[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020003445A1 - Display panel, method for inspecting display panel, and method for manufacturing display panel - Google Patents

Display panel, method for inspecting display panel, and method for manufacturing display panel Download PDF

Info

Publication number
WO2020003445A1
WO2020003445A1 PCT/JP2018/024626 JP2018024626W WO2020003445A1 WO 2020003445 A1 WO2020003445 A1 WO 2020003445A1 JP 2018024626 W JP2018024626 W JP 2018024626W WO 2020003445 A1 WO2020003445 A1 WO 2020003445A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus line
display panel
switching element
pixel
insulating film
Prior art date
Application number
PCT/JP2018/024626
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 中川
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2018/024626 priority Critical patent/WO2020003445A1/en
Publication of WO2020003445A1 publication Critical patent/WO2020003445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present invention relates to a display panel, a display panel inspection method, and a display panel manufacturing method.
  • a liquid crystal display panel or an organic EL display panel used for a display of a portable device or a screen of a television receiver includes a plurality of pixels arranged in a matrix, and each pixel emits light having a desired luminance.
  • a pixel drive circuit that operates to emit light is provided.
  • the liquid crystal display panel and the like further include a bus line through which a signal supplied to each pixel is transmitted, and the bus line is connected to a gate electrode or a source electrode of a thin film transistor included in the pixel driving circuit.
  • An insulating film forming a gate insulating film of the thin film transistor is provided between a gate electrode of the thin film transistor and a gate bus line connected to the gate electrode, and a drain electrode, a source electrode, and a source bus line connected to the source electrode. Is interposed.
  • this insulating film is formed by forming a film such as silicon dioxide (SiO 2 ) using, for example, chemical vapor deposition (CVD).
  • this insulating film may include a defect such as a pinhole or a foreign substance that lowers the insulating property during the formation process.
  • Such initial defects may accelerate a phenomenon called time-dependent dielectric breakdown (TDDB) in the gate insulating film.
  • TDDB time-dependent dielectric breakdown
  • a screening of a liquid crystal display panel a high voltage of a predetermined magnitude is applied between a gate electrode and a source electrode of a thin film transistor connected to a pixel electrode.
  • a source signal and a gate signal are supplied to a pixel driver circuit of a display panel from a driver circuit called a source driver and a driver circuit called a gate driver (or a scan driver).
  • a technique for forming these drive circuits on a display panel has been introduced, and in particular, a case in which a gate driver is formed on a display panel has been increasing. In that case, if a voltage higher than the normal use voltage is applied to the pixel driving circuit in the screening, the high voltage may be applied to the gate driver or the like unintentionally. In that case, circuit elements constituting a gate driver or the like may be deteriorated or destroyed in this screening.
  • the present invention provides a display panel having a drive circuit for supplying a signal to a pixel via a bus line therein, which is stably produced and has high reliability in both the pixel and the drive circuit. It is another object of the present invention to provide a display panel inspection method and a manufacturing method capable of obtaining a highly reliable display panel while suppressing a decrease in yield.
  • the display panel according to the first embodiment of the present invention is provided on a substrate and interposed between a first bus line and a second bus line that intersect each other, and is interposed between the first bus line and the second bus line.
  • the drive circuit includes an output transistor connected to the first bus line to output the signal.
  • the switching element is provided separately from the output transistor.
  • the inspection method of the display panel according to the second embodiment of the present invention includes a first bus line and a second bus line which intersect each other via an insulating film, and an intersection between the first bus line and the second bus line.
  • a predetermined test voltage is applied between the first bus line and the second bus line without passing through the driving circuit, and a voltage is applied before and after the test voltage is applied. Implementing the functional test of the pixels includes that.
  • the method for manufacturing a display panel according to the third embodiment of the present invention includes inspecting the display panel using the inspection method according to the second embodiment, wherein the first bus line and the insulating layer are provided on the substrate. Preparing the display panel by forming a film, the second bus line, a plurality of the pixels, the drive circuit including the output transistor, the switching element, and the third bus line; The method further includes disabling energization to a pixel determined to be defective in the functional test among the plurality of pixels.
  • the production of the display panel is stabilized by preventing the drive circuit from being damaged.
  • the reliability of the driving circuit can be improved.
  • FIG. 1 is a diagram schematically illustrating an example of a configuration of a display panel according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating an example of a switching element and a drive circuit according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a cross section taken along a cutting line passing through a first bus line of the display panel according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a cross section taken along a cutting line passing through the thin film transistor of the display panel of the first embodiment.
  • FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment.
  • FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment.
  • FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a method of applying a test voltage in Embodiments 2 and 3 of the present invention.
  • 6 is a flowchart illustrating an example of a display panel inspection method according to a second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of a conventional screening method for a display panel.
  • the inventor of the present invention has made intensive studies on a display panel having a drive circuit such as a gate driver therein to avoid damage to the drive circuit due to screening of an insulating film.
  • the inventor has found that the output transistor that outputs a signal to be supplied to each pixel in the drive circuit destroyed by the screening is damaged at a portion between the source electrode and the drain electrode. Although the potential difference for screening was not applied between the drain electrode and the source electrode of the output transistor, the output transistor was damaged.
  • the present inventor has found that in a display panel in which such a damage has occurred in a drive circuit, a leak has also occurred in an insulating film.
  • FIG. 7 shows a method of applying a potential difference (test voltage Vs) performed in screening in a conventional display panel.
  • the display panel includes a pixel 300, a driving circuit 200, a gate bus line 110, and a source bus line 120.
  • the pixel 300 includes a pixel driving circuit including a thin film transistor (TFT) 310.
  • the source electrode of the TFT 310 is connected to the source bus line 120, and its gate electrode is connected to the gate bus line 110.
  • the driving circuit 200 includes an output transistor 210 connected to the gate bus line 110, and supplies a gate signal to the pixel 300 via the gate bus line 110.
  • the drive circuit 200 is controlled, and as shown in FIG.
  • the test voltage Vs is applied between the gate bus line 110 and the source bus line 120 via the output transistor 210, that is, the gate insulating film (not shown) of the TFT 310. ). Therefore, the test voltage Vs is not directly applied between the source electrode and the drain electrode of the output transistor 210 of the drive circuit 200.
  • the gate insulating film (not shown) has a defect and the state between the gate electrode and the source electrode of the TFT 310 reaches a low resistance state or a short state, the test voltage Vs is reduced as shown by a symbol Vsd in FIG.
  • a large potential difference can be applied between the source and drain electrodes of the output transistor 210.
  • the output transistor 210 that is, the drive circuit 200 is broken. The inventor has confirmed such a mechanism of destruction in a driving circuit provided in a display panel.
  • the present inventor provides a path for applying a test voltage at the time of screening to an insulating film (gate insulating film) separately from a signal supply path to a pixel in a normal image display, so that destruction by the above-described mechanism is achieved. It was found that the drive circuit could be protected from That is, since a potential difference for screening can be applied to the gate insulating film without passing through the driving circuit, even if the insulating property of the gate insulating film is defective, the output transistor or the like of the driving circuit may be deteriorated or damaged. No high potential difference is applied to the drive circuit. On the other hand, even if a circuit element used for applying a test voltage is destroyed by an unintended large potential difference, the image display function of the display panel is not impaired. As described above, since the insulating film can be screened while avoiding the risk of damaging the driving circuit, the production of the display panel can be stabilized, and a highly reliable display panel can be obtained for both the pixel and the driving circuit. Can be.
  • FIG. 1 schematically illustrates an example of the configuration of the display panel 1 according to the first embodiment.
  • the display panel 1 includes a first bus line 11 and a second bus line 12 provided on a substrate 10 and intersecting each other, and a first bus line 11 and a second bus line 12.
  • the pixel includes a pixel 3 provided at the intersection and a drive circuit 2 formed on the surface of the substrate 10 and supplying a signal to the pixel 3 via the first bus line 11.
  • the display panel 1 further includes an insulating film 13 (see FIG. 3A) interposed between the first bus line 11 and the second bus line 12, as will be described later. Contains.
  • the display panel 1 includes a plurality of first bus lines 11 and a plurality of second bus lines 12, and is provided at each intersection of the plurality of first bus lines 11 and the plurality of second bus lines 12.
  • Pixel 3 is provided.
  • the image display unit 30 of the display panel 1 is configured by the plurality of pixels 3, and the drive circuit 2 is formed outside the image display unit 30.
  • Each of the plurality of first bus lines 11 is connected to each of the pixels 3 arranged in the same row (each row parallel to the X direction which is the horizontal direction in FIG. 1) among the plurality of pixels 3 arranged in a matrix.
  • each of the second bus lines 12 is connected to each of the pixels 3 arranged in the same column (each column parallel to the Y direction, which is the vertical direction in FIG. 1) among the plurality of pixels 3.
  • the display panel 1 includes a plurality of drive circuits 2, and each drive circuit 2 is connected to each of the pixels 3 arranged in the same row via the first bus line 11.
  • Each drive circuit 2 supplies a gate signal to each of the pixels 3 arranged in the same row at substantially the same time, and a plurality of drive circuits 2 sequentially supply a gate signal for each row of the pixels 3.
  • the drive circuit 2 in FIG. 1 is an example of a drive circuit that functions as a so-called gate driver (scan driver), and each drive circuit 2 functions as a gate driver for one row for each row of the plurality of pixels 3.
  • the first bus line 11 is a gate bus line of the display panel 1
  • the second bus line 12 is a source bus line of the display panel 1.
  • FIG. 1 also shows a driving circuit (source driver) 2 s provided outside the display panel 1 and supplying a source signal for each column of the plurality of pixels 3, and the second bus line 12 is a driving circuit. It is connected to the circuit 2s.
  • source driver source driver
  • the display panel 1 further includes a switching element 4 (first switching element) formed on the substrate 10 and connected to the first bus line 11, and a first bus line 11 via the switching element 4.
  • the third bus line 23 is connected.
  • the connection state between the first bus line 11 and the third bus line 23 is switched by the switching element 4.
  • the first bus line 11 and the third bus line 23 are electrically connected, or both are connected. Electrically isolated.
  • the switching element 4 is exemplified by a transistor or a diode configured by appropriately connecting each terminal of the transistor.
  • the switching element 4 is not limited to these as long as it can switch the electrical connection state of the two bus lines, but is preferably a thin film transistor in terms of ease of manufacturing and control.
  • the display panel 1 of FIG. 1 further includes a clear bus line 25 connected to each of the plurality of drive circuits 2 in addition to the first to third bus lines 11, 12, and 23.
  • the clear bus line 25 is a bus line for transmitting a signal for discharging electric charges accumulated in the drive circuit 2 as described later.
  • the third bus line 23 and the clear bus line 25 may be connected to a drive circuit 2s functioning as a source driver, as shown in FIG. The supplied signal is supplied from the drive circuit 2s.
  • Each of the plurality of pixels 3 includes a pixel drive circuit 3a that switches the state of light emission from the pixel 3.
  • the driving circuit 2 (hereinafter, the driving circuit 2 in the example functioning as a gate driver is also referred to as a gate driver 2 to clarify the distinction from the pixel driving circuit 3a) is connected to the pixel driving circuit 3a of each pixel 3. Have been.
  • the pixel drive circuit 3a includes a thin film transistor (TFT) 31 and an auxiliary capacitor 3b.
  • the gate driver 2 is connected to the gate electrode of the TFT 31 via the first bus line 11. I have.
  • the source electrode of the TFT 31 is connected to an external source driver (drive circuit 2s) via the second bus line 12.
  • FIG. 1 shows an example in which the display panel 1 is a liquid crystal display panel.
  • the display panel of the present embodiment may be an active matrix type display panel other than the liquid crystal display panel, for example, an organic EL display panel.
  • FIG. 2 is a circuit diagram showing an example of the switching element 4 and the drive circuit 2 functioning as a gate driver in the display panel 1 of the present embodiment.
  • FIG. 2 also shows a TFT 31 provided in the second bus line 12 and the pixel 3 (see FIG. 1).
  • the drive circuit 2 includes five transistors 2a to 2e including an output transistor 2a that outputs a signal to be supplied to the pixel 3, and a capacitor 2f.
  • the transistors 2a to 2e are preferably thin film transistors formed on the substrate 10.
  • One of the drain electrode and the source electrode of the output transistor 2a is connected to the first bus line 11 via the output GO of the drive circuit 2, and the other is connected to the clock bus line 26 via the input CK of the drive circuit 2. It is connected.
  • the clock bus line 26 is a bus line that transmits a clock signal that defines a timing for outputting a gate signal from the drive circuit 2, and is preferably arranged in parallel with the clear bus line 25.
  • the switching element 4 is a field effect transistor, and is preferably a thin film transistor formed on the substrate 10.
  • the switching element 4 has an input terminal to which a test voltage to be described later is applied, an output terminal, and a control terminal used for controlling electric resistance between the input terminal and the output terminal. .
  • the output terminal of the switching element 4 is connected to the first bus line 11, and the input terminal of the switching element 4 is connected to the third bus line 23.
  • the terminal (electrode) connected to the first bus line 11 is an output terminal
  • the terminal (electrode) connected to the third bus line 23 is an input. Is the end.
  • a thin film transistor has two electrodes called a drain electrode and a source electrode, these electrodes have substantially the same structure and can have similar functions.
  • the terms “source electrode” and “drain electrode” are frequently used so that the switching element 4 can be easily understood even if it is other than a thin film transistor.
  • the switching element 4 is a thin film transistor, either the source electrode or the drain electrode thereof may be the input terminal or the output terminal of the switching element 4.
  • a gate electrode used for controlling conduction and cutoff between these electrodes is a control terminal of the switching element 4.
  • the third bus line 23 is used for screening the insulating film 13 (see FIG. 3A) provided in the display panel 1. Specifically, the switching element 4 is controlled to be turned on by inputting an appropriate gate potential. The potential of each of the third bus line 23 and the second bus line 12 is controlled by application of a predetermined voltage or the like, and a test voltage (potential difference) Vs is applied between the third bus line 23 and the second bus line 12. Is done. By doing so, a potential difference based on the test voltage Vs can be applied to the insulating film 13 interposed between the first bus line 11 and the second bus line 12.
  • the TFT 31, the first bus line 11, and the third bus line 23 are electrically connected to each other by controlling the gate potential to a potential at which the switching element 4 can be turned off. Can be separated.
  • the “test voltage” is a voltage that can reduce the insulating property of the insulating film including a potential defect to a level lower than the insulating property required for the initial insulating film within a predetermined time by the application of the “test voltage”. It is. Therefore, the third bus line 23 is a bus line to which a voltage large enough to make defects of the insulating film 13 evident in the screening of the insulating film 13 is applied between the third bus line 23 and the second bus line 12.
  • the “test voltage” is a voltage that does not lower the reliability of a normal insulating film to below a required level by application of the “test voltage”.
  • the “test voltage” is required for the manufacturing process of the pixel drive circuit 3a (see FIG. 1) and the display panel 1. It can be determined as appropriate based on the required characteristics and reliability level.
  • the switching element 4 is provided separately from the output transistor 2a of the drive circuit 2. Therefore, even if a defect occurs in the insulating film 13 in the screening for the insulating film 13 (see FIG. 3A), the drive circuit 2 is not destroyed. That is, even if the insulating film 13 is short-circuited in the screening, the potential difference based on the test voltage Vs is not applied to the drive circuit 2, specifically, the output transistor 2a. Accordingly, the damage to the drive circuit 2 can be prevented and the reliability of the drive circuit 2 can be improved while screening the insulating film 13. Further, it is possible to suppress a decrease in the yield due to the destruction of the drive circuit 2, and to stabilize the production of the display panel 1.
  • the switching element 4 When the insulating film 13 is short-circuited, a potential difference based on the test voltage Vs can be applied between the source electrode and the drain electrode of the switching element 4 as shown by a reference symbol Vsd in FIG. In this case, the switching element 4 may be damaged. However, since the switching element 4 is not normally used when the display panel 1 is used, the reliability of the display panel 1 is not reduced.
  • the switching element 4 is destroyed during the screening, there is no particular problem in the screening as long as the destruction causes a short circuit between the source electrode and the drain electrode of the switching element 4.
  • the application of the test voltage Vs to the insulating film 13 via the third bus line 23 and the first bus line 11 can be continued as it is.
  • the source electrode and the drain electrode of the destroyed switching element 4 are electrically separated from the first bus line 11 and the third bus line 23 after the screening, so that the influence of the breakdown is reduced on the display panel 1.
  • the gate electrode of the switching element 4 and the conductor (the clear bus line 25 in the example of FIG. 2) to which the gate electrode is connected are electrically separated, and the source electrode or the drain electrode of the switching element 4 May be electrically separated from the first bus line 11 or the third bus line 23.
  • the destruction of the switching element 4 during screening is a destruction that causes an open state between the source electrode and the drain electrode, the image display function of the display panel 1 is not affected by the destruction.
  • the drive circuit 2 further includes an input I3, and the gate electrode of the transistor 2c is connected to the clear bus line 25 via the input I3.
  • One of the source electrode and the drain electrode of the transistor 2c is connected to the gate electrode of the transistor 2a and the capacitor 2f, and the other of the source electrode and the drain electrode of the transistor 2c is connected to an arbitrary constant potential node (in the example of FIG. Potential Vss). Therefore, the transistor 2c discharges the charge stored in the gate capacitance of the transistor 2a and the capacitor 2f according to the potential of the clear bus line 25.
  • the “negative reference potential” can be generated and provided by a voltage source such as an on-board power supply provided outside the display panel 1, for example.
  • the negative reference potential Vss is, for example, -6 V or -8 V, but is not limited thereto.
  • a gate electrode of any transistor capable of discharging the charge accumulated in any capacitance component of the drive circuit 2 may be connected to the clear bus line 25.
  • the clear bus line 25 is a bus line that transmits a signal of a predetermined potential that can turn on the transistor 2c and the like when discharging the charge stored in the drive circuit 2 as described above.
  • a signal for turning on the transistor 2 c or the like to discharge the electric charge accumulated in the drive circuit 2 at a predetermined timing, for example, at a predetermined cycle or at an irregular time is transmitted through the clear bus line 25. Is done.
  • a signal that enables discharge in a capacitance component of the drive circuit 2 is transmitted through the clear bus line 25.
  • the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25. Accordingly, the charge accumulated in the capacitance component in the drive circuit 2 can be discharged only by inputting a signal of a potential that can turn on the transistor 2c and the switching element 4 to the clear bus line 25, and at the same time, the first bus The line 11 and the third bus line 23 can be electrically connected. That is, when screening the insulating film 13 (see FIG. 3A), the insulating film 13 can be screened while the output transistor 2a is stably kept in the off state.
  • the third bus line 23 and the switching element 4 can also be used for discharging the charge accumulated in the gate capacitance and the storage capacitance 3b of the TFT 31 (see FIG. 1). More specifically, every time image data is written to the TFT 31, an amount of charge corresponding to the image data is stored in the gate capacitance and the storage capacitance 3b of the TFT 31. After the display of the image for one frame and before the writing of the image data for the next frame starts, preferably, the charge stored in the previous frame is discharged. In the example of FIG.
  • the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25, and as described above, when one frame of image data starts to be sequentially written to each pixel 3, A predetermined signal is transmitted through the clear bus line 25.
  • the third bus line 23 to an arbitrary constant potential node, for example, a negative reference potential Vss, the charge stored in the gate capacitance of the TFT 31 is discharged through the switching element 4 and the third bus line 23. Can be done.
  • FIG. 3A shows an example of a cross section in the thickness direction of the substrate 10 in the display panel 1 of the present embodiment, which is taken along a cutting line passing through the first bus line 11.
  • FIG. 3B shows an example of a cross section in a thickness direction of the substrate 10 along a cutting line passing through the TFT 31 and the switching element 4 as in the cross section shown in FIG. 3A. Note that, in FIG. 3B, illustration of circuit elements other than the TFT 31 configuring the drive circuit 2 and the pixel drive circuit 3a is omitted.
  • each of the plurality of pixels 3 including the TFT 31 in the pixel driving circuit 3a includes a part of the insulating film 13.
  • the gate electrode 32 of the TFT 31 is connected to the first bus line 11, and the source electrode 35 is connected to the second bus line 12.
  • the insulating film 13 gate insulating film sandwiched between the gate electrode 32 and the source electrode 35, a decrease in insulation or a short circuit due to a defect during manufacturing or the like may occur during the screening.
  • the drive circuit 2 can be prevented from being broken even in such a case.
  • the first bus line 11 is formed on the surface of the substrate 10, and the insulating film 13 covering the first bus line 11 is formed on substantially the entire surface of the substrate 10.
  • the second bus line 12 is formed at the bottom.
  • the third bus line 23 is formed on the substrate 10 along a direction substantially orthogonal to the first bus line 11, and is formed between the edge of the substrate 10 and the switching element 4.
  • the third bus line 23 may be formed between the switching element 4 and the image display unit 30, or may be formed on the substrate 10 more than the driving circuit 2 (see FIG. 1) not shown in FIG. 3B. It may be formed at a position near the edge. Note that the vertical positional relationship between the first bus line 11 and the second bus line 12 on the substrate 10 may be opposite to that in the example of FIGS. 3A and 3B. Further, the third bus line 23 may be formed on the insulating film 13 similarly to the second bus line 12.
  • the clear bus line 25 is formed on the surface of the substrate 10 similarly to the first bus line 11.
  • the clear bus line 25 is formed on the edge of the substrate 10 along a direction substantially orthogonal to the first bus line 11.
  • the switching element 4 is formed of a thin film transistor like the TFT 31, and is formed outside the image display unit 30 (see FIG. 1).
  • the thin film transistor and the TFT 31 that constitute the switching element 4 include semiconductor layers 43 and 33 on gate electrodes 42 and 32, respectively, with a gate insulating film formed by a part of the insulating film 13 interposed therebetween.
  • As the insulating film 13 a silicon oxide film (SiO 2 ) or a silicon nitride film (SiN x ) is exemplified.
  • the semiconductor layers 43 and 33 are formed using, for example, amorphous silicon, low-temperature polycrystalline silicon (LTPS), or a mixed crystal semiconductor.
  • contact layers 44 and 34 are formed by a semiconductor having a high impurity concentration, and on the contact layers 44 and 34 and a part of the insulating film 13, source electrodes 45 and 35 and Drain electrodes 46 and 36 are formed.
  • the gate electrodes 42 and 32 and the first bus line 11, the source electrodes 45 and 35, the drain electrodes 46 and 36, the second bus line 12 and the third bus line 23 are made of, for example, tungsten, molybdenum, titanium, aluminum, or copper. -It is formed using a titanium alloy or the like.
  • the transistors 2a to 2e constituting the drive circuit 2 omitted in FIGS.
  • TFT 31 and the switching element 4 are also formed using the same material as the switching element 4 and the TFT 31 shown in FIG. 3B. May have the same structure as Note that the structures of the TFT 31 and the switching element 4 shown in FIG. 3B are merely examples.
  • the TFT 31 and the switching element 4 may be, for example, top-gate thin film transistors.
  • the gap G4 between the source electrode 45 and the drain electrode 46 of the thin film transistor constituting the switching element 4 is preferably larger than the gap between the source electrode and the drain electrode of the transistor in the drive circuit 2 (not shown). . Further, the gap G4 may be larger than the gap G3 between the source electrode 35 and the drain electrode 36 of the TFT 31.
  • FIG. 3A and 3B illustrate the display panel 1 which is a liquid crystal display panel similarly to FIG. 1, so that a liquid crystal layer LC and the like are formed on the pixel driving circuit 3a.
  • a flattening film 14a covering the pixel driving circuit 3a is formed, and a pixel electrode 16a is formed on the surface of the flattening film 14a.
  • the pixel electrode 16a is connected to the drain electrode 36 via the contact conductor 15 formed on the flattening film 14a.
  • a first alignment film 17a is formed on the planarizing film 14a and the pixel electrode 16a, and a liquid crystal layer LC is formed between the first alignment film 17a and the second alignment film 17b by injecting a nematic liquid crystal or the like.
  • the second alignment film 17b is laminated on the surface of the opposing substrate 10b facing the substrate 10, together with the color filter 19, the planarizing film 14b, and the opposing electrode 16b.
  • the opposing substrate 10b is disposed so as to oppose the substrate 10 with the pixel drive circuit 3a interposed therebetween, and a predetermined space is secured between the substrate 10 and the opposing substrate 10b by a spacer 18.
  • a polarizing plate may be provided on the surface of each of the substrate 10 and the counter substrate 10b facing the direction opposite to the liquid crystal layer LC, and the display panel 1 is a transmissive liquid crystal display panel.
  • each component such as the pixel electrode 16a, the first and second alignment films 17a and 17b, and the liquid crystal layer LC on the pixel drive circuit 3a can have a general structure, detailed description thereof is omitted. Is done.
  • the display panel 1 is an organic EL display panel, an organic light emitting element is formed for each pixel 3 instead of the liquid crystal layer LC or the like.
  • FIG. 4A shows the switching element 4 according to the first modification of the present embodiment together with the drive circuit 2.
  • the switching element 4 is formed of a transistor as in the example of FIG. 2 referred to above, and is preferably formed of a thin film transistor.
  • the control terminal (gate electrode) of the switching element 4 is not connected to the clear bus line 25 and the drive circuit 2, but is connected to the input terminal (source electrode or drain electrode of the thin film transistor) of the switching element 4 on the third bus. Connected to line 23. Therefore, the thin film transistor constituting the switching element 4 can have a diode function by so-called diode connection.
  • the output terminal of the switching element 4 (the electrode of the source electrode and the drain electrode that is not connected to the third bus line 23) is connected to the first bus line 11 as in the example of FIG. Therefore, if a potential difference exceeding the threshold voltage of the thin film transistor constituting the switching element 4 is applied between the third bus line 23 and the first bus line 11, the switching element 4 is turned on, and the third bus line 23 The first bus line 11 is electrically connected. Therefore, by applying a potential difference between the third bus line 23 and the second bus line 12 that sufficiently exceeds the threshold voltage of the thin film transistor forming the switching element 4, the screening of the insulating film 13 (see FIG. 3A) can be performed. It can be carried out. That is, unlike the example of FIG.
  • the screening of the insulating film 13 can be performed without being affected by the signal transmitted through the clear bus line 25. Except that the control terminal of the switching element 4 is connected to the third bus line 23, the configuration of the present modification is the same as the configuration shown in FIG. 2, and a redundant description of the same components will be omitted. Is done.
  • FIG. 4B shows the switching element 4 according to the second modification of the present embodiment together with the drive circuit 2.
  • the switching element 4 is configured by a transistor, similarly to the example of FIG. 2 referred to above, and is preferably configured by a thin film transistor.
  • the display panel 1 (see FIG. 1) further includes a fourth bus line 24, and the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25 and the drive circuit 2. Instead, they are connected to the fourth bus line 24. Therefore, the fourth bus line 24 is used for controlling the switching element 4 and for screening the insulating film 13 (see FIG. 3A).
  • a signal of a predetermined potential at which the switching element 4 can be turned on is transmitted through the fourth bus line 24. Then, by applying a predetermined test voltage between the third bus line 23 and the second bus line 12, the insulating film 13 can be screened.
  • the switching element 4 can be controlled independently of the clear bus line 25, similarly to the first modification described above. Therefore, the screening of the insulating film 13 can be performed without affecting the operation of the drive circuit 2.
  • the source electrode and the drain electrode of the switching element 4 are independently connected to the third bus line 23 or the first bus line 11 without a gate electrode. Therefore, the potential difference between the source electrode and the drain electrode when the switching element 4 is on is smaller than the potential difference in the first modification. Therefore, for example, if the potential of the signal transmitted through the third bus line 23 is the same in the first modification and the second modification, it is considered that a higher potential difference can be applied to the insulating film 13 in the second modification.
  • the configuration of this modification is the same as the configuration shown in FIG. Is omitted.
  • FIG. 4C shows the switching element 4 according to the third modification of the present embodiment together with the drive circuit 2.
  • the switching element 4 is configured by a transistor, similarly to the above-described modification 2, and is preferably configured by a thin film transistor.
  • a fourth bus line 24 is provided, and a control terminal (gate electrode) of the switching element 4 is connected to the fourth bus line 24. Therefore, the insulating film 13 (see FIG. 3A) can be screened without affecting the operation of the drive circuit 2.
  • a clear bus line 25 is provided as in the example of FIG.
  • the electric charge stored in the drive circuit 2 for example, the electric charge stored between the gate electrode of the output transistor 2a and the first bus line 11, is supplied at a predetermined timing, for example, at a predetermined cycle or A signal to be discharged at an occasional desired time is transmitted.
  • a second switching element 4b connected to the fourth bus line 24 and the gate electrode of the output transistor 2a of the drive circuit 2 is further provided.
  • the second switching element 4b various transistors, thyristors, semiconductor switch ICs, and the like are exemplified.
  • a thin film transistor is preferable as the second switching element 4b. Therefore, the second switching element 4b can have the same structure as the switching element 4 illustrated in FIG. 3B.
  • the gate electrode of the second switching element 4b formed by a transistor is connected to the fourth bus line 24.
  • One of the source electrode and the drain electrode of the second switching element 4b is connected to the gate electrode of the output transistor 2a of the drive circuit 2, and the other of the source electrode and the drain electrode of the second switching element 4b is connected to an arbitrary constant potential node (see FIG. 4C, it is connected to the negative reference potential Vss). Therefore, the second switching element 4b can control the output transistor 2a to be turned off according to the potential of the fourth bus line 24.
  • a signal of a predetermined potential at which the switching element 4 can be turned on is transmitted through the fourth bus line 24.
  • the gate electrode of the output transistor 2a and the first bus line 11 are connected. The electric charge stored during the discharge can be discharged. That is, the electric charge stored in the gate capacitance of the output transistor 2a, the capacitor 2f, and the like can be discharged without requiring the application of a specific signal to the clear bus line 25.
  • the insulating film 13 can be screened while the output transistor 2a is stably kept in the OFF state as in the example of FIG. 2 referred to earlier. it can.
  • the timing when a specific signal can be applied to the clear bus line 25 may be limited. In such a case, a configuration like the third modification is useful.
  • Display panel inspection method The display panel inspection method according to the second embodiment will be described with reference to FIGS. 1, 2, 3 ⁇ / b> A, 3 ⁇ / b> A and 3 ⁇ / b> B. This will be described with reference to FIG.
  • the display panel 1 is prepared (S1 in FIG. 6). As illustrated in FIGS. 1, 2, 3A, and 3B, the display panel 1 includes a first bus line 11 and a second bus line 12 that intersect each other via an insulating film 13, and a first bus line 11. Pixel 3 provided at the intersection of the first bus line 11, the driving circuit 2 for supplying a signal from the output transistor 2 a connected to the first bus line 11 to the pixel 3, and the switching element 4. And at least a third bus line 23 connected to the first bus line 11.
  • the display panel 1 includes at least a first bus line 11, an insulating film 13, a second bus line 12, and a pixel on a substrate 10 as described in a display panel manufacturing method according to a third embodiment described later.
  • the display panel inspection method of the present embodiment does not necessarily include the formation of the components of the display panel 1 such as the first bus line 11.
  • the display panel 1 includes the necessary components. It may be prepared by simply bringing the provided display panel 1 to the place where the inspection is performed.
  • the switching element 4 is controlled, and the first bus line 11 and the third bus line 23 are electrically connected (S2 in FIG. 6).
  • the switching element 4 since the switching element 4 is configured by a transistor, a voltage that can turn on the switching element 4 is applied to the gate electrode of the switching element 4.
  • the gate electrode of the switching element 4 since the gate electrode of the switching element 4 is connected to the clear bus line 25, a voltage at which the switching element 4 can be turned on is applied to the clear bus line 25.
  • the first bus line 11 and the third bus line 23 connected to the source electrode or the drain electrode of the switching element 4, respectively, are electrically connected.
  • a test voltage is applied between a second bus line 12 and a third bus line 23 to be described later, and the first bus line 11
  • the three bus lines 23 are electrically connected.
  • the switching element 4 is connected to the fourth bus line 24 included in the display panel 1 of the second modification or the third modification. A voltage that can be turned on is applied.
  • a predetermined test voltage Vs capable of exposing a potential defect of the insulating film 13 is applied between the second bus line 12 and the third bus line 23 .
  • a voltage (potential difference) based on the test voltage Vs is applied between the first bus line 11 electrically connected to the third bus line 23 and the second bus line 12.
  • a voltage based on the test voltage Vs is applied between the first bus line 11 and the second bus line 12 without passing through the drive circuit 2.
  • test voltage Vs can be appropriately determined based on the manufacturing process of the pixel drive circuit 3a (see FIG. 1), the characteristics and the reliability level required for the display panel 1, and the like.
  • the test voltage Vs (potential difference between the second bus line 12 and the third bus line 23) is, for example, 50 V or more and 100 V or less, and preferably 70 V. In this case, positive and negative power supply voltages supplied to the display panel 1 for normal image display can be used.
  • the polarity of the test voltage Vs may be constant between the second bus line 12 and the third bus line 23, or may be appropriately inverted. Further, a pulse voltage may be applied. For example, the polarity may be inverted at intervals of about 1 second to 10 seconds. By doing so, a defect of the insulating film 13 may be efficiently made visible.
  • 0 V ground potential
  • the test voltage Vs can be supplied, for example, by using an external voltage source or a pulse generator alone or incorporated in the screening apparatus.
  • the function test of the pixel 3 is performed (S4 in FIG. 6).
  • the method of the functional test is not particularly limited. For example, a test image such as all white, all black, checkered pattern, vertical and / or horizontal stripe, and gray scale is displayed, and an image pickup device such as a visual inspection or a CCD is provided. The quality of each pixel 3 is determined using an image inspection device. Since the potential difference based on the test voltage Vs is applied first between the first bus line 11 and the second bus line 12, the defective pixel hidden in the insulating film 13 interposed between these bus lines is defective. It can be appropriately determined as a pixel.
  • the potential difference applied between the first bus line 11 and the second bus line 12 for screening the insulating film 13 is applied without passing through the drive circuit 2. . Therefore, even if the first bus line 11 and the second bus line 12 are short-circuited due to the defect of the insulating film 13, the drive circuit 2 is prevented from being damaged or destroyed during the screening. Can come off.
  • the output transistor 2a of the drive circuit 2 be controlled to be in the off state during the application of the test voltage Vs.
  • the test voltage Vs can be prevented from being applied to the circuit elements constituting the drive circuit 2, and the drive circuit 2 can be maintained in a stable state.
  • the output transistor 2a can be turned off by applying a voltage to the clear bus line 25 that can turn on the transistor 2c of the drive circuit 2 in addition to the switching element 4.
  • a voltage capable of turning on the transistor 2c of the drive circuit 2 is applied to the clear bus line 25. By doing so, the output transistor 2a can be turned off.
  • the output transistor 2a can be turned off by applying a voltage that can turn on the second switching element 4b to the fourth bus line 24.
  • the charge stored in the pixel 3 may be discharged via the switching element 4 and the third bus line 23 after the application of the test voltage Vs.
  • the electric charge stored in the gate capacitance of the TFT 31 is discharged.
  • the charge stored in these capacitance components is applied to the clear bus line 25 so that the switching element 4 can be turned on, and is applied to an arbitrary constant potential node (for example, the negative reference potential Vss). It can be discharged by connecting the third bus line 23.
  • the method for manufacturing a display panel according to the present embodiment includes inspecting the display panel 1 using the above-described inspection method for a display panel according to the second embodiment.
  • a first bus line 11, an insulating film 13, a second bus line 12, a plurality of pixels 3 The display panel 1 is prepared by forming the drive circuit 2 including the output transistor 2a, the switching element 4, and the third bus line 23.
  • An example of a method of forming the first to third bus lines 11, 12, and 23, the plurality of pixels 3, the drive circuit 2, and the switching element 4 will be described below. It is not limited to the method described below. Note that the following description uses the display panel 1 illustrated in FIGS.
  • the switching element 4 is configured by a thin film transistor.
  • the drive circuit 2 is preferably mainly formed of a thin film transistor, it can be formed by forming a thin film transistor in the same manner as the switching element 4. Therefore, the description thereof will be appropriately omitted.
  • the first bus line 11, the third bus line 23, the gate electrode 42 of the switching element 4, and the gate electrode 32 of the TFT 31 of the pixel driving circuit 3a are formed on the surface of the substrate 10. It is formed. 3A and 3B, the clear bus line 25 is formed together with the first bus line 11 and the like. 3A and 3B show an example in which the switching element 4 and the TFT 31 are bottom gate type amorphous silicon transistors.
  • first and third bus lines 11 and 23 and the gate electrodes 42 and 32 In forming the first and third bus lines 11 and 23 and the gate electrodes 42 and 32, first, a metal film such as tungsten or molybdenum is formed on the surface of the substrate 10 by sputtering or the like. Then, the metal film is patterned by forming an etching resist using photolithography technology and dry or wet etching. As a result, the metal film is separated into conductor patterns having a desired shape, and the respective bus lines 11 and 23 and the respective gate electrodes 42 and 32 formed of the respective conductor patterns are formed. At the same time, other bus lines such as the clear bus line 25 and the fourth bus line 24 (see FIG. 4B), and conductor patterns forming other circuit elements such as the auxiliary capacitor 3b (see FIG. 1) also have the first bus line. 11 and the like.
  • an insulating film 13 covering the first bus line 11 and the gate electrodes 42 and 32 is formed.
  • the insulating film 13 is formed, for example, by forming a SiO 2 film or a SiN x film using a plasma CVD method.
  • a part of the insulating film 13 forms a gate insulating film of the switching element 4, the TFT 31 forming the pixel driving circuit 3a (see FIG. 1), and the transistors 2a to 2e forming the driving circuit 2 (see FIG. 2).
  • semiconductor layers 43 and 33 are formed on insulating film 13 using, for example, a plasma CVD method.
  • the semiconductor layers 43 and 33 are patterned into a desired shape using dry etching or the like.
  • contact layers 44 and 34 are formed on the semiconductor layers 43 and 33 using a semiconductor having a high impurity concentration.
  • the source electrode 45 and the drain electrode 46 of the switching element 4 are formed on the semiconductor layer 43 (or the contact layer 44) and the insulating film 13, and on the semiconductor layer 33 (or the contact layer 34) and the insulating film 13.
  • the source electrode 35 and the drain electrode 36 of the TFT 31 are formed.
  • the second bus line 12 and the source electrode and the drain electrode (not shown) of the transistors 2a to 2e (see FIG. 2) constituting the drive circuit 2 are formed on the insulating film 13.
  • a tungsten film or a titanium film is formed by using sputtering, and the formed film is separated by dry or wet etching or the like, whereby each electrode and the second bus line 12 can be formed.
  • a conductor pattern forming another circuit element such as the auxiliary capacitor 3b may be formed together with the second bus line 12 or the like.
  • the first to third bus lines 11, 12, and 23, the switching element 4, the driving circuit 2, and the pixel driving circuit 3a including the TFT 31 and the auxiliary capacitance 3b are formed.
  • the third and fourth bus lines 23 and 24 may be formed on the insulating film 13 together with the second bus line 12.
  • a flattening film 14a made of SiO 2 or SiN X is formed by, for example, a CVD method. Further, components necessary for image display using liquid crystal molecules such as a liquid crystal layer LC are formed on the flattening film 14a. Alternatively, an organic light emitting element is formed by vapor deposition of an organic light emitting material or the like. Since the liquid crystal layer LC and the organic light emitting layer (not shown) are formed by a general method, description thereof is omitted. For example, the display panel 1 is prepared through the above steps.
  • a test voltage is applied to the prepared display panel 1 and a function test of the pixel 3 is performed in accordance with the display panel inspection method of the second embodiment, and the quality of the pixel 3 is determined.
  • the method for manufacturing a display panel according to the third embodiment further includes disabling energization to the pixels 3 determined to be defective in the function test in the display panel inspection method according to the second embodiment among the plurality of pixels 3.
  • any one of a connection portion between the gate electrode of the TFT 31 constituting the pixel 3 including the defect and the first bus line 11 and a connection portion connecting the source electrode of the TFT 31 and the second bus line 12 or Both are cut by laser light irradiation or the like. By doing so, it is possible to prevent the display of the other pixels 3 from being affected by the pixel 3 determined to be defective. Therefore, when a predetermined quality criterion for the number and content of defective pixels is satisfied, the display panel 1 including the defective pixels 3 can be modified into a display panel 1 that can be handled as a non-defective product.
  • the method for manufacturing a display panel of the present embodiment even when the insulation of the display panel includes a defect, the insulating film can be screened while avoiding damage to the drive circuit. Then, it may be possible to repair the display panel in which the defect is detected to a non-defective product. Therefore, a highly reliable display panel can be obtained while suppressing a decrease in yield.
  • the display panel according to the first embodiment of the present invention is provided on a substrate and is provided between a first bus line and a second bus line that intersect each other, and between the first bus line and the second bus line.
  • An insulating film interposed between the first bus line and the second bus line; a pixel provided at an intersection of the first bus line and the second bus line, the pixel including a part of the insulating film;
  • a third bus line used for screening the insulating film.
  • the drive circuit includes an output transistor connected to the first bus line to output the signal. Ri, the switching element is provided separately from the output transistor.
  • the production of the display panel can be stabilized by preventing the driving circuit from being damaged, and the reliability of the pixels and the driving circuit can be improved.
  • the third bus line may be a bus line to which a voltage large enough to make defects of the insulating film apparent in the screening is applied. In that case, a potential defect can be made obvious, and the reliability of the display panel can be improved.
  • the switching element is a thin film transistor having an input terminal, an output terminal, and a control terminal, and the output terminal of the switching element is connected to the first bus line.
  • the input terminal of the switching element may be connected to the third bus line. In this case, the connection and disconnection between the first bus line and the third bus line can be switched only by controlling the switching element.
  • the control terminal of the switching element may be connected to the third bus line together with the input terminal of the switching element.
  • the insulating film can be screened only by applying a voltage between the third bus line and the second bus line.
  • the display panel further includes a clear bus line for transmitting a signal for discharging electric charges accumulated in the drive circuit at a predetermined timing, and the control terminal of the switching element. May be connected to the clear bus line.
  • the insulating film can be screened while the output transistor of the driver circuit is stably kept in the off state.
  • the display panel according to (3) may further include a fourth bus line connected to the control terminal of the switching element and used for the screening. In that case, screening of the insulating film can be performed without affecting the operation of the driver circuit.
  • the display panel according to (6) wherein the display panel is connected to the fourth bus line and a gate electrode of the output transistor, and controls the output transistor to be in an off state according to the potential of the fourth bus line.
  • a switching element may be further provided. In that case, the insulating film can be screened while the output transistor is stably kept off without affecting the operation of the drive circuit.
  • the display panel according to (7) further including a clear bus line for transmitting a signal for discharging the electric charge stored between the gate electrode of the output transistor and the first bus line at a predetermined timing. May be. In that case, the electric charge accumulated in the drive circuit 2 can be discharged at a predetermined time regardless of whether or not the screening is being performed.
  • a predetermined test voltage is applied between the first bus line and the second bus line without passing through the drive circuit by applying a predetermined test voltage between the first bus line and the second bus line.
  • a highly reliable display panel can be obtained while suppressing a decrease in yield.
  • the method for inspecting a display panel according to (9) further includes, after the test voltage is applied, discharging the charge stored in the pixel via the switching element and the third bus line. It may be. By doing so, breakage and deterioration of the display panel can be prevented.
  • the output transistor may be turned off during the application of the test voltage. By doing so, the drive circuit can be maintained in a stable state during the application of the test voltage.
  • the method of manufacturing a display panel according to the third embodiment of the present invention includes inspecting the display panel by using any one of the inspection methods (9) to (11) above. Forming the first bus line, the insulating film, the second bus line, the plurality of pixels, the driving circuit including the output transistor, the switching element, and the third bus line. The method further includes preparing the display panel and disabling energization to a pixel determined to be defective in the functional test among the plurality of pixels.
  • a highly reliable display panel can be obtained while suppressing a decrease in yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

