WO2020004172A1 - 有機修飾金属酸化物ナノ粒子、その製造方法、euvフォトレジスト材料およびエッチングマスクの製造方法 - Google Patents
有機修飾金属酸化物ナノ粒子、その製造方法、euvフォトレジスト材料およびエッチングマスクの製造方法 Download PDFInfo
- Publication number
- WO2020004172A1 WO2020004172A1 PCT/JP2019/024286 JP2019024286W WO2020004172A1 WO 2020004172 A1 WO2020004172 A1 WO 2020004172A1 JP 2019024286 W JP2019024286 W JP 2019024286W WO 2020004172 A1 WO2020004172 A1 WO 2020004172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal oxide
- oxide nanoparticles
- modified metal
- organically modified
- modifying group
- Prior art date
Links
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 56
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 54
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 40
- 229920002120 photoresistant polymer Polymers 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000005530 etching Methods 0.000 title claims description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 28
- 239000003446 ligand Substances 0.000 claims abstract description 19
- -1 carboxylic acid carboxylate Chemical class 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims abstract description 10
- 150000002739 metals Chemical class 0.000 claims abstract description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 36
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 150000001449 anionic compounds Chemical class 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910001412 inorganic anion Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical group [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims description 5
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical group [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 230000004048 modification Effects 0.000 abstract 6
- 238000012986 modification Methods 0.000 abstract 6
- 125000004430 oxygen atom Chemical group O* 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 50
- 239000000243 solution Substances 0.000 description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000010703 silicon Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 10
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 238000002296 dynamic light scattering Methods 0.000 description 6
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 6
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UABDRQGIRJTVHT-UHFFFAOYSA-N butan-1-ol butan-1-olate zirconium(4+) Chemical compound [Zr+4].CCCCO.CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] UABDRQGIRJTVHT-UHFFFAOYSA-N 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0042—Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/08—Acetic acid
- C07C53/10—Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/003—Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0042—Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
- G03F7/0043—Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2004—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/325—Non-aqueous compositions
Definitions
- the present invention relates to organic-modified metal oxide nanoparticles that can be used for a photoresist material used in a semiconductor manufacturing process or the like, a method for producing the same, a EUV photoresist material, and a method for producing an etching mask.
- This application claims priority based on Japanese Patent Application No. 2018-124526 filed in Japan on June 29, 2018 and Japanese Patent Application No. 2019-021317 filed in Japan on February 8, 2019. The contents are incorporated herein.
- a method has been proposed in which nanoparticles of a metal oxide such as zirconium or hafnium organically modified with a carboxylic acid such as methacrylic acid (hereinafter sometimes referred to as “MAA”) are used as a resist material (Patent Document 1). And Patent Document 2). Since the metal oxide nanoparticles have a metal oxide as a core, the resist material containing the metal oxide nanoparticles has higher etching resistance and sensitivity to EUV light than organic resist materials. . Furthermore, due to the high symmetry of the structure of the metal oxide nanoparticles, the metal oxide nanoparticles may remain as insoluble substances on the wafer when developing a resist material containing the metal oxide nanoparticles. Poor.
- Patent Documents 3 to 5 a method has been proposed in which a complex (monomer or salt) of a metal such as zirconium or hafnium and an organic substance represented by a carboxylic acid such as methacrylic acid is used as a resist material. Since the size of the organic complex itself is small, this resist material is more suitable for thinning as compared with a resist material containing a nanoparticle core. However, in this resist material, the ratio of organic substances in the formed film is higher than that of a resist material having nanoparticles as a core. Therefore, this resist material has low etching resistance. Furthermore, since the structure symmetry of the organic complex is low, there is a high possibility that the organic complex remains on the wafer as an insoluble material during development of a resist material containing the organic complex.
- organic modified metal oxide nanoparticles having a small core diameter are generally produced by mixing an alkoxide of a metal such as zirconium and an organic substance such as methacrylic acid in a non-aqueous solvent in an extremely low humidity environment. is there.
- alkoxides are not inexpensive, and it is necessary to introduce and maintain expensive glove boxes and other equipment in order to realize an extremely low humidity environment. For this reason, organic-modified metal oxide nanoparticles having a small core diameter have a problem in production cost.
- the reaction mechanism and exposure operation factors at the time of EUV exposure of the resist material are not always clear, and there is a need to establish a method of controlling the sensitivity and resolution by the resist material. Adjustment of sensitivity and resolution is often performed by optimizing solvents and additives of a resist solution and a developing solution. However, if the sensitivity and resolution of the resist material can be adjusted by controlling the structure of the material itself, more specifically, by modifying with a plurality of modifying groups and controlling its composition, a more diversified method of adjusting the resist material will be studied. It becomes possible.
