to generate a first pyrolysis gas;
A step of introducing the first pyrolysis gas into the outer cylinder to introduce the first pyrolysis gas into the outer cylinder;
A step of decomposing tar in the first pyrolysis gas with the outer cylinder to obtain a second pyrolysis gas;
Removing the second pyrolysis gas from the outer cylinder and introducing it to a reforming furnace;
A reforming step of raising the temperature of the introduced second pyrolysis gas in the reforming furnace to obtain a crude reformed gas having an increased hydrogen content,
And a hydrogen recovery step of recovering hydrogen from the crude reformed gas of the reforming step,
Has,
The step of obtaining the second pyrolysis gas comprises:
At least one of oxygen and air and water vapor are combined and injected into the outer cylinder in a ratio of the number of moles of water vapor / the number of moles of the oxygen gas component in the range of 0.4 to 4,
Partially oxidizing the first pyrolysis gas in the outer cylinder, controlling the temperature in the outer cylinder to 640 to 740 ° C.,
Decomposing tar in the first pyrolysis gas;
A method for producing hydrogen using biomass as a raw material.
(2) 原料を原料乾燥機により乾燥させる原料乾燥工程、
 内筒と外筒とを有する外燃式ロータリーキルンの該内筒に、前記原料乾燥工程を経た原料を供給する材料供給工程、
 前記内筒に供給された前記原料を、前記外筒の熱により前記内筒内で熱分解して第1熱分解ガス発生させる工程、
 前記第1熱分解ガスを前記外筒に導入する第1熱分解ガスの外筒への導入工程、
 前記外筒で、前記第1熱分解ガス内のタールを分解し、第2熱分解ガスを得る工程、
 前記第2熱分解ガスを前記外筒から取り出し改質炉及び燃焼炉に導入する工程、
 前記改質炉のガス温度を高め、前記第2熱分解ガスから水素含有割合を高めた粗改質ガスを得る改質工程、
 前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
 導入された前記第2熱分解ガスを含むガスと空気及び乾燥機排ガスを前記燃焼炉で混合燃焼し燃焼排ガスを得る工程、
及び、
 当該燃焼排ガスを直接的または間接的に前記原料乾燥工程の熱源にし、加えて、前記燃焼排ガスの余剰分で蒸気を発生し発電に利用する工程、
を有し、
 前記第2熱分解ガスを得る工程は、
前記外筒に、酸素または空気の少なくとも一方と水蒸気とを組み合わせて、
水蒸気のモル数/酸素ガス成分のモル数の比が0.4~4の範囲内で注入し、
前記外筒内で前記第1熱分解ガスを部分酸化させ、前記外筒内を640~740℃に温度制御し、前記第1熱分解ガス内のタールを分解すること、
を特徴とするバイオマスを原料とする水素製造方法。
(2) a raw material drying step of drying the raw material by a raw material dryer;
A material supply step of supplying a raw material having passed through the raw material drying step to the inner cylinder of an external combustion rotary kiln having an inner cylinder and an outer cylinder,
A step of thermally decomposing the raw material supplied to the inner cylinder in the inner cylinder by heat of the outer cylinder to generate a first pyrolysis gas;
A step of introducing the first pyrolysis gas into the outer cylinder to introduce the first pyrolysis gas into the outer cylinder;
A step of decomposing tar in the first pyrolysis gas with the outer cylinder to obtain a second pyrolysis gas;
Removing the second pyrolysis gas from the outer cylinder and introducing it to a reforming furnace and a combustion furnace;
A reforming step of increasing the gas temperature of the reforming furnace to obtain a crude reformed gas having an increased hydrogen content from the second pyrolysis gas;
A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
A step of obtaining a combustion exhaust gas by mixing and burning the introduced gas containing the second pyrolysis gas, air and a dryer exhaust gas in the combustion furnace;
as well as,
A step of directly or indirectly using the combustion exhaust gas as a heat source in the raw material drying step, and additionally, generating excess steam of the combustion exhaust gas and using it for power generation;
Has,
The step of obtaining the second pyrolysis gas comprises:
The outer cylinder, by combining at least one of oxygen or air and water vapor,
Injection is performed when the ratio of the number of moles of water vapor to the number of moles of the oxygen gas component is in the range of 0.4 to 4,
Partially oxidizing the first pyrolysis gas in the outer cylinder, controlling the temperature in the outer cylinder to 640 to 740 ° C., and decomposing tar in the first pyrolysis gas;
A method for producing hydrogen using biomass as a raw material.
(3) 原料を原料乾燥機により乾燥させる原料乾燥工程、
 外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する原料供給工程、
 前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
 前記第1熱分解ガスを前記第2の外筒に導入する工程、
 前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように前記第2の外筒に供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
 前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
 前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、前記改質炉で前記昇温によって水素含有割合を高めた粗改質ガスを得る改質工程、
 前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
及び、
 前記燃焼炉で、新たな空気、前記原料乾燥機の排出口から出た増湿した排ガスである乾燥循環ガスの少なくとも一部、及び前記第2熱分解ガスの3つを混合し800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
を有し、
 前記燃焼排ガスの一部が前記第1の外筒に導入され、
前記キルン内筒を加熱し、
前記燃焼排ガスの他部は、前記原料乾燥機に投入され循環使用されるところの前記乾燥循環ガスの残部を昇温した後、
前記燃焼ガスの一部と集合し、
余剰燃焼排ガスボイラで、スチームタービン発電機の発電のためのスチームを製造して、大気に排出されること、
を特徴とするバイオマスを原料とする水素製造方法。
(3) a raw material drying step of drying the raw material by a raw material dryer;
A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
Introducing the first pyrolysis gas into the second outer cylinder;
In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied to the second outer cylinder such that the ratio of the number of moles of steam / the number of moles of the oxygen component is 0.4 to 4. Controlling the temperature in the second outer cylinder to 640 to 740 ° C. to partially oxidize the first pyrolysis gas to obtain a second pyrolysis gas;
A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. A reforming step of obtaining a crude reformed gas having an increased hydrogen content by the temperature increase in the reforming furnace;
A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
as well as,
In the combustion furnace, fresh air, at least a part of a drying circulating gas, which is a humidified exhaust gas discharged from an outlet of the raw material dryer, and three of the second pyrolysis gas are mixed, and 800 to 950 ° C. Combustion process to obtain combustion exhaust gas by burning in
Has,
Part of the combustion exhaust gas is introduced into the first outer cylinder,
Heating the kiln inner cylinder,
After the other part of the combustion exhaust gas is heated to the remaining part of the drying circulating gas, which is charged into the raw material dryer and used for circulation,
Gather with a part of the combustion gas,
Surplus flue gas boilers produce steam for power generation by steam turbine generators, which are released to the atmosphere,
A method for producing hydrogen using biomass as a raw material.
(4) 原料を原料乾燥機により乾燥させる原料乾燥工程、
 外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する原料供給工程、
 前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
 前記第1熱分解ガスを前記第2の外筒に導入する工程、
 前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように前記第2の外筒に供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
 前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
 前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、前記改質炉で前記昇温によって水素含有割合を高めた粗改質ガスを得る改質工程、
 前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
及び、
 前記燃焼炉で、新たな空気、前記原料乾燥機の排出口から出た増湿した排ガスである乾燥循環ガスの少なくとも一部及び前記第2熱分解ガスの3つを混合し800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
を有し、
 前記燃焼排ガスの一部が前記第1の外筒に導入され、
前記キルン内壁を加熱し前記原料乾燥機の排ガス側管路に導入され
前記燃焼排ガスの残部は、その一部を前記原料乾燥機に投入し、
その残りを、余剰燃焼排ガスボイラで、スチームタービン発電機の発電のためのスチームを製造に利用した後、大気に排出され乾燥機の増湿分を系外に排出する、
ことを特徴とするバイオマスを原料とする水素製造方法。
(4) a raw material drying step of drying the raw material by a raw material dryer;
A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
Introducing the first pyrolysis gas into the second outer cylinder;
In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied to the second outer cylinder such that the ratio of the number of moles of steam / the number of moles of the oxygen component is 0.4 to 4. Controlling the temperature in the second outer cylinder to 640 to 740 ° C. to partially oxidize the first pyrolysis gas to obtain a second pyrolysis gas;
A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. A reforming step of obtaining a crude reformed gas having an increased hydrogen content by the temperature increase in the reforming furnace;
A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
as well as,
In the combustion furnace, fresh air, at least a part of a drying circulating gas which is a humidified exhaust gas discharged from an outlet of the raw material dryer, and three of the second pyrolysis gas are mixed and mixed at 800 to 950 ° C. Combustion process to obtain combustion exhaust gas by combustion,
Has,
Part of the combustion exhaust gas is introduced into the first outer cylinder,
The kiln inner wall is heated, and the remaining portion of the combustion exhaust gas that is introduced into the exhaust gas side pipe of the raw material dryer is partially charged into the raw material dryer,
The remainder is used in a surplus flue gas boiler to use steam for power generation by a steam turbine generator for production, and then discharged to the atmosphere to discharge the humidifier of the dryer to the outside of the system.
A method for producing hydrogen using biomass as a raw material.
(5) 原料を乾燥させる原料乾燥工程、
 外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する材料供給工程、
 前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
 前記内筒に供給された前記乾燥原料を熱分解して発生した前記第1熱分解ガスを前記第2の外筒に導入する工程、
 前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
 前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
 前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、前記改質炉を前記昇温によって、水素含有割合を高めた粗改質ガスを得る改質工程、
 前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
及び、
 前記燃焼炉で、前記原料乾燥機の排ガスの出口から排出される増湿した排ガス、前記第2熱分解ガス、及び新たな空気の3つを混合し、800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
を有し、
 前記燃焼排ガスの一部が前記第1の外筒に導入し、
前記外燃式のロータリーキルン内筒壁と原料を加熱し、
その後、乾燥機の排出側管路に導入し、
前記燃焼排ガスの他部は燃焼ガス廃熱ボイラに集合され蒸気を製造し、
この蒸気を利用して、前記原料の乾燥の間接媒体または直接媒体とし、
当該蒸気の残余分は、スチーム発電機で発電に供し、
前記燃焼ガス廃熱ボイラで熱を回収した後の燃焼排ガスは、大気に排出され乾燥機の増湿された湿分を系外に排出すること、
を特徴とするバイオマスを原料とする水素製造方法。
である。
(5) a raw material drying step of drying the raw material,
A material supply step of supplying a dried raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
Introducing the first pyrolysis gas generated by pyrolyzing the dry raw material supplied to the inner cylinder into the second outer cylinder;
In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied so that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and A step of controlling the temperature in the outer cylinder to 640 to 740 ° C. and partially oxidizing the first pyrolysis gas to obtain a second pyrolysis gas;
A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. A reforming step of obtaining a crude reformed gas having an increased hydrogen content by raising the temperature of the reforming furnace;
A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
as well as,
In the combustion furnace, three of the humidified exhaust gas discharged from the exhaust gas outlet of the raw material dryer, the second pyrolysis gas, and fresh air are mixed and burned at 800 to 950 ° C. Get the combustion process,
Has,
Part of the combustion exhaust gas is introduced into the first outer cylinder,
Heating the external combustion type rotary kiln inner cylinder wall and raw materials,
After that, it is introduced into the discharge line of the dryer,
The other part of the combustion exhaust gas is collected in a combustion gas waste heat boiler to produce steam,
Utilizing this steam, an indirect or direct medium for drying the raw material,
The remainder of the steam is used for power generation with a steam generator,
The combustion exhaust gas after recovering heat in the combustion gas waste heat boiler is discharged to the atmosphere and the humidified moisture of the dryer is discharged out of the system,
A method for producing hydrogen using biomass as a raw material.
It is.
 前記の1または複数が以下の効果の1または複数を奏する。すなわち、前記第1の課題について、第1の熱分解ガスに含まれるタールを直近の外筒で完全分解ができ、このタールを分解した第2の熱分解ガス、すなわち、バイオマス原料からタールのない熱分解ガス、を長期にわたり安定的かつ効率的に得ることができるため、温度を上げ水素分の増加を図った改質炉で、安定的に水素回収を実現できる。さらに、前記第2の課題について、水分の多い原料の乾燥を、第2の熱分解ガスを燃焼炉8で燃焼した燃焼排ガス90の廃熱利用によって効率的乾燥が可能である。 1 One or more of the above exhibit one or more of the following effects. That is, with respect to the first problem, the tar contained in the first pyrolysis gas can be completely decomposed in the nearest outer cylinder, and the second pyrolysis gas obtained by decomposing the tar, that is, no tar is obtained from the biomass raw material. Since the pyrolysis gas can be obtained stably and efficiently over a long period of time, stable recovery of hydrogen can be realized in a reforming furnace in which the temperature is increased and the amount of hydrogen is increased. Further, regarding the second problem, efficient drying of the raw material having a high moisture content can be achieved by utilizing waste heat of the combustion exhaust gas 90 obtained by burning the second pyrolysis gas in the combustion furnace 8.
本発明の第1の実施形態を示す図である。It is a figure showing a 1st embodiment of the present invention. 本発明の第2の実施形態を示す図である。It is a figure showing a 2nd embodiment of the present invention. 本発明の第3の実施形態を示す図である。It is a figure showing a 3rd embodiment of the present invention. 本発明の第4の実施形態を示す図である。It is a figure showing a 4th embodiment of the present invention.
 次に、本発明を実施する形態を図面を引用して説明する。本発明は、この実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で適宜変更可能であることは、言うまでもない。
 また、図1、2、3、4で重複している箇所について、繰り返しの説明は割愛する。
 なお、本明細書及び請求の範囲において数値範囲を「~」で表現するとき、その範囲は上限及び下限の数値を含んでいる。また、「/」は、除算を表す。
Next, embodiments of the present invention will be described with reference to the drawings. It is needless to say that the present invention is not limited to this embodiment, and can be appropriately changed without departing from the gist of the present invention.
In addition, the repeated description of the overlapping portions in FIGS. 1, 2, 3, and 4 is omitted.
In the present specification and claims, when a numerical range is expressed by "-", the range includes upper and lower numerical values. “/” Represents division.
(1)バイオマス原料(原料)
 本発明の一形態において用いられるバイオマス原料30(原料ともいう)は、下水汚泥、間伐材、流木材、木質ペレット、ストローペレット、製紙スラッジ、生ごみコンポストスラッジ、食品廃棄物、汚泥等の生物由来の炭素、水素及び酸素を含むものであれば種類を問わないが、入手のしやすさ、量の確保の容易性から下水汚泥がより好適である。また、原料は、複数種類のバイオマスの混合物であってもよい。また、原料としてバイオマスに廃プラスチックを含めてもよく(図4に例として示すようにバイオマス原料30とともにバイオマス混合物または廃プラスチック95を供給することができる)、廃プラスチック使用等の原料の熱量の大きいものを使用すると原料乾燥のための助燃料の使用量をさらに減らす利点がある。
 原料の大きさは、粗粉砕処理を経た程度の大きさであればよい。例えば、板状、棒状などの個体形状でも粒状、スラッジ状の形状でもかまわない。含有する水分量は、その形状によって異なるものの、最大85質量%含まれていてよい。ただし、40質量%以下、好ましくは30質量%以下、より好ましくは、20質量%以下に、後述するロータリーキルン炉にスクリューコンベア39B等により供給する前に予備乾燥することが好ましい。また、この乾燥工程はロータリーキルンの内筒入口近傍(前段)で行うことも可能である。
(1) Biomass raw material (raw material)
The biomass raw material 30 (also referred to as raw material) used in one embodiment of the present invention is derived from living organisms such as sewage sludge, thinned wood, driftwood, wood pellets, straw pellets, paper sludge, garbage compost sludge, food waste, and sludge. Any type may be used as long as it contains carbon, hydrogen, and oxygen, but sewage sludge is more preferable because of availability and ease of securing the amount. Further, the raw material may be a mixture of plural types of biomass. Also, waste plastics may be included in biomass as a raw material (a biomass mixture or waste plastic 95 can be supplied together with the biomass raw material 30 as shown in FIG. 4 as an example), and the raw material having a large calorific value such as waste plastic use. The use of such a material has the advantage of further reducing the amount of auxiliary fuel used for drying the raw material.