This display panel comprises: a first bus line and a second bus line provided on a substrate and intersecting with each other; an insulating film interposed between the first bus line and the second bus line; a pixel provided at the intersection between the first bus line and the second bus line and including a portion of the insulating film; a drive circuit formed on the surface of the substrate, the drive circuit supplying a signal to the pixel through the first bus line; a switching element provided on the substrate and connected to the first bus line; and a third bus line connected to the first bus line via the switching element, the third bus line being used for screening the insulating film. The drive circuit is provided with an output transistor that is connected to the first bus line and outputs a signal. The switching element is provided separately from the output transistor.

Description

表示パネル、表示パネルの検査方法および表示パネルの製造方法Display panel, display panel inspection method, and display panel manufacturing method
 本発明は、表示パネル、表示パネルの検査方法および表示パネルの製造方法に関する。 The present invention relates to a display panel, a display panel inspection method, and a display panel manufacturing method.
 携帯機器のディスプレイやテレビ受信機の画面などに用いられる液晶表示パネルや有機EL表示パネルなどは、マトリクス状に配置された複数の画素を含んでおり、各画素には、所望の輝度の光が出射されるように動作する画素駆動回路が備えられている。液晶表示パネルなどは、さらに、各画素に供給される信号が伝わるバスラインを備えており、このバスラインは、画素駆動回路を構成する薄膜トランジスタのゲート電極またはソース電極などに接続されている。この薄膜トランジスタのゲート電極およびこのゲート電極に接続されるゲートバスラインと、ドレイン電極およびソース電極ならびにこのソース電極に接続されるソースバスラインとの間には、薄膜トランジスタのゲート絶縁膜を構成する絶縁膜が介在している。 A liquid crystal display panel or an organic EL display panel used for a display of a portable device or a screen of a television receiver includes a plurality of pixels arranged in a matrix, and each pixel emits light having a desired luminance. A pixel drive circuit that operates to emit light is provided. The liquid crystal display panel and the like further include a bus line through which a signal supplied to each pixel is transmitted, and the bus line is connected to a gate electrode or a source electrode of a thin film transistor included in the pixel driving circuit. An insulating film forming a gate insulating film of the thin film transistor is provided between a gate electrode of the thin film transistor and a gate bus line connected to the gate electrode, and a drain electrode, a source electrode, and a source bus line connected to the source electrode. Is interposed.
 表示パネルの製造工程において、この絶縁膜は、たとえば化学気相蒸着(CVD)などを用いて、二酸化ケイ素(SiO2)などの膜を成膜することによって形成される。しかしこの絶縁膜は、その形成過程においてピンホールまたは異物のように絶縁性を低下させる欠陥を含んでしまうことがある。そして、このような初期の欠陥は、ゲート絶縁膜において経時的絶縁破壊(TDDB)と呼ばれる現象を加速させることがある。しかし時間の経過と共に進行する欠陥を、その初期段階で検出するのは困難なことがある。そのため、完成状態の表示パネルを短時間だけ通常の使用状況よりも過酷な状況に置くことによって潜在的な不良を顕在化させたうえで検査を行うスクリーニングが実施されることがある。たとえば特許文献1では、液晶表示パネルのスクリーニングとして、画素電極に接続された薄膜トランジスタのゲート電極とソース電極との間に所定の大きさの高電圧が印加されている。 In the manufacturing process of the display panel, this insulating film is formed by forming a film such as silicon dioxide (SiO 2 ) using, for example, chemical vapor deposition (CVD). However, this insulating film may include a defect such as a pinhole or a foreign substance that lowers the insulating property during the formation process. Such initial defects may accelerate a phenomenon called time-dependent dielectric breakdown (TDDB) in the gate insulating film. However, it may be difficult to detect defects that evolve over time at an early stage. For this reason, there is a case where a screening is performed in which a completed display panel is placed in a more severe state than a normal use state for a short time to reveal potential defects and then an inspection is performed. For example, in Patent Document 1, as a screening of a liquid crystal display panel, a high voltage of a predetermined magnitude is applied between a gate electrode and a source electrode of a thin film transistor connected to a pixel electrode.
特開平10-170956号公報JP-A-10-170956
 表示パネルの画素駆動回路には、ソースドライバなどと称される駆動回路、および、ゲートドライバ(またはスキャンドライバ)などと称される駆動回路から、ソース信号およびゲート信号が供給される。近年、これらの駆動回路を表示パネル上に形成する技術が導入されており、特にゲートドライバを表示パネル上に形成するケースが増加している。その場合、スクリーニングにおいて通常の使用電圧よりも高い電圧が画素駆動回路に印加されると、その高い電圧がゲートドライバなどにも意図せずに印加される虞がある。そしてその場合、ゲートドライバなどを構成する回路素子をこのスクリーニングにおいて劣化させ、または破壊してしまうことがある。すなわち、特に欠陥を抱えていない駆動回路を、その耐圧を上回り得る高い電圧の印加によって意図せずに破壊してしまい、略完成している表示パネルを不良品に転じさせてしまう虞がある。また、ゲートドライバなどの駆動回路が破損すると、その修復は困難なため、その表示パネルに費やされたコストが全て無駄になり、歩留まりも低下する。一方、破損には至らずともある程度劣化したゲートドライバなどを含む表示パネルが出荷されると、それらが使用時に不良に転じ、表示パネルの信頼性を低下させる虞がある。 (4) A source signal and a gate signal are supplied to a pixel driver circuit of a display panel from a driver circuit called a source driver and a driver circuit called a gate driver (or a scan driver). In recent years, a technique for forming these drive circuits on a display panel has been introduced, and in particular, a case in which a gate driver is formed on a display panel has been increasing. In that case, if a voltage higher than the normal use voltage is applied to the pixel driving circuit in the screening, the high voltage may be applied to the gate driver or the like unintentionally. In that case, circuit elements constituting a gate driver or the like may be deteriorated or destroyed in this screening. In other words, there is a possibility that a drive circuit that does not have a defect is unintentionally destroyed by application of a high voltage that can exceed its withstand voltage, and a substantially completed display panel is turned into a defective product. In addition, if a driving circuit such as a gate driver is damaged, it is difficult to repair the driving circuit, so that all costs spent on the display panel are wasted and the yield is reduced. On the other hand, when a display panel including a gate driver or the like that has been deteriorated to some extent without being damaged is shipped, it may turn into a failure during use, and the reliability of the display panel may be reduced.
 そこで本発明は、バスラインを介して画素に信号を供給する駆動回路を内部に備える表示パネルにおいて、安定して生産され、しかも、画素および駆動回路両方の信頼性の高い表示パネルを提供すること、ならびに、歩留まりの低下を抑制しながら信頼性の高い表示パネルを得ることができる表示パネルの検査方法および製造方法を提供することを目的とする。 Accordingly, the present invention provides a display panel having a drive circuit for supplying a signal to a pixel via a bus line therein, which is stably produced and has high reliability in both the pixel and the drive circuit. It is another object of the present invention to provide a display panel inspection method and a manufacturing method capable of obtaining a highly reliable display panel while suppressing a decrease in yield.
 本発明の第1実施形態の表示パネルは、基板の上に設けられ、互いに交差する第1バスラインおよび第2バスラインと、前記第1バスラインと前記第2バスラインとの間に介在する絶縁膜と、前記第1バスラインと前記第2バスラインとの交差部に設けられていて前記絶縁膜の一部を含む画素と、前記基板の表面に形成されていて前記第1バスラインを介して前記画素に信号を供給する駆動回路と、前記基板の上に形成されると共に前記第1バスラインに接続されているスイッチング素子と、前記スイッチング素子を介して前記第1バスラインに接続されていて前記絶縁膜のスクリーニングに用いられる第3バスラインと、を備え、前記駆動回路は、前記第1バスラインに接続されていて前記信号を出力する出力トランジスタを備えており、前記スイッチング素子は前記出力トランジスタと別個に設けられている。 The display panel according to the first embodiment of the present invention is provided on a substrate and interposed between a first bus line and a second bus line that intersect each other, and is interposed between the first bus line and the second bus line. An insulating film, a pixel provided at an intersection of the first bus line and the second bus line and including a part of the insulating film, and a first bus line formed on a surface of the substrate. A driving circuit for supplying a signal to the pixel via the switching element, a switching element formed on the substrate and connected to the first bus line, and a switching circuit connected to the first bus line via the switching element. And a third bus line used for screening the insulating film. The drive circuit includes an output transistor connected to the first bus line to output the signal. The switching element is provided separately from the output transistor.
 本発明の第2実施形態の表示パネルの検査方法は、絶縁膜を介して互いに交差する第1バスラインおよび第2バスラインと、前記第1バスラインと前記第2バスラインとの交差部に設けられた画素と、前記第1バスラインに接続されている出力トランジスタから前記画素に信号を供給すべき駆動回路と、スイッチング素子を介して前記第1バスラインに接続されている第3バスラインと、を少なくとも備える表示パネルを用意し、前記スイッチング素子を制御して前記第1バスラインと前記第3バスラインとを電気的に接続し、前記第2バスラインと前記第3バスラインとの間に所定の試験電圧を印加することによって、前記駆動回路を介さずに前記第1バスラインと前記第2バスラインとの間に電圧を印加し、前記試験電圧の印加後に前記画素の機能試験を実施する、ことを含んでいる。 The inspection method of the display panel according to the second embodiment of the present invention includes a first bus line and a second bus line which intersect each other via an insulating film, and an intersection between the first bus line and the second bus line. A provided pixel, a driving circuit for supplying a signal from the output transistor connected to the first bus line to the pixel, and a third bus line connected to the first bus line via a switching element Preparing a display panel having at least the following, and controlling the switching element to electrically connect the first bus line and the third bus line, and providing a connection between the second bus line and the third bus line. A predetermined test voltage is applied between the first bus line and the second bus line without passing through the driving circuit, and a voltage is applied before and after the test voltage is applied. Implementing the functional test of the pixels includes that.
 本発明の第3実施形態の表示パネルの製造方法は、第2実施形態の検査方法を用いて表示パネルの検査を行うことを含み、前記基板の上に、前記第1バスラインと、前記絶縁膜と、前記第2バスラインと、複数の前記画素と、前記出力トランジスタを含む前記駆動回路と、前記スイッチング素子と、前記第3バスラインと、を形成することによって前記表示パネルを用意し、前記複数の画素のうちの前記機能試験で不良と判定された画素への通電を不能にする、ことをさらに含んでいる。 The method for manufacturing a display panel according to the third embodiment of the present invention includes inspecting the display panel using the inspection method according to the second embodiment, wherein the first bus line and the insulating layer are provided on the substrate. Preparing the display panel by forming a film, the second bus line, a plurality of the pixels, the drive circuit including the output transistor, the switching element, and the third bus line; The method further includes disabling energization to a pixel determined to be defective in the functional test among the plurality of pixels.
 本発明の第1実施形態によれば、バスラインを介して画素に信号を供給する駆動回路を内部に備える表示パネルにおいて、駆動回路の破損を防いで表示パネルの生産を安定させ、しかも、画素および駆動回路の信頼性を高めることができる。また、本発明の第2および第3の実施形態によれば、駆動回路にダメージを与えるリスクを回避しながら絶縁膜をスクリーニングすることができるので、歩留まりの低下を抑制しながら信頼性の高い表示パネルを得ることができる。 According to the first embodiment of the present invention, in a display panel including therein a drive circuit for supplying a signal to a pixel via a bus line, the production of the display panel is stabilized by preventing the drive circuit from being damaged. In addition, the reliability of the driving circuit can be improved. Further, according to the second and third embodiments of the present invention, it is possible to screen the insulating film while avoiding the risk of damaging the drive circuit, so that a highly reliable display can be performed while suppressing a decrease in yield. You can get panels.
本発明の実施形態1の表示パネルの構成の一例を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an example of a configuration of a display panel according to a first embodiment of the present invention. 実施形態1におけるスイッチング素子および駆動回路の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of a switching element and a drive circuit according to the first embodiment. 実施形態1の表示パネルの第1バスラインを通る切断線での断面の一例を示す図である。FIG. 3 is a diagram illustrating an example of a cross section taken along a cutting line passing through a first bus line of the display panel according to the first embodiment. 実施形態1の表示パネルの薄膜トランジスタを通る切断線での断面の一例を示す図である。FIG. 3 is a diagram illustrating an example of a cross section taken along a cutting line passing through the thin film transistor of the display panel of the first embodiment. 実施形態1の表示パネルの他の例を示す回路図である。FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment. 実施形態1の表示パネルの他の例を示す回路図である。FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment. 実施形態1の表示パネルの他の例を示す回路図である。FIG. 3 is a circuit diagram illustrating another example of the display panel of the first embodiment. 本発明の実施形態2および3における試験電圧の印加方法の一例を示す図である。FIG. 9 is a diagram illustrating an example of a method of applying a test voltage in Embodiments 2 and 3 of the present invention. 本発明の実施形態2の表示パネルの検査方法の一例を示すフローチャートである。6 is a flowchart illustrating an example of a display panel inspection method according to a second embodiment of the present invention. 従来の表示パネルに対するスクリーニング方法の一例を示す図である。FIG. 11 is a diagram illustrating an example of a conventional screening method for a display panel.
 本発明者は、ゲートドライバなどの駆動回路を内部に有する表示パネルにおいて、絶縁膜のスクリーニングによる駆動回路へのダメージを回避するために鋭意検討を重ねた。そして、本発明者は、このスクリーニングによって破壊された駆動回路において各画素に供給する信号を出力する出力トランジスタが、そのソース電極とドレイン電極との間の部分で破損していることを見出した。スクリーニングのための電位差はこの出力トランジスタのドレイン電極とソース電極との間には印加されていないにも拘らず、この出力トランジスタが破損していたのである。また、本発明者は、駆動回路においてこのような破損が生じている表示パネルでは、絶縁膜においてもリークが生じていることを見出した。 (4) The inventor of the present invention has made intensive studies on a display panel having a drive circuit such as a gate driver therein to avoid damage to the drive circuit due to screening of an insulating film. The inventor has found that the output transistor that outputs a signal to be supplied to each pixel in the drive circuit destroyed by the screening is damaged at a portion between the source electrode and the drain electrode. Although the potential difference for screening was not applied between the drain electrode and the source electrode of the output transistor, the output transistor was damaged. In addition, the present inventor has found that in a display panel in which such a damage has occurred in a drive circuit, a leak has also occurred in an insulating film.
 図7には、従来の表示パネルにおけるスクリーニングにおいて行われる電位差(試験電圧Vs)の印加方法が示されている。表示パネルは、画素300、駆動回路200、ゲートバスライン110、およびソースバスライン120を備え、画素300は薄膜トランジスタ(TFT)310を含む画素駆動回路を備えている。TFT310のソース電極はソースバスライン120に接続され、そのゲート電極はゲートバスライン110に接続されている。駆動回路200は、ゲートバスライン110に接続されている出力トランジスタ210を含んでおり、ゲートバスライン110を介して画素300にゲート信号を供給する。スクリーニング時には駆動回路200が制御され、図7に示されるように、試験電圧Vsが出力トランジスタ210を介してゲートバスライン110とソースバスライン120との間、すなわち、TFT310のゲート絶縁膜(図示せず)に印加される。従って駆動回路200の出力トランジスタ210のソース電極とドレイン電極との間には、試験電圧Vsは直接印加されない。しかし、図示されないゲート絶縁膜が欠陥を有していてTFT310のゲート電極とソース電極との間が低抵抗状態またはショート状態に至ると、図7に符号Vsdで示されるように、試験電圧Vsに基づく大きな電位差が出力トランジスタ210のソース電極とドレイン電極との間に印加され得る。そして電位差Vsdが出力トランジスタ210の耐圧以上である場合、出力トランジスタ210、すなわち駆動回路200が破壊される。表示パネル内に設けられる駆動回路におけるこのような破壊のメカニズムが、本発明者によって確かめられた。 FIG. 7 shows a method of applying a potential difference (test voltage Vs) performed in screening in a conventional display panel. The display panel includes a pixel 300, a driving circuit 200, a gate bus line 110, and a source bus line 120. The pixel 300 includes a pixel driving circuit including a thin film transistor (TFT) 310. The source electrode of the TFT 310 is connected to the source bus line 120, and its gate electrode is connected to the gate bus line 110. The driving circuit 200 includes an output transistor 210 connected to the gate bus line 110, and supplies a gate signal to the pixel 300 via the gate bus line 110. At the time of screening, the drive circuit 200 is controlled, and as shown in FIG. 7, the test voltage Vs is applied between the gate bus line 110 and the source bus line 120 via the output transistor 210, that is, the gate insulating film (not shown) of the TFT 310. ). Therefore, the test voltage Vs is not directly applied between the source electrode and the drain electrode of the output transistor 210 of the drive circuit 200. However, when the gate insulating film (not shown) has a defect and the state between the gate electrode and the source electrode of the TFT 310 reaches a low resistance state or a short state, the test voltage Vs is reduced as shown by a symbol Vsd in FIG. A large potential difference can be applied between the source and drain electrodes of the output transistor 210. When the potential difference Vsd is equal to or higher than the breakdown voltage of the output transistor 210, the output transistor 210, that is, the drive circuit 200 is broken. The inventor has confirmed such a mechanism of destruction in a driving circuit provided in a display panel.
 そして、本発明者は、通常の画像表示における画素への信号の供給経路とは別に、スクリーニング時の試験電圧を絶縁膜(ゲート絶縁膜)に印加する経路を設けることによって、前述したメカニズムによる破壊から駆動回路を保護できることを見出した。すなわち、駆動回路を介さずにゲート絶縁膜にスクリーニングのための電位差が印加され得るため、たとえゲート絶縁膜の絶縁性に欠陥があっても、駆動回路の出力トランジスタなどを劣化または破損させるような高い電位差は駆動回路に印加されない。一方、試験電圧の印加に用いられる回路素子が意図しない大きな電位差によって破壊されたとしても、表示パネルの画像表示機能は損なわれない。このように駆動回路にダメージを与えるリスクを回避しながら絶縁膜をスクリーニングすることができるので、表示パネルの生産を安定させ得ると共に、画素および駆動回路の両方に関して信頼性の高い表示パネルを得ることができる。 The present inventor provides a path for applying a test voltage at the time of screening to an insulating film (gate insulating film) separately from a signal supply path to a pixel in a normal image display, so that destruction by the above-described mechanism is achieved. It was found that the drive circuit could be protected from That is, since a potential difference for screening can be applied to the gate insulating film without passing through the driving circuit, even if the insulating property of the gate insulating film is defective, the output transistor or the like of the driving circuit may be deteriorated or damaged. No high potential difference is applied to the drive circuit. On the other hand, even if a circuit element used for applying a test voltage is destroyed by an unintended large potential difference, the image display function of the display panel is not impaired. As described above, since the insulating film can be screened while avoiding the risk of damaging the driving circuit, the production of the display panel can be stabilized, and a highly reliable display panel can be obtained for both the pixel and the driving circuit. Can be.
 以下、図面を参照し、本発明の実施形態の表示パネルならびに表示パネルの検査方法および製造方法を説明する。なお、以下に説明される各実施形態における各構成要素の材質、形状、それらの相対的な位置関係、ならびに、表示パネルの検査方法および製造方法における各処理の順序などは、明確に限定されているものを除いてあくまで例示に過ぎない。本発明の表示パネルならびに表示パネルの検査方法および製造方法はこれらによって限定的に解釈されるものではない。 Hereinafter, a display panel, a method of inspecting and manufacturing a display panel according to an embodiment of the present invention will be described with reference to the drawings. In addition, the material and shape of each component in each embodiment described below, their relative positional relationship, and the order of each processing in the display panel inspection method and manufacturing method are clearly limited. Except for those that are present, they are only examples. The display panel of the present invention and the method of inspecting and manufacturing the display panel are not to be construed as being limited thereto.
〔表示パネルの構造〕
 図1には、実施形態1の表示パネル1の構成の一例が模式的に示されている。図1に示されるように、表示パネル1は、基板10の上に設けられ、互いに交差する第1バスライン11および第2バスライン12と、第1バスライン11と第2バスライン12との交差部に設けられた画素3と、基板10の表面に形成されていて第1バスライン11を介して画素3に信号を供給する駆動回路2と、を備えている。表示パネル1は、後述するように第1バスライン11と第2バスライン12との間に介在する絶縁膜13(図3A参照)をさらに備えており、画素3は絶縁膜13の一部を含んでいる。
[Display panel structure]
