[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020008534A1 - Obstacle detection device and driving support device - Google Patents

Obstacle detection device and driving support device Download PDF

Info

Publication number
WO2020008534A1
WO2020008534A1 PCT/JP2018/025254 JP2018025254W WO2020008534A1 WO 2020008534 A1 WO2020008534 A1 WO 2020008534A1 JP 2018025254 W JP2018025254 W JP 2018025254W WO 2020008534 A1 WO2020008534 A1 WO 2020008534A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
parameter value
unit
driving support
Prior art date
Application number
PCT/JP2018/025254
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 上田
侑己 浦川
裕 小野寺
真一 原瀬
井上 悟
元気 山下
亘 辻田
努 朝比奈
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020528578A priority Critical patent/JP7199436B2/en
Priority to PCT/JP2018/025254 priority patent/WO2020008534A1/en
Publication of WO2020008534A1 publication Critical patent/WO2020008534A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to an obstacle detection device and a driving support device.
  • Patent Document 1 when the height of the obstacle is low, the vehicle approaches the obstacle and the obstacle moves out of the detection area of the distance measurement sensor (that is, the peak value of the reflected wave decreases). ) Is used to determine the height of the obstacle. For this reason, the prior art described in Patent Literature 1 has a problem in that it is not possible to determine the height of a distant obstacle. Further, the conventional technique described in Patent Document 1 has a problem that when the distance between the vehicle and the obstacle is constant, the height of the obstacle cannot be determined.
  • Patent Document 2 determines the relative height of an obstacle with respect to a predetermined height by comparing the peak value of a reflected wave with a reference value. This utilizes the fact that the peak value differs depending on the height of the obstacle.
  • Patent Literature 1 when an obstacle is located far away, the difference in peak value according to the height of the obstacle becomes small. For this reason, the prior art described in Patent Literature 2 has a problem in that the accuracy of determining the height of a distant obstacle is low.
  • Patent Document 2 when an obstacle has a height approximately equal to a predetermined height, an error in determining the height of the obstacle relative to the predetermined height is likely to occur. There was a problem.
  • the present invention has been made to solve the above-described problem, and has as its object to accurately determine the height of an obstacle using a distance measurement sensor.
  • An obstacle detection device includes a feature amount extraction unit that extracts a feature amount related to a plurality of reflected waves when a distance measurement sensor provided in the vehicle receives a plurality of reflected waves due to an obstacle; An obstacle determining unit that determines that the height of the obstacle is higher when the amount of variance is larger than when the amount of variance is smaller, the first parameter value indicating the size of the feature amount, and the size of the amount of variance And an obstacle determining unit that determines whether at least the obstacle is a traveling obstacle based on the result of the clustering of the second parameter value indicating the obstacle.
  • the configuration is as described above, it is possible to accurately determine the height of the obstacle using the distance measuring sensor.
  • FIG. 2 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment.
  • FIG. 3A is an explanatory diagram illustrating a hardware configuration of the obstacle detection device according to the first embodiment.
  • FIG. 3B is an explanatory diagram illustrating another hardware configuration of the obstacle detection device according to the first embodiment.
  • 5 is a flowchart illustrating an operation of the obstacle detection device according to the first embodiment.
  • FIG. 5A is an explanatory diagram illustrating an example of a propagation path of a reflected wave by a traveling obstacle.
  • FIG. 5B is an explanatory diagram illustrating an example of a waveform of a transmission signal.
  • FIG. 5A is an explanatory diagram illustrating an example of a propagation path of a reflected wave by a traveling obstacle.
  • FIG. 5B is an explanatory diagram illustrating an example of a waveform
  • FIG. 5C is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave due to a traveling obstacle.
  • FIG. 5D is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave from the traveling obstacle.
  • FIG. 6A is an explanatory diagram illustrating an example of a propagation path of a reflected wave due to a road obstacle or a road surface obstacle.
  • FIG. 6B is an explanatory diagram illustrating an example of a waveform of a transmission signal.
  • FIG. 6C is an explanatory diagram illustrating an example of a waveform of a received signal corresponding to a reflected wave from a road obstacle.
  • FIG. 6D is an explanatory diagram showing another example of the waveform of the received signal corresponding to the reflected wave from the road obstacle.
  • FIG. 6E is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave from a road surface obstacle.
  • FIG. 6F is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave due to the road surface obstacle.
  • FIG. 7A is an explanatory diagram illustrating an example of actually measured first parameter values and second parameter values before manufacturing the obstacle detection device according to Embodiment 1.
  • FIG. 7B is an explanatory diagram illustrating an example of the first parameter value and the second parameter value calculated after shipping of the vehicle including the obstacle detection device according to Embodiment 1.
  • FIG. 8A is an explanatory diagram illustrating an example of a wave height, a wave width, and a wave area of a reflected wave.
  • FIG. 8B is an explanatory diagram illustrating an example of a response time of a reflected wave.
  • FIG. 9A is an explanatory diagram showing an example of actual measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device according to Embodiment 1.
  • FIG. 9B is an explanatory diagram illustrating an example of a first parameter value, a second parameter value, and a third parameter value calculated after shipping of the vehicle having the obstacle detection device according to Embodiment 1.
  • FIG. 9 is a block diagram showing a main part of a driving support device according to Embodiment 2.
  • FIG. 12A is an explanatory diagram showing an example of an installation position of a distance measuring sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle.
  • FIG. 12B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 13A is an explanatory diagram showing an example of an installation position of a distance measurement sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle.
  • FIG. 12A is an explanatory diagram showing an example of an installation position of a distance measurement sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle.
  • FIG. 13B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. It is explanatory drawing which shows the example of a facing angle.
  • FIG. 15A is an explanatory diagram illustrating an example of a traveling route when the vehicle approaches an obstacle.
  • FIG. 15B is an explanatory diagram showing an example of a temporal change of the directly facing angle at this time.
  • FIG. 15C is an explanatory diagram illustrating an example of data indicating the feature amount at this time.
  • FIG. 13 is a block diagram illustrating a main part of another driving support device according to Embodiment 2. 9 is a flowchart showing an operation of another driving support device according to Embodiment 2.
  • FIG. 18A is an explanatory diagram illustrating an example of a detection section.
  • FIG. 18B is an explanatory diagram illustrating another example of the detection section.
  • 9 is a flowchart illustrating another operation of the driving support device according to the second embodiment.
  • FIG. 20A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • FIG. 20B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 20A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 21A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • FIG. 21B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 9 is a block diagram showing a main part of a driving support device according to Embodiment 3. 9 is a flowchart showing the operation of the driving support device according to Embodiment 3.
  • FIG. 14 is an explanatory diagram showing an example of a detection result by an obstacle detection unit in the driving support device according to Embodiment 3.
  • FIG. 29A is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in the driving support device according to Embodiment 3.
  • FIG. 29B is an explanatory diagram illustrating an example of a detection result obtained by the obstacle detection unit in another driving support device according to Embodiment 3.
  • FIG. 29A is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in the driving support device according to Embodiment 3.
  • FIG. 29B is an explanatory diagram illustrating an example of a detection result obtained by the obstacle detection unit in another driving support device according to Embodiment 3.
  • FIG. 29A is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in the driving support device according to Embodiment 3.
  • FIG. 29B is an explanatory diagram illustrating an example of a detection result obtained by the obstacle detection unit in another driving support device according to Embodiment 3.
  • FIG. 29A is an explanatory diagram illustrating another example of a detection result by the obstacle detection
  • FIG. 14 is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in another driving support device according to Embodiment 3.
  • FIG. 14 is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in another driving support device according to Embodiment 3.
  • FIG. 14 is a block diagram showing a main part of a driving support device according to Embodiment 4.
  • FIG. 11 is an explanatory diagram illustrating an example of a state where a marker image is superimposed and displayed on a captured image.
  • 9 is a flowchart showing the operation of the driving support device according to Embodiment 4.
  • FIG. 13 is a block diagram showing a main part of another driving support device according to Embodiment 4.
  • FIG. 1 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment.
  • an obstacle detection device 100 according to the first embodiment will be described.
  • the obstacle detection device 100 is connected to a computer network (for example, CAN (Controller Area Network)) in the vehicle 1.
  • the obstacle detection device 100 can appropriately acquire various signals from the computer network. These signals include, for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1.
  • the vehicle 1 has a distance measuring sensor 2.
  • the distance measuring sensor 2 includes N distance measuring sensors 2 1 to 2 N (N is an arbitrary integer of 2 or more).
  • the N distance measuring sensors 2 1 to 2 N have different installation positions in the vehicle 1 and have the same installation direction in the vehicle 1.
  • Each of the N distance measuring sensors 2 1 to 2 N is constituted by, for example, a sonar, a millimeter wave radar or a laser radar.
  • search waves ultrasonic waves, radio waves, light, and the like transmitted and received by the distance measuring sensor 2
  • search waves When the search wave is reflected by an obstacle outside the vehicle 1, the reflected search wave is referred to as a "reflected wave”.
  • the search wave and the reflected wave are referred to as “direct waves”.
  • the search wave and the reflected wave are referred to as “indirect waves”.
  • the traveling obstacle is, for example, a wall or another parked vehicle (hereinafter, referred to as “parked vehicle”).
  • parked vehicle obstacles having a height low enough not to contact the bumper portion of the vehicle 1 and having a height high enough not to be able to get over the vehicle 1
  • road obstacles obstacles having a height low enough not to contact the bumper portion of the vehicle 1 and having a height high enough not to be able to get over the vehicle 1
  • the road obstacle is, for example, a curb or a wheelchair.
  • an obstacle having a height low enough not to contact the bumper portion of the vehicle 1 and having a height low enough to allow the vehicle 1 to get over is referred to as “road obstacle”. That.
  • the road surface obstacle is, for example, a step. That is, the traveling obstacle has a height higher than the road obstacle, and the road obstacle has a height higher than the road obstacle.
  • the obstacle detection unit 11 detects an obstacle around the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle.
  • the obstacle detection unit 11 includes a transmission signal output unit 21, a reception signal acquisition unit 22, a distance value calculation unit 23, a reflection point position calculation unit 24, a grouping unit 25, a vehicle position calculation unit 26, and a sensor position calculation unit 27. It is configured.
  • the transmission signal output section 21 outputs a transmission signal to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits a search wave.
  • the reception signal acquisition unit 22 acquires a reception signal from the distance measurement sensor 2 from the distance measurement sensor 2.
  • the distance value calculation unit 23 determines whether or not the reflected wave is received by the distance measuring sensor 2 by comparing the intensity of the signal received by the distance measuring sensor 2 with a predetermined threshold value.
  • the distance value calculator 23 calculates a distance value by TOF when a reflected wave is received by the distance measuring sensor 2. Since a method of calculating a distance value by TOF is known, detailed description is omitted.
  • the reflection point position calculation unit 24 calculates the position of the point where the search wave is reflected (hereinafter referred to as “reflection point”) using the distance value calculated by the distance value calculation unit 23.
  • the position of the reflection point is determined by, for example, a first axis (hereinafter referred to as “X axis”) corresponding to the front-rear direction of the vehicle 1 and a second axis (hereinafter referred to as “Y axis”) corresponding to the left / right direction of the vehicle 1. It is represented by coordinate values in a coordinate system in meters (hereinafter referred to as “XY coordinate system”).
  • the reflection point position calculation unit 24 has a start point corresponding to the position of the distance measurement sensor 2 at the transmission timing of the direct wave (or the reception timing of the direct wave), and also measures the distance in the vehicle 1.
  • the coordinate value of the reflection point in the XY coordinate system is calculated. I do.
  • This vector is a vector in a virtual plane (hereinafter, referred to as “XY plane”) along the X axis and the Y axis.
  • the reflection point position calculation unit 24 calculates the position of the reflection point by a so-called “two-circle intersection” using a plurality of distance values corresponding to mutually different direct waves. That is, the reflection point position calculation unit 24 calculates the coordinate value of the reflection point in the XY coordinate system by executing the two-circle intersection processing on the XY plane.
  • the information indicating the position of the distance measuring sensor 2 at the transmission timing of the search wave (or the reception timing of the reflected wave) is output by the sensor position calculation unit 27.
  • Other information (for example, information indicating the installation direction of the distance measurement sensor 2 in the vehicle 1) is stored in the reflection point position calculation unit 24 in advance.
  • the grouping unit 25 groups the plurality of reflection points to correspond to one or more obstacles in principle one-to-one.
  • One or more reflection point groups (hereinafter, referred to as “groups”) are set. In this grouping, for example, when the distance between two adjacent reflection points is less than a predetermined distance, the two reflection points are included in the same group.
  • the own vehicle position calculating unit 26 calculates the position of the vehicle 1 at the transmission timing of the search wave (or the reception timing of the reflected wave) (hereinafter, referred to as “own vehicle position”).
  • the sensor position calculator 27 calculates the position of the distance measuring sensor 2 at the timing (hereinafter, referred to as “sensor position”). These positions are represented by coordinate values in an XY coordinate system, for example.
  • the sensor position calculator 27 outputs information indicating the sensor position to the reflection point position calculator 24.
  • the information indicating the sensor position is used by the reflection point position calculation unit 24 to calculate the position of the reflection point.
  • Various known methods can be used to calculate the vehicle position (for example, autonomous navigation), and a detailed description of these methods will be omitted.
  • Signals used for autonomous navigation for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1.
  • Information used for calculating the sensor position for example, information indicating the installation position of the distance measurement sensor 2 in the vehicle 1. is stored in the sensor position calculation unit 27 in advance.
  • an indirect wave may be used instead of or in addition to the direct wave.
  • the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used. As a result, the number of reflection points included in each group can be increased.
  • Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves.
  • the feature value extraction unit 12 extracts a feature value of the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
  • the obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the feature amount extracted by the feature amount extracting unit 12 (hereinafter referred to as a “first parameter value”. For example, an average value of these feature amounts is used. Is calculated). In addition, the obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the variance of the feature amount extracted by the feature amount extracting unit 12 (hereinafter, referred to as a “second parameter value”. Is the variance of the amount.) The obstacle determining unit 13 determines the type of the obstacle corresponding to each group using the calculated first parameter value and the calculated second parameter value. More specifically, the obstacle determining unit 13 determines whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle.
  • the road surface obstacle, the road obstacle, and the traveling obstacle have different heights from each other. Therefore, it is determined whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle. It is a judgment as to which height it has. That is, the obstacle determining unit 13 determines the height of the obstacle corresponding to each group by determining the type of the obstacle corresponding to each group. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
  • the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle discrimination unit 13 constitute a main part of the obstacle detection device 100.
  • the obstacle detection device 100 is constituted by a computer, and the computer has a processor 31 and a memory 32.
  • the memory 32 stores a program for causing the computer to function as the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13.
  • the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 reading and executing the program stored in the memory 32.
  • the obstacle detection device 100 may be configured by a processing circuit 33.
  • the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 may be realized by the processing circuit 33.
  • the obstacle detection device 100 may include a processor 31, a memory 32, and a processing circuit 33 (not shown).
  • some of the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the processing circuit 33. It may be something.
  • the processor 31 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 32 uses a semiconductor memory or a magnetic disk, for example. More specifically, the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), and an EEPROM (Electrical Memory). State @ Drive) or HDD (Hard @ Disk @ Drive) or the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Memory Only)
  • EEPROM Electrical Memory
  • State @ Drive or HDD (Hard @ Disk @ Drive) or the like.
  • the processing circuit 33 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), and a SoC (Sig-Lig- Is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • SoC SoC
  • step ST1 the obstacle detecting unit 11 detects an obstacle around the vehicle 1 by causing the distance measuring sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle.
  • step ST1 By the process of step ST1, one or more groups corresponding to one or more obstacles in principle one-to-one are set. Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • step ST ⁇ b> 2 the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves. The feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
  • the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount extracted by the feature amount extracting unit 12.
  • the obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group.
  • Judge. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
  • FIG. 5A shows an example of the propagation path of the reflected wave RW due to a traveling obstacle (more specifically, a wall).
  • FIG. 5B shows an example of the waveform of the transmission signal TS.
  • FIG. 5C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle.
  • FIG. 5D illustrates another example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle.
  • FIG. 6A shows an example of a propagation path of the reflected wave RW due to an obstacle on the road (more specifically, a curb) or an obstacle on the road (more specifically, a step).
  • FIG. 6B shows an example of the waveform of the transmission signal TS.
  • FIG. 6C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the obstacle on the road.
  • FIG. 6D shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the obstacle on the road.
  • FIG. 6E shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the road surface obstacle.
  • FIG. 6F shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the road surface obstacle.
  • the transmission signal output unit 21 outputs the transmission signal TS to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits the search wave SW.
  • the propagation path (so-called “path”) from the transmission of the search wave SW by the distance measuring sensor 2 to the reception of the reflected wave RW by the distance measurement sensor 2.
  • path There are a plurality. For example, there is a path that is reflected once by the obstacle O and returns to the distance measurement sensor 2. There is also a path that is reflected once by the road R and then reflected once by the obstacle O and returns to the distance measurement sensor 2. These paths include paths having different path lengths.
  • the reflected wave RW is a composite wave due to interference of a plurality of waves rw corresponding to these paths.
  • the received signal RS is a composite signal of a plurality of signals rs corresponding to the plurality of waves rw.
  • the path changes according to the uneven shape of the road R, the unevenness of the surface of the vehicle 1 that reflects the vibration of the vehicle 1 and the search wave SW on the obstacle O (hereinafter referred to as “reflective surface”), etc.
  • the waveform changes, and the waveform of the received signal RS also changes.
  • the waveforms of the plurality of reflected waves RW have variations, and the plurality of reflected waves RW Also has a variation in the waveform of the received signal RS corresponding to.
  • the reception intensity of the reflected wave RW (that is, the intensity of the reception signal RS). Becomes larger.
  • the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
  • the reception surface of the reflected wave RW (that is, the intensity of the reception signal RS) is larger because the area of the reflection surface portion is larger than that when the obstacle O is a road obstacle. Becomes larger.
  • the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
  • the distance measurement sensor 2 when a plurality of reflected waves RW due to the same obstacle O are received by the distance measurement sensor 2, when a feature amount based on the magnitude of these reflected waves RW is extracted, the extracted features are extracted.
  • the amount of dispersion of the amount has a correlation with the height of the obstacle O. For this reason, it is possible to determine the height of the obstacle O based on the amount of dispersion, such as determining that the height of the obstacle O is higher when the amount of dispersion is larger than when the amount of dispersion is smaller.
  • the determination of the height of the obstacle O by the obstacle determination unit 13 is based on this principle.
  • the feature amount extraction unit 12 corresponds to each of the plurality of reflected waves RW corresponding to the plurality of reflected points included in each group to the size of each of the plurality of reflected waves RW. Is extracted as a feature value. More specifically, the feature value extraction unit 12 extracts a wave height, a wave width, a waveform area, a response time, or the like of each of the plurality of reflected waves RW as a feature value. These features are extracted from information indicating the waveform of the received signal RS corresponding to the plurality of reflected waves RW.
  • the first parameter value and the second parameter value enable clustering according to the height of the obstacle O, that is, clustering according to the type of the obstacle O.
  • FIG. 7 shows an example of the range A1 including the first parameter value and the second parameter value when the obstacle O is a road surface obstacle, and the first parameter value and the second parameter value when the obstacle O is a road obstacle.
  • An example of a range A2 including a parameter value and an example of a range A3 including a first parameter value and a second parameter value when the obstacle O is a traveling obstacle are shown.
  • a dividing line PL1 between the ranges A1 and A2 corresponds to a determination threshold Th1 for determining whether the obstacle O is a road surface obstacle.
  • the dividing line PL2 between the ranges A2 and A3 corresponds to a threshold value Th2 for determining whether or not the obstacle O is a traveling obstacle.
  • Each circle in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before the manufacture of the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a road surface obstacle. Yes, it is.
  • Each square mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is an on-road obstacle. Yes, it is.
  • Each triangle mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a traveling obstacle. Yes, it is.
  • the information indicating the ranges A1 to A3 set by the clustering of these actually measured values more specifically, the information indicating the discrimination thresholds Th1 and Th2 is stored in the obstacle discrimination unit 13 in advance.
  • a machine learning technique such as linear discrimination or pattern recognition is used.
  • the obstacle determining unit 13 compares the first parameter value and the second parameter value calculated after the manufacture of the vehicle 1 (more specifically, after shipment) with the determination thresholds Th1 and Th2, thereby obtaining the first parameter. It identifies which of the ranges A1 to A3 the value and the second parameter value fall within. Thereby, it is determined whether the obstacle O around the vehicle 1 is a road surface obstacle, a road obstacle, or a traveling obstacle.
  • the crosses in FIG. 7B correspond to examples of the first parameter value and the second parameter value calculated after the shipment of the vehicle 1. In this case, since the first parameter value and the second parameter value are included in the range A3, the obstacle O is determined to be a traveling obstacle.
  • the feature amount extraction unit 12 extracts the amount corresponding to the size of each of the plurality of reflected waves RW as the feature amount.
  • FIG. 8 shows an example of the waveform of the reception signal RS corresponding to one of the plurality of reflected waves RW.
  • the feature quantity extraction unit 12 extracts the peak of the reflected wave RW based on the peak value PV of the received signal RS (see FIG. 8A). Alternatively, for example, the feature amount extracting unit 12 extracts a time width of a portion of the received signal RS exceeding the threshold Th, that is, a wave width of the reflected wave RW (see FIG. 8A).
  • the threshold Th is a threshold used for determining whether or not the reflected wave RW has been received.
  • the feature amount extraction unit 12 extracts the entire time width of the received signal RS (not illustrated). Alternatively, for example, the feature amount extraction unit 12 extracts the half width of the received signal RS, that is, the half width of the reflected wave RW (not shown).
  • the feature amount extraction unit 12 extracts a waveform area of a portion of the received signal RS exceeding the threshold Th, that is, a waveform area of the reflected wave RW (see FIG. 8A). Alternatively, for example, the feature amount extracting unit 12 extracts the entire waveform area of the received signal RS (not shown). These are all amounts corresponding to the magnitude of the reflected wave RW.
  • the feature quantity extraction unit 12 extracts the time from when the received signal RS exceeds the peak value PV to when the received signal RS falls below the threshold Th, that is, the response time of the reflected wave RW (see FIG. 8B).
  • the feature amount extraction unit 12 extracts a falling slope in the waveform of the received signal RS, that is, a falling slope in the waveform of the reflected wave RW (not shown).
  • the feature amount extraction unit 12 extracts a time constant in the waveform of the received signal RS, that is, a time constant in the waveform of the reflected wave RW (not shown). These are all amounts corresponding to the magnitude of the reflected wave RW.
  • the obstacle determining unit 13 acquires, from the obstacle detecting unit 11, information indicating the distance value calculated by the distance value calculating unit 23 or information indicating the coordinate value calculated by the reflection point position calculating unit 24.
  • the obstacle determining unit 13 calculates a value (hereinafter, referred to as a “third parameter value”) corresponding to the distance between the vehicle 1 and the obstacle O using the acquired information.
  • a value hereinafter, referred to as a “third parameter value”
  • FIG. 9 is an example of a range A1 including the first parameter value, the second parameter value, and the third parameter value when the obstacle O is a road surface obstacle, and the first example when the obstacle O is a road obstacle.
  • An example of the range A2 including the parameter value, the second parameter value, and the third parameter value, and the range including the first parameter value, the second parameter value, and the third parameter value when the obstacle O is a traveling obstacle An example of A3 is shown.
  • a dividing line PL1 between the ranges A1 and A2 corresponds to a determination threshold Th1 for determining whether the obstacle O is a road surface obstacle.
  • the dividing line PL2 between the ranges A2 and A3 corresponds to a threshold value Th2 for determining whether or not the obstacle O is a traveling obstacle.
  • 9A are actually measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device 100, and indicate the case where the obstacle O is a road surface obstacle. It corresponds to the example of the actual measurement value. 9A are actual measured values of the first parameter value, the second parameter value, and the third parameter value before the manufacture of the obstacle detection device 100, and indicate the case where the obstacle O is a road obstacle. It corresponds to the example of the actual measurement value. 9A are actually measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device 100, and indicate the case where the obstacle O is a traveling obstacle. It corresponds to the example of the actual measurement value.
  • the information indicating the ranges A1 to A3 set by the clustering of these actually measured values more specifically, the information indicating the discrimination thresholds Th1 and Th2 is stored in the obstacle discrimination unit 13 in advance.
  • a machine learning technique such as linear discrimination or pattern recognition is used.
  • the obstacle determination unit 13 compares the first parameter value, the second parameter value, and the third parameter value calculated after the manufacture of the vehicle 1 (more specifically, after shipment) with the determination thresholds Th1 and Th2. ,
  • the first parameter value, the second parameter value, and the third parameter value are included in any of the ranges A1 to A3. Thereby, it is determined whether the obstacle O around the vehicle 1 is a road surface obstacle, a road obstacle, or a running obstacle.
  • the crosses in FIG. 9B correspond to examples of the first parameter value, the second parameter value, and the third parameter value calculated after the shipment of the vehicle 1. In this case, since the first parameter value, the second parameter value, and the third parameter value are included in the range A3, the obstacle O is determined to be a traveling obstacle.
  • the third parameter value in addition to the first parameter value and the second parameter value, in the determination of the type of the obstacle (that is, the determination of the height of the obstacle), according to the propagation distance of the search wave. Can be considered.
  • the accuracy of determining the type of the obstacle that is, the accuracy of determining the height of the obstacle can be improved. More specifically, it is possible to accurately determine a road surface obstacle or a road obstacle located near the vehicle 1 and a traveling obstacle located far from the vehicle 1.
  • the vehicle position calculating unit 26 may calculate the vehicle position by satellite navigation instead of or in addition to autonomous navigation.
  • the obstacle detection device 100 may acquire a GNSS signal from a GNSS (Global Navigation Satellite Network) receiver provided in the vehicle 1.
  • GNSS Global Navigation Satellite Network
  • the second parameter value may be any value that indicates the magnitude of the variance of the feature value, and is not limited to the variance value of the feature value.
  • the second parameter value may be a difference value between the maximum value and the minimum value of the feature value, a difference value between the maximum value and the average value of the feature value, or the average value and the minimum value of the feature value. It may be a value difference value.
  • the obstacle determining unit 13 may determine whether an obstacle corresponding to each group is a traveling obstacle. That is, when it is determined that the obstacle is not a traveling obstacle, the obstacle determination unit 13 may not determine whether the obstacle is a road surface obstacle or a road obstacle.
  • the obstacle determination unit 13 may store information indicating the determination threshold Th2, but may not store information indicating the determination threshold Th1.
  • the distance measuring sensor 2 may be configured by one distance measuring sensor 21 instead of the N distance measuring sensors 2 1 to 2 N.
  • the plurality of reflection points included in each group may be the one corresponding to the direct wave which is sent multiple times received by one of the distance measuring sensor 2 1.
  • the plurality of reflection points to be grouped by the grouping unit 25 correspond to direct waves or indirect waves transmitted and received by the N distance measuring sensors 2 1 to 2 N whose installation positions in the vehicle 1 are different from each other. may be one, or by one of the distance measuring sensor 2 1 may be one corresponding to the direct wave which is transmitted and received at different timings from each other.
  • the plurality of reflection points correspond to direct waves or indirect waves transmitted and received at different timings by N distance measuring sensors 2 1 to 2 N whose installation positions in the vehicle 1 are different from each other. Is also good.
  • the transmission signal output unit 21 transmits the modulated wave by the frequency modulation or the phase modulation to the distance measurement sensor 2, rather than transmitting the continuous wave or the burst wave to the distance measurement sensor 2. That is, by using a modulated wave as the search wave, the amplitude and phase of the search wave change with respect to time. As a result, interference of a plurality of search waves passing through different propagation paths (for example, interference of a plurality of waves rw in the examples shown in FIGS. 5 and 6) becomes remarkable.
  • the obstacle determining unit 13 it is possible to improve the accuracy of determining the type of the obstacle (that is, the accuracy of determining the height of the obstacle) by the obstacle determining unit 13 as compared with the case where a continuous wave or a burst wave is used as the search wave.
  • the obstacle detection device 100 uses the feature amount relating to a plurality of reflected waves when the distance measurement sensor 2 provided in the vehicle 1 receives the plurality of reflected waves due to the obstacle.
  • an obstacle determining unit 13 that determines whether or not the obstacle is a traveling obstacle based on the result of clustering the first parameter value indicating the degree of dispersion and the second parameter value indicating the magnitude of the variance. .
  • the second parameter value in addition to the first parameter value, the type of the obstacle can be accurately determined, and the height of the obstacle can be accurately determined. Further, it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, at a distance of 5 meters or more).
  • the obstacle determining unit 13 determines the type of the obstacle by identifying which of the plurality of ranges set by the clustering includes the first parameter value and the second parameter value. . Thus, for example, it is possible to determine whether the obstacle is a road surface obstacle, a road obstacle, or a traveling obstacle.
  • the clustering is a clustering of a first parameter value, a second parameter value, and a third parameter value corresponding to a distance between the vehicle 1 and an obstacle.
  • FIG. 10 is a block diagram illustrating a main part of the driving support device according to the second embodiment.
  • a driving support device 200a according to the second embodiment will be described.
  • the same reference numerals are given to the same blocks as the blocks shown in FIG. 1, and the description will be omitted.
  • the distance measuring sensor 2 is composed of four distance measuring sensors 2 1 to 2 4.
  • Four distance measuring sensors 2 1 to 2 4 the front end of the vehicle 1 is provided on (more specifically, the front bumper unit), and are directed to the front of the vehicle 1.
  • the obstacle detection unit 11 detects an obstacle in front of the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave at least once when the vehicle 1 is moving forward.
  • the internal configuration of the obstacle detection unit 11 is the same as that described in Embodiment 1 with reference to FIG.
  • the facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
  • the obstacle determining unit 13 calculates the first parameter value and the second parameter value using the feature amount in a state in which the distance measurement sensor 2 faces the obstacle (hereinafter, referred to as “facing state”). Has become. More specifically, when the number of accumulated data indicating the feature amount in the directly facing state exceeds a predetermined number, the obstacle determination unit 13 uses the feature amount indicated by these data to determine the first parameter value and the second parameter value. The parameter value is calculated. The obstacle determining unit 13 determines the type of the obstacle using the calculated first parameter value and the calculated second parameter value. That is, the obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state.