- the present invention has been made in view of such circumstances, and can be manufactured by a simple method, and can improve the sensitivity and resolution of a resist material. Organically modified metal oxide nanoparticles, a method for manufacturing the same, and an EUV photoresist It is an object to provide a method for manufacturing a material and an etching mask.
- the reactivity of the organically modified metal oxide nanoparticles composed of the metal oxide and carboxylic acid contained in the resist material that is, the sensitivity, and the resolution of the formed resist pattern, It greatly depends on the kind of ligand such as carboxylic acid to be coordinated.
- the present inventors maintain the solubility of the obtained organically modified metal oxide nanoparticles in a resist solvent and a developer by coordinating two or more carboxylic acids having different molecular weights to the metal oxide core.
- the reactivity (sensitivity) is improved when the resist material containing the organically modified metal oxide nanoparticles is irradiated with EUV, that is, the solubility in a developing solution is reduced.
- the present inventors coordinated a carboxylic acid and an inorganic anion smaller in size than the carboxylic acid to the metal oxide core, and formed a resist material containing the obtained organically modified metal oxide nanoparticles. Then, they have found that the organically modified metal oxide nanoparticles are densely packed and the resolution of the resist film is improved.
- the organically modified metal oxide nanoparticles of the present invention include a core comprising a plurality of metals and a plurality of oxygens bonded to the plurality of metals, and a carboxylate carboxylate ligand coordinated to the core. It has a modifying group and a carboxylic acid carboxylate ligand coordinated to the core and having a smaller molecular weight than the first modifying group and / or a second modifying group that is an inorganic anion smaller in size than the first modifying group.
- the EUV photoresist material of the present invention contains the organically modified metal oxide nanoparticles of the present invention and a solvent.
- the method for producing organically modified metal oxide nanoparticles of the present invention has a reaction step of reacting metal oxynitrate and / or metal oxyacetate with methacrylic acid in a hydrophilic liquid.
- the method of manufacturing an etching mask according to the present invention includes a film forming step of applying the EUV photoresist material of the present invention on a layer to be etched and drying the same to form a resist film, and exposing the resist film to EUV irradiation in a predetermined pattern. And a development step of removing an unexposed portion in the exposure step to form an etching opening.
- the method for producing organic-modified metal oxide nanoparticles, and the EUV photoresist material of the present invention a resist material having high sensitivity and high resolution can be obtained by a simple method. Further, according to the etching mask manufacturing method of the present invention, the use of the EUV photoresist material makes it possible to make the mask thinner.
- FIG. 1 is an SEM image of the silicon wafer obtained in Example 1.
- FIG. 2 is an SEM image of the silicon wafer obtained in Example 2.
- FIG. 3 is an SEM image of the silicon wafer obtained in Comparative Example 1.
- the organic modified metal oxide nanoparticles according to the embodiment of the present invention include a core, a first modifying group, and a second modifying group.
- the core includes a plurality of metals and a plurality of oxygens bonded to the plurality of metals.
- the first modifying group is a carboxylate carboxylate ligand coordinated to the core.
- the second modifying group is a carboxylate carboxylate ligand that coordinates to the core and has a lower molecular weight than the first modifying group and / or an inorganic anion that is smaller in size than the first modifying group.
- the organic modified metal oxide nanoparticles are easily soluble in propylene glycol 1-monomethyl ether 2-acetate (PGMEA), a general-purpose resist solvent, and the reactivity of the organic modified metal oxide nanoparticles when irradiated with EUV is improved.
- the first modifying group is preferably a methacrylic acid carboxylate ligand.
- the metal is preferably at least one selected from the group consisting of Zr (zirconium), Hf (hafnium) and Ti (titanium), and more preferably Zr.
- the second modifying group is an acetate carboxylate ligand and / or a nitrate ion.
- the organic modified metal oxide nanoparticles of the present embodiment are preferably represented by the general formula M 6 O 4 (OH) 4 X n Y 12-n .
- M is a metal and is at least one selected from the group consisting of Zr, Hf and Ti
- X is a first modifying group
- Y is a second modifying group
- Z which represents the ratio of X and Y and is defined by X / (X + Y) ⁇ 100, satisfies the relationship of 5 mol% ⁇ Z ⁇ 95 mol%.
- the size of the carboxylic acid carboxylate ligand as the first modifying group is, for example, 0.52 nm
- the size of the inorganic anion, which is the second modifying group is, for example, 0.33 nm.
- the EUV photoresist material according to the embodiment of the present invention contains the organically modified metal oxide nanoparticles of the present embodiment and a solvent.
- the solvent include butyl acetate, PGMEA, methanol, ethanol, propanol and the like.