FIG. 1 schematically illustrates an example of the configuration of the display panel 1 according to the first embodiment. As shown in FIG. 1, the display panel 1 includes a first bus line 11 and a second bus line 12 provided on a substrate 10 and intersecting each other, and a first bus line 11 and a second bus line 12. The pixel includes a pixel 3 provided at the intersection and a drive circuit 2 formed on the surface of the substrate 10 and supplying a signal to the pixel 3 via the first bus line 11. The display panel 1 further includes an insulating film 13 (see FIG. 3A) interposed between the first bus line 11 and the second bus line 12, as will be described later. Contains.
 図1の例において表示パネル1は複数の第1バスライン11および複数の第2バスライン12を備えており、複数の第1バスライン11と複数の第2バスライン12との各交差部に画素3が設けられている。複数の画素3によって表示パネル1の画像表示部30が構成されており、駆動回路2は画像表示部30の外側に形成されている。複数の第1バスライン11のそれぞれは、マトリクス状に並ぶ複数の画素3のうちの同一行(図1において左右方向であるX方向と平行な各行)に並ぶ画素3それぞれに接続されている。また、第2バスライン12のそれぞれは、複数の画素3のうちの同一列(図1において上下方向であるY方向と平行な各列)に並ぶ画素3それぞれに接続されている。 In the example of FIG. 1, the display panel 1 includes a plurality of first bus lines 11 and a plurality of second bus lines 12, and is provided at each intersection of the plurality of first bus lines 11 and the plurality of second bus lines 12. Pixel 3 is provided. The image display unit 30 of the display panel 1 is configured by the plurality of pixels 3, and the drive circuit 2 is formed outside the image display unit 30. Each of the plurality of first bus lines 11 is connected to each of the pixels 3 arranged in the same row (each row parallel to the X direction which is the horizontal direction in FIG. 1) among the plurality of pixels 3 arranged in a matrix. Further, each of the second bus lines 12 is connected to each of the pixels 3 arranged in the same column (each column parallel to the Y direction, which is the vertical direction in FIG. 1) among the plurality of pixels 3.
 図1の例において表示パネル1は複数の駆動回路2を備えており、各駆動回路2は、同一行に並ぶ画素3それぞれに第1バスライン11を介して接続されている。各駆動回路2は、同一行に並ぶ画素3それぞれに略同時にゲート信号を供給し、複数の駆動回路2によって画素3の行毎に順次ゲート信号が供給される。すなわち、図1の駆動回路2は、所謂ゲートドライバ(スキャンドライバ)として機能する駆動回路の例であり、個々の駆動回路2は、複数の画素3の各行に対する1段分のゲートドライバとして機能する。また、第1バスライン11は表示パネル1のゲートバスラインであり、第2バスライン12は表示パネル1のソースバスラインである。なお、本実施形態における駆動回路は、同一行ではなく、同一列に並ぶ複数の画素に略同時にゲート信号を供給してもよい。図1には、表示パネル1の外部に設けられていて複数の画素3の列毎にソース信号を供給する駆動回路(ソースドライバ)2sも併せて示されており、第2バスライン12は駆動回路2sに接続されている。 In the example of FIG. 1, the display panel 1 includes a plurality of drive circuits 2, and each drive circuit 2 is connected to each of the pixels 3 arranged in the same row via the first bus line 11. Each drive circuit 2 supplies a gate signal to each of the pixels 3 arranged in the same row at substantially the same time, and a plurality of drive circuits 2 sequentially supply a gate signal for each row of the pixels 3. That is, the drive circuit 2 in FIG. 1 is an example of a drive circuit that functions as a so-called gate driver (scan driver), and each drive circuit 2 functions as a gate driver for one row for each row of the plurality of pixels 3. . The first bus line 11 is a gate bus line of the display panel 1, and the second bus line 12 is a source bus line of the display panel 1. Note that the drive circuit in the present embodiment may supply the gate signal to a plurality of pixels arranged in the same column, not at the same row, at substantially the same time. FIG. 1 also shows a driving circuit (source driver) 2 s provided outside the display panel 1 and supplying a source signal for each column of the plurality of pixels 3, and the second bus line 12 is a driving circuit. It is connected to the circuit 2s.
 表示パネル1は、さらに、基板10の上に形成されると共に第1バスライン11に接続されているスイッチング素子4(第1スイッチング素子)、および、スイッチング素子4を介して第1バスライン11に接続されている第3バスライン23を備えている。スイッチング素子4によって第1バスライン11と第3バスライン23との接続状態が切り換えられ、たとえば、第1バスライン11と第3バスライン23とが電気的に接続されるか、或いは、両者が電気的に分離される。スイッチング素子4としては、後述するように、トランジスタ、またはトランジスタの各端子を適宜接続することによって構成されるダイオードなどが例示される。スイッチング素子4は、二つのバスラインの電気的な接続状態を切り換えられるものであればこれらに限定されないが、製造および制御の容易性の面で薄膜トランジスタであることが好ましい。 The display panel 1 further includes a switching element 4 (first switching element) formed on the substrate 10 and connected to the first bus line 11, and a first bus line 11 via the switching element 4. The third bus line 23 is connected. The connection state between the first bus line 11 and the third bus line 23 is switched by the switching element 4. For example, the first bus line 11 and the third bus line 23 are electrically connected, or both are connected. Electrically isolated. As described later, the switching element 4 is exemplified by a transistor or a diode configured by appropriately connecting each terminal of the transistor. The switching element 4 is not limited to these as long as it can switch the electrical connection state of the two bus lines, but is preferably a thin film transistor in terms of ease of manufacturing and control.
 図1の表示パネル1は、第1~第3のバスライン11、12、23以外に、複数の駆動回路2のそれぞれに接続されるクリアバスライン25をさらに備えている。クリアバスライン25は、後述するように、駆動回路2内に蓄積された電荷を放電させる信号を伝えるバスラインである。第3バスライン23およびクリアバスライン25は、図1に示されるように、ソースドライバとして機能する駆動回路2sに接続されてもよく、その場合、第3バスライン23およびクリアバスライン25を通じて伝送される信号は駆動回路2sから供給される。 1 The display panel 1 of FIG. 1 further includes a clear bus line 25 connected to each of the plurality of drive circuits 2 in addition to the first to third bus lines 11, 12, and 23. The clear bus line 25 is a bus line for transmitting a signal for discharging electric charges accumulated in the drive circuit 2 as described later. The third bus line 23 and the clear bus line 25 may be connected to a drive circuit 2s functioning as a source driver, as shown in FIG. The supplied signal is supplied from the drive circuit 2s.
 複数の画素3は、それぞれ、画素3からの光の出射状態を切り換える画素駆動回路3aを備えている。駆動回路2(以下、画素駆動回路3aとの区別を明確にするため、ゲートドライバとして機能する例における駆動回路2はゲートドライバ2とも表記される)は、各画素3の画素駆動回路3aに接続されている。画素駆動回路3aは、図1の例では、薄膜トランジスタ(TFT)31と、補助容量3bとで構成されており、ゲートドライバ2は、第1バスライン11を介してTFT31のゲート電極に接続されている。TFT31のソース電極は、第2バスライン12を介して外部のソースドライバ(駆動回路2s)に接続されている。TFT31のドレイン電極は、画素3毎に液晶層LCに備えられる画素電極に接続されると共に補助容量3bに接続されている。すなわち、図1は、表示パネル1が液晶表示パネルである例を示している。なお、本実施形態の表示パネルは液晶表示パネル以外のアクティブマトリクス型の表示パネルであってもよく、たとえば、有機EL表示パネルであってもよい。 (4) Each of the plurality of pixels 3 includes a pixel drive circuit 3a that switches the state of light emission from the pixel 3. The driving circuit 2 (hereinafter, the driving circuit 2 in the example functioning as a gate driver is also referred to as a gate driver 2 to clarify the distinction from the pixel driving circuit 3a) is connected to the pixel driving circuit 3a of each pixel 3. Have been. In the example of FIG. 1, the pixel drive circuit 3a includes a thin film transistor (TFT) 31 and an auxiliary capacitor 3b. The gate driver 2 is connected to the gate electrode of the TFT 31 via the first bus line 11. I have. The source electrode of the TFT 31 is connected to an external source driver (drive circuit 2s) via the second bus line 12. The drain electrode of the TFT 31 is connected to a pixel electrode provided in the liquid crystal layer LC for each pixel 3 and is connected to an auxiliary capacitor 3b. That is, FIG. 1 shows an example in which the display panel 1 is a liquid crystal display panel. The display panel of the present embodiment may be an active matrix type display panel other than the liquid crystal display panel, for example, an organic EL display panel.
 図2には、本実施形態の表示パネル1におけるスイッチング素子4、およびゲートドライバとして機能する駆動回路2の一例を示す回路図が示されている。また、図2には、第2バスライン12および画素3(図1参照)に備えられているTFT31も示されている。なお、図2では、駆動回路2を構成する回路素子の一部が適宜省略されている。図2の例では、駆動回路2は、画素3に供給する信号を出力する出力トランジスタ2aを含む五つのトランジスタ2a~2eおよびキャパシタ2fを備えている。トランジスタ2a~2eは、好ましくは、基板10の上に形成された薄膜トランジスタである。出力トランジスタ2aのドレイン電極およびソース電極の一方は駆動回路2の出力GOを介して第1バスライン11に接続されており、それらの他方は駆動回路2の入力CKを介してクロックバスライン26に接続されている。クロックバスライン26は、駆動回路2からのゲート信号の出力時機を規定するクロック信号を伝えるバスラインであり、好ましくは、クリアバスライン25と並列するように配置される。図1の例のように複数の駆動回路2が設けられる場合、駆動回路2の入力I1およびI2ならびに出力Qは、他の駆動回路2に接続され得る。 FIG. 2 is a circuit diagram showing an example of the switching element 4 and the drive circuit 2 functioning as a gate driver in the display panel 1 of the present embodiment. FIG. 2 also shows a TFT 31 provided in the second bus line 12 and the pixel 3 (see FIG. 1). In FIG. 2, some of the circuit elements constituting the drive circuit 2 are omitted as appropriate. In the example of FIG. 2, the drive circuit 2 includes five transistors 2a to 2e including an output transistor 2a that outputs a signal to be supplied to the pixel 3, and a capacitor 2f. The transistors 2a to 2e are preferably thin film transistors formed on the substrate 10. One of the drain electrode and the source electrode of the output transistor 2a is connected to the first bus line 11 via the output GO of the drive circuit 2, and the other is connected to the clock bus line 26 via the input CK of the drive circuit 2. It is connected. The clock bus line 26 is a bus line that transmits a clock signal that defines a timing for outputting a gate signal from the drive circuit 2, and is preferably arranged in parallel with the clear bus line 25. When a plurality of drive circuits 2 are provided as in the example of FIG. 1, the inputs I1 and I2 and the output Q of the drive circuit 2 can be connected to another drive circuit 2.
 図2の例において、スイッチング素子4は電解効果型トランジスタであり、好ましくは、基板10の上に形成された薄膜トランジスタである。図2の例においてスイッチング素子4は、後述する試験電圧が印加される入力端と、出力端と、入力端と出力端との間の電気抵抗の制御に用いられる制御端とを有している。スイッチング素子4の出力端が第1バスライン11に接続されており、スイッチング素子4の入力端が第3バスライン23に接続されている。換言すると、図2の例のスイッチング素子4(薄膜トランジスタ)において、第1バスライン11に接続される端子(電極)は出力端であり、第3バスライン23に接続される端子(電極)は入力端である。薄膜トランジスタは、ドレイン電極またはソース電極と称される二つの電極を有するが、これらの電極は略同じ構造を有しており、同様の機能を有し得る。図2~図5が参照される以下の説明では、スイッチング素子4が薄膜トランジスタ以外である場合でも解り易いように「ソース電極」および「ドレイン電極」という用語が多用される。しかし、スイッチング素子4が薄膜トランジスタである場合、そのソース電極およびドレイン電極のいずれがスイッチング素子4の入力端であっても、または出力端であってもよい。そして、薄膜トランジスタにおいてこれら電極間の導通と遮断の制御に用いられるゲート電極が、スイッチング素子4の制御端である。 In the example of FIG. 2, the switching element 4 is a field effect transistor, and is preferably a thin film transistor formed on the substrate 10. In the example of FIG. 2, the switching element 4 has an input terminal to which a test voltage to be described later is applied, an output terminal, and a control terminal used for controlling electric resistance between the input terminal and the output terminal. . The output terminal of the switching element 4 is connected to the first bus line 11, and the input terminal of the switching element 4 is connected to the third bus line 23. In other words, in the switching element 4 (thin film transistor) in the example of FIG. 2, the terminal (electrode) connected to the first bus line 11 is an output terminal, and the terminal (electrode) connected to the third bus line 23 is an input. Is the end. Although a thin film transistor has two electrodes called a drain electrode and a source electrode, these electrodes have substantially the same structure and can have similar functions. In the following description with reference to FIGS. 2 to 5, the terms “source electrode” and “drain electrode” are frequently used so that the switching element 4 can be easily understood even if it is other than a thin film transistor. However, when the switching element 4 is a thin film transistor, either the source electrode or the drain electrode thereof may be the input terminal or the output terminal of the switching element 4. In the thin film transistor, a gate electrode used for controlling conduction and cutoff between these electrodes is a control terminal of the switching element 4.
 第3バスライン23は表示パネル1が備える絶縁膜13(図3A参照)のスクリーニングに用いられる。具体的には、スイッチング素子4が、適切なゲート電位の入力によってオン状態へと制御される。そして、所定の電圧の印加などによって第3バスライン23および第2バスライン12それぞれの電位が制御され、第3バスライン23と第2バスライン12との間に試験電圧(電位差)Vsが印加される。そうすることによって、第1バスライン11と第2バスライン12との間に介在する絶縁膜13に試験電圧Vsに基づく電位差を印加することができる。一方、絶縁膜13に対するスクリーニングの実施時以外の期間では、スイッチング素子4をオフにし得る電位にそのゲート電位を制御することによって、TFT31および第1バスライン11と、第3バスライン23とを電気的に分離することができる。 The third bus line 23 is used for screening the insulating film 13 (see FIG. 3A) provided in the display panel 1. Specifically, the switching element 4 is controlled to be turned on by inputting an appropriate gate potential. The potential of each of the third bus line 23 and the second bus line 12 is controlled by application of a predetermined voltage or the like, and a test voltage (potential difference) Vs is applied between the third bus line 23 and the second bus line 12. Is done. By doing so, a potential difference based on the test voltage Vs can be applied to the insulating film 13 interposed between the first bus line 11 and the second bus line 12. On the other hand, during a period other than the time when the screening of the insulating film 13 is performed, the TFT 31, the first bus line 11, and the third bus line 23 are electrically connected to each other by controlling the gate potential to a potential at which the switching element 4 can be turned off. Can be separated.
 ここで、「試験電圧」は、その印加によって、潜在的な欠陥を含む絶縁膜の絶縁性を初期の絶縁膜に必要とされる絶縁性以下まで所定の時間内に劣化させることが可能な電圧である。従って、第3バスライン23は、絶縁膜13に対するスクリーニングにおいて、絶縁膜13の欠陥を顕在化させ得る大きさの電圧が第2バスライン12との間に印加されるバスラインである。「試験電圧」は、また、その印加によって正常な絶縁膜の信頼性を、求められる水準未満に低下させない電圧であり、画素駆動回路3a(図1参照)の製造プロセス、ならびに表示パネル1に求められる特性および信頼性水準などに基づいて適宜決定され得る。 Here, the “test voltage” is a voltage that can reduce the insulating property of the insulating film including a potential defect to a level lower than the insulating property required for the initial insulating film within a predetermined time by the application of the “test voltage”. It is. Therefore, the third bus line 23 is a bus line to which a voltage large enough to make defects of the insulating film 13 evident in the screening of the insulating film 13 is applied between the third bus line 23 and the second bus line 12. The “test voltage” is a voltage that does not lower the reliability of a normal insulating film to below a required level by application of the “test voltage”. The “test voltage” is required for the manufacturing process of the pixel drive circuit 3a (see FIG. 1) and the display panel 1. It can be determined as appropriate based on the required characteristics and reliability level.
 図2に示されるように、スイッチング素子4は、駆動回路2の出力トランジスタ2aと別個に設けられている。従って、絶縁膜13(図3A参照)に対するスクリーニングにおいて絶縁膜13に欠陥が生じても駆動回路2が破壊されることはない。すなわち、スクリーニングにおいて絶縁膜13が万一ショート状態に至っても、試験電圧Vsに基づく電位差は、駆動回路2、具体的にはその出力トランジスタ2aに印加されることはない。従って、絶縁膜13のスクリーニングを実施しながら、駆動回路2へのダメージを防いでその信頼性を高めることができる。また、駆動回路2の破壊による歩留まりの低下を抑えることができ、表示パネル1の生産を安定させることができる。 (2) As shown in FIG. 2, the switching element 4 is provided separately from the output transistor 2a of the drive circuit 2. Therefore, even if a defect occurs in the insulating film 13 in the screening for the insulating film 13 (see FIG. 3A), the drive circuit 2 is not destroyed. That is, even if the insulating film 13 is short-circuited in the screening, the potential difference based on the test voltage Vs is not applied to the drive circuit 2, specifically, the output transistor 2a. Accordingly, the damage to the drive circuit 2 can be prevented and the reliability of the drive circuit 2 can be improved while screening the insulating film 13. Further, it is possible to suppress a decrease in the yield due to the destruction of the drive circuit 2, and to stabilize the production of the display panel 1.
 なお、絶縁膜13がショート状態に至った場合、スイッチング素子4のソース電極とドレイン電極との間には、図2に符号Vsdで示されるように試験電圧Vsに基づく電位差が印加され得る。その場合、スイッチング素子4がダメージを受ける可能性があるが、スイッチング素子4は、通常、表示パネル1の使用時に用いられないので、表示パネル1の信頼性を低下させることはない。 When the insulating film 13 is short-circuited, a potential difference based on the test voltage Vs can be applied between the source electrode and the drain electrode of the switching element 4 as shown by a reference symbol Vsd in FIG. In this case, the switching element 4 may be damaged. However, since the switching element 4 is not normally used when the display panel 1 is used, the reliability of the display panel 1 is not reduced.
 また、万一スイッチング素子4がスクリーニング中に破壊されても、その破壊がスイッチング素子4のソース電極とドレイン電極との間をショート状態にする破壊であれば、スクリーニングにおいて特に問題はない。第3バスライン23および第1バスライン11を介した絶縁膜13への試験電圧Vsの印加が、そのまま継続され得る。そして、たとえば、破壊されたスイッチング素子4のソース電極およびドレイン電極と、第1バスライン11および第3バスライン23とを、スクリーニング後に電気的に分離することによって、その破壊の影響が表示パネル1の画像表示機能に及ぶことを防ぐことができる。この場合、スイッチング素子4のゲート電極と、そのゲート電極が接続されている導体(図2の例ではクリアバスライン25)との間が電気的に分離され、スイッチング素子4のソース電極またはドレイン電極の一方だけが、第1バスライン11または第3バスライン23から電気的に分離されてもよい。 Also, even if the switching element 4 is destroyed during the screening, there is no particular problem in the screening as long as the destruction causes a short circuit between the source electrode and the drain electrode of the switching element 4. The application of the test voltage Vs to the insulating film 13 via the third bus line 23 and the first bus line 11 can be continued as it is. Then, for example, the source electrode and the drain electrode of the destroyed switching element 4 are electrically separated from the first bus line 11 and the third bus line 23 after the screening, so that the influence of the breakdown is reduced on the display panel 1. To the image display function. In this case, the gate electrode of the switching element 4 and the conductor (the clear bus line 25 in the example of FIG. 2) to which the gate electrode is connected are electrically separated, and the source electrode or the drain electrode of the switching element 4 May be electrically separated from the first bus line 11 or the third bus line 23.
 一方、スクリーニング中のスイッチング素子4における破壊がソース電極とドレイン電極との間をオープン状態にする破壊であれば、表示パネル1の画像表示機能がその破壊の影響を受けることはない。 On the other hand, if the destruction of the switching element 4 during screening is a destruction that causes an open state between the source electrode and the drain electrode, the image display function of the display panel 1 is not affected by the destruction.
 図2の例において駆動回路2は、さらに入力I3を備えており、トランジスタ2cのゲート電極は入力I3を介してクリアバスライン25に接続されている。トランジスタ2cのソース電極およびドレイン電極の一方はトランジスタ2aのゲート電極およびキャパシタ2fに接続され、トランジスタ2cのソース電極およびドレイン電極の他方は、任意の定電位ノード(図2の例では負側の基準電位Vss)に接続される。従って、トランジスタ2cは、クリアバスライン25の電位に応じて、トランジスタ2aのゲート容量およびキャパシタ2fに蓄積された電荷を放電させる。なお「負側の基準電位」は、たとえば、表示パネル1の外部に設けられるオンボード電源などの電圧源において生成され、提供され得る。負側の基準電位Vssとしては、-6V、または-8Vなどが例示されるが、これらに限定されない。 In the example of FIG. 2, the drive circuit 2 further includes an input I3, and the gate electrode of the transistor 2c is connected to the clear bus line 25 via the input I3. One of the source electrode and the drain electrode of the transistor 2c is connected to the gate electrode of the transistor 2a and the capacitor 2f, and the other of the source electrode and the drain electrode of the transistor 2c is connected to an arbitrary constant potential node (in the example of FIG. Potential Vss). Therefore, the transistor 2c discharges the charge stored in the gate capacitance of the transistor 2a and the capacitor 2f according to the potential of the clear bus line 25. The “negative reference potential” can be generated and provided by a voltage source such as an on-board power supply provided outside the display panel 1, for example. The negative reference potential Vss is, for example, -6 V or -8 V, but is not limited thereto.