The size of the raw material may be a size that has undergone coarse pulverization. For example, the shape may be an individual shape such as a plate shape or a rod shape, or may be a granular shape or a sludge shape. The amount of water contained may vary depending on the shape, but may be up to 85% by mass. However, it is preferable to perform preliminary drying before supplying to a rotary kiln furnace described below to 40 mass% or less, preferably 30 mass% or less, more preferably 20 mass% or less by a screw conveyor 39B or the like. This drying step can also be performed in the vicinity of the inner cylinder inlet of the rotary kiln (previous stage).
(2)外燃式ロータリーキルン
 本発明の一形態において用いられる外燃式ロータリーキルン1は、例えば、図1に示すように、原料が供給される内筒2を覆うように外筒3が設けられており、内筒2は、その軸心を中心として回転し、内筒2の長さ方向中央部以外に熱分解ガスを外筒3に排出する複数の排出管路21Bが設けられ、耐火物内面被覆鋼板製外筒3には、酸素または空気の少なくとも一方と水蒸気とを組み合わせて吹込むための吹込み口9、及び、排出管路21Bを介して排出された熱分解ガス(第1熱分解ガス)をさらに熱分解させて外筒3の外へ排出するガス排出管21Cを有している。なお、外筒3は複数に分割されていてもよい(図2、3、4)。排出管路21B及び内筒材質は、タール熱分解上及び伝熱性能上、耐熱鋼板製が望ましいが、同じ効果を生む他の材質でも可能である。また、排出管路21Bは、内筒2内で発生した熱分解ガス(第1熱分解ガス)を即座に外筒3に排出されるものである。その形状は、バイオマス原料であるバイオマス自体が、外筒3に固形で排出されることなく、熱分解ガス(第1熱分解ガス)のみが外筒3に排出できればよい。ここで外筒3へのガスの排出は、このガスに同伴する粉体状のバイオマス粉体は許容される。
(2) External-combustion rotary kiln The external-combustion rotary kiln 1 used in one embodiment of the present invention is provided with, for example, as shown in FIG. The inner cylinder 2 rotates around its axis, and is provided with a plurality of discharge pipes 21B for discharging the pyrolysis gas to the outer cylinder 3 except for the central portion in the longitudinal direction of the inner cylinder 2; Injection port 9 for injecting a combination of at least one of oxygen or air and water vapor into the outer sheath 3 made of coated steel sheet, and a pyrolysis gas (first pyrolysis gas) discharged through a discharge pipe 21B. Is further thermally decomposed to discharge the outer cylinder 3 to the outside. Note that the outer cylinder 3 may be divided into a plurality of parts (FIGS. 2, 3, and 4). The material of the discharge pipe 21B and the inner cylinder is desirably made of a heat-resistant steel plate in terms of tar thermal decomposition and heat transfer performance, but other materials producing the same effect are also possible. The exhaust pipe 21 </ b> B is for discharging the pyrolysis gas (first pyrolysis gas) generated in the inner cylinder 2 to the outer cylinder 3 immediately. The shape may be such that only the pyrolysis gas (first pyrolysis gas) can be discharged to the outer cylinder 3 without the biomass itself, which is a biomass raw material, being discharged to the outer cylinder 3 as a solid. Here, for discharging the gas to the outer cylinder 3, powdered biomass powder accompanying the gas is allowed.
 原料は、内筒2の回転にしたがって内筒2の出口に向かって移動し、この移動過程で徐々に温度が上昇して熱分解ガス(第1熱分解ガス)が発生する。内筒2における熱分解温度は300から640℃未満であることが望ましい。より好ましくは300~590℃である。その理由は、300℃未満であると炭化物残渣が多く揮散ガス量が概ね20%から40%程度に少なくなり、640℃を超えると熱分解ガスの大幅増加は見込めなく、また、740℃を超えると熱負荷が増大する割に熱分解ガスは、増大しないからである。さらに、内筒温度が、790℃を超えるとPは熱分解ガス中に多量に揮散してしまうことが過去の発明者らの経験で見出されているため、内筒2の熱分解温度を590℃から640℃未満に低く抑えることで不要な塩類等の揮散を押さえ、下水汚泥のようにPを含む有機材料を用いたときでも、Pは外筒3に移動せず炭化物残渣中に残り、Pの揮散を防止し、後流の閉塞を防止できる利点があるためである。
 なお、排出管路21Bは、外筒3が分割されていないときは、内筒熱分解温度が300から640℃未満の範囲にある箇所に複数設け、外筒3が複数に分割されているとき(図3、4)は、各外筒5に対応する場所で、内筒2熱分解温度が300℃から640℃未満の範囲にある箇所に、それぞれ、1個以上設ける。
The raw material moves toward the outlet of the inner cylinder 2 according to the rotation of the inner cylinder 2, and the temperature gradually rises in this moving process to generate a pyrolysis gas (first pyrolysis gas). The thermal decomposition temperature in the inner cylinder 2 is desirably 300 to less than 640 ° C. More preferably, the temperature is 300 to 590 ° C. The reason is that if the temperature is lower than 300 ° C., a large amount of carbide residue is generated and the amount of volatile gas is reduced from about 20% to about 40%. If the temperature exceeds 640 ° C., a large increase in pyrolysis gas cannot be expected, and the temperature exceeds 740 ° C. This is because the thermal decomposition gas does not increase while the heat load increases. Further, it has been found from the experience of the inventors in the past that if the inner cylinder temperature exceeds 790 ° C., P 2 O 5 volatilizes in the pyrolysis gas in a large amount. By suppressing the decomposition temperature from 590 ° C. to less than 640 ° C., unnecessary volatilization of salts and the like is suppressed, and even when an organic material containing P 2 O 5 such as sewage sludge is used, P 2 O 5 remains in the outer cylinder 3. This is because there is an advantage that P 2 O 5 can be prevented from volatilizing and can be prevented from being blocked in the wake, because it does not move to the surface and remains in the carbide residue.
When the outer cylinder 3 is not divided, a plurality of discharge conduits 21B are provided at locations where the inner cylinder thermal decomposition temperature is in the range of 300 to less than 640 ° C., and when the outer cylinder 3 is divided into plural parts. (FIGS. 3 and 4) are provided at locations corresponding to the respective outer cylinders 5, at locations where the thermal decomposition temperature of the inner cylinder 2 is in the range of 300 ° C. to less than 640 ° C., respectively.
 外筒3では、外筒内温度が640~740℃になるように、空気または酸素ガスの少なくとも一方と水蒸気とを組み合わせて吹込口9から供給し、排出管路21Bから導入される熱分解ガス(第1熱分解ガス)を部分酸化させタール成分を分解した熱分解ガス(第2熱分解ガス)を得る。この熱分解温度範囲とする理由は、640℃未満であると、タールの分解ができないためであり、740℃を超えるとタール成分の分解のために必要以上の熱源を投入することになって、さらには、内筒2外側の温度が著しく高くなり、内筒2を構成する鋼板に要求される耐熱性が過度になってしまうためである。上限740℃については、汎用材料の耐熱温度開発が今後、進めばさらに高温(790℃近傍)に高めることが出来ることは、言うまでもない。 In the outer cylinder 3, at least one of air and oxygen gas and steam are supplied in combination from the inlet 9 so that the temperature in the outer cylinder becomes 640 to 740 ° C., and the pyrolysis gas introduced from the discharge pipe 21 B is introduced. The (first pyrolysis gas) is partially oxidized to decompose the tar component to obtain a pyrolysis gas (second pyrolysis gas). The reason for setting the thermal decomposition temperature range is that if the temperature is lower than 640 ° C, tar cannot be decomposed. If the temperature is higher than 740 ° C, an excessive heat source is supplied for decomposing the tar component. Furthermore, the temperature outside the inner cylinder 2 becomes extremely high, and the heat resistance required for the steel sheet constituting the inner cylinder 2 becomes excessive. Regarding the upper limit of 740 ° C., it goes without saying that if the development of the heat-resistant temperature of general-purpose materials proceeds in the future, it can be raised to a higher temperature (around 790 ° C.).
 外筒が複数に分割されている形態としては、図2、3、4に示されるものが例示できる。典型例として、図2に示される形態で説明すると、第2の外筒5のみに空気または酸素ガスの少なくとも一方と水蒸気とを組み合わせて供給し、第1の外筒4には第2の外筒5から取り出された熱分解ガス(第2の熱分解ガス)を燃焼炉で燃焼した燃焼排ガス(燃焼炉の出口ガス)90、燃焼排ガス93の一部を分岐39より供給して内筒2を常時昇温して、内筒の温度と内筒内の原料の温度を昇温することにより、外筒5での酸化剤の使用量を削減でき水素製造の効率を上げることが出来るためである。これは、内筒2の原料の昇温する前の低温度領域(200℃以下の部分等)を、結露温度以上に高め、結露腐食を防止できる付随効果もある。 形態 As the form in which the outer cylinder is divided into a plurality of parts, those shown in FIGS. As a typical example, in the form shown in FIG. 2, at least one of air or oxygen gas and steam is supplied to only the second outer cylinder 5 in combination, and the second outer cylinder 4 is supplied with the second outer cylinder 4. A combustion exhaust gas (outlet gas of the combustion furnace) 90 obtained by burning the pyrolysis gas (second pyrolysis gas) taken out of the cylinder 5 in the combustion furnace, and a part of the combustion exhaust gas 93 are supplied from the branch 39 to the inner cylinder 2. By constantly raising the temperature of the inner cylinder and the temperature of the raw material in the inner cylinder, the amount of oxidizing agent used in the outer cylinder 5 can be reduced and the efficiency of hydrogen production can be increased. is there. This has the attendant effect of increasing the temperature in the low temperature region (such as the portion at 200 ° C. or lower) before the temperature of the raw material of the inner cylinder 2 is increased to the dew condensation temperature or higher, thereby preventing dew condensation corrosion.
 ここで、図1の外筒3、図2、3、4の第2の外筒5に供給する水蒸気のモル数と酸素ガス成分のモル比は、水蒸気/酸素モル比(水蒸気のモル数/酸素ガス成分のモル数)で0.4~4であることが好ましい。吹き込み水蒸気/酸素ガス成分のモル数比の下限の理由は、0.4未満であると、吹き込み酸素による温度の過敏性が大きく酸素吹き込み部が局部的に高温になり、外筒3、第2の外筒5全体にわたる均一な温度上昇ができないためである。上限4の理由は、4を超えると水蒸気が600℃以上で酸化性となりCO濃度が増大し、水素回収には好ましくなくなるためである。
 このようにすることにより、内筒2で発生したタールを含む第1の熱分解ガスは、排出管路21Bを経由して即座に外筒3もしくは第2の外筒5に移動し、外筒3もしくは第2の外筒5でタールのない第2の熱分解ガスに変換される。
Here, the molar ratio of the water vapor and the oxygen gas component supplied to the outer cylinder 3 of FIG. 1 and the second outer cylinder 5 of FIGS. (Molar number of oxygen gas component) is preferably 0.4 to 4. The reason for the lower limit of the molar ratio of the steam / oxygen gas component to be blown is that if the ratio is less than 0.4, the temperature of the blown oxygen is so high that the oxygen blowing portion is locally heated to a high temperature. This is because a uniform temperature rise over the entire outer cylinder 5 cannot be achieved. The reason for the upper limit of 4 is that if it exceeds 4, steam becomes oxidizable at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery.
By doing so, the first pyrolysis gas containing tar generated in the inner cylinder 2 immediately moves to the outer cylinder 3 or the second outer cylinder 5 via the discharge pipe 21B, and 3 or the second outer cylinder 5 converts the gas into a second pyrolysis gas without tar.
 なお、水蒸気は、高温のものが望ましく、一例として、150~200℃の温度のものや過熱蒸気を挙げることができ、酸素ガスは、例えば、常温の空気または工業用の酸素発生器で製造した酸素(例えば40℃近傍)の少なくとも一方を用いることができる。通常の運転では、膜または、吸着剤方式による酸素発生器で製造した酸素を使用することが好ましい。
 また、図示はしていないが、内筒2及び外筒3には温度制御に利用するために温度の均一性をみるため、温度計が1個以上設置されている。
The steam is desirably a high temperature steam. Examples thereof include a steam having a temperature of 150 to 200 ° C. and superheated steam. The oxygen gas is produced by, for example, room temperature air or an industrial oxygen generator. At least one of oxygen (for example, around 40 ° C.) can be used. In normal operation, it is preferable to use oxygen produced by a membrane or an oxygen generator using an adsorbent method.
Although not shown, one or more thermometers are installed in the inner cylinder 2 and the outer cylinder 3 in order to check temperature uniformity for use in temperature control.
 そして、内筒2の出口端部には、チャンバー6が設けられ、その下部からは300℃から640℃未満の温度にさらされた炭化物残渣24が回収される。チャンバー6内の温度は、空気または酸素ガスの少なくとも一方と水蒸気とを組み合わせて供給し、水蒸気のモル数/酸素ガス成分のモル数が0.4~4となるようにノズル11から供給することができる。このことで、チャンバー6内温度は、300から640℃未満の温度範囲に制御することができる。吹き込み水蒸気/酸素ガス成分のモル数比の下限の理由は、0.4未満であると、吹き込み酸素による温度の過敏性大きく酸素吹き込み部が局部的に高温になり、外筒3、第2の外筒5全体にわたる均一な温度上昇ができない。上限4の理由は、4を超えると水蒸気が600℃以上で酸化性となりCO濃度が増大し、水素回収には好ましくなくなるためである。
 また、この温度範囲であれば、炭化物残渣24の回収と揮散ガスの排出管路21B経由して外筒3、第2の外筒5からのガス回収の両方の量のバランスの調整を計ることができる。回収した炭化物残渣24は、外部での発電用の燃料、燃焼炉8の燃料、熱風炉の補助燃料(助燃料または、第2熱分解ガスの吹き込み箇所38)、燃焼ガス廃熱ボイラ51B(図4)の燃料、余剰燃焼排ガスボイラ110の燃料として活用することができる(図1、2、3)。このチャンバーでの熱分解ガスは、外筒3または、外筒5へと排出管路21B経由で外筒へ排気される。図の39Cは、炭化物残渣の出口を示す。
A chamber 6 is provided at an outlet end of the inner cylinder 2, and a carbide residue 24 exposed to a temperature of 300 ° C. to less than 640 ° C. is collected from a lower portion thereof. The temperature in the chamber 6 is supplied by combining at least one of air or oxygen gas and water vapor, and supplied from the nozzle 11 so that the molar number of water vapor / the molar number of oxygen gas component is 0.4 to 4. Can be. Thus, the temperature in the chamber 6 can be controlled in a temperature range from 300 to less than 640 ° C. The reason for the lower limit of the molar ratio of the steam / oxygen gas component to be blown is that if the ratio is less than 0.4, the temperature of the blown oxygen is so high that the oxygen blowing portion is locally heated to a high temperature. A uniform temperature rise over the entire outer cylinder 5 cannot be achieved. The reason for the upper limit of 4 is that if it exceeds 4, steam becomes oxidizable at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery.