- the EUV photoresist material of the present embodiment may further contain a dispersant such as carboxylic acid, a photo-responder such as a stabilizer or a photo-acid generator, and the like.
- the method for producing organically modified metal oxide nanoparticles according to the embodiment of the present invention has a reaction step of reacting metal oxynitrate and / or metal oxyacetate with methacrylic acid in a hydrophilic liquid.
- the hydrophilic liquid include water, methanol, ethanol, propanol, and acetone.
- the reaction step can be performed in an air atmosphere. Therefore, equipment for realizing an extremely low humidity environment is unnecessary.
- the organically modified metal oxide nanoparticles of the present embodiment can be obtained by a simple method.
- the organic modified metal oxide nanoparticles preferably satisfy the relationship of 50 mol% ⁇ Z ⁇ 84 mol%.
- the metal oxynitrate is zirconium oxynitrate.
- the organically modified metal oxide nanoparticles of the present embodiment can be obtained by a simple method.
- the organic modified metal oxide nanoparticles preferably satisfy the relationship of 58 mol% ⁇ Z ⁇ 92 mol%.
- the metal oxyacetate is zirconium oxyacetate.
- the method of manufacturing an etching mask according to the embodiment of the present invention includes a film forming step, an exposing step, and a developing step.
- the EUV photoresist material of the present embodiment is applied on the layer to be etched and dried to obtain a resist film.
- the type of the layer to be etched is not particularly limited. Examples of the layer to be etched include a silicon layer, a silicon oxide layer, and a silicon nitride layer.
- the resist film is irradiated with EUV in a predetermined pattern.
- a portion not irradiated with EUV in the exposing step is removed to form an etching opening.
- the resist film is immersed in a developing solution such as butyl acetate, and the portions that have not been irradiated with EUV are dissolved in the developing solution and removed.
- the width of the etching mask can be reduced to 20 nm or less. For this reason, fine etching of the layer to be etched becomes possible.
- Example 1 1.2 g of zirconium oxynitrate was dissolved in 3 mL of a 5.0 M aqueous nitric acid solution to prepare an aqueous zirconium oxynitrate solution. 1 mL of methacrylic acid was added to 1 mL of this zirconium oxynitrate aqueous solution, and the mixture was stirred for 5 minutes, and then allowed to stand at room temperature for 5 days. The obtained precipitate was collected by filtration under reduced pressure, and dried under vacuum at room temperature for 1 day to obtain a white powder. As a result of elemental analysis of this white powder, the contents of carbon and nitrogen were 20.5 wt% and 3.8 wt%, respectively.
- the weight loss rate was 54%.
- the size of methacrylic acid is about 0.52 nm, and the size of nitrate ions is about 0.33 nm.
- the obtained white powder is organically modified metal oxide nanoparticles in which methacrylic acid and nitric acid coordinate to a core composed of zirconium and oxygen.
- PGMEA was further added to this solution and diluted twice to obtain a solution A for EUV exposure.
- a solution A for EUV exposure was dropped on a silicon wafer and rotated at 1500 rpm for 60 seconds to form a film, and then heated at 80 ° C. for 60 seconds to obtain a resist film A.
- the thickness of the resist film A was measured by a spectroscopic ellipsometer, it was 20 nm.
- the resist film A was immersed in butyl acetate for 30 seconds and developed to remove the EUV non-irradiated portion of the resist film A.
- FIG. 1 shows an SEM image of the developed silicon wafer when subjected to EUV exposure at an irradiation dose of 52 mJ / cm 2 .
- the line width of the insolubilized resist film A (light color portion), which is the etching mask remaining on the silicon wafer (dark color portion), is 18 nm, which is narrower than that of Comparative Example 1 described later. , High-resolution nano-patterning formation was confirmed.
- Example 2 2 mL of methacrylic acid was added to 1 mL of a 20 wt% aqueous solution of zirconium oxyacetate, followed by stirring at room temperature for 1 hour. The obtained precipitate was collected by filtration under reduced pressure, and dried under vacuum at room temperature for 1 day to obtain a white powder. As a result of elemental analysis of this white powder, the carbon content was 29 wt%. As a result of thermogravimetric analysis of this white powder, the weight loss rate was 52%.
- the obtained white powder is organically modified metal oxide nanoparticles in which methacrylic acid and acetic acid are coordinated to a core composed of zirconium and oxygen.
- PGMEA was further added to this solution to dilute it twice to obtain a solution B for EUV exposure.
- EUV exposure solution B was dropped on a silicon wafer, and the solution was rotated at 1500 rpm for 60 seconds to form a film. Thereafter, the film was heated at 80 ° C. for 60 seconds to obtain a resist film B. When the film thickness of the resist film B was measured by a spectroscopic ellipsometer, it was 20 nm. After the resist film B was exposed to EUV at a dose of 7 to 39 mJ / cm 2 through a predetermined pattern, the resist film B was immersed in butyl acetate for 30 seconds and developed to remove the EUV non-irradiated portion of the resist film B.
- FIG. 2 shows an SEM image of the silicon wafer after development when exposed to EUV under a low irradiation dose of 22 mJ / cm 2 , that is, a condition that requires high sensitivity of the resist film.
- the line width of the insolubilized resist film B (light color portion) as an etching mask remaining on the silicon wafer (dark color portion) is 23 nm, which is lower than that of Comparative Example 1 described later. This is the irradiation amount, and high-sensitivity nano-patterning formation was confirmed.
- Example 3 A beaker A containing 5 mL of a 20 wt% zirconium oxyacetate aqueous solution and a beaker B containing 10 mL of methacrylic acid were placed in a sealed container, and left at room temperature for 7 days. A precipitate was obtained in the beaker A by gradually dissolving the methacrylic acid vapor in the aqueous solution of zirconium oxyacetate. This precipitate was collected by filtration under reduced pressure, and dried under vacuum at room temperature for 1 day to obtain a white powder.
- a solution C for EUV exposure was dropped on a silicon wafer, and the solution was rotated at 1500 rpm for 60 seconds to form a film, and then heated at 80 ° C. for 60 seconds to obtain a resist film C.
- the thickness of the resist film C was measured by a spectroscopic ellipsometer, it was 20 nm.
- FIG. 3 shows an SEM image of the silicon wafer after development when subjected to EUV exposure at an irradiation amount of 46 mJ / cm 2 .
- the line width of the insolubilized resist film C (light color portion), which is the etching mask remaining on the silicon wafer (dark color portion), was 21 nm.
- the obtained white powder is organically modified metal oxide nanoparticles in which methacrylic acid and isobutyric acid coordinate to a core composed of zirconium and oxygen.
- This solution was dropped on a silicon wafer and rotated at 1500 rpm for 60 seconds to form a film, and then heated at 80 ° C. for 60 seconds to obtain a resist film.
- the resist film was exposed to EUV at an irradiation amount of 0 to 25 mJ / cm 2 , it was immersed and developed in butyl acetate for 30 seconds, dried, and the film thickness was measured with a spectral ellipsometer.
- a film insolubilized at an irradiation amount of 15 mJ / cm 2 or more remains, and the film thickness increases with an increase in the irradiation amount.
- the film thickness becomes about 17 nm, and the reactivity to EUV exposure increases. It could be confirmed.
- the volume-based average particle size of this white powder was about 2 nm. From the above, it is considered that the obtained white powder is organically modified metal oxide nanoparticles in which methacrylic acid and propionic acid coordinate to a core composed of zirconium and oxygen.
- This solution was dropped on a silicon wafer and rotated at 1500 rpm for 60 seconds to form a film, and then heated at 80 ° C. for 60 seconds to obtain a resist film.
- the resist film was exposed to EUV at an irradiation amount of 0 to 25 mJ / cm 2 , it was immersed and developed in butyl acetate for 30 seconds, dried, and the film thickness was measured with a spectral ellipsometer.
- a film insolubilized at an irradiation amount of 5 mJ / cm 2 or more remains, and the film thickness increases with an increase in the irradiation amount.
- the film thickness becomes about 40 nm, and the reactivity to EUV exposure is reduced. It could be confirmed.
- the volume-based average particle size of this white powder was about 2 nm. From the above, it is considered that the obtained white powder is organically modified metal oxide nanoparticles in which methacrylic acid and butyric acid are coordinated with a core composed of zirconium and oxygen.
- This solution was dropped on a silicon wafer and rotated at 1500 rpm for 60 seconds to form a film, and then heated at 80 ° C. for 60 seconds to obtain a resist film.
- the resist film was exposed to EUV at an irradiation amount of 0 to 25 mJ / cm 2 , it was immersed and developed in butyl acetate for 30 seconds, dried, and the film thickness was measured with a spectral ellipsometer.
- a film insolubilized at an irradiation amount of 9 mJ / cm 2 or more remains, and the film thickness increases with an increase in the irradiation amount.
- the film thickness becomes about 33 nm, and the reactivity to EUV exposure is reduced. It could be confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本願は、2018年6月29日に日本に出願された特願2018-124526号、及び2019年2月8日に日本に出願された特願2019-021317号に基づき優先権を主張し、その内容をここに援用する。
本発明は、このような事情に鑑みてなされたものであり、簡易な方法で製造でき、レジスト材料の感度や解像度を高めることができる有機修飾金属酸化物ナノ粒子、その製造方法、EUVフォトレジスト材料およびエッチングマスクの製造方法を提供することを目的とする。
5.0M硝酸水溶液3mLにオキシ硝酸ジルコニウム1.2gを溶解させて、オキシ硝酸ジルコニウム水溶液を調製した。このオキシ硝酸ジルコニウム水溶液1mLにメタクリル酸1mLを加えて、5分間攪拌した後、室温で5日間静置した。得られた沈殿物を減圧濾過により回収し、室温で1日真空乾燥して白色粉末を得た。この白色粉末の元素分析の結果、炭素および窒素の含有量はそれぞれ20.5wt%および3.8wt%であった。物質量比(いわゆるmol比)では、メタクリル酸:硝酸=61:39=7.3:4.7となる。この白色粉末の熱重量分析の結果、重量減少率は54%であった。また、メタクリル酸のサイズは約0.52nm、硝酸イオンのサイズは約0.33nmである。
20wt%オキシ酢酸ジルコニウム水溶液1mLにメタクリル酸2mLを加えた後、室温で1時間攪拌した。得られた沈殿物を減圧濾過により回収し、室温で1日真空乾燥して白色粉末を得た。この白色粉末の元素分析の結果、炭素含有量は29wt%であった。また、この白色粉末の熱重量分析の結果、重量減少率は52%であった。さらに、この白色粉末のIR分析の結果、メタクリル酸のカルボキシ基由来の吸収ピーク(1558cm-1)およびC=Cの伸縮振動バンドの吸収ピーク(1647cm-1)と、ビニル基CHの面外変角振動バンドの吸収ピーク(827cm-1)が確認できた。
20wt%オキシ酢酸ジルコニウム水溶液5mLを入れたビーカーAと、メタクリル酸10mLを入れたビーカーBを密閉容器に入れて、室温で7日放置した。オキシ酢酸ジルコニウム水溶液にメタクリル酸の蒸気が徐々に溶解することで、ビーカーA内に沈殿物を得た。この沈殿物を減圧濾過により回収し、室温で1日真空乾燥して白色粉末を得た。この白色粉末のIR分析の結果、メタクリル酸のカルボキシ基由来の吸収ピーク(1558cm-1)およびC=Cの伸縮振動バンドの吸収ピーク(1647cm-1)と、ビニル基CHの面外変角振動バンドの吸収ピーク(827cm-1)が確認できた。
グローブボックス内で、85%ジルコニウムブトキシド1-ブタノール溶液1.40gにメタクリル酸1.02gを加えて攪拌し、約3週間静置してZr6O4(OH)4(MAA)12の単結晶を得た。この単結晶を減圧濾過により回収し、室温で1日真空乾燥し、粉砕して白色粉末を得た。この白色粉末の元素分析の結果、炭素含有量は36wt%であった。この白色粉末の熱重量分析の結果、重量減少率は57%であった。
グローブボックス内で、80%ジルコニウムブトキシド1-ブタノール溶液1.63mLに、第二修飾基の原料であるメタクリル酸0.9mLと、第一修飾基の原料であるイソ酪酸1.1mLを加え、7日間撹拌して、白色沈殿を得た。この白色沈殿を減圧濾過により回収し、室温で1日真空乾燥し、粉砕して白色粉末を得た。溶液に溶かした白色粉末の1H-NMRによる分析の結果、物質量比で、メタクリル酸:イソ酪酸=7:3であった。PGMEA5.0gに、この白色粉末0.15gを溶解させた。この溶液の動的光散乱分析の結果、この白色粉末の体積基準平均粒径は約1nmであった。以上より、得られた白色粉末は、ジルコニウムと酸素で構成されるコアに対してメタクリル酸とイソ酪酸が配位した有機修飾金属酸化物ナノ粒子であると考えられる。
グローブボックス内で、80%ジルコニウムブトキシド1-ブタノール溶液1.63mLに、第一修飾基の原料であるメタクリル酸1mLと、第二修飾基の原料であるプロピオン酸1mLを加え、5日間撹拌して、白色沈殿を得た。この白色沈殿を減圧濾過により回収し、室温で1日真空乾燥し、粉砕して白色粉末を得た。溶液に溶かした白色粉末の1H-NMRによる分析の結果、物質量比で、メタクリル酸:プロピオン酸=7:3であった。PGMEA5.0gに、この白色粉末0.15gを溶解させた。この溶液の動的光散乱分析の結果、この白色粉末の体積基準平均粒径は約2nmであった。以上より、得られた白色粉末は、ジルコニウムと酸素で構成されるコアに対してメタクリル酸とプロピオン酸が配位した有機修飾金属酸化物ナノ粒子であると考えられる。
グローブボックス内で、80%ジルコニウムブトキシド1-ブタノール溶液1.63mLに、第二修飾基の原料であるメタクリル酸1mLと、第一修飾基の原料である酪酸1mLを加え、5日間撹拌して、白色沈殿を得た。この白色沈殿物を減圧濾過により回収し、室温で1日真空乾燥し、粉砕して白色粉末を得た。溶液に溶かした白色粉末の1H-NMRによる分析の結果、物質量比で、メタクリル酸:酪酸=2:1であった。PGMEA5.0gに、この白色粉末0.15gを溶解させた。この溶液の動的光散乱分析の結果、この白色粉末の体積基準平均粒径は約2nmであった。以上より、得られた白色粉末は、ジルコニウムと酸素で構成されるコアに対してメタクリル酸と酪酸が配位した有機修飾金属酸化物ナノ粒子であると考えられる。
Claims (9)
- 複数の金属と、前記複数の金属に結合した複数の酸素とを備えるコアと、
前記コアに配位しているカルボン酸カルボキシレート配位子である第一修飾基と、
前記コアに配位し、前記第一修飾基より分子量が小さいカルボン酸カルボキシレート配位子および/または前記第一修飾基よりサイズが小さい無機陰イオンである第二修飾基と、
を有する有機修飾金属酸化物ナノ粒子。 - 前記第一修飾基がメタクリル酸カルボキシレート配位子であり、前記第二修飾基が酢酸カルボキシレート配位子および/または硝酸イオンである、請求項1に記載の有機修飾金属酸化物ナノ粒子。
- 一般式M6O4(OH)4XnY12-nで表される、請求項1または2に記載の有機修飾金属酸化物ナノ粒子。