 クリアバスライン25には、トランジスタ2c以外にも、駆動回路2が有する任意の容量成分に蓄積された電荷を放電させ得る任意のトランジスタのゲート電極が接続されていてもよい。クリアバスライン25は、このように、駆動回路2内に蓄積された電荷を放電させる際にトランジスタ2cなどがオンし得る所定の電位の信号を伝えるバスラインである。たとえば、駆動回路2内に蓄積された電荷を所定のタイミング、たとえば所定の周期で若しくは不定期の所望の時機に放電させるためにトランジスタ2cなどをオン状態にする信号が、クリアバスライン25を通じて伝送される。好ましくは、表示画像の1フレーム分の画像データが各画素3に順次書き込まれ始めるときに、駆動回路2が有する容量成分における放電を可能にする信号がクリアバスライン25を通じて伝送される。 (4) In addition to the transistor 2c, a gate electrode of any transistor capable of discharging the charge accumulated in any capacitance component of the drive circuit 2 may be connected to the clear bus line 25. The clear bus line 25 is a bus line that transmits a signal of a predetermined potential that can turn on the transistor 2c and the like when discharging the charge stored in the drive circuit 2 as described above. For example, a signal for turning on the transistor 2 c or the like to discharge the electric charge accumulated in the drive circuit 2 at a predetermined timing, for example, at a predetermined cycle or at an irregular time, is transmitted through the clear bus line 25. Is done. Preferably, when image data for one frame of a display image starts to be sequentially written to each pixel 3, a signal that enables discharge in a capacitance component of the drive circuit 2 is transmitted through the clear bus line 25.
 図2の例では、スイッチング素子4の制御端(ゲート電極)はクリアバスライン25に接続されている。従って、クリアバスライン25にトランジスタ2cおよびスイッチング素子4がオンし得る電位の信号を入力するだけで、駆動回路2内の容量成分に蓄積された電荷を放電することができ、同時に、第1バスライン11と第3バスライン23とを電気的に接続することができる。すなわち、絶縁膜13(図3A参照)のスクリーニングの際に、出力トランジスタ2aを安定的にオフ状態に保ちながら、絶縁膜13をスクリーニングすることができる。 In the example of FIG. 2, the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25. Accordingly, the charge accumulated in the capacitance component in the drive circuit 2 can be discharged only by inputting a signal of a potential that can turn on the transistor 2c and the switching element 4 to the clear bus line 25, and at the same time, the first bus The line 11 and the third bus line 23 can be electrically connected. That is, when screening the insulating film 13 (see FIG. 3A), the insulating film 13 can be screened while the output transistor 2a is stably kept in the off state.
 また、図2の例では、第3バスライン23およびスイッチング素子4は、TFT31のゲート容量および保持容量3b(図1参照)に蓄積された電荷の放電にも利用され得る。詳述すると、TFT31のゲート容量および保持容量3bには、TFT31への画像データの書き込みの度に、その画像データに応じた量の電荷が蓄えられる。そして、1フレーム分の画像の表示後、次のフレームの画像データの書き込みが始まる前に、好ましくは、先のフレームにおいて蓄えられた電荷が放電される。図2の例では、スイッチング素子4の制御端(ゲート電極)はクリアバスライン25に接続されており、前述したように、1フレーム分の画像データが各画素3に順次書き込まれ始めるときに、所定の信号がクリアバスライン25を通じて伝送される。このときに第3バスライン23を任意の定電位ノード、たとえば負側の基準電位Vssなどに接続することによって、TFT31のゲート容量に蓄えられた電荷をスイッチング素子4および第3バスライン23を通じて放電させることができる。 In the example of FIG. 2, the third bus line 23 and the switching element 4 can also be used for discharging the charge accumulated in the gate capacitance and the storage capacitance 3b of the TFT 31 (see FIG. 1). More specifically, every time image data is written to the TFT 31, an amount of charge corresponding to the image data is stored in the gate capacitance and the storage capacitance 3b of the TFT 31. After the display of the image for one frame and before the writing of the image data for the next frame starts, preferably, the charge stored in the previous frame is discharged. In the example of FIG. 2, the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25, and as described above, when one frame of image data starts to be sequentially written to each pixel 3, A predetermined signal is transmitted through the clear bus line 25. At this time, by connecting the third bus line 23 to an arbitrary constant potential node, for example, a negative reference potential Vss, the charge stored in the gate capacitance of the TFT 31 is discharged through the switching element 4 and the third bus line 23. Can be done.
 図3Aには、本実施形態の表示パネル1における基板10の厚さ方向の断面であって第1バスライン11を通る切断線での断面の一例が示されている。また図3Bには、図3Aに示される断面と同様に基板10の厚さ方向の断面であってTFT31およびスイッチング素子4を通る切断線での断面の一例が示されている。なお、図3Bでは、駆動回路2、および、画素駆動回路3aを構成するTFT31以外の回路素子の図示は省略されている。 FIG. 3A shows an example of a cross section in the thickness direction of the substrate 10 in the display panel 1 of the present embodiment, which is taken along a cutting line passing through the first bus line 11. FIG. 3B shows an example of a cross section in a thickness direction of the substrate 10 along a cutting line passing through the TFT 31 and the switching element 4 as in the cross section shown in FIG. 3A. Note that, in FIG. 3B, illustration of circuit elements other than the TFT 31 configuring the drive circuit 2 and the pixel drive circuit 3a is omitted.
 図3Aに示されるように、基板10の表面上に、第1バスライン11と第2バスライン12とが、互いに交差するように形成されており、第1バスライン11と第2バスライン12との間に絶縁膜13が介在している。絶縁膜13は、図3Bに示されるように、TFT31において、ソース電極35およびドレイン電極36とゲート電極32との間に介在しており、TFT31のゲート絶縁膜を構成している。換言すると、TFT31を画素駆動回路3a内に備える複数の画素3(図1参照)のそれぞれは、絶縁膜13の一部を含んでいる。図3Aおよび図3Bでは明示されていないが、TFT31のゲート電極32は、第1バスライン11に接続され、ソース電極35は第2バスライン12に接続されている。このゲート電極32とソース電極35に挟まれた絶縁膜13(ゲート絶縁膜)において、製造時の欠陥などによる絶縁性の低下または短絡がスクリーニング中に生じ得る。本実施形態では、前述したように、その場合でも駆動回路2の破壊を防ぐことができる。 As shown in FIG. 3A, a first bus line 11 and a second bus line 12 are formed on the surface of the substrate 10 so as to intersect each other, and the first bus line 11 and the second bus line 12 And an insulating film 13 is interposed therebetween. The insulating film 13 is interposed between the source electrode 35 and the drain electrode 36 and the gate electrode 32 in the TFT 31 as shown in FIG. 3B, and forms a gate insulating film of the TFT 31. In other words, each of the plurality of pixels 3 (see FIG. 1) including the TFT 31 in the pixel driving circuit 3a includes a part of the insulating film 13. Although not explicitly shown in FIGS. 3A and 3B, the gate electrode 32 of the TFT 31 is connected to the first bus line 11, and the source electrode 35 is connected to the second bus line 12. In the insulating film 13 (gate insulating film) sandwiched between the gate electrode 32 and the source electrode 35, a decrease in insulation or a short circuit due to a defect during manufacturing or the like may occur during the screening. In the present embodiment, as described above, the drive circuit 2 can be prevented from being broken even in such a case.
 図3Aおよび図3Bの例では、基板10の表面上に第1バスライン11が形成されており、第1バスライン11を覆う絶縁膜13が基板10の略全面に形成され、絶縁膜13上に第2バスライン12が形成されている。第3バスライン23は基板10の上に第1バスライン11と略直交する方向に沿って形成されており、基板10の縁部とスイッチング素子4との間に形成されている。しかし、第3バスライン23は、スイッチング素子4と画像表示部30との間に形成されてもよく、或いは、図3Bには示されていない駆動回路2(図1参照)よりも基板10の縁部に近い位置に形成されてもよい。なお、第1バスライン11と第2バスライン12との基板10の上での上下の位置関係は、図3Aおよび図3Bの例と逆であってもよい。また、第3バスライン23は、第2バスライン12と同様に絶縁膜13上に形成されていてもよい。 3A and 3B, the first bus line 11 is formed on the surface of the substrate 10, and the insulating film 13 covering the first bus line 11 is formed on substantially the entire surface of the substrate 10. The second bus line 12 is formed at the bottom. The third bus line 23 is formed on the substrate 10 along a direction substantially orthogonal to the first bus line 11, and is formed between the edge of the substrate 10 and the switching element 4. However, the third bus line 23 may be formed between the switching element 4 and the image display unit 30, or may be formed on the substrate 10 more than the driving circuit 2 (see FIG. 1) not shown in FIG. 3B. It may be formed at a position near the edge. Note that the vertical positional relationship between the first bus line 11 and the second bus line 12 on the substrate 10 may be opposite to that in the example of FIGS. 3A and 3B. Further, the third bus line 23 may be formed on the insulating film 13 similarly to the second bus line 12.
 さらに、クリアバスライン25が、第1バスライン11と同様に基板10の表面上に形成されている。クリアバスライン25は、基板10の縁部に、第1バスライン11と略直交する方向に沿って形成されている。 {Circle around (4)} The clear bus line 25 is formed on the surface of the substrate 10 similarly to the first bus line 11. The clear bus line 25 is formed on the edge of the substrate 10 along a direction substantially orthogonal to the first bus line 11.
 図3Bにおいてスイッチング素子4は、TFT31と同様に薄膜トランジスタによって構成されており、画像表示部30(図1参照)の外側に形成されている。スイッチング素子4を構成する薄膜トランジスタおよびTFT31は、それぞれ、ゲート電極42、32上に、絶縁膜13の一部で構成されるゲート絶縁膜を介して半導体層43、33を備えている。絶縁膜13としては、シリコン酸化膜(SiO2)またはシリコン窒化膜(SiNX)などが例示される。半導体層43、33は、たとえば、アモルファスシリコン、低温多結晶シリコン(LTPS)、または、混晶系半導体などを用いて形成される。半導体層43、33上には、不純物濃度の高い半導体によってコンタクト層44、34が形成されており、コンタクト層44、34上、および絶縁膜13の一部の上に、ソース電極45、35およびドレイン電極46、36が形成されている。ゲート電極42、32および第1バスライン11、ならびに、ソース電極45、35、ドレイン電極46、36、第2バスライン12および第3バスライン23は、たとえばタングステン、モリブデン、チタン、アルミニウム、または銅-チタン合金などを用いて形成される。なお、図3Aおよび図3Bにおいて省略されている駆動回路2を構成するトランジスタ2a~2e(図2参照)も、図3Bに示されるスイッチング素子4およびTFT31と同様の材料を用いて形成され、これらと同様の構造を有し得る。なお、図3Bに示されるTFT31およびスイッチング素子4の構造は一例に過ぎない。TFT31およびスイッチング素子4は、たとえば、トップゲート型の薄膜トランジスタであってもよい。 In FIG. 3B, the switching element 4 is formed of a thin film transistor like the TFT 31, and is formed outside the image display unit 30 (see FIG. 1). The thin film transistor and the TFT 31 that constitute the switching element 4 include semiconductor layers 43 and 33 on gate electrodes 42 and 32, respectively, with a gate insulating film formed by a part of the insulating film 13 interposed therebetween. As the insulating film 13, a silicon oxide film (SiO 2 ) or a silicon nitride film (SiN x ) is exemplified. The semiconductor layers 43 and 33 are formed using, for example, amorphous silicon, low-temperature polycrystalline silicon (LTPS), or a mixed crystal semiconductor. On the semiconductor layers 43 and 33, contact layers 44 and 34 are formed by a semiconductor having a high impurity concentration, and on the contact layers 44 and 34 and a part of the insulating film 13, source electrodes 45 and 35 and Drain electrodes 46 and 36 are formed. The gate electrodes 42 and 32 and the first bus line 11, the source electrodes 45 and 35, the drain electrodes 46 and 36, the second bus line 12 and the third bus line 23 are made of, for example, tungsten, molybdenum, titanium, aluminum, or copper. -It is formed using a titanium alloy or the like. The transistors 2a to 2e (see FIG. 2) constituting the drive circuit 2 omitted in FIGS. 3A and 3B are also formed using the same material as the switching element 4 and the TFT 31 shown in FIG. 3B. May have the same structure as Note that the structures of the TFT 31 and the switching element 4 shown in FIG. 3B are merely examples. The TFT 31 and the switching element 4 may be, for example, top-gate thin film transistors.
 スイッチング素子4のソース電極45とドレイン電極46との間には、前述したように、意図せずに大きな電位差が印加され得る。従って、スイッチング素子4を構成する薄膜トランジスタのソース電極45とドレイン電極46との間のギャップG4は、好ましくは、図示されない駆動回路2内のトランジスタのソース電極とドレイン電極との間のギャップよりも大きい。さらに、このギャップG4は、TFT31のソース電極35とドレイン電極36との間のギャップG3よりも大きくてもよい。 (4) A large potential difference can be unintentionally applied between the source electrode 45 and the drain electrode 46 of the switching element 4 as described above. Therefore, the gap G4 between the source electrode 45 and the drain electrode 46 of the thin film transistor constituting the switching element 4 is preferably larger than the gap between the source electrode and the drain electrode of the transistor in the drive circuit 2 (not shown). . Further, the gap G4 may be larger than the gap G3 between the source electrode 35 and the drain electrode 36 of the TFT 31.
 図3Aおよび図3Bは図1と同様に液晶表示パネルである表示パネル1を例示しているため、画素駆動回路3aの上には液晶層LCなどが形成されている。具体的には、図3Bに示されるように、画素駆動回路3aを覆う平坦化膜14aが形成されており、平坦化膜14aの表面に画素電極16aが形成されている。画素電極16aは、平坦化膜14aに形成されたコンタクト導体15を介してドレイン電極36に接続されている。平坦化膜14aおよび画素電極16aの上に第1配向膜17aが形成され、第1配向膜17aと第2配向膜17bとの間に、ネマティック液晶などを注入することによって液晶層LCが形成されている。第2配向膜17bは、対向基板10bにおける基板10を向く表面に、カラーフィルタ19、平坦化膜14bおよび対向電極16bと共に積層されている。対向基板10bは、画素駆動回路3aを挟んで基板10と対向するように配置され、基板10と対向基板10bとの間にはスペーサ18によって所定の間隔が確保されている。また、図示されていないが、基板10および対向基板10bそれぞれの液晶層LCと反対方向を向く表面には偏光板が備えられていてもよく、表示パネル1が透過型の液晶表示パネルである場合には、基板10に備えられる偏光板に対向して、LEDなどによって構成される光源、または導光板(いずれも図示せず)が備えられる。画素駆動回路3aの上の画素電極16a、第1および第2の配向膜17a、17b、ならびに液晶層LCなどの各構成要素は一般的な構造を有し得るため、それらの詳細な説明は省略される。なお、表示パネル1が有機EL表示パネルである場合は、液晶層LCなどの代わりに、画素3毎に有機発光素子が形成される。 3A and 3B illustrate the display panel 1 which is a liquid crystal display panel similarly to FIG. 1, so that a liquid crystal layer LC and the like are formed on the pixel driving circuit 3a. Specifically, as shown in FIG. 3B, a flattening film 14a covering the pixel driving circuit 3a is formed, and a pixel electrode 16a is formed on the surface of the flattening film 14a. The pixel electrode 16a is connected to the drain electrode 36 via the contact conductor 15 formed on the flattening film 14a. A first alignment film 17a is formed on the planarizing film 14a and the pixel electrode 16a, and a liquid crystal layer LC is formed between the first alignment film 17a and the second alignment film 17b by injecting a nematic liquid crystal or the like. ing. The second alignment film 17b is laminated on the surface of the opposing substrate 10b facing the substrate 10, together with the color filter 19, the planarizing film 14b, and the opposing electrode 16b. The opposing substrate 10b is disposed so as to oppose the substrate 10 with the pixel drive circuit 3a interposed therebetween, and a predetermined space is secured between the substrate 10 and the opposing substrate 10b by a spacer 18. Although not shown, a polarizing plate may be provided on the surface of each of the substrate 10 and the counter substrate 10b facing the direction opposite to the liquid crystal layer LC, and the display panel 1 is a transmissive liquid crystal display panel. Is provided with a light source constituted by an LED or the like, or a light guide plate (neither is shown), facing the polarizing plate provided on the substrate 10. Since each component such as the pixel electrode 16a, the first and second alignment films 17a and 17b, and the liquid crystal layer LC on the pixel drive circuit 3a can have a general structure, detailed description thereof is omitted. Is done. When the display panel 1 is an organic EL display panel, an organic light emitting element is formed for each pixel 3 instead of the liquid crystal layer LC or the like.
〔表示パネルの変形例1〕
 図4Aには、本実施形態の変形例1におけるスイッチング素子4が、駆動回路2と共に示されている。図4Aの例においてスイッチング素子4は、先に参照した図2の例と同様にトランジスタによって構成されており、好ましくは薄膜トランジスタによって構成される。本変形例では、スイッチング素子4の制御端(ゲート電極)が、クリアバスライン25および駆動回路2には接続されず、スイッチング素子4の入力端(薄膜トランジスタのソース電極またはドレイン電極)と共に第3バスライン23に接続されている。従って、スイッチング素子4を構成する薄膜トランジスタは所謂ダイオード接続によってダイオードの機能を有し得る。
[Modification 1 of Display Panel]
FIG. 4A shows the switching element 4 according to the first modification of the present embodiment together with the drive circuit 2. In the example of FIG. 4A, the switching element 4 is formed of a transistor as in the example of FIG. 2 referred to above, and is preferably formed of a thin film transistor. In the present modification, the control terminal (gate electrode) of the switching element 4 is not connected to the clear bus line 25 and the drive circuit 2, but is connected to the input terminal (source electrode or drain electrode of the thin film transistor) of the switching element 4 on the third bus. Connected to line 23. Therefore, the thin film transistor constituting the switching element 4 can have a diode function by so-called diode connection.
 一方、スイッチング素子4の出力端(ソース電極およびドレイン電極のうちの第3バスライン23に接続されていない電極)は、図2の例と同様に第1バスライン11に接続されている。従って、スイッチング素子4を構成する薄膜トランジスタのスレッショルド電圧を超える電位差が第3バスライン23と第1バスライン11との間に印加されれば、スイッチング素子4はオン状態となり、第3バスライン23と第1バスライン11とが電気的に接続される。従って、第3バスライン23と第2バスライン12との間に、スイッチング素子4を構成する薄膜トランジスタのスレッショルド電圧を十分に超える電位差を印加することによって、絶縁膜13(図3A参照)のスクリーニングを行うことができる。すなわち、図2の例と異なり、クリアバスライン25を伝わる信号に影響を受けずに絶縁膜13のスクリーニングを行うことができる。スイッチング素子4の制御端が第3バスライン23に接続される点を除いて、本変形例の構成は図2に示される構成と同様であり、同様の構成要素についての重複となる説明は省略される。 On the other hand, the output terminal of the switching element 4 (the electrode of the source electrode and the drain electrode that is not connected to the third bus line 23) is connected to the first bus line 11 as in the example of FIG. Therefore, if a potential difference exceeding the threshold voltage of the thin film transistor constituting the switching element 4 is applied between the third bus line 23 and the first bus line 11, the switching element 4 is turned on, and the third bus line 23 The first bus line 11 is electrically connected. Therefore, by applying a potential difference between the third bus line 23 and the second bus line 12 that sufficiently exceeds the threshold voltage of the thin film transistor forming the switching element 4, the screening of the insulating film 13 (see FIG. 3A) can be performed. It can be carried out. That is, unlike the example of FIG. 2, the screening of the insulating film 13 can be performed without being affected by the signal transmitted through the clear bus line 25. Except that the control terminal of the switching element 4 is connected to the third bus line 23, the configuration of the present modification is the same as the configuration shown in FIG. 2, and a redundant description of the same components will be omitted. Is done.
〔表示パネルの変形例2〕
 図4Bには、本実施形態の変形例2におけるスイッチング素子4が、駆動回路2と共に示されている。図4Bの例においてスイッチング素子4は、先に参照した図2の例と同様にトランジスタによって構成されており、好ましくは薄膜トランジスタによって構成される。本変形例では、表示パネル1(図1参照)は、さらに、第4バスライン24を備えており、スイッチング素子4の制御端(ゲート電極)は、クリアバスライン25および駆動回路2には接続されず、第4バスライン24に接続されている。従って、第4バスライン24は、スイッチング素子4の制御に用いられると共に、絶縁膜13(図3A参照)のスクリーニングに用いられる。すなわち、本変形例では、絶縁膜13のスクリーニングの際には、スイッチング素子4がオンし得る所定の電位の信号が第4バスライン24を通じて伝送される。そして、第3バスライン23と第2バスライン12との間に所定の試験電圧を印加することによって絶縁膜13をスクリーニングすることができる。
[Modification 2 of Display Panel]
FIG. 4B shows the switching element 4 according to the second modification of the present embodiment together with the drive circuit 2. In the example of FIG. 4B, the switching element 4 is configured by a transistor, similarly to the example of FIG. 2 referred to above, and is preferably configured by a thin film transistor. In this modification, the display panel 1 (see FIG. 1) further includes a fourth bus line 24, and the control terminal (gate electrode) of the switching element 4 is connected to the clear bus line 25 and the drive circuit 2. Instead, they are connected to the fourth bus line 24. Therefore, the fourth bus line 24 is used for controlling the switching element 4 and for screening the insulating film 13 (see FIG. 3A). That is, in the present modification, when screening the insulating film 13, a signal of a predetermined potential at which the switching element 4 can be turned on is transmitted through the fourth bus line 24. Then, by applying a predetermined test voltage between the third bus line 23 and the second bus line 12, the insulating film 13 can be screened.