  • the driving support control unit 15a controls the vehicle according to the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle). This is to execute control for avoiding a collision between the vehicle 1 and an obstacle.
  • the obstacle determination unit 13 determines that the obstacle is a traveling obstacle or a road obstacle. Then, the driving support control unit 15a executes control to stop the vehicle 1 by operating the brake of the vehicle 1. On the other hand, in this case, when the obstacle determining unit 13 determines that the obstacle is a road surface obstacle, the driving support control unit 15a cancels the execution of the control.
  • the driving support control unit 15a may vary the stop position of the vehicle 1 depending on whether the obstacle in front of the vehicle 1 is a traveling obstacle or a road obstacle. More specifically, the driving support control unit 15a stops the vehicle 1 at a position on the near side when the obstacle is a traveling obstacle compared to when the obstacle is a road obstacle. It may be. That is, when the obstacle is a road obstacle, the driving support control unit 15a positions the front bumper of the vehicle 1 above the obstacle and causes the front tire of the vehicle 1 to substantially contact the obstacle. The vehicle 1 may be stopped at the position.
  • driving support control the control in accordance with the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle) is referred to as “driving support control”.
  • the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the facing determination unit 14 constitute a main part of the obstacle detection device 100a.
  • the obstacle detection device 100a and the driving support control unit 15a constitute a main part of the driving support device 200a.
  • each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, the facing determination unit 14, and the driving support control unit 15a is realized by the processor 31 and the memory 32. Or may be realized by the processing circuit 33.
  • step ST11 the obstacle detection unit 11 determines whether the vehicle 1 is moving forward using a signal indicating the traveling speed of the vehicle 1, a signal indicating the shift position of the vehicle 1, and the like. These signals are appropriately obtained from a computer network in the vehicle 1.
  • the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit the search wave at least once in step ST12, so that the obstacle detection unit 11 is in front of the vehicle 1. Detect obstacles.
  • step ST12 one or more groups corresponding to one or more obstacles in principle one-to-one are set.
  • Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • step ST ⁇ b> 13 the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the reception signal corresponding to the plurality of reflected waves.
  • the feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information.
  • the feature amount extraction unit 12 outputs data indicating the extracted feature amount to the obstacle determination unit 13.
  • step ST14 the facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
  • step ST15 the obstacle determination unit 13 determines whether the number of accumulated data indicating the feature amount in the directly facing state has exceeded a predetermined number.
  • the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again.
  • the process of the driving support device 200a proceeds to step ST16.
  • step ST16 the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount in the directly facing state.
  • the obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group.
  • step ST17 the driving support control unit 15a determines the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination of the height of the obstacle). According to the result, the control for avoiding the collision between the vehicle 1 and the obstacle is executed. That is, the driving support control unit 15a executes the driving support control.
  • FIG. 12 and FIG. 13 show examples of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1. 12 and as shown in FIG. 13, 2, which are arranged more inside the four distance measuring sensors 2 1 to 2 measuring sensor 2 1 two more are located outside of the four, 2 4 number of the distance measuring sensor 2 2, and 2 3, the installation position with respect to the vertical direction of the vehicle 1 (that is, the height direction) may be different from each other.
  • FIG. 12 shows propagation paths PP 1 to PP of direct waves transmitted and received by the four distance measurement sensors 2 1 to 24 when the obstacle O is a traveling obstacle (more specifically, a wall). 4, an example of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to the obstacle O are shown.
  • FIG. 13 shows transmission / reception by the four distance measuring sensors 2 1 to 24 when the obstacle O is a road obstacle (more specifically, a curb) or a road surface obstacle (more specifically, a step).
  • 3 shows examples of direct wave propagation paths PP 1 to PP 4 , examples of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to an obstacle O.
  • These distances D 1 and D 4 correspond to the distance values calculated by the distance value calculation unit 23 or the coordinate values (more specifically, the X coordinate values) calculated by the reflection point position calculation unit 24.
  • the facing-facing determining unit 14 calculates the facing angle ⁇ of the obstacle O with respect to the distance measuring sensor 2 by the following equation (1).
  • FIG. 14 shows an example of the sensor pitch SP, the distances D 1 and D 4, and the directly-facing angle ⁇ .
  • the facing determining unit 14 determines that the distance measurement sensor 2 faces the obstacle O.
  • the facing angle ⁇ is larger than the predetermined angle ⁇ th, the facing determining unit 14 determines that the distance measurement sensor 2 is not directly facing the obstacle O.
  • the calculation of the confronting angle theta it is preferred to use a distance measuring sensor 2 1, 2 4, which is spaced apart from one another via the other of the distance measuring sensor 2 2, 2 3.
  • a distance measuring sensor 2 1, 2 4 which is spaced apart from one another via the other of the distance measuring sensor 2 2, 2 3.
  • the facing determination unit 14 may calculate the average value of the facing angles ⁇ in a predetermined section. When the calculated average value is equal to or smaller than the predetermined angle ⁇ th, the facing determination unit 14 may determine that the distance measurement sensor 2 faces the obstacle O. Thus, the robustness of the discrimination by the facing discrimination unit 14 can be improved.
  • the predetermined section may be a time section or a distance section. That is, this average value may be an average value of the facing angle ⁇ calculated while the vehicle 1 moves for a predetermined time, or the average value of the facing angle ⁇ calculated while the vehicle 1 moves for a predetermined distance. The average value may be used.
  • FIG. 15A shows an example of the traveling route TR when the vehicle 1 approaches the obstacle O.
  • FIG. 15B shows an example of a temporal change of the facing angle ⁇ at this time.
  • FIG. 15C shows an example of data indicating the feature amount at this time. That is, each circle in FIG. 15C corresponds to data indicating a feature amount.
  • the facing angle ⁇ gradually decreases as shown in FIG. 15B.
  • the facing angle ⁇ becomes equal to or smaller than the predetermined angle ⁇ th, and at time t3, the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number.
  • the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section ⁇ t2 from time t2 to t3.
  • the obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state, and also determines whether the distance measuring sensor 2 is not directly facing the obstacle O (hereinafter referred to as “non-facing”).
  • the type of the obstacle may be determined using the feature amount in “state”). That is, the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section ⁇ t2 between the times t2 and t3, and also calculates the feature in the time section ⁇ t1 between the times t1 and t2.
  • the first parameter value and the second parameter value may be calculated using the amounts.
  • the obstacle determination unit 13 may notify the driving support control unit 15a that the reliability of the determination result is low. good.
  • the driving support control unit 15a may vary the content of the driving support control according to the degree of reliability notified by the obstacle determination unit 13.
  • the obstacle detection device 100a may not include the facing determination unit 14.
  • the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in a predetermined section (hereinafter, referred to as a “detection section”) ⁇ . More specifically, when data indicating the feature amount in the detection section ⁇ is accumulated, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount indicated by the data. .
  • FIG. 17 shows a flowchart in this case.
  • the obstacle determination unit 13 determines whether or not data indicating the feature amount in the detection section ⁇ has been accumulated.
  • the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again.
  • the process of the driving support device 200a proceeds to step ST16.
  • the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
  • step ST18 A specific example of the determination method in step ST18 is as follows.
  • the obstacle determining unit 13 acquires from the obstacle detecting unit 11 information indicating the distance value calculated by the distance value calculating unit 23 or information indicating the coordinate value calculated by the reflection point position calculating unit 24.
  • the obstacle determining unit 13 calculates the amount of change in the distance between the vehicle 1 and the obstacle using the acquired information.
  • the obstacle determining unit 13 determines whether or not the vehicle 1 has traveled in the detection section ⁇ based on the calculated change amount, so that the data indicating the feature amount in the detection section ⁇ has been accumulated. It is determined whether or not.
  • the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
  • the obstacle determining unit 13 acquires information indicating the own vehicle position calculated by the own vehicle position calculating unit 26 from the obstacle detecting unit 11.
  • the obstacle determining unit 13 calculates the moving amount of the vehicle 1 using the obtained information.
  • the obstacle determination unit 13 determines whether or not the vehicle 1 has traveled in the detection section ⁇ based on the calculated movement amount, so that data indicating the feature amount in the detection section ⁇ has been accumulated. It is determined whether or not.
  • the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
  • the obstacle determining unit 13 calculates the accumulation time of the data indicating the feature amount.
  • the threshold value corresponding to the predicted value of the accumulation time of the data indicating the feature amount in the detection section ⁇ is stored in the obstacle determining unit 13 in advance.
  • the obstacle determination unit 13 compares the calculated accumulation time with the previously stored threshold to determine whether or not the data indicating the feature amount in the detection section ⁇ has been accumulated.
  • the obstacle determining unit 13 calculates the number of stored data indicating the feature amount.
  • the threshold value corresponding to the predicted value of the number of accumulated data indicating the feature amount in the detection section ⁇ is stored in the obstacle determining unit 13 in advance.
  • the obstacle determination unit 13 determines whether or not the data indicating the feature amount in the detection section ⁇ has been stored by comparing the calculated storage number with the threshold value stored in advance.
  • the obstacle determining unit 13 determines whether or not the data indicating the feature amount in the detection section ⁇ has been accumulated by each of two or more of the above four methods. .
  • the obstacle determining unit 13 calculates the logical product of the determination results obtained by these methods. That is, the obstacle determination unit 13 determines the determination result when the determination result indicating that the data indicating the feature amount in the detection section ⁇ has been accumulated by all of these methods.
  • the detection section ⁇ may be updated at any time in accordance with the movement of the vehicle 1.
  • the obstacle determination unit 13 may determine the type of the obstacle using the data indicating the feature amount in the latest detection section ⁇ in which the vehicle 1 has traveled.
  • the obstacle determination unit 13 determines the type of the obstacle using the feature amount indicated by the data, and then determines the type of the obstacle.
  • the type of the obstacle is determined using the feature amount indicated by the data, and finally, the data indicating the feature amount in the n-th detection section ⁇ n is obtained.
  • the type of the obstacle may be determined using the feature amount indicated by the data.
  • the detection sections ⁇ 1 to ⁇ n may gradually increase as the vehicle 1 moves forward.
  • each of the detection sections ⁇ 1 to ⁇ n may have a certain size.
  • the obstacle determination unit 13 calculates a first parameter value and a second parameter value using a feature amount in a predetermined detection section ⁇ . It may be something to do. That is, when the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number and the data indicating the feature amount in the detection section ⁇ has been accumulated, the obstacle determination unit 13 May be used to calculate the first parameter value and the second parameter value using the characteristic amount indicated by.
  • FIG. 19 shows a flowchart in this case. If the number of accumulated data indicating the feature amount in the facing state exceeds a predetermined number (“YES” in step ST15), in step ST18, the obstacle determination unit 13 determines that the data indicating the feature amount in the detection section ⁇ It is determined whether or not the data has been stored. When the data indicating the feature amount in the detection section ⁇ has not been accumulated (“NO” in step ST18), the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again. On the other hand, when the data indicating the feature amount in the detection section ⁇ has been accumulated (“YES” in step ST18), the process of the driving support device 200a proceeds to step ST16. In step ST16, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
  • FIG. 20 and FIG. 21 show other examples of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1.
  • the installation position may be those equivalent to each other with respect to the vertical direction of the vehicle 1 (i.e. a height direction).
  • FIG. 20 is transmitting, the obstacle O is traveling obstacle when it is (more specifically on the wall), the distance measurement sensor 2 1 propagation of the direct wave to be transmitted and received by the path PP 11, the distance measuring sensor 2 1 has been measuring sensor 2 of the indirect waves received by two propagation paths PP 21, the propagation path of the indirect waves received by the distance measurement sensor 2 3 is transmitted by the measuring sensor 2 1 PP 31 and distance measuring sensor 2 1 shows an example of a propagation path PP 41 of the indirect waves received by the distance measurement sensor 2 4 is transmitted by.
  • FIG. 20 shows an example of reflection points RP 11 , RP 21 , RP 31 , RP 41 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
  • FIG. 21 (more specifically, a curb) obstacle O is road obstacle or road obstacle when it is (more specifically, the step), the direct wave transmitted and received by the distance measurement sensor 2 1 propagation path PP 11, the distance measurement sensor 2 1 indirect wave propagation paths PP 21 which is received by the distance measurement sensor 2 2 is transmitted by the propagation path PP 33 and ranging of the direct wave transmitted and received by the distance measurement sensor 2 3 sensor 2 3 is transmitted by shows an example of a propagation path PP 43 of the indirect waves received by the distance measuring sensor 2 4.
  • FIG. 21 shows an example of reflection points RP 11 , RP 21 , RP 33 , RP 43 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
  • the distance value calculation unit 23 calculates the distance value and the reflection point position calculation unit 24 calculates the coordinate value using the indirect wave instead of or in addition to the direct wave. It may be something.
  • the indirect wave in addition to the direct wave, the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used.
  • the number of reflection points included in each group can be increased.
  • the driving support control by the driving support control unit 15a may be a control for avoiding a collision between the vehicle 1 and an obstacle, and is not limited to a control for operating the brake of the vehicle 1.
  • the driving support control by the driving support control unit 15a determines whether there is a possibility that the vehicle 1 will collide with an obstacle, and if it is determined that there is a possibility, the driver 1 of the vehicle 1 is notified of the possibility.
  • the control may be a warning.
  • the driver of the vehicle 1 may stop the vehicle 1 by operating the brake pedal of the vehicle 1 in response to the warning.
  • the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1 are not limited to the above example.
  • the four distance measuring sensors 2 1 to 2 more two distance measuring sensors are disposed outside 2 1, 2 4 two distance measuring sensors that are disposed more to the inside and 2 2 of the 4 , and 2 3, the installation position with respect to the longitudinal direction (i.e. the depth direction) of the vehicle 1 may be different from each other.
  • Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely forward of the vehicle 1.
  • the distance measurement sensor 2 1 may be those which are directed to the left oblique front of the vehicle 1
  • the distance measuring sensor 2 4 may be one which is directed to the right oblique front of the vehicle 1.
  • the distance measuring sensor 2 may be provided at a rear end portion (more specifically, a rear bumper portion) of the vehicle 1 and may be directed to the rear of the vehicle 1.
  • the obstacle detection unit 11 detects an obstacle behind the vehicle 1 by causing the distance measurement sensor 2 to transmit the search wave at least once when the vehicle 1 is moving backward. Is also good.
  • Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely rearward of the vehicle 1.
  • the number of the distance measuring sensors 2 may be two or more, and is not limited to four. That is, the distance measuring sensor 2 may be one that is constituted by four instead of distance measuring sensor 2 1 ⁇ 2 4 N pieces of distance measuring sensors 2 1 ⁇ 2 N.
  • the obstacle detection device 100a can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the obstacle detection device 100.
  • the driving support device 200a includes the obstacle detection device 100a and the driving support control unit that performs the driving support control according to the result of the determination of the height of the obstacle by the obstacle determination unit 13. 15a.
  • the obstacle detection device 100a By using the obstacle detection device 100a, the accuracy of the driving support control can be improved.
  • ⁇ ⁇ Driving support control is control related to collision avoidance.
  • the obstacle detection device 100a it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, 5 meters or more).
  • the necessity of executing the control for operating the brake of the vehicle 1 can be determined at an early stage, so that the time for braking can be secured and the occurrence of sudden braking can be suppressed.
  • an obstacle in front of or behind the vehicle 1 is a road surface obstacle, occurrence of a false alarm can be suppressed.
  • the design of the vehicle 1 can be improved, and the degree of freedom in design can be improved. Can be.
  • the obstacle detection device 100a includes a facing determination unit 14 that determines whether or not the distance measuring sensor 2 is directly facing an obstacle.
  • the type of the obstacle is determined using the feature amount in the facing state. Thereby, the accuracy of determining the type of the obstacle can be further improved.
  • the obstacle determining unit 13 calculates the second parameter value using the feature amount in the predetermined detection section ⁇ . Thereby, the reliability of the determination using the second parameter value can be improved.
  • FIG. 22 is a block diagram illustrating a main part of the driving support device according to the third embodiment. Referring to FIG. 22, a driving support device 200b according to the third embodiment will be described. In FIG. 22, the same blocks as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the distance measuring sensor 2 is constituted by a single distance measuring sensor 2 1.
  • One measuring sensor 2 1 is provided on the left side surface portion of the vehicle 1, and is directed to the left side of the vehicle 1.
  • the obstacle detection unit 11 When the vehicle 1 is traveling at a speed equal to or less than a predetermined speed (for example, 30 kilometers per hour), the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit a search wave a plurality of times at predetermined time intervals. It detects an obstacle on the left side of the vehicle 1.
  • a predetermined speed for example, 30 kilometers per hour
  • the internal configuration of the obstacle detection unit 11 is the same as that described in Embodiment 1 with reference to FIG.
  • the distance measuring sensor 2 may receive the reflected wave a plurality of times.
  • the reflection point based on the distance value corresponding to the first reflected wave in this case is referred to as a “recent reflection point”.
  • the reflection point based on the distance value corresponding to the second and subsequent reflected waves is referred to as a “non-most recently reflected point”.
  • the distance value calculator 23 calculates the distance value corresponding to the first reflected wave, but does not calculate the distance value corresponding to the second and subsequent reflected waves. That is, the reflection point position calculation unit 24 calculates the position of the most recent reflection point, but does not calculate the position of the non-most recently reflection point.
  • the grouping unit 25 includes the most recently reflected point as a grouping target while excluding the non-mostly reflected point from the grouping targets. Thereby, noise included in the detection result by the obstacle detection unit 11 can be reduced.
  • the driving support control unit 15b performs a so-called “obstruction” according to the result of the determination of the position of the obstacle by the obstacle detection unit 11 and the result of the classification of the obstacle by the obstacle determination unit 13 (that is, the result of the determination of the height of the obstacle).
  • the control for realizing "automatic parking” is executed.
  • the driving support control unit 15b determines whether or not the vehicle 1 can be parked in a space between two adjacent traveling obstacles (more specifically, a parked vehicle). When it is determined that the vehicle 1 can be parked in the space, the driving support control unit 15b controls the accelerator, brake, steering, and the like of the vehicle 1 to guide the vehicle 1 to the space. At this time, the driving support control unit 15b sets the parking position of the vehicle 1 and the guidance route of the vehicle 1 according to the presence and type of the obstacle located on the back side of the two traveling obstacles. . Specific examples of the parking position and the guidance route will be described later.
  • the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 constitute a main part of the obstacle detection device 100b.
  • the obstacle detection device 100b and the driving support control unit 15b constitute a main part of the driving support device 200b.
  • each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the driving support control unit 15b may be realized by the processor 31 and the memory 32, or the processing circuit 33.
  • step ST21 the obstacle detection unit 11 determines whether the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed, using a signal indicating the traveling speed of the vehicle 1, and the like. These signals are appropriately obtained from a computer network in the vehicle 1.
  • step ST22 the obstacle detection unit 11 transmits a plurality of search waves to the distance measurement sensor 2 at predetermined time intervals. By transmitting twice, an obstacle on the left side of the vehicle 1 is detected.
  • step ST22 one or more groups corresponding to one or more obstacles in principle one-to-one are set.
  • Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • step ST ⁇ b> 23 the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the reception signal corresponding to the plurality of reflected waves.
  • the feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information.
  • step ST ⁇ b> 24 the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount extracted by the feature amount extracting unit 12.
  • the obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group.
  • step ST25 the driving support control unit 15b determines the position of the obstacle by the obstacle detection unit 11 and determines the type of the obstacle by the obstacle determination unit 13 (that is, determines the height of the obstacle). According to the result, control for realizing automatic parking of the vehicle 1 is executed. That is, the driving support control unit 15b executes the driving support control.
  • FIG. 24 shows an example of a detection result by the obstacle detection unit 11.
  • the group G1 includes seven reflection points RP1
  • the group G2 includes seven reflection points RP2
  • the group G3 includes six reflection points RP3.
  • TR indicates a traveling route of the vehicle 1 at a speed equal to or lower than a predetermined speed.
  • Each of the two obstacles O1 and O2 is a parked vehicle in parallel parking. Therefore, the obstacle determining unit 13 determines that each of the two obstacles O1 and O2 is a running obstacle.
  • the driving support control unit 15b determines whether or not the vehicle 1 can be parked in the space S by comparing the size of the space S between the two obstacles O1 and O2 with the size of the vehicle 1. In the example shown in FIG. 24, since the size of the space S is larger than the size of the vehicle 1, it is determined that the vehicle 1 can be parked in the space S.
  • the obstacle O3 located on the back side of the two obstacles O1 and O2 is a wall, a curb or a step.
  • the obstacle determination unit 13 determines that the obstacle O3 is a traveling obstacle.
  • the obstacle determination unit 13 determines that the obstacle O3 is a road obstacle.
  • the obstacle determination unit 13 determines that the obstacle O3 is a road surface obstacle.
  • FIG. 25 illustrates an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 is determined to be a traveling obstacle.
  • the driving support control unit 15b guides the vehicle 1 through a route that does not cause the vehicle 1 to collide with the obstacle O3.
  • the driving support control unit 15b parks the vehicle 1 at a position where a space between the vehicle 1 and the obstacle O3 is secured. This space is a space for passengers to get on and off.
  • FIG. 26 illustrates an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 is determined to be a road obstacle or a road surface obstacle.
  • the driving support control unit 15b guides the vehicle 1 through a route such that the rear bumper of the vehicle 1 passes above the obstacle O3.
  • the driving support control unit 15b parks the vehicle 1 at a position where the left side of the vehicle 1 is along the obstacle O3, more specifically, at a position where the left side of the vehicle 1 is along the reflection point RP3.
  • FIG. 27 shows an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 does not exist.
  • the driving support control unit 15b determines that the position of the left side of the vehicle 1 in the depth direction is aligned with the position of the left side of the parked vehicle, that is, the position of the right side of the vehicle 1 in the depth direction.
  • the vehicle 1 is parked so as to be aligned with the right side of the parked vehicle.
  • the reflection point position calculation unit 24 calculates the position of the nearest reflection point, but does not calculate the position of the non-closest reflection point.
  • the grouping unit 25 includes the most recently reflected point as a grouping target while excluding the non-mostly reflected point from the grouping target.
  • the reflection point position calculation unit 24 calculates not only the position of the most recent reflection point but also the position of the non-most recently reflection point.
  • the grouping unit 25 not only includes the most recently reflected point in the grouping target, but also includes the non-most recently reflected point in the grouping target.
  • FIG. 28 there is a wall or a curb (obstacle O3) on the back side of a parked vehicle (obstacle O1, O2) in parallel parking, and a parked vehicle (obstacle O1, O2) in parallel parking. It is assumed that there is a step (obstacle O4) in front of (). That is, it is assumed that there is a step (obstacle O4) between the vehicle 1 and the parked vehicle (obstacles O1, O2).
  • the reflection point position calculation unit 24 calculates only the position of the latest reflection point, as shown in FIG. 29A, only the position of the reflection point RP4 corresponding to the obstacle O4 is calculated and corresponds to the obstacle O4. Only the group G4 is set.
  • the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-most recent reflection point.
  • the calculated groups G1 to G4 corresponding to the obstacles O1 to O4 are set. Further, each of the two obstacles O1 and O2 is determined to be a traveling obstacle, the rear obstacle O3 is determined to be a traveling obstacle or a road obstacle, and the front obstacle O4 is determined. Is determined to be a road surface obstacle. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1. When guiding the vehicle 1, the accelerator, brake, steering, and the like of the vehicle 1 can be controlled so that the vehicle 1 gets over the obstacle O4.
  • FIG. 30 there is a curb (obstacle O3) behind the parked vehicle (obstacles O1 and O2) in parallel parking, and the parked vehicle (obstacles O1 and O2) in parallel parking.
  • a step obstacle O4 in front of (). That is, it is assumed that there is a parking space S having a so-called “two-step curb structure”.
  • the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-closest reflection point, and the obstacles O1 to O4 are calculated.
  • Groups G1 to G4 corresponding to O4 are set.
  • each of the two obstacles O1 and O2 is determined to be a traveling obstacle
  • the rear obstacle O3 is determined to be a road obstacle
  • the front obstacle O4 is determined to be a road obstacle. Is determined. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1.
  • the accelerator, brake, steering, and the like of the vehicle 1 can be controlled so that the vehicle 1 gets over the obstacle O4.
  • the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-closest reflection point, and the obstacles O1 to O4 are calculated.
  • Groups G1 to G4 corresponding to O4 are set.
  • each of the two obstacles O1 and O2 is determined to be a traveling obstacle
  • the obstacle O3 on the far side is determined to be a road obstacle
  • the distance between the two obstacles O1 and O2 is determined.
  • the obstacle O3 is determined to be a road obstacle. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1. Further, the vehicle 1 can be parked at a position where the rear bumper portion of the vehicle 1 is located above the obstacle O4 and the rear bumper portion of the vehicle 1 does not collide with the obstacle O3.
  • each of the two groups for example, groups G3 and G4 in FIG. 31
  • these groups correspond to different obstacles.
  • the obstacle detection unit 11 may execute the identification using the result of the determination of the height of the obstacle by the obstacle determination unit 13.
  • the driving support control by the driving support control unit 15b may be any control related to the parking support of the vehicle 1, and is not limited to the control for realizing the automatic parking of the vehicle 1.
  • the driving support control by the driving support control unit 15b may be control for setting a parking position of the vehicle 1 and notifying the driver of the vehicle 1 of the set parking position.
  • the driver of the vehicle 1 may park the vehicle 1 by so-called “manual parking” at the notified parking position.
  • the distance measuring sensor 2 may be provided on the right side of the vehicle 1 and directed to the right of the vehicle 1.
  • the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit the search wave a plurality of times at predetermined time intervals, thereby enabling the vehicle 1 It may detect an obstacle on the right side.
  • the number of the distance measuring sensors 2 may be one or more, and is not limited to one. That is, the distance measuring sensor 2 may be one that is constituted by one instead of the distance measuring sensor 2 1 N pieces of distance measuring sensors 2 1 ⁇ 2 N.
  • the obstacle detection device 100b can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the obstacle detection device 100.
  • the driving assistance device 200b includes the obstacle detection device 100b and the driving assistance control unit that performs the driving assistance control according to the result of the determination of the height of the obstacle by the obstacle determination unit 13. 15b.
  • the obstacle detection device 100b By using the obstacle detection device 100b, the accuracy of the driving support control can be improved.
  • ⁇ ⁇ Driving support control is control related to parking support.
  • the parking position of the vehicle 1 and the guidance route of the vehicle 1 can be appropriately set according to the position and height of each of the plurality of obstacles.
  • the obstacle detection device 100b includes an obstacle detection unit 11 that determines a position of a plurality of obstacles by grouping a plurality of reflection points corresponding to a plurality of reflected waves.
  • the obstacle determination unit 13 includes a reflection point and a non-closest reflection point, and determines the height of each of the plurality of obstacles. This makes it possible to identify, for a plurality of groups arranged close to each other, whether these groups correspond to different obstacles or to the same obstacle. .
  • FIG. 32 is a block diagram showing a main part of the driving support device according to Embodiment 4.
  • a driving support device 200c according to the fourth embodiment will be described.
  • the same reference numerals are given to the same blocks as the blocks shown in FIG. 1, and the description will be omitted.
  • the vehicle 1 has a camera 3 for imaging outside the vehicle.
  • the installation direction of the camera 3 in the vehicle 1 is equivalent to the installation direction of the distance measurement sensor 2 in the vehicle 1. Therefore, when an obstacle is detected by the obstacle detection unit 11, the image captured by the camera 3 includes the detected obstacle.
  • the camera 3 is configured by, for example, a visible light camera or an infrared camera.
  • the driving support control unit 15c acquires image data indicating an image captured by the camera 3 from the camera 3.
  • the driving support control unit 15c executes control for displaying an image indicated by the acquired image data, that is, an image captured by the camera 3 on the display device 4.
  • the display device 4 is provided on, for example, a dashboard of the vehicle 1.
  • the display device 4 is configured by, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display.
  • the driving support control unit 15c determines the area corresponding to the obstacle in the captured image based on the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the height of the obstacle by the obstacle determination unit 13. Is superimposed with a marker image. In addition, the driving support control unit 15c sets the mode (for example, color) of each marker image according to the result of the obstacle type determination performed by the obstacle determination unit 13.
  • FIG. 33 illustrates an example of a state where the marker images MI1 and MI2 are superimposed and displayed on the captured image CI.
  • the captured image CI includes a wall (obstacle O1) and a curb (obstacle O2).
  • the marker image MI1 is superimposed and displayed on the area corresponding to the obstacle O1 in the captured image CI
  • the marker image MI2 is superimposed and displayed on the area corresponding to the obstacle O2 in the captured image CI.
  • the marker images MI1 and MI2 have different colors.
  • the hatching of the marker images MI1 and MI2 corresponds to the colors of the marker images MI1 and MI2.
  • the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle discrimination unit 13 constitute a main part of the obstacle detection device 100.
  • the main part of the driving support device 200c is configured by the obstacle detection device 100 and the driving support control unit 15c.
  • each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the driving support control unit 15c may be realized by the processor 31 and the memory 32, or the processing circuit 33.
  • step ST4 the driving support control unit 15c executes control to display the image captured by the camera 3 on the display device 4.
  • the driving support control unit 15c superimposes and displays the marker image on a region corresponding to the obstacle in the captured image. That is, the driving support control unit 15c executes the driving support control.
  • the driving support control by the driving support control unit 15c is based on the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the height of the obstacle by the obstacle determination unit 13 (that is, the determination result of the type of the obstacle). Any control may be used as long as the information (hereinafter referred to as “result information”) is presented to the occupant of the vehicle 1.
  • the presentation of the result information may be based on the image display as described above, or may be based on the following audio output.
  • the vehicle 1 is provided with the audio output device 5.
  • the audio output device 5 is configured by, for example, a speaker.
  • the driving support control unit 15c controls the audio output device 5 to output an announcement sound indicating the position of the obstacle determined by the obstacle detection unit 11 and the type of the obstacle determined by the obstacle determination unit 13, for example. Execute. Alternatively, for example, when the obstacle detection unit 11 detects an obstacle, the driving support control unit 15c executes control to cause the audio output device 5 to output a beep sound. At this time, the driving support control unit 15c makes the height of the beep sound correspond to the height of the obstacle determined by the obstacle determination unit 13.
  • the driving support device 200c may have the obstacle detection device 100a instead of the obstacle detection device 100.
  • the driving support control unit 15c may execute control related to collision avoidance (that is, control similar to the driving support control by the driving support control unit 15a). .
  • the driving support device 200c may include the obstacle detection device 100b instead of the obstacle detection device 100.
  • the driving support control unit 15c may execute control related to parking support (that is, control similar to the driving support control by the driving support control unit 15b). .
  • the driving support device 200c executes the driving support control according to the result of the determination of the height of the obstacle by the obstacle detection devices 100, 100a, and 100b and the obstacle determination unit 13. And a driving support control unit 15c.
  • the obstacle detection devices 100, 100a, and 100b the accuracy of the driving support control can be improved.
  • ⁇ ⁇ Driving support control is control related to information display by image display or sound output.
  • highly accurate result information can be presented to the occupants of the vehicle 1.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
  • the obstacle detection device of the present invention can be applied to, for example, control related to collision avoidance or parking assistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

