WO2020003869A1 - 基板実装方法及び電子部品実装基板 - Google Patents
基板実装方法及び電子部品実装基板 Download PDFInfo
- Publication number
- WO2020003869A1 WO2020003869A1 PCT/JP2019/021322 JP2019021322W WO2020003869A1 WO 2020003869 A1 WO2020003869 A1 WO 2020003869A1 JP 2019021322 W JP2019021322 W JP 2019021322W WO 2020003869 A1 WO2020003869 A1 WO 2020003869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic component
- wiring board
- adhesive layer
- board
- electrode pad
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 229920005989 resin Polymers 0.000 claims abstract description 79
- 239000011347 resin Substances 0.000 claims abstract description 79
- 239000012790 adhesive layer Substances 0.000 claims abstract description 75
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 238000000059 patterning Methods 0.000 claims abstract description 9
- 238000003825 pressing Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 66
- 239000004020 conductor Substances 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 47
- 239000010408 film Substances 0.000 description 44
- 239000000853 adhesive Substances 0.000 description 28
- 230000001070 adhesive effect Effects 0.000 description 28
- 239000002245 particle Substances 0.000 description 28
- 238000005192 partition Methods 0.000 description 17
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 230000005284 excitation Effects 0.000 description 11
- 239000007850 fluorescent dye Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000049 pigment Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81192—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83194—Lateral distribution of the layer connectors
Definitions
- the present invention relates to a board mounting method for mounting an electronic component on a wiring board and an electronic component mounting board, and more particularly to a board mounting method and an electronic component mounting board that enable mounting of an electronic component having a narrow electrode interval.
- an electronic component such as a light emitting element is mounted on a mounting substrate (wiring substrate) on which a circuit or the like is formed via an adhesive material that is an anisotropic conductive material.
- the adhesive disclosed in Patent Literature 1 includes conductive particles and a binder, and the conductive particles electrically connect a connection electrode of an LED chip, which is a light emitting element, to an electrode pad of a mounting board, The binder mechanically fixes the light emitting element and the mounting board.
- the conductive particles contained in the adhesive for example, particles of an elastic resin whose surface is covered with a metal film, or particles containing gold plated Ni or the like are used.
- the binder of the adhesive is, for example, a thermosetting resin such as an epoxy resin and a silicone resin, or a synthetic rubber resin.
- the adhesive contains a light-reflective substance, whereby the light reflectance of the adhesive can be increased, and the light extraction efficiency of the light emitting device can be increased.
- a light-reflective substance titanium oxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, or the like can be used.
- the adhesive is supplied and applied to the mounting substrate from, for example, an application nozzle. Then, the light-emitting element moved onto the mounting substrate by the light-emitting element moving mechanism is lowered by the elevating device, and is placed at a predetermined position on the mounting substrate via the adhesive. Then, by applying pressure and heating to the light emitting element on the mounting board, the light emitting element and the mounting board are joined. At this time, since the adhesive material is an anisotropic conductive material, conductive particles are interposed between the connection electrode of the light emitting element and the pad electrode of the mounting board, and the light emitting element and the mounting board are electrically connected. Will be.
- an anisotropic conductive film (a thermosetting resin mixed with fine metal particles) is used as an adhesive for an anisotropic conductive material.
- ACF Anisotropic Conductive Film
- ACP Anisotropic Conductive Paste
- the electrode spacing is limited by the particle size of the metal particles, at present, the electrode spacing cannot be made narrower than about 8 ⁇ m to 10 ⁇ m.
- the electrode spacing in order to cope with a narrow electrode interval, even if the particle diameter of the metal particles can be formed smaller, it is necessary to increase the particle amount in order to secure electrical connectivity, in which case the electrode interval is small.
- the electrode area decreases as the electrode interval decreases, there is a problem that the number of conductive particles captured by the connection electrodes (bumps) of the light emitting element varies.
- the present invention has been made under such a problem, and an object of the present invention is to provide a board mounting method and an electronic component mounting board which enable mounting of an electronic component having a narrow electrode interval.
- a substrate mounting method is a method for mounting an electronic component on a wiring substrate, the method comprising mounting on an electrode pad provided on the wiring substrate corresponding to a contact point of the electronic component. Patterning and forming a conductive elastic projection on the wiring substrate; forming an adhesive layer made of a photosensitive thermosetting resin on the wiring board; and heating the adhesive layer to a first temperature zone. A step of reducing the viscosity of the adhesive layer, and in a state where the viscosity of the adhesive layer is reduced, the electronic component is positioned and arranged on the wiring board and then pressed to contact the contact of the electronic component.
- the method may further include a step of forming a film made of a conductive photosensitive thermosetting resin on a contact point of the electronic component before pressing the electronic component after positioning the electronic component on the wiring board.
- a board mounting method is a board mounting method of an electronic component on a wiring board, wherein the contact of the electronic component corresponding to an electrode pad provided on the wiring board is provided.
- a step of reducing the viscosity of the adhesive layer, and in a state where the viscosity of the adhesive layer is reduced the electronic component is positioned and arranged on the wiring substrate, and then pressed to contact the contact of the electronic component.
- For the adhesive layer Heated serial to a second temperature range higher than the first temperature zone to cure the adhesive material layer, with the features of the electronic component include a step of fixing the wiring board.
- a board mounting method is a board mounting method of an electronic component on a wiring board, wherein the contact of the electronic component corresponding to an electrode pad provided on the wiring board is provided. Patterning and forming a conductive elastic projection on the contact; forming an adhesive layer made of a photosensitive thermosetting resin on a contact of the electronic component or on an electrode pad of the wiring board; Heating the material layer to a first temperature zone to reduce the viscosity of the adhesive layer, and positioning the electronic component on the wiring board with the viscosity of the adhesive layer reduced.
- the adhesive layer is made of a conductive photosensitive thermosetting resin. It may be. In that case, it is preferable to include a step of forming an adhesive layer made of an insulating photosensitive thermosetting resin between the electronic component and the wiring board and between adjacent electrodes.
- the elastic projection portion has a surface covered with a conductive film, and the conductive film electrically connects the contact point of the electronic component and the electrode pad of the wiring board.
- the protrusions are columnar projections formed of a non-photosensitive photoresist.
- the electronic component may be a micro LED.
- an electronic component mounting board is an electronic component mounting board in which an electronic component is mounted on a wiring board, wherein the wiring board on which electrode pads are formed; The electronic component having a contact for connecting to a pad; and a conductive layer formed on the contact of the electronic component or on an electrode pad of the wiring board for electrically connecting the contact to the electrode pad. And an elastic projection portion, wherein the electrode pad of the wiring board and the contact point of the electronic component are joined by a conductive photosensitive thermosetting resin provided in the joining region. .
- an adhesive layer made of an insulating photosensitive thermosetting resin is provided between the electronic component and the wiring board and between adjacent electrodes.
- an electronic component mounting board is an electronic component mounting board in which an electronic component is mounted on a wiring board, wherein the wiring board on which an electrode pad is formed;
- the electronic component having a contact for connecting to a pad, comprising a conductive elastic protrusion formed on the contact of the electronic component, for electrically connecting the contact and the electrode pad,
- the wiring board and the electronic component are joined by an insulative photosensitive thermosetting resin, and further, the tip of the elastic projection and the electrode pad are formed of a conductive material formed in a film on the electrode pad. It is characterized by being joined by a photosensitive thermosetting resin.
- an electronic component mounting board is an electronic component mounting board in which an electronic component is mounted on a wiring board, wherein the wiring board on which an electrode pad is formed;
- the wiring comprising: the electronic component having a contact for connecting to a pad; and a conductive elastic projection formed on the electronic pad for electrically connecting the contact to the electrode pad.
- the substrate and the electronic component are joined by an insulative photosensitive thermosetting resin, and the tip of the elastic projection and the electrode pad are electrically conductive photosensitive heat formed in a film on the contact. It is characterized by being joined by a curable resin.
- the elastic projection portion has a surface covered with a conductive film, and the conductive film electrically connects the contact point of the electronic component and the electrode pad of the wiring board.
- the protrusions are columnar projections formed of a non-photosensitive photoresist.
- the electronic component may be a micro LED.
- the elastic projections on the electrode pads of the wiring board can be formed by applying a photolithography process, high precision is assured in position and shape. Even if the interval between the contacts of the electronic component is narrower than about 10 ⁇ m, it can be easily formed, and a highly accurate micro LED display or the like can be manufactured. Further, when connecting the elastic projections to the contacts (or electrode pads on the wiring board) of the electronic component, the adhesive is soft in the first temperature zone and is soft, so that the adhesive is interposed in the connecting portions to conduct the connection. Without hindrance, it is possible to mount a large number of electronic components such as micro LEDs on the wiring board with ease and secure electrical connection.
- FIG. 1 is a plan view schematically showing a micro LED display to which the substrate mounting method of the present invention is applied.
- FIG. 2 is an enlarged sectional view of a main part of FIG.
- FIG. 3 is a sectional view schematically showing a substrate connection structure formed by the substrate mounting method of the present invention.
- FIG. 4 is a process chart for explaining the first embodiment of the board mounting method according to the present invention.
- FIG. 5 is a graph schematically showing characteristics of a photosensitive thermosetting resin adhesive used in the substrate mounting method according to the present invention.
- FIG. 6 is a process diagram illustrating a second embodiment of the substrate mounting method according to the present invention.
- FIG. 7 is a process diagram illustrating a third embodiment of the substrate mounting method according to the present invention.
- FIG. 1 is a plan view schematically showing a micro LED display to which the substrate mounting method of the present invention is applied.
- FIG. 2 is an enlarged sectional view of a main part of FIG.
- FIG. 3 is a sectional
- FIG. 8 is a process chart for explaining a fourth embodiment of the board mounting method according to the present invention.
- FIG. 9 is a process chart illustrating a fifth embodiment according to the present invention.
- FIG. 10 is a process chart illustrating a sixth embodiment according to the present invention.
- FIG. 11 is another process diagram illustrating the sixth embodiment according to the present invention.
- FIG. 12 is a process chart illustrating a seventh embodiment according to the present invention.
- FIG. 13 is a process diagram illustrating the formation of the fluorescent light emitting layer array of the micro LED display.
- FIG. 14 is a process chart for explaining the assembly of the wiring substrate of the micro LED display and the fluorescent light emitting layer array.
- FIG. 1 is a plan view schematically showing a micro LED display to which the substrate mounting method of the present invention is applied
- FIG. 2 is an enlarged sectional view of a main part of FIG. 1, and
- FIG. It is sectional drawing which shows typically the board
- the micro LED display shown in FIG. 1 displays a color image, and includes an LED array substrate 1 and a fluorescent light emitting layer array 2.
- the LED array substrate 1 is provided with a plurality of micro LEDs 3 as electronic components arranged in a matrix as shown in FIG. 1, and a video signal from a driving circuit provided outside is supplied to each micro LED 3. You.
- the plurality of micro LEDs 3 are arranged on a wiring board 4 provided with wiring for turning on and off each micro LED 3 by individually turning on and off.
- the wiring board 4 is provided with an electrode pad 6 at the installation position of each micro LED 3 so as to correspond to the contact 5 opposite to the light extraction surface 3a of the micro LED 3 as shown in FIG. I have.
- Each electrode pad 6 is connected to an external drive circuit by a wiring (not shown).
- the micro LED 3 emits light in the ultraviolet to blue wavelength band, and is manufactured using gallium nitride (GaN) as a main material.
- the LED may emit near-ultraviolet light having a wavelength of, for example, 200 nm to 380 nm, or may emit an blue light having a wavelength of, for example, 380 nm to 500 nm.
- the micro LED 3 is connected to the contact 5 of the micro LED 3 via the conductive elastic protrusion 7 (resin bump) formed on the electrode pad 6 of the wiring board 4 by patterning.
- the pad 6 is electrically connected.
- the elastic protrusions 7 are resin-made columnar protrusions 9 whose surfaces are covered with a conductive film 8 of good conductivity such as gold or aluminum (or the columnar protrusions 9 are formed by using a photoresist such as silver or the like). May be formed as a conductive photoresist to which conductive fine particles are added or a conductive photoresist containing a conductive polymer).
- FIG. 3 shows, as an example, a case in which a columnar projection 9 having a conductive film 8 adhered to the surface is formed as the elastic projection 7, but the elastic projection 7 has a conductive property as described above. It may be formed of a photoresist.
- the micro LED 3 is bonded and fixed to the wiring board 4 via an adhesive layer 10 provided around the electrode pad 6 of the wiring board 4.
- the adhesive layer 10 shown in FIG. 3 is in a state where an adhesive made of a photosensitive thermosetting resin is cured.
- the fluorescent light emitting layer array 2 is provided on the micro LED 3 as shown in FIG.
- the fluorescent light emitting layer array 2 includes a plurality of fluorescent light emitting layers 11 (11R, 11G, 11B) that are excited by the excitation light L emitted from the micro LED 3 and convert the wavelengths into the fluorescent light FL of the corresponding color (RGB). ).
- fluorescent light-emitting layers 11 corresponding to red, green, and blue colors are provided on a transparent substrate 13 in a state of being separated by partition walls 12.
- “up” always refers to the display surface side regardless of the installation state of the micro LED display.
- the fluorescent light emitting layer 11 is obtained by mixing and dispersing a fluorescent dye 14a having a large particle size of several tens of microns and a fluorescent dye 14b having a small particle size of several tens of nanometers in a resist film. It is.
- the fluorescent light-emitting layer 11 may be composed of only the fluorescent pigment 14a having a large particle diameter. In this case, however, the filling rate of the fluorescent pigment 14a is reduced, and the leakage of the excitation light L to the display surface is reduced. Will increase.
- the fluorescent light emitting layer 11 is composed of only the fluorescent dye 14b having a small particle diameter, there is a problem that stability such as light resistance is poor.
- the fluorescent light-emitting layer 11 by forming the fluorescent light-emitting layer 11 from a mixture of the fluorescent pigment 14a having a large particle diameter and the fluorescent pigment 14b having a small particle diameter, the leakage light of the excitation light L to the display surface side can be obtained. And the luminous efficiency can be improved.
- the mixing ratio of the fluorescent pigments 14 having different particle diameters is set to be 50 to 90 Vol% for the fluorescent pigment 14 a having a large particle diameter and 10 to 50 Vol% for the fluorescent pigment 14 b having a small particle diameter by volume ratio. desirable.
- FIG. 1 shows the case where the fluorescent light emitting layers 11 corresponding to each color are provided in a stripe shape, the fluorescent light emitting layers 11 may be provided corresponding to each micro LED 3 individually.
- the partition walls 12 provided so as to surround the fluorescent light emitting layers 11 corresponding to the respective colors separate the fluorescent light emitting layers 11 corresponding to the respective colors from each other, and are formed of a transparent resin, for example.
- a high aspect material for the partition walls 12 so that the height to width aspect ratio can be 3 or more.
- a high aspect material for example, there is SU-8 @ 3000 photoresist made by Nippon Kayaku Co., Ltd.
- a metal film 15 is provided as shown in FIG.
- the excitation light L and the fluorescent light FL emitted by the excitation of the fluorescent light emitting layer 11 by the excitation light L are mixed with the fluorescent light FL of the adjacent fluorescent light emitting layer 11 of another color transmitted through the partition wall 12. This is to prevent For this purpose, the metal film 15 is formed with a thickness that can sufficiently block the excitation light L and the fluorescence FL.
- the metal film 15 a thin film of aluminum, an aluminum alloy, or the like that easily reflects the excitation light L is preferable.
- the excitation light L transmitted through the fluorescent light emitting layer 11 toward the partition 12 is reflected inside the fluorescent light emitting layer 11 by the metal film 15 such as aluminum, and can be used for light emission of the fluorescent light emitting layer 11.
- the luminous efficiency of the light emitting layer 11 can be improved.
- the thin film applied to the surface of the partition wall 12 is not limited to the metal film 15 that reflects the excitation light L and the fluorescent light FL, and may be a film that absorbs the excitation light L and the fluorescent light FL.
- a method for manufacturing the micro LED display thus configured will be described.
- a method of mounting the micro LEDs 3 on the wiring substrate 4 (a method of manufacturing the LED array substrate 1) will be described with reference to FIG.
- a plurality of electrode pads 6 are formed on the wiring board 4 at positions corresponding to the contacts 5 of the plurality of micro LEDs 3.
- This wiring board 4 can be formed by a known technique.
- a resist for a photo spacer is applied to the entire upper surface of the wiring substrate 4 and exposed and developed using a photomask, thereby forming the columnar projections 9 on the electrode pads 6 as shown in FIG. Patterning is performed.
- the columnar projection 9 is formed to have a semi-elliptical (or semi-circular) cross section at the tip.
- a conductive film 8 of good conductivity such as gold or aluminum is formed on the columnar projections 9 and the electrode pads 6 by sputtering or vapor deposition to form the elastic projections 7.
- the conductor film 8 may have two or more layers as necessary in consideration of the adhesion to the resin.
- the method of forming the conductive film 8 will be described in more detail.
- a resist layer is formed by photolithography on the peripheral portion except for the electrode pad 6, and the conductive film 8 is formed. Later, the resist layer is dissolved by development. As a result, the excess conductor film 8 on the resist layer is lifted off, and the conductor film 8 is formed only on the columnar projections 9 and the electrode pads 6.
- the elastic projection 7 may be a columnar projection 9 formed of a conductive photoresist obtained by adding conductive particles such as silver to a photoresist or a conductive photoresist containing a conductive polymer.
- the elastic projections 7 are formed by applying a conductive photoresist to the entire upper surface of the wiring substrate 4 to a predetermined thickness, exposing the photoresist using a photomask, developing the photoresist, and developing the columnar projections 9 on the electrode pads 6. Is formed as a pattern.
- the elastic projections 7 can be formed by applying a photolithography process, high accuracy in position and shape can be secured, and the interval between the contacts 5 of the micro LED 3 becomes narrower than about 10 ⁇ m. However, it can be easily formed.
- each contact 5 can reliably contact the elastic projection 7.
- a photosensitive thermosetting resin is applied to the entire upper surface of the wiring board 4 to form an adhesive layer 10.
- the thickness of the adhesive layer 10 applied and formed is about the height including the electrode pads 6 and the elastic projections 7 of the wiring board 4, and preferably, the tip of the elastic projections 7 is Slightly protruding from the surface of the surface.
- the photosensitive thermosetting resin forming the adhesive layer 10 has the characteristic of the curve schematically shown in the graph of FIG. That is, until the temperature reaches the first temperature zone (for example, 100 ° C. to 120 ° C.) by heating, the viscosity (elastic modulus) gradually decreases and softens.
- a band for example, 180 ° C. or higher
- the adhesive layer 10 is heated to a first temperature zone (for example, 100 ° C. to 120 ° C.) in a heating furnace capable of controlling the temperature. Decrease the viscosity of 10.
- This first temperature zone may be set in accordance with the characteristics of the photosensitive thermosetting resin (adhesive) used.
- the micro LED 3 is moved so that the contact 5 and the electrode pad 6 on the wiring board 4 match each other as shown in FIG. Position and arrange.
- the micro LEDs 3 are formed at regular intervals on a sapphire wafer (not shown), or are formed on a sapphire wafer and then transferred to an adhesive sheet and arranged at regular intervals.
- the sapphire wafer (micro LED wafer) or the adhesive sheet is pressed against the wiring board 4 to make the contact 5 of the micro LED 3 and the electrode pad 6 of the wiring board 4 conductive.
- the elastic projections 7 of the first and second members are electrically connected via the elastic projections 7 of the first and second members. Until all the elastic projections 7 come into contact with the contact points 5 of the micro LED 3, the tip of the elastic projection 7 that has come into contact first is crushed, so that the height difference between the elastic projections 7 is absorbed. As a result, electrical connection between all the micro LEDs and the wiring board is ensured.
- the adhesive layer 10 is heated and its temperature is raised to a second temperature zone (for example, 180 ° C. or higher).
- the second temperature zone may be set in accordance with the characteristics of the photosensitive thermosetting resin (adhesive) used as described above.
- the adhesive layer 10 is thermoset, and the micro LED 3 is bonded and fixed on the wiring board 4.
- the sapphire wafer or the adhesive sheet attached to the light extraction surface 3a of the micro LED 3 is peeled off, and the micro LED 3 is mounted on the wiring board 4 side (lift-off). Is completed.
- the columnar projections 9 are formed on the electrode pads 6 of the wiring board 4, and the conductive films 8 are formed thereon to form the elastic projections 7.
- the method is not limited to this.
- the elastic protrusion 7 may be formed on the contact 5 of the micro LED 3.
- a second embodiment showing a mounting method in this case will be described below.
- a resist for a photo spacer is applied to the entire surface of the electrode surface (contact 5 side) of the micro LED 3, exposed using a photomask, and developed to form a columnar projection 9 on the contact 5 by patterning.
- the columnar projection 9 has a semi-elliptical tip section.
- a conductive film 8 of good conductivity such as gold or aluminum is formed on the columnar projections 9 and the contacts 5 by sputtering or vapor deposition to form the elastic projections 7.
- a photosensitive thermosetting resin is applied to the entire upper surface of the wiring substrate 4 to form an adhesive layer 10 having a predetermined thickness. Then, according to the same procedure as in the first embodiment, the light extraction surface 3a side of the micro LED 3 is pressed to electrically connect the contact 5 and the electrode pad 6 of the micro LED 3 via the conductive elastic projection 7. Then, the micro LED 3 is mounted on the wiring board 4 as shown in FIG.
- the micro LED 3 may be mounted on the wiring board 4.
- the adhesive 10 When the adhesive 10 is formed only on the electrode pad 6 as in the third embodiment (FIG. 7), or only the elastic protrusion 7 is covered as in the fourth embodiment (FIG. 8).
- the adhesive layer 10 When the adhesive layer 10 is formed as described above, the adhesive layer 10 may have conductivity.
- a minute gap may be generated between the elastic protrusion 7 and the electrode pad 6 in part depending on the physical factors of the equipment, the temperature, and the state of the object, and there is a possibility that no contact occurs. Exists as a possibility. That is, if the adhesive layer 10 is insulative, the contact 5 of the micro LED 3 and the electrode pad 6 are not electrically connected.
- the adhesive layer 10 provided in the bonding area (adjacent area) between the contact point of the micro LED 3 and the electrode pad 6 has conductivity, a minute gap exists between the elastic projection 7 and the electrode pad 6. Even if it occurs, the contact 5 of the micro LED 3 and the electrode pad 6 can be electrically connected.
- conductive particles for example, carbon particles
- the compounding of the conductive particles in the conductive photosensitive thermosetting resin does not affect the adhesive performance, and may be sufficient to enable conductivity in the minute gap between the elastic protrusion 7 and the electrode pad 6. .
- the height of the elastic projection 7 is Alternatively, it may be formed slightly lower than the height of the adhesive layer 10.
- the conductive photosensitive thermosetting resin adheresive layer 10 may protrude onto the wiring board 4.
- the adhesive layer 10 is made of a conductive photosensitive thermosetting resin in the configurations of FIGS. 7 and 8, as shown in FIG. 9A, in order to reinforce the adhesion and prevent a short circuit between adjacent electrodes. May be provided between the electrodes adjacent to each other (an order of application of the insulating photosensitive thermosetting resin 10A and the conductive photosensitive thermosetting resin 10B). Is not limited).
- the state is as shown in FIGS. 9B and 9C. That is, the applied insulating photosensitive thermosetting resin 10A and the conductive photosensitive thermosetting resin 10B are in contact with each other, for example, as shown in FIG. 9B (there may be a partial contact). Or, it is in a separated state as shown in FIG.
- FIG. 9 shows an example in which the adhesive is applied to the wiring board 4 side
- the state after mounting the micro LED 3 is the same when the adhesive is applied to the micro LED 3 side.
- the adhesive layer 10 provided in the joint area between the electrode pad 6 and the contact 5 is a conductive photosensitive thermosetting resin 10B
- the height of the elastic protrusion 7 May be formed slightly lower than the height of the conductive photosensitive thermosetting resin 10B (adhesive layer 10).
- the conductive photosensitive thermosetting resin 10B may protrude above the wiring board 4.
- FIGS. 10A and 10B show a conductive photosensitive thermosetting resin used as a countermeasure when a minute gap is generated between the elastic protrusion 7 and the electrode pad 6, FIGS. 10A and 10B.
- the configuration shown in FIG. That is, as shown in the drawing, a conductive photosensitive thermosetting resin 10B is formed on the electrode pad 6 in a film shape having a predetermined thickness (setting larger than the assumed minute gap), and the micro LED 3 is mounted on the wiring board 4.
- an insulating photosensitive thermosetting resin 10A is provided in a region to be adhered.
- the tip of the elastic projection 7 is The electrode pad 6 is joined with the conductive photosensitive thermosetting resin 10B, and can be electrically connected to each other.
- the procedure for forming the insulating photosensitive thermosetting resin 10A and the conductive photosensitive thermosetting resin 10B on the wiring board 4 is as follows. Good. First, as shown in FIG. 11A, an electrode pad 6 is formed on a wiring substrate 4, and as shown in FIG. 11B, a conductive photosensitive thermosetting resin 10B is applied and formed on the upper surface of the substrate 4. .
- a film of the conductive photosensitive thermosetting resin 10B having a predetermined thickness is formed only on the film.
- an insulating photosensitive thermosetting resin 10A is applied and formed on the wiring board 4, and is exposed through a mask patterned according to the arrangement and shape of the micro LED 3, and then is continued. Developing, etching, and resist removing operations are sequentially performed. As a result, as shown in FIG. 11E, a photosensitive thermosetting resin 10A corresponding to the area where the micro LED 3 is attached is formed.
- the conductive photosensitive thermosetting resin 10B is formed on the electrode pad 6 into a film having a predetermined thickness.
- a film of a conductive photosensitive thermosetting resin 10B may be formed on the contact 5 of the micro LED 3 instead of the electrode pad 6.
- a transparent photosensitive material for the partition wall 12 is formed on a transparent substrate 13 that transmits at least light in the near ultraviolet to blue wavelength band and is made of, for example, a glass substrate or a plastic substrate such as an acrylic resin. Apply resin. Thereafter, exposure is performed using a photomask, and development is performed. A stripe-shaped opening 16 as shown in FIG. A transparent partition wall 12 having a ratio of 3 or more is formed at a minimum height of about 10 ⁇ m.
- the photosensitive resin to be used is preferably a high aspect material such as SU-83000 manufactured by Nippon Kayaku Co., Ltd.
- a metal film 15 of, for example, aluminum or an aluminum alloy is formed to a predetermined thickness from the partition wall 12 formed on the transparent substrate 13 by applying a known film forming technique such as sputtering. After the film formation, the metal film 15 attached to the transparent substrate 13 at the bottom of the opening 16 surrounded by the partition 12 is removed by laser irradiation.
- a resist or the like is applied to the surface of the transparent substrate 13 at the bottom of the opening 16 with a thickness of several ⁇ m by, for example, an ink jet, and the metal film 15 is formed. 15 may be lifted off and removed.
- a chemical solution that does not attack the resin of the partition walls 12 is selected as a resist solution used for lift-off.
- a resist containing, for example, a red fluorescent dye 14 is applied to the plurality of openings 16 corresponding to, for example, red surrounded by the partition walls 12 by, for example, inkjet, and then, The resin is cured by irradiating ultraviolet rays to form a red fluorescent light emitting layer 11R.
- the resist is exposed to light using a photomask and developed, and the red fluorescent light emitting layer 11R is formed in the plurality of openings 16 corresponding to red.
- the resist is obtained by mixing and dispersing a fluorescent pigment 14a having a large particle diameter and a fluorescent pigment 14b having a small particle diameter, and the mixing ratio thereof is such that the fluorescent pigment 14a having a large particle diameter by volume ratio is used.
- the fluorescent dye 14b having a small particle diameter is 10 to 50% by volume with respect to 50 to 90% by volume.
- a resist containing, for example, a green fluorescent dye 14 is applied to the plurality of openings 16 corresponding to, for example, green surrounded by the partition walls 12 by, for example, ink jet, the resist is cured by irradiating ultraviolet light, The fluorescent light emitting layer 11G is formed.
- a resist containing a green fluorescent dye 14 applied to the entire upper surface of the transparent substrate 13 in the same manner as described above is exposed and developed using a photomask, and green light is applied to a plurality of openings 16 corresponding to green.
- the fluorescent light emitting layer 11G may be formed.
- a resist containing, for example, a blue fluorescent dye 14 is applied to the plurality of openings 16 corresponding to, for example, blue, which are surrounded by the partition walls 12, by, for example, ink jet.
- the blue fluorescent light emitting layer 11B is formed.
- the resist containing the blue fluorescent dye 14 applied to the entire upper surface of the transparent substrate 13 in the same manner as described above is exposed and developed using a photomask, and the plurality of openings 16 corresponding to the blue color are developed. May be formed with a blue fluorescent light emitting layer 11B.
- an antireflection film for preventing reflection of external light on the display surface side of the fluorescent light emitting layer array 2.
- a black paint may be applied on the metal film 15 on the display surface side of the partition 12.
- the fluorescent light emitting layer array 2 is positioned and arranged on the LED array substrate 1. More specifically, the fluorescent light emitting layers 11 corresponding to each color of the fluorescent light emitting layer array 2 are formed by using the alignment marks formed on the LED array substrate 1 and the alignment marks formed on the fluorescent light emitting layer array 2. The alignment is performed so as to be located on the corresponding micro LED 3 on the array substrate 1.
- the LED array substrate 1 and the fluorescent light emitting layer array 2 are joined by an adhesive (not shown), and the micro LED display is completed. Complete.
- the elastic projections 7 on the electrode pads 6 of the wiring board 4 are formed by applying a photolithography process. Therefore, it is possible to secure high precision in position and shape, and it is possible to easily form even if the interval between the contacts 5 of the micro LED 3 is narrower than about 10 ⁇ m, and it is possible to manufacture a highly accurate micro LED display or the like. Become.
- the adhesive layer 10 is formed on the entire upper surface of the wiring board 4 (or on the lower surface side of the micro LED 3), and the viscosity is reduced by heating. The contact 5 of the aligned micro LED 3 is pressed so as to be pressed against the elastic projection 7 on the electrode pad 6.
- the adhesive is soft when connecting the elastic projection 7 and the contact 5 of the micro LED 3, the adhesive does not intervene in the connection portion and does not hinder conduction. As a result, a large number of micro LEDs 3 can be mounted on the wiring board 4 easily and with secure electrical connection. Thereafter, heat treatment for curing the adhesive is performed.
- the tip of the elastic projection 7 has a semi-elliptical (or semi-circular) cross section, but the present invention does not limit the tip shape. Absent.
- the shape (the trapezoid is also included) of which the diameter is reduced toward the tip is good, but a column shape whose diameter does not change toward the tip may be used.
- the fluorescent light emitting layer array 2 has a structure in which the fluorescent light emitting layers 11 corresponding to each color of red, green, and blue are provided on the transparent substrate 13 in a state where the fluorescent light emitting layers 11 are separated by the partition walls 12.
- the configuration of the micro LED display to which the substrate mounting method of the present invention is applied is not limited.
- the electronic component is the micro LED 3
- the present invention is not limited to this, and the electronic component may be a semiconductor component or another micro electronic component.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
電極間隔の狭い電子部品の実装を可能にする基板実装方法を提供する。配線基板4への電子部品3の基板実装方法であって、前記電子部品の接点5に対応して前記配線基板に設けられた電極パッド6上に導電性の弾性突起部7をパターニング形成する工程と、前記配線基板上に感光性熱硬化型樹脂からなる接着材層10を形成する工程と、前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の前記接点と前記配線基板の前記電極パッドとを導電性の前記弾性突起部を介して電気的に接続する工程と、前記接着材層に対し前記第1の温度帯よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、を含む。
Description
本発明は、電子部品を配線基板に取り付けるための基板実装方法及び電子部品実装基板に関し、特に電極間隔の狭い電子部品の実装を可能にする基板実装方法及び電子部品実装基板に係るものである。
従来の基板接続構造は、例えば特許文献1に開示されるように、発光素子等の電子部品を回路等が形成された実装基板(配線基板)に異方性導電材料である接着材料を介して設けていた。
特許文献1に開示された接着材は、導電性粒子とバインダとを含むものであり、導電性粒子が発光素子であるLEDチップの接続電極と実装基板の電極パッドとを電気的に導通させ、バインダが発光素子と実装基板とを機械的に固定するものである。
特許文献1に開示された接着材は、導電性粒子とバインダとを含むものであり、導電性粒子が発光素子であるLEDチップの接続電極と実装基板の電極パッドとを電気的に導通させ、バインダが発光素子と実装基板とを機械的に固定するものである。
特許文献1において、この接着材に含まれる導電性粒子は、例えば表面を金属膜で被覆した弾性を有する樹脂の粒子や、金メッキ処理を行ったNiなどを含むものが用いられる。また、接着材のバインダは、例えば、エポキシ樹脂およびシリコーン樹脂をはじめとする熱硬化性樹脂、合成ゴム系樹脂である。
尚、特許文献1において、接着材は、光反射性物質を含有することが好ましいとされ、それにより接着材の光反射率を高めることができ、発光装置の光取り出し効率が高まる。具体的には、酸化チタン、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素等を用いることができる。
前記接着材は、実装基板に対して例えば塗布ノズルから供給され塗布される。そして、発光素子の移動機構により実装基板上に移動された発光素子が昇降装置により降下され、接着材を介して実装基板上の所定位置に載置される。
そして、実装基板上の発光素子に対し、加圧及び加熱を行うことにより発光素子と実装基板とが接合される。このとき、接着材料が異方性導電材料であるため、発光素子の接続電極と実装基板のパッド電極との間に導電性粒子が介在し、発光素子と実装基板とが電気的に接続されることになる。
そして、実装基板上の発光素子に対し、加圧及び加熱を行うことにより発光素子と実装基板とが接合される。このとき、接着材料が異方性導電材料であるため、発光素子の接続電極と実装基板のパッド電極との間に導電性粒子が介在し、発光素子と実装基板とが電気的に接続されることになる。
ところで、特許文献1に開示されるような従来の基板接続構造にあっては、異方性導電材料の接着材として、熱硬化性樹脂に微細な金属粒子を混ぜ合わせた異方性導電フィルム(以下、「ACF(Anisotropic Conductive Film)」という)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)が使用されている。
しかしながら、金属粒子の粒径サイズにより電極間隔が制限されるため、現状では、電極間隔を8μm~10μm程度よりも狭くすることができなかった。
また、狭い電極間隔に対応するために、例え金属粒子の粒子径をより小さく形成できても、電気的接続性を確保するために粒子量を増やす必要があり、その場合は電極間隔が狭いためにショート発生リスクが高くなる虞があった。
更に電極間隔が狭くなるにともない電極面積が小さくなるが、発光素子の接続電極(バンプ)によって捕捉される導電性粒子の数に、ばらつきが生じるという問題もあった。
また、狭い電極間隔に対応するために、例え金属粒子の粒子径をより小さく形成できても、電気的接続性を確保するために粒子量を増やす必要があり、その場合は電極間隔が狭いためにショート発生リスクが高くなる虞があった。
更に電極間隔が狭くなるにともない電極面積が小さくなるが、発光素子の接続電極(バンプ)によって捕捉される導電性粒子の数に、ばらつきが生じるという問題もあった。
そのため、例えば、外形寸法が10μm×30μm以下のマイクロLED(Light Emitting Diode)を実装基板に実装することが困難であった。即ち、高精細なLEDディスプレイの製造ができないという課題があった。
本発明は、このような課題のもとになされたものであり、電極間隔の狭い電子部品の実装を可能にする基板実装方法及び電子部品実装基板を提供することを目的とする。
上記目的を達成するために、本発明に係る基板実装方法は、配線基板への電子部品の基板実装方法であって、前記電子部品の接点に対応して前記配線基板に設けられた電極パッド上に導電性の弾性突起部をパターニング形成する工程と、前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の前記接点と前記配線基板の前記電極パッドとを導電性の前記弾性突起部を介して電気的に接続する工程と、前記接着材層に対し前記第1の温度帯よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、を含むことに特徴を有する。
尚、前記電子部品を前記配線基板上に位置決め配置したのち押圧する前に、前記電子部品の接点上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含んでもよい。
尚、前記電子部品を前記配線基板上に位置決め配置したのち押圧する前に、前記電子部品の接点上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含んでもよい。
或いは、上記目的を達成するために、本発明に係る基板実装方法は、配線基板への電子部品の基板実装方法であって、前記配線基板に設けられた電極パッドに対応する前記電子部品の接点上に導電性の弾性突起部をパターニング形成する工程と、前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の接点に形成された導電性の前記弾性突起部の先端を前記配線基板の前記電極パッドに押し当て、前記電子部品の接点と前記電極パッドとを前記弾性突起部を介して電気的に接続する工程と、前記接着材層に対し前記第1の温度帯よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、を含むことに特徴を有する。
尚、前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程の前に、前記配線基板の電極パッド上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含んでもよい。
尚、前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程の前に、前記配線基板の電極パッド上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含んでもよい。
或いは、上記目的を達成するために、本発明に係る基板実装方法は、配線基板への電子部品の基板実装方法であって、前記配線基板に設けられた電極パッドに対応する前記電子部品の接点上に導電性の弾性突起部をパターニング形成する工程と、前記電子部品の接点上、または前記配線基板の電極パッド上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の接点に形成された導電性の前記弾性突起部の先端を前記配線基板の前記電極パッドに押し当て、前記電子部品の接点と前記電極パッドとを前記弾性突起部を介して電気的に接続する工程と、前記接着材層に対し前記第1の温度よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、を含むことに特徴を有する。
尚、前記電子部品の接点上、または前記配線基板の電極パッド上に感光性熱硬化型樹脂からなる接着材層を形成する工程において、前記接着材層は、導電性の感光性熱硬化型樹脂であってもよい。
その場合、前記電子部品と前記配線基板との間、且つ隣り合う電極間において、絶縁性の感光性熱硬化型樹脂からなる接着材層を形成する工程を含むことが望ましい。
その場合、前記電子部品と前記配線基板との間、且つ隣り合う電極間において、絶縁性の感光性熱硬化型樹脂からなる接着材層を形成する工程を含むことが望ましい。
尚、前記弾性突起部は、表面に導電体膜を被着し、該導電体膜により前記電子部品の前記接点と前記配線基板の前記電極パッドとを電気接続する樹脂製の柱状突起、又は導電性フォトレジストで形成した柱状突起であることが望ましい。また、前記電子部品は、マイクロLEDであってもよい。
また、上記目的を達成するために、本発明に係る電子部品実装基板は、配線基板に電子部品が実装された電子部品実装基板であって、電極パッドが形成された前記配線基板と、前記電極パッドに接続するための接点を有する前記電子部品と、前記電子部品の接点上、または前記配線基板の電極パッド上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、前記配線基板の電極パッドと前記電子部品の接点とは、その接合領域に設けられた導電性の感光性熱硬化型樹脂により接合されていることに特徴を有する。
その場合、前記電子部品と前記配線基板との間、且つ隣り合う電極間には、絶縁性の感光性熱硬化型樹脂からなる接着材層が設けられていることが望ましい。
その場合、前記電子部品と前記配線基板との間、且つ隣り合う電極間には、絶縁性の感光性熱硬化型樹脂からなる接着材層が設けられていることが望ましい。
或いは、上記目的を達成するために、本発明に係る電子部品実装基板は、配線基板に電子部品が実装された電子部品実装基板であって、電極パッドが形成された前記配線基板と、前記電極パッドに接続するための接点を有する前記電子部品と、前記電子部品の接点上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、前記配線基板と前記電子部品とは絶縁性の感光性熱硬化型樹脂により接合され、さらに前記弾性突起部の先端と前記電極パッドとは、前記電極パッド上に膜状に形成された導電性の感光性熱硬化型樹脂により接合されていることに特徴を有する。
或いは、上記目的を達成するために、本発明に係る電子部品実装基板は、配線基板に電子部品が実装された電子部品実装基板であって、電極パッドが形成された前記配線基板と、前記電極パッドに接続するための接点を有する前記電子部品と、前記電子パッド上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、前記配線基板と前記電子部品とは絶縁性の感光性熱硬化型樹脂により接合され、さらに前記弾性突起部の先端と前記電極パッドとは、前記接点上に膜状に形成された導電性の感光性熱硬化型樹脂により接合されていることに特徴を有する。
尚、前記弾性突起部は、表面に導電体膜を被着し、該導電体膜により前記電子部品の前記接点と前記配線基板の前記電極パッドとを電気接続する樹脂製の柱状突起、又は導電性フォトレジストで形成した柱状突起であることが望ましい。また、前記電子部品は、マイクロLEDであってもよい。
このような基板実装方法及び電子部品実装基板によれば、配線基板の電極パッド上の弾性突起部は、フォトリソグラフィープロセスを適用して形成することができるため、位置及び形状に高い精度を確保することができ、電子部品の接点の間隔が10μm程度より狭くなっても容易に形成することができ、高精度なマイクロLEDディスプレイ等の製造が可能となる。
また、弾性突起部と電子部品の接点(或いは配線基板上の電極パッド)とを接続する際には接着材が第1の温度帯であり柔らかいため、接続部に接着材が介在して導通を妨げることがなく、多数のマイクロLED等の電子部品を配線基板上に容易且つ電気的接続を確実にして実装することができる。
また、弾性突起部と電子部品の接点(或いは配線基板上の電極パッド)とを接続する際には接着材が第1の温度帯であり柔らかいため、接続部に接着材が介在して導通を妨げることがなく、多数のマイクロLED等の電子部品を配線基板上に容易且つ電気的接続を確実にして実装することができる。
本発明によれば、電極間隔の狭い電子部品の実装を可能にする基板実装方法及び電子部品実装基板を提供することができる。
[第1の実施形態]
以下、本発明に係る基板実装方法の第1の実施形態について図面に基づいて説明する。図1は、本発明の基板実装方法が適用されたマイクロLEDディスプレイを模式的に示す平面図であり、図2は、図1の要部拡大断面図であり、図3は本発明の基板実装方法により形成された基板接続構造(電子部品実装基板)を模式的に示す断面図である。
以下、本発明に係る基板実装方法の第1の実施形態について図面に基づいて説明する。図1は、本発明の基板実装方法が適用されたマイクロLEDディスプレイを模式的に示す平面図であり、図2は、図1の要部拡大断面図であり、図3は本発明の基板実装方法により形成された基板接続構造(電子部品実装基板)を模式的に示す断面図である。
図1に示すマイクロLEDディスプレイは、カラー映像を表示するものであり、LEDアレイ基板1と、蛍光発光層アレイ2と、を備えて構成されている。LEDアレイ基板1は、図1に示すように電子部品としての複数のマイクロLED3をマトリクス状に配置して備えたものであり、外部に設けた駆動回路からの映像信号が各マイクロLED3に供給される。そして、各マイクロLED3を個別にオン、及びオフ駆動して点灯、及び消灯させるための配線を設けた配線基板4上に、上記複数のマイクロLED3を配置している。
詳細には、前記配線基板4には、各マイクロLED3の設置位置に、図3に示すようにマイクロLED3の光取り出し面3aとは反対側の接点5に対応させて電極パッド6が設けられている。尚、各電極パッド6は、図示しない配線により外部の駆動回路に繋がっている。
また、上記配線基板4上には、図1に示すように複数のマイクロLED3が設けられている。このマイクロLED3は、紫外から青色波長帯の光を発光するものであり、窒化ガリウム(GaN)を主材料として製造される。なお、波長が例えば200nm~380nmの近紫外線を発光するLEDであっても、波長が例えば380nm~500nmの青色光を発光するLEDであってもよい。
具体的には、図3に示すようにマイクロLED3は、配線基板4の電極パッド6上にパターニング形成された導電性の弾性突起部7(樹脂バンプ)を介してマイクロLED3の接点5と前記電極パッド6とが電気的に接続されるようになっている。
より詳しくは、前記弾性突起部7は、表面に金やアルミニウム等の良導電性の導電体膜8を被覆させた樹脂製の柱状突起9である(あるいは柱状突起9を、フォトレジストに銀等の導電性微粒子を添加した導電性フォトレジスト、又は導電性高分子を含む導電性フォトレジストとして形成してもよい)。
より詳しくは、前記弾性突起部7は、表面に金やアルミニウム等の良導電性の導電体膜8を被覆させた樹脂製の柱状突起9である(あるいは柱状突起9を、フォトレジストに銀等の導電性微粒子を添加した導電性フォトレジスト、又は導電性高分子を含む導電性フォトレジストとして形成してもよい)。
そして、前記マイクロLED3の接点5と、配線基板4の電極パッド6と、弾性突起部7と、を含んで本発明の基板接続構造を構成している。尚、図3では、一例として弾性突起部7として、表面に導電体膜8を被着させた柱状突起9を形成した場合を示しているが、弾性突起部7は、前述したように導電性フォトレジストで形成したものであってもよい。
更に、図3に示すように、マイクロLED3は、配線基板4の電極パッド6の周囲に設けられた接着材層10を介して配線基板4に接着固定されている。図3に示す接着材層10は、感光性熱硬化型樹脂からなる接着材が硬化した状態のものである。
更に、図3に示すように、マイクロLED3は、配線基板4の電極パッド6の周囲に設けられた接着材層10を介して配線基板4に接着固定されている。図3に示す接着材層10は、感光性熱硬化型樹脂からなる接着材が硬化した状態のものである。
また、前記マイクロLED3上には、図2に示すように蛍光発光層アレイ2が設けられている。この蛍光発光層アレイ2は、マイクロLED3から放射される励起光Lによって励起されて対応色(R・G・B)の蛍光FLにそれぞれ波長変換する複数の蛍光発光層11(11R,11G,11B)を備えたものである。図示するように赤色、緑色、及び青色の各色対応の蛍光発光層11が隔壁12によって仕切られた状態で透明基板13上に設けられている。尚、本明細書において「上」とは、マイクロLEDディスプレイの設置状態にかかわらず、常に表示面側をいう。
より詳しくは、前記蛍光発光層11は、レジスト膜中に数十ミクロンオーダーの粒子径の大きい蛍光色素14aと、数十ナノメートルオーダーの粒子径の小さい蛍光色素14bとを混合、分散させたものである。尚、蛍光発光層11を粒子径の大きい蛍光色素14aだけで構成してもよいが、この場合には、蛍光色素14aの充填率が低下し、励起光Lの表示面側への漏れ光が増してしまう。一方、蛍光発光層11を粒子径の小さい蛍光色素14bだけで構成した場合には、耐光性等の安定性が劣るという問題がある。したがって、前述したように蛍光発光層11を粒子径の大きい蛍光色素14aを主体として粒子径の小さい蛍光色素14bを混合させた混合物で構成することにより、励起光Lの表示面側への漏れ光を抑制すると共に、発光効率を向上させることができる。
この場合、粒子径の異なる蛍光色素14の混合比率は、体積比で粒子径の大きい蛍光色素14aが50~90Vol%に対して、粒子径の小さい蛍光色素14bは10~50Vol%とするのが望ましい。
尚、図1においては、各色対応の蛍光発光層11をストライプ状に設けた場合について示しているが、各マイクロLED3に個別に対応させて設けてもよい。
尚、図1においては、各色対応の蛍光発光層11をストライプ状に設けた場合について示しているが、各マイクロLED3に個別に対応させて設けてもよい。
また、各色対応の蛍光発光層11を取り囲んで設けられた隔壁12は、各色対応の蛍光発光層11を互いに隔てるものであり、透明な例えば感光性樹脂で形成されている。前記蛍光発光層11中における粒子径の大きい蛍光色素14aの充填率を上げるためには、隔壁12として高さ対幅のアスペクト比が3以上を可能とする高アスペクト材料を使用するのが望ましい。このような高アスペクト材料としては、例えば日本化薬株式会社製のSU-8 3000のフォトレジストがある。
また、前記隔壁12の表面には、図2に示すように金属膜15が設けられている。この金属膜15は、励起光L及び蛍光発光層11が励起光Lにより励起されて発光した蛍光FLが、隔壁12を透過して隣接する他の色の蛍光発光層11の蛍光FLと混色するのを防止するためのものである。そのためにこの金属膜15は、励起光L及び蛍光FLを十分に遮断できる厚みで形成されている。
この場合、金属膜15としては、励起光Lを反射しやすいアルミニウムやアルミ合金等の薄膜が好適である。これにより、隔壁12に向かって蛍光発光層11を透過した励起光Lをアルミニウム等の金属膜15で蛍光発光層11の内側に反射させ、蛍光発光層11の発光に利用することができ、蛍光発光層11の発光効率を向上することができる。
尚、隔壁12の表面に被着される薄膜は、励起光L及び蛍光FLを反射する金属膜15に限定されず、励起光L及び蛍光FLを吸収するものであってもよい。
尚、隔壁12の表面に被着される薄膜は、励起光L及び蛍光FLを反射する金属膜15に限定されず、励起光L及び蛍光FLを吸収するものであってもよい。
次に、このように構成されたマイクロLEDディスプレイの製造方法について説明する。先ず、図4を参照して配線基板4へのマイクロLED3の基板実装方法(LEDアレイ基板1の製造方法)について説明する。
図4(a)に示すように、配線基板4において、複数のマイクロLED3の接点5に対応させた位置に、複数の電極パッド6を形成する。この配線基板4は、公知の技術により形成することができる。
図4(a)に示すように、配線基板4において、複数のマイクロLED3の接点5に対応させた位置に、複数の電極パッド6を形成する。この配線基板4は、公知の技術により形成することができる。
次いで、配線基板4の上面の全面にフォトスペーサ用のレジストを塗布し、フォトマスクを使用して露光し現像することにより、図4(b)に示すように電極パッド6上に柱状突起9をパターニング形成する。図示するように、この柱状突起9は先端部断面が半楕円状(又は半円状)に形成する。
その後、前記柱状突起9及び電極パッド6上に、金又はアルミニウム等の良導電性の導電体膜8をスパッタリングや蒸着等により成膜して弾性突起部7を形成する。尚、この導電体膜8は、樹脂との密着性を考慮し、必要に応じて2層以上としてもよい。
その後、前記柱状突起9及び電極パッド6上に、金又はアルミニウム等の良導電性の導電体膜8をスパッタリングや蒸着等により成膜して弾性突起部7を形成する。尚、この導電体膜8は、樹脂との密着性を考慮し、必要に応じて2層以上としてもよい。
前記導電体膜8の形成方法について、より詳しく説明すると、導電体膜8を成膜する前に、フォトリソグラフィーにより電極パッド6を除く周辺部分にレジスト層を形成し、導電体膜8の成膜後に現像でレジスト層を溶解させる。それにより、レジスト層上の余分な導電体膜8がリフトオフされ、柱状突起9及び電極パッド6上のみに導電体膜8が形成された状態となる。
尚、弾性突起部7は、フォトレジストに銀等の導電性粒子を添加した導電性フォトレジスト又は導電性高分子を含む導電性フォトレジストで形成した柱状突起9であってもよい。この場合、弾性突起部7は、配線基板4の上面の全面に導電性フォトレジストを所定の厚みで塗布した後、フォトマスクを使用して露光し、現像して電極パッド6上に柱状突起9としてパターニング形成される。
このように前記弾性突起部7は、フォトリソグラフィープロセスを適用して形成することができるので、位置及び形状に高い精度を確保することができ、マイクロLED3の接点5の間隔が10μm程度より狭くなっても容易に形成することができる。
また、弾性突起部7は、マイクロLED3の押圧によりマイクロLED3の接点5に弾性変形して接触するので、後述のように複数のマイクロLED3を同時に押圧した場合にも、各マイクロLED3の各接点5を弾性突起部7に確実に接触させることができる。
次に図4(c)に示すように、配線基板4の上面の全面に感光性熱硬化型樹脂を塗布し、接着材層10を形成する。このとき塗布形成される接着材層10の厚みは、配線基板4の電極パッド6と弾性突起部7とを含む高さ寸法程度、好ましくは、弾性突起部7の先端部が、接着材層10の表面から少し突出する程度とされる。
ここで、この接着材層10を形成する感光性熱硬化型樹脂は、図5のグラフに模式的に示す曲線の特性を有する。即ち、加熱により第1の温度帯(例えば100℃~120℃)に達するまでは、徐々に粘度(弾性率)が低くなり軟化するが、最軟化点を超えると硬化開始し、第2の温度帯(例えば180℃以上)になると実用的な硬化速度が得られる(この特性により早く短時間に硬化させることができる)。
この特性を利用し、本発明の基板実装方法にあっては、温度管理可能な加熱炉において、接着材層10を第1の温度帯(例えば100℃~120℃)まで加熱し、接着材層10の粘度を低下させる。この第1の温度帯は、使用する感光性熱硬化型樹脂(接着材)の特性に合わせて設定すればよい。
続けて、前記接着材層10が低粘度の状態を維持したまま、図4(d)に示すようにマイクロLED3を、その接点5と配線基板4上の電極パッド6とが互いに合致するように位置決め配置する。ここで前記マイクロLED3は、図示しないサファイアウェハ上に一定間隔に並べて形成されもの、或いはサファイアウェハ上に形成された後、粘着性シートに転写されて一定間隔に並べて配置されたものである。
前述のようにマイクロLED3の位置決めがなされると、前記サファイアウェハ(マイクロLEDウェハ)或いは粘着性シートを配線基板4に対し押し付け、マイクロLED3の接点5と配線基板4の電極パッド6とを導電性の弾性突起部7を介して電気的に接続する。
全ての弾性突起部7がマイクロLED3の接点5に接触するまでの間は、先に接触した弾性突起部7の先端が潰れることによって、各弾性突起部7間の高低差が吸収される。
その結果、全てのマイクロLEDと配線基板の電気接続が確保される。
全ての弾性突起部7がマイクロLED3の接点5に接触するまでの間は、先に接触した弾性突起部7の先端が潰れることによって、各弾性突起部7間の高低差が吸収される。
その結果、全てのマイクロLEDと配線基板の電気接続が確保される。
次いで、接着材層10を加熱し、その温度を第2の温度帯(例えば180℃以上)まで上昇させる。この第2の温度帯は、前述したように使用する感光性熱硬化型樹脂(接着材)の特性に合わせて設定すればよい。
この加熱処理により、接着材層10は熱硬化し、マイクロLED3が配線基板4上に接着固定される。
マイクロLED3が配線基板4上に接着固定された後、前記マイクロLED3の光取り出し面3a側に付着しているサファイアウェハ、或いは粘着シートを剥がし、配線基板4側へのマイクロLED3の実装(リフトオフ)が完了する。
この加熱処理により、接着材層10は熱硬化し、マイクロLED3が配線基板4上に接着固定される。
マイクロLED3が配線基板4上に接着固定された後、前記マイクロLED3の光取り出し面3a側に付着しているサファイアウェハ、或いは粘着シートを剥がし、配線基板4側へのマイクロLED3の実装(リフトオフ)が完了する。
[第2の実施形態]
前記第1の実施の形態においては、配線基板4の電極パッド6上に柱状突起9を形成し、それに導電体膜8を成膜して弾性突起部7を形成したが、本発明の基板実装方法にあっては、それに限定されるものではない。
例えば、図6(a)に示すようにマイクロLED3の接点5上に弾性突起部7を形成するようにしてもよい。この場合の実装方法を示した第2の実施形態について以下に説明する。
前記第1の実施の形態においては、配線基板4の電極パッド6上に柱状突起9を形成し、それに導電体膜8を成膜して弾性突起部7を形成したが、本発明の基板実装方法にあっては、それに限定されるものではない。
例えば、図6(a)に示すようにマイクロLED3の接点5上に弾性突起部7を形成するようにしてもよい。この場合の実装方法を示した第2の実施形態について以下に説明する。
先ず、マイクロLED3の電極面(接点5側)の全面にフォトスペーサ用のレジストを塗布し、フォトマスクを使用して露光し、現像することにより接点5上に柱状突起9をパターニング形成する。図示するようにこの柱状突起9は先端部断面が半楕円状に形成する。その後、前記柱状突起9及び接点5上に、金又はアルミニウム等の良導電性の導電体膜8をスパッタリングや蒸着等により成膜して弾性突起部7を形成する。
次に図6(a)に示すように、配線基板4の上面の全面に感光性熱硬化型樹脂を塗布し、所定厚さの接着材層10を形成する。
その後、第一の実施形態と同様の手順に従い、マイクロLED3の光取り出し面3a側を押圧してマイクロLED3の接点5と電極パッド6とを導電性の弾性突起部7を介して電気的に接続し、図6(b)に示すようにマイクロLED3を配線基板4上に実装する。
その後、第一の実施形態と同様の手順に従い、マイクロLED3の光取り出し面3a側を押圧してマイクロLED3の接点5と電極パッド6とを導電性の弾性突起部7を介して電気的に接続し、図6(b)に示すようにマイクロLED3を配線基板4上に実装する。
[第3の実施形態]
また、前記第2の実施形態のようにマイクロLED3側に弾性突起部7を形成する場合、図7(a)、(b)に時系列に示すように配線基板4の電極パッド6上のみに接着材層10を形成した後、マイクロLED3を配線基板4上に実装してもよい。
また、前記第2の実施形態のようにマイクロLED3側に弾性突起部7を形成する場合、図7(a)、(b)に時系列に示すように配線基板4の電極パッド6上のみに接着材層10を形成した後、マイクロLED3を配線基板4上に実装してもよい。
[第4の実施形態]
或いは、図8に示すようにマイクロLED3に形成された弾性突起部7を覆うように接着材層10を形成した後、マイクロLED3を配線基板4上に実装してもよい。
或いは、図8に示すようにマイクロLED3に形成された弾性突起部7を覆うように接着材層10を形成した後、マイクロLED3を配線基板4上に実装してもよい。
尚、前記第3の実施形態(図7)のように電極パッド6上のみに接着材10を形成する場合、或いは前記第4の実施形態(図8)のように弾性突起部7のみを覆うように接着材層10を形成する場合、接着材層10は導電性を有してもよい。
ここで、基板面内全体をみると、設備の物理的要因、温度、及び対象物の状態により、一部において弾性突起部7と電極パッド6との間に微小ギャップが生じ、接触しない虞も可能性として存在する。つまり、接着材層10が絶縁性であればマイクロLED3の接点5と電極パッド6とは電気的に接続されない。
ここで、基板面内全体をみると、設備の物理的要因、温度、及び対象物の状態により、一部において弾性突起部7と電極パッド6との間に微小ギャップが生じ、接触しない虞も可能性として存在する。つまり、接着材層10が絶縁性であればマイクロLED3の接点5と電極パッド6とは電気的に接続されない。
しかしながらマイクロLED3の接点と電極パッド6との接合領域(近接する領域)に設けられる接着材層10が導電性を有していれば、弾性突起部7と電極パッド6との間に微小ギャップが生じても、マイクロLED3の接点5と電極パッド6とを電気的に接続することができる。
前記接合領域における接着材層10を導電性とするには、導電性粒子(例えばカーボン粒子)を前記感光性熱硬化型樹脂に配合すればよい。
尚、前記導電性の感光性熱硬化型樹脂における導電性粒子の配合は、接着性能に影響せず、弾性突起部7と電極パッド6との間の微小ギャップにおける導電を可能にする程度でよい。
前記接合領域における接着材層10を導電性とするには、導電性粒子(例えばカーボン粒子)を前記感光性熱硬化型樹脂に配合すればよい。
尚、前記導電性の感光性熱硬化型樹脂における導電性粒子の配合は、接着性能に影響せず、弾性突起部7と電極パッド6との間の微小ギャップにおける導電を可能にする程度でよい。
また、図7及び図8の構成において、電極パッド6と接点5との接合領域に設けられる接着材層10を導電性の感光性熱硬化型樹脂とする場合、弾性突起部7の高さは、接着材層10の高さよりも多少低く形成してもよい。
また、隣り合う電極間で短絡しない限りは、導電性の感光性熱硬化型樹脂(接着材層10)が配線基板4上にはみ出していてもよい。
また、隣り合う電極間で短絡しない限りは、導電性の感光性熱硬化型樹脂(接着材層10)が配線基板4上にはみ出していてもよい。
[第5の実施形態]
また、図7及び図8の構成において接着材層10を導電性の感光性熱硬化型樹脂とする場合、接着補強、及び隣り合う電極間の短絡防止のため、図9(a)に示すように隣り合う電極の間に、絶縁性の感光性熱硬化型樹脂10Aを設けてもよい(絶縁性の感光性熱硬化型樹脂10Aと、導電性の感光性熱硬化型樹脂10Bの塗布の順番は限定されない)。
また、図7及び図8の構成において接着材層10を導電性の感光性熱硬化型樹脂とする場合、接着補強、及び隣り合う電極間の短絡防止のため、図9(a)に示すように隣り合う電極の間に、絶縁性の感光性熱硬化型樹脂10Aを設けてもよい(絶縁性の感光性熱硬化型樹脂10Aと、導電性の感光性熱硬化型樹脂10Bの塗布の順番は限定されない)。
その場合、マイクロLED3を配線基板4上に実装すると、例えば図9(b)、図9(c)のようになる。即ち、塗布した絶縁性の感光性熱硬化型樹脂10Aと導電性の感光性熱硬化型樹脂10Bとは、例えば図9(b)に示すように互いに接触する(一部のみ接触もあり得る)か、図9(c)に示すように分離した状態となる。
尚、図9においては、配線基板4側に接着材を塗布した例を示したが、マイクロLED3側に接着材を塗布した場合も、マイクロLED3実装後の状態は同じである。
尚、図9においては、配線基板4側に接着材を塗布した例を示したが、マイクロLED3側に接着材を塗布した場合も、マイクロLED3実装後の状態は同じである。
また、図9の構成にあっては、電極パッド6と接点5との接合領域に設けられる接着材層10が導電性の感光性熱硬化型樹脂10Bであるため、弾性突起部7の高さは、導電性の感光性熱硬化型樹脂10B(接着材層10)の高さよりも多少低く形成してもよい。
また、隣り合う電極間で短絡しない限りは、導電性の感光性熱硬化型樹脂10Bが配線基板4上にはみ出していてもよい。
また、隣り合う電極間で短絡しない限りは、導電性の感光性熱硬化型樹脂10Bが配線基板4上にはみ出していてもよい。
[第6の実施形態]
また、前述のように弾性突起部7と電極パッド6との間に微小ギャップが生じた場合の対策として導電性の感光性熱硬化型樹脂を用いる場合、図10(a)、10(b)に示す構成としてもよい。
即ち、図示するように電極パッド6上に導電性の感光性熱硬化型樹脂10Bを所定厚さ(想定される前記微小ギャップよりも厚い設定)の膜状に形成し、マイクロLED3を配線基板4に接着するための領域には絶縁性の感光性熱硬化型樹脂10Aを設けた構成である。
このような構成によれば、基板の一部において弾性突起部7の先端と電極パッド6との間に微小ギャップが生じて互いに接触していない場合であっても、弾性突起部7の先端と電極パッド6とが導電性の感光性熱硬化型樹脂10Bにより接合され、互いを導通させることができる。
また、前述のように弾性突起部7と電極パッド6との間に微小ギャップが生じた場合の対策として導電性の感光性熱硬化型樹脂を用いる場合、図10(a)、10(b)に示す構成としてもよい。
即ち、図示するように電極パッド6上に導電性の感光性熱硬化型樹脂10Bを所定厚さ(想定される前記微小ギャップよりも厚い設定)の膜状に形成し、マイクロLED3を配線基板4に接着するための領域には絶縁性の感光性熱硬化型樹脂10Aを設けた構成である。
このような構成によれば、基板の一部において弾性突起部7の先端と電極パッド6との間に微小ギャップが生じて互いに接触していない場合であっても、弾性突起部7の先端と電極パッド6とが導電性の感光性熱硬化型樹脂10Bにより接合され、互いを導通させることができる。
尚、図10(a)に示すように絶縁性の感光性熱硬化型樹脂10Aと導電性の感光性熱硬化型樹脂10Bとを配線基板4上に形成する手順としては次のようにすればよい。
先ず、図11(a)に示すように配線基板4上に電極パッド6を形成し、図11(b)に示すように基板4上面に導電性の感光性熱硬化型樹脂10Bを塗布形成する。
先ず、図11(a)に示すように配線基板4上に電極パッド6を形成し、図11(b)に示すように基板4上面に導電性の感光性熱硬化型樹脂10Bを塗布形成する。
次いで、電極パッド6の配置・形状に合わせてパターニングされたマスクを介して露光し、続けて現像、エッチング、レジスト除去の作業を順に行うことにより図11(c)に示すように電極パッド6上のみに所定厚さの導電性感光性熱硬化型樹脂10Bの膜を形成する。
さらに図11(d)に示すように配線基板4上に絶縁性の感光性熱硬化型樹脂10Aを塗布形成し、マイクロLED3の配置・形状に合わせてパターニングされたマスクを介して露光し、続けて現像、エッチング、レジスト除去の作業を順に行う。
これにより図11(e)に示すようにマイクロLED3の貼り付け範囲に対応する感光性熱硬化型樹脂10Aが形成される。
これにより図11(e)に示すようにマイクロLED3の貼り付け範囲に対応する感光性熱硬化型樹脂10Aが形成される。
[第7の実施形態]
また、図10に示した第6の実施形態にあっては、電極パッド6上に導電性の感光性熱硬化型樹脂10Bを所定厚さの膜状に形成するものであったが、図12(a)、図12(b)に示すように電極パッド6ではなくマイクロLED3の接点5上に導電性の感光性熱硬化型樹脂10Bの膜を形成するようにしてもよい。
また、図10に示した第6の実施形態にあっては、電極パッド6上に導電性の感光性熱硬化型樹脂10Bを所定厚さの膜状に形成するものであったが、図12(a)、図12(b)に示すように電極パッド6ではなくマイクロLED3の接点5上に導電性の感光性熱硬化型樹脂10Bの膜を形成するようにしてもよい。
続いて図13及び図14を参照して蛍光発光層アレイ2の形成について説明する。
まず、図13(a)に示すように、少なくとも近紫外から青色波長帯の光を透過する、例えばガラス基板又はアクリル樹脂等のプラスチック基板から成る透明基板13上に隔壁12用の透明な感光性樹脂を塗布する。
その後、フォトマスクを使用して露光し、現像して各蛍光発光層11の形成位置に対応させて、例えば図1に示すようなストライプ状の開口16を設け、高さ対幅のアスぺクト比が3以上の透明な隔壁12を最小値で10μm程度の高さで形成する。
この場合、使用する感光性樹脂は、例えば日本化薬株式会社製のSU-83000等の高アスペクト材料が望ましい。
まず、図13(a)に示すように、少なくとも近紫外から青色波長帯の光を透過する、例えばガラス基板又はアクリル樹脂等のプラスチック基板から成る透明基板13上に隔壁12用の透明な感光性樹脂を塗布する。
その後、フォトマスクを使用して露光し、現像して各蛍光発光層11の形成位置に対応させて、例えば図1に示すようなストライプ状の開口16を設け、高さ対幅のアスぺクト比が3以上の透明な隔壁12を最小値で10μm程度の高さで形成する。
この場合、使用する感光性樹脂は、例えば日本化薬株式会社製のSU-83000等の高アスペクト材料が望ましい。
次いで、透明基板13上に形成された隔壁12側から、スパッタリング等の公知の成膜技術を適用して例えばアルミニウムやアルミ合金等の金属膜15を所定の厚みに成膜する。成膜後、隔壁12によって囲まれた開口16の底部の透明基板13に被着した金属膜15は、レーザ照射により除去される。
或いは、成膜前に上記開口16の底部の透明基板13表面にレジスト等を、例えばインクジェットにより数μmの厚みで塗布し、金属膜15を成膜したのちに、前記レジスト及びレジスト上の金属膜15をリフトオフして除去してもよい。この場合、当然ながら、リフトオフに使用するレジストの溶解液としては、隔壁12の樹脂を侵さない薬液が選択される。
次に、図13(b)に示すように、上記隔壁12で囲まれた、例えば赤色に対応した複数の開口16に、例えば赤色の蛍光色素14を含有するレジストを例えばインクジェットにより塗布したのち、紫外線を照射して硬化させ、赤色蛍光発光層11Rを形成する。又は、透明基板13上を覆って赤色の蛍光色素14を含有するレジストを塗布したのち、フォトマスクを使用して露光し、現像して、赤色に対応した複数の開口16に赤色蛍光発光層11Rを形成する。この場合、上記レジストは、粒子径の大きい蛍光色素14aと粒子径の小さい蛍光色素14bとを混合、分散させたものであり、それらの混合比率は、体積比で粒子径の大きい蛍光色素14aが50~90Vol%に対して粒子径の小さい蛍光色素14bが10~50Vol%となっている。
同様にして、上記隔壁12で囲まれた、例えば緑色に対応した複数の開口16に、例えば緑色の蛍光色素14を含有するレジストを例えばインクジェットにより塗布したのち、紫外線を照射して硬化させ、緑色蛍光発光層11Gを形成する。又は、上記と同様にして透明基板13の上面全面に塗布した緑色の蛍光色素14を含有するレジストを、フォトマスクを使用して露光し、現像して、緑色に対応した複数の開口16に緑色蛍光発光層11Gを形成してもよい。
さらに同様にして、上記隔壁12で囲まれた、例えば青色に対応した複数の開口16に、例えば青色の蛍光色素14を含有するレジストを例えばインクジェットにより塗布したのち、紫外線を照射して硬化させ、青色蛍光発光層11Bを形成する。この場合も、上記と同様にして透明基板13の上面全面に塗布した青色の蛍光色素14を含有するレジストを、フォトマスクを使用して露光し、現像して、青色に対応した複数の開口16に青色蛍光発光層11Bを形成してもよい。
この場合、蛍光発光層アレイ2の表示面側に外光の反射を防止する反射防止膜を設けるのがよい。さらには、隔壁12の表示面側の金属膜15上に、黒色塗料を塗布するとよい。これらの措置を施すことにより、表示面での外光の反射を低減することができ、コントラストの向上を図ることができる。
続いて、LEDアレイ基板1と蛍光発光層アレイ2との組立工程が実施される。
先ず、図14(a)に示すように、LEDアレイ基板1上に蛍光発光層アレイ2が位置決め配置される。詳細には、LEDアレイ基板1上に形成されたアライメントマークと、蛍光発光層アレイ2上に形成されたアライメントマークとを使用して、蛍光発光層アレイ2の各色対応の蛍光発光層11がLEDアレイ基板1上の対応するマイクロLED3上に位置するようにアライメントが実施される。
先ず、図14(a)に示すように、LEDアレイ基板1上に蛍光発光層アレイ2が位置決め配置される。詳細には、LEDアレイ基板1上に形成されたアライメントマークと、蛍光発光層アレイ2上に形成されたアライメントマークとを使用して、蛍光発光層アレイ2の各色対応の蛍光発光層11がLEDアレイ基板1上の対応するマイクロLED3上に位置するようにアライメントが実施される。
LEDアレイ基板1と蛍光発光層アレイ2とのアライメントが終了すると、図14(b)に示すようにLEDアレイ基板1と蛍光発光層アレイ2とが図示しない接着材により接合されてマイクロLEDディスプレイが完成する。
以上のように本発明に係る実施の形態によれば、配線基板4の電極パッド6上の弾性突起部7は、フォトリソグラフィープロセスを適用して形成される。
したがって、位置及び形状に高い精度を確保することができ、マイクロLED3の接点5の間隔が10μm程度より狭くなっても容易に形成することができ、高精度なマイクロLEDディスプレイ等の製造が可能となる。
また、マイクロLED3を配線基板4上に実装する際には、前述したように配線基板4の上面全体(或いはマイクロLED3の下面側)に接着材層10を形成し、加熱により低粘度化した後、位置合わせしたマイクロLED3の接点5を電極パッド6上の弾性突起部7に押し付けるようにして接続する。ここで弾性突起部7とマイクロLED3の接点5とを接続する際に接着材が柔らかいため、その接続部に接着材が介在して導通を妨げることがない。その結果、多数のマイクロLED3を配線基板4上に容易且つ電気的接続を確実にして実装することができる。その後、接着材硬化のための加熱処理を行う。
したがって、位置及び形状に高い精度を確保することができ、マイクロLED3の接点5の間隔が10μm程度より狭くなっても容易に形成することができ、高精度なマイクロLEDディスプレイ等の製造が可能となる。
また、マイクロLED3を配線基板4上に実装する際には、前述したように配線基板4の上面全体(或いはマイクロLED3の下面側)に接着材層10を形成し、加熱により低粘度化した後、位置合わせしたマイクロLED3の接点5を電極パッド6上の弾性突起部7に押し付けるようにして接続する。ここで弾性突起部7とマイクロLED3の接点5とを接続する際に接着材が柔らかいため、その接続部に接着材が介在して導通を妨げることがない。その結果、多数のマイクロLED3を配線基板4上に容易且つ電気的接続を確実にして実装することができる。その後、接着材硬化のための加熱処理を行う。
尚、前記実施形態にあっては、弾性突起部7の先端部断面が半楕円状(又は半円状)であるものとしたが、本発明にあっては、その先端形状を限定するものではない。好ましくは先端に向かって縮径する形状(台形も含まれる)がよいが、先端に向かって径が変化しない柱状でもよい。
また、蛍光発光層アレイ2において、赤色、緑色、及び青色の各色対応の蛍光発光層11が隔壁12によって仕切られた状態で透明基板13上に設けられた構造とした。
しかしながら、本発明の基板実装方法が適用されるマイクロLEDディスプレイにあっては、その構成に限定されるものではない。
しかしながら、本発明の基板実装方法が適用されるマイクロLEDディスプレイにあっては、その構成に限定されるものではない。
また、以上の説明においては、電子部品がマイクロLED3の場合について述べたが、本発明はこれに限られず、電子部品は、半導体部品であっても他のマイクロ電子部品であってもよい。
3 マイクロLED(電子部品)
4 配線基板
5 接点
6 電極パッド
7 弾性突起部
8 導電体膜
9 柱状突起
10 接着剤層
10A 絶縁性の感光性熱硬化型樹脂
10B 導電性の感光性熱硬化型樹脂
4 配線基板
5 接点
6 電極パッド
7 弾性突起部
8 導電体膜
9 柱状突起
10 接着剤層
10A 絶縁性の感光性熱硬化型樹脂
10B 導電性の感光性熱硬化型樹脂
Claims (17)
- 配線基板への電子部品の基板実装方法であって、
前記電子部品の接点に対応して前記配線基板に設けられた電極パッド上に導電性の弾性突起部をパターニング形成する工程と、
前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、
前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、
前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の前記接点と前記配線基板の前記電極パッドとを導電性の前記弾性突起部を介して電気的に接続する工程と、
前記接着材層に対し前記第1の温度帯よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、
を含むことを特徴とする基板実装方法。 - 前記電子部品を前記配線基板上に位置決め配置したのち押圧する前に、
前記電子部品の接点上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含むことを特徴とする請求項1に記載された基板実装方法。 - 配線基板への電子部品の基板実装方法であって、
前記配線基板に設けられた電極パッドに対応する前記電子部品の接点上に導電性の弾性突起部をパターニング形成する工程と、
前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、
前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、
前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の接点に形成された導電性の前記弾性突起部の先端を前記配線基板の前記電極パッドに押し当て、前記電子部品の接点と前記電極パッドとを前記弾性突起部を介して電気的に接続する工程と、
前記接着材層に対し前記第1の温度帯よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、
を含むことを特徴とする基板実装方法。 - 前記配線基板上に感光性熱硬化型樹脂からなる接着材層を形成する工程の前に、
前記配線基板の電極パッド上に導電性の感光性熱硬化型樹脂からなる膜を形成する工程を含むことを特徴とする請求項3に記載された基板実装方法。 - 配線基板への電子部品の基板実装方法であって、
前記配線基板に設けられた電極パッドに対応する前記電子部品の接点上に導電性の弾性突起部をパターニング形成する工程と、
前記電子部品の接点上、または前記配線基板の電極パッド上に感光性熱硬化型樹脂からなる接着材層を形成する工程と、
前記接着材層に対し第1の温度帯まで加熱して、該接着材層の粘度を低下させる工程と、
前記接着材層の粘度が低下した状態で、前記電子部品を前記配線基板上に位置決め配置したのち押圧して、前記電子部品の接点に形成された導電性の前記弾性突起部の先端を前記配線基板の前記電極パッドに押し当て、前記電子部品の接点と前記電極パッドとを前記弾性突起部を介して電気的に接続する工程と、
前記接着材層に対し前記第1の温度よりも高い第2の温度帯まで加熱して、該接着材層を硬化させ、前記電子部品を前記配線基板に固定する工程と、
を含むことを特徴とする基板実装方法。 - 前記電子部品の接点上、または前記配線基板の電極パッド上に感光性熱硬化型樹脂からなる接着材層を形成する工程において、
前記接着材層は、導電性の感光性熱硬化型樹脂であることを特徴とする請求項5に記載された基板実装方法。 - 前記電子部品と前記配線基板との間、且つ隣り合う電極間において、絶縁性の感光性熱硬化型樹脂からなる接着材層を形成する工程を含むことを特徴とする請求項6に記載された基板実装方法。
- 前記弾性突起部は、表面に導電体膜を被着し、該導電体膜により前記電子部品の前記接点と前記配線基板の前記電極パッドとを電気接続する樹脂製の柱状突起、又は導電性フォトレジストで形成した柱状突起であることを特徴とする請求項1乃至請求項7のいずれかに記載された基板実装方法。
- 前記電子部品は、マイクロLEDであることを特徴とする請求項1乃至請求項7のいずれかに記載された基板実装方法。
- 前記電子部品は、マイクロLEDであることを特徴とする請求項8に記載された基板実装方法。
- 配線基板に電子部品が実装された電子部品実装基板であって、
電極パッドが形成された前記配線基板と、
前記電極パッドに接続するための接点を有する前記電子部品と、
前記電子部品の接点上、または前記配線基板の電極パッド上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、
前記配線基板の電極パッドと前記電子部品の接点とは、その接合領域に設けられた導電性の感光性熱硬化型樹脂により接合されていることを特徴とする電子部品実装基板。 - 前記電子部品と前記配線基板との間、且つ隣り合う電極間には、絶縁性の感光性熱硬化型樹脂からなる接着材層が設けられていることを特徴とする請求項11に記載された電子部品実装基板。
- 配線基板に電子部品が実装された電子部品実装基板であって、
電極パッドが形成された前記配線基板と、
前記電極パッドに接続するための接点を有する前記電子部品と、
前記電子部品の接点上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、
前記配線基板と前記電子部品とは絶縁性の感光性熱硬化型樹脂により接合され、
さらに前記弾性突起部の先端と前記電極パッドとは、前記電極パッド上に膜状に形成された導電性の感光性熱硬化型樹脂により接合されていることを特徴とする電子部品実装基板。 - 配線基板に電子部品が実装された電子部品実装基板であって、
電極パッドが形成された前記配線基板と、
前記電極パッドに接続するための接点を有する前記電子部品と、
前記電子パッド上に形成され、前記接点と前記電極パッドとを電気的に接続するための導電性の弾性突起部と、を備え、
前記配線基板と前記電子部品とは絶縁性の感光性熱硬化型樹脂により接合され、
さらに前記弾性突起部の先端と前記電極パッドとは、前記接点上に膜状に形成された導電性の感光性熱硬化型樹脂により接合されていることを特徴とする電子部品実装基板。 - 前記弾性突起部は、表面に導電体膜を被着し、該導電体膜により前記電子部品の前記接点と前記配線基板の前記電極パッドとを電気接続する樹脂製の柱状突起、又は導電性フォトレジストで形成した柱状突起であることを特徴とする請求項11乃至請求項14のいずれかに記載された電子部品実装基板。
- 前記電子部品は、マイクロLEDであることを特徴とする請求項11乃至請求項14のいずれかに記載された電子部品実装基板。
- 前記電子部品は、マイクロLEDであることを特徴とする請求項15に記載された電子部品実装基板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217002314A KR20210022734A (ko) | 2018-06-25 | 2019-05-29 | 기판 실장 방법 및 전자 부품 실장 기판 |
CN201980042486.6A CN112352472A (zh) | 2018-06-25 | 2019-05-29 | 基板安装方法以及电子部件安装基板 |
US17/253,829 US20210119098A1 (en) | 2018-06-25 | 2019-05-29 | Substrate mounting method and electronic-component-mounted substrate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-119556 | 2018-06-25 | ||
JP2018119556 | 2018-06-25 | ||
JP2018-166936 | 2018-09-06 | ||
JP2018166936A JP2020004939A (ja) | 2018-06-25 | 2018-09-06 | 基板実装方法及び電子部品実装基板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020003869A1 true WO2020003869A1 (ja) | 2020-01-02 |
Family
ID=68985607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021322 WO2020003869A1 (ja) | 2018-06-25 | 2019-05-29 | 基板実装方法及び電子部品実装基板 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020003869A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182263A1 (ja) * | 2022-03-25 | 2023-09-28 | 東レ株式会社 | 硬化膜付きled実装基板の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10144727A (ja) * | 1996-11-14 | 1998-05-29 | Matsushita Electric Ind Co Ltd | 半導体素子の実装方法および半導体素子を実装した電子装置 |
JP2003204142A (ja) * | 2002-01-08 | 2003-07-18 | Sumitomo Metal Micro Devices Inc | 電子部品実装方法及び電子部品実装装置 |
JP2004063628A (ja) * | 2002-07-26 | 2004-02-26 | Seiko Epson Corp | 導電パターン形成方法、導電パターン形成基板、電気光学装置、及び電子機器 |
CN1601737A (zh) * | 2003-09-24 | 2005-03-30 | 财团法人工业技术研究院 | 覆晶封装结构及其制造方法 |
JP2008027933A (ja) * | 2006-07-18 | 2008-02-07 | Sony Corp | 素子、素子の製造方法、基板、基板の製造方法、実装構造体、実装方法、発光ダイオードディスプレイ、発光ダイオードバックライトおよび電子機器 |
JP2015095499A (ja) * | 2013-11-11 | 2015-05-18 | 東レ株式会社 | 半導体装置の製造方法 |
-
2019
- 2019-05-29 WO PCT/JP2019/021322 patent/WO2020003869A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10144727A (ja) * | 1996-11-14 | 1998-05-29 | Matsushita Electric Ind Co Ltd | 半導体素子の実装方法および半導体素子を実装した電子装置 |
JP2003204142A (ja) * | 2002-01-08 | 2003-07-18 | Sumitomo Metal Micro Devices Inc | 電子部品実装方法及び電子部品実装装置 |
JP2004063628A (ja) * | 2002-07-26 | 2004-02-26 | Seiko Epson Corp | 導電パターン形成方法、導電パターン形成基板、電気光学装置、及び電子機器 |
CN1601737A (zh) * | 2003-09-24 | 2005-03-30 | 财团法人工业技术研究院 | 覆晶封装结构及其制造方法 |
JP2008027933A (ja) * | 2006-07-18 | 2008-02-07 | Sony Corp | 素子、素子の製造方法、基板、基板の製造方法、実装構造体、実装方法、発光ダイオードディスプレイ、発光ダイオードバックライトおよび電子機器 |
JP2015095499A (ja) * | 2013-11-11 | 2015-05-18 | 東レ株式会社 | 半導体装置の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023182263A1 (ja) * | 2022-03-25 | 2023-09-28 | 東レ株式会社 | 硬化膜付きled実装基板の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020004939A (ja) | 基板実装方法及び電子部品実装基板 | |
WO2019111610A1 (ja) | Led表示パネルの製造方法 | |
US20200243739A1 (en) | Board connection structure, board mounting method, and micro-led display | |
WO2020116207A1 (ja) | マイクロled実装構造、マイクロledディスプレイ及びマイクロledディスプレイの製造方法 | |
US20200243712A1 (en) | Inspection method for led chip, inspection device therefor, and manufacturing method for led display | |
JP2020013954A (ja) | 基板接続構造、マイクロledディスプレイ及び部品実装方法 | |
US20070182307A1 (en) | Light emitting apparatus and manufacturing method therefor | |
CN112655099A (zh) | Led显示面板的制造方法以及led显示面板 | |
JP2004304161A (ja) | 発光素子、発光装置、画像表示装置、発光素子の製造方法及び画像表示装置の製造方法 | |
CN111684511A (zh) | 全彩led显示面板及其制造方法 | |
WO2021010079A1 (ja) | 電子部品実装構造、電子部品実装方法及びled表示パネル | |
US20200373350A1 (en) | Full-Color Led Display Panel And Method For Manufacturing Same | |
WO2020003869A1 (ja) | 基板実装方法及び電子部品実装基板 | |
WO2020262034A1 (ja) | 電子部品実装構造、その実装方法及びledチップ実装方法 | |
TWI792460B (zh) | 顯示面板及其製造方法 | |
TWI856103B (zh) | 選擇性釋離及傳遞微裝置 | |
JP2023532101A (ja) | デバイスおよびそれを製造するための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825067 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217002314 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19825067 Country of ref document: EP Kind code of ref document: A1 |