 前述した変形例1と同様に、本変形例では、クリアバスライン25から独立して、スイッチング素子4を制御することができる。従って、駆動回路2の動作に影響を及ぼすことなく、絶縁膜13のスクリーニングを実施することができる。また、本変形例では、スイッチング素子4のソース電極およびドレイン電極は、ゲート電極を伴わずに単独で第3バスライン23または第1バスライン11にそれぞれ接続されている。従って、スイッチング素子4がオン状態の時のソース電極とドレイン電極との電位差は、変形例1におけるその電位差よりも小さい。従って、たとえば、変形例1と変形例2とにおいて第3バスライン23を伝わる信号の電位が同じであれば、変形例2にでは、より高い電位差を絶縁膜13に印加することができると考えられる。スイッチング素子4を構成する薄膜トランジスタのゲート電極が第4バスライン24に接続される点を除いて、本変形例の構成は図2に示される構成と同様であり、同様の構成要素についての重複となる説明は省略される。 In the present modification, the switching element 4 can be controlled independently of the clear bus line 25, similarly to the first modification described above. Therefore, the screening of the insulating film 13 can be performed without affecting the operation of the drive circuit 2. Further, in this modification, the source electrode and the drain electrode of the switching element 4 are independently connected to the third bus line 23 or the first bus line 11 without a gate electrode. Therefore, the potential difference between the source electrode and the drain electrode when the switching element 4 is on is smaller than the potential difference in the first modification. Therefore, for example, if the potential of the signal transmitted through the third bus line 23 is the same in the first modification and the second modification, it is considered that a higher potential difference can be applied to the insulating film 13 in the second modification. Can be Except that the gate electrode of the thin film transistor that constitutes the switching element 4 is connected to the fourth bus line 24, the configuration of this modification is the same as the configuration shown in FIG. Is omitted.
〔表示パネルの変形例3〕
 図4Cには、本実施形態の変形例3におけるスイッチング素子4が、駆動回路2と共に示されている。図4Cの例においても、スイッチング素子4は、前述した変形例2と同様にトランジスタによって構成されており、好ましくは薄膜トランジスタによって構成される。また、本変形例においても、第4バスライン24が備えられており、スイッチング素子4の制御端(ゲート電極)は第4バスライン24に接続されている。従って、駆動回路2の動作に影響を及ぼすことなく、絶縁膜13(図3A参照)をスクリーニングすることができる。また、図2の例と同様にクリアバスライン25が備えられている。クリアバスライン25を通じて、駆動回路2内に蓄積された電荷、たとえば、出力トランジスタ2aのゲート電極と第1バスライン11との間に蓄えられた電荷を所定のタイミングで、たとえば所定の周期で若しくは不定期の所望の時機に放電させる信号が伝送される。
[Modification 3 of Display Panel]
FIG. 4C shows the switching element 4 according to the third modification of the present embodiment together with the drive circuit 2. In the example of FIG. 4C as well, the switching element 4 is configured by a transistor, similarly to the above-described modification 2, and is preferably configured by a thin film transistor. Also, in the present modification, a fourth bus line 24 is provided, and a control terminal (gate electrode) of the switching element 4 is connected to the fourth bus line 24. Therefore, the insulating film 13 (see FIG. 3A) can be screened without affecting the operation of the drive circuit 2. Also, a clear bus line 25 is provided as in the example of FIG. Through the clear bus line 25, the electric charge stored in the drive circuit 2, for example, the electric charge stored between the gate electrode of the output transistor 2a and the first bus line 11, is supplied at a predetermined timing, for example, at a predetermined cycle or A signal to be discharged at an occasional desired time is transmitted.
 本変形例では、さらに、第4バスライン24および駆動回路2の出力トランジスタ2aのゲート電極に接続されている第2スイッチング素子4bが備えられている。第2スイッチング素子4bとしては、各種トランジスタ、サイリスタ、および半導体スイッチICなどが例示されるが、スイッチング素子4aと同様に薄膜トランジスタが第2スイッチング素子4bとして好ましい。従って第2スイッチング素子4bは図3Bに例示されるスイッチング素子4と同様の構造を有し得る。図4Cの例において、トランジスタによって構成されている第2スイッチング素子4bのゲート電極が第4バスライン24に接続されている。そして第2スイッチング素子4bのソース電極およびドレイン電極の一方が駆動回路2の出力トランジスタ2aのゲート電極に接続され、第2スイッチング素子4bのソース電極およびドレイン電極の他方は任意の定電位ノード(図4Cの例では負側の基準電位Vss)に接続されている。従って、第2スイッチング素子4bは、第4バスライン24の電位に応じて出力トランジスタ2aをオフ状態に制御することができる。 In this modification, a second switching element 4b connected to the fourth bus line 24 and the gate electrode of the output transistor 2a of the drive circuit 2 is further provided. As the second switching element 4b, various transistors, thyristors, semiconductor switch ICs, and the like are exemplified. However, like the switching element 4a, a thin film transistor is preferable as the second switching element 4b. Therefore, the second switching element 4b can have the same structure as the switching element 4 illustrated in FIG. 3B. In the example of FIG. 4C, the gate electrode of the second switching element 4b formed by a transistor is connected to the fourth bus line 24. One of the source electrode and the drain electrode of the second switching element 4b is connected to the gate electrode of the output transistor 2a of the drive circuit 2, and the other of the source electrode and the drain electrode of the second switching element 4b is connected to an arbitrary constant potential node (see FIG. 4C, it is connected to the negative reference potential Vss). Therefore, the second switching element 4b can control the output transistor 2a to be turned off according to the potential of the fourth bus line 24.
 前述したように、絶縁膜13のスクリーニングの際には、スイッチング素子4がオンし得る所定の電位の信号が第4バスライン24を通じて伝送される。本変形例では、このスクリーニングの際に、スイッチング素子4に加えて第2スイッチング素子4bもオンし得る所定の電位の信号を伝送することによって、出力トランジスタ2aのゲート電極と第1バスライン11との間に蓄えられた電荷を放電させることができる。すなわち、クリアバスライン25への特定の信号の印加を要することなく、出力トランジスタ2aのゲート容量およびキャパシタ2fなどに蓄えられた電荷を放電させることができる。そして、クリアバスライン25への特定の信号の印加を要することなく、先に参照した図2の例と同様に出力トランジスタ2aを安定的にオフ状態に保ちながら、絶縁膜13をスクリーニングすることができる。駆動回路2の回路構成次第では、クリアバスライン25に特定の信号を印加し得る時機が制限されることがある。そのような場合、変形例3のような構成は有益である。 As described above, at the time of screening the insulating film 13, a signal of a predetermined potential at which the switching element 4 can be turned on is transmitted through the fourth bus line 24. In this modified example, at the time of this screening, by transmitting a signal of a predetermined potential capable of turning on the second switching element 4b in addition to the switching element 4, the gate electrode of the output transistor 2a and the first bus line 11 are connected. The electric charge stored during the discharge can be discharged. That is, the electric charge stored in the gate capacitance of the output transistor 2a, the capacitor 2f, and the like can be discharged without requiring the application of a specific signal to the clear bus line 25. Then, without applying a specific signal to the clear bus line 25, the insulating film 13 can be screened while the output transistor 2a is stably kept in the OFF state as in the example of FIG. 2 referred to earlier. it can. Depending on the circuit configuration of the drive circuit 2, the timing when a specific signal can be applied to the clear bus line 25 may be limited. In such a case, a configuration like the third modification is useful.
〔表示パネルの検査方法〕
 実施形態2の表示パネルの検査方法を、図1、図2、図3Aおよび図3Bに例示される実施形態1の表示パネル1を例に、適宜これらの図面を再度参照すると共に、図5および図6を参照しながら説明する。
[Display panel inspection method]
The display panel inspection method according to the second embodiment will be described with reference to FIGS. 1, 2, 3 </ b> A, 3 </ b> A and 3 </ b> B. This will be described with reference to FIG.
 まず、表示パネル1が用意される(図6のS1)。図1、図2、図3Aおよび図3Bに例示されるように、表示パネル1は、絶縁膜13を介して互いに交差する第1バスライン11および第2バスライン12と、第1バスライン11と第2バスライン12との交差部に設けられた画素3と、第1バスライン11に接続されている出力トランジスタ2aから画素3に信号を供給すべき駆動回路2と、スイッチング素子4を介して第1バスライン11に接続されている第3バスライン23と、を少なくとも備えている。表示パネル1は、たとえば、後述する実施形態3の表示パネルの製造方法において説明されるように、基板10の上に、少なくとも、第1バスライン11、絶縁膜13、第2バスライン12、画素3、出力トランジスタ2aを含む駆動回路2、スイッチング素子4、および、第3バスライン23を形成することによって用意され得る。なお、本実施形態の表示パネルの検査方法は、第1バスライン11などの表示パネル1の構成要素の形成を必ずしも含んでいなくてもよく、たとえば、表示パネル1は、必要な構成要素を備えた表示パネル1を検査の実施場所に単に持ち込むことによって用意されてもよい。 First, the display panel 1 is prepared (S1 in FIG. 6). As illustrated in FIGS. 1, 2, 3A, and 3B, the display panel 1 includes a first bus line 11 and a second bus line 12 that intersect each other via an insulating film 13, and a first bus line 11. Pixel 3 provided at the intersection of the first bus line 11, the driving circuit 2 for supplying a signal from the output transistor 2 a connected to the first bus line 11 to the pixel 3, and the switching element 4. And at least a third bus line 23 connected to the first bus line 11. The display panel 1 includes at least a first bus line 11, an insulating film 13, a second bus line 12, and a pixel on a substrate 10 as described in a display panel manufacturing method according to a third embodiment described later. 3, can be prepared by forming the drive circuit 2 including the output transistor 2a, the switching element 4, and the third bus line 23. Note that the display panel inspection method of the present embodiment does not necessarily include the formation of the components of the display panel 1 such as the first bus line 11. For example, the display panel 1 includes the necessary components. It may be prepared by simply bringing the provided display panel 1 to the place where the inspection is performed.
 そして、スイッチング素子4が制御され、第1バスライン11と第3バスライン23とが電気的に接続される(図6のS2)。図5の例ではスイッチング素子4がトランジスタで構成されているため、スイッチング素子4のゲート電極にスイッチング素子4がオン状態となり得る電圧が印加される。図5の例においてスイッチング素子4のゲート電極はクリアバスライン25に接続されているため、クリアバスライン25には、スイッチング素子4がオンし得る電圧が印加される。それにより、スイッチング素子4のソース電極またはドレイン電極にそれぞれ接続されている第1バスライン11と第3バスライン23とが電気的に接続される。なお、表示パネル1が図4Aに例示される変形例1である場合、後述する第2バスライン12と第3バスライン23との間への試験電圧の印加と共に、第1バスライン11と第3バスライン23とが電気的に接続される。また、表示パネル1が図4Bまたは図4Cに例示される変形例2または変形例3である場合、変形例2または変形例3の表示パネル1が備える第4バスライン24に、スイッチング素子4がオンし得る電圧が印加される。 Then, the switching element 4 is controlled, and the first bus line 11 and the third bus line 23 are electrically connected (S2 in FIG. 6). In the example of FIG. 5, since the switching element 4 is configured by a transistor, a voltage that can turn on the switching element 4 is applied to the gate electrode of the switching element 4. In the example of FIG. 5, since the gate electrode of the switching element 4 is connected to the clear bus line 25, a voltage at which the switching element 4 can be turned on is applied to the clear bus line 25. Thereby, the first bus line 11 and the third bus line 23 connected to the source electrode or the drain electrode of the switching element 4, respectively, are electrically connected. When the display panel 1 is a first modification illustrated in FIG. 4A, a test voltage is applied between a second bus line 12 and a third bus line 23 to be described later, and the first bus line 11 The three bus lines 23 are electrically connected. When the display panel 1 is the second modification or the third modification illustrated in FIG. 4B or 4C, the switching element 4 is connected to the fourth bus line 24 included in the display panel 1 of the second modification or the third modification. A voltage that can be turned on is applied.
 図5に示されるように、第2バスライン12と第3バスライン23との間に、絶縁膜13(図3A参照)の潜在的な欠陥を顕在化させ得る所定の試験電圧Vsが印加される(図6のS3)。それにより、第3バスライン23と電気的に接続されている第1バスライン11と、第2バスライン12との間に試験電圧Vsに基づく電圧(電位差)が印加される。図5に示されるように、第1バスライン11と第2バスライン12の間には、駆動回路2を介さずに試験電圧Vsに基づく電圧が印加される。 As shown in FIG. 5, between the second bus line 12 and the third bus line 23, a predetermined test voltage Vs capable of exposing a potential defect of the insulating film 13 (see FIG. 3A) is applied. (S3 in FIG. 6). Thereby, a voltage (potential difference) based on the test voltage Vs is applied between the first bus line 11 electrically connected to the third bus line 23 and the second bus line 12. As shown in FIG. 5, a voltage based on the test voltage Vs is applied between the first bus line 11 and the second bus line 12 without passing through the drive circuit 2.
 試験電圧Vsは、前述したように、画素駆動回路3a(図1参照)の製造プロセス、ならびに表示パネル1に求められる特性および信頼性水準などに基づいて適宜決定され得る。試験電圧Vs(第2バスライン12と第3バスライン23の間の電位差)は、たとえば50V以上、100V以下であり、好ましくは70Vである。その場合、通常の画像表示のために表示パネル1に供給される正負の電源電圧を利用することができる。 As described above, the test voltage Vs can be appropriately determined based on the manufacturing process of the pixel drive circuit 3a (see FIG. 1), the characteristics and the reliability level required for the display panel 1, and the like. The test voltage Vs (potential difference between the second bus line 12 and the third bus line 23) is, for example, 50 V or more and 100 V or less, and preferably 70 V. In this case, positive and negative power supply voltages supplied to the display panel 1 for normal image display can be used.
 また、試験電圧Vsの極性は、第2バスライン12と第3バスライン23との間で一定であってもよく、適宜反転されてもよい。また、パルス電圧が印加されてもよい。たとえば、1秒以上、10秒以下程度の時間毎に極性が反転されてもよい。そうすることで、効率よく絶縁膜13の欠陥を顕在化させ得ることがある。なお、試験電圧Vsの印加中、好ましくは、駆動回路2における入力CKなどの各入力端子には0V(グランド電位)が入力される。スクリーニング中に画素3のTFT31においてリークが生じても、スイッチング素子4に加わる電圧よりも高い電圧が駆動回路2の出力トランジスタ2aに加わることを防ぐことができる。試験電圧Vsは、たとえば、単独またはスクリーニング装置に組み込まれた外部の電圧源またはパルスジェネレータなどを用いて供給され得る。 The polarity of the test voltage Vs may be constant between the second bus line 12 and the third bus line 23, or may be appropriately inverted. Further, a pulse voltage may be applied. For example, the polarity may be inverted at intervals of about 1 second to 10 seconds. By doing so, a defect of the insulating film 13 may be efficiently made visible. During application of the test voltage Vs, preferably, 0 V (ground potential) is input to each input terminal such as the input CK in the drive circuit 2. Even if a leak occurs in the TFT 31 of the pixel 3 during the screening, it is possible to prevent a voltage higher than the voltage applied to the switching element 4 from being applied to the output transistor 2 a of the drive circuit 2. The test voltage Vs can be supplied, for example, by using an external voltage source or a pulse generator alone or incorporated in the screening apparatus.
 試験電圧の印加後に画素3の機能試験が実施される(図6のS4)。機能試験の方法は特に限定されないが、たとえば、全白、全黒、市松模様、縦および/または横ストライプならびにグレースケールなどの試験画像が表示され、目視によって、またはCCDなどの撮像装置を備えた画像検査装置を用いて各画素3の良否が判定される。第1バスライン11と第2バスライン12との間に試験電圧Vsに基づく電位差が先に印加されているため、これらのバスラインに介在する絶縁膜13に潜んでいた欠陥を含む画素を不良画素として適切に判別することができる。 (4) After the application of the test voltage, the function test of the pixel 3 is performed (S4 in FIG. 6). The method of the functional test is not particularly limited. For example, a test image such as all white, all black, checkered pattern, vertical and / or horizontal stripe, and gray scale is displayed, and an image pickup device such as a visual inspection or a CCD is provided. The quality of each pixel 3 is determined using an image inspection device. Since the potential difference based on the test voltage Vs is applied first between the first bus line 11 and the second bus line 12, the defective pixel hidden in the insulating film 13 interposed between these bus lines is defective. It can be appropriately determined as a pixel.
 本実施形態の表示パネルの検査方法では、絶縁膜13のスクリーニングのために第1バスライン11と第2バスライン12との間に印加される電位差は、駆動回路2を介さずに印加される。そのため、絶縁膜13が欠陥を含んでいて第1バスライン11と第2バスライン12とが万一ショートした場合でも、スクリーニング中に駆動回路2がダメージを受けたり、破壊されたりすることが防がれる。 In the display panel inspection method of the present embodiment, the potential difference applied between the first bus line 11 and the second bus line 12 for screening the insulating film 13 is applied without passing through the drive circuit 2. . Therefore, even if the first bus line 11 and the second bus line 12 are short-circuited due to the defect of the insulating film 13, the drive circuit 2 is prevented from being damaged or destroyed during the screening. Can come off.
 本実施形態の表示パネルの検査方法では、試験電圧Vsの印加中、駆動回路2の出力トランジスタ2aをオフ状態に制御することが好ましい。試験電圧Vsが、駆動回路2を構成する回路素子に印加されるのを防ぐことができ、駆動回路2を安定した状態に維持することができる。図5の例において、スイッチング素子4に加えて駆動回路2のトランジスタ2cもオンし得る電圧をクリアバスライン25に印加することによって、出力トランジスタ2aをオフ状態にすることができる。表示パネル1が図4A~図4Cのいずれかに例示される変形例1~変形例3のいずれかである場合も、クリアバスライン25に、駆動回路2のトランジスタ2cがオンし得る電圧を印加することによって、出力トランジスタ2aをオフ状態にすることができる。表示パネル1が変形例3である場合は、第4バスライン24に第2スイッチング素子4bがオンし得る電圧を印加することによって出力トランジスタ2aをオフ状態にすることもできる。 In the method for inspecting a display panel according to the present embodiment, it is preferable that the output transistor 2a of the drive circuit 2 be controlled to be in the off state during the application of the test voltage Vs. The test voltage Vs can be prevented from being applied to the circuit elements constituting the drive circuit 2, and the drive circuit 2 can be maintained in a stable state. In the example of FIG. 5, the output transistor 2a can be turned off by applying a voltage to the clear bus line 25 that can turn on the transistor 2c of the drive circuit 2 in addition to the switching element 4. Also in the case where the display panel 1 is any one of Modifications 1 to 3 illustrated in any of FIGS. 4A to 4C, a voltage capable of turning on the transistor 2c of the drive circuit 2 is applied to the clear bus line 25. By doing so, the output transistor 2a can be turned off. When the display panel 1 is the third modification, the output transistor 2a can be turned off by applying a voltage that can turn on the second switching element 4b to the fourth bus line 24.
 スクリーニング中は、画素3が有する容量成分に、試験電圧Vsに基づく量の電荷が蓄積される。従って、試験電圧Vsの印加後に、画素3に蓄えられている電荷をスイッチング素子4および第3バスライン23を介して放電させてもよい。具体的には、TFT31のゲート容量に蓄えられた電荷が放電される。これらの容量成分に蓄えられた電荷は、たとえば図5の例において、クリアバスライン25にスイッチング素子4がオンし得る電圧を印加し、任意の定電位ノード(たとえば負側の基準電位Vss)に第3バスライン23を接続することによって放電され得る。第1バスライン11と、駆動回路2における出力トランジスタ2aのゲート電極が接続されているノード(netA)との間に電位差があると、このnetAが意図せずに充電され、駆動回路2が誤動作を起こすことがある。しかし、画素3に蓄えられた電荷を意図的に放電させることによって、そのような誤動作を防ぐことができる。なお、表示パネル1が、図4Bまたは図4Cに示される変形例2または変形例3である場合、第4バスライン24にスイッチング素子4がオンし得る電圧を印加し、任意の定電位ノードに第3バスライン23を接続することによって、画素3に蓄えられた電荷を放電させることができる。 During the screening, an amount of charge based on the test voltage Vs is accumulated in the capacitance component of the pixel 3. Therefore, the charge stored in the pixel 3 may be discharged via the switching element 4 and the third bus line 23 after the application of the test voltage Vs. Specifically, the electric charge stored in the gate capacitance of the TFT 31 is discharged. For example, in the example of FIG. 5, the charge stored in these capacitance components is applied to the clear bus line 25 so that the switching element 4 can be turned on, and is applied to an arbitrary constant potential node (for example, the negative reference potential Vss). It can be discharged by connecting the third bus line 23. If there is a potential difference between the first bus line 11 and a node (netA) of the drive circuit 2 to which the gate electrode of the output transistor 2a is connected, the netA is unintentionally charged and the drive circuit 2 malfunctions. May cause. However, such an erroneous operation can be prevented by intentionally discharging the charge stored in the pixel 3. When the display panel 1 is the second modification or the third modification shown in FIG. 4B or FIG. 4C, a voltage capable of turning on the switching element 4 is applied to the fourth bus line 24, and the voltage is applied to an arbitrary constant potential node. By connecting the third bus line 23, the electric charge stored in the pixel 3 can be discharged.
〔表示パネルの製造方法〕
 実施形態3の表示パネルの製造方法を、図1、図2、図3Aおよび図3Bに例示される実施形態1の表示パネル1を例に、適宜これらの図面を再度参照しながら説明する。
[Display panel manufacturing method]
A method of manufacturing the display panel according to the third embodiment will be described with reference to the drawings again, taking the display panel 1 according to the first embodiment illustrated in FIGS. 1, 2, 3A, and 3B as an example.