This obstacle detection device (100) comprises: a feature value extraction unit (12) for extracting feature values for a plurality of reflected waves that have been reflected by an obstacle and received by a distance measurement sensor (2) provided in a vehicle (1); and an obstacle identification unit (13) that determines that the obstacle is higher when the dispersion amount of the feature values is larger than when the dispersion amount of the feature values is smaller and at least identifies whether the obstacle is a traveling obstacle on the basis of the results of clustering first parameter values representing feature value sizes and second parameter values representing dispersion amount sizes.

Description

障害物検知装置及び運転支援装置Obstacle detection device and driving support device
 本発明は、障害物検知装置及び運転支援装置に関する。 The present invention relates to an obstacle detection device and a driving support device.
 従来、車両に設けられているTOF(Time of Flight)方式の測距センサを用いて、車両の周囲にある障害物の高さを判断する技術が開発されている(例えば、特許文献1及び特許文献2参照。)。 2. Description of the Related Art Conventionally, a technology of determining the height of an obstacle around a vehicle using a TOF (Time of Flight) type distance measuring sensor provided in the vehicle has been developed (for example, Patent Document 1 and Patent Document 1). Reference 2).
特開2010-197351号公報JP 2010-197351 A 特開2016-80650号公報JP 2016-80650 A
 特許文献1記載の従来技術は、障害物の高さが低いときは車両が障害物に接近することにより障害物が測距センサの検知エリアから外れること(すなわち反射波のピーク値が低下すること)を利用して障害物の高さを判断するものである。このため、特許文献1記載の従来技術は、遠方に位置する障害物の高さを判断することができないという問題があった。また、特許文献1記載の従来技術は、車両と障害物間の距離が一定である場合、障害物の高さを判断することができないという問題があった。 According to the related art described in Patent Document 1, when the height of the obstacle is low, the vehicle approaches the obstacle and the obstacle moves out of the detection area of the distance measurement sensor (that is, the peak value of the reflected wave decreases). ) Is used to determine the height of the obstacle. For this reason, the prior art described in Patent Literature 1 has a problem in that it is not possible to determine the height of a distant obstacle. Further, the conventional technique described in Patent Document 1 has a problem that when the distance between the vehicle and the obstacle is constant, the height of the obstacle cannot be determined.
 特許文献2記載の従来技術は、反射波の波高値を基準値と比較することにより、所定の高さに対する障害物の相対的な高さを判断するものである。これは、障害物の高さに応じて波高値が異なることを利用したものである。しかしながら、特許文献1に記載されているように、障害物が遠方に位置している場合、障害物の高さに応じた波高値の差は小さくなる。このため、特許文献2記載の従来技術は、遠方に位置する障害物の高さの判断精度が低いという問題があった。また、特許文献2記載の従来技術は、障害物が所定の高さと同程度の高さを有するものである場合、所定の高さに対する障害物の高さの高低の判断誤りが発生しやすいという問題があった。 The related art described in Patent Document 2 determines the relative height of an obstacle with respect to a predetermined height by comparing the peak value of a reflected wave with a reference value. This utilizes the fact that the peak value differs depending on the height of the obstacle. However, as described in Patent Literature 1, when an obstacle is located far away, the difference in peak value according to the height of the obstacle becomes small. For this reason, the prior art described in Patent Literature 2 has a problem in that the accuracy of determining the height of a distant obstacle is low. Further, in the conventional technology described in Patent Document 2, when an obstacle has a height approximately equal to a predetermined height, an error in determining the height of the obstacle relative to the predetermined height is likely to occur. There was a problem.
 本発明は、上記のような課題を解決するためになされたものであり、測距センサを用いて障害物の高さを精度良く判断することを目的とする。 The present invention has been made to solve the above-described problem, and has as its object to accurately determine the height of an obstacle using a distance measurement sensor.
 本発明の障害物検知装置は、車両に設けられている測距センサが障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部と、特徴量の分散量が大きいときは分散量が小さいときに比して障害物の高さが高いと判断する障害物判別部であって、特徴量の大きさを示す第1パラメータ値及び分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも障害物が走行障害物であるか否かを判別する障害物判別部と、を備えるものである。 An obstacle detection device according to an aspect of the invention includes a feature amount extraction unit that extracts a feature amount related to a plurality of reflected waves when a distance measurement sensor provided in the vehicle receives a plurality of reflected waves due to an obstacle; An obstacle determining unit that determines that the height of the obstacle is higher when the amount of variance is larger than when the amount of variance is smaller, the first parameter value indicating the size of the feature amount, and the size of the amount of variance And an obstacle determining unit that determines whether at least the obstacle is a traveling obstacle based on the result of the clustering of the second parameter value indicating the obstacle.
 本発明によれば、上記のように構成したので、測距センサを用いて障害物の高さを精度良く判断することができる。 According to the present invention, since the configuration is as described above, it is possible to accurately determine the height of the obstacle using the distance measuring sensor.
実施の形態1に係る障害物検知装置の要部を示すブロック図である。FIG. 2 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment. 実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。FIG. 3 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment. 図3Aは、実施の形態1に係る障害物検知装置のハードウェア構成を示す説明図である。図3Bは、実施の形態1に係る障害物検知装置の他のハードウェア構成を示す説明図である。FIG. 3A is an explanatory diagram illustrating a hardware configuration of the obstacle detection device according to the first embodiment. FIG. 3B is an explanatory diagram illustrating another hardware configuration of the obstacle detection device according to the first embodiment. 実施の形態1に係る障害物検知装置の動作を示すフローチャートである。5 is a flowchart illustrating an operation of the obstacle detection device according to the first embodiment. 図5Aは、走行障害物による反射波の伝搬経路の例を示す説明図である。図5Bは、送信信号の波形の例を示す説明図である。図5Cは、走行障害物による反射波に対応する受信信号の波形の例を示す説明図である。図5Dは、走行障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。FIG. 5A is an explanatory diagram illustrating an example of a propagation path of a reflected wave by a traveling obstacle. FIG. 5B is an explanatory diagram illustrating an example of a waveform of a transmission signal. FIG. 5C is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave due to a traveling obstacle. FIG. 5D is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave from the traveling obstacle. 図6Aは、路上障害物又は路面障害物による反射波の伝搬経路の例を示す説明図である。図6Bは、送信信号の波形の例を示す説明図である。図6Cは、路上障害物による反射波に対応する受信信号の波形の例を示す説明図である。図6Dは、路上障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。図6Eは、路面障害物による反射波に対応する受信信号の波形の例を示す説明図である。図6Fは、路面障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。FIG. 6A is an explanatory diagram illustrating an example of a propagation path of a reflected wave due to a road obstacle or a road surface obstacle. FIG. 6B is an explanatory diagram illustrating an example of a waveform of a transmission signal. FIG. 6C is an explanatory diagram illustrating an example of a waveform of a received signal corresponding to a reflected wave from a road obstacle. FIG. 6D is an explanatory diagram showing another example of the waveform of the received signal corresponding to the reflected wave from the road obstacle. FIG. 6E is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave from a road surface obstacle. FIG. 6F is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave due to the road surface obstacle. 図7Aは、実施の形態1に係る障害物検知装置の製造前における第1パラメータ値及び第2パラメータ値の実測値の例を示す説明図である。図7Bは、実施の形態1に係る障害物検知装置を有する車両の出荷後に算出された第1パラメータ値及び第2パラメータ値の例を示す説明図である。FIG. 7A is an explanatory diagram illustrating an example of actually measured first parameter values and second parameter values before manufacturing the obstacle detection device according to Embodiment 1. FIG. 7B is an explanatory diagram illustrating an example of the first parameter value and the second parameter value calculated after shipping of the vehicle including the obstacle detection device according to Embodiment 1. 図8Aは、反射波の波高、波幅及び波形面積の例を示す説明図である。図8Bは、反射波の応答時間の例を示す説明図である。FIG. 8A is an explanatory diagram illustrating an example of a wave height, a wave width, and a wave area of a reflected wave. FIG. 8B is an explanatory diagram illustrating an example of a response time of a reflected wave. 図9Aは、実施の形態1に係る障害物検知装置の製造前における第1パラメータ値、第2パラメータ値及び第3パラメータ値の実測値の例を示す説明図である。図9Bは、実施の形態1に係る障害物検知装置を有する車両の出荷後に算出された第1パラメータ値、第2パラメータ値及び第3パラメータ値の例を示す説明図である。FIG. 9A is an explanatory diagram showing an example of actual measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device according to Embodiment 1. FIG. 9B is an explanatory diagram illustrating an example of a first parameter value, a second parameter value, and a third parameter value calculated after shipping of the vehicle having the obstacle detection device according to Embodiment 1. 実施の形態2に係る運転支援装置の要部を示すブロック図である。FIG. 9 is a block diagram showing a main part of a driving support device according to Embodiment 2. 実施の形態2に係る運転支援装置の動作を示すフローチャートである。9 is a flowchart showing the operation of the driving support device according to Embodiment 2. 図12Aは、車両における測距センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図12Bは、車両における測距センサの設置位置の例を示す説明図であって、車両の側方から見た状態を示す説明図である。FIG. 12A is an explanatory diagram showing an example of an installation position of a distance measuring sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle. FIG. 12B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. 図13Aは、車両における測距センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図13Bは、車両における測距センサの設置位置の例を示す説明図であって、車両の側方から見た状態を示す説明図である。FIG. 13A is an explanatory diagram showing an example of an installation position of a distance measurement sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle. FIG. 13B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. 正対角度の例を示す説明図である。It is explanatory drawing which shows the example of a facing angle. 図15Aは、車両が障害物に接近したときの走行経路の例を示す説明図である。図15Bは、このときの正対角度の時間変化の例を示す説明図である。図15Cは、このときの特徴量を示すデータの例を示す説明図である。FIG. 15A is an explanatory diagram illustrating an example of a traveling route when the vehicle approaches an obstacle. FIG. 15B is an explanatory diagram showing an example of a temporal change of the directly facing angle at this time. FIG. 15C is an explanatory diagram illustrating an example of data indicating the feature amount at this time. 実施の形態2に係る他の運転支援装置の要部を示すブロック図である。FIG. 13 is a block diagram illustrating a main part of another driving support device according to Embodiment 2. 実施の形態2に係る他の運転支援装置の動作を示すフローチャートである。9 is a flowchart showing an operation of another driving support device according to Embodiment 2. 図18Aは、検知区間の例を示す説明図である。図18Bは、検知区間の他の例を示す説明図である。FIG. 18A is an explanatory diagram illustrating an example of a detection section. FIG. 18B is an explanatory diagram illustrating another example of the detection section. 実施の形態2に係る運転支援装置の他の動作を示すフローチャートである。9 is a flowchart illustrating another operation of the driving support device according to the second embodiment. 図20Aは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図20Bは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の側方から見た状態を示す説明図である。FIG. 20A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle. FIG. 20B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. 図21Aは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図21Bは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の側方から見た状態を示す説明図である。FIG. 21A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle. FIG. 21B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. 実施の形態3に係る運転支援装置の要部を示すブロック図である。FIG. 9 is a block diagram showing a main part of a driving support device according to Embodiment 3. 実施の形態3に係る運転支援装置の動作を示すフローチャートである。9 is a flowchart showing the operation of the driving support device according to Embodiment 3. 実施の形態3に係る運転支援装置における障害物検知部による検知結果の例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of a detection result by an obstacle detection unit in the driving support device according to Embodiment 3. 駐車位置及び誘導経路の例を示す説明図である。It is explanatory drawing which shows the example of a parking position and a guidance route. 駐車位置及び誘導経路の他の例を示す説明図である。It is explanatory drawing which shows other examples of a parking position and a guidance route. 駐車位置及び誘導経路の他の例を示す説明図である。It is explanatory drawing which shows other examples of a parking position and a guidance route. 駐車車両の奥側に壁又は縁石があり、かつ、駐車車両の手前側に段差がある状態の例を示す説明図である。It is an explanatory view showing an example of a state where there is a wall or a curb on the back side of a parked vehicle and there is a step on the near side of the parked vehicle. 図29Aは、実施の形態3に係る運転支援装置における障害物検知部による検知結果の他の例を示す説明図である。図29Bは、実施の形態3に係る他の運転支援装置における障害物検知部による検知結果の例を示す説明図である。FIG. 29A is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in the driving support device according to Embodiment 3. FIG. 29B is an explanatory diagram illustrating an example of a detection result obtained by the obstacle detection unit in another driving support device according to Embodiment 3. 実施の形態3に係る他の運転支援装置における障害物検知部による検知結果の他の例を示す説明図である。FIG. 14 is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in another driving support device according to Embodiment 3. 実施の形態3に係る他の運転支援装置における障害物検知部による検知結果の他の例を示す説明図である。FIG. 14 is an explanatory diagram illustrating another example of a detection result by the obstacle detection unit in another driving support device according to Embodiment 3. 実施の形態4に係る運転支援装置の要部を示すブロック図である。FIG. 14 is a block diagram showing a main part of a driving support device according to Embodiment 4. 撮像画像にマーカー画像が重畳表示されている状態の例を示す説明図である。FIG. 11 is an explanatory diagram illustrating an example of a state where a marker image is superimposed and displayed on a captured image. 実施の形態4に係る運転支援装置の動作を示すフローチャートである。9 is a flowchart showing the operation of the driving support device according to Embodiment 4. 実施の形態4に係る他の運転支援装置の要部を示すブロック図である。FIG. 13 is a block diagram showing a main part of another driving support device according to Embodiment 4.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る障害物検知装置の要部を示すブロック図である。図2は、実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。図1及び図2を参照して、実施の形態1の障害物検知装置100について説明する。
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment. FIG. 2 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment. With reference to FIGS. 1 and 2, an obstacle detection device 100 according to the first embodiment will be described.
 なお、障害物検知装置100は車両1内のコンピュータネットワーク(例えばCAN(Controller Area Network))に接続されている。障害物検知装置100は、当該コンピュータネットワークから種々の信号を適宜取得可能である。これらの信号は、例えば、車両1の走行速度を示す信号及び車両1のヨーレート又は操舵角を示す信号を含むものである。 The obstacle detection device 100 is connected to a computer network (for example, CAN (Controller Area Network)) in the vehicle 1. The obstacle detection device 100 can appropriately acquire various signals from the computer network. These signals include, for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1.
 車両1は測距センサ2を有している。図1に示す例において、測距センサ2はN個の測距センサ2~2により構成されている(Nは2以上の任意の整数)。N個の測距センサ2~2は、車両1における設置位置が互いに異なるものであり、かつ、車両1における設置方向が互いに同等なものである。N個の測距センサ2~2の各々は、例えば、ソナー、ミリ波レーダ又はレーザレーダにより構成されている。 The vehicle 1 has a distance measuring sensor 2. In the example shown in FIG. 1, the distance measuring sensor 2 includes N distance measuring sensors 2 1 to 2 N (N is an arbitrary integer of 2 or more). The N distance measuring sensors 2 1 to 2 N have different installation positions in the vehicle 1 and have the same installation direction in the vehicle 1. Each of the N distance measuring sensors 2 1 to 2 N is constituted by, for example, a sonar, a millimeter wave radar or a laser radar.
 以下、測距センサ2により送受信される超音波、電波又は光などを「探索波」と総称する。また、車両1外の障害物により探索波が反射された場合、当該反射された探索波を「反射波」という。また、いずれかの測距センサ2が探索波を送信して、この測距センサ2が反射波を受信した場合における当該探索波及び当該反射波を「直接波」という。また、いずれかの測距センサ2が探索波を送信して、他の測距センサ2が反射波を受信した場合における当該探索波及び当該反射波を「間接波」という。 Hereinafter, ultrasonic waves, radio waves, light, and the like transmitted and received by the distance measuring sensor 2 are collectively referred to as “search waves”. When the search wave is reflected by an obstacle outside the vehicle 1, the reflected search wave is referred to as a "reflected wave". Further, when one of the distance measurement sensors 2 transmits a search wave and the distance measurement sensor 2 receives a reflected wave, the search wave and the reflected wave are referred to as “direct waves”. When one of the distance measurement sensors 2 transmits a search wave and the other distance measurement sensor 2 receives a reflected wave, the search wave and the reflected wave are referred to as “indirect waves”.
 また、車両1外の障害物のうち、車両1のバンパー部に接触する程度に高い高さを有する障害物を「走行障害物」という。走行障害物は、例えば、壁又は駐車中の他車両(以下「駐車車両」という。)である。また、車両1外の障害物のうち、車両1のバンパー部に接触しない程度に低い高さを有し、かつ、車両1が乗り越えられない程度に高い高さを有する障害物を「路上障害物」という。路上障害物は、例えば、縁石又は車留めである。また、車両1外の障害物のうち、車両1のバンパー部に接触しない程度に低い高さを有し、かつ、車両1が乗り越えられる程度に低い高さを有する障害物を「路面障害物」という。路面障害物は、例えば、段差である。すなわち、走行障害物は路上障害物よりも高い高さを有するものであり、路上障害物は路面障害物よりも高い高さを有するものである。 の う ち Among obstacles outside the vehicle 1, obstacles having a height high enough to contact the bumper portion of the vehicle 1 are referred to as “running obstacles”. The traveling obstacle is, for example, a wall or another parked vehicle (hereinafter, referred to as “parked vehicle”). In addition, among obstacles outside the vehicle 1, obstacles having a height low enough not to contact the bumper portion of the vehicle 1 and having a height high enough not to be able to get over the vehicle 1 are referred to as “road obstacles”. " The road obstacle is, for example, a curb or a wheelchair. Among obstacles outside the vehicle 1, an obstacle having a height low enough not to contact the bumper portion of the vehicle 1 and having a height low enough to allow the vehicle 1 to get over is referred to as “road obstacle”. That. The road surface obstacle is, for example, a step. That is, the traveling obstacle has a height higher than the road obstacle, and the road obstacle has a height higher than the road obstacle.
 障害物検知部11は、測距センサ2に探索波を送信させることにより、車両1の周囲にある障害物を検知するものである。より具体的には、障害物検知部11は、車両1と障害物間の距離を計測することにより、車両1に対する障害物の位置を判定するものである。障害物検知部11は、送信信号出力部21、受信信号取得部22、距離値算出部23、反射点位置算出部24、グループ化部25、自車位置算出部26及びセンサ位置算出部27により構成されている。 The obstacle detection unit 11 detects an obstacle around the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle. The obstacle detection unit 11 includes a transmission signal output unit 21, a reception signal acquisition unit 22, a distance value calculation unit 23, a reflection point position calculation unit 24, a grouping unit 25, a vehicle position calculation unit 26, and a sensor position calculation unit 27. It is configured.
 送信信号出力部21は、測距センサ2に送信信号を出力することにより、測距センサ2に探索波を送信させるものである。受信信号取得部22は、測距センサ2による受信信号を測距センサ2から取得するものである。 The transmission signal output section 21 outputs a transmission signal to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits a search wave. The reception signal acquisition unit 22 acquires a reception signal from the distance measurement sensor 2 from the distance measurement sensor 2.
 距離値算出部23は、測距センサ2による受信信号の強度を所定の閾値と比較することにより、測距センサ2による反射波の受信の有無を判定するものである。距離値算出部23は、測距センサ2により反射波が受信されたとき、TOFによる距離値を算出するものである。TOFによる距離値の算出方法は公知であるため、詳細な説明は省略する。 The distance value calculation unit 23 determines whether or not the reflected wave is received by the distance measuring sensor 2 by comparing the intensity of the signal received by the distance measuring sensor 2 with a predetermined threshold value. The distance value calculator 23 calculates a distance value by TOF when a reflected wave is received by the distance measuring sensor 2. Since a method of calculating a distance value by TOF is known, detailed description is omitted.
 反射点位置算出部24は、距離値算出部23により算出された距離値を用いて、探索波が反射された地点(以下「反射点」という。)の位置を算出するものである。反射点の位置は、例えば、車両1の前後方向に対応する第1軸(以下「X軸」という。)及び車両1の左右方向に対応する第2軸(以下「Y軸」という。)によるメートル単位の座標系(以下「XY座標系」という。)における座標値により表されるものである。 The reflection point position calculation unit 24 calculates the position of the point where the search wave is reflected (hereinafter referred to as “reflection point”) using the distance value calculated by the distance value calculation unit 23. The position of the reflection point is determined by, for example, a first axis (hereinafter referred to as “X axis”) corresponding to the front-rear direction of the vehicle 1 and a second axis (hereinafter referred to as “Y axis”) corresponding to the left / right direction of the vehicle 1. It is represented by coordinate values in a coordinate system in meters (hereinafter referred to as “XY coordinate system”).
 具体的には、例えば、反射点位置算出部24は、直接波の送信タイミング(又は直接波の受信タイミング)における測距センサ2の位置に対応する始点を有し、かつ、車両1における測距センサ2の設置方向に対応する向きを有し、かつ、距離値算出部23により算出された距離値に対応する大きさを有するベクトルを求めることにより、XY座標系における反射点の座標値を算出する。このベクトルは、X軸及びY軸に沿う仮想的な平面(以下「XY平面」という。)におけるベクトルである。 Specifically, for example, the reflection point position calculation unit 24 has a start point corresponding to the position of the distance measurement sensor 2 at the transmission timing of the direct wave (or the reception timing of the direct wave), and also measures the distance in the vehicle 1. By calculating a vector having a direction corresponding to the installation direction of the sensor 2 and having a magnitude corresponding to the distance value calculated by the distance value calculation unit 23, the coordinate value of the reflection point in the XY coordinate system is calculated. I do. This vector is a vector in a virtual plane (hereinafter, referred to as “XY plane”) along the X axis and the Y axis.
 または、例えば、反射点位置算出部24は、互いに異なる直接波に対応する複数個の距離値を用いて、いわゆる「2円交点」による反射点の位置を算出する。すなわち、反射点位置算出部24は、XY平面における2円交点処理を実行することにより、XY座標系における反射点の座標値を算出する。 Or, for example, the reflection point position calculation unit 24 calculates the position of the reflection point by a so-called “two-circle intersection” using a plurality of distance values corresponding to mutually different direct waves. That is, the reflection point position calculation unit 24 calculates the coordinate value of the reflection point in the XY coordinate system by executing the two-circle intersection processing on the XY plane.
 反射点の位置の算出に用いられる情報のうち、探索波の送信タイミング(又は反射波の受信タイミング)における測距センサ2の位置を示す情報は、センサ位置算出部27により出力される。そのほかの情報(例えば車両1における測距センサ2の設置方向を示す情報)は、反射点位置算出部24に予め記憶されている。 情報 Among the information used for calculating the position of the reflection point, the information indicating the position of the distance measuring sensor 2 at the transmission timing of the search wave (or the reception timing of the reflected wave) is output by the sensor position calculation unit 27. Other information (for example, information indicating the installation direction of the distance measurement sensor 2 in the vehicle 1) is stored in the reflection point position calculation unit 24 in advance.
 グループ化部25は、反射点位置算出部24により複数個の反射点の位置が算出された後、当該複数個の反射点をグルーピングすることにより、1個以上の障害物と原則一対一に対応する1個以上の反射点群(以下「グループ」という。)を設定するものである。このグルーピングは、例えば、互いに隣接する2個の反射点間の距離が所定距離未満である場合、当該2個の反射点を互いに同一のグループに含めるものである。 After the positions of the plurality of reflection points are calculated by the reflection point position calculation unit 24, the grouping unit 25 groups the plurality of reflection points to correspond to one or more obstacles in principle one-to-one. One or more reflection point groups (hereinafter, referred to as “groups”) are set. In this grouping, for example, when the distance between two adjacent reflection points is less than a predetermined distance, the two reflection points are included in the same group.
 自車位置算出部26は、探索波の送信タイミング(又は反射波の受信タイミング)における車両1の位置(以下「自車位置」という。)を算出するものである。センサ位置算出部27は、当該タイミングにおける測距センサ2の位置(以下「センサ位置」という。)を算出するものである。これらの位置は、例えば、XY座標系における座標値により表されるものである。センサ位置算出部27は、センサ位置を示す情報を反射点位置算出部24に出力するものである。センサ位置を示す情報は、反射点位置算出部24において反射点の位置の算出に用いられるものである。 The own vehicle position calculating unit 26 calculates the position of the vehicle 1 at the transmission timing of the search wave (or the reception timing of the reflected wave) (hereinafter, referred to as “own vehicle position”). The sensor position calculator 27 calculates the position of the distance measuring sensor 2 at the timing (hereinafter, referred to as “sensor position”). These positions are represented by coordinate values in an XY coordinate system, for example. The sensor position calculator 27 outputs information indicating the sensor position to the reflection point position calculator 24. The information indicating the sensor position is used by the reflection point position calculation unit 24 to calculate the position of the reflection point.
 自車位置の算出には公知の種々の方法を用いることができるものであり(例えば自律航法)、これらの方法についての詳細な説明は省略する。自律航法に用いられる信号(例えば車両1の走行速度を示す信号及び車両1のヨーレート又は操舵角を示す信号)は、車両1内のコンピュータネットワークから適宜取得される。センサ位置の算出に用いられる情報(例えば車両1における測距センサ2の設置位置を示す情報)は、センサ位置算出部27に予め記憶されている。 Various known methods can be used to calculate the vehicle position (for example, autonomous navigation), and a detailed description of these methods will be omitted. Signals used for autonomous navigation (for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1) are appropriately acquired from a computer network in the vehicle 1. Information used for calculating the sensor position (for example, information indicating the installation position of the distance measurement sensor 2 in the vehicle 1) is stored in the sensor position calculation unit 27 in advance.
 なお、距離値算出部23による距離値の算出及び反射点位置算出部24による座標値の算出には、直接波に代えて又は加えて間接波が用いられるものであっても良い。直接波に加えて間接波を用いることにより、直接波のみを用いる場合に比して、各回の探索波の送信により得られる反射点の個数を増やすことができる。この結果、個々のグループに含まれる反射点の個数を増やすことができる。 In the calculation of the distance value by the distance value calculation unit 23 and the calculation of the coordinate value by the reflection point position calculation unit 24, an indirect wave may be used instead of or in addition to the direct wave. By using the indirect wave in addition to the direct wave, the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used. As a result, the number of reflection points included in each group can be increased.
 個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得するものである。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出するものである。特徴量の詳細については後述する。 Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves. The feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves. The feature value extraction unit 12 extracts a feature value of the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
 障害物判別部13は、個々のグループ毎に、特徴量抽出部12により抽出された特徴量の大きさを示す値(以下「第1パラメータ値」という。例えば、これらの特徴量の平均値である。)を算出するものである。また、障害物判別部13は、個々のグループ毎に、特徴量抽出部12により抽出された特徴量の分散量の大きさを示す値(以下「第2パラメータ値」という。例えば、これらの特徴量の分散値である。)を算出するものである。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別するものである。より具体的には、障害物判別部13は、個々のグループに対応する障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるかを判別するものである。 The obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the feature amount extracted by the feature amount extracting unit 12 (hereinafter referred to as a “first parameter value”. For example, an average value of these feature amounts is used. Is calculated). In addition, the obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the variance of the feature amount extracted by the feature amount extracting unit 12 (hereinafter, referred to as a “second parameter value”. Is the variance of the amount.) The obstacle determining unit 13 determines the type of the obstacle corresponding to each group using the calculated first parameter value and the calculated second parameter value. More specifically, the obstacle determining unit 13 determines whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle.
 ここで、路面障害物、路上障害物及び走行障害物は互いに異なる高さを有するものである。したがって、個々のグループに対応する障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるかの判別は、個々のグループに対応する障害物が3段階の高さのうちのいずれの高さを有するものであるかの判断である。すなわち、障害物判別部13は、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断するものである。障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細については後述する。 Here, the road surface obstacle, the road obstacle, and the traveling obstacle have different heights from each other. Therefore, it is determined whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle. It is a judgment as to which height it has. That is, the obstacle determining unit 13 determines the height of the obstacle corresponding to each group by determining the type of the obstacle corresponding to each group. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
 障害物検知部11、特徴量抽出部12及び障害物判別部13により、障害物検知装置100の要部が構成されている。 The obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle discrimination unit 13 constitute a main part of the obstacle detection device 100.
 次に、図3を参照して、障害物検知装置100の要部のハードウェア構成について説明する。 Next, the hardware configuration of the main part of the obstacle detection device 100 will be described with reference to FIG.
 図3Aに示す如く、障害物検知装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ31及びメモリ32を有している。メモリ32には、当該コンピュータを障害物検知部11、特徴量抽出部12及び障害物判別部13として機能させるためのプログラムが記憶されている。メモリ32に記憶されているプログラムをプロセッサ31が読み出して実行することにより、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能が実現される。 As shown in FIG. 3A, the obstacle detection device 100 is constituted by a computer, and the computer has a processor 31 and a memory 32. The memory 32 stores a program for causing the computer to function as the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13. The functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 reading and executing the program stored in the memory 32.
 または、図3Bに示す如く、障害物検知装置100は処理回路33により構成されているものであっても良い。この場合、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能が処理回路33により実現されるものであっても良い。 Alternatively, as shown in FIG. 3B, the obstacle detection device 100 may be configured by a processing circuit 33. In this case, the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 may be realized by the processing circuit 33.
 または、障害物検知装置100はプロセッサ31、メモリ32及び処理回路33により構成されているものであっても良い(不図示)。この場合、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能のうちの一部の機能がプロセッサ31及びメモリ32により実現されて、残余の機能が処理回路33により実現されるものであっても良い。 Alternatively, the obstacle detection device 100 may include a processor 31, a memory 32, and a processing circuit 33 (not shown). In this case, some of the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the processing circuit 33. It may be something.
 プロセッサ31は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 31 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
 メモリ32は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)などを用いたものである。 The memory 32 uses a semiconductor memory or a magnetic disk, for example. More specifically, the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), and an EEPROM (Electrical Memory). State @ Drive) or HDD (Hard @ Disk @ Drive) or the like.
 処理回路33は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 33 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), and a SoC (Sig-Lig- Is used.
 次に、図4のフローチャートを参照して、障害物検知装置100の動作について説明する。 Next, the operation of the obstacle detection device 100 will be described with reference to the flowchart of FIG.
 まず、ステップST1にて、障害物検知部11は、測距センサ2に探索波を送信させることにより、車両1の周囲にある障害物を検知する。より具体的には、障害物検知部11は、車両1と障害物間の距離を計測することにより、車両1に対する障害物の位置を判定する。 First, in step ST1, the obstacle detecting unit 11 detects an obstacle around the vehicle 1 by causing the distance measuring sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle.
 ステップST1の処理により、1個以上の障害物と原則一対一に対応する1個以上のグループが設定される。個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。次いで、ステップST2にて、特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得する。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出する。特徴量の詳細については後述する。 に よ り By the process of step ST1, one or more groups corresponding to one or more obstacles in principle one-to-one are set. Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves. Next, in step ST <b> 2, the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves. The feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
 次いで、ステップST3にて、障害物判別部13は、特徴量抽出部12により抽出された特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断する。障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細については後述する。 Next, in step ST3, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount extracted by the feature amount extracting unit 12. The obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group. Judge. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
 次に、図5~図7を参照して、障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細について説明する。また、特徴量の詳細について説明する。 Next, the details of the method of determining the type of the obstacle by the obstacle determining unit 13, that is, the method of determining the height of the obstacle will be described with reference to FIGS. Further, details of the feature amount will be described.
 図5Aは、走行障害物(より具体的には壁)による反射波RWの伝搬経路の例を示している。図5Bは、送信信号TSの波形の例を示している。図5Cは、走行障害物による反射波RWに対応する受信信号RSの波形の例を示している。図5Dは、走行障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。 FIG. 5A shows an example of the propagation path of the reflected wave RW due to a traveling obstacle (more specifically, a wall). FIG. 5B shows an example of the waveform of the transmission signal TS. FIG. 5C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle. FIG. 5D illustrates another example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle.