ただし、Mは前記金属であって、Zr、HfおよびTiからなる群から選択される一種以上であり、Xは前記第一修飾基で、Yは前記第二修飾基で、1≦n≦11である。 - 前記金属がZrである、請求項1から3のいずれか1項に記載の有機修飾金属酸化物ナノ粒子。
- 請求項1から4のいずれか1項に記載の有機修飾金属酸化物ナノ粒子と、溶媒とを含有するEUVフォトレジスト材料。
- オキシ硝酸金属および/またはオキシ酢酸金属とメタクリル酸とを、親水性液体中で反応させる反応工程を有する、有機修飾金属酸化物ナノ粒子の製造方法。
- 前記反応工程が大気雰囲気下で行われる、請求項6に記載の有機修飾金属酸化物ナノ粒子の製造方法。
- 前記オキシ硝酸金属がオキシ硝酸ジルコニウムで、前記オキシ酢酸金属がオキシ酢酸ジルコニウムである、請求項6または7に記載の有機修飾金属酸化物ナノ粒子の製造方法。
- 被エッチング層上に請求項5に記載のEUVフォトレジスト材料を塗布し、乾燥させてレジスト膜を得る成膜工程と、
前記レジスト膜に所定のパターンでEUVを照射する露光工程と、
前記露光工程でEUVを照射していない部分を除去してエッチング開口部を形成する現像工程と、
を有するエッチングマスクの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020527438A JP7028482B2 (ja) | 2018-06-29 | 2019-06-19 | 有機修飾金属酸化物ナノ粒子、その製造方法、euvフォトレジスト材料およびエッチングマスクの製造方法 |
US17/256,027 US20210149299A1 (en) | 2018-06-29 | 2019-06-19 | Organically modified metal oxide nanoparticle, method for producing the same, euv photoresist material, and method for producing etching mask |
KR1020207036516A KR102556387B1 (ko) | 2018-06-29 | 2019-06-19 | 유기 수식 금속 산화물 나노 입자, 이의 제조 방법, euv 포토레지스트 재료 및 에칭 마스크의 제조 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-124526 | 2018-06-29 | ||
JP2018124526 | 2018-06-29 | ||
JP2019021317 | 2019-02-08 | ||
JP2019-021317 | 2019-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004172A1 true WO2020004172A1 (ja) | 2020-01-02 |
Family
ID=68985026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/024286 WO2020004172A1 (ja) | 2018-06-29 | 2019-06-19 | 有機修飾金属酸化物ナノ粒子、その製造方法、euvフォトレジスト材料およびエッチングマスクの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210149299A1 (ja) |
JP (1) | JP7028482B2 (ja) |
KR (1) | KR102556387B1 (ja) |
TW (1) | TWI779202B (ja) |
WO (1) | WO2020004172A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111948904A (zh) * | 2020-08-13 | 2020-11-17 | 清华大学 | 光刻胶组合物、用它形成光刻图案的方法及其用途 |
CN112462572A (zh) * | 2020-12-09 | 2021-03-09 | 清华大学 | 光刻胶、光刻胶的图案化方法及生成印刷电路板的方法 |
US20210191261A1 (en) * | 2019-12-24 | 2021-06-24 | National Institute Of Advanced Industrial Science And Technology | Organically modified metal oxide nanoparticles, organically modified metal oxide nanoparticles-containing solution, organically modified metal oxide nanoparticles-containing resist composition, and resist pattern forming method |
WO2022033367A1 (zh) * | 2020-08-13 | 2022-02-17 | 无锡华睿芯材科技有限公司 | 光刻胶、光刻胶的图案化方法及集成电路板的刻蚀方法 |
JP7565043B2 (ja) | 2020-11-30 | 2024-10-10 | 東京応化工業株式会社 | レジスト組成物及びレジストパターン形成方法 |
JP7578231B2 (ja) | 2020-12-24 | 2024-11-06 | 清華大学 | 亜鉛系有機金属ナノ粒子及びその製造方法、並びにフォトレジスト |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117659420A (zh) * | 2022-08-29 | 2024-03-08 | 清华大学 | 一种Zn基有机配位纳米颗粒、光刻胶组合物及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008044835A (ja) * | 2006-07-18 | 2008-02-28 | Nippon Shokubai Co Ltd | 酸化ジルコニウムナノ粒子およびその製造方法 |
JP2008247619A (ja) * | 2007-03-29 | 2008-10-16 | Fujifilm Corp | 金属酸化物微粒子水分散物及びその製造方法 |
JP2013216858A (ja) * | 2012-03-16 | 2013-10-24 | Nippon Shokubai Co Ltd | 金属酸化物粒子、組成物および金属酸化物粒子の製造方法 |
JP2015157807A (ja) * | 2014-02-14 | 2015-09-03 | コーネル ユニバーシティCornell University | 金属酸化物ナノ粒子およびフォトレジスト組成物 |
JP2017036435A (ja) * | 2015-07-29 | 2017-02-16 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | ナノ粒子ポリマーレジスト |
JP2017173537A (ja) * | 2016-03-23 | 2017-09-28 | 株式会社先端ナノプロセス基盤開発センター | 感光性組成物およびパターン形成方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171757B1 (en) | 1999-07-12 | 2001-01-09 | International Business Machines Corporation | Organometallic polymers and use thereof |
JP2009096681A (ja) * | 2007-10-18 | 2009-05-07 | Nippon Shokubai Co Ltd | 酸化ジルコニウムナノ粒子の製造方法、酸化ジルコニウムナノ粒子および酸化ジルコニウムナノ粒子含有組成物 |
JP5708521B2 (ja) | 2011-02-15 | 2015-04-30 | 信越化学工業株式会社 | レジスト材料及びこれを用いたパターン形成方法 |
CN103987688B (zh) * | 2011-12-09 | 2017-05-24 | 株式会社日本触媒 | 化合物、金属氧化物粒子及其制备方法和用途 |
JP6196897B2 (ja) | 2013-12-05 | 2017-09-13 | 東京応化工業株式会社 | ネガ型レジスト組成物、レジストパターン形成方法及び錯体 |
EP3098273B1 (en) * | 2014-01-24 | 2022-07-06 | Nippon Shokubai Co., Ltd. | Dispersion containing metal oxide particles |
-
2019
- 2019-06-19 KR KR1020207036516A patent/KR102556387B1/ko active IP Right Grant
- 2019-06-19 US US17/256,027 patent/US20210149299A1/en active Pending
- 2019-06-19 JP JP2020527438A patent/JP7028482B2/ja active Active
- 2019-06-19 WO PCT/JP2019/024286 patent/WO2020004172A1/ja active Application Filing
- 2019-06-20 TW TW108121485A patent/TWI779202B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008044835A (ja) * | 2006-07-18 | 2008-02-28 | Nippon Shokubai Co Ltd | 酸化ジルコニウムナノ粒子およびその製造方法 |
JP2008247619A (ja) * | 2007-03-29 | 2008-10-16 | Fujifilm Corp | 金属酸化物微粒子水分散物及びその製造方法 |
JP2013216858A (ja) * | 2012-03-16 | 2013-10-24 | Nippon Shokubai Co Ltd | 金属酸化物粒子、組成物および金属酸化物粒子の製造方法 |
JP2015157807A (ja) * | 2014-02-14 | 2015-09-03 | コーネル ユニバーシティCornell University | 金属酸化物ナノ粒子およびフォトレジスト組成物 |
JP2017036435A (ja) * | 2015-07-29 | 2017-02-16 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | ナノ粒子ポリマーレジスト |
JP2017173537A (ja) * | 2016-03-23 | 2017-09-28 | 株式会社先端ナノプロセス基盤開発センター | 感光性組成物およびパターン形成方法 |
Non-Patent Citations (5)
Title |
---|
JIANG, JING ET AL.: "Metal Oxide Nanoparticle Photoresists for EUV Patterning", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 27, no. 5, 2014, pages 663 - 666, XP055222220, DOI: 10.2494/photopolymer.27.663 * |
JIANG, JING ET AL.: "Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 28, no. 4, 2015, pages 515 - 518, XP055674752, DOI: 10.2494/photopolymer.28.515 * |
KRYASK, MARIE ET AL.: "Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 26, no. 5, 2013, pages 659 - 664, XP55674772, DOI: 10.2494/photopolymer.26.659 * |
OBER, CHRISTOPHER K. ET AL.: "The Challenges of Highly Sensitive EUV Photoresists", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 31, no. 2, 25 June 2018 (2018-06-25), pages 261 - 265, XP055674781, DOI: 10.2494/photopolymer.31.261 * |
TAKAHASHI, SEIJI ET AL.: "In-Situ Measurement of Outgassing Generated from EUV Metal Oxide Nanoparticles Resist During Electron Irradiation", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 31, no. 2, 25 June 2018 (2018-06-25), pages 257 - 260, XP060113346, DOI: 10.1117/12.2503255 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210191261A1 (en) * | 2019-12-24 | 2021-06-24 | National Institute Of Advanced Industrial Science And Technology | Organically modified metal oxide nanoparticles, organically modified metal oxide nanoparticles-containing solution, organically modified metal oxide nanoparticles-containing resist composition, and resist pattern forming method |
US11747724B2 (en) * | 2019-12-24 | 2023-09-05 | Tokyo Ohka Kogyo Co., Ltd. | Organically modified metal oxide nanoparticles, organically modified metal oxide nanoparticles-containing solution, organically modified metal oxide nanoparticles-containing resist composition, and resist pattern forming method |
CN111948904A (zh) * | 2020-08-13 | 2020-11-17 | 清华大学 | 光刻胶组合物、用它形成光刻图案的方法及其用途 |
WO2022033367A1 (zh) * | 2020-08-13 | 2022-02-17 | 无锡华睿芯材科技有限公司 | 光刻胶、光刻胶的图案化方法及集成电路板的刻蚀方法 |
CN111948904B (zh) * | 2020-08-13 | 2022-04-01 | 常州华睿芯材科技有限公司 | 光刻胶组合物、用它形成光刻图案的方法及其用途 |
JP7565043B2 (ja) | 2020-11-30 | 2024-10-10 | 東京応化工業株式会社 | レジスト組成物及びレジストパターン形成方法 |
CN112462572A (zh) * | 2020-12-09 | 2021-03-09 | 清华大学 | 光刻胶、光刻胶的图案化方法及生成印刷电路板的方法 |
JP7578231B2 (ja) | 2020-12-24 | 2024-11-06 | 清華大学 | 亜鉛系有機金属ナノ粒子及びその製造方法、並びにフォトレジスト |
Also Published As
Publication number | Publication date |
---|---|
TW202000681A (zh) | 2020-01-01 |
TWI779202B (zh) | 2022-10-01 |
KR102556387B1 (ko) | 2023-07-18 |
KR20210011973A (ko) | 2021-02-02 |
US20210149299A1 (en) | 2021-05-20 |
JPWO2020004172A1 (ja) | 2021-05-13 |
JP7028482B2 (ja) | 2022-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020004172A1 (ja) | 有機修飾金属酸化物ナノ粒子、その製造方法、euvフォトレジスト材料およびエッチングマスクの製造方法 | |
US11392029B2 (en) | Organometallic solution based high resolution patterning compositions and corresponding methods | |
JP7095060B2 (ja) | 有機金属溶液に基づいた高解像度パターニング組成物 | |
JP2021102604A (ja) | 有機修飾金属酸化物ナノ粒子、有機修飾金属酸化物ナノ粒子含有溶液、有機修飾金属酸化物ナノ粒子含有レジスト組成物及びレジストパターン形成方法 | |
KR102638489B1 (ko) | 유기 수식 금속 산화물 나노 입자, 그 제조 방법, euv 포토레지스트 재료 및 에칭 마스크의 제조 방법 | |
US11747724B2 (en) | Organically modified metal oxide nanoparticles, organically modified metal oxide nanoparticles-containing solution, organically modified metal oxide nanoparticles-containing resist composition, and resist pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19826575 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020527438 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207036516 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19826575 Country of ref document: EP Kind code of ref document: A1 |