 本実施形態の表示パネルの製造方法は、前述した実施形態2の表示パネルの検査方法を用いて表示パネル1の検査を行うことを含んでいる。まず、図1、図2、図3Aおよび図3Bに示されるように、基板10の上に、第1バスライン11と、絶縁膜13と、第2バスライン12と、複数の画素3と、出力トランジスタ2aを含む駆動回路2と、スイッチング素子4と、第3バスライン23と、を形成することによって表示パネル1が用意される。第1~第3のバスライン11、12、23、複数の画素3、駆動回路2、およびスイッチング素子4の形成方法の一例が以下に説明されるが、これら各要素が形成される方法は、以下に説明される方法に限定されない。なお、以下の説明は、図1、図2、図3Aおよび図3Bに例示される表示パネル1を例として用いているため、スイッチング素子4は薄膜トランジスタで構成される。また、駆動回路2は、前述したように、好ましくは、薄膜トランジスタで主に構成されるため、スイッチング素子4と同様に薄膜トランジスタを形成することによって形成され得る。従って、その説明は適宜省略される。 表示 The method for manufacturing a display panel according to the present embodiment includes inspecting the display panel 1 using the above-described inspection method for a display panel according to the second embodiment. First, as shown in FIGS. 1, 2, 3A and 3B, a first bus line 11, an insulating film 13, a second bus line 12, a plurality of pixels 3, The display panel 1 is prepared by forming the drive circuit 2 including the output transistor 2a, the switching element 4, and the third bus line 23. An example of a method of forming the first to third bus lines 11, 12, and 23, the plurality of pixels 3, the drive circuit 2, and the switching element 4 will be described below. It is not limited to the method described below. Note that the following description uses the display panel 1 illustrated in FIGS. 1, 2, 3A, and 3B as an example, so that the switching element 4 is configured by a thin film transistor. Further, as described above, since the drive circuit 2 is preferably mainly formed of a thin film transistor, it can be formed by forming a thin film transistor in the same manner as the switching element 4. Therefore, the description thereof will be appropriately omitted.
 図3Aおよび図3Bに示されるように、第1バスライン11、第3バスライン23、スイッチング素子4のゲート電極42、および、画素駆動回路3aのTFT31のゲート電極32が、基板10の表面に形成される。図3Aおよび図3Bの例では、クリアバスライン25も第1バスライン11などと共に形成されている。なお、図3Aおよび図3Bは、スイッチング素子4およびTFT31がボトムゲート型のアモルファスシリコントランジスタである例を示している。 As shown in FIGS. 3A and 3B, the first bus line 11, the third bus line 23, the gate electrode 42 of the switching element 4, and the gate electrode 32 of the TFT 31 of the pixel driving circuit 3a are formed on the surface of the substrate 10. It is formed. 3A and 3B, the clear bus line 25 is formed together with the first bus line 11 and the like. 3A and 3B show an example in which the switching element 4 and the TFT 31 are bottom gate type amorphous silicon transistors.
 第1および第3のバスライン11、23、ならびに各ゲート電極42、32などの形成では、まず、基板10の表面に、タングステンまたはモリブデンなどの金属膜がスパッタリングなどによって成膜される。そして、その金属膜が、フォトリソグラフィ技術を用いたエッチングレジストの形成およびドライもしくはウェットエッチングによってパターニングされる。その結果、その金属膜が、所望の形状を有する導体パターンに分離され、各導体パターンからなる各バスライン11、23および各ゲート電極42、32などが形成される。同時に、クリアバスライン25および第4バスライン24(図4B参照)などの他のバスライン、および、補助容量3b(図1参照)などの他の回路素子を構成する導体パターンも第1バスライン11などと共に形成され得る。 In forming the first and third bus lines 11 and 23 and the gate electrodes 42 and 32, first, a metal film such as tungsten or molybdenum is formed on the surface of the substrate 10 by sputtering or the like. Then, the metal film is patterned by forming an etching resist using photolithography technology and dry or wet etching. As a result, the metal film is separated into conductor patterns having a desired shape, and the respective bus lines 11 and 23 and the respective gate electrodes 42 and 32 formed of the respective conductor patterns are formed. At the same time, other bus lines such as the clear bus line 25 and the fourth bus line 24 (see FIG. 4B), and conductor patterns forming other circuit elements such as the auxiliary capacitor 3b (see FIG. 1) also have the first bus line. 11 and the like.
 図3Bに示されるように、第1バスライン11および各ゲート電極42、32を覆う絶縁膜13が形成される。絶縁膜13は、たとえばプラズマCVD法を用いてSiO2膜またはSiNX膜を成膜することによって形成される。絶縁膜13の一部が、スイッチング素子4、画素駆動回路3a(図1参照)を構成するTFT31、および、駆動回路2を構成するトランジスタ2a~2e(図2参照)のゲート絶縁膜を構成する。つぎに、絶縁膜13の上に、たとえばプラズマCVD法を用いて半導体層43、33が形成される。半導体層43、33は、ドライエッチングなどを用いて所望の形状にパターニングされる。その後、好ましくは、半導体層43、33上に高不純物濃度の半導体によってコンタクト層44、34が形成される。 As shown in FIG. 3B, an insulating film 13 covering the first bus line 11 and the gate electrodes 42 and 32 is formed. The insulating film 13 is formed, for example, by forming a SiO 2 film or a SiN x film using a plasma CVD method. A part of the insulating film 13 forms a gate insulating film of the switching element 4, the TFT 31 forming the pixel driving circuit 3a (see FIG. 1), and the transistors 2a to 2e forming the driving circuit 2 (see FIG. 2). . Next, semiconductor layers 43 and 33 are formed on insulating film 13 using, for example, a plasma CVD method. The semiconductor layers 43 and 33 are patterned into a desired shape using dry etching or the like. Thereafter, preferably, contact layers 44 and 34 are formed on the semiconductor layers 43 and 33 using a semiconductor having a high impurity concentration.
 そして、半導体層43(またはコンタクト層44)および絶縁膜13上に、スイッチング素子4のソース電極45およびドレイン電極46が形成されると共に、半導体層33(またはコンタクト層34)および絶縁膜13上に、TFT31のソース電極35およびドレイン電極36が形成される。同時に、絶縁膜13上に第2バスライン12、および、駆動回路2を構成するトランジスタ2a~2e(図2参照)の図示されないソース電極およびドレイン電極が形成される。たとえばスパッタリングを用いてタングステン膜またはチタン膜などが形成され、その形成された膜が、ドライもしくはウェットエッチングなどによって分離され、それにより、各電極および第2バスライン12が形成され得る。補助容量3bなどの他の回路素子を構成する導体パターンが、第2バスライン12などと共に形成されてもよい。その結果、少なくとも、第1~第3のバスライン11、12、23、スイッチング素子4、駆動回路2、および、TFT31および補助容量3bを含む画素駆動回路3a(図1参照)が形成される。なお、第3および第4バスライン23、24は、第2バスライン12と共に、絶縁膜13上に形成されてもよい。 Then, the source electrode 45 and the drain electrode 46 of the switching element 4 are formed on the semiconductor layer 43 (or the contact layer 44) and the insulating film 13, and on the semiconductor layer 33 (or the contact layer 34) and the insulating film 13. The source electrode 35 and the drain electrode 36 of the TFT 31 are formed. At the same time, the second bus line 12 and the source electrode and the drain electrode (not shown) of the transistors 2a to 2e (see FIG. 2) constituting the drive circuit 2 are formed on the insulating film 13. For example, a tungsten film or a titanium film is formed by using sputtering, and the formed film is separated by dry or wet etching or the like, whereby each electrode and the second bus line 12 can be formed. A conductor pattern forming another circuit element such as the auxiliary capacitor 3b may be formed together with the second bus line 12 or the like. As a result, at least the first to third bus lines 11, 12, and 23, the switching element 4, the driving circuit 2, and the pixel driving circuit 3a including the TFT 31 and the auxiliary capacitance 3b (see FIG. 1) are formed. Note that the third and fourth bus lines 23 and 24 may be formed on the insulating film 13 together with the second bus line 12.
 その後、SiO2またはSiNXなどからなる平坦化膜14aが、たとえばCVD法などによって形成される。さらに平坦化膜14a上に、液晶層LCなどの液晶分子を用いた画像表示に必要な各構成要素が形成される。または、有機発光材料の蒸着などによって有機発光素子が形成される。液晶層LCおよび図示されない有機発光層は、一般的な方法で形成されるため、その説明は省略される。たとえば、以上の工程を経ることによって表示パネル1が用意される。 Thereafter, a flattening film 14a made of SiO 2 or SiN X is formed by, for example, a CVD method. Further, components necessary for image display using liquid crystal molecules such as a liquid crystal layer LC are formed on the flattening film 14a. Alternatively, an organic light emitting element is formed by vapor deposition of an organic light emitting material or the like. Since the liquid crystal layer LC and the organic light emitting layer (not shown) are formed by a general method, description thereof is omitted. For example, the display panel 1 is prepared through the above steps.
 用意された表示パネル1に対して、前述した実施形態2の表示パネルの検査方法に従って試験電圧の印加および画素3の機能試験が実施され、画素3の良否が判定される。 (4) A test voltage is applied to the prepared display panel 1 and a function test of the pixel 3 is performed in accordance with the display panel inspection method of the second embodiment, and the quality of the pixel 3 is determined.
 実施形態3の表示パネルの製造方法は、複数の画素3のうち、実施形態2の表示パネルの検査方法における機能試験で不良と判定された画素3への通電を不能にする、ことをさらに含んでいる。たとえば、欠陥を含む画素3を構成するTFT31のゲート電極と第1バスライン11との接続部、および、このTFT31のソース電極と第2バスライン12とを接続している接続部のいずれかまたは両方が、レーザー光の照射などによって切断される。そうすることにより、不良と判定された画素3によって他の画素3の表示が影響を受けることを防ぐことができる。従って、不良画素の数や含有率などに関する所定の良否判定基準を満たす場合、欠陥を有する画素3を含む表示パネル1を、良品として扱い得る表示パネル1へと改修することができる。 The method for manufacturing a display panel according to the third embodiment further includes disabling energization to the pixels 3 determined to be defective in the function test in the display panel inspection method according to the second embodiment among the plurality of pixels 3. In. For example, any one of a connection portion between the gate electrode of the TFT 31 constituting the pixel 3 including the defect and the first bus line 11 and a connection portion connecting the source electrode of the TFT 31 and the second bus line 12 or Both are cut by laser light irradiation or the like. By doing so, it is possible to prevent the display of the other pixels 3 from being affected by the pixel 3 determined to be defective. Therefore, when a predetermined quality criterion for the number and content of defective pixels is satisfied, the display panel 1 including the defective pixels 3 can be modified into a display panel 1 that can be handled as a non-defective product.
 このように、本実施形態の表示パネルの製造方法によれば、表示パネルが備える絶縁が欠陥を含んでいる場合でも駆動回路にダメージが加わることを回避しながら絶縁膜をスクリーニングすることができる。そして、その欠陥が検出された表示パネルを良品へと改修することも可能となり得る。従って、歩留まりの低下を抑制しながら信頼性の高い表示パネルを得ることができる。 As described above, according to the method for manufacturing a display panel of the present embodiment, even when the insulation of the display panel includes a defect, the insulating film can be screened while avoiding damage to the drive circuit. Then, it may be possible to repair the display panel in which the defect is detected to a non-defective product. Therefore, a highly reliable display panel can be obtained while suppressing a decrease in yield.
〔まとめ〕
(1)本発明の第1実施形態の表示パネルは、基板の上に設けられ、互いに交差する第1バスラインおよび第2バスラインと、前記第1バスラインと前記第2バスラインとの間に介在する絶縁膜と、前記第1バスラインと前記第2バスラインとの交差部に設けられていて前記絶縁膜の一部を含む画素と、前記基板の表面に形成されていて前記第1バスラインを介して前記画素に信号を供給する駆動回路と、前記基板の上に形成されると共に前記第1バスラインに接続されているスイッチング素子と、前記スイッチング素子を介して前記第1バスラインに接続されていて前記絶縁膜のスクリーニングに用いられる第3バスラインと、を備え、前記駆動回路は、前記第1バスラインに接続されていて前記信号を出力する出力トランジスタを備えており、前記スイッチング素子は前記出力トランジスタと別個に設けられている。
[Summary]
(1) The display panel according to the first embodiment of the present invention is provided on a substrate and is provided between a first bus line and a second bus line that intersect each other, and between the first bus line and the second bus line. An insulating film interposed between the first bus line and the second bus line; a pixel provided at an intersection of the first bus line and the second bus line, the pixel including a part of the insulating film; A drive circuit for supplying a signal to the pixel via a bus line; a switching element formed on the substrate and connected to the first bus line; and a first bus line via the switching element. And a third bus line used for screening the insulating film. The drive circuit includes an output transistor connected to the first bus line to output the signal. Ri, the switching element is provided separately from the output transistor.
 (1)の構成によれば、駆動回路の破損を防いで表示パネルの生産を安定させ、しかも、画素および駆動回路の信頼性を高めることができる。 According to the configuration (1), the production of the display panel can be stabilized by preventing the driving circuit from being damaged, and the reliability of the pixels and the driving circuit can be improved.
(2)上記(1)の表示パネルにおいて、前記第3バスラインは、前記スクリーニングにおいて前記絶縁膜の欠陥を顕在化させ得る大きさの電圧が印加されるバスラインであってもよい。その場合、潜在的な欠陥を顕在化させることができ、表示パネルの信頼性を高めることができる。 (2) In the display panel according to the above (1), the third bus line may be a bus line to which a voltage large enough to make defects of the insulating film apparent in the screening is applied. In that case, a potential defect can be made obvious, and the reliability of the display panel can be improved.
(3)上記(1)または(2)の表示パネルにおいて、前記スイッチング素子は、入力端、出力端および制御端を有する薄膜トランジスタであり、前記スイッチング素子の前記出力端が前記第1バスラインに接続されており、前記スイッチング素子の前記入力端が前記第3バスラインに接続されていてもよい。その場合、スイッチング素子を制御するだけで、第1バスラインと第3バスラインとの接続と分離を切り換えることができる。 (3) In the display panel according to (1) or (2), the switching element is a thin film transistor having an input terminal, an output terminal, and a control terminal, and the output terminal of the switching element is connected to the first bus line. The input terminal of the switching element may be connected to the third bus line. In this case, the connection and disconnection between the first bus line and the third bus line can be switched only by controlling the switching element.
(4)上記(3)の表示パネルにおいて、前記スイッチング素子の前記制御端が、前記スイッチング素子の前記入力端と共に前記第3バスラインに接続されていてもよい。その場合、第3バスラインと第2バスラインとの間に電圧を印加するだけで、絶縁膜のスクリーニングをすることができる。 (4) In the display panel according to (3), the control terminal of the switching element may be connected to the third bus line together with the input terminal of the switching element. In that case, the insulating film can be screened only by applying a voltage between the third bus line and the second bus line.
(5)上記(3)の表示パネルにおいて、前記表示パネルは、前記駆動回路内に蓄積された電荷を所定のタイミングで放電させる信号を伝えるクリアバスラインをさらに備え、前記スイッチング素子の前記制御端が前記クリアバスラインに接続されていてもよい。その場合、駆動回路の出力トランジスタを安定的にオフ状態に保ちながら、絶縁膜をスクリーニングすることができる。 (5) In the display panel according to (3), the display panel further includes a clear bus line for transmitting a signal for discharging electric charges accumulated in the drive circuit at a predetermined timing, and the control terminal of the switching element. May be connected to the clear bus line. In that case, the insulating film can be screened while the output transistor of the driver circuit is stably kept in the off state.
(6)上記(3)の表示パネルは、前記スイッチング素子の前記制御端に接続されていて前記スクリーニングに用いられる第4バスラインをさらに備えていてもよい。その場合、駆動回路の動作に影響を及ぼすことなく、絶縁膜のスクリーニングを実施することができる。 (6) The display panel according to (3) may further include a fourth bus line connected to the control terminal of the switching element and used for the screening. In that case, screening of the insulating film can be performed without affecting the operation of the driver circuit.
(7)上記(6)の表示パネルは、前記第4バスラインおよび前記出力トランジスタのゲート電極に接続されていて前記第4バスラインの電位に応じて前記出力トランジスタをオフ状態に制御する第2スイッチング素子をさらに備えていてもよい。その場合、駆動回路の動作に影響を及ぼすことなく、出力トランジスタを安定的にオフ状態に保ちながら絶縁膜をスクリーニングすることができる。 (7) The display panel according to (6), wherein the display panel is connected to the fourth bus line and a gate electrode of the output transistor, and controls the output transistor to be in an off state according to the potential of the fourth bus line. A switching element may be further provided. In that case, the insulating film can be screened while the output transistor is stably kept off without affecting the operation of the drive circuit.
(8)上記(7)の表示パネルにおいて、前記出力トランジスタの前記ゲート電極と前記第1バスラインとの間に蓄えられた電荷を所定のタイミングで放電させる信号を伝えるクリアバスラインをさらに備えていてもよい。その場合、駆動回路2内に蓄積された電荷をスクリーニング中であるか否かに関わらず所定の時機に放電させることができる。 (8) The display panel according to (7), further including a clear bus line for transmitting a signal for discharging the electric charge stored between the gate electrode of the output transistor and the first bus line at a predetermined timing. May be. In that case, the electric charge accumulated in the drive circuit 2 can be discharged at a predetermined time regardless of whether or not the screening is being performed.
(9)本発明の第2実施形態の表示パネルの検査方法は、絶縁膜を介して互いに交差する第1バスラインおよび第2バスラインと、前記第1バスラインと前記第2バスラインとの交差部に設けられた画素と、前記第1バスラインに接続されている出力トランジスタから前記画素に信号を供給すべき駆動回路と、スイッチング素子を介して前記第1バスラインに接続されている第3バスラインと、を少なくとも備える表示パネルを用意し、前記スイッチング素子を制御して前記第1バスラインと前記第3バスラインとを電気的に接続し、前記第2バスラインと前記第3バスラインとの間に所定の試験電圧を印加することによって、前記駆動回路を介さずに前記第1バスラインと前記第2バスラインとの間に電圧を印加し、前記試験電圧の印加後に前記画素の機能試験を実施する、ことを含んでいる。 (9) In the display panel inspection method according to the second embodiment of the present invention, the first bus line and the second bus line intersecting each other with an insulating film interposed therebetween, and the first bus line and the second bus line are connected to each other. A pixel provided at the intersection, a driving circuit for supplying a signal from the output transistor connected to the first bus line to the pixel, and a driving circuit connected to the first bus line via a switching element A display panel including at least three bus lines; controlling the switching element to electrically connect the first bus line and the third bus line; A predetermined test voltage is applied between the first bus line and the second bus line without passing through the drive circuit by applying a predetermined test voltage between the first bus line and the second bus line. Implementing the functional test of the pixels includes that.
 (9)の構成によれば、歩留まりの低下を抑制しながら信頼性の高い表示パネルを得ることができる。 According to the configuration (9), a highly reliable display panel can be obtained while suppressing a decrease in yield.
(10)上記(9)の表示パネルの検査方法は、前記試験電圧の印加後に、前記画素に蓄えられている電荷を前記スイッチング素子および前記第3バスラインを介して放電させることをさらに含んでいてもよい。そうすることによって、表示パネルの破損および劣化などを防ぐことができる。 (10) The method for inspecting a display panel according to (9) further includes, after the test voltage is applied, discharging the charge stored in the pixel via the switching element and the third bus line. It may be. By doing so, breakage and deterioration of the display panel can be prevented.
(11)上記(9)または(10)の表示パネルの検査方法において、前記試験電圧の印加中に、前記出力トランジスタをオフ状態に制御してもよい。そうすることによって、試験電圧の印加中、駆動回路を安定した状態に維持することができる。 (11) In the method for inspecting a display panel according to the above (9) or (10), the output transistor may be turned off during the application of the test voltage. By doing so, the drive circuit can be maintained in a stable state during the application of the test voltage.
(12)本発明の第3実施形態の表示パネルの製造方法は、上記(9)~(11)のいずれかの検査方法を用いて表示パネルの検査を行うことを含み、前記基板の上に、前記第1バスラインと、前記絶縁膜と、前記第2バスラインと、複数の前記画素と、前記出力トランジスタを含む前記駆動回路と、前記スイッチング素子と、前記第3バスラインと、を形成することによって前記表示パネルを用意し、前記複数の画素のうちの前記機能試験で不良と判定された画素への通電を不能にする、ことをさらに含んでいる。 (12) The method of manufacturing a display panel according to the third embodiment of the present invention includes inspecting the display panel by using any one of the inspection methods (9) to (11) above. Forming the first bus line, the insulating film, the second bus line, the plurality of pixels, the driving circuit including the output transistor, the switching element, and the third bus line. The method further includes preparing the display panel and disabling energization to a pixel determined to be defective in the functional test among the plurality of pixels.
 (12)の構成によれば、歩留まりの低下を抑制しながら信頼性の高い表示パネルを得ることができる。 According to the configuration (12), a highly reliable display panel can be obtained while suppressing a decrease in yield.
1   表示パネル
10  基板
11  第1バスライン
12  第2バスライン
13  絶縁膜(ゲート絶縁膜)
2   駆動回路
2a  出力トランジスタ
23  第3バスライン
24  第4バスライン
25  クリアバスライン
3   画素
31  薄膜トランジスタ(TFT)
4   スイッチング素子
42  ゲート電極
45  ソース電極
46  ドレイン電極
4b  第2スイッチング素子
Vs  試験電圧
Reference Signs List 1 display panel 10 substrate 11 first bus line 12 second bus line 13 insulating film (gate insulating film)
2 Drive circuit 2a Output transistor 23 Third bus line 24 Fourth bus line 25 Clear bus line 3 Pixel 31 Thin film transistor (TFT)
4 Switching element 42 Gate electrode 45 Source electrode 46 Drain electrode 4b Second switching element Vs Test voltage