In addition, within this temperature range, the balance between the recovery of the carbide residue 24 and the gas recovery from the outer cylinder 3 and the second outer cylinder 5 via the discharge pipe 21B for the volatile gas should be adjusted. Can be. The collected carbide residue 24 is used as a fuel for power generation outside, a fuel for the combustion furnace 8, an auxiliary fuel for the hot blast stove (auxiliary fuel or a second thermal decomposition gas blowing point 38), and a combustion gas waste heat boiler 51B (FIG. The fuel of 4) can be used as fuel for the surplus flue gas boiler 110 (FIGS. 1, 2, and 3). The pyrolysis gas in this chamber is exhausted to the outer cylinder 3 or the outer cylinder 5 via the discharge pipe 21B. 39C in the figure shows the outlet of the carbide residue.
(3)熱分解ガスの利用
<改質炉系統:第1系統の説明>
 外燃式ロータリーキルン1の外筒3、第2の外筒5において熱分解された熱分解ガス(第2熱分解ガス)は、第1系統で改質炉7に導入された後、昇温されて水素成分を増量した水素ガスを回収し、また、水素ガス回収後の残りガス中COガスの回収や残りガス中のCOガスでのガスエンジン発電のための燃料とできる。
(3) Use of pyrolysis gas <Reforming furnace system: description of first system>
The pyrolysis gas (second pyrolysis gas) pyrolyzed in the outer cylinder 3 and the second outer cylinder 5 of the external combustion type rotary kiln 1 is introduced into the reforming furnace 7 in the first system and then heated. And recovers the hydrogen gas with the increased hydrogen component, and also recovers the CO 2 gas in the remaining gas after the recovery of the hydrogen gas and uses the CO gas in the remaining gas as fuel for gas engine power generation.
<燃焼炉系統:第2系統の説明>
 また、外燃式ロータリーキルン1の外筒3において熱分解された熱分解ガス(第2熱分解ガス)は、
1)第2の系統で燃焼炉に導入され、燃焼炉空気吹込み口13からの新たな空気と、
2)原料を乾燥する乾燥機からの増湿した乾燥機排ガスの一部または全部を混合、燃焼して燃焼排ガス90をつくる。
 ここで、図示してある、燃焼炉へのガス入口92は、燃焼炉8への第2の熱分解ガスの入口を示す。
3)ここで新たな空気は、図示していないが燃焼排ガス93で熱交換予熱した空気を吹き込むことができる。
 この燃焼排ガス93は、次の1)~4)の利用ができ、それぞれ原料の乾燥熱源とでき、また、余剰燃焼排ガスで発電できる。
1)原料の乾燥のための熱源(図1、2、3、4)
2)余剰燃焼排ガスボイラ110(図1、2、3)または、燃焼ガス廃熱ボイラー51B(図4)で水蒸気を製造、スチーム発電機111に供する。(図1、2、3、4)。
3)<燃焼排ガスでの発電の説明>
 図示の20は、ボイラの作動流体である水―蒸気を示す。図1、2、3では、余剰燃焼排ガスボイラ110の作動流体である水蒸気を示し、図4では、燃焼ガス廃熱ボイラー51Bの作動流体である水―水蒸気を示す。図示の21は、燃焼排ガス誘引ファンでこの上流の番号を付与していない弁により燃焼炉8の圧力を調整制御する。
 この余剰燃焼排ガスボイラ110とスチーム発電装置111は、図1、図2、図3とも図示していないが、サイクロン15の下流で分岐して設置することもできる。
4)図4に示すように、燃焼排ガス93の一部を分岐39で分岐させ外筒4を昇温後、乾燥機排ガス排出管路の乾燥排ガスファン42の前の管路に連結する。図示していないが、この連結場所は、燃焼ガス排熱ボイラ51Bの上流側の燃焼排ガス管路36Cに再注入することでもよい。燃焼排ガスを分岐39で分岐された他部の燃焼排ガスは、51B燃焼ガス廃熱ボイラにより水蒸気を製造し、乾燥原料をこの水蒸気102により乾燥させる。原料30を間接に乾燥した水蒸気102は、ドレンとなり蒸気戻り管路103からドレン回収装置104に戻る。ここで水蒸気102は、原料をほぐすため一部直接原料乾燥機32に吹き込むこともある。
<Combustion furnace system: description of second system>
The pyrolysis gas (second pyrolysis gas) pyrolyzed in the outer cylinder 3 of the external combustion type rotary kiln 1 is as follows:
1) new air from the combustion furnace air inlet 13 introduced into the combustion furnace in the second system;
2) A part or all of the humidified exhaust gas from the dryer for drying the raw material is mixed and burned to produce a combustion exhaust gas 90.
Here, the illustrated gas inlet 92 to the combustion furnace indicates the inlet of the second pyrolysis gas to the combustion furnace 8.
3) Although not shown, fresh air can be blown into the air that has been heat-exchanged and preheated by the combustion exhaust gas 93.
This combustion exhaust gas 93 can be used in the following 1) to 4), can be used as a drying heat source for each raw material, and can generate electric power using surplus combustion exhaust gas.
1) Heat source for drying raw materials (Figs. 1, 2, 3, 4)
2) Steam is produced by the surplus flue gas boiler 110 (FIGS. 1, 2 and 3) or the combustion gas waste heat boiler 51B (FIG. 4) and supplied to the steam generator 111. (FIGS. 1, 2, 3, 4).
3) <Explanation of power generation using combustion exhaust gas>
Reference numeral 20 indicates water-steam which is a working fluid of the boiler. FIGS. 1, 2, and 3 show steam which is a working fluid of the surplus flue gas boiler 110, and FIG. 4 shows water-steam which is a working fluid of the combustion gas waste heat boiler 51B. Reference numeral 21 denotes a combustion exhaust gas inducing fan, which regulates and controls the pressure of the combustion furnace 8 by a valve not provided with an upstream number.
The surplus flue gas boiler 110 and the steam power generator 111 are not shown in FIGS. 1, 2, and 3, but may be installed by branching downstream of the cyclone 15.
4) As shown in FIG. 4, a part of the combustion exhaust gas 93 is branched at the branch 39, the temperature of the outer cylinder 4 is raised, and then connected to a line in front of the drying exhaust gas fan 42 of the dryer exhaust gas discharging line. Although not shown, this connection point may be re-injected into the flue gas pipe 36C on the upstream side of the combustion gas exhaust heat boiler 51B. The other portion of the flue gas, which is obtained by branching the flue gas at the branch 39, produces steam using a 51B combustion gas waste heat boiler, and the dried raw material is dried using the steam 102. The steam 102 obtained by indirectly drying the raw material 30 becomes drain and returns from the steam return line 103 to the drain recovery device 104. Here, the steam 102 may be partially blown directly into the raw material dryer 32 to loosen the raw material.
 ここで、106は、乾燥機への空気吹き込み口であり、排気筒23の量と乾燥機出口の設定湿分を考慮して決定した量を吹き込む。本空気は、図示していないが、燃焼排ガスで予熱されたものを使用できる。
 なお、熱分解ガス(第2熱分解ガス)を外筒3(図1)または第2の外筒5(図2、3、4)から改質炉7と燃焼炉8へ送るに当たっては、第2の熱分解ガス分岐部87を経由して送り、図2、3、4に示すように、外筒が2個あるときは、燃焼炉の燃焼排ガス93の一部を分岐39を経由して内筒入口側の外筒(第1の外筒)4に供給し、内筒2と低温域原料を常時昇温して外筒5での使用酸素量の削減を行なう。図2では、外筒4を加熱した後の燃焼排ガス(*5)を燃焼排ガスの導管112にもどしている。図3、4では、乾燥排ガスファン42の上流に戻しているが、図3では、燃焼排ガスの導管88に戻してもよく、図4では、管路36Cに戻してもよい(図1、2、3、4)。燃焼排ガスで発生した蒸気は、乾燥に使用する以上の余剰の蒸気をスチーム発電機111に導通し、発電できる。図1に示す実施形態のように、燃焼排ガス93は、燃焼排ガス-乾燥循環ガス(B)熱交換器18で乾燥循環排ガス(B)83を昇温して、排気することもできるし、図3のように、燃焼排ガス-乾燥循環ガス(B)熱交換器18(図2に示す18)を介さず導管88から原料乾燥機32に燃焼排ガスを直接循環させることもできる。図1、2に示す場合、燃焼排ガス-乾燥循環ガス(B)熱交換器18により昇温された乾燥循環排ガス83は、いずれの場合も、原料乾燥機32に管路88を経由して再循環注入され原料の乾燥に使われる。
Here, reference numeral 106 denotes an air blowing port for the dryer, which blows an amount determined in consideration of the amount of the exhaust pipe 23 and the set moisture at the dryer outlet. Although not shown, the air preheated by the combustion exhaust gas can be used.
When the pyrolysis gas (second pyrolysis gas) is sent from the outer cylinder 3 (FIG. 1) or the second outer cylinder 5 (FIGS. 2, 3, and 4) to the reforming furnace 7 and the combustion furnace 8, 2, 3 and 4, when there are two outer cylinders, a part of the combustion exhaust gas 93 of the combustion furnace is passed through the branch 39 as shown in FIGS. The inner cylinder 2 is supplied to the outer cylinder (first outer cylinder) 4 on the inlet side of the inner cylinder, and the temperature of the inner cylinder 2 and the low-temperature region raw material are constantly raised to reduce the amount of oxygen used in the outer cylinder 5. In FIG. 2, the combustion exhaust gas (* 5) after heating the outer cylinder 4 is returned to the combustion exhaust gas conduit 112. 3 and 4, it is returned to the upstream of the drying exhaust gas fan 42. However, in FIG. 3, it may be returned to the flue gas conduit 88, and in FIG. 4, it may be returned to the line 36C (FIGS. 1, 2). , 3, 4). The steam generated from the combustion exhaust gas allows excess steam that is used for drying to flow to the steam generator 111 to generate power. As in the embodiment shown in FIG. 1, the flue gas 93 can be exhausted by raising the temperature of the flue gas (B) 83 in the flue gas-dry circulation gas (B) heat exchanger 18. As shown in FIG. 3, the flue gas may be directly circulated from the conduit 88 to the raw material dryer 32 without passing through the flue gas-drying circulating gas (B) heat exchanger 18 (18 shown in FIG. 2). In the case shown in FIGS. 1 and 2, the drying circulation exhaust gas 83 heated by the combustion exhaust gas-drying circulation gas (B) heat exchanger 18 is recycled to the raw material dryer 32 via a pipe 88 in each case. It is circulated and used for drying raw materials.
(3-1)改質炉における処理
 外燃式ロータリーキルン1の外筒3(図1)、第2の外筒5(図2、3、4)において熱分解された熱分解ガス(第2熱分解ガス)は、CH、CO、CO、Hが主成分であり、タールが分解されたガスであるため、管路途中での閉塞を防止できる。しかし、この熱分解ガス(第2熱分解ガス)のHガスの濃度は10~20体積%(ドライベース)程度とまだ低いため、改質炉7に第2の熱分解ガスを改質炉へのガス入口91より入れて昇温し、水素濃度を増加せしめ、粗改質ガス50を得る。改質炉7のガス温度は、900~1100℃が望ましく、そのために、酸素ガスと水蒸気を改質炉7の下方12から改質炉7内に供給する。ここで、改質炉7に供給する水蒸気と酸素ガスは、水蒸気/酸素ガスで表されるモル比(水蒸気のモル数/酸素ガス成分のモル数)で0.4~4であることが好ましい。その理由は、0.4未満であると、吹き込み酸素による温度の過敏性大きく酸素吹き込み部が局部的に高温になり、改質炉7全体にわたる均一な温度上昇ができず、一方、4を超えると、水蒸気が600℃以上で酸化性となるため、CO濃度が増大し、水素回収には好ましくなくなるためである。改質炉7の温度は、900℃から1100℃が好ましい。より好ましくは、1000~1050℃である。1000℃以上をより好ましいとするのは、1000℃以上で下記水蒸気改質反応とシフト反応が、優勢になりCO量が増えるからであり、上限を1100℃とするのは、熱負荷が高すぎて、昇温するための酸素吹き込み量が大きくなり回収水素が減少するからである。
 改質炉7では、次の代表的な水蒸気改質反応とシフト反応が進行し、Hガスの濃度が増加する。
代表的な水蒸気改質反応:CH + HO → CO + 3H
シフト反応:CO + HO → CO + H
 前記代表的な水蒸気改質反応は、改質炉7における滞留時間が2秒以上、例えば、2.5~3秒で、進行する。
 このようにして得た粗改質ガス50は、Hガスの含有割合が50~54体積%(ドライベース)となっている。
 なお、水蒸気の供給は、前記水蒸気改質反応を進行させるためだけになされるのではなく、前記した温度の過敏性(酸素吹き込みによる温度の急激な上昇)の緩和のためにもなされている。
(3-1) Treatment in Reforming Furnace Pyrolyzed gas (second heat) decomposed in outer cylinder 3 (FIG. 1) and second outer cylinder 5 (FIGS. 2, 3, and 4) of external combustion type rotary kiln 1 The decomposed gas is mainly composed of CH 4 , CO, CO 2 , and H 2 , and is a gas in which tar is decomposed, so that clogging in the middle of a pipe can be prevented. However, since the concentration of H 2 gas in the pyrolysis gas (second pyrolysis gas) is still low at about 10 to 20% by volume (dry base), the second pyrolysis gas is supplied to the reforming furnace 7. And the temperature is increased through the gas inlet 91 to increase the hydrogen concentration to obtain the crude reformed gas 50. The gas temperature of the reforming furnace 7 is desirably 900 to 1100 ° C. For that purpose, oxygen gas and steam are supplied into the reforming furnace 7 from below the reforming furnace 7. Here, the steam and oxygen gas supplied to the reforming furnace 7 preferably have a molar ratio of steam / oxygen gas (mol number of steam / mol number of oxygen gas component) of 0.4 to 4. . The reason for this is that if it is less than 0.4, the temperature of the oxygen blowing portion becomes locally high due to the temperature sensitivity due to the oxygen being blown, and the uniform temperature increase over the entire reforming furnace 7 cannot be achieved. This is because steam becomes oxidizing at 600 ° C. or higher, so that the CO 2 concentration increases, which is not preferable for hydrogen recovery. The temperature of the reforming furnace 7 is preferably from 900 ° C. to 1100 ° C. More preferably, it is 1000 to 1050 ° C. The reason why the temperature is more preferably 1000 ° C. or more is that the steam reforming reaction and the shift reaction below become dominant at 1000 ° C. or more and the amount of CO increases, and the upper limit of 1100 ° C. is that the heat load is too high. This is because the amount of oxygen blown for increasing the temperature increases, and the amount of recovered hydrogen decreases.
In the reforming furnace 7, the following representative steam reforming reaction and shift reaction progress, and the concentration of H 2 gas increases.
Typical steam reforming reaction: CH 4 + H 2 O → CO + 3H 2
Shift reaction: CO + H 2 O → CO 2 + H 2
The typical steam reforming reaction proceeds when the residence time in the reforming furnace 7 is 2 seconds or more, for example, 2.5 to 3 seconds.
The crude reformed gas 50 thus obtained has a H 2 gas content of 50 to 54% by volume (dry basis).
It is to be noted that the supply of steam is performed not only to advance the steam reforming reaction, but also to alleviate the above-mentioned temperature sensitivity (rapid rise in temperature due to oxygen injection).
(3-1-1)粗改質ガスの精製
 改質ガス冷却器53から活性炭吸着処理装置56Bまでと81、80を、総称して改質ガス ガス処理装置53Bと呼ぶ。
 図1をもとに、この改質ガス処理装置53Bについて詳述するが、他の図面でも同一なので、図1以外での説明を割愛する。改質ガス処理装置53Bは、従来の公知の技術で構成でき、改質ガス冷却器53で水噴霧冷却84、改質ガスバグフィルタ54で除塵された後、各装置(酸性ガス処理装置55、アルカリ性ガス処理装置56、活性炭吸着処理装置56B)にて、HCl、CN、NH等微量有害成分の除去処理を行う。各除去処理は、簡単にしか図示していないが、従来公知の技術を適宜組み合わせて行うことができる。改質ガス冷却塔53の下部には、万一の場合に備え分離水ポット80で微量タール分を含む水を分離し排水処理81へ移送する。
(3-1-1) Purification of crude reformed gas The reformed gas cooler 53 to the activated carbon adsorption treatment device 56B, 81 and 80 are collectively referred to as a reformed gas gas treatment device 53B.
The reformed gas processing apparatus 53B will be described in detail with reference to FIG. 1, but the same applies to other drawings. The reformed gas processing device 53B can be configured by a conventionally known technique, and after being subjected to water spray cooling 84 by the reformed gas cooler 53 and dust removal by the reformed gas bag filter 54, each device (the acid gas processing device 55, In the alkaline gas treatment device 56 and the activated carbon adsorption treatment device 56B), removal processing of trace harmful components such as HCl, CN, and NH 3 is performed. Although each removal process is illustrated only briefly, it can be performed by appropriately combining conventionally known techniques. At the lower part of the reformed gas cooling tower 53, water containing a small amount of tar is separated by a separation water pot 80 and transferred to a wastewater treatment 81 in case of emergency.
(3-1-2)CO回収、H回収
 改質ガス処理装置53Bを経た粗改質ガスは、次に、まず改質ガスヒータ57で、蒸気58により昇温する。これは、CO回収装置60、粗水素ガス圧縮機61、水素分離装置70等の下流で圧力低下、温度降下によりガス中にナフタリン等が析出しないように予防する機能を有するものである。その後、粗改質ガス誘引ファン59により改質炉7と外筒3(または、図2、図3、図4では、第2の外筒5)の圧力を、圧力制御弁59Bで図示しない圧力制御検知計の検知データに基づき制御しながら粗改質ガスを水素分離装置70側へ送る。
 ここで、原料におけるS含有量が0.2質量%(ドライベース)以下のときは、この粗改質ガスからCO回収装置60によるCO回収を水素回収の前に経済的に行うことが可能である。ただし、S含有量が、0.2質量%(ドライベース)を超えるときは、経済性を考慮するとCO回収は行なわないほうが好ましい。回収したCOは、植物の成長促進のために使う等の用途が考えられる。粗改質ガスからのCO回収は、精しくは、図示しないが、公知の技術である、アミン吸収法やPSA(ゼオライト等の吸着剤使用)等で達成できる。
 なお、改質ガスヒータ57から製品純水素77前までを図1、2、3、4において、まとめて水素分離装置57Bと表記する。
 粗改質ガスを粗水素ガス圧縮機61で圧縮し、水素分離装置70に入れ、オフガス71を分離して製品純水素77を得る。ここで、水素分離装置70は公知の技術を採用すればよく、例えば、水素PSAが採用できる。
(3-1-2) CO 2 recovery and H 2 recovery Next, the crude reformed gas that has passed through the reformed gas processing device 53B is first heated by the reformed gas heater 57 by the steam 58. This has a function of preventing naphthalene and the like from being deposited in the gas due to a pressure drop and a temperature drop downstream of the CO 2 recovery device 60, the crude hydrogen gas compressor 61, the hydrogen separation device 70, and the like. Then, the pressure of the reforming furnace 7 and the outer cylinder 3 (or the second outer cylinder 5 in FIGS. 2, 3 and 4) is increased by the crude reforming gas inducing fan 59 by the pressure control valve 59B. The crude reformed gas is sent to the hydrogen separator 70 side while controlling based on the detection data of the control detector.
Here, when the S content in the raw material is 0.2% by mass or less (dry base), CO 2 can be economically recovered from the crude reformed gas by the CO 2 recovery device 60 before hydrogen recovery. It is possible. However, when the S content exceeds 0.2% by mass (dry basis), it is preferable not to perform CO 2 recovery in consideration of economy. The recovered CO 2 may be used for promoting plant growth. The CO 2 recovery from the crude reformed gas can be achieved by a well-known technique, such as an amine absorption method or PSA (using an adsorbent such as zeolite), although not shown in detail.
1, 2, 3, and 4 from the reformed gas heater 57 to the point before the product pure hydrogen 77 are collectively referred to as a hydrogen separator 57B.
The crude reformed gas is compressed by the crude hydrogen gas compressor 61, and is introduced into the hydrogen separator 70, where the offgas 71 is separated to obtain the product pure hydrogen 77. Here, the hydrogen separation device 70 may employ a known technique, for example, a hydrogen PSA.
(3-1-3)ガスエンジン発電とオフガス利用
 ガスエンジン・オフガス装置72Bでオフガス71を貯蔵するオフガス貯蔵タンク72からフレアスタック74までの装置全体を表すものとする。
 水素分離装置70で水素を回収したオフガス71には、CO成分、回収した水素成分の残りの水素成分が含まれるため、このオフガス71はガスエンジンの燃料とできる。例えば、後述する実施例で示すように94-167kW/原料206kg/hr-DRYの発電が可能な燃料となった。図1のオフガス76の表記「*3」で代表的に示すガスは、原料乾燥用の直接加熱、間接加熱のための助燃料38や、燃焼炉8の補助バーナ用燃料14、熱風炉35にて初期立上げ時、乾燥水分すべき原料の水分多いときに使用する助燃料38とすることができる。
 ここで、オフガス71は、オフガス貯蔵タンク72に一旦貯蔵され、製造オフガスの平均的な利用に備えオフガス高圧圧縮機73で昇圧しガスエンジン発電機75へ供給し発電する。オフガス76を助燃バーナ等で利用する場合も、図のオフガス76で例示している。フレアスタック74は、オフガスを使用しないときの燃焼排気用である。
(3-1-3) Gas Engine Power Generation and Off-Gas Utilization The entire device from the off-gas storage tank 72 for storing the off-gas 71 in the gas engine / off-gas device 72B to the flare stack 74 is shown.
The off-gas 71 from which hydrogen has been recovered by the hydrogen separator 70 contains a CO component and the remaining hydrogen component of the recovered hydrogen component, and thus can be used as fuel for a gas engine. For example, as shown in Examples described later, the fuel was able to generate 94-167 kW / 206 kg of raw material / hr-DRY. The gas representatively represented by the notation “* 3” of the off gas 76 in FIG. 1 is supplied to the auxiliary fuel 38 for direct heating and indirect heating for drying the raw material, the auxiliary burner fuel 14 of the combustion furnace 8, and the hot blast furnace 35. In the initial startup, the auxiliary fuel 38 can be used when the raw material to be dried and dried has a large amount of water.
Here, the off-gas 71 is temporarily stored in an off-gas storage tank 72, and is boosted in pressure by an off-gas high-pressure compressor 73 to be supplied to a gas engine generator 75 to generate electric power in preparation for the average use of production off-gas. The case where the off-gas 76 is used in an auxiliary burner or the like is also exemplified by the off-gas 76 in the figure. The flare stack 74 is for combustion exhaust when off-gas is not used.
(3-2)燃焼炉における処理
 外燃式ロータリーキルン1の外筒3(図1)、第2の外筒5(図2、3、4)において熱分解された熱分解ガス(第2熱分解ガス)は、燃焼炉8へも送られる。燃焼炉8の燃焼温度は、800~950℃であり、燃焼炉8の容積を燃焼炉出口ガス流速で除した値が2秒以上となるように、熱分解ガスの燃焼炉8における滞留時間とすることが望ましい。このようにすることにより、熱分解ガス中に含まれた微量ダイオキシンが完全に分解可能であり、また、原料乾燥時の排ガス中の匂い成分も完全に分解(完全脱臭)できるという利点が生じる。なお、2秒未満であっても、排ガス中の匂い成分の分解は完全ではないができる。燃焼炉8の温度は850~900℃がより好ましく、滞留時間は2.5秒以上がより好ましい。このとき、一般のバイオマスを直接燃焼してスチームによる発電するシステムに比べ、いったん740℃以下で熱分解した第2熱分解ガスを燃焼しているため、燃焼炉では、
1)850から900℃の高温で燃焼しても、リン(P)等の揮散がなく後流での閉塞の問題がない。
2)還元雰囲気での可燃ガスを燃焼しているため、DXN(ダイオキシン)の発生が少ない。
3)温室ガス(NO:亜酸化窒素)の発生が低温で熱分解後高温で燃焼するため少ない。
という効果がある。
 なお、燃焼炉8では、燃焼炉空気吹込み口13から空気を導入して熱分解ガス(第2熱分解ガス)を燃焼させる。立ち上げ時に燃焼炉補助バーナ用燃料14を使用することは、本発明の本質に関係なく許される。
(3-2) Processing in Combustion Furnace Pyrolyzed gas (second pyrolysis) pyrolyzed in outer cylinder 3 (FIG. 1) and second outer cylinder 5 (FIGS. 2, 3, and 4) of external combustion type rotary kiln 1 Gas) is also sent to the combustion furnace 8. The combustion temperature of the combustion furnace 8 is 800 to 950 ° C., and the residence time of the pyrolysis gas in the combustion furnace 8 is set so that the value obtained by dividing the volume of the combustion furnace 8 by the gas flow velocity at the combustion furnace outlet is 2 seconds or more. It is desirable to do. By doing so, there is an advantage that a trace amount of dioxin contained in the pyrolysis gas can be completely decomposed, and an odor component in the exhaust gas when the raw material is dried can be completely decomposed (completely deodorized). In addition, even if it is less than 2 seconds, the decomposition of the odor component in the exhaust gas is not complete but can be performed. The temperature of the combustion furnace 8 is more preferably 850 to 900 ° C., and the residence time is more preferably 2.5 seconds or more. At this time, since the second pyrolysis gas that has been pyrolyzed at 740 ° C. or lower is once burned compared to a system in which general biomass is directly burned to generate power by steam, the combustion furnace uses:
1) Even when burning at a high temperature of 850 to 900 ° C., there is no volatilization of phosphorus (P 2 O 5 ) or the like, and there is no problem of blockage in the wake.
2) Since combustible gas is burned in a reducing atmosphere, DXN (dioxin) generation is small.
3) The generation of greenhouse gas (N 2 O: nitrous oxide) is low because it is pyrolyzed at low temperature and burned at high temperature after pyrolysis.
This has the effect.
In the combustion furnace 8, air is introduced from the combustion furnace air inlet 13 to burn the pyrolysis gas (second pyrolysis gas). The use of the combustion furnace auxiliary burner fuel 14 during startup is permitted regardless of the essence of the present invention.
(3-2-1)燃焼炉からの燃焼排ガスの利用
 燃焼排ガスの有効利用の形態は複数あるが、特徴である点を、図1で順に説明する。
図2、3、4の共通点は重複しては、説明しないこととする。
 燃焼炉8から排出する燃焼排ガス90は、高温ガスであるため、一部は、原料の乾燥等に有効利用される。残部は、燃焼排ガスに熱量の余力あるとき、余剰燃焼排ガスボイラ110でスチームを製造し、従来公知の方法でスチーム発電機111で発電することが、可能である。
(3-2-1) Use of Combustion Exhaust Gas from Combustion Furnace There are a plurality of modes of effective use of combustion exhaust gas, and the features will be described in order with reference to FIG.
The common points of FIGS. 2, 3, and 4 are not described again.
Since the combustion exhaust gas 90 discharged from the combustion furnace 8 is a high-temperature gas, a part thereof is effectively used for drying raw materials and the like. The remainder can produce steam by the excess flue gas boiler 110 and generate power by the steam generator 111 by a conventionally known method when the combustion exhaust gas has a surplus of heat.
 図1に示されるように、燃焼炉8から排出される燃焼炉の出口ガス(燃焼排ガス)90は、乾燥機循環ガス(B)83を間接的に加熱する熱源となっている。すなわち、燃焼排ガス90は、燃焼ガスサイクロン15を介して、燃焼排ガス-乾燥循環ガス(B)熱交換器18を経由して、余剰燃焼排ガスボイラ110を経て、公知の環境有害物質除去手段22を介して排気筒23にて大気に排気される。ここで製造されたボイラー作動流体(水―水蒸気)20により発電装置111で発電される。燃焼排ガス-乾燥循環ガス(B)熱交換器18は、乾燥機循環ガス(B)83を間接的に加熱して原料の乾燥のための熱源となっている。また、燃焼排ガス93を分岐39で分岐したガスで燃焼ガス-空気熱交換器16は、空気入口17から取込んだ空気を加熱して、熱風炉ファン37を経由して、熱風炉35に吹き込む。通常運転では、昇温空気吹き込み口36Bから加熱空気を熱風炉35に吹き込むが、立上げ時及び原料乾燥機32での水分蒸発エネルギーが不足する場合にのみ、熱風炉バーナ36を補助用として使用する。熱風炉バーナ36には、38の箇所から、助燃燃料、または、第2の熱分解ガスをガス排出管21Cにて図示していないが、その一部を抜き出して供給できる。あるいは、オフガス76を利用して吹き込むことができる。熱風炉35の出口から乾燥循環ガス(B)83の導管88に、排気筒23で排気された量と概ね同じ量の加熱ガスを注入する。すなわち、排気筒23で湿分を排気し、熱風炉35の出口から湿分の少ない加熱ガスを原料乾燥機32の前の乾燥循環ガス(B)83の導管88から原料乾燥機32に吹き込む。
 また、燃焼ガス-空気熱交換器16に導入される燃焼排ガス93の分岐39での分岐ガスを乾燥排ガスサイクロン40と乾燥排ガスバグフィルタ41との間に供給することも可能である。図1、図2、に図示している。このようにすれば、原料乾燥機排ガスは、出口温度が低温のほうが、乾燥効率がよく、かつ乾燥排ガスバグフィルタ41前で高温ガスを混合し乾燥機出口ガス89の温度を上昇させ、乾燥排ガスバグフィルタ41での低温結露による腐食を防止することができる。
As shown in FIG. 1, the outlet gas (combustion exhaust gas) 90 of the combustion furnace discharged from the combustion furnace 8 is a heat source for indirectly heating the dryer circulation gas (B) 83. That is, the flue gas 90 passes through the flue gas cyclone 15, passes through the flue gas-drying circulating gas (B) heat exchanger 18, passes through the surplus flue gas boiler 110, and passes through the known environmentally harmful substance removing means 22. The exhaust gas is exhausted to the atmosphere through the exhaust pipe 23. The boiler working fluid (water-steam) 20 manufactured here generates electric power in the power generation device 111. The flue gas-drying circulation gas (B) heat exchanger 18 indirectly heats the dryer circulation gas (B) 83 to serve as a heat source for drying the raw material. Further, the combustion gas-air heat exchanger 16 heats the air taken in from the air inlet 17 with the gas obtained by branching the combustion exhaust gas 93 at the branch 39, and blows it into the hot stove 35 via the hot stove fan 37. . In normal operation, heated air is blown into the hot stove 35 from the heated air blowing port 36B, but the hot stove burner 36 is used as an auxiliary only at startup and when the moisture evaporation energy in the raw material dryer 32 is insufficient. I do. The auxiliary combustion fuel or the second pyrolysis gas can be supplied to the hot blast stove burner 36 by extracting a part of the auxiliary combustion fuel or the second pyrolysis gas, not shown, from the gas exhaust pipe 21C. Alternatively, it can be blown using the off gas 76. From the outlet of the hot blast stove 35, a heating gas of substantially the same amount as the amount exhausted by the exhaust pipe 23 is injected into the conduit 88 of the drying circulation gas (B) 83. That is, moisture is exhausted by the exhaust pipe 23, and a heated gas with little moisture is blown into the raw material dryer 32 from the outlet 88 of the hot stove 35 from the conduit 88 of the drying circulation gas (B) 83 before the raw material dryer 32.
It is also possible to supply the branch gas at the branch 39 of the combustion exhaust gas 93 introduced into the combustion gas-air heat exchanger 16 between the drying exhaust gas cyclone 40 and the drying exhaust gas bag filter 41. This is shown in FIGS. In this manner, the raw material dryer exhaust gas has a higher drying efficiency when the outlet temperature is low, and mixes a high-temperature gas in front of the dry exhaust gas bag filter 41 to raise the temperature of the dryer outlet gas 89, so that the dry exhaust gas Corrosion due to low-temperature condensation in the bag filter 41 can be prevented.
 一方、バイオマス原料30は脱水原料ホッパ31に投入され、原料乾燥機32を経由して、水分含有量が、例えば、80質量%から20質量%の乾燥原料33となり、乾燥原料供給ホッパ34へ投入される。
 ここで、原料乾燥機32の出側ガス、すなわち、乾燥機出口ガス89は、管路86へと流れ、分岐点で燃焼炉に導入する乾燥機循環ガス(A)82と乾燥機循環ガス(B)83とに分岐される。乾燥機循環ガス(B)83は、この分岐点を起点として右回り(時計方向)に、順に、燃焼ガス-乾燥循環ガス(B)熱交換器18、原料乾燥機32、乾燥排ガスサイクロン40、乾燥排ガスバグフィルタ41、乾燥排ガスファン42を経由して、分岐点に戻る循環ガスである。
On the other hand, the biomass raw material 30 is supplied to the dewatering raw material hopper 31 and, via the raw material dryer 32, becomes a dry raw material 33 having a water content of, for example, 80% by mass to 20% by mass, and is supplied to the dry raw material supply hopper 34. Is done.
Here, the outlet gas of the raw material dryer 32, that is, the dryer outlet gas 89 flows to the pipe 86 and is introduced into the combustion furnace at the branch point into the dryer circulation gas (A) 82 and the dryer circulation gas ( B) Branch to 83. The dryer circulating gas (B) 83 is clockwise (clockwise) starting from the branch point, and in this order, the combustion gas-dry circulating gas (B) heat exchanger 18, the raw material dryer 32, the drying exhaust gas cyclone 40, The circulating gas returns to the branch point via the drying exhaust gas bag filter 41 and the drying exhaust gas fan 42.
 燃焼炉8から排出される燃焼排ガス90は、燃焼ガスサイクロン15を経た燃焼排ガス93として以下の熱源として使用される。
1)燃焼ガスサイクロン15を経た後、分岐39で一部ガスを乾燥循環ガスのダストをとる乾燥排ガスバグフィルタ41前に吹込み、乾燥機出口ガス89の温度を上げることによって、乾燥排ガスバグフィルタ41の結露を防ぎ、原料乾燥機32出口排ガス温度を下げれるようにすることで乾燥効率を向上する熱源
2)熱風炉35の吹込み空気入口17からの空気の予熱源
3)燃焼排ガス-乾燥循環ガス(B)熱交換器18での間接加熱源
4)余剰燃焼排ガスボイラ110での熱回収とスチーム発電機111による発電の熱源
5)燃焼排ガスの導管112部分ガス(原料の乾燥に使う燃焼排ガスの余剰分)を、余剰燃焼排ガスボイラ110へ導管112経由で導入しスチームによる発電装置111のための熱源。これは、原料の処理量を増やすことで発電量を増加することができるとのメリットがある。
6)燃焼ガス排熱ボイラ51Bでの原料乾燥用蒸気製造の熱源(図4)
7)分岐39より第1の外筒4に導入し、内筒の鉄皮と原料を昇温し外筒での使用酸素量を減らし水素回収の効率を向上するための熱源(図2、3、4)
 なお、図1に示すように、乾燥排ガスサイクロン40、乾燥排ガスバグフィルタ41から回収される粒子は、有機物であるため、脱水原料ホッパ31に送られる。また、外筒3、第2の外筒5から発生せしめる熱分解ガス(第2の熱分解ガス)の一部を熱風炉35の熱風炉バーナ36の燃料38としてもよい。
The combustion exhaust gas 90 discharged from the combustion furnace 8 is used as the following heat source as the combustion exhaust gas 93 having passed through the combustion gas cyclone 15.
1) After passing through the combustion gas cyclone 15, a part of the gas is blown in a branch 39 in front of a dry exhaust gas filter 41 that takes the dust of the dry circulating gas, and the temperature of the dryer outlet gas 89 is increased to thereby increase the dry exhaust gas filter. A heat source for improving the drying efficiency by preventing dew condensation at 41 and lowering the exhaust gas temperature at the outlet of the raw material dryer 32 2) A preheating source of air from the blowing air inlet 17 of the hot blast stove 35) A combustion exhaust gas-drying Circulating gas (B) Indirect heating source in heat exchanger 18 4) Heat source for heat recovery in surplus flue gas boiler 110 and power generation by steam generator 111 5) Combustion flue conduit 112 Partial gas (combustion used for drying raw material) (Surplus of exhaust gas) is introduced into a surplus flue gas boiler 110 via a conduit 112 and is used as a heat source for a power generator 111 by steam. This has the advantage that the amount of power generation can be increased by increasing the amount of raw material processed.
6) Heat source for producing steam for drying raw materials in combustion gas exhaust heat boiler 51B (FIG. 4)
7) The heat source is introduced into the first outer cylinder 4 from the branch 39 to raise the temperature of the steel shell and the raw material of the inner cylinder to reduce the amount of oxygen used in the outer cylinder and improve the efficiency of hydrogen recovery (FIGS. 2, 3). 4)
As shown in FIG. 1, the particles collected from the dry exhaust gas cyclone 40 and the dry exhaust gas bag filter 41 are organic substances, and thus are sent to the dewatering material hopper 31. Further, a part of the pyrolysis gas (second pyrolysis gas) generated from the outer cylinder 3 and the second outer cylinder 5 may be used as the fuel 38 of the hot stove burner 36 of the hot stove 35.
 次に、図2に示す別の形態について、図1に示される形態と異なる点のみを説明する。
 図2に示す形態では、燃焼排ガス93の一部を分岐39で分岐し、燃焼ガスー空気熱交換機16までは、同じであるが、熱交換機を経由した後、外燃式ロータリーキルン1の第1の外筒4に投入して内筒2の鋼板及び原料の熱源として利用し、その後、燃焼排ガス誘引ファン21の前の管路112中に再投入するところが、構成として変更されている。なお、この形態では、排出管路21Bは、内筒と第2の外筒5間のみに配置している。すなわち、第2の熱分解ガスは、第2の外筒5のみで発生せしめている。その他の構成は図1と同じである。
 第1の外筒4をいったん燃焼した高温の排ガスで昇温することにより、内筒入口に近い内筒2の壁温度と内筒内原料温度を昇温でき外筒5での酸素使用量を減らせるため水素回収の効率を向上できる。また、内筒2の原料供給当初の低温部となる鋼板が冷えることがないため、原料がキルン内で熱分解温度に達するまでの低温度域(180℃以下)におかれることを防止し、内筒2の内外面金属を結露による腐食を防止できるとの付随効果がえられる。このロータリーキルンにおいて、立上げ時に図示しないバーナを使用することは、本発明の本質に関係ないため許される。
Next, with respect to another embodiment shown in FIG. 2, only points different from the embodiment shown in FIG. 1 will be described.
In the embodiment shown in FIG. 2, a part of the combustion exhaust gas 93 is branched at the branch 39, and is the same up to the combustion gas-air heat exchanger 16, but after passing through the heat exchanger, the first portion of the external combustion type rotary kiln 1. The configuration is changed in such a way that it is introduced into the outer cylinder 4 and used as a heat source for the steel plate and the raw material of the inner cylinder 2 and then re-entered into the pipeline 112 in front of the combustion exhaust gas induction fan 21. In this embodiment, the discharge pipe 21B is arranged only between the inner cylinder and the second outer cylinder 5. That is, the second pyrolysis gas is generated only in the second outer cylinder 5. Other configurations are the same as those in FIG.
By raising the temperature of the first outer cylinder 4 with the high-temperature exhaust gas once burned, the wall temperature of the inner cylinder 2 near the inner cylinder inlet and the temperature of the raw material in the inner cylinder can be increased, and the amount of oxygen used in the outer cylinder 5 can be reduced. Since it can be reduced, the efficiency of hydrogen recovery can be improved. In addition, since the steel sheet serving as a low-temperature portion at the beginning of the supply of the raw material of the inner cylinder 2 does not cool down, it is possible to prevent the raw material from being placed in a low temperature range (180 ° C. or lower) until reaching the thermal decomposition temperature in the kiln, An additional effect is obtained that corrosion of the inner and outer surfaces of the inner cylinder 2 due to dew condensation can be prevented. In the rotary kiln, it is permissible to use a burner (not shown) at the time of startup because it does not relate to the essence of the present invention.
 図3は、図2と以下の点が異なる。図2は、乾燥機循環ガスが2つに分岐され、乾燥機循環排ガスBを熱交換器18で加熱し原料乾燥機32に循環するが、図3では、乾燥機循環排ガスは、82と83に分岐せず、すべてを燃焼炉に注入し燃焼排ガス93を直接原料乾燥機32に注入している。
 外筒5で第2の熱分解ガスを発生させる際の必要な酸素は、外筒4からの熱で原料及び内筒鋼板を昇温している分、酸素の負担する部分燃焼による昇温度合いを減らすことが出来るため、酸素使用量が減り水素成分の回収率が高くなる。また、燃焼排ガスを利用したスチーム発電機111は、管路93部分で(燃焼排ガスサイクロン15の後流)に分岐し設けてもよいし、原料乾燥機32への分岐後に設けても効果は同じとなる。
FIG. 3 differs from FIG. 2 in the following points. In FIG. 2, the dryer circulation gas is branched into two, and the dryer circulation exhaust gas B is heated by the heat exchanger 18 and circulated to the raw material dryer 32. In FIG. Instead, the whole is injected into the combustion furnace and the combustion exhaust gas 93 is directly injected into the raw material dryer 32.
Oxygen required for generating the second pyrolysis gas in the outer cylinder 5 is the temperature rise due to the partial combustion carried by oxygen, because the heat from the outer cylinder 4 heats the raw material and the inner cylinder steel plate. Therefore, the amount of oxygen used is reduced and the recovery rate of the hydrogen component is increased. In addition, the steam generator 111 using the combustion exhaust gas may be provided by branching at the pipe 93 (the downstream side of the combustion exhaust gas cyclone 15) or provided after branching to the raw material dryer 32. It becomes.
 さらに、図4に示す別の形態について、図3に示される形態と異なる点のみを説明する。図4では、燃焼排ガスを利用し燃焼ガス廃熱ボイラ51Bで水蒸気をつくりその水蒸気で原料を乾燥する。そのため、図3に示す形態では、余剰燃焼排ガスボイラ110を設けているが、図4に示す形態では、図3の余剰燃焼排ガスボイラ110の機能は燃焼ガス廃熱ボイラ51Bが兼務する。図4の燃焼ガス廃熱ボイラ51Bの燃焼排ガスで、排気管23での湿分の排気とスチームによる発電が同時にできる。
 図4では、原料は、蒸気による間接加熱が主体であるが、原料をほぐすため少量の蒸気を直接吹き込むことも可能である。図4の蒸気使用方式で乾燥する原料乾燥機32の排ガス量は、約1/2に減少するメリットがあるが湿分多いため、図示されているサイクロン40、バグフィルタ41のかわりにスクラバーを使用することも出来る。その場合、排水処理が、発生し図4の81排水処理へ合流させる。このスクラバーでは、HCl等の有害ガス成分等を除外できるが、乾燥循環ガスの熱を失うデメリットがあり、処理ガス量が減少するメリットがある。また図4で111は余剰スチームを利用したスチーム発電機である。
Further, only the differences between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 3 will be described. In FIG. 4, steam is produced in the combustion gas waste heat boiler 51B using the combustion exhaust gas, and the raw material is dried with the steam. For this reason, in the embodiment shown in FIG. 3, the surplus combustion exhaust gas boiler 110 is provided, but in the embodiment shown in FIG. 4, the function of the surplus combustion exhaust gas boiler 110 in FIG. With the combustion exhaust gas of the combustion gas waste heat boiler 51B of FIG. 4, exhaust of moisture in the exhaust pipe 23 and power generation by steam can be simultaneously performed.
In FIG. 4, the raw material is mainly indirectly heated by steam, but a small amount of steam can be directly blown to loosen the raw material. The amount of exhaust gas from the raw material dryer 32 which is dried by the steam-using method shown in FIG. 4 has the advantage of being reduced to about が, but since there is much moisture, a scrubber is used instead of the cyclone 40 and the bag filter 41 shown in the figure. You can do it. In that case, wastewater treatment occurs and joins with the wastewater treatment 81 in FIG. This scrubber can eliminate harmful gas components such as HCl, but has the disadvantage of losing the heat of the dry circulating gas and has the advantage of reducing the amount of processing gas. In FIG. 4, reference numeral 111 denotes a steam generator using surplus steam.
 次に、実施例について説明するが、本発明は、実施例に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。 << Examples >> Next, Examples will be described, but it is needless to say that the present invention is not limited to the Examples, and can be appropriately changed without departing from the gist thereof.
 実施例及び比較例に共通して使用したバイオマス原料は、下水汚泥であって、以下のとおりのものである。
 供給量:1720kg/hr
 水分含有量:80質量%(ただし、原料乾燥機32により20質量%まで乾燥させた)
 原料脱水汚泥分析(灰分、揮発分及び固定炭素の割合の分析)、及び、原料脱水汚泥元素分析の結果を、それぞれ、表1、表2に示す。
The biomass raw material commonly used in Examples and Comparative Examples is sewage sludge, which is as follows.
Supply amount: 1720 kg / hr
Water content: 80% by mass (however, dried to 20% by mass by the raw material dryer 32)
Tables 1 and 2 show the results of the raw material dewatered sludge analysis (analysis of ash, volatile matter and fixed carbon ratio) and the raw material dewatered sludge elemental analysis, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1、1-1と比較例1:外筒の温度>
 図1に示す形態において、前記下水汚泥を外燃式ロータリーキルン1の内筒2に供給した。
実施例1では、外筒3での好ましい制御温度650℃で、
比較例1では、本発明の一形態の規定値下限未満の600℃のケースを、
実施例1-1では、本発明の一形態の規定値上限の740℃のケースを示す。
 前記各例での、外燃式ロータリーキルン1の外筒3への水蒸気、酸素の吹き込み量を表3に示すが、モル比との関係をわかりやすくするため、実施例1を例にして詳述する。
1)外筒3の蒸気
・180℃の水蒸気
・流量:20.7kg/hr(20.7/18=1.15kg-mol/hr)
2)外筒3の酸素
・25℃の酸素
・流量:12.9Nm/hr(12.9/22.4=0.576kg-mol/hr)
3)外筒3の蒸気/酸素モル比=1.997
4)改質炉への水蒸気
・180℃で900kPaGの水蒸気
・流量:49.9kg/hr(49.9/18=2.77kg-mol/hr)
5)改質炉への酸素
・25℃で4kPaGの酸素
・吹き込み量:31.0Nm/hr(31.0/22.4=1.384kg-mol/hr)
6)改質炉での水蒸気/酸素モル比=2.0
 ここで、外筒3の温度は、酸素吹き込み量を変えることにより変更できる。
 表3に、外燃式ロータリーキルン1の外筒3温度を650、600、740℃とした場合の、外筒のタール量の変化と得られた熱分解ガス(第2熱分解ガス)の組成の変化を示す。
 なお、熱分解ガス組成の表示において、CHにより全ての炭化水素ガスを表現した。以下、同様の表現をしている。
<Example 1, 1-1 and Comparative Example 1: Temperature of outer cylinder>
In the embodiment shown in FIG. 1, the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1.
In the first embodiment, at a preferable control temperature of 650 ° C. in the outer cylinder 3,
In Comparative Example 1, the case of 600 ° C., which is less than the lower limit of the specified value of one embodiment of the present invention,
Example 1-1 shows a case where the upper limit of the specified value of one embodiment of the present invention is 740 ° C.
Table 3 shows the amount of water vapor and oxygen blown into the outer cylinder 3 of the external combustion type rotary kiln 1 in each of the above examples. I do.
1) Steam of the outer cylinder 3 ・ Steam at 180 ° C. ・ Flow rate: 20.7 kg / hr (20.7 / 18 = 1.15 kg-mol / hr)
2) Oxygen of outer cylinder 3 Oxygen at 25 ° C. Flow rate: 12.9 Nm 3 / hr (12.9 / 22.4 = 0.576 kg-mol / hr)
3) The steam / oxygen molar ratio of the outer cylinder 3 = 1.997
4) Steam to the reforming furnace • Steam at 180 ° C and 900 kPaG • Flow rate: 49.9 kg / hr (49.9 / 18 = 2.77 kg-mol / hr)
5) Oxygen into the reforming furnace. 4 kPaG oxygen at 25 ° C. Blowing amount: 31.0 Nm 3 / hr (31.0 / 22.4 = 1.384 kg-mol / hr)
6) Molar steam / oxygen ratio in reforming furnace = 2.0
Here, the temperature of the outer cylinder 3 can be changed by changing the oxygen blowing amount.
Table 3 shows the change in the tar amount of the outer cylinder and the composition of the obtained pyrolysis gas (second pyrolysis gas) when the temperature of the outer cylinder 3 of the external combustion type rotary kiln 1 was 650, 600, and 740 ° C. Indicates a change.
In the display of the composition of the pyrolysis gas, all hydrocarbon gases were represented by CH 4 . Hereinafter, the same expression is used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1と比較例1、実施例1-1とを比較すると、本発明の一形態で規定する外燃式ロータリーキルンの外筒3の温度範囲を満足する実施例1は、熱分解ガス(第2熱分解ガス)における(外筒における)タール量が0.001未満g/Nmという検出限界以下となっている。
 これに対して、外筒温度が本発明の一形態で規定する下限値640℃未満の600℃である比較例1は、外筒3におけるタールの残存が顕著である。
 外筒温度が本発明の一形態で規定する上限値740℃の実施例1-1では、外筒におけるタール量は、実施例1と同様に検出限界以下であるが、内筒鋼板のクリープ破断強度が740℃においてSUS310Sで20Mpa(破断時間5~10hrの時のクリープ強度)であり、高耐酸化性オーステナイト系ステンレス鋼ASTM NUSS31060等の相当品高級材料でも740℃での操業条件でクリープ破断強度が40Mpa(破断時間10hrのときのクリープ強度)だから、高温強度からみると、740℃が長期運転ができる境界に近い。実施例1と実施例1-1では、改質後ガスでほぼ52体積%(ドライベース)の水素ガスが得られた。
Comparing Example 1 with Comparative Example 1 and Example 1-1, Example 1, which satisfies the temperature range of the outer cylinder 3 of the external combustion type rotary kiln defined in one embodiment of the present invention, shows that the pyrolysis gas (No. The amount of tar (in the outer cylinder) in (2 pyrolysis gas) is less than the detection limit of less than 0.001 g / Nm 3 .
On the other hand, in Comparative Example 1 in which the outer cylinder temperature is 600 ° C., which is less than the lower limit of 640 ° C. specified in one embodiment of the present invention, tar remains in the outer cylinder 3 remarkably.
In Example 1-1 where the outer cylinder temperature is the upper limit of 740 ° C. defined in one embodiment of the present invention, the tar amount in the outer cylinder is below the detection limit as in Example 1, but the creep rupture of the inner cylinder steel plate It has a strength of 20 Mpa at 740 ° C. in SUS310S (creep strength at a rupture time of 5 to 10 hours), and creep rupture strength under operating conditions at 740 ° C. even for high-grade materials such as high oxidation-resistant austenitic stainless steel ASTM NUSS 31060. Is 40 Mpa (creep strength when the rupture time is 10 5 hr), 740 ° C. is close to the boundary where long-term operation is possible from the viewpoint of high-temperature strength. In Example 1 and Example 1-1, approximately 52% by volume (dry base) of hydrogen gas was obtained in the reformed gas.
<実施例2、2-1、2-2:水蒸気/酸素モル比>
 ここでは、前記実施例1を実施例2として表記する。水蒸気/酸素モル比に関し、
実施例2では、本発明のモル比規定内の好ましい例、モル比1.99とし、
実施例2-1では、本発明のモル比規定の下限0.4とし、
実施例2-2では、本発明のモル比規定の上限4の近くの3.91とし、
表4にその結果(温度制御感度(外筒温度変化)、外筒3での熱分解ガス成分、量)を示す。
 実施例2で前記下水汚泥を外燃式ロータリーキルン1の内筒2に供給した。酸素量は、以下のとおりである(一部は再掲)。
1)外筒3の酸素
・25℃酸素
・流量:12.9Nm/hr(12.9/22.4=0.576kg-mol/hr
2)外筒3の蒸気/酸素モル比=1.997
3)改質炉への酸素
・25℃で4kPaGの酸素
・吹き込み量:31.0Nm/hr(31.0/22.4=1.384kg-mol/hr)
4)改質炉での水蒸気/酸素モル比=2.0
<Examples 2, 2-1, 2-2: Moisture ratio of water vapor / oxygen>
Here, the first embodiment is described as a second embodiment. Regarding the steam / oxygen molar ratio,
In Example 2, a preferred example within the molar ratio regulation of the present invention, the molar ratio was 1.99,
In Example 2-1, the lower limit of the molar ratio of the present invention was set to 0.4,
In Example 2-2, the molar ratio of the present invention was set at 3.91, which is near the upper limit of 4;
Table 4 shows the results (temperature control sensitivity (outer cylinder temperature change), pyrolysis gas component and amount in outer cylinder 3).
In Example 2, the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1. The amount of oxygen is as follows (partially listed).
1) Oxygen in the outer cylinder 3 at 25 ° C. Oxygen flow rate: 12.9 Nm 3 / hr (12.9 / 22.4 = 0.576 kg-mol / hr)
2) The steam / oxygen molar ratio of the outer cylinder 3 = 1.997
3) Oxygen into the reforming furnace. 4 kPaG oxygen at 25 ° C. Blowing amount: 31.0 Nm 3 / hr (31.0 / 22.4 = 1.384 kg-mol / hr)
4) Steam / oxygen molar ratio in the reforming furnace = 2.0
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 表4に示すように、本実施例では、外筒での水蒸気/酸素の吹き込みモル比が本発明の一形態の規定の範囲内の1.99(実施例2)、0.40(実施例2-1)、4(実施例2-2)のときの、酸素ガス流量の変動に対する外筒3の熱分解温度の変動をみたものである。
 前記モル比が高いほど酸素ガス流量の変動に起因する温度変化の過敏性(外筒温度変化)が改善されている。モル比上限値近傍(実施例2-2)では、この過敏性は改善されるが、酸素吹き込み量は増加している。モル比下限0.4(実施例2-1)では、この過敏性は悪くなるが、酸素吹き込み量は低減している。この両方のバランスからモル比の上限・下限が決定された。
As shown in Table 4, in this example, the molar ratio of steam / oxygen blown in the outer cylinder was 1.99 (Example 2) and 0.40 (Example 2) within the prescribed range of one embodiment of the present invention. FIG. 9 is a graph showing the change in the thermal decomposition temperature of the outer cylinder 3 with respect to the change in the oxygen gas flow rate in 2-1) and 4 (Example 2-2).
The higher the molar ratio, the more the sensitivity (temperature change of the outer cylinder) of the temperature change caused by the fluctuation of the oxygen gas flow rate is improved. In the vicinity of the upper limit of the molar ratio (Example 2-2), the sensitivity is improved, but the oxygen blowing amount is increased. When the lower limit of the molar ratio is 0.4 (Example 2-1), the sensitivity is deteriorated, but the oxygen blowing amount is reduced. The upper and lower limits of the molar ratio were determined from these two balances.
<実施例3と実施例3-1、3-2:外筒の温度と改質炉制御温度>
 前記実施例1を実施例3と表記し、これに対し、実施例3-1、3-2を以下の条件で比較した。すなわち、図1に示す形態において、前記下水汚泥を外燃式ロータリーキルン1の内筒2に供給した。実施例3、3-1、3-2では、共通して、外筒3で本発明の好ましい制御温度650℃で熱分解しているが、改質炉の温度が異なる。改質炉温度は、実施例3では本発明で規定する範囲内のより好ましいとした1050℃のケース、
実施例3-1は、本発明で規定する下限の900℃のケース、
実施例3-2は、本発明の規定する上限の1100℃のケース、
であり、結果を表5に示す。
<Example 3 and Examples 3-1 and 3-2: Temperature of outer cylinder and control temperature of reforming furnace>
Example 1 was described as Example 3, and Examples 3-1 and 3-2 were compared under the following conditions. That is, in the embodiment shown in FIG. 1, the sewage sludge was supplied to the inner cylinder 2 of the external combustion type rotary kiln 1. In Examples 3, 3-1, and 3-2, the outer cylinder 3 commonly thermally decomposes at the preferred control temperature of 650 ° C. of the present invention, but the temperature of the reforming furnace is different. In the case of the reforming furnace temperature of 1050 ° C. which is more preferable in the range specified by the present invention in Example 3,
Example 3-1 is the case of the lower limit of 900 ° C. specified in the present invention,
Example 3-2 is a case where the upper limit specified by the present invention is 1100 ° C.,
And the results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 外筒での熱分解温度650℃は、実施例3と実施例3-1、3-2では、同じであるため、熱分解ガスの量、成分組成は、同じである。
 本発明の一形態の改質炉反応温度の下限が実施例3-1の900℃であり、改質炉反応温度の上限が実施例3-2の1100℃である。この結果から改質炉温度900~1100℃の範囲内において、水素成分が約50~53体積%の収率で回収可能なことが確認された。また実施例3の1050℃近傍が収率とエネルギー消費両面から望ましいことがわかった。
Since the thermal decomposition temperature in the outer cylinder is 650 ° C. in Example 3 and Examples 3-1 and 3-2, the amount and composition of the thermal decomposition gas are the same.
The lower limit of the reforming furnace reaction temperature of one embodiment of the present invention is 900 ° C. in Example 3-1, and the upper limit of the reforming furnace reaction temperature is 1100 ° C. in Example 3-2. From this result, it was confirmed that the hydrogen component can be recovered at a reforming furnace temperature of 900 to 1100 ° C. with a yield of about 50 to 53% by volume. In addition, it was found that the vicinity of 1050 ° C. in Example 3 was desirable from both aspects of yield and energy consumption.
<実施例4:オフガスの利用>
 次に、実施例1で得た熱分解ガスを改質炉7に供給し、粗改質ガスを得た後、冷却・除塵し、HCl、CN、NH等微量有害成分の除去処理を行い、水素分離装置に入れ、オフガスを分離した。このオフガスの組成を表6に示す。
<Example 4: Use of off-gas>
Next, the pyrolysis gas obtained in Example 1 was supplied to the reforming furnace 7 to obtain a crude reformed gas, which was then cooled and dust-removed to remove trace harmful components such as HCl, CN, and NH 3. Into a hydrogen separator to separate off-gas. Table 6 shows the composition of this off-gas.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 このオフガスは、2616kcal/Nmの熱量を有しているため、ガスエンジンを使って94~167kW/原料206kg/hr-Dryの発電が可能である(原料下水汚泥344kg/hr-Dryから発生する第2の熱分解ガスの60%で改質ガスから水素を製造しそのオフガスを使用した場合)。また、発電の他に、例えば、燃焼炉8の燃焼炉補助バーナ用燃料14として活用することができる。 Since this off-gas has a calorific value of 2,616 kcal / Nm 3 , it is possible to generate 94 to 167 kW / raw material 206 kg / hr-Dry using a gas engine (generating from raw material sewage sludge 344 kg / hr-Dry). When hydrogen is produced from the reformed gas at 60% of the second pyrolysis gas and the off-gas is used). In addition to power generation, for example, it can be used as a fuel 14 for a combustion furnace auxiliary burner of the combustion furnace 8.
<実施例5:熱風炉35の助燃料の削減>
 実施例1において発生した第2の熱分解ガスを利用し、原料を乾燥するための助燃料の削減を実施例5として、比較例5(第2の熱分解ガスを熱源として使わない場合)と比較した。
 前述のとおり、本発明の一形態では、燃焼排ガス-乾燥循環ガス(B)熱交換器18において、燃焼排ガス93は乾燥機循環ガス(B)83を間接的に加熱して原料となるバイオマスの乾燥(水分含有量を20質量%とする)のための熱源となっているから、この乾燥のための熱風炉35の助燃料がどの程度削減されるかを、操業条件の一例(実施例1)で発生した第2の熱分解ガスの100%を使用した場合(実施例5)と燃焼排ガス-乾燥循環ガス(B)熱交換機18での間接加熱を行わない比較例5と対比した。その結果を表7に示す。実施例5では、乾燥のための重油(助燃料)の使用量を比較例5に比して、約61%(=(195-76)/195×100)削減できることを確認した。また、図4に示すように、原料に廃プラスチック95を5%混入した場合、さらに30%重油使用量を削減できた。
<Example 5: Reduction of auxiliary fuel for hot blast stove 35>
Example 5 uses the second pyrolysis gas generated in Example 1 to reduce the amount of auxiliary fuel for drying the raw material, and Comparative Example 5 (where the second pyrolysis gas is not used as a heat source). Compared.
As described above, in one embodiment of the present invention, in the flue gas-drying circulating gas (B) heat exchanger 18, the flue gas 93 indirectly heats the dryer circulating gas (B) 83 to produce biomass as a raw material. Since it is a heat source for drying (water content is set to 20% by mass), the amount of auxiliary fuel in the hot blast stove 35 for this drying is reduced by an example of operating conditions (Example 1). This is compared with the case where 100% of the second pyrolysis gas generated in (2) is used (Example 5) and the comparative example 5 in which indirect heating is not performed in the flue gas-drying circulation gas (B) heat exchanger 18. Table 7 shows the results. In Example 5, it was confirmed that the amount of heavy oil (auxiliary fuel) used for drying can be reduced by about 61% (= (195-76) / 195 × 100) as compared with Comparative Example 5. Further, as shown in FIG. 4, when 5% of waste plastic was mixed in the raw material, the amount of heavy oil used could be further reduced by 30%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上、発明の実施の形態及び実施例を説明したが、これら発明の実施の形態や実施例の各構成を適宜組み合わせたり、様々に変化させることは当初から予定していることである。
 そして、今回開示された実施の形態はあらゆる点で例示であって、制限的なものではないと考えるべきである。本発明の範囲は前記した実施の形態ではなく、特許請求の範囲によって示され、請求の範囲に記載された事項の均等の範囲の全ての変更が含まれる。
As described above, the embodiments and examples of the present invention have been described. However, it is originally planned that the configurations of the embodiments and the examples of the present invention are appropriately combined or variously changed.
The embodiments disclosed this time are examples in every respect and should not be considered as restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and includes all modifications within the scope of equivalents of the subject matter recited in the claims.
1 外燃式ロータリーキルン
2 内筒
3 外筒
4 内筒入口側の外筒(第1の外筒)
5 内筒出口側の外筒(第2の外筒)
6 チャンバー
7 改質炉
8 燃焼炉
9 空気または酸素の少なくとも一方と水蒸気とを組み合せての吹込口
11 ノズル(酸素と水蒸気吹込み)
12 改質炉の下方(酸素と水蒸気吹込口)
13 燃焼炉空気吹込み口
14 燃焼炉補助バーナ用燃料
15 燃焼ガスサイクロン
16 燃焼ガス-空気熱交換器
17 空気入口
18 燃焼排ガス-乾燥循環ガス(B)熱交換器
20 ボイラ作動流体(水―蒸気)
21 燃焼排ガス誘引ファン
21B 排出管路
21C ガス排出管
22 環境有害物質除去手段
23 排気筒
24 炭化物残査
30 バイオマス原料(原料)
31 脱水原料ホッパ
32 原料乾燥機
33 乾燥原料
34 乾燥原料供給ホッパ
35 熱風炉
36 熱風炉バーナ(可燃ガス吹き込み口)
36B 昇温空気吹き込み口
36C 管路
37 熱風炉ファン
38 助燃料または第2熱分解ガスの吹込み箇所
39 分岐
39B スクリューコンベア
39C 炭化物残渣出口
40 乾燥排ガスサイクロン
41 乾燥排ガスバグフィルタ
42 乾燥排ガスファン
50 粗改質ガス
51B 燃焼ガス廃熱ボイラ
53 改質ガス冷却器
53B 改質ガス ガス処理設備
54 改質ガスバグフィルタ
55 酸性ガス処理装置
56 アルカリ性ガス処理装置
56B 活性炭吸着処理装置
57 改質ガスヒータ
57B 水素分離装置
58 蒸気
59 改質ガス誘引ファン
59B 圧力制御弁
60 CO回収装置
61 粗水素ガス圧縮機
70 水素分離装置(水素PSA)
71 オフガス
72 オフガス貯蔵タンク
72B ガスエンジン・オフガス装置
73 オフガス高圧圧縮機
74 フレアスタック
75 ガスエンジン発電機
76 オフガス(助燃バーナ等へ)
77 製品純水素
80 分離水ポット
81 排水処理
82 乾燥機循環ガス(A)
83 乾燥機循環ガス(B)
84 水噴霧冷却
86 管路
87 第2の熱分解ガス分岐部
88 導管(乾燥機循環ガスBの乾燥機への戻り)
89 乾燥機出口ガス
90 燃焼炉の出口ガス(燃焼排ガス)
91 改質炉へのガス入口
92 燃焼炉へのガス入口
93 燃焼排ガス
95 バイオマス混合物または廃プラスチック
102 水蒸気
103 蒸気戻り管路
104 ドレン回収装置
106 乾燥機への空気吹込口
110 余剰燃焼排ガスボイラ
111 スチーム発電機(発電装置)
112 導管
1 external combustion type rotary kiln 2 inner cylinder 3 outer cylinder 4 outer cylinder on inner cylinder inlet side (first outer cylinder)
5 Outer cylinder on the inner cylinder outlet side (second outer cylinder)
Reference Signs List 6 Chamber 7 Reforming furnace 8 Combustion furnace 9 Inlet 11 combining at least one of air or oxygen and steam Nozzle (oxygen and steam injection)
12 Below reforming furnace (oxygen and steam inlet)
13 combustion furnace air inlet 14 fuel for combustion furnace auxiliary burner 15 combustion gas cyclone 16 combustion gas-air heat exchanger 17 air inlet 18 combustion exhaust gas-dry circulation gas (B) heat exchanger 20 boiler working fluid (water-steam) )
Reference Signs List 21 Combustion exhaust gas inducing fan 21B Exhaust pipe 21C Gas exhaust pipe 22 Environmental harmful substance removing means 23 Exhaust pipe 24 Carbon residue 30 Biomass raw material
31 Dehydration raw material hopper 32 Raw material dryer 33 Dry raw material 34 Dry raw material supply hopper 35 Hot blast stove 36 Hot blast stove burner (combustible gas blowing port)
36B Heated air blowing port 36C Pipe 37 Hot stove fan 38 Injection point 39 of auxiliary fuel or second pyrolysis gas Branch 39B Screw conveyor 39C Carbide residue outlet 40 Dry exhaust gas cyclone 41 Dry exhaust gas bag filter 42 Dry exhaust gas fan 50 Rough Reformed gas 51B Combustion gas waste heat boiler 53 Reformed gas cooler 53B Reformed gas gas processing equipment 54 Reformed gas bag filter 55 Acid gas processing device 56 Alkaline gas processing device 56B Activated carbon adsorption processing device 57 Reformed gas heater 57B Hydrogen separation Device 58 Steam 59 Reformed gas attraction fan 59B Pressure control valve 60 CO 2 recovery device 61 Crude hydrogen gas compressor 70 Hydrogen separation device (hydrogen PSA)
71 Offgas 72 Offgas storage tank 72B Gas engine / offgas device 73 Offgas high-pressure compressor 74 Flare stack 75 Gas engine generator 76 Offgas (to burner burner etc.)
77 Product pure hydrogen 80 Separated water pot 81 Wastewater treatment 82 Dryer circulation gas (A)
83 Dryer circulation gas (B)
84 water spray cooling 86 pipe line 87 second pyrolysis gas branch section 88 conduit (return of dryer circulation gas B to dryer)
89 Dryer outlet gas 90 Combustion furnace outlet gas (combustion exhaust gas)
91 Gas inlet to the reforming furnace 92 Gas inlet to the combustion furnace 93 Combustion exhaust gas 95 Biomass mixture or waste plastic 102 Steam 103 Steam return line 104 Drain recovery device 106 Air inlet to dryer 110 Excess combustion gas boiler 111 Steam Generator (generator)
112 conduit

Claims (8)

  1.  内筒と外筒とを有する外燃式ロータリーキルンの該内筒に、原料を供給する原料供給工程、
     前記内筒に供給された前記原料を、前記外筒の熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
     前記第1熱分解ガスを前記外筒に導入する第1熱分解ガスの外筒への導入工程、
     前記外筒で、前記第1熱分解ガス内のタールを分解し、第2熱分解ガスを得る工程、
     前記第2熱分解ガスを前記外筒から取り出し改質炉に導入する工程、
     導入された前記第2熱分解ガスを前記改質炉で昇温させて水素含有割合を高めた粗改質ガスを得る改質工程、
    及び
     前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
    を有し、
     前記第2熱分解ガスを得る工程は、
    前記外筒に、酸素または空気の少なくとも一方と水蒸気とを組み合わせて、水蒸気のモル数/酸素ガス成分のモル数の比が0.4~4の範囲内で注入し、
    前記外筒内で前記第1熱分解ガスを部分酸化させ、前記外筒内を640~740℃に温度制御し、
    前記第1熱分解ガス内のタールを分解すること、
    を特徴とするバイオマスを原料とする水素製造方法。
    A raw material supply step of supplying a raw material to the inner cylinder of an external combustion type rotary kiln having an inner cylinder and an outer cylinder,
    A step of thermally decomposing the raw material supplied to the inner cylinder in the inner cylinder by heat of the outer cylinder to generate a first pyrolysis gas;
    A step of introducing the first pyrolysis gas into the outer cylinder to introduce the first pyrolysis gas into the outer cylinder;
    A step of decomposing tar in the first pyrolysis gas with the outer cylinder to obtain a second pyrolysis gas;
    Removing the second pyrolysis gas from the outer cylinder and introducing it to a reforming furnace;
    A reforming step of raising the temperature of the introduced second pyrolysis gas in the reforming furnace to obtain a crude reformed gas having an increased hydrogen content,
    And a hydrogen recovery step of recovering hydrogen from the crude reformed gas of the reforming step,
    Has,
    The step of obtaining the second pyrolysis gas comprises:
    At least one of oxygen and air and water vapor are combined and injected into the outer cylinder in a ratio of the number of moles of water vapor / the number of moles of the oxygen gas component in the range of 0.4 to 4,
    Partially oxidizing the first pyrolysis gas in the outer cylinder, controlling the temperature in the outer cylinder to 640 to 740 ° C.,
    Decomposing tar in the first pyrolysis gas;
    A method for producing hydrogen using biomass as a raw material.
  2.  原料を原料乾燥機により乾燥させる原料乾燥工程、
     内筒と外筒とを有する外燃式ロータリーキルンの該内筒に、前記原料乾燥工程を経た原料を供給する材料供給工程、
     前記内筒に供給された前記原料を、前記外筒の熱により前記内筒内で熱分解して第1熱分解ガス発生させる工程、
     前記第1熱分解ガスを前記外筒に導入する第1熱分解ガスの外筒への導入工程、
     前記外筒で、前記第1熱分解ガス内のタールを分解し、第2熱分解ガスを得る工程、
     前記第2熱分解ガスを前記外筒から取り出し改質炉及び燃焼炉に導入する工程、
     前記改質炉のガス温度を高め、前記第2熱分解ガスから水素含有割合を高めた粗改質ガスを得る改質工程、
     前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
     導入された前記第2熱分解ガスを含むガスと空気及び乾燥機排ガスを前記燃焼炉で混合燃焼し燃焼排ガスを得る工程、
    及び
     当該燃焼排ガスを直接的または間接的に前記原料乾燥工程の熱源にし、加えて、前記燃焼排ガスの余剰分で蒸気を発生し発電に利用する工程、
    を有し、
     前記第2熱分解ガスを得る工程は、
    前記外筒に、酸素または空気の少なくとも一方と水蒸気とを組み合わせて、
    水蒸気のモル数/酸素ガス成分のモル数の比が0.4~4の範囲内で注入し、
    前記外筒内で前記第1熱分解ガスを部分酸化させ、前記外筒内を640~740℃に温度制御し、前記第1熱分解ガス内のタールを分解すること、
    を特徴とするバイオマスを原料とする水素製造方法。
    A raw material drying step of drying the raw material by a raw material dryer,
    A material supply step of supplying a raw material having passed through the raw material drying step to the inner cylinder of an external combustion rotary kiln having an inner cylinder and an outer cylinder,
    A step of thermally decomposing the raw material supplied to the inner cylinder in the inner cylinder by heat of the outer cylinder to generate a first pyrolysis gas;
    A step of introducing the first pyrolysis gas into the outer cylinder to introduce the first pyrolysis gas into the outer cylinder;
    A step of decomposing tar in the first pyrolysis gas with the outer cylinder to obtain a second pyrolysis gas;
    Removing the second pyrolysis gas from the outer cylinder and introducing it to a reforming furnace and a combustion furnace;
    A reforming step of increasing the gas temperature of the reforming furnace to obtain a crude reformed gas having an increased hydrogen content from the second pyrolysis gas;
    A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
    A step of obtaining a combustion exhaust gas by mixing and burning the introduced gas containing the second pyrolysis gas, air and a dryer exhaust gas in the combustion furnace;
    And directly or indirectly using the combustion exhaust gas as a heat source of the raw material drying step, in addition, a step of generating steam in excess of the combustion exhaust gas and using it for power generation,
    Has,
    The step of obtaining the second pyrolysis gas comprises:
    The outer cylinder, by combining at least one of oxygen or air and water vapor,
    Injection is performed when the ratio of the number of moles of water vapor to the number of moles of the oxygen gas component is in the range of 0.4 to 4,
    Partially oxidizing the first pyrolysis gas in the outer cylinder, controlling the temperature in the outer cylinder to 640 to 740 ° C., and decomposing tar in the first pyrolysis gas;
    A method for producing hydrogen using biomass as a raw material.
  3.  原料を原料乾燥機により乾燥させる原料乾燥工程、
     外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する原料供給工程、
     前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
     前記第1熱分解ガスを前記第2の外筒に導入する工程、
     前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように前記第2の外筒に供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
     前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
     前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、
    前記改質炉で前記昇温によって水素含有割合を高めた粗改質ガスを得る改質工程、
     前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
    及び、
     前記燃焼炉で、新たな空気、前記原料乾燥機の排出口から出た増湿した排ガスである乾燥循環ガスの少なくとも一部、及び前記第2熱分解ガスの3つを混合し800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
    を有し、
     前記燃焼排ガスの一部が前記第1の外筒に導入され、
    前記キルン内筒を加熱し、
    前記燃焼排ガスの他部は、前記原料乾燥機に投入され循環使用されるところの前記乾燥循環ガスの残部を昇温した後、
    前記燃焼ガスの一部と集合し、
    余剰燃焼排ガスボイラで、スチームタービン発電機の発電のためのスチームを製造して、大気に排出されること、
    を特徴とするバイオマスを原料とする水素製造方法。
    A raw material drying step of drying the raw material by a raw material dryer,
    A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
    A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
    Introducing the first pyrolysis gas into the second outer cylinder;
    In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied to the second outer cylinder such that the ratio of the number of moles of steam / the number of moles of the oxygen component is 0.4 to 4. Controlling the temperature in the second outer cylinder to 640 to 740 ° C. to partially oxidize the first pyrolysis gas to obtain a second pyrolysis gas;
    A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
    In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. do it,
    A reforming step of obtaining a crude reformed gas having an increased hydrogen content by the temperature increase in the reforming furnace;
    A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
    as well as,
    In the combustion furnace, fresh air, at least a part of a drying circulating gas, which is a humidified exhaust gas discharged from an outlet of the raw material dryer, and three of the second pyrolysis gas are mixed, and 800 to 950 ° C. Combustion process to obtain combustion exhaust gas by burning in
    Has,
    Part of the combustion exhaust gas is introduced into the first outer cylinder,
    Heating the kiln inner cylinder,
    After the other part of the combustion exhaust gas is heated to the remaining part of the drying circulating gas, which is charged into the raw material dryer and used for circulation,
    Gather with a part of the combustion gas,
    Surplus flue gas boilers produce steam for power generation by steam turbine generators, which are released to the atmosphere,
    A method for producing hydrogen using biomass as a raw material.
  4.  原料を原料乾燥機により乾燥させる原料乾燥工程、
     外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する原料供給工程、
     前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
     前記第1熱分解ガスを前記第2の外筒に導入する工程、
     前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように前記第2の外筒に供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
     前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
     前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、前記改質炉で前記昇温によって水素含有割合を高めた粗改質ガスを得る改質工程、
     前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
    及び、
     前記燃焼炉で、新たな空気、前記原料乾燥機の排出口から出た増湿した排ガスである乾燥循環ガスの少なくとも一部及び前記第2熱分解ガスの3つを混合し800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
    を有し、
     前記燃焼排ガスの一部が前記第1の外筒に導入され、
    前記キルン内壁と原料を加熱し前記原料乾燥機の排ガス側管路に導入され
    前記燃焼排ガスの残部は、その一部を前記原料乾燥機に投入し、
    その残りを、余剰燃焼排ガスボイラで、スチームタービン発電機の発電のためのスチームを製造に利用した後、大気に排出され乾燥機の増湿分を系外に排出すること、
    を特徴とするバイオマスを原料とする水素製造方法。
    A raw material drying step of drying the raw material by a raw material dryer,
    A raw material supply step of supplying a dry raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
    A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
    Introducing the first pyrolysis gas into the second outer cylinder;
    In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied to the second outer cylinder such that the ratio of the number of moles of steam / the number of moles of the oxygen component is 0.4 to 4. Controlling the temperature in the second outer cylinder to 640 to 740 ° C. to partially oxidize the first pyrolysis gas to obtain a second pyrolysis gas;
    A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
    In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. A reforming step of obtaining a crude reformed gas having an increased hydrogen content by the temperature increase in the reforming furnace;
    A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
    as well as,
    In the combustion furnace, fresh air, at least a part of a drying circulating gas which is a humidified exhaust gas discharged from an outlet of the raw material dryer, and three of the second pyrolysis gas are mixed and mixed at 800 to 950 ° C. Combustion process to obtain combustion exhaust gas by combustion,
    Has,
    Part of the combustion exhaust gas is introduced into the first outer cylinder,
    The kiln inner wall and the raw material are heated and introduced into the exhaust gas side pipe of the raw material dryer, and the remaining portion of the combustion exhaust gas is partially charged into the raw material dryer,
    The remainder is used in a surplus flue gas boiler to use steam for the production of a steam turbine generator for production, and then discharged to the atmosphere to discharge the humidified content of the dryer to the outside of the system.
    A method for producing hydrogen using biomass as a raw material.
  5.  原料を乾燥させる原料乾燥工程、
     外燃式のロータリーキルンの該内筒に前記原料乾燥工程を経た乾燥原料を供給する材料供給工程、
     前記外燃式のロータリーキルンの前記内筒外側で該内筒の入口側に第1の外筒、出口側に少なくとも1の第2の外筒を設け、前記内筒に供給された前記乾燥原料を、前記第1及び第2の外筒で生ぜしめた熱により前記内筒内で熱分解して第1熱分解ガスを発生させる工程、
     前記内筒に供給された前記乾燥原料を熱分解して発生した前記第1熱分解ガスを前記第2の外筒に導入する工程、
     前記第2の外筒では、酸素または空気の少なくとも一方と水蒸気が組み合わせられ、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように供給されて、前記第2の外筒内の温度が640~740℃に制御され、前記第1熱分解ガスを部分酸化させて第2熱分解ガスを得る工程、
     前記第2の熱分解ガスを前記第2の外筒から取り出して、第1系統として改質炉へ、第2系統として燃焼炉へ、それぞれ、導入するガス導入工程、
     前記改質炉では、水蒸気のモル数/酸素成分のモル数の比が0.4~4となるように水蒸気と酸素を供給し、前記改質炉のガス温度を900~1100℃に昇温して、前記改質炉を前記昇温によって、水素含有割合を高めた粗改質ガスを得る改質工程、
    前記改質工程の前記粗改質ガスから水素を回収する水素回収工程、
    及び、
     前記燃焼炉で、前記原料乾燥機の排ガスの出口から排出される増湿した排ガス、前記第2熱分解ガス、及び新たな空気の3つを混合し、800~950℃で燃焼して燃焼排ガスを得る燃焼工程、
    を有し、
     前記燃焼排ガスの一部が前記第1の外筒に導入し、
    前記外燃式のロータリーキルン内筒壁と原料を加熱し、
    その後、乾燥機の排出側管路に導入し、
    前記燃焼排ガスの他部は燃焼ガス廃熱ボイラに集合され蒸気を製造し、
    この蒸気を利用して、前記原料の乾燥の間接媒体または直接媒体とし、
    当該蒸気の残余分は、スチーム発電機で発電に供し、
    前記燃焼ガス廃熱ボイラで熱を回収した後の燃焼排ガスは、大気に排出され乾燥機の増湿された湿分を系外に排出すること、
    を特徴とするバイオマスを原料とする水素製造方法。
    A raw material drying step for drying the raw materials,
    A material supply step of supplying a dried raw material having passed through the raw material drying step to the inner cylinder of an external combustion type rotary kiln;
    A first outer cylinder is provided on an inlet side of the inner cylinder and an at least one second outer cylinder is provided on an outlet side of the inner cylinder outside the inner cylinder of the external combustion rotary kiln, and the dry raw material supplied to the inner cylinder is provided. Generating a first pyrolysis gas by thermally decomposing in the inner cylinder by heat generated in the first and second outer cylinders;
    Introducing the first pyrolysis gas generated by pyrolyzing the dry raw material supplied to the inner cylinder into the second outer cylinder;
    In the second outer cylinder, at least one of oxygen and air is combined with steam, and supplied so that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and A step of controlling the temperature in the outer cylinder to 640 to 740 ° C. and partially oxidizing the first pyrolysis gas to obtain a second pyrolysis gas;
    A gas introduction step of taking out the second pyrolysis gas from the second outer cylinder and introducing the second pyrolysis gas to a reforming furnace as a first system and to a combustion furnace as a second system,
    In the reforming furnace, steam and oxygen are supplied such that the ratio of the number of moles of steam / the number of moles of the oxygen component becomes 0.4 to 4, and the gas temperature of the reforming furnace is raised to 900 to 1100 ° C. A reforming step of obtaining a crude reformed gas having an increased hydrogen content by raising the temperature of the reforming furnace;
    A hydrogen recovery step of recovering hydrogen from the crude reformed gas in the reforming step,
    as well as,
    In the combustion furnace, three of the humidified exhaust gas discharged from the exhaust gas outlet of the raw material dryer, the second pyrolysis gas, and fresh air are mixed and burned at 800 to 950 ° C. Get the combustion process,
    Has,
    Part of the combustion exhaust gas is introduced into the first outer cylinder,
    Heating the external combustion type rotary kiln inner cylinder wall and raw materials,
    After that, it is introduced into the discharge line of the dryer,
    The other part of the combustion exhaust gas is collected in a combustion gas waste heat boiler to produce steam,
    Utilizing this steam, an indirect or direct medium for drying the raw material,
    The remainder of the steam is used for power generation with a steam generator,
    The combustion exhaust gas after recovering heat in the combustion gas waste heat boiler is discharged to the atmosphere and the humidified moisture of the dryer is discharged out of the system,
    A method for producing hydrogen using biomass as a raw material.
  6.  前記内筒の出口側端部のチャンバーにおいて、前記第1熱分解ガスと残渣炭化物とを分離回収する分離回収工程をさらに有し、
     前記分離回収工程では、水蒸気のモル数/酸素ガスのモル数の比が0.4~4となるように、酸素ガスまたは、空気の少なくとも一方と水蒸気を前記チャンバーに供給し、前記チャンバー内の温度を300から640℃未満の範囲内で制御し、前記第1熱分解ガスは、外筒または第2の外筒に導き、残りの残渣炭化物は、前記チャンバーの下部捕集部より回収する、ことを特徴とする、請求項1~5のいずれかに記載のバイオマスを原料とする水素製造方法。
    In the chamber at the outlet side end of the inner cylinder, further comprising a separation and recovery step of separating and recovering the first pyrolysis gas and the residual carbide,
    In the separation and recovery step, at least one of oxygen gas or air and water vapor are supplied to the chamber so that the ratio of the number of moles of water vapor / the number of moles of oxygen gas becomes 0.4 to 4, Controlling the temperature within the range of 300 to less than 640 ° C., the first pyrolysis gas is led to an outer cylinder or a second outer cylinder, and the remaining residue carbide is collected from a lower collecting part of the chamber; The method for producing hydrogen using biomass as a raw material according to any one of claims 1 to 5, characterized in that:
  7.  前記原料のイオウ含有率が0.2質量%(ドライベース)以下のとき、前記水素回収工程に先立って二酸化炭素ガスを分離回収する工程を有することを特徴とする請求項1~6のいずれかに記載のバイオマスを原料とする水素製造方法。 The method according to any one of claims 1 to 6, further comprising a step of separating and recovering carbon dioxide gas prior to the hydrogen recovery step when the sulfur content of the raw material is 0.2% by mass or less (dry base). A hydrogen production method using biomass as a raw material.
  8.  前記水素回収工程を経たガスに含まれる一酸化炭素ガスをガスエンジン発電の熱源として利用し発電する工程をさらに含むことを特徴とする請求項1~7のいずれかに記載のバイオマスを原料とする水素製造方法。 The biomass according to any one of claims 1 to 7, further comprising a step of generating electricity by using a carbon monoxide gas contained in the gas that has undergone the hydrogen recovery step as a heat source for gas engine power generation. Hydrogen production method.
PCT/JP2018/025701 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material WO2020008621A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019513470A JP6590359B1 (en) 2018-07-06 2018-07-06 Hydrogen production method using biomass as raw material
PCT/JP2018/025701 WO2020008621A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material
CN201880095346.0A CN112368236B (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025701 WO2020008621A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Publications (1)

Publication Number Publication Date
WO2020008621A1 true WO2020008621A1 (en) 2020-01-09

Family

ID=68234954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025701 WO2020008621A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Country Status (3)

Country Link
JP (1) JP6590359B1 (en)
CN (1) CN112368236B (en)
WO (1) WO2020008621A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307226A (en) * 2021-06-29 2021-08-27 山东茵温特节能环保科技有限公司 Device and method for preparing hydrogen-rich fuel gas by reforming biomass tar water vapor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035837A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Thermal cracking gasification apparatus and the system
JP2007177106A (en) * 2005-12-28 2007-07-12 Chugai Ro Co Ltd Apparatus for gasifying biomass
JP2008528708A (en) * 2005-01-18 2008-07-31 エンクエスト パワー コーポレーション Method for steam reforming of carbonaceous feedstock
WO2012014277A1 (en) * 2010-07-27 2012-02-02 株式会社日本計画機構 Method for producing hydrogen-containing gas
JP2017132676A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen feed system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281552A (en) * 2004-03-30 2005-10-13 Fuji Electric Holdings Co Ltd Hydrogen producing apparatus
IT1406771B1 (en) * 2010-12-23 2014-03-07 Sea Marconi Technologies Di Vander Tumiatti S A S MODULAR PLANT FOR THE CONDUCT OF CONVERSION PROCEDURES OF CARBONOUS MATRICES
CN103923705B (en) * 2014-03-25 2016-01-06 东南大学 Gasifying biomass produces the device and method of hydrogen-rich gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035837A (en) * 2002-07-05 2004-02-05 Mitsubishi Heavy Ind Ltd Thermal cracking gasification apparatus and the system
JP2008528708A (en) * 2005-01-18 2008-07-31 エンクエスト パワー コーポレーション Method for steam reforming of carbonaceous feedstock
JP2007177106A (en) * 2005-12-28 2007-07-12 Chugai Ro Co Ltd Apparatus for gasifying biomass
WO2012014277A1 (en) * 2010-07-27 2012-02-02 株式会社日本計画機構 Method for producing hydrogen-containing gas
JP2017132676A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Hydrogen feed system

Also Published As

Publication number Publication date
CN112368236A (en) 2021-02-12
JPWO2020008621A1 (en) 2020-07-09
CN112368236B (en) 2023-03-28
JP6590359B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
US20060260190A1 (en) Method and apparatus for treating organic matter
JP6124494B1 (en) Plant biomass semi-carbide production equipment
EA022238B1 (en) Method and system for production of a clean hot gas based on solid fuels
RU2662440C1 (en) Method of gasification of solid fuel and device for its implementation
JP5938788B2 (en) Method for thermochemical carbonization and gasification of wet biomass
KR102235889B1 (en) Power generating system by using syngas that pyrolysis and gasification using combustible renewable fuels including biomass
CN115210503A (en) System and method for pyrolysis
CN105264054B (en) Pyrolysis attachment in pyrolysis gasification system generates suppressing method and pyrolysis gasification system
WO2013183003A1 (en) Plant and method of pyrolysis of organic material
JP2004149556A (en) Method for gasifying biomass and gasifying apparatus therefor
RU2668447C1 (en) Method of gasification of solid fuel and device for its implementation
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
WO2020008621A1 (en) Method for producing hydrogen using biomass as raw material
JP5036608B2 (en) Gasification generator
CN110030558A (en) Organic solid fuel thermal decomposition, gasification and burning integral device and processing method
EA027222B1 (en) Improvements in waste processing
JP2004051745A (en) System of gasifying biomass
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
EP2881451B1 (en) Reactor for obtaining gas from biomass or organic residues
JP6016367B2 (en) Method for suppressing generation of pyrolysis deposits in pyrolysis gasification system and pyrolysis gasification system
KR101005850B1 (en) Apparatus for Drying and Carbonating Combustibile or organic Waste
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
CN1863738A (en) Method and apparatus for treating organic matter
US20070294937A1 (en) Gasifier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019513470

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925327

Country of ref document: EP

Kind code of ref document: A1