 図6Aは、路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)による反射波RWの伝搬経路の例を示している。図6Bは、送信信号TSの波形の例を示している。図6Cは、路上障害物による反射波RWに対応する受信信号RSの波形の例を示している。図6Dは、路上障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。図6Eは、路面障害物による反射波RWに対応する受信信号RSの波形の例を示している。図6Fは、路面障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。 FIG. 6A shows an example of a propagation path of the reflected wave RW due to an obstacle on the road (more specifically, a curb) or an obstacle on the road (more specifically, a step). FIG. 6B shows an example of the waveform of the transmission signal TS. FIG. 6C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the obstacle on the road. FIG. 6D shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the obstacle on the road. FIG. 6E shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the road surface obstacle. FIG. 6F shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the road surface obstacle.
 送信信号出力部21が測距センサ2に送信信号TSを出力することにより、測距センサ2が探索波SWを送信したものとする。通常、探索波SWは空気中を次第に広がりながら伝搬するため、測距センサ2が探索波SWを送信してから測距センサ2が反射波RWを受信するまでの伝搬経路(いわゆる「パス」)は複数存在する。例えば、障害物Oにより1回反射されて測距センサ2に戻るパスが存在する。また、道路Rにより1回反射された後、障害物Oにより1回反射されて測距センサ2に戻るパスも存在する。これらのパスは、経路長が互いに異なるパスを含むものである。反射波RWは、これらのパスに対応する複数個の波rwの干渉による合成波となる。受信信号RSは、当該複数個の波rwに対応する複数個の信号rsによる合成信号となる。 It is assumed that the transmission signal output unit 21 outputs the transmission signal TS to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits the search wave SW. Usually, since the search wave SW propagates in the air while gradually spreading, the propagation path (so-called “path”) from the transmission of the search wave SW by the distance measuring sensor 2 to the reception of the reflected wave RW by the distance measurement sensor 2. There are a plurality. For example, there is a path that is reflected once by the obstacle O and returns to the distance measurement sensor 2. There is also a path that is reflected once by the road R and then reflected once by the obstacle O and returns to the distance measurement sensor 2. These paths include paths having different path lengths. The reflected wave RW is a composite wave due to interference of a plurality of waves rw corresponding to these paths. The received signal RS is a composite signal of a plurality of signals rs corresponding to the plurality of waves rw.
 また、道路Rの凹凸形状、車両1の振動及び障害物Oにおける探索波SWを反射する面部(以下「反射面部」という。)の凹凸形状などに応じてパスが変化するため、反射波RWの波形が変化して、受信信号RSの波形も変化する。このため、互いに同一の障害物Oによる複数個の反射波RWが測距センサ2により受信された場合、当該複数個の反射波RWの波形はバラツキを有するものとなり、当該複数個の反射波RWに対応する受信信号RSの波形もバラツキを有するものとなる。 In addition, since the path changes according to the uneven shape of the road R, the unevenness of the surface of the vehicle 1 that reflects the vibration of the vehicle 1 and the search wave SW on the obstacle O (hereinafter referred to as “reflective surface”), etc. The waveform changes, and the waveform of the received signal RS also changes. For this reason, when a plurality of reflected waves RW due to the same obstacle O are received by the distance measurement sensor 2, the waveforms of the plurality of reflected waves RW have variations, and the plurality of reflected waves RW Also has a variation in the waveform of the received signal RS corresponding to.
 ここで、障害物Oが走行障害物である場合、障害物Oが路上障害物である場合に比して反射面部の面積が大きいため、反射波RWの受信強度(すなわち受信信号RSの強度)が大きくなる。また、パスの総数が多くなり、パス間の経路長の差も大きくなるため、反射波RWの波形のバラツキが大きくなり、受信信号RSの波形のバラツキも大きくなる。 Here, when the obstacle O is a traveling obstacle, since the area of the reflection surface portion is larger than when the obstacle O is an on-road obstacle, the reception intensity of the reflected wave RW (that is, the intensity of the reception signal RS). Becomes larger. In addition, since the total number of paths increases and the difference in path length between paths also increases, the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
 同様に、障害物Oが路上障害物である場合、障害物Oが路面障害物である場合に比して反射面部の面積が大きいため、反射波RWの受信強度(すなわち受信信号RSの強度)が大きくなる。また、パスの総数が多くなり、パス間の経路長の差も大きくなるため、反射波RWの波形のバラツキが大きくなり、受信信号RSの波形のバラツキも大きくなる。 Similarly, when the obstacle O is an obstacle on the road, the reception surface of the reflected wave RW (that is, the intensity of the reception signal RS) is larger because the area of the reflection surface portion is larger than that when the obstacle O is a road obstacle. Becomes larger. In addition, since the total number of paths increases and the difference in path length between paths also increases, the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
 したがって、互いに同一の障害物Oによる複数個の反射波RWが測距センサ2により受信された場合において、これらの反射波RWの大きさに基づく特徴量が抽出されたとき、当該抽出された特徴量の分散量は障害物Oの高さに対する相関関係を有するものとなる。このため、分散量が大きいときは分散量が小さいときに比して障害物Oの高さが高いと判断するというように、分散量に基づく障害物Oの高さの判断が可能となる。障害物判別部13による障害物Oの高さの判断は、この原理に基づくものである。 Therefore, when a plurality of reflected waves RW due to the same obstacle O are received by the distance measurement sensor 2, when a feature amount based on the magnitude of these reflected waves RW is extracted, the extracted features are extracted. The amount of dispersion of the amount has a correlation with the height of the obstacle O. For this reason, it is possible to determine the height of the obstacle O based on the amount of dispersion, such as determining that the height of the obstacle O is higher when the amount of dispersion is larger than when the amount of dispersion is smaller. The determination of the height of the obstacle O by the obstacle determination unit 13 is based on this principle.
 以上の内容を踏まえて、特徴量抽出部12は、個々のグループに含まれる複数個の反射点に対応する複数個の反射波RWについて、当該複数個の反射波RWの各々の大きさに対応する量を特徴量として抽出する。より具体的には、特徴量抽出部12は、当該複数個の反射波RWの各々の波高、波幅、波形面積又は応答時間などを特徴量として抽出する。これらの特徴量は、当該複数個の反射波RWに対応する受信信号RSの波形を示す情報から抽出される。 Based on the above content, the feature amount extraction unit 12 corresponds to each of the plurality of reflected waves RW corresponding to the plurality of reflected points included in each group to the size of each of the plurality of reflected waves RW. Is extracted as a feature value. More specifically, the feature value extraction unit 12 extracts a wave height, a wave width, a waveform area, a response time, or the like of each of the plurality of reflected waves RW as a feature value. These features are extracted from information indicating the waveform of the received signal RS corresponding to the plurality of reflected waves RW.
 この結果、これらの特徴量の平均値(すなわち第1パラメータ値)が障害物Oの高さに対する相関関係を有するものとなるのはもちろんのこと、これらの特徴量の分散値(すなわち第2パラメータ値)も障害物Oの高さに対する相関関係を有するものとなる。したがって、第1パラメータ値及び第2パラメータ値は、障害物Oの高さに応じたクラスタリング、すなわち障害物Oの種別に応じたクラスタリングが可能となる。 As a result, not only the average value of these feature values (that is, the first parameter value) has a correlation with the height of the obstacle O, but also the variance value of these feature values (that is, the second parameter value). Value) also has a correlation with the height of the obstacle O. Therefore, the first parameter value and the second parameter value enable clustering according to the height of the obstacle O, that is, clustering according to the type of the obstacle O.
 図7は、障害物Oが路面障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A1の例、障害物Oが路上障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A2の例、並びに障害物Oが走行障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A3の例を示している。図中、範囲A1,A2間の分割線PL1は、障害物Oが路面障害物であるか否かの判別閾値Th1に対応するものである。また、範囲A2,A3間の分割線PL2は、障害物Oが走行障害物であるか否かの判別閾値Th2に対応するものである。 FIG. 7 shows an example of the range A1 including the first parameter value and the second parameter value when the obstacle O is a road surface obstacle, and the first parameter value and the second parameter value when the obstacle O is a road obstacle. An example of a range A2 including a parameter value and an example of a range A3 including a first parameter value and a second parameter value when the obstacle O is a traveling obstacle are shown. In the figure, a dividing line PL1 between the ranges A1 and A2 corresponds to a determination threshold Th1 for determining whether the obstacle O is a road surface obstacle. The dividing line PL2 between the ranges A2 and A3 corresponds to a threshold value Th2 for determining whether or not the obstacle O is a traveling obstacle.
 図7Aにおける個々の丸印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが路面障害物である場合の実測値の例に対応している。図7Aにおける個々の四角印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが路上障害物である場合の実測値の例に対応している。図7Aにおける個々の三角印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが走行障害物である場合の実測値の例に対応している。障害物判別部13には、これらの実測値のクラスタリングにより設定された範囲A1~A3を示す情報、より具体的には判別閾値Th1,Th2を示す情報が予め記憶されている。このクラスタリング及び分割線PL1,PL2の設定(すなわち判別閾値Th1,Th2の設定)には、線形判別又はパターン認識などの機械学習の技術が用いられる。 Each circle in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before the manufacture of the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a road surface obstacle. Yes, it is. Each square mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is an on-road obstacle. Yes, it is. Each triangle mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a traveling obstacle. Yes, it is. The information indicating the ranges A1 to A3 set by the clustering of these actually measured values, more specifically, the information indicating the discrimination thresholds Th1 and Th2 is stored in the obstacle discrimination unit 13 in advance. For the clustering and the setting of the dividing lines PL1 and PL2 (that is, the setting of the discrimination thresholds Th1 and Th2), a machine learning technique such as linear discrimination or pattern recognition is used.
 障害物判別部13は、車両1の製造後(より具体的には出荷後)に算出された第1パラメータ値及び第2パラメータ値を判別閾値Th1,Th2と比較することにより、この第1パラメータ値及び第2パラメータ値が範囲A1~A3のうちのいずれの範囲に含まれるかを識別する。これにより、車両1の周囲にある障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるかが判別される。図7Bにおけるバツ印は、車両1の出荷後に算出された第1パラメータ値及び第2パラメータ値の例に対応している。この場合、第1パラメータ値及び第2パラメータ値が範囲A3に含まれるため、障害物Oは走行障害物であると判別される。 The obstacle determining unit 13 compares the first parameter value and the second parameter value calculated after the manufacture of the vehicle 1 (more specifically, after shipment) with the determination thresholds Th1 and Th2, thereby obtaining the first parameter. It identifies which of the ranges A1 to A3 the value and the second parameter value fall within. Thereby, it is determined whether the obstacle O around the vehicle 1 is a road surface obstacle, a road obstacle, or a traveling obstacle. The crosses in FIG. 7B correspond to examples of the first parameter value and the second parameter value calculated after the shipment of the vehicle 1. In this case, since the first parameter value and the second parameter value are included in the range A3, the obstacle O is determined to be a traveling obstacle.
 次に、図8を参照して、複数個の反射波RWの各々の大きさに対応する量の具体例について説明する。 Next, a specific example of the amount corresponding to the size of each of the plurality of reflected waves RW will be described with reference to FIG.
 上記のとおり、特徴量抽出部12は、複数個の反射波RWの各々の大きさに対応する量を特徴量として抽出する。図8は、当該複数個の反射波RWのうちの1個の反射波RWに対応する受信信号RSの波形の例を示している。 As described above, the feature amount extraction unit 12 extracts the amount corresponding to the size of each of the plurality of reflected waves RW as the feature amount. FIG. 8 shows an example of the waveform of the reception signal RS corresponding to one of the plurality of reflected waves RW.
 例えば、特徴量抽出部12は、受信信号RSのピーク値PVに基づき反射波RWの波高を抽出する(図8A参照)。または、例えば、特徴量抽出部12は、受信信号RSのうちの閾値Thを超えている部位の時間幅、すなわち反射波RWの波幅を抽出する(図8A参照)。この閾値Thは、反射波RWの受信の有無の判定に用いられる閾値である。または、例えば、特徴量抽出部12は、受信信号RSの全体の時間幅を抽出する(不図示)。または、例えば、特徴量抽出部12は、受信信号RSの半値幅、すなわち反射波RWの半値幅を抽出する(不図示)。または、例えば、特徴量抽出部12は、受信信号RSのうちの閾値Thを超えている部位の波形面積、すなわち反射波RWの波形面積を抽出する(図8A参照)。または、例えば、特徴量抽出部12は、受信信号RSの全体の波形面積を抽出する(不図示)。これらは、いずれも反射波RWの大きさに対応する量である。 {For example, the feature quantity extraction unit 12 extracts the peak of the reflected wave RW based on the peak value PV of the received signal RS (see FIG. 8A). Alternatively, for example, the feature amount extracting unit 12 extracts a time width of a portion of the received signal RS exceeding the threshold Th, that is, a wave width of the reflected wave RW (see FIG. 8A). The threshold Th is a threshold used for determining whether or not the reflected wave RW has been received. Alternatively, for example, the feature amount extraction unit 12 extracts the entire time width of the received signal RS (not illustrated). Alternatively, for example, the feature amount extraction unit 12 extracts the half width of the received signal RS, that is, the half width of the reflected wave RW (not shown). Alternatively, for example, the feature amount extraction unit 12 extracts a waveform area of a portion of the received signal RS exceeding the threshold Th, that is, a waveform area of the reflected wave RW (see FIG. 8A). Alternatively, for example, the feature amount extracting unit 12 extracts the entire waveform area of the received signal RS (not shown). These are all amounts corresponding to the magnitude of the reflected wave RW.
 または、例えば、特徴量抽出部12は、受信信号RSがピーク値PVを超えてから受信信号RSが閾値Thを下回るまでの時間、すなわち反射波RWの応答時間を抽出する(図8B参照)。または、例えば、特徴量抽出部12は、受信信号RSの波形における立下りの傾き、すなわち反射波RWの波形における立下りの傾きを抽出する(不図示)。または、例えば、特徴量抽出部12は、受信信号RSの波形における時定数、すなわち反射波RWの波形における時定数を抽出する(不図示)。これらは、いずれも反射波RWの大きさに対応する量である。 Or, for example, the feature quantity extraction unit 12 extracts the time from when the received signal RS exceeds the peak value PV to when the received signal RS falls below the threshold Th, that is, the response time of the reflected wave RW (see FIG. 8B). Alternatively, for example, the feature amount extraction unit 12 extracts a falling slope in the waveform of the received signal RS, that is, a falling slope in the waveform of the reflected wave RW (not shown). Alternatively, for example, the feature amount extraction unit 12 extracts a time constant in the waveform of the received signal RS, that is, a time constant in the waveform of the reflected wave RW (not shown). These are all amounts corresponding to the magnitude of the reflected wave RW.
 次に、図9を参照して、障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の他の例について説明する。 Next, another example of the method of determining the type of the obstacle by the obstacle determining unit 13, that is, another example of the method of determining the height of the obstacle will be described with reference to FIG.
 障害物判別部13は、距離値算出部23により算出された距離値を示す情報又は反射点位置算出部24により算出された座標値を示す情報を障害物検知部11から取得する。障害物判別部13は、当該取得された情報を用いて、車両1と障害物O間の距離に対応する値(以下「第3パラメータ値」という。)を算出する。図1において、障害物検知部11と障害物判別部13間の接続線は図示を省略している。 The obstacle determining unit 13 acquires, from the obstacle detecting unit 11, information indicating the distance value calculated by the distance value calculating unit 23 or information indicating the coordinate value calculated by the reflection point position calculating unit 24. The obstacle determining unit 13 calculates a value (hereinafter, referred to as a “third parameter value”) corresponding to the distance between the vehicle 1 and the obstacle O using the acquired information. In FIG. 1, connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
 図9は、障害物Oが路面障害物である場合の第1パラメータ値、第2パラメータ値及び第3パラメータ値が含まれる範囲A1の例、障害物Oが路上障害物である場合の第1パラメータ値、第2パラメータ値及び第3パラメータ値が含まれる範囲A2の例、並びに障害物Oが走行障害物である場合の第1パラメータ値、第2パラメータ値及び第3パラメータ値が含まれる範囲A3の例を示している。図中、範囲A1,A2間の分割線PL1は、障害物Oが路面障害物であるか否かの判別閾値Th1に対応するものである。また、範囲A2,A3間の分割線PL2は、障害物Oが走行障害物であるか否かの判別閾値Th2に対応するものである。 FIG. 9 is an example of a range A1 including the first parameter value, the second parameter value, and the third parameter value when the obstacle O is a road surface obstacle, and the first example when the obstacle O is a road obstacle. An example of the range A2 including the parameter value, the second parameter value, and the third parameter value, and the range including the first parameter value, the second parameter value, and the third parameter value when the obstacle O is a traveling obstacle An example of A3 is shown. In the figure, a dividing line PL1 between the ranges A1 and A2 corresponds to a determination threshold Th1 for determining whether the obstacle O is a road surface obstacle. The dividing line PL2 between the ranges A2 and A3 corresponds to a threshold value Th2 for determining whether or not the obstacle O is a traveling obstacle.
 図9Aにおける個々の丸印は、障害物検知装置100の製造前における第1パラメータ値、第2パラメータ値及び第3パラメータ値の実測値であって、障害物Oが路面障害物である場合の実測値の例に対応している。図9Aにおける個々の四角印は、障害物検知装置100の製造前における第1パラメータ値、第2パラメータ値及び第3パラメータ値の実測値であって、障害物Oが路上障害物である場合の実測値の例に対応している。図9Aにおける個々の三角印は、障害物検知装置100の製造前における第1パラメータ値、第2パラメータ値及び第3パラメータ値の実測値であって、障害物Oが走行障害物である場合の実測値の例に対応している。障害物判別部13には、これらの実測値のクラスタリングにより設定された範囲A1~A3を示す情報、より具体的には判別閾値Th1,Th2を示す情報が予め記憶されている。このクラスタリング及び分割線PL1,PL2の設定(すなわち判別閾値Th1,Th2の設定)には、線形判別又はパターン認識などの機械学習の技術が用いられる。 9A are actually measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device 100, and indicate the case where the obstacle O is a road surface obstacle. It corresponds to the example of the actual measurement value. 9A are actual measured values of the first parameter value, the second parameter value, and the third parameter value before the manufacture of the obstacle detection device 100, and indicate the case where the obstacle O is a road obstacle. It corresponds to the example of the actual measurement value. 9A are actually measured values of the first parameter value, the second parameter value, and the third parameter value before manufacturing the obstacle detection device 100, and indicate the case where the obstacle O is a traveling obstacle. It corresponds to the example of the actual measurement value. The information indicating the ranges A1 to A3 set by the clustering of these actually measured values, more specifically, the information indicating the discrimination thresholds Th1 and Th2 is stored in the obstacle discrimination unit 13 in advance. For the clustering and the setting of the dividing lines PL1 and PL2 (that is, the setting of the discrimination thresholds Th1 and Th2), a machine learning technique such as linear discrimination or pattern recognition is used.
 障害物判別部13は、車両1の製造後(より具体的には出荷後)に算出された第1パラメータ値、第2パラメータ値及び第3パラメータ値を判別閾値Th1,Th2と比較することにより、この第1パラメータ値、第2パラメータ値及び第3パラメータ値が範囲A1~A3のうちのいずれの範囲に含まれるかを識別する。これにより、車両1の周囲にある障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるかが判別される。図9Bにおけるバツ印は、車両1の出荷後に算出された第1パラメータ値、第2パラメータ値及び第3パラメータ値の例に対応している。この場合、第1パラメータ値、第2パラメータ値及び第3パラメータ値が範囲A3に含まれるため、障害物Oは走行障害物であると判別される。 The obstacle determination unit 13 compares the first parameter value, the second parameter value, and the third parameter value calculated after the manufacture of the vehicle 1 (more specifically, after shipment) with the determination thresholds Th1 and Th2. , The first parameter value, the second parameter value, and the third parameter value are included in any of the ranges A1 to A3. Thereby, it is determined whether the obstacle O around the vehicle 1 is a road surface obstacle, a road obstacle, or a running obstacle. The crosses in FIG. 9B correspond to examples of the first parameter value, the second parameter value, and the third parameter value calculated after the shipment of the vehicle 1. In this case, since the first parameter value, the second parameter value, and the third parameter value are included in the range A3, the obstacle O is determined to be a traveling obstacle.
 このように、第1パラメータ値及び第2パラメータ値に加えて第3パラメータ値を用いることにより、障害物の種別の判別(すなわち障害物の高さの判断)において、探索波の伝搬距離に応じた減衰量を考慮することができる。この結果、障害物の種別の判別精度、すなわち障害物の高さの判断精度を向上することができる。より具体的には、車両1の近傍に位置する路面障害物又は路上障害物と車両1の遠方に位置する走行障害物とを精度良く判別することができる。 As described above, by using the third parameter value in addition to the first parameter value and the second parameter value, in the determination of the type of the obstacle (that is, the determination of the height of the obstacle), according to the propagation distance of the search wave. Can be considered. As a result, the accuracy of determining the type of the obstacle, that is, the accuracy of determining the height of the obstacle can be improved. More specifically, it is possible to accurately determine a road surface obstacle or a road obstacle located near the vehicle 1 and a traveling obstacle located far from the vehicle 1.
 次に、障害物検知装置100のそのほかの変形例について説明する。 Next, other modifications of the obstacle detection device 100 will be described.
 まず、自車位置算出部26は、自律航法に代えて又は加えて衛星航法により自車位置を算出するものであっても良い。この場合、障害物検知装置100は、車両1に設けられているGNSS(Global Navigation Satellite System)受信機からGNSS信号を取得するものであっても良い。 First, the vehicle position calculating unit 26 may calculate the vehicle position by satellite navigation instead of or in addition to autonomous navigation. In this case, the obstacle detection device 100 may acquire a GNSS signal from a GNSS (Global Navigation Satellite Network) receiver provided in the vehicle 1.
 また、第2パラメータ値は特徴量の分散量の大きさを示す値であれば良く、特徴量の分散値に限定されるものではない。例えば、第2パラメータ値は、特徴量の最大値と最小値の差分値であっても良く、特徴量の最大値と平均値の差分値であっても良く、又は特徴量の平均値と最小値の差分値であっても良い。 The second parameter value may be any value that indicates the magnitude of the variance of the feature value, and is not limited to the variance value of the feature value. For example, the second parameter value may be a difference value between the maximum value and the minimum value of the feature value, a difference value between the maximum value and the average value of the feature value, or the average value and the minimum value of the feature value. It may be a value difference value.
 また、障害物判別部13は、個々のグループに対応する障害物が走行障害物であるか否かを判別するものであっても良い。すなわち、障害物判別部13は、当該障害物が走行障害物でないと判別された場合、当該障害物が路面障害物であるか路上障害物であるかを判別しないものであっても良い。障害物判別部13には、判別閾値Th2を示す情報が記憶されている一方、判別閾値Th1を示す情報が記憶されていないものであっても良い。 The obstacle determining unit 13 may determine whether an obstacle corresponding to each group is a traveling obstacle. That is, when it is determined that the obstacle is not a traveling obstacle, the obstacle determination unit 13 may not determine whether the obstacle is a road surface obstacle or a road obstacle. The obstacle determination unit 13 may store information indicating the determination threshold Th2, but may not store information indicating the determination threshold Th1.
 また、測距センサ2は、N個の測距センサ2~2に代えて1個の測距センサ2により構成されているものであっても良い。この場合、個々のグループに含まれる複数個の反射点は、1個の測距センサ2により複数回送受信された直接波に対応するものであっても良い。 Further, the distance measuring sensor 2 may be configured by one distance measuring sensor 21 instead of the N distance measuring sensors 2 1 to 2 N. In this case, the plurality of reflection points included in each group may be the one corresponding to the direct wave which is sent multiple times received by one of the distance measuring sensor 2 1.
 すなわち、グループ化部25によるグルーピングの対象となる複数個の反射点は、車両1における設置位置が互いに異なるN個の測距センサ2~2により送受信された直接波又は間接波に対応するものであっても良く、又は1個の測距センサ2により互いに異なるタイミングにて送受信された直接波に対応するものであっても良い。または、当該複数個の反射点は、車両1における設置位置が互いに異なるN個の測距センサ2~2により互いに異なるタイミングにて送受信された直接波又は間接波に対応するものであっても良い。 That is, the plurality of reflection points to be grouped by the grouping unit 25 correspond to direct waves or indirect waves transmitted and received by the N distance measuring sensors 2 1 to 2 N whose installation positions in the vehicle 1 are different from each other. may be one, or by one of the distance measuring sensor 2 1 may be one corresponding to the direct wave which is transmitted and received at different timings from each other. Alternatively, the plurality of reflection points correspond to direct waves or indirect waves transmitted and received at different timings by N distance measuring sensors 2 1 to 2 N whose installation positions in the vehicle 1 are different from each other. Is also good.
 また、送信信号出力部21は、連続波又はバースト波を測距センサ2に送信させるよりも、周波数変調又は位相変調による変調波を測距センサ2に送信させるのが好適である。すなわち、探索波に変調波を用いることにより、探索波の振幅位相が時間に対して変化するものとなる。この結果、互いに異なる伝搬経路を通る複数個の探索波の干渉(例えば図5~図6に示す例における複数個の波rwの干渉)が顕著になる。したがって、探索波に連続波又はバースト波を用いる場合に比して、障害物判別部13による障害物の種別の判別精度(すなわち障害物の高さの判断精度)を向上することができる。 (4) It is preferable that the transmission signal output unit 21 transmits the modulated wave by the frequency modulation or the phase modulation to the distance measurement sensor 2, rather than transmitting the continuous wave or the burst wave to the distance measurement sensor 2. That is, by using a modulated wave as the search wave, the amplitude and phase of the search wave change with respect to time. As a result, interference of a plurality of search waves passing through different propagation paths (for example, interference of a plurality of waves rw in the examples shown in FIGS. 5 and 6) becomes remarkable. Therefore, it is possible to improve the accuracy of determining the type of the obstacle (that is, the accuracy of determining the height of the obstacle) by the obstacle determining unit 13 as compared with the case where a continuous wave or a burst wave is used as the search wave.
 以上のように、実施の形態1の障害物検知装置100は、車両1に設けられている測距センサ2が障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部12と、特徴量の分散量が大きいときは分散量が小さいときに比して障害物の高さが高いと判断する障害物判別部13であって、特徴量の大きさを示す第1パラメータ値及び分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも障害物が走行障害物であるか否かを判別する障害物判別部13と、を備える。第1パラメータ値に加えて第2パラメータ値を用いることにより、障害物の種別を精度良く判別することができ、障害物の高さを精度良く判断することができる。また、車両1の遠方(より具体的には5メートル以上遠方)に位置する障害物の高さを判断することができる。 As described above, the obstacle detection device 100 according to the first embodiment uses the feature amount relating to a plurality of reflected waves when the distance measurement sensor 2 provided in the vehicle 1 receives the plurality of reflected waves due to the obstacle. A feature amount extraction unit for extracting, and an obstacle discrimination unit for judging that the height of the obstacle is higher when the variance amount of the feature amount is larger than when the variance amount is smaller. And an obstacle determining unit 13 that determines whether or not the obstacle is a traveling obstacle based on the result of clustering the first parameter value indicating the degree of dispersion and the second parameter value indicating the magnitude of the variance. . By using the second parameter value in addition to the first parameter value, the type of the obstacle can be accurately determined, and the height of the obstacle can be accurately determined. Further, it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, at a distance of 5 meters or more).
 また、障害物判別部13は、クラスタリングにより設定された複数の範囲のうちのいずれの範囲に第1パラメータ値及び第2パラメータ値が含まれるかを識別することにより、障害物の種別を判別する。これにより、例えば、障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるかを判別することができる。 The obstacle determining unit 13 determines the type of the obstacle by identifying which of the plurality of ranges set by the clustering includes the first parameter value and the second parameter value. . Thus, for example, it is possible to determine whether the obstacle is a road surface obstacle, a road obstacle, or a traveling obstacle.
 また、クラスタリングは、第1パラメータ値、第2パラメータ値及び車両1と障害物間の距離に対応する第3パラメータ値のクラスタリングであり、障害物判別部13は、クラスタリングにより設定された複数の範囲のうちのいずれの範囲に第1パラメータ値、第2パラメータ値及び第3パラメータ値が含まれるかを識別することにより、障害物の種別を判別する。第1パラメータ値及び第2パラメータ値に加えて第3パラメータ値を用いることにより、障害物の種別を更に精度良く判別することができ、障害物の高さを更に精度良く判断することができる。 The clustering is a clustering of a first parameter value, a second parameter value, and a third parameter value corresponding to a distance between the vehicle 1 and an obstacle. By determining which of the ranges includes the first parameter value, the second parameter value, and the third parameter value, the type of the obstacle is determined. By using the third parameter value in addition to the first parameter value and the second parameter value, the type of the obstacle can be determined with higher accuracy, and the height of the obstacle can be determined with higher accuracy.
実施の形態2.
 図10は、実施の形態2に係る運転支援装置の要部を示すブロック図である。図10を参照して、実施の形態2の運転支援装置200aについて説明する。なお、図10において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2 FIG.
FIG. 10 is a block diagram illustrating a main part of the driving support device according to the second embodiment. Referring to FIG. 10, a driving support device 200a according to the second embodiment will be described. In FIG. 10, the same reference numerals are given to the same blocks as the blocks shown in FIG. 1, and the description will be omitted.
 図10に示す例において、測距センサ2は4個の測距センサ2~2により構成されている。4個の測距センサ2~2は、車両1の前端部(より具体的にはフロントバンパー部)に設けられており、かつ、車両1の前方に向けられている。 In the example shown in FIG. 10, the distance measuring sensor 2 is composed of four distance measuring sensors 2 1 to 2 4. Four distance measuring sensors 2 1 to 2 4, the front end of the vehicle 1 is provided on (more specifically, the front bumper unit), and are directed to the front of the vehicle 1.
 障害物検知部11は、車両1が前進しているとき、測距センサ2に探索波を1回以上送信させることにより、車両1の前方にある障害物を検知するものである。障害物検知部11の内部構成は、実施の形態1にて図2を参照して説明したものと同様であるため、図示及び説明を省略する。 The obstacle detection unit 11 detects an obstacle in front of the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave at least once when the vehicle 1 is moving forward. The internal configuration of the obstacle detection unit 11 is the same as that described in Embodiment 1 with reference to FIG.
 正対判別部14は、測距センサ2が障害物と正対しているか否かを判別するものである。正対判別部14による判別方法の詳細については後述する。 The facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
 障害物判別部13は、測距センサ2が障害物と正対している状態(以下「正対状態」という。)における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するようになっている。より具体的には、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えたとき、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するようになっている。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて障害物の種別を判別するものである。すなわち、障害物判別部13は、正対状態における特徴量を用いて障害物の種別を判別するものである。 The obstacle determining unit 13 calculates the first parameter value and the second parameter value using the feature amount in a state in which the distance measurement sensor 2 faces the obstacle (hereinafter, referred to as “facing state”). Has become. More specifically, when the number of accumulated data indicating the feature amount in the directly facing state exceeds a predetermined number, the obstacle determination unit 13 uses the feature amount indicated by these data to determine the first parameter value and the second parameter value. The parameter value is calculated. The obstacle determining unit 13 determines the type of the obstacle using the calculated first parameter value and the calculated second parameter value. That is, the obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state.
 運転支援制御部15aは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、車両1と障害物の衝突を回避するための制御を実行するものである。 The driving support control unit 15a controls the vehicle according to the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle). This is to execute control for avoiding a collision between the vehicle 1 and an obstacle.
 具体的には、例えば、障害物検知部11により車両1の前方にある障害物が検知された場合において、障害物判別部13により当該障害物が走行障害物又は路上障害物であると判別されたとき、運転支援制御部15aは車両1のブレーキを作動させることにより車両1を停止させる制御を実行する。他方、この場合において、障害物判別部13により当該障害物が路面障害物であると判別されたとき、運転支援制御部15aは当該制御の実行をキャンセルする。 Specifically, for example, when the obstacle detection unit 11 detects an obstacle in front of the vehicle 1, the obstacle determination unit 13 determines that the obstacle is a traveling obstacle or a road obstacle. Then, the driving support control unit 15a executes control to stop the vehicle 1 by operating the brake of the vehicle 1. On the other hand, in this case, when the obstacle determining unit 13 determines that the obstacle is a road surface obstacle, the driving support control unit 15a cancels the execution of the control.
 ここで、運転支援制御部15aは、車両1の前方にある障害物が走行障害物であるか路上障害物であるかに応じて車両1の停止位置を異ならしめるものであっても良い。より具体的には、運転支援制御部15aは、当該障害物が走行障害物である場合、当該障害物が路上障害物である場合に比して手前側の位置にて車両1を停止させるものであっても良い。すなわち、運転支援制御部15aは、当該障害物が路上障害物である場合、車両1のフロントバンパー部が当該障害物の上方に位置し、かつ、車両1のフロントタイヤが当該障害物に略当接する位置にて車両1を停止させるものであっても良い。 Here, the driving support control unit 15a may vary the stop position of the vehicle 1 depending on whether the obstacle in front of the vehicle 1 is a traveling obstacle or a road obstacle. More specifically, the driving support control unit 15a stops the vehicle 1 at a position on the near side when the obstacle is a traveling obstacle compared to when the obstacle is a road obstacle. It may be. That is, when the obstacle is a road obstacle, the driving support control unit 15a positions the front bumper of the vehicle 1 above the obstacle and causes the front tire of the vehicle 1 to substantially contact the obstacle. The vehicle 1 may be stopped at the position.
 以下、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じた制御を「運転支援制御」と総称する。 Hereinafter, the control in accordance with the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle) is referred to as “driving support control”. Collectively.
 障害物検知部11、特徴量抽出部12、障害物判別部13及び正対判別部14により、障害物検知装置100aの要部が構成されている。障害物検知装置100a及び運転支援制御部15aにより、運転支援装置200aの要部が構成されている。 The obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the facing determination unit 14 constitute a main part of the obstacle detection device 100a. The obstacle detection device 100a and the driving support control unit 15a constitute a main part of the driving support device 200a.
 運転支援装置200aの要部のハードウェア構成は、実施の形態1にて図3を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、障害物検知部11、特徴量抽出部12、障害物判別部13、正対判別部14及び運転支援制御部15aの各々の機能は、プロセッサ31及びメモリ32により実現されるものであっても良く、又は処理回路33により実現されるものであっても良い。 ハ ー ド The hardware configuration of the main part of the driving support device 200a is the same as that described in Embodiment 1 with reference to FIG. That is, each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, the facing determination unit 14, and the driving support control unit 15a is realized by the processor 31 and the memory 32. Or may be realized by the processing circuit 33.
 次に、図11のフローチャートを参照して、運転支援装置200aの動作について説明する。 Next, the operation of the driving support device 200a will be described with reference to the flowchart of FIG.
 まず、ステップST11にて、障害物検知部11は、車両1の走行速度を示す信号及び車両1のシフトポジションを示す信号などを用いて、車両1が前進中であるか否かを判定する。これらの信号は、車両1内のコンピュータネットワークから適宜取得される。 First, in step ST11, the obstacle detection unit 11 determines whether the vehicle 1 is moving forward using a signal indicating the traveling speed of the vehicle 1, a signal indicating the shift position of the vehicle 1, and the like. These signals are appropriately obtained from a computer network in the vehicle 1.
 車両1が前進中である場合(ステップST11“YES”)、ステップST12にて、障害物検知部11は、測距センサ2に探索波を1回以上送信させることにより、車両1の前方にある障害物を検知する。 If the vehicle 1 is moving forward (“YES” in step ST11), the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit the search wave at least once in step ST12, so that the obstacle detection unit 11 is in front of the vehicle 1. Detect obstacles.
 ステップST12の処理により、1個以上の障害物と原則一対一に対応する1個以上のグループが設定される。個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。次いで、ステップST13にて、特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得する。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出する。特徴量抽出部12は、当該抽出された特徴量を示すデータを障害物判別部13に出力する。 に よ り By the process of step ST12, one or more groups corresponding to one or more obstacles in principle one-to-one are set. Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves. Next, in step ST <b> 13, the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the reception signal corresponding to the plurality of reflected waves. The feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information. The feature amount extraction unit 12 outputs data indicating the extracted feature amount to the obstacle determination unit 13.
 次いで、ステップST14にて、正対判別部14は、測距センサ2が障害物と正対しているか否かを判別する。正対判別部14による判別方法の詳細については後述する。 Next, in step ST14, the facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
 次いで、ステップST15にて、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えたか否かを判定する。正対状態における特徴量を示すデータの蓄積数が所定数以下である場合(ステップST15“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、正対状態における特徴量を示すデータの蓄積数が所定数を超えている場合(ステップST15“YES”)、運転支援装置200aの処理はステップST16に進む。 Next, in step ST15, the obstacle determination unit 13 determines whether the number of accumulated data indicating the feature amount in the directly facing state has exceeded a predetermined number. When the accumulation number of the data indicating the feature amount in the facing state is equal to or smaller than the predetermined number (“NO” in step ST15), the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again. On the other hand, when the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number (“YES” in step ST15), the process of the driving support device 200a proceeds to step ST16.
 次いで、ステップST16にて、障害物判別部13は、正対状態における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断する。 Next, in step ST16, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount in the directly facing state. The obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group. Judge.
 次いで、ステップST17にて、運転支援制御部15aは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、車両1と障害物の衝突を回避するための制御を実行する。すなわち、運転支援制御部15aは運転支援制御を実行する。 Next, in step ST17, the driving support control unit 15a determines the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination of the height of the obstacle). According to the result, the control for avoiding the collision between the vehicle 1 and the obstacle is executed. That is, the driving support control unit 15a executes the driving support control.
 次に、図12~図14を参照して、正対判別部14による判別方法の詳細について説明する。 Next, with reference to FIG. 12 to FIG. 14, the details of the determination method by the facing identification unit 14 will be described.
 図12及び図13は、車両1における4個の測距センサ2~2の設置位置の例を示している。図12及び図13に示す如く、4個の測距センサ2~2のうちのより外側に配置されている2個の測距センサ2,2とより内側に配置されている2個の測距センサ2,2とは、車両1の上下方向(すなわち高さ方向)に対する設置位置が互いに異なるものであっても良い。 FIG. 12 and FIG. 13 show examples of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1. 12 and as shown in FIG. 13, 2, which are arranged more inside the four distance measuring sensors 2 1 to 2 measuring sensor 2 1 two more are located outside of the four, 2 4 number of the distance measuring sensor 2 2, and 2 3, the installation position with respect to the vertical direction of the vehicle 1 (that is, the height direction) may be different from each other.
 また、図12は、障害物Oが走行障害物(より具体的には壁)である場合における、4個の測距センサ2~2により送受信される直接波の伝搬経路PP~PPの例、これらの直接波に対応する反射点RP~RPの例、及び障害物Oに対応するグループGの例を示している。図13は、障害物Oが路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)である場合における、4個の測距センサ2~2により送受信される直接波の伝搬経路PP~PPの例、これらの直接波に対応する反射点RP~RPの例、及び障害物Oに対応するグループGの例を示している。 FIG. 12 shows propagation paths PP 1 to PP of direct waves transmitted and received by the four distance measurement sensors 2 1 to 24 when the obstacle O is a traveling obstacle (more specifically, a wall). 4, an example of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to the obstacle O are shown. FIG. 13 shows transmission / reception by the four distance measuring sensors 2 1 to 24 when the obstacle O is a road obstacle (more specifically, a curb) or a road surface obstacle (more specifically, a step). 3 shows examples of direct wave propagation paths PP 1 to PP 4 , examples of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to an obstacle O.
 正対判別部14には、車両1における2個の測距センサ2,2の設置間隔(以下「センサピッチ」という。)SPを示す情報が予め記憶されている。正対判別部14は、測距センサ2と反射点RP間の距離Dを示す情報及び測距センサ2と反射点RP間の距離Dを示す情報を障害物検知部11から取得する。これらの距離D,Dは、距離値算出部23により算出された距離値又は反射点位置算出部24により算出された座標値(より具体的にはX座標値)に対応するものである。正対判別部14は、以下の式(1)により、測距センサ2に対する障害物Oの正対角度θを算出する。 The confronting discrimination unit 14, the distance measurement sensor 2 1 2 in the vehicle 1, 2 4 of installation interval (hereinafter referred to as "sensor pitch".) Information indicating the SP is stored in advance. Confronting discrimination unit 14, the distance measurement sensor 2 1 information obstacles showing the distance D 4 between the information indicating the distance D 1 of the between reflection points RP 1 and ranging sensor 2 4 and the reflection point RP 4 detecting section 11 To get from. These distances D 1 and D 4 correspond to the distance values calculated by the distance value calculation unit 23 or the coordinate values (more specifically, the X coordinate values) calculated by the reflection point position calculation unit 24. . The facing-facing determining unit 14 calculates the facing angle θ of the obstacle O with respect to the distance measuring sensor 2 by the following equation (1).
 θ=tan-1{(D-D)/SP} (1) θ = tan −1 {(D 1 −D 4 ) / SP} (1)
 図14は、センサピッチSP、距離D,D及び正対角度θの例を示している。正対角度θが所定角度θth以下である場合、正対判別部14は測距センサ2が障害物Oと正対していると判別する。他方、正対角度θが所定角度θthよりも大きい場合、正対判別部14は測距センサ2が障害物Oと正対していないと判別する。 FIG. 14 shows an example of the sensor pitch SP, the distances D 1 and D 4, and the directly-facing angle θ. When the facing angle θ is equal to or smaller than the predetermined angle θth, the facing determining unit 14 determines that the distance measurement sensor 2 faces the obstacle O. On the other hand, when the facing angle θ is larger than the predetermined angle θth, the facing determining unit 14 determines that the distance measurement sensor 2 is not directly facing the obstacle O.
 なお、正対角度θの算出には、他の測距センサ2,2を介して互いに離隔配置されている測距センサ2,2を用いるのが好適である。これにより、互いに隣接配置されている測距センサ2,2を用いる場合に比して、正対角度θの算出精度を向上することができる。 Note that the calculation of the confronting angle theta, it is preferred to use a distance measuring sensor 2 1, 2 4, which is spaced apart from one another via the other of the distance measuring sensor 2 2, 2 3. Thus, as compared with the case of using the distance measuring sensor 2 2, 2 3 are arranged adjacent to each other, it is possible to improve the calculation accuracy of the confronting angle theta.
 また、正対判別部14は、所定区間における正対角度θの平均値を算出するものであっても良い。正対判別部14は、当該算出された平均値が所定角度θth以下である場合、測距センサ2が障害物Oと正対していると判別するものであっても良い。これにより、正対判別部14による判別のロバスト性を向上することができる。 The facing determination unit 14 may calculate the average value of the facing angles θ in a predetermined section. When the calculated average value is equal to or smaller than the predetermined angle θth, the facing determination unit 14 may determine that the distance measurement sensor 2 faces the obstacle O. Thus, the robustness of the discrimination by the facing discrimination unit 14 can be improved.
 また、この所定区間は時間的な区間であっても良く、又は距離的な区間であっても良い。すなわち、この平均値は、車両1が所定時間移動する間に算出された正対角度θの平均値であっても良く、又は車両1が所定距離移動する間に算出された正対角度θの平均値であっても良い。 The predetermined section may be a time section or a distance section. That is, this average value may be an average value of the facing angle θ calculated while the vehicle 1 moves for a predetermined time, or the average value of the facing angle θ calculated while the vehicle 1 moves for a predetermined distance. The average value may be used.
 次に、図15を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の具体例について説明する。 Next, with reference to FIG. 15, a specific example of the feature amount used for calculating the first parameter value and the second parameter value will be described.
 図15Aは、車両1が障害物Oに接近したときの走行経路TRの例を示している。図15Bは、このときの正対角度θの時間変化の例を示している。図15Cは、このときの特徴量を示すデータの例を示している。すなわち、図15Cにおける個々の丸印が特徴量を示すデータに対応している。 FIG. 15A shows an example of the traveling route TR when the vehicle 1 approaches the obstacle O. FIG. 15B shows an example of a temporal change of the facing angle θ at this time. FIG. 15C shows an example of data indicating the feature amount at this time. That is, each circle in FIG. 15C corresponds to data indicating a feature amount.
 図15Aに示す如く車両1が障害物Oに接近することにより、図15Bに示す如く正対角度θが次第に小さくなる。時刻t2にて正対角度θが所定角度θth以下になり、時刻t3にて正対状態における特徴量を示すデータの蓄積数が所定数を超えたものとする。この場合、障害物判別部13は、時刻t2~t3の時間区間Δt2における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。 に よ り When the vehicle 1 approaches the obstacle O as shown in FIG. 15A, the facing angle θ gradually decreases as shown in FIG. 15B. At time t2, the facing angle θ becomes equal to or smaller than the predetermined angle θth, and at time t3, the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number. In this case, the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section Δt2 from time t2 to t3.
 なお、障害物判別部13は、正対状態における特徴量を用いて障害物の種別を判別するのに加えて、測距センサ2が障害物Oと正対してない状態(以下「非正対状態」という。)における特徴量を用いて障害物の種別を判別するものであっても良い。すなわち、障害物判別部13は、時刻t2~t3の時間区間Δt2における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するのに加えて、時刻t1~t2の時間区間Δt1における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。 The obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state, and also determines whether the distance measuring sensor 2 is not directly facing the obstacle O (hereinafter referred to as “non-facing”). The type of the obstacle may be determined using the feature amount in “state”). That is, the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section Δt2 between the times t2 and t3, and also calculates the feature in the time section Δt1 between the times t1 and t2. The first parameter value and the second parameter value may be calculated using the amounts.
 また、障害物判別部13は、非正対状態における特徴量を用いて障害物の種別を判別した場合、判別結果の信頼度が低いことを運転支援制御部15aに通知するものであっても良い。運転支援制御部15aは、障害物判別部13により通知された信頼度の高低に応じて、運転支援制御の内容を異ならしめるものであっても良い。 Further, when the obstacle determination unit 13 determines the type of the obstacle using the feature amount in the non-facing state, the obstacle determination unit 13 may notify the driving support control unit 15a that the reliability of the determination result is low. good. The driving support control unit 15a may vary the content of the driving support control according to the degree of reliability notified by the obstacle determination unit 13.
 次に、図16~図18を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の他の例について説明する。 Next, another example of the feature amount used for calculating the first parameter value and the second parameter value will be described with reference to FIGS.
 図16に示す如く、障害物検知装置100aは正対判別部14を有しないものであっても良い。この場合、障害物判別部13は、所定の区間(以下「検知区間」という。)Δにおける特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。より具体的には、障害物判別部13は、検知区間Δにおける特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。 障害 As shown in FIG. 16, the obstacle detection device 100a may not include the facing determination unit 14. In this case, the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in a predetermined section (hereinafter, referred to as a “detection section”) Δ. More specifically, when data indicating the feature amount in the detection section Δ is accumulated, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount indicated by the data. .
 図17は、この場合のフローチャートを示している。ステップST13に次いで、ステップST18にて、障害物判別部13は、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。検知区間Δにおける特徴量を示すデータが未蓄積である場合(ステップST18“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、検知区間Δにおける特徴量を示すデータが蓄積済みである場合(ステップST18“YES”)、運転支援装置200aの処理はステップST16に進む。ステップST16にて、障害物判別部13は、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。 FIG. 17 shows a flowchart in this case. Subsequent to step ST13, in step ST18, the obstacle determination unit 13 determines whether or not data indicating the feature amount in the detection section Δ has been accumulated. When the data indicating the feature amount in the detection section Δ has not been accumulated (“NO” in step ST18), the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again. On the other hand, when the data indicating the feature amount in the detection section Δ has been accumulated (“YES” in step ST18), the process of the driving support device 200a proceeds to step ST16. In step ST16, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
 ステップST18における判定方法の具体例は以下のとおりである。 具体 A specific example of the determination method in step ST18 is as follows.
 例えば、障害物判別部13は、距離値算出部23により算出された距離値を示す情報又は反射点位置算出部24により算出された座標値を示す情報を障害物検知部11から取得する。障害物判別部13は、当該取得された情報を用いて、車両1と障害物間の距離の変化量を算出する。障害物判別部13は、当該算出された変化量に基づき、車両1が検知区間Δを走行済みであるか否かを判定することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。なお、図16において、障害物検知部11と障害物判別部13間の接続線は図示を省略している。 For example, the obstacle determining unit 13 acquires from the obstacle detecting unit 11 information indicating the distance value calculated by the distance value calculating unit 23 or information indicating the coordinate value calculated by the reflection point position calculating unit 24. The obstacle determining unit 13 calculates the amount of change in the distance between the vehicle 1 and the obstacle using the acquired information. The obstacle determining unit 13 determines whether or not the vehicle 1 has traveled in the detection section Δ based on the calculated change amount, so that the data indicating the feature amount in the detection section Δ has been accumulated. It is determined whether or not. In FIG. 16, the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
 または、例えば、障害物判別部13は、自車位置算出部26により算出された自車位置を示す情報を障害物検知部11から取得する。障害物判別部13は、当該取得された情報を用いて、車両1の移動量を算出する。障害物判別部13は、当該算出された移動量に基づき、車両1が検知区間Δを走行済みであるか否かを判定することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。なお、図16において、障害物検知部11と障害物判別部13間の接続線は図示を省略している。 Or, for example, the obstacle determining unit 13 acquires information indicating the own vehicle position calculated by the own vehicle position calculating unit 26 from the obstacle detecting unit 11. The obstacle determining unit 13 calculates the moving amount of the vehicle 1 using the obtained information. The obstacle determination unit 13 determines whether or not the vehicle 1 has traveled in the detection section Δ based on the calculated movement amount, so that data indicating the feature amount in the detection section Δ has been accumulated. It is determined whether or not. In FIG. 16, the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
 または、例えば、障害物判別部13は、特徴量を示すデータの蓄積時間を算出する。障害物判別部13には、検知区間Δにおける特徴量を示すデータの蓄積時間の予測値に対応する閾値が予め記憶されている。障害物判別部13は、当該算出された蓄積時間を当該予め記憶されている閾値と比較することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。 Or, for example, the obstacle determining unit 13 calculates the accumulation time of the data indicating the feature amount. The threshold value corresponding to the predicted value of the accumulation time of the data indicating the feature amount in the detection section Δ is stored in the obstacle determining unit 13 in advance. The obstacle determination unit 13 compares the calculated accumulation time with the previously stored threshold to determine whether or not the data indicating the feature amount in the detection section Δ has been accumulated.
 または、例えば、障害物判別部13は、特徴量を示すデータの蓄積数を算出する。障害物判別部13には、検知区間Δにおける特徴量を示すデータの蓄積数の予測値に対応する閾値が予め記憶されている。障害物判別部13は、当該算出された蓄積数を当該予め記憶されている閾値と比較することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。 Or, for example, the obstacle determining unit 13 calculates the number of stored data indicating the feature amount. The threshold value corresponding to the predicted value of the number of accumulated data indicating the feature amount in the detection section Δ is stored in the obstacle determining unit 13 in advance. The obstacle determination unit 13 determines whether or not the data indicating the feature amount in the detection section Δ has been stored by comparing the calculated storage number with the threshold value stored in advance.
 または、例えば、障害物判別部13は、上記4個の方法のうちのいずれか2個以上の方法の各々により、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。障害物判別部13は、これらの方法による判定結果の論理積を取る。すなわち、障害物判別部13は、これらの方法の全てにより検知区間Δにおける特徴量を示すデータが蓄積済みである旨の判定結果が得られた場合、当該判定結果を確定する。 Alternatively, for example, the obstacle determining unit 13 determines whether or not the data indicating the feature amount in the detection section Δ has been accumulated by each of two or more of the above four methods. . The obstacle determining unit 13 calculates the logical product of the determination results obtained by these methods. That is, the obstacle determination unit 13 determines the determination result when the determination result indicating that the data indicating the feature amount in the detection section Δ has been accumulated by all of these methods.
 なお、図18に示す如く、車両1の移動に応じて検知区間Δが随時更新されるものであっても良い。この場合、障害物判別部13は、車両1が走行済みの最新の検知区間Δにおける特徴量を示すデータを用いて障害物の種別を判別するものであっても良い。または、障害物判別部13は、第1の検知区間Δ1における特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別し、その後、第2の検知区間Δ2における特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別し、最終的に、第nの検知区間Δnにおける特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別するものであっても良い。 As shown in FIG. 18, the detection section Δ may be updated at any time in accordance with the movement of the vehicle 1. In this case, the obstacle determination unit 13 may determine the type of the obstacle using the data indicating the feature amount in the latest detection section Δ in which the vehicle 1 has traveled. Alternatively, when data indicating the feature amount in the first detection section Δ1 is accumulated, the obstacle determination unit 13 determines the type of the obstacle using the feature amount indicated by the data, and then determines the type of the obstacle. When data indicating the feature amount in the detection section Δ2 is accumulated, the type of the obstacle is determined using the feature amount indicated by the data, and finally, the data indicating the feature amount in the n-th detection section Δn is obtained. When the information is accumulated, the type of the obstacle may be determined using the feature amount indicated by the data.
 また、図18Aに示す如く、検知区間Δ1~Δnは車両1が前進するにつれて次第に大きくなるものであっても良い。または、図18Bに示す如く、検知区間Δ1~Δnの各々が一定の大きさを有するものであっても良い。 As shown in FIG. 18A, the detection sections Δ1 to Δn may gradually increase as the vehicle 1 moves forward. Alternatively, as shown in FIG. 18B, each of the detection sections Δ1 to Δn may have a certain size.
 次に、図19を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の他の例について説明する。 Next, another example of the feature amount used for calculating the first parameter value and the second parameter value will be described with reference to FIG.
 障害物判別部13は、障害物検知装置100aが正対判別部14を有する構成において(図10参照)、所定の検知区間Δにおける特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。すなわち、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えており、かつ、検知区間Δにおける特徴量を示すデータが蓄積済みである場合、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。 In the configuration in which the obstacle detection device 100a includes the facing identification unit 14 (see FIG. 10), the obstacle determination unit 13 calculates a first parameter value and a second parameter value using a feature amount in a predetermined detection section Δ. It may be something to do. That is, when the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number and the data indicating the feature amount in the detection section Δ has been accumulated, the obstacle determination unit 13 May be used to calculate the first parameter value and the second parameter value using the characteristic amount indicated by.
 図19は、この場合のフローチャートを示している。正対状態における特徴量を示すデータの蓄積数が所定数を超えている場合(ステップST15“YES”)、ステップST18にて、障害物判別部13は、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。検知区間Δにおける特徴量を示すデータが未蓄積である場合(ステップST18“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、検知区間Δにおける特徴量を示すデータが蓄積済みである場合(ステップST18“YES”)、運転支援装置200aの処理はステップST16に進む。ステップST16にて、障害物判別部13は、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。 FIG. 19 shows a flowchart in this case. If the number of accumulated data indicating the feature amount in the facing state exceeds a predetermined number (“YES” in step ST15), in step ST18, the obstacle determination unit 13 determines that the data indicating the feature amount in the detection section Δ It is determined whether or not the data has been stored. When the data indicating the feature amount in the detection section Δ has not been accumulated (“NO” in step ST18), the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again. On the other hand, when the data indicating the feature amount in the detection section Δ has been accumulated (“YES” in step ST18), the process of the driving support device 200a proceeds to step ST16. In step ST16, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
 次に、図20及び図21を参照して、車両1における4個の測距センサ2~2の設置位置の他の例について説明する。 Next, another example of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1 will be described with reference to FIGS.
 図20及び図21は、車両1における4個の測距センサ2~2の設置位置の他の例を示している。図20に及び図21に示す如く、4個の測距センサ2~2は、車両1の上下方向(すなわち高さ方向)に対する設置位置が互いに同等なものであっても良い。 FIG. 20 and FIG. 21 show other examples of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1. As shown in Oyobi diagram 21 in FIG. 20, four distance measuring sensors 2 1 to 2 4, the installation position may be those equivalent to each other with respect to the vertical direction of the vehicle 1 (i.e. a height direction).
 また、図20は、障害物Oが走行障害物(より具体的には壁)である場合における、測距センサ2により送受信される直接波の伝搬経路PP11、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP21、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP31及び測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP41の例を示している。また、図20は、これらの直接波及び間接波に対応する反射点RP11,RP21,RP31,RP41の例、並びに障害物Oに対応するグループGの例を示している。 Further, FIG. 20 is transmitting, the obstacle O is traveling obstacle when it is (more specifically on the wall), the distance measurement sensor 2 1 propagation of the direct wave to be transmitted and received by the path PP 11, the distance measuring sensor 2 1 has been measuring sensor 2 of the indirect waves received by two propagation paths PP 21, the propagation path of the indirect waves received by the distance measurement sensor 2 3 is transmitted by the measuring sensor 2 1 PP 31 and distance measuring sensor 2 1 shows an example of a propagation path PP 41 of the indirect waves received by the distance measurement sensor 2 4 is transmitted by. FIG. 20 shows an example of reflection points RP 11 , RP 21 , RP 31 , RP 41 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
 また、図21は、障害物Oが路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)である場合における、測距センサ2により送受信される直接波の伝搬経路PP11、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP21、測距センサ2により送受信される直接波の伝搬経路PP33及び測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP43の例を示している。また、図21は、これらの直接波及び間接波に対応する反射点RP11,RP21,RP33,RP43の例、並びに障害物Oに対応するグループGの例を示している。 Further, FIG. 21 (more specifically, a curb) obstacle O is road obstacle or road obstacle when it is (more specifically, the step), the direct wave transmitted and received by the distance measurement sensor 2 1 propagation path PP 11, the distance measurement sensor 2 1 indirect wave propagation paths PP 21 which is received by the distance measurement sensor 2 2 is transmitted by the propagation path PP 33 and ranging of the direct wave transmitted and received by the distance measurement sensor 2 3 sensor 2 3 is transmitted by shows an example of a propagation path PP 43 of the indirect waves received by the distance measuring sensor 2 4. FIG. 21 shows an example of reflection points RP 11 , RP 21 , RP 33 , RP 43 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
 すなわち、実施の形態1にて説明したとおり、距離値算出部23による距離値の算出及び反射点位置算出部24による座標値の算出には、直接波に代えて又は加えて間接波が用いられるものであっても良い。直接波に加えて間接波を用いることにより、直接波のみを用いる場合に比して、各回の探索波の送信により得られる反射点の個数を増やすことができる。これにより、個々のグループに含まれる反射点の個数を増やすことができる。この結果、障害物検知部11による障害物の位置の判定精度を向上することができるのはもちろんのこと、障害物判別部13による障害物の種別の判別精度、すなわち障害物の高さの判断精度を向上することができる。 That is, as described in the first embodiment, the distance value calculation unit 23 calculates the distance value and the reflection point position calculation unit 24 calculates the coordinate value using the indirect wave instead of or in addition to the direct wave. It may be something. By using the indirect wave in addition to the direct wave, the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used. Thus, the number of reflection points included in each group can be increased. As a result, it is possible to improve the accuracy of determining the position of the obstacle by the obstacle detection unit 11, and also to determine the accuracy of the type of the obstacle by the obstacle determination unit 13, that is, the determination of the height of the obstacle. Accuracy can be improved.
 次に、運転支援装置200aのそのほかの変形例について説明する。 Next, another modified example of the driving support device 200a will be described.
 まず、運転支援制御部15aによる運転支援制御は、車両1と障害物の衝突を回避するための制御であれば良く、車両1のブレーキを作動させる制御に限定されるものではない。例えば、運転支援制御部15aによる運転支援制御は、車両1が障害物に衝突する可能性の有無を判定して、当該可能性があると判定された場合、その旨を車両1の運転者に警告する制御であっても良い。車両1の運転者は、当該警告に応じて、車両1のブレーキペダルを操作することにより車両1を停止させるものであっても良い。 First, the driving support control by the driving support control unit 15a may be a control for avoiding a collision between the vehicle 1 and an obstacle, and is not limited to a control for operating the brake of the vehicle 1. For example, the driving support control by the driving support control unit 15a determines whether there is a possibility that the vehicle 1 will collide with an obstacle, and if it is determined that there is a possibility, the driver 1 of the vehicle 1 is notified of the possibility. The control may be a warning. The driver of the vehicle 1 may stop the vehicle 1 by operating the brake pedal of the vehicle 1 in response to the warning.
 また、車両1における4個の測距センサ2~2の設置位置は上記の例に限定されるものではない。例えば、4個の測距センサ2~2のうちのより外側に配置されている2個の測距センサ2,2とより内側に配置されている2個の測距センサ2,2とは、車両1の前後方向(すなわち奥行方向)に対する設置位置が互いに異なるものであっても良い。 Further, the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1 are not limited to the above example. For example, the four distance measuring sensors 2 1 to 2 more two distance measuring sensors are disposed outside 2 1, 2 4 two distance measuring sensors that are disposed more to the inside and 2 2 of the 4 , and 2 3, the installation position with respect to the longitudinal direction (i.e. the depth direction) of the vehicle 1 may be different from each other.
 また、4個の測距センサ2~2のうちの両端部に配置されている測距センサ2,2は、車両1の斜め前方に向けられているものであっても良い。例えば、測距センサ2は車両1の左斜め前方に向けられているものであっても良く、測距センサ2は車両1の右斜め前方に向けられているものであっても良い。 Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely forward of the vehicle 1. For example, the distance measurement sensor 2 1 may be those which are directed to the left oblique front of the vehicle 1, the distance measuring sensor 2 4 may be one which is directed to the right oblique front of the vehicle 1.
 また、測距センサ2は、車両1の後端部(より具体的にはリアバンパー部)に設けられており、かつ、車両1の後方に向けられているものであっても良い。この場合、障害物検知部11は、車両1が後退しているとき、測距センサ2に探索波を1回以上送信させることにより、車両1の後方にある障害物を検知するものであっても良い。また、4個の測距センサ2~2のうちの両端部に配置されている測距センサ2,2は、車両1の斜め後方に向けられているものであっても良い。 Further, the distance measuring sensor 2 may be provided at a rear end portion (more specifically, a rear bumper portion) of the vehicle 1 and may be directed to the rear of the vehicle 1. In this case, the obstacle detection unit 11 detects an obstacle behind the vehicle 1 by causing the distance measurement sensor 2 to transmit the search wave at least once when the vehicle 1 is moving backward. Is also good. Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely rearward of the vehicle 1.
 また、測距センサ2の個数は2個以上であれば良く、4個に限定されるものではない。すなわち、測距センサ2は、4個の測距センサ2~2に代えてN個の測距センサ2~2により構成されているものであっても良い。 Further, the number of the distance measuring sensors 2 may be two or more, and is not limited to four. That is, the distance measuring sensor 2 may be one that is constituted by four instead of distance measuring sensor 2 1 ~ 2 4 N pieces of distance measuring sensors 2 1 ~ 2 N.
 また、障害物検知装置100aは、実施の形態1にて説明したものと同様の種々の変形例、すなわち障害物検知装置100と同様の種々の変形例を採用することができる。 The obstacle detection device 100a can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the obstacle detection device 100.
 以上のように、実施の形態2の運転支援装置200aは、障害物検知装置100aと、障害物判別部13による障害物の高さの判断結果に応じた運転支援制御を実行する運転支援制御部15aと、を備える。障害物検知装置100aを用いることにより、運転支援制御の精度を向上することができる。 As described above, the driving support device 200a according to the second embodiment includes the obstacle detection device 100a and the driving support control unit that performs the driving support control according to the result of the determination of the height of the obstacle by the obstacle determination unit 13. 15a. By using the obstacle detection device 100a, the accuracy of the driving support control can be improved.
 また、運転支援制御は、衝突回避に係る制御である。障害物検知装置100aを用いることにより、車両1の遠方(より具体的には5メートル以上遠方)に位置する障害物の高さを判断することができる。この結果、車両1のブレーキを作動させる制御の実行要否を早期に決定することができるため、制動にかける時間を確保することができ、急ブレーキの発生を抑制することができる。また、車両1の前方又は後方にある障害物が路面障害物であるとき、誤警報の発生を抑制することができる。また、車両1の上下方向(すなわち高さ方向)に対する測距センサ2の設置位置の制約をなくすことができるため、車両1の意匠性を向上することができ、設計の自由度を向上することができる。 運 転 Driving support control is control related to collision avoidance. By using the obstacle detection device 100a, it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, 5 meters or more). As a result, the necessity of executing the control for operating the brake of the vehicle 1 can be determined at an early stage, so that the time for braking can be secured and the occurrence of sudden braking can be suppressed. Further, when an obstacle in front of or behind the vehicle 1 is a road surface obstacle, occurrence of a false alarm can be suppressed. In addition, since it is possible to eliminate restrictions on the installation position of the distance measuring sensor 2 in the vertical direction (that is, the height direction) of the vehicle 1, the design of the vehicle 1 can be improved, and the degree of freedom in design can be improved. Can be.
 また、障害物検知装置100aは、測距センサ2が障害物と正対しているか否かを判別する正対判別部14を備え、障害物判別部13は、測距センサ2が障害物と正対している状態における特徴量を用いて障害物の種別を判別する。これにより、障害物の種別の判別精度を更に向上することができる。 In addition, the obstacle detection device 100a includes a facing determination unit 14 that determines whether or not the distance measuring sensor 2 is directly facing an obstacle. The type of the obstacle is determined using the feature amount in the facing state. Thereby, the accuracy of determining the type of the obstacle can be further improved.
 また、障害物判別部13は、所定の検知区間Δにおける特徴量を用いて第2パラメータ値を算出する。これにより、第2パラメータ値を用いた判別の信頼度を向上することができる。 {Circle around (2)} The obstacle determining unit 13 calculates the second parameter value using the feature amount in the predetermined detection section Δ. Thereby, the reliability of the determination using the second parameter value can be improved.
実施の形態3.
 図22は、実施の形態3に係る運転支援装置の要部を示すブロック図である。図22を参照して、実施の形態3の運転支援装置200bについて説明する。なお、図22において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 22 is a block diagram illustrating a main part of the driving support device according to the third embodiment. Referring to FIG. 22, a driving support device 200b according to the third embodiment will be described. In FIG. 22, the same blocks as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 図22に示す例において、測距センサ2は1個の測距センサ2により構成されている。1個の測距センサ2は、車両1の左側面部に設けられており、かつ、車両1の左方に向けられている。 In the example shown in FIG. 22, the distance measuring sensor 2 is constituted by a single distance measuring sensor 2 1. One measuring sensor 2 1 is provided on the left side surface portion of the vehicle 1, and is directed to the left side of the vehicle 1.
 障害物検知部11は、車両1が所定速度(例えば30キロメートル毎時)以下の速度にて走行しているとき、測距センサ2に探索波を所定の時間間隔にて複数回送信させることにより、車両1の左方にある障害物を検知するものである。障害物検知部11の内部構成は、実施の形態1にて図2を参照して説明したものと同様であるため、図示及び説明を省略する。 When the vehicle 1 is traveling at a speed equal to or less than a predetermined speed (for example, 30 kilometers per hour), the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit a search wave a plurality of times at predetermined time intervals. It detects an obstacle on the left side of the vehicle 1. The internal configuration of the obstacle detection unit 11 is the same as that described in Embodiment 1 with reference to FIG.
 ここで、測距センサ2が探索波を1回送信したとき、例えば複数個の障害物が当該探索波を反射することにより、又は1個の障害物における複数個の部位が当該探索波を反射することにより、測距センサ2が反射波を複数回受信することがある。以下、この場合における第1回目の反射波に対応する距離値に基づく反射点を「最近反射点」という。また、この場合における第2回目以降の反射波に対応する距離値に基づく反射点を「非最近反射点」という。 Here, when the distance measurement sensor 2 transmits the search wave once, for example, a plurality of obstacles reflect the search wave, or a plurality of parts in one obstacle reflect the search wave. By doing so, the distance measuring sensor 2 may receive the reflected wave a plurality of times. Hereinafter, the reflection point based on the distance value corresponding to the first reflected wave in this case is referred to as a “recent reflection point”. In this case, the reflection point based on the distance value corresponding to the second and subsequent reflected waves is referred to as a “non-most recently reflected point”.
 この場合、距離値算出部23は、第1回目の反射波に対応する距離値を算出する一方、第2回目以降の反射波に対応する距離値は算出しないようになっている。すなわち、反射点位置算出部24は、最近反射点の位置を算出する一方、非最近反射点の位置は算出しないようになっている。換言すれば、グループ化部25は、最近反射点をグルーピングの対象に含める一方、非最近反射点はグルーピングの対象から除外するようになっている。これにより、障害物検知部11による検知結果に含まれるノイズを低減することができる。 In this case, the distance value calculator 23 calculates the distance value corresponding to the first reflected wave, but does not calculate the distance value corresponding to the second and subsequent reflected waves. That is, the reflection point position calculation unit 24 calculates the position of the most recent reflection point, but does not calculate the position of the non-most recently reflection point. In other words, the grouping unit 25 includes the most recently reflected point as a grouping target while excluding the non-mostly reflected point from the grouping targets. Thereby, noise included in the detection result by the obstacle detection unit 11 can be reduced.
 運転支援制御部15bは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、いわゆる「自動駐車」を実現するための制御を実行するものである。 The driving support control unit 15b performs a so-called “obstruction” according to the result of the determination of the position of the obstacle by the obstacle detection unit 11 and the result of the classification of the obstacle by the obstacle determination unit 13 (that is, the result of the determination of the height of the obstacle). The control for realizing "automatic parking" is executed.
 具体的には、例えば、運転支援制御部15bは、互いに隣接する2個の走行障害物(より具体的には駐車車両)間のスペースに対する車両1の駐車の可否を判定する。運転支援制御部15bは、当該スペースに対する車両1の駐車が可能であると判定された場合、車両1のアクセル、ブレーキ及びステアリングなどを制御することにより、車両1を当該スペースに誘導する。このとき、運転支援制御部15bは、当該2個の走行障害物に比して奥側に位置する障害物の有無及び種別に応じて、車両1の駐車位置及び車両1の誘導経路を設定する。駐車位置及び誘導経路の具体例については後述する。 Specifically, for example, the driving support control unit 15b determines whether or not the vehicle 1 can be parked in a space between two adjacent traveling obstacles (more specifically, a parked vehicle). When it is determined that the vehicle 1 can be parked in the space, the driving support control unit 15b controls the accelerator, brake, steering, and the like of the vehicle 1 to guide the vehicle 1 to the space. At this time, the driving support control unit 15b sets the parking position of the vehicle 1 and the guidance route of the vehicle 1 according to the presence and type of the obstacle located on the back side of the two traveling obstacles. . Specific examples of the parking position and the guidance route will be described later.
 障害物検知部11、特徴量抽出部12及び障害物判別部13により、障害物検知装置100bの要部が構成されている。障害物検知装置100b及び運転支援制御部15bにより、運転支援装置200bの要部が構成されている。 The obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 constitute a main part of the obstacle detection device 100b. The obstacle detection device 100b and the driving support control unit 15b constitute a main part of the driving support device 200b.
 運転支援装置200bの要部のハードウェア構成は、実施の形態1にて図3を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、障害物検知部11、特徴量抽出部12、障害物判別部13及び運転支援制御部15bの各々の機能は、プロセッサ31及びメモリ32により実現されるものであっても良く、又は処理回路33により実現されるものであっても良い。 ハ ー ド The hardware configuration of the main part of the driving support device 200b is the same as that described in the first embodiment with reference to FIG. That is, each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the driving support control unit 15b may be realized by the processor 31 and the memory 32, or the processing circuit 33.
 次に、図23のフローチャートを参照して、運転支援装置200bの動作について説明する。 Next, the operation of the driving support device 200b will be described with reference to the flowchart in FIG.
 まず、ステップST21にて、障害物検知部11は、車両1の走行速度を示す信号などを用いて、車両1が所定速度以下の速度にて走行中であるか否かを判定する。これらの信号は、車両1内のコンピュータネットワークから適宜取得される。 First, in step ST21, the obstacle detection unit 11 determines whether the vehicle 1 is traveling at a speed equal to or lower than a predetermined speed, using a signal indicating the traveling speed of the vehicle 1, and the like. These signals are appropriately obtained from a computer network in the vehicle 1.
 車両1が所定速度以下の速度にて走行中である場合(ステップST21“YES”)、ステップST22にて、障害物検知部11は、測距センサ2に探索波を所定の時間間隔にて複数回送信させることにより、車両1の左方にある障害物を検知する。 When the vehicle 1 is traveling at a speed equal to or lower than the predetermined speed (“YES” in step ST21), in step ST22, the obstacle detection unit 11 transmits a plurality of search waves to the distance measurement sensor 2 at predetermined time intervals. By transmitting twice, an obstacle on the left side of the vehicle 1 is detected.
 ステップST22の処理により、1個以上の障害物と原則一対一に対応する1個以上のグループが設定される。個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。次いで、ステップST23にて、特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得する。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出する。 に よ り By the process of step ST22, one or more groups corresponding to one or more obstacles in principle one-to-one are set. Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves. Next, in step ST <b> 23, the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the reception signal corresponding to the plurality of reflected waves. The feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information.
 次いで、ステップST24にて、障害物判別部13は、特徴量抽出部12により抽出された特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断する。 Next, in step ST <b> 24, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount extracted by the feature amount extracting unit 12. The obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group. Judge.
 次いで、ステップST25にて、運転支援制御部15bは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、車両1の自動駐車を実現するための制御を実行する。すなわち、運転支援制御部15bは運転支援制御を実行する。 Next, in step ST25, the driving support control unit 15b determines the position of the obstacle by the obstacle detection unit 11 and determines the type of the obstacle by the obstacle determination unit 13 (that is, determines the height of the obstacle). According to the result, control for realizing automatic parking of the vehicle 1 is executed. That is, the driving support control unit 15b executes the driving support control.
 次に、図24~図27を参照して、駐車位置及び誘導経路の具体例について説明する。 Next, specific examples of the parking position and the guidance route will be described with reference to FIGS.
 図24は、障害物検知部11による検知結果の例を示している。図24に示す如く、グループ化部25により3個の障害物O1~O3に対応する3個のグループG1~G3が設定されたものとする。グループG1は7個の反射点RP1を含むものであり、グループG2は7個の反射点RP2を含むものであり、グループG3は6個の反射点RP3を含むものである。図中、TRは所定速度以下の速度による車両1の走行経路を示している。 FIG. 24 shows an example of a detection result by the obstacle detection unit 11. As shown in FIG. 24, it is assumed that three groups G1 to G3 corresponding to three obstacles O1 to O3 have been set by the grouping unit 25. The group G1 includes seven reflection points RP1, the group G2 includes seven reflection points RP2, and the group G3 includes six reflection points RP3. In the figure, TR indicates a traveling route of the vehicle 1 at a speed equal to or lower than a predetermined speed.
 2個の障害物O1,O2の各々は縦列駐車中の駐車車両である。このため、障害物判別部13は2個の障害物O1,O2の各々が走行障害物であると判別する。運転支援制御部15bは、2個の障害物O1,O2間のスペースSのサイズを車両1のサイズと比較することにより、スペースSに対する車両1の駐車が可能であるか否かを判定する。図24に示す例においては、スペースSのサイズが車両1のサイズよりも大きいため、スペースSに対する車両1の駐車が可能であると判定される。 Each of the two obstacles O1 and O2 is a parked vehicle in parallel parking. Therefore, the obstacle determining unit 13 determines that each of the two obstacles O1 and O2 is a running obstacle. The driving support control unit 15b determines whether or not the vehicle 1 can be parked in the space S by comparing the size of the space S between the two obstacles O1 and O2 with the size of the vehicle 1. In the example shown in FIG. 24, since the size of the space S is larger than the size of the vehicle 1, it is determined that the vehicle 1 can be parked in the space S.
 ここで、2個の障害物O1,O2に比して奥側に位置する障害物O3は壁、縁石又は段差である。障害物O3が壁である場合、障害物判別部13は障害物O3が走行障害物であると判別する。障害物O3が縁石である場合、障害物判別部13は障害物O3が路上障害物であると判別する。障害物Oが段差である場合、障害物判別部13は障害物O3が路面障害物であると判別する。 Here, the obstacle O3 located on the back side of the two obstacles O1 and O2 is a wall, a curb or a step. When the obstacle O3 is a wall, the obstacle determination unit 13 determines that the obstacle O3 is a traveling obstacle. When the obstacle O3 is a curb, the obstacle determination unit 13 determines that the obstacle O3 is a road obstacle. When the obstacle O is a step, the obstacle determination unit 13 determines that the obstacle O3 is a road surface obstacle.
 図25は、障害物O3が走行障害物であると判別された場合における、車両1の誘導経路GR及び車両1の駐車位置の例を示している。障害物O3が走行障害物であると判別された場合、運転支援制御部15bは、車両1が障害物O3に衝突しないような経路により車両1を誘導する。また、運転支援制御部15bは、車両1と障害物O3間の空間が確保される位置に車両1を駐車させる。この空間は、搭乗者の乗降用の空間となる。 FIG. 25 illustrates an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 is determined to be a traveling obstacle. When it is determined that the obstacle O3 is a traveling obstacle, the driving support control unit 15b guides the vehicle 1 through a route that does not cause the vehicle 1 to collide with the obstacle O3. The driving support control unit 15b parks the vehicle 1 at a position where a space between the vehicle 1 and the obstacle O3 is secured. This space is a space for passengers to get on and off.
 図26は、障害物O3が路上障害物又は路面障害物であると判別された場合における、車両1の誘導経路GR及び車両1の駐車位置の例を示している。障害物O3が路上障害物又は路面障害物であると判別された場合、運転支援制御部15bは、車両1のリアバンパー部が障害物O3の上方を通過するような経路により車両1を誘導する。また、運転支援制御部15bは、車両1の左側面部が障害物O3に沿う位置に、より具体的には車両1の左側面部が反射点RP3に沿う位置に車両1を駐車させる。 FIG. 26 illustrates an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 is determined to be a road obstacle or a road surface obstacle. When it is determined that the obstacle O3 is a road obstacle or a road surface obstacle, the driving support control unit 15b guides the vehicle 1 through a route such that the rear bumper of the vehicle 1 passes above the obstacle O3. . The driving support control unit 15b parks the vehicle 1 at a position where the left side of the vehicle 1 is along the obstacle O3, more specifically, at a position where the left side of the vehicle 1 is along the reflection point RP3.
 図27は、仮に障害物O3が存在しない場合における、車両1の誘導経路GR及び車両1の駐車位置の例を示している。障害物O3が存在しない場合、運転支援制御部15bは、奥行方向に対する車両1の左側面部の位置が駐車車両の左側面部の位置と揃うように、すなわち奥行方向に対する車両1の右側面部の位置が駐車車両の右側面部の位置と揃うように車両1を駐車させる。 FIG. 27 shows an example of the guidance route GR of the vehicle 1 and the parking position of the vehicle 1 when the obstacle O3 does not exist. When the obstacle O3 does not exist, the driving support control unit 15b determines that the position of the left side of the vehicle 1 in the depth direction is aligned with the position of the left side of the parked vehicle, that is, the position of the right side of the vehicle 1 in the depth direction. The vehicle 1 is parked so as to be aligned with the right side of the parked vehicle.
 次に、図28~図31を参照して、運転支援装置200bの変形例について説明する。 Next, a modified example of the driving support device 200b will be described with reference to FIGS.
 上記の例において、反射点位置算出部24は、最近反射点の位置を算出する一方、非最近反射点の位置は算出しないものであった。換言すれば、グループ化部25は、最近反射点をグルーピングの対象に含める一方、非最近反射点はグルーピングの対象から除外するものであった。 In the above example, the reflection point position calculation unit 24 calculates the position of the nearest reflection point, but does not calculate the position of the non-closest reflection point. In other words, the grouping unit 25 includes the most recently reflected point as a grouping target while excluding the non-mostly reflected point from the grouping target.
 これに対して、以下の変形例において、反射点位置算出部24は、最近反射点の位置を算出するのはもちろんのこと、非最近反射点の位置も算出するようになっている。換言すれば、グループ化部25は、最近反射点をグルーピングの対象に含めるのはもちろんのこと、非最近反射点もグルーピングの対象に含めるようになっている。 On the other hand, in the following modified example, the reflection point position calculation unit 24 calculates not only the position of the most recent reflection point but also the position of the non-most recently reflection point. In other words, the grouping unit 25 not only includes the most recently reflected point in the grouping target, but also includes the non-most recently reflected point in the grouping target.
 例えば、図28に示す如く、縦列駐車中の駐車車両(障害物O1,O2)の奥側に壁又は縁石(障害物O3)があり、かつ、縦列駐車中の駐車車両(障害物O1,O2)の手前側に段差(障害物O4)があるものとする。すなわち、車両1と駐車車両(障害物O1,O2)間に段差(障害物O4)があるものとする。反射点位置算出部24が最近反射点の位置のみを算出するものである場合、図29Aに示す如く、障害物O4に対応する反射点RP4の位置のみが算出されて、障害物O4に対応するグループG4のみが設定される。この結果、他の障害物O1~O3が検知されないため、スペースSに対する車両1の駐車の可否を判定することができない。また、車両1の駐車位置及び車両1の誘導経路を設定することもできない。すなわち、車両1を駐車可能なスペースSが存在するにもかかわらず、車両1の駐車が不可能であるという誤判定が発生する。 For example, as shown in FIG. 28, there is a wall or a curb (obstacle O3) on the back side of a parked vehicle (obstacle O1, O2) in parallel parking, and a parked vehicle (obstacle O1, O2) in parallel parking. It is assumed that there is a step (obstacle O4) in front of (). That is, it is assumed that there is a step (obstacle O4) between the vehicle 1 and the parked vehicle (obstacles O1, O2). When the reflection point position calculation unit 24 calculates only the position of the latest reflection point, as shown in FIG. 29A, only the position of the reflection point RP4 corresponding to the obstacle O4 is calculated and corresponds to the obstacle O4. Only the group G4 is set. As a result, since other obstacles O1 to O3 are not detected, it is not possible to determine whether the vehicle 1 can be parked in the space S. In addition, the parking position of the vehicle 1 and the guidance route of the vehicle 1 cannot be set. That is, there is an erroneous determination that the vehicle 1 cannot be parked even though there is a space S where the vehicle 1 can be parked.
 これに対して、反射点位置算出部24が最近反射点及び非最近反射点の位置を算出することにより、図29Bに示す如く、障害物O1~O4に対応する反射点RP1~RP4の位置が算出されて、障害物O1~O4に対応するグループG1~G4が設定される。また、2個の障害物O1,O2の各々が走行障害物であると判別されて、奥側の障害物O3が走行障害物又は路上障害物であると判別されて、手前側の障害物O4が路面障害物であると判別される。このため、スペースSに対する車両1の駐車の可否を判定することができ、かつ、車両1の駐車位置及び車両1の誘導経路を設定することができる。また、車両1を誘導するとき、車両1が障害物O4を乗り越えるように車両1のアクセル、ブレーキ及びステアリングなどを制御することができる。 On the other hand, as shown in FIG. 29B, the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-most recent reflection point. The calculated groups G1 to G4 corresponding to the obstacles O1 to O4 are set. Further, each of the two obstacles O1 and O2 is determined to be a traveling obstacle, the rear obstacle O3 is determined to be a traveling obstacle or a road obstacle, and the front obstacle O4 is determined. Is determined to be a road surface obstacle. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1. When guiding the vehicle 1, the accelerator, brake, steering, and the like of the vehicle 1 can be controlled so that the vehicle 1 gets over the obstacle O4.
 または、例えば、図30に示す如く、並列駐車中の駐車車両(障害物O1,O2)の奥側に縁石(障害物O3)があり、かつ、並列駐車中の駐車車両(障害物O1,O2)の手前側に段差(障害物O4)があるものとする。すなわち、いわゆる「2段縁石構造」による駐車用のスペースSがあるものとする。この場合、反射点位置算出部24が最近反射点及び非最近反射点の位置を算出することにより、障害物O1~O4に対応する反射点RP1~RP4の位置が算出されて、障害物O1~O4に対応するグループG1~G4が設定される。また、2個の障害物O1,O2の各々が走行障害物であると判別されて、奥側の障害物O3が路上障害物であると判別されて、手前側の障害物O4が路面障害物であると判別される。このため、スペースSに対する車両1の駐車の可否を判定することができ、かつ、車両1の駐車位置及び車両1の誘導経路を設定することができる。また、車両1を誘導するとき、車両1が障害物O4を乗り越えるように車両1のアクセル、ブレーキ及びステアリングなどを制御することができる。 Alternatively, for example, as shown in FIG. 30, there is a curb (obstacle O3) behind the parked vehicle (obstacles O1 and O2) in parallel parking, and the parked vehicle (obstacles O1 and O2) in parallel parking. It is assumed that there is a step (obstacle O4) in front of (). That is, it is assumed that there is a parking space S having a so-called “two-step curb structure”. In this case, the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-closest reflection point, and the obstacles O1 to O4 are calculated. Groups G1 to G4 corresponding to O4 are set. Further, each of the two obstacles O1 and O2 is determined to be a traveling obstacle, the rear obstacle O3 is determined to be a road obstacle, and the front obstacle O4 is determined to be a road obstacle. Is determined. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1. When guiding the vehicle 1, the accelerator, brake, steering, and the like of the vehicle 1 can be controlled so that the vehicle 1 gets over the obstacle O4.
 または、例えば、図31に示す如く、並列駐車中の駐車車両(障害物O1,O2)の奥側に壁(障害物O3)があり、かつ、並列駐車中の駐車車両(障害物O1,O2)間に車留め(障害物O4)があるものとする。この場合、反射点位置算出部24が最近反射点及び非最近反射点の位置を算出することにより、障害物O1~O4に対応する反射点RP1~RP4の位置が算出されて、障害物O1~O4に対応するグループG1~G4が設定される。また、2個の障害物O1,O2の各々が走行障害物であると判別されて、奥側の障害物O3が路上障害物であると判別されて、2個の障害物O1,O2間の障害物O3が路上障害物であると判別される。このため、スペースSに対する車両1の駐車の可否を判定することができ、かつ、車両1の駐車位置及び車両1の誘導経路を設定することができる。また、車両1のリアバンパー部が障害物O4の上方に位置し、かつ、車両1のリアバンパー部が障害物O3に衝突しない位置にて車両1を駐車させることができる。 Alternatively, for example, as shown in FIG. 31, there is a wall (obstacle O3) behind the parked vehicle (obstacles O1 and O2) in parallel parking and the parked vehicle (obstacles O1 and O2) in parallel parking. It is assumed that there is a wheel stop (obstacle O4) in between. In this case, the positions of the reflection points RP1 to RP4 corresponding to the obstacles O1 to O4 are calculated by the reflection point position calculation unit 24 calculating the positions of the latest reflection point and the non-closest reflection point, and the obstacles O1 to O4 are calculated. Groups G1 to G4 corresponding to O4 are set. Further, each of the two obstacles O1 and O2 is determined to be a traveling obstacle, the obstacle O3 on the far side is determined to be a road obstacle, and the distance between the two obstacles O1 and O2 is determined. The obstacle O3 is determined to be a road obstacle. Therefore, it is possible to determine whether or not the vehicle 1 can be parked in the space S, and to set the parking position of the vehicle 1 and the guidance route of the vehicle 1. Further, the vehicle 1 can be parked at a position where the rear bumper portion of the vehicle 1 is located above the obstacle O4 and the rear bumper portion of the vehicle 1 does not collide with the obstacle O3.
 また、互いに近接配置されている2個のグループ(例えば図31におけるグループG3,G4)の各々についての高さの判断結果を用いることにより、これらのグループが互いに異なる障害物に対応するものであるのか、又は互いに同一の障害物に対応するものであるのかを識別することが可能となる。すなわち、これらのグループに含まれる反射点が互いに異なる障害物による反射波に対応するものであるのか、又は互いに同一の障害物による反射波(いわゆる「多重反射波」)に対応するものであるのかを識別することが可能となる。障害物検知部11は、障害物判別部13による障害物の高さの判断結果を用いて、当該識別を実行するものであっても良い。 Also, by using the height determination results for each of the two groups (for example, groups G3 and G4 in FIG. 31) arranged close to each other, these groups correspond to different obstacles. , Or whether they correspond to the same obstacle. That is, whether the reflection points included in these groups correspond to the reflection waves due to different obstacles or to the reflection points due to the same obstacle (so-called “multiple reflection waves”). Can be identified. The obstacle detection unit 11 may execute the identification using the result of the determination of the height of the obstacle by the obstacle determination unit 13.
 次に、運転支援装置200bのそのほかの変形例について説明する。 Next, another modified example of the driving support device 200b will be described.
 まず、運転支援制御部15bによる運転支援制御は、車両1の駐車支援に係る制御であれば良く、車両1の自動駐車を実現するための制御に限定されるものではない。例えば、運転支援制御部15bによる運転支援制御は、車両1の駐車位置を設定して、当該設定された駐車位置を車両1の運転者に通知する制御であっても良い。車両1の運転者は、当該通知された駐車位置に対して、いわゆる「手動駐車」により車両1を駐車させるものであっても良い。 First, the driving support control by the driving support control unit 15b may be any control related to the parking support of the vehicle 1, and is not limited to the control for realizing the automatic parking of the vehicle 1. For example, the driving support control by the driving support control unit 15b may be control for setting a parking position of the vehicle 1 and notifying the driver of the vehicle 1 of the set parking position. The driver of the vehicle 1 may park the vehicle 1 by so-called “manual parking” at the notified parking position.
 また、測距センサ2は、車両1の右側部に設けられており、かつ、車両1の右方に向けられているものであっても良い。この場合、障害物検知部11は、車両1が所定速度以下の速度にて走行しているとき、測距センサ2に探索波を所定の時間間隔にて複数回送信させることにより、車両1の右方にある障害物を検知するものであっても良い。 The distance measuring sensor 2 may be provided on the right side of the vehicle 1 and directed to the right of the vehicle 1. In this case, when the vehicle 1 is traveling at a speed equal to or lower than the predetermined speed, the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit the search wave a plurality of times at predetermined time intervals, thereby enabling the vehicle 1 It may detect an obstacle on the right side.
 また、測距センサ2の個数は1個以上であれば良く、1個に限定されるものではない。すなわち、測距センサ2は、1個の測距センサ2に代えてN個の測距センサ2~2により構成されているものであっても良い。 Further, the number of the distance measuring sensors 2 may be one or more, and is not limited to one. That is, the distance measuring sensor 2 may be one that is constituted by one instead of the distance measuring sensor 2 1 N pieces of distance measuring sensors 2 1 ~ 2 N.
 また、障害物検知装置100bは、実施の形態1にて説明したものと同様の種々の変形例、すなわち障害物検知装置100と同様の種々の変形例を採用することができる。 The obstacle detection device 100b can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the obstacle detection device 100.
 以上のように、実施の形態3の運転支援装置200bは、障害物検知装置100bと、障害物判別部13による障害物の高さの判断結果に応じた運転支援制御を実行する運転支援制御部15bと、を備える。障害物検知装置100bを用いることにより、運転支援制御の精度を向上することができる。 As described above, the driving assistance device 200b according to the third embodiment includes the obstacle detection device 100b and the driving assistance control unit that performs the driving assistance control according to the result of the determination of the height of the obstacle by the obstacle determination unit 13. 15b. By using the obstacle detection device 100b, the accuracy of the driving support control can be improved.
 また、運転支援制御は、駐車支援に係る制御である。障害物検知装置100bを用いることより、複数個の障害物の各々の位置及び高さに応じて、車両1の駐車位置及び車両1の誘導経路を適切に設定することができる。また、2段縁石構造の駐車場に対応した駐車支援を実現することができる。 運 転 Driving support control is control related to parking support. By using the obstacle detection device 100b, the parking position of the vehicle 1 and the guidance route of the vehicle 1 can be appropriately set according to the position and height of each of the plurality of obstacles. In addition, it is possible to realize parking support corresponding to a parking lot having a two-step curb structure.
 また、障害物検知装置100bは、複数の反射波に対応する複数の反射点をグルーピングすることにより、複数の障害物の位置を判定する障害物検知部11を備え、複数の反射点は、最近反射点及び非最近反射点を含むものであり、障害物判別部13は、複数の障害物の各々の高さを判断する。これにより、互いに近接配置されている複数個のグループについて、これらのグループが互いに異なる障害物に対応するものであるのか、又は互いに同一の障害物に対応するものであるのかを識別することができる。 In addition, the obstacle detection device 100b includes an obstacle detection unit 11 that determines a position of a plurality of obstacles by grouping a plurality of reflection points corresponding to a plurality of reflected waves. The obstacle determination unit 13 includes a reflection point and a non-closest reflection point, and determines the height of each of the plurality of obstacles. This makes it possible to identify, for a plurality of groups arranged close to each other, whether these groups correspond to different obstacles or to the same obstacle. .
実施の形態4.
 図32は、実施の形態4に係る運転支援装置の要部を示すブロック図である。図32を参照して、実施の形態4の運転支援装置200cについて説明する。なお、図32において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 4 FIG.
FIG. 32 is a block diagram showing a main part of the driving support device according to Embodiment 4. With reference to FIG. 32, a driving support device 200c according to the fourth embodiment will be described. In FIG. 32, the same reference numerals are given to the same blocks as the blocks shown in FIG. 1, and the description will be omitted.
 車両1は車外撮像用のカメラ3を有している。車両1におけるカメラ3の設置方向は、車両1における測距センサ2の設置方向と同等である。このため、障害物検知部11により障害物が検知された場合、カメラ3による撮像画像は当該検知された障害物を含むものとなる。カメラ3は、例えば、可視光カメラ又は赤外線カメラにより構成されている。 The vehicle 1 has a camera 3 for imaging outside the vehicle. The installation direction of the camera 3 in the vehicle 1 is equivalent to the installation direction of the distance measurement sensor 2 in the vehicle 1. Therefore, when an obstacle is detected by the obstacle detection unit 11, the image captured by the camera 3 includes the detected obstacle. The camera 3 is configured by, for example, a visible light camera or an infrared camera.
 運転支援制御部15cは、カメラ3による撮像画像を示す画像データをカメラ3から取得するものである。運転支援制御部15cは、当該取得された画像データが示す画像、すなわちカメラ3による撮像画像を表示装置4に表示させる制御を実行するものである。表示装置4は、例えば、車両1のダッシュボードに設けられている。表示装置4は、例えば、液晶ディスプレイ又は有機EL(Electro-Luminescence)ディスプレイにより構成されている。 The driving support control unit 15c acquires image data indicating an image captured by the camera 3 from the camera 3. The driving support control unit 15c executes control for displaying an image indicated by the acquired image data, that is, an image captured by the camera 3 on the display device 4. The display device 4 is provided on, for example, a dashboard of the vehicle 1. The display device 4 is configured by, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display.
 ここで、運転支援制御部15cは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の高さの判断結果に基づき、撮像画像における障害物に対応する領域にマーカー画像を重畳表示させるようになっている。また、運転支援制御部15cは、障害物判別部13による障害物の種別の判別結果に応じて、個々のマーカー画像の態様(例えば色)を設定するようになっている。 Here, the driving support control unit 15c determines the area corresponding to the obstacle in the captured image based on the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the height of the obstacle by the obstacle determination unit 13. Is superimposed with a marker image. In addition, the driving support control unit 15c sets the mode (for example, color) of each marker image according to the result of the obstacle type determination performed by the obstacle determination unit 13.
 図33は、撮像画像CIにマーカー画像MI1,MI2が重畳表示されている状態の例を示している。図33に示す例において、撮像画像CIは壁(障害物O1)及び縁石(障害物O2)を含むものである。マーカー画像MI1は撮像画像CIにおける障害物O1に対応する領域に重畳表示されており、マーカー画像MI2は撮像画像CIにおける障害物O2に対応する領域に重畳表示されている。マーカー画像MI1,MI2は、色が互いに異なるものである。図中、マーカー画像MI1,MI2の網掛けがマーカー画像MI1,MI2の色に対応している。 FIG. 33 illustrates an example of a state where the marker images MI1 and MI2 are superimposed and displayed on the captured image CI. In the example illustrated in FIG. 33, the captured image CI includes a wall (obstacle O1) and a curb (obstacle O2). The marker image MI1 is superimposed and displayed on the area corresponding to the obstacle O1 in the captured image CI, and the marker image MI2 is superimposed and displayed on the area corresponding to the obstacle O2 in the captured image CI. The marker images MI1 and MI2 have different colors. In the figure, the hatching of the marker images MI1 and MI2 corresponds to the colors of the marker images MI1 and MI2.
 障害物検知部11、特徴量抽出部12及び障害物判別部13により、障害物検知装置100の要部が構成されている。障害物検知装置100及び運転支援制御部15cにより、運転支援装置200cの要部が構成されている。 The obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle discrimination unit 13 constitute a main part of the obstacle detection device 100. The main part of the driving support device 200c is configured by the obstacle detection device 100 and the driving support control unit 15c.
 運転支援装置200cの要部のハードウェア構成は、実施の形態1にて図3を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、障害物検知部11、特徴量抽出部12、障害物判別部13及び運転支援制御部15cの各々の機能は、プロセッサ31及びメモリ32により実現されるものであっても良く、又は処理回路33により実現されるものであっても良い。 ハ ー ド The hardware configuration of the main part of the driving support device 200c is the same as that described in the first embodiment with reference to FIG. That is, each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the driving support control unit 15c may be realized by the processor 31 and the memory 32, or the processing circuit 33.
 次に、図34のフローチャートを参照して、運転支援装置200cの動作について説明する。なお、図34において、図4に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the driving support device 200c will be described with reference to the flowchart in FIG. In FIG. 34, steps that are the same as the steps shown in FIG. 4 are given the same reference numerals, and descriptions thereof will be omitted.
 ステップST3に次いで、ステップST4にて、運転支援制御部15cは、カメラ3による撮像画像を表示装置4に表示させる制御を実行する。このとき、運転支援制御部15cは、撮像画像における障害物に対応する領域にマーカー画像を重畳表示させる。すなわち、運転支援制御部15cは運転支援制御を実行する。 次 い で Subsequent to step ST3, in step ST4, the driving support control unit 15c executes control to display the image captured by the camera 3 on the display device 4. At this time, the driving support control unit 15c superimposes and displays the marker image on a region corresponding to the obstacle in the captured image. That is, the driving support control unit 15c executes the driving support control.
 次に、図35を参照して、運転支援装置200cの変形例について説明する。 Next, a modified example of the driving support device 200c will be described with reference to FIG.
 運転支援制御部15cによる運転支援制御は、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の高さの判断結果(すなわち障害物の種別の判別結果)を示す情報(以下「結果情報」という。)を車両1の搭乗者に提示する制御であれば良い。結果情報の提示は、上記のような画像表示によるものであっても良く、又は以下のような音声出力によるものであっても良い。 The driving support control by the driving support control unit 15c is based on the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the height of the obstacle by the obstacle determination unit 13 (that is, the determination result of the type of the obstacle). Any control may be used as long as the information (hereinafter referred to as “result information”) is presented to the occupant of the vehicle 1. The presentation of the result information may be based on the image display as described above, or may be based on the following audio output.
 すなわち、図35に示す如く、車両1に音声出力装置5が設けられている。音声出力装置5は、例えば、スピーカにより構成されている。 That is, as shown in FIG. 35, the vehicle 1 is provided with the audio output device 5. The audio output device 5 is configured by, for example, a speaker.
 運転支援制御部15cは、例えば、障害物検知部11により判定された障害物の位置及び障害物判別部13により判別された障害物の種別を示すアナウンス音声を音声出力装置5に出力させる制御を実行する。または、例えば、運転支援制御部15cは、障害物検知部11により障害物が検知されたとき、音声出力装置5にビープ音を出力させる制御を実行する。このとき、運転支援制御部15cは、ビープ音の高さを障害物判別部13により判断された障害物の高さに対応させる。 The driving support control unit 15c controls the audio output device 5 to output an announcement sound indicating the position of the obstacle determined by the obstacle detection unit 11 and the type of the obstacle determined by the obstacle determination unit 13, for example. Execute. Alternatively, for example, when the obstacle detection unit 11 detects an obstacle, the driving support control unit 15c executes control to cause the audio output device 5 to output a beep sound. At this time, the driving support control unit 15c makes the height of the beep sound correspond to the height of the obstacle determined by the obstacle determination unit 13.
 次に、運転支援装置200cのそのほかの変形例について説明する。 Next, another modified example of the driving support device 200c will be described.
 まず、運転支援装置200cは、障害物検知装置100に代えて障害物検知装置100aを有するものであっても良い。この場合、運転支援制御部15cは、結果情報を提示する制御に加えて、衝突回避に係る制御(すなわち運転支援制御部15aによる運転支援制御と同様の制御)を実行するものであっても良い。 First, the driving support device 200c may have the obstacle detection device 100a instead of the obstacle detection device 100. In this case, in addition to the control for presenting the result information, the driving support control unit 15c may execute control related to collision avoidance (that is, control similar to the driving support control by the driving support control unit 15a). .
 また、運転支援装置200cは、障害物検知装置100に代えて障害物検知装置100bを有するものであっても良い。この場合、運転支援制御部15cは、結果情報を提示する制御に加えて、駐車支援に係る制御(すなわち運転支援制御部15bによる運転支援制御と同様の制御)を実行するものであっても良い。 運 転 Further, the driving support device 200c may include the obstacle detection device 100b instead of the obstacle detection device 100. In this case, in addition to the control for presenting the result information, the driving support control unit 15c may execute control related to parking support (that is, control similar to the driving support control by the driving support control unit 15b). .
 以上のように、実施の形態4の運転支援装置200cは、障害物検知装置100,100a,100bと、障害物判別部13による障害物の高さの判断結果に応じた運転支援制御を実行する運転支援制御部15cと、を備える。障害物検知装置100,100a,100bを用いることにより、運転支援制御の精度を向上することができる。 As described above, the driving support device 200c according to the fourth embodiment executes the driving support control according to the result of the determination of the height of the obstacle by the obstacle detection devices 100, 100a, and 100b and the obstacle determination unit 13. And a driving support control unit 15c. By using the obstacle detection devices 100, 100a, and 100b, the accuracy of the driving support control can be improved.
 また、運転支援制御は、画像表示又は音声出力による情報提示に係る制御である。障害物検知装置100,100a,100bを用いることにより、高精度な結果情報を車両1の搭乗者に提示することができる。 運 転 Driving support control is control related to information display by image display or sound output. By using the obstacle detection devices 100, 100a, and 100b, highly accurate result information can be presented to the occupants of the vehicle 1.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
 本発明の障害物検知装置は、例えば、衝突回避又は駐車支援に係る制御に応用することができる。 The obstacle detection device of the present invention can be applied to, for example, control related to collision avoidance or parking assistance.
 1 車両、2 測距センサ、3 カメラ、4 表示装置、5 音声出力装置、11 障害物検知部、12 特徴量抽出部、13 障害物判別部、14 正対判別部、15a,15b,15c 運転支援制御部、21 送信信号出力部、22 受信信号取得部、23 距離値算出部、24 反射点位置算出部、25 グループ化部、26 自車位置算出部、27 センサ位置算出部、31 プロセッサ、32 メモリ、33 処理回路、100,100a,100b 障害物検知装置、200a,200b,200c 運転支援装置。 1 vehicle, 2 distance measuring sensor, 3 camera, 4 display device, 5 audio output device, 11 obstacle detection unit, 12 feature amount extraction unit, 13 obstacle identification unit, 14 facing identification unit, 15a, 15b, 15c driving Support control unit, 21 transmission signal output unit, 22 reception signal acquisition unit, 23 distance value calculation unit, 24 reflection point position calculation unit, 25 grouping unit, 26 own vehicle position calculation unit, 27 sensor position calculation unit, 31 processor, 32 memory, 33 processing circuit, 100, 100a, 100b obstacle detection device, 200a, 200b, 200c driving support device.

Claims (19)

  1.  車両に設けられている測距センサが障害物による複数の反射波を受信した場合における複数の前記反射波に係る特徴量を抽出する特徴量抽出部と、
     前記特徴量の分散量が大きいときは前記分散量が小さいときに比して前記障害物の高さが高いと判断する障害物判別部であって、前記特徴量の大きさを示す第1パラメータ値及び前記分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも前記障害物が走行障害物であるか否かを判別する前記障害物判別部と、
     を備える障害物検知装置。
    A feature value extraction unit that extracts a plurality of feature values related to the reflected waves when the distance measurement sensor provided in the vehicle receives a plurality of reflected waves due to the obstacle;
    An obstacle determining unit that determines that the height of the obstacle is higher when the variance of the feature amount is larger than when the variance amount is smaller, and a first parameter indicating the magnitude of the feature amount An obstacle determining unit that determines whether at least the obstacle is a running obstacle based on a result of clustering of the second parameter value indicating the value and the magnitude of the variance;
    Obstacle detection device comprising:
  2.  前記特徴量は、複数の前記反射波の各々の大きさに対応する量であり、
     前記第1パラメータ値は、複数の前記反射波の大きさに対応する量の平均値である
     ことを特徴とする請求項1記載の障害物検知装置。
    The feature amount is an amount corresponding to the size of each of the plurality of reflected waves,
    The obstacle detection device according to claim 1, wherein the first parameter value is an average value of amounts corresponding to the magnitudes of the plurality of reflected waves.
  3.  前記特徴量は、複数の前記反射波の各々の波高、波幅、波形面積又は応答時間であることを特徴とする請求項1記載の障害物検知装置。 The obstacle detection device according to claim 1, wherein the characteristic amount is a wave height, a wave width, a waveform area, or a response time of each of the plurality of reflected waves.
  4.  前記障害物判別部は、前記クラスタリングにより設定された複数の範囲のうちのいずれの範囲に前記第1パラメータ値及び前記第2パラメータ値が含まれるかを識別することにより、前記障害物の種別を判別することを特徴とする請求項1記載の障害物検知装置。 The obstacle determining unit identifies the type of the obstacle by identifying which of the plurality of ranges set by the clustering includes the first parameter value and the second parameter value. The obstacle detecting device according to claim 1, wherein the obstacle is detected.
  5.  前記障害物判別部は、前記障害物が路面障害物、路上障害物又は前記走行障害物のうちのいずれであるかを判別することを特徴とする請求項4記載の障害物検知装置。 5. The obstacle detection device according to claim 4, wherein the obstacle determination unit determines whether the obstacle is one of a road surface obstacle, a road obstacle, and the traveling obstacle.
  6.  請求項5記載の障害物検知装置と、
     前記障害物判別部による前記障害物の高さの判断結果に応じた運転支援制御を実行する運転支援制御部と、
     を備える運転支援装置。
    An obstacle detection device according to claim 5,
    A driving support control unit that performs driving support control according to the result of determining the height of the obstacle by the obstacle determination unit,
    A driving assistance device comprising:
  7.  前記運転支援制御は、駐車支援に係る制御であることを特徴とする請求項6記載の運転支援装置。 7. The driving support device according to claim 6, wherein the driving support control is a control related to parking support.
  8.  前記運転支援制御は、衝突回避に係る制御であることを特徴とする請求項6記載の運転支援装置。 7. The driving support apparatus according to claim 6, wherein the driving support control is control related to collision avoidance.
  9.  前記運転支援制御は、画像表示又は音声出力による情報提示に係る制御であることを特徴とする請求項6記載の運転支援装置。 7. The driving support device according to claim 6, wherein the driving support control is a control relating to information display by image display or voice output.
  10.  前記クラスタリングは、前記第1パラメータ値、前記第2パラメータ値及び前記車両と前記障害物間の距離に対応する第3パラメータ値の前記クラスタリングであり、
     前記障害物判別部は、前記クラスタリングにより設定された複数の範囲のうちのいずれの範囲に前記第1パラメータ値、前記第2パラメータ値及び前記第3パラメータ値が含まれるかを識別することにより、前記障害物の種別を判別する
     ことを特徴とする請求項4記載の障害物検知装置。
    The clustering is the clustering of the first parameter value, the second parameter value, and a third parameter value corresponding to a distance between the vehicle and the obstacle,
    The obstacle determining unit identifies which of the plurality of ranges set by the clustering includes the first parameter value, the second parameter value, and the third parameter value, The obstacle detection device according to claim 4, wherein a type of the obstacle is determined.
  11.  複数の前記反射波に対応する複数の反射点をグルーピングすることにより、複数の前記障害物の位置を判定する障害物検知部を備え、
     複数の前記反射点は、最近反射点及び非最近反射点を含むものであり、
     前記障害物判別部は、複数の前記障害物の各々の高さを判断する
     ことを特徴とする請求項1記載の障害物検知装置。
    By grouping a plurality of reflection points corresponding to a plurality of the reflected waves, comprising an obstacle detection unit that determines the position of the plurality of obstacles,
    The plurality of reflection points include a most recent reflection point and a non-most recently reflection point,
    The obstacle detection device according to claim 1, wherein the obstacle determination unit determines a height of each of the plurality of obstacles.
  12.  複数の前記反射波は、設置位置が互いに異なる複数の前記測距センサにより受信されたものであることを特徴とする請求項1記載の障害物検知装置。 2. The obstacle detection device according to claim 1, wherein the plurality of reflected waves are received by the plurality of distance measurement sensors having different installation positions.
  13.  複数の前記反射波は、単数の前記測距センサにより互いに異なるタイミングにて受信されたものであることを特徴とする請求項1記載の障害物検知装置。 2. The obstacle detecting device according to claim 1, wherein the plurality of reflected waves are received at different timings by a single distance measuring sensor.
  14.  複数の前記反射波は、設置位置が互いに異なる複数の前記測距センサにより互いに異なるタイミングにて受信されたものであることを特徴とする請求項1記載の障害物検知装置。 2. The obstacle detection device according to claim 1, wherein the plurality of reflected waves are received by the plurality of distance measurement sensors having different installation positions at different timings. 3.
  15.  前記測距センサが前記障害物と正対しているか否かを判別する正対判別部を備え、
     前記障害物判別部は、前記測距センサが前記障害物と正対している状態における前記特徴量を用いて前記障害物の種別を判別する
     ことを特徴とする請求項1記載の障害物検知装置。
    A facing determination unit that determines whether the distance measurement sensor is facing the obstacle,
    The obstacle detection device according to claim 1, wherein the obstacle determination unit determines the type of the obstacle using the feature amount in a state where the distance measurement sensor faces the obstacle. .
  16.  前記正対判別部は、前記測距センサに対する前記障害物の正対角度を算出して、前記正対角度が所定角度以下であるとき前記測距センサが前記障害物と正対していると判別することを特徴とする請求項15記載の障害物検知装置。 The facing determination unit calculates a facing angle of the obstacle with respect to the distance measuring sensor, and determines that the distance measuring sensor is facing the obstacle when the facing angle is equal to or less than a predetermined angle. The obstacle detection device according to claim 15, wherein
  17.  前記正対判別部は、複数の前記測距センサのうち、他の前記測距センサを介して互いに離隔配置されている前記測距センサを用いて前記正対角度を算出することを特徴とする請求項16記載の障害物検知装置。 The facing determination unit calculates the facing angle using the ranging sensors that are spaced apart from each other via another ranging sensor among the plurality of ranging sensors. The obstacle detection device according to claim 16.
  18.  前記障害物判別部は、前記測距センサが前記障害物と正対している状態における前記特徴量を示すデータの蓄積数が所定数を超えたとき、前記データが示す前記特徴量を用いて前記障害物の種別を判別することを特徴とする請求項15記載の障害物検知装置。 The obstacle determining unit is configured to use the feature amount indicated by the data when the accumulated number of data indicating the feature amount in a state where the distance measurement sensor faces the obstacle exceeds a predetermined number. The obstacle detection device according to claim 15, wherein a type of the obstacle is determined.
  19.  前記正対角度は、時間的又は距離的な所定区間における平均値を用いることを特徴とする請求項17記載の障害物検知装置。 18. The obstacle detecting device according to claim 17, wherein the facing angle uses an average value in a predetermined section in time or distance.
PCT/JP2018/025254 2018-07-03 2018-07-03 Obstacle detection device and driving support device WO2020008534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020528578A JP7199436B2 (en) 2018-07-03 2018-07-03 Obstacle detection device and driving support device
PCT/JP2018/025254 WO2020008534A1 (en) 2018-07-03 2018-07-03 Obstacle detection device and driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025254 WO2020008534A1 (en) 2018-07-03 2018-07-03 Obstacle detection device and driving support device

Publications (1)

Publication Number Publication Date
WO2020008534A1 true WO2020008534A1 (en) 2020-01-09

Family

ID=69060952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025254 WO2020008534A1 (en) 2018-07-03 2018-07-03 Obstacle detection device and driving support device

Country Status (2)

Country Link
JP (1) JP7199436B2 (en)
WO (1) WO2020008534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230052064A1 (en) * 2020-08-03 2023-02-16 Panasonic Intellectual Property Management Co., Ltd. Vehicle and obstacle detection device
JP7499449B2 (en) 2020-07-30 2024-06-14 パナソニックIpマネジメント株式会社 System and method for detecting presence of a seat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191876A (en) * 1999-10-26 2001-07-17 Honda Motor Co Ltd Object detecting device and travel safety device for vehicle
US20060044177A1 (en) * 2004-09-01 2006-03-02 The Boeing Company Radar system and method for determining the height of an object
JP2009500225A (en) * 2005-07-08 2009-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Parking device
JP2009041981A (en) * 2007-08-07 2009-02-26 Nissan Motor Co Ltd Object detection system and vehicle equipped with object detection system
JP2014074665A (en) * 2012-10-04 2014-04-24 Nippon Soken Inc Object detection device
WO2015174178A1 (en) * 2014-05-15 2015-11-19 本田技研工業株式会社 Movement-assisting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762088B2 (en) * 2006-08-31 2011-08-31 株式会社東芝 Process abnormality diagnosis device
US8595233B2 (en) * 2009-04-27 2013-11-26 Panasonic Corporation Data processing apparatus, data processing method, program, and integrated circuit
JP2011122876A (en) 2009-12-09 2011-06-23 Toyota Central R&D Labs Inc Obstacle detector
JP5852456B2 (en) 2012-01-30 2016-02-03 トヨタ自動車株式会社 Peripheral object detection device
JP6471934B2 (en) * 2014-06-12 2019-02-20 パナソニックIpマネジメント株式会社 Image recognition method, camera system
JP6613624B2 (en) 2015-05-27 2019-12-04 いすゞ自動車株式会社 Discrimination method and discrimination device
JP6752122B2 (en) * 2016-11-15 2020-09-09 キヤノン株式会社 Image processing device, image processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191876A (en) * 1999-10-26 2001-07-17 Honda Motor Co Ltd Object detecting device and travel safety device for vehicle
US20060044177A1 (en) * 2004-09-01 2006-03-02 The Boeing Company Radar system and method for determining the height of an object
JP2009500225A (en) * 2005-07-08 2009-01-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Parking device
JP2009041981A (en) * 2007-08-07 2009-02-26 Nissan Motor Co Ltd Object detection system and vehicle equipped with object detection system
JP2014074665A (en) * 2012-10-04 2014-04-24 Nippon Soken Inc Object detection device
WO2015174178A1 (en) * 2014-05-15 2015-11-19 本田技研工業株式会社 Movement-assisting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499449B2 (en) 2020-07-30 2024-06-14 パナソニックIpマネジメント株式会社 System and method for detecting presence of a seat
US20230052064A1 (en) * 2020-08-03 2023-02-16 Panasonic Intellectual Property Management Co., Ltd. Vehicle and obstacle detection device

Also Published As

Publication number Publication date
JPWO2020008534A1 (en) 2020-12-17
JP7199436B2 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10654473B2 (en) Collision prevention apparatus and collision preventing method
US7411486B2 (en) Lane-departure warning system with differentiation between an edge-of-lane marking and a structural boundary of the edge of the lane
US8487782B2 (en) Method for detecting objects having a low height
US9409574B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5831415B2 (en) Parking assistance device
US8310376B2 (en) Object classification method, parking assistance method, and parking assistance system
US10302760B2 (en) Vehicle water detection system
US20090254260A1 (en) Full speed range adaptive cruise control system
US10059343B2 (en) Apparatus and method for use in a vehicle
JP2013156147A (en) Surrounding object detection device
US20170174224A1 (en) Apparatus and method for use in a vehicle
JP6577767B2 (en) Object detection apparatus and object detection method
WO2020039840A1 (en) Radar processing device
JP2007232408A (en) Apparatus and method for estimating shape of structure and obstacle detection apparatus
JP2001283392A (en) Method and device for recognizing obstacle of vehicle and recording medium
WO2020008534A1 (en) Obstacle detection device and driving support device
US11798417B2 (en) Driving assistance device
JP6942254B2 (en) Obstacle detection device or driving support device
WO2020008536A1 (en) Obstacle detection device
WO2020008535A1 (en) Obstacle detection device
JP7554029B2 (en) Object detection device, vehicle, and method for setting detection sensitivity in object detection device
WO2020049650A1 (en) Driving assistance device
JP7525232B2 (en) OBJECT DETECTION DEVICE, VEHICLE, AND METHOD FOR SETTING WAVE-RECEPTION PERIOD IN OBJECT DETECTION DEVICE
JP7224491B2 (en) Obstacle detector
WO2021199098A1 (en) Parking assistance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925211

Country of ref document: EP

Kind code of ref document: A1