Claims (12)

  1.  基板の上に設けられ、互いに交差する第1バスラインおよび第2バスラインと、
     前記第1バスラインと前記第2バスラインとの間に介在する絶縁膜と、
     前記第1バスラインと前記第2バスラインとの交差部に設けられていて前記絶縁膜の一部を含む画素と、
     前記基板の表面に形成されていて前記第1バスラインを介して前記画素に信号を供給する駆動回路と、
     前記基板の上に形成されると共に前記第1バスラインに接続されているスイッチング素子と、
     前記スイッチング素子を介して前記第1バスラインに接続されていて前記絶縁膜のスクリーニングに用いられる第3バスラインと、を備え、
     前記駆動回路は、前記第1バスラインに接続されていて前記信号を出力する出力トランジスタを備えており、
     前記スイッチング素子は前記出力トランジスタと別個に設けられている、表示パネル。
    A first bus line and a second bus line provided on a substrate and intersecting each other;
    An insulating film interposed between the first bus line and the second bus line;
    A pixel provided at an intersection of the first bus line and the second bus line and including a part of the insulating film;
    A drive circuit formed on a surface of the substrate and supplying a signal to the pixel via the first bus line;
    A switching element formed on the substrate and connected to the first bus line;
    A third bus line connected to the first bus line via the switching element and used for screening the insulating film;
    The drive circuit includes an output transistor connected to the first bus line and outputting the signal.
    The display panel, wherein the switching element is provided separately from the output transistor.
  2.  前記第3バスラインは、前記スクリーニングにおいて前記絶縁膜の欠陥を顕在化させ得る大きさの電圧が印加されるバスラインである、請求項1に記載の表示パネル。 The display panel according to claim 1, wherein the third bus line is a bus line to which a voltage having a magnitude that can make defects of the insulating film visible in the screening is applied.
  3.  前記スイッチング素子は、入力端、出力端および制御端を有する薄膜トランジスタであり、
     前記スイッチング素子の前記出力端が前記第1バスラインに接続されており、前記スイッチング素子の前記入力端が前記第3バスラインに接続されている、請求項1または2に記載の表示パネル。
    The switching element is a thin film transistor having an input terminal, an output terminal, and a control terminal,
    The display panel according to claim 1, wherein the output terminal of the switching element is connected to the first bus line, and the input terminal of the switching element is connected to the third bus line.
  4.  前記スイッチング素子の前記制御端が、前記スイッチング素子の前記入力端と共に前記第3バスラインに接続されている、請求項3に記載の表示パネル。 The display panel according to claim 3, wherein the control terminal of the switching element is connected to the third bus line together with the input terminal of the switching element.
  5.  前記表示パネルは、前記駆動回路内に蓄積された電荷を所定のタイミングで放電させる信号を伝えるクリアバスラインをさらに備え、
     前記スイッチング素子の前記制御端が前記クリアバスラインに接続されている、請求項3に記載の表示パネル。
    The display panel further includes a clear bus line that transmits a signal for discharging the electric charge accumulated in the driving circuit at a predetermined timing,
    The display panel according to claim 3, wherein the control terminal of the switching element is connected to the clear bus line.
  6.  前記スイッチング素子の前記制御端に接続されていて前記スクリーニングに用いられる第4バスラインをさらに備える、請求項3に記載の表示パネル。 The display panel according to claim 3, further comprising a fourth bus line connected to the control terminal of the switching element and used for the screening.
  7.  前記第4バスラインおよび前記出力トランジスタのゲート電極に接続されていて前記第4バスラインの電位に応じて前記出力トランジスタをオフ状態に制御する第2スイッチング素子をさらに備えている、請求項6に記載の表示パネル。 7. The semiconductor device according to claim 6, further comprising a second switching element connected to the fourth bus line and a gate electrode of the output transistor, the second switching element controlling the output transistor to be in an off state according to the potential of the fourth bus line. Display panel as described.
  8.  前記出力トランジスタの前記ゲート電極と前記第1バスラインとの間に蓄えられた電荷を所定のタイミングで放電させる信号を伝えるクリアバスラインをさらに備える、請求項7に記載の表示パネル。 8. The display panel according to claim 7, further comprising: a clear bus line transmitting a signal for discharging a charge stored between the gate electrode of the output transistor and the first bus line at a predetermined timing.
  9.  絶縁膜を介して互いに交差する第1バスラインおよび第2バスラインと、前記第1バスラインと前記第2バスラインとの交差部に設けられた画素と、前記第1バスラインに接続されている出力トランジスタから前記画素に信号を供給すべき駆動回路と、スイッチング素子を介して前記第1バスラインに接続されている第3バスラインと、を少なくとも備える表示パネルを用意し、
     前記スイッチング素子を制御して前記第1バスラインと前記第3バスラインとを電気的に接続し、
     前記第2バスラインと前記第3バスラインとの間に所定の試験電圧を印加することによって、前記駆動回路を介さずに前記第1バスラインと前記第2バスラインとの間に電圧を印加し、
     前記試験電圧の印加後に前記画素の機能試験を実施する、ことを含む表示パネルの検査方法。
    A first bus line and a second bus line that intersect with each other via an insulating film, a pixel provided at an intersection of the first bus line and the second bus line, and a pixel connected to the first bus line. Preparing a display panel including at least a driving circuit for supplying a signal from the output transistor to the pixel, and a third bus line connected to the first bus line via a switching element;
    Controlling the switching element to electrically connect the first bus line and the third bus line;
    By applying a predetermined test voltage between the second bus line and the third bus line, a voltage is applied between the first bus line and the second bus line without passing through the driving circuit. And
    Performing a function test of the pixel after applying the test voltage.
  10.  前記試験電圧の印加後に、前記画素に蓄えられている電荷を前記スイッチング素子および前記第3バスラインを介して放電させることをさらに含む、請求項9に記載の表示パネルの検査方法。 The method according to claim 9, further comprising: discharging the charge stored in the pixel via the switching element and the third bus line after the application of the test voltage.
  11.  前記試験電圧の印加中に、前記出力トランジスタをオフ状態に制御する、請求項9または10に記載の表示パネルの検査方法。 11. The display panel inspection method according to claim 9, wherein the output transistor is controlled to be in an off state while the test voltage is being applied.
  12.  請求項9~11のいずれか1項に記載の検査方法を用いて表示パネルの検査を行うことを含み、
     前記基板の上に、前記第1バスラインと、前記絶縁膜と、前記第2バスラインと、複数の前記画素と、前記出力トランジスタを含む前記駆動回路と、前記スイッチング素子と、前記第3バスラインと、を形成することによって前記表示パネルを用意し、
     前記複数の画素のうちの前記機能試験で不良と判定された画素への通電を不能にする、ことをさらに含む表示パネルの製造方法。
    Inspecting a display panel using the inspection method according to any one of claims 9 to 11,
    On the substrate, the first bus line, the insulating film, the second bus line, a plurality of the pixels, the drive circuit including the output transistor, the switching element, the third bus, Preparing said display panel by forming lines and
    A method of manufacturing a display panel, further comprising disabling energization to a pixel determined to be defective in the functional test among the plurality of pixels.
PCT/JP2018/024626 2018-06-28 2018-06-28 Display panel, method for inspecting display panel, and method for manufacturing display panel WO2020003445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024626 WO2020003445A1 (en) 2018-06-28 2018-06-28 Display panel, method for inspecting display panel, and method for manufacturing display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024626 WO2020003445A1 (en) 2018-06-28 2018-06-28 Display panel, method for inspecting display panel, and method for manufacturing display panel

Publications (1)

Publication Number Publication Date
WO2020003445A1 true WO2020003445A1 (en) 2020-01-02

Family

ID=68986325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024626 WO2020003445A1 (en) 2018-06-28 2018-06-28 Display panel, method for inspecting display panel, and method for manufacturing display panel

Country Status (1)

Country Link
WO (1) WO2020003445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112562507A (en) * 2020-12-03 2021-03-26 Tcl华星光电技术有限公司 Display panel and detection method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277896A (en) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd Liquid crystal display and image display device using the same
JP2005017989A (en) * 2003-06-30 2005-01-20 Sony Corp Flat display device and method for testing flat display device
JP2005266529A (en) * 2004-03-19 2005-09-29 Sharp Corp Manufacturing method of display device, and the display device
JP2006189423A (en) * 2005-01-06 2006-07-20 Samsung Electronics Co Ltd Array substrate and display unit having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277896A (en) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd Liquid crystal display and image display device using the same
JP2005017989A (en) * 2003-06-30 2005-01-20 Sony Corp Flat display device and method for testing flat display device
JP2005266529A (en) * 2004-03-19 2005-09-29 Sharp Corp Manufacturing method of display device, and the display device
JP2006189423A (en) * 2005-01-06 2006-07-20 Samsung Electronics Co Ltd Array substrate and display unit having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112562507A (en) * 2020-12-03 2021-03-26 Tcl华星光电技术有限公司 Display panel and detection method thereof
CN112562507B (en) * 2020-12-03 2022-07-12 Tcl华星光电技术有限公司 Display panel and detection method thereof

Similar Documents

Publication Publication Date Title
TWI385453B (en) Liquid crystal display
US8664671B2 (en) Display device and fabrication method for display device
US5063378A (en) Scanned liquid crystal display with select scanner redundancy
US6914448B2 (en) Transistor circuit
JP3989756B2 (en) Display device and scanning circuit inspection method thereof
JP5379229B2 (en) Display device and manufacturing method thereof
US9508300B2 (en) Driving circuit having extra transistor or capacitor, and flat panel display device including the driving circuit
TWI471846B (en) Matrix type liquid crystal display of the active matrix type
TWI582438B (en) Apparatus and method for inspecting short circuit defects
KR20140141373A (en) Organic light emitting display apparatus and method for manufacturing the same
JP2005242307A (en) Active matrix substrate and display device
US7163833B2 (en) Display panel and manufacturing method of display panel
US20120121061A1 (en) Shift register
US8563993B2 (en) Display device and fabrication method for display device
JP4294096B2 (en) Improved active matrix ESD protection and test system
KR102093627B1 (en) Organic light emitting diode display device and repairing method thereof
WO2020003445A1 (en) Display panel, method for inspecting display panel, and method for manufacturing display panel
WO2016080291A1 (en) Display device
JP2007183265A (en) Tft inspection device utilizing surface electron emission device array, and its inspection method
WO2004109376A1 (en) Array substrate inspection method
JP2005258007A (en) Manufacturing method of liquid crystal display device
JP2010165866A (en) Method of manufacturing thin film transistor
JP2007041432A (en) Method for manufacturing electrooptical device
JP2011022414A (en) Active matrix display device
JP2007052286A (en) Semiconductor element, liquid crystal display device, and method for repairing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP