[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020001294A1 - 一种五自由度无轴承开关磁阻电机 - Google Patents

一种五自由度无轴承开关磁阻电机 Download PDF

Info

Publication number
WO2020001294A1
WO2020001294A1 PCT/CN2019/091320 CN2019091320W WO2020001294A1 WO 2020001294 A1 WO2020001294 A1 WO 2020001294A1 CN 2019091320 W CN2019091320 W CN 2019091320W WO 2020001294 A1 WO2020001294 A1 WO 2020001294A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
radial
teeth
rotor
torque
Prior art date
Application number
PCT/CN2019/091320
Other languages
English (en)
French (fr)
Inventor
张涛
刘欣凤
王业琴
倪伟
桑英军
夏鑫
丁卫红
Original Assignee
淮阴工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮阴工学院 filed Critical 淮阴工学院
Publication of WO2020001294A1 publication Critical patent/WO2020001294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the invention relates to the field of magnetic suspension motors without bearing technology, in particular to a five-degree-of-freedom bearingless switched reluctance motor.
  • Bearingless motor has no friction, wear, no lubrication and sealing, easy to achieve higher speed and higher power operation, has broad application prospects in aerospace, turbo molecular pump, flywheel energy storage, sealed pump, high-speed electric spindle and other fields .
  • Bearingless motors are mainly divided into bearingless asynchronous (induction) motors, bearingless permanent magnet synchronous motors and bearingless switched reluctance motors.
  • the bearingless switched reluctance motor has the advantages of simple structure, high mechanical strength, flexible control, good fault tolerance, and robustness. It has broad application prospects in electric vehicles, general industry, household appliances and other fields.
  • All three structures need to use axial magnetic bearings separately, which increases the axial length of the system, reduces the system's critical speed, limits the further increase of speed and power, and traditional statorless bearingless reluctance motors are mounted on each stator tooth. Both sets of windings are wound, that is, levitating windings and torque windings, and the number of pole pairs of the two sets of windings must satisfy the relationship of plus and minus one. By coordinating and controlling the torque and levitating winding currents, torque and levitation forces are generated simultaneously. There is a strong coupling between moment control and suspension control.
  • the object of the present invention is to provide a five-degree-of-freedom bearingless switched reluctance motor with small size, light weight and compact structure, and provide a new solution for special electric transmission.
  • a five-degree-of-freedom bearingless switched reluctance motor includes a stator and a rotor, and the rotor includes a rotating shaft whose two ends respectively extend to the outside of the stator, and an axial rotor core coaxially sleeved on the rotating shaft.
  • a plurality of axial rotor teeth are evenly arranged at both ends of the stator;
  • the stator includes two stator cores symmetrically disposed on both sides of the rotor, and each stator core is composed of an integrated axial stator core and a radial stator core.
  • a plurality of axially-suspended teeth are uniformly disposed toward the inner end of the stator core, and a plurality of axial-torque teeth are evenly distributed on the axial magnetic isolation block disposed between adjacent axially-suspended teeth.
  • the radial stator The inner circumference of the core is uniformly provided with a plurality of radial suspension teeth facing the radial rotor teeth, and a plurality of radial distributions evenly distributed on the magnetically isolated blocks arranged between adjacent radial suspension teeth.
  • Torque teeth, the axial suspension teeth, the axial torque teeth, the radial suspension teeth, and the radial torque teeth are respectively wound with an axial suspension winding, an axial torque winding, a radial suspension winding, and a radial Torque winding.
  • the tooth widths and thicknesses of the axial rotor teeth and the radial rotor teeth are respectively the same as those of the axial torque teeth and the radial torque teeth.
  • the permanent magnet ring is made of a rare earth permanent magnet or a ferrite permanent magnet.
  • the tooth width of the axial suspension teeth is greater than the tooth width of the axial torque teeth and the axial pole pitch of the motor; the tooth width of the radial suspension teeth is greater than the tooth width of the radial torque teeth.
  • the radial pole pitch of the motor the tooth widths of the axial torque teeth and the radial torque teeth are respectively the same as those of the axial rotor teeth and the radial rotor teeth, and the radial pole pitch of the motor is equal to the axial pole pitch.
  • the present invention has the following advantages:
  • a biased magnetic flux is provided by a radially magnetized permanent magnet ring located between the axial rotor core and the radial rotor core.
  • the axial suspension winding on the axial stator core generates the axial suspension control magnetic flux after being energized.
  • the radial suspension control magnetic flux is generated.
  • the radial suspension control magnetic flux and the axial suspension magnetic flux interact with the bias magnetic flux to generate a radial and axial stable suspension of the rotor.
  • Levitation force Compared with a bearingless switched reluctance motor with two sets of windings on each stator tooth, the suspension control and torque control are independent of each other, and the control is simple and easy to implement. With the shorter axial length, it can achieve high-speed / ultra-high-speed operation, and requires fewer displacement sensors, fewer drive circuits, and simple control system hardware.
  • the motor of this structure is small in size, light in weight, and compact in structure, providing a new solution for special electric drives.
  • FIG. 1 is an overall structural diagram of the present invention.
  • FIG. 2 is a structural diagram of a left stator and a rotor of the present invention.
  • FIG. 3 is an exploded view of the structure of the present invention.
  • FIG. 4 is a front view of the present invention.
  • Figure 5 is a front view of the left stator and rotor structure of the present invention.
  • Fig. 6 is a left side view of the present invention.
  • Figure 7 is a right side view of the left stator and rotor structure of the present invention.
  • FIG. 8 is a schematic diagram of an axial structure and a magnetic flux of the present invention.
  • FIG. 9 is a schematic diagram of an axial stator, an axial rotor core structure, a winding arrangement, and a magnetic flux according to the present invention.
  • a five-degree-of-freedom bearingless switched reluctance motor as shown in Figures 1-9. Take the motor's radial stator teeth / radial rotor teeth, axial stator teeth / axial rotor teeth as 12/14 as examples. It includes a stator and a rotor.
  • the rotor includes a rotating shaft 4 with both ends extending to the outside of the stator, an axial rotor core 41 coaxially sleeved on the rotating shaft 4, and an axial rotor core 41 connected to the axial rotor core 41 and located in the axial direction.
  • each of the rotating shaft bosses is evenly distributed with 14 radial rotor teeth 21, and the outer circumference of the radial rotor core 2 passes through
  • the permanent magnet ring 3 is connected to an axial rotor core 1, and the two ends of the axial rotor core 1 are evenly provided with 14 axial rotor teeth 20.
  • the stator includes two stator cores symmetrically arranged on the left and right sides of the rotor.
  • Each stator core is composed of an integrated axial stator core 5 and a radial stator core 6.
  • the inner ends of the axial stator core 5 are uniform.
  • Four axial suspension teeth 7 are provided, and the inner end of the axial stator core 5 between adjacent axial suspension teeth 7 is connected with an aluminum axial magnetic isolation block 18, and the upper edge of the axial magnetic isolation block 18
  • the axial stator core 5 is evenly connected with two axial torque teeth 9 in the circumferential direction, and the x-direction and y-direction of the inner circumference of the radial stator core 6 are uniformly provided with four diameters facing the radial rotor teeth 21.
  • an aluminum radial magnetic isolation block 42 is connected to the inner circumference of the radial stator core 6.
  • Two radial torque teeth 13 are evenly connected in the circumferential direction.
  • the tooth width and tooth thickness of the axial rotor tooth 20 and the radial rotor tooth 21 are the same as the tooth width and tooth thickness of the axial torque tooth 9 and the radial torque tooth 13, respectively.
  • the axial suspension teeth 7, The tooth width of the radial suspension teeth 11 is greater than the tooth widths of the axial torque teeth 9 and the radial torque teeth 13, respectively, and the axial pole distance and the radial pole distance of the motor.
  • the pole pitches are equal; the axial suspension teeth 7, the axial torque teeth 9, the radial suspension teeth 11, and the radial torque teeth 13 are respectively wound with an axial suspension winding 8, an axial torque winding 10,
  • the radial suspension winding 12, the radial torque winding 19, the axial suspension winding 8, the axial torque winding 10, the radial suspension winding 12, and the radial torque winding 19 are all concentrated windings. After the coil is wound, the paint is dried.
  • the permanent magnet ring 3 is made of a rare earth permanent magnet or a ferrite permanent magnet.
  • the levitation teeth 11, the axial torque teeth 9, the radial torque teeth 13, the axial rotor teeth 20, the radial rotor teeth 21, and the axial rotor core 41 are all made of a material with good magnetic permeability.
  • the permanent magnet ring 3 generates a left-biased magnetic flux 14 and a right-biased magnetic flux 15.
  • the left-biased magnetic flux 14 starts from the N pole of the permanent magnet ring 3 and passes through the axial rotor core 1, the axial rotor core 1, and the left.
  • the core 2 returns to the S pole of the permanent magnet ring 3 to form a closed path; the right-biased magnetic flux 15 starts from the N pole of the permanent magnet ring 3 and passes through the axial rotor core 1, the axial rotor core 1, and the right axial stator core.
  • the axial suspension control magnetic flux 16 When the axial suspension winding 8 on the axial stator core 5 is energized, the axial suspension control magnetic flux 16 is generated. When the radial suspension winding 12 on the radial stator core 6 is energized, the radial suspension control magnetic flux 17 is generated. The magnetic flux 17 and the axial levitation control magnetic flux 16 interact with the left-biased magnetic flux 14 and the right-biased magnetic flux 15 respectively to generate a levitation force that stably suspends the rotor radially and axially. According to the prior art, displacement sensors are respectively installed on the axial stator and the radial stator, and a displacement closed-loop system is established.
  • the current values of the axial suspension winding and the radial suspension winding are adjusted by the sensor feedback to generate The levitation force that returns the rotor to the equilibrium position to achieve axial and radial stable levitation of the rotor.
  • the rotation principle is as follows: the axial torque windings 10 on the left and right axial stator cores 5 and the radial torque windings 19 on the left and right radial stator cores 6 are serially or parallelly divided into several phases in the same direction.
  • the axial torque magnetic field and radial torque magnetic field generated by energization of any two of these phases are closed between the axial torque teeth and the axial rotor teeth, and between the radial torque teeth and the radial rotor teeth.
  • Path generating a torque force to rotate the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Synchronous Machinery (AREA)

Abstract

本发明公开了一种五自由度无轴承开关磁阻电机,包括定子和转子,所述转子包括两端分别延伸至定子外侧的转轴,同轴套在转轴上的轴向转子铁心,以及分别连接于轴向转子铁心的中部和两端的径向转子铁心、径向转子齿,所述径向转子铁心的外圆周通过永磁环连接有轴向转子铁心,所述轴向转子铁心的两端设置有轴向转子齿;所述定子包括对称的两个定子铁心,每一个定子铁心由一体的轴向定子铁心和径向定子铁心组成,所述轴向定子铁心的内端设置有轴向悬浮齿和轴向转矩齿,所述径向定子铁心的内圆周设置有径向悬浮齿和径向转矩齿,所述轴向悬浮齿、轴向转矩齿、径向悬浮齿、径向转矩齿上分别绕制有绕组。

Description

一种五自由度无轴承开关磁阻电机 技术领域
本发明涉及无轴承技术的磁悬浮电机领域,具体涉及一种五自由度无轴承开关磁阻电机。
背景技术
无轴承电机具有无摩擦、磨损、无需润滑和密封,易于实现更高转速和更大功率运行,在航空航天、涡轮分子泵、飞轮储能、密封泵、高速电主轴等领域具有广阔的应用前景。无轴承电机主要分为无轴承异步(感应)电机、无轴承永磁同步电机和无轴承开关磁阻电机三种。特别是其中的无轴承开关磁阻电机具有结构简单,机械强度高、控制灵活、容错性能好,鲁棒性好等优势,在电动汽车、通用工业、家用电器等领域具有广阔的应用前景。
要实现无轴承开关磁阻电机转子稳定悬浮,必须在径向四个自由度和轴向单自由度上同时施加主动控制力。传统的五自由度无轴承开关磁阻电机通常有以下三种结构:
1、采用1个轴承磁轴承和2个两自由度无轴承开关磁阻电机构成;
2、采用一个轴向磁轴承、1个径向磁轴承和一个两自由度无轴承开关磁阻电机构成;
3、采用1个三自由度径向-轴向磁轴承和1个无轴承开关磁阻电机构成;
这三种结构均需单独采用轴向磁轴承,增大了系统轴向长度,降低了系统临界转速,限制了转速和功率的进一步提升,并且传统的无轴承开关磁阻电机每个定子齿上均绕制两套绕组,即悬浮绕组和转矩绕组,且两套绕组极对数必须满足加减一的关系,通过协调控制转矩绕组和悬浮绕组电流,同时产生转矩和悬浮力,转矩控制和悬浮控制之间存在强耦合。
发明内容
本发明的目的是提供一种体积小、重量轻、结构紧凑的五自由度无轴承开关磁阻电机,为特种电气传动提供新的解决方案。
本发明通过以下技术方案实现:一种五自由度无轴承开关磁阻电机,包 括定子和转子,所述转子包括两端分别延伸至定子外侧的转轴,同轴套在转轴上的轴向转子铁心,以及分别连接于轴向转子铁心的中部和两端的径向转子铁心、径向转子齿,所述径向转子铁心的外圆周通过永磁环连接有轴向转子铁心,所述轴向转子铁心的两端分别均匀设置有数个轴向转子齿;所述定子包括对称设置于转子两侧的两个定子铁心,每一个定子铁心由一体的轴向定子铁心和径向定子铁心组成,所述轴向定子铁心的内端均匀设置有数个轴向悬浮齿,以及均匀分布在设置于相邻轴向悬浮齿之间的轴向隔磁块上的数个轴向转矩齿,所述径向定子铁心的内圆周均匀设置有数个正对径向转子齿的径向悬浮齿,以及均匀分布在设置于相邻径向悬浮齿之间的径向隔磁块上的数个径向转矩齿,所述轴向悬浮齿、轴向转矩齿、径向悬浮齿、径向转矩齿上分别绕制有轴向悬浮绕组、轴向转矩绕组、径向悬浮绕组、径向转矩绕组。
本发明的进一步方案是,所述轴向转子齿、径向转子齿的齿宽、齿厚分别与轴向转矩齿、径向转矩齿的齿宽、齿厚相同。
本发明的进一步方案是,永磁环采用稀土永磁体或铁氧体永磁体制成。
本发明的进一步方案是,所述轴向悬浮齿的齿宽大于轴向转矩齿的齿宽,以及电机的轴向极距;径向悬浮齿的齿宽大于径向转矩齿的齿宽,以及电机的径向极距;轴向转矩齿、径向转矩齿的齿宽分别与轴向转子齿、径向转子齿的相同,电机的径向极距与轴向极距相等。
本发明与现有技术相比的优点在于:
由一个位于轴向转子铁心与径向转子铁心之间的沿径向磁化的永磁环提供偏置磁通,轴向定子铁心上的轴向悬浮绕组通电后产生轴向悬浮控制磁通,径向定子铁心上的径向悬浮绕组通电后产生径向悬浮控制磁通,径向悬浮控制磁通、轴向悬浮磁通分别与偏置磁通相互作用产生使转子径向、轴向稳定悬浮的悬浮力;与每个定子齿上设置有两套绕组的无轴承开关磁阻电机相比,悬浮控制、转矩控制相互独立,控制简单,易于实现;与普通五自由度无轴承开关电机相比,具有轴向长度更短,能够实现高速/超高速运行,且所需位移传感器较少,驱动电路较少,控制系统硬件简单的特点。
该结构的电机体积小、重量轻、结构紧凑,为特种电气传动提供新的解决方案。
附图说明
图1为本发明的整体结构图。
图2为本发明的左侧定子和转子结构图。
图3为本发明的结构爆炸图。
图4为本发明的正视图。
图5为本发明的左侧定子和转子结构正视图。
图6为本发明的左视图。
图7为本发明的左侧定子和转子结构右视图。
图8为本发明的轴向结构及磁通示意图。
图9为本发明的轴向定子、轴向转子铁心结构、绕组排列及磁通示意图。
具体实施方式
如图1~9所示的一种五自由度无轴承开关磁阻电机,以电机的径向定子齿数/径向转子齿数、轴向定子齿数/轴向转子齿数均是12/14为例,包括定子和转子,所述转子包括两端分别延伸至定子外侧的转轴4,同轴套在转轴4上的轴向转子铁心41,以及分别与轴向转子铁心41连为一体的、位于轴向转子铁心41中部的径向转子铁心2和左、右两端的转轴凸台,每个所述转轴凸台上均匀分布有14个径向转子齿21,所述径向转子铁心2的外圆周通过永磁环3连接有轴向转子铁心1,所述轴向转子铁心1的两端分别均匀设置有14个轴向转子齿20。
所述定子包括对称设置于转子左、右两侧的两个定子铁心,每一个定子铁心由一体的轴向定子铁心5和径向定子铁心6组成,所述轴向定子铁心5的内端均匀设置有四个轴向悬浮齿7,相邻轴向悬浮齿7之间的轴向定子铁心5的内端连接有铝制的轴向隔磁块18,所述轴向隔磁块18上沿轴向定子铁心5的周向均匀连接有两个轴向转矩齿9,所述径向定子铁心6的内圆周的x方向和y方向均匀设置有四个正对径向转子齿21的径向悬浮齿11,相邻径向悬浮齿11之间的径向定子铁心6的内圆周连接有铝制的径向隔磁块42,所述径向隔磁块42上沿径向定子铁心6的周向均匀连接有两个径向转矩齿13。所述轴向转子齿20、径向转子齿21的齿宽、齿厚分别与轴向转矩齿9、径向转矩齿13的齿宽、齿厚相同,所述轴向悬浮齿7、径向悬浮齿11的齿宽分别大于轴向转矩齿9、径向转矩齿13的齿宽,以及电机的轴向极距和径向极距,所述电机的轴向极距和径向 极距相等;所述轴向悬浮齿7、轴向转矩齿9、径向悬浮齿11、径向转矩齿13上分别绕制有轴向悬浮绕组8、轴向转矩绕组10、径向悬浮绕组12、径向转矩绕组19,所述轴向悬浮绕组8、轴向转矩绕组10、径向悬浮绕组12、径向转矩绕组19均为集中绕组,采用导电良好的电磁线圈绕制后侵漆烘干而成。
所述永磁环3采用稀土永磁体或铁氧体永磁体制成,轴向转子铁心1、径向转子铁心2、轴向定子铁心5、径向定子铁心6、轴向悬浮齿7、径向悬浮齿11、轴向转矩齿9、径向转矩齿13、轴向转子齿20、径向转子齿21和轴向转子铁心41均由导磁性能良好的材料制成。
其悬浮原理是:
永磁环3产生左偏置磁通14、右偏置磁通15,其中左偏置磁通14从永磁环3的N极出发,经过轴向转子铁心1、轴向转子铁心1与左侧的轴向定子铁心5间气隙、左侧的轴向定子铁心5、径向定子铁心6、径向定子铁心6与轴向转子铁心41间气隙、轴向转子铁心41、径向转子铁心2返回永磁环3的S极形成闭合路径;右偏置磁通15从永磁环3的N极出发,经过轴向转子铁心1、轴向转子铁心1与右侧的轴向定子铁心5间气隙、右侧的轴向定子铁心5、径向定子铁心6、径向定子铁心6与轴向转子铁心41间气隙、轴向转子铁心41、径向转子铁心2返回永磁环3的S极形成闭合路径。
轴向定子铁心5上的轴向悬浮绕组8通电后产生轴向悬浮控制磁通16,径向定子铁心6上的径向悬浮绕组12通电后产生径向悬浮控制磁通17,径向悬浮控制磁通17、轴向悬浮控制磁通16分别与左偏置磁通14、右偏置磁通15相互作用产生使转子径向、轴向稳定悬浮的悬浮力。根据现有技术,在轴向定子和径向定子上分别安装位移传感器,建立位移闭环系统,当转子偏移平衡位置时,通过传感器反馈,调节轴向悬浮绕组和径向悬浮绕组电流值,产生使转子回到平衡位置的悬浮力,实现转子轴向和径向稳定悬浮。
其旋转原理是:左、右轴向定子铁心5上的轴向转矩绕组10,以及左、右径向定子铁心6上的径向转矩绕组19同向串联或并联后分为若干相,对其中任意两相通电产生的轴向转矩绕组磁场、径向转矩绕组磁场在轴向转矩齿和轴向转子齿之间,以及径向转矩齿和径向转子齿之间形成闭合路径,产生使转子旋转的转矩力。

Claims (4)

  1. 一种五自由度无轴承开关磁阻电机,包括定子和转子,其特征在于:所述转子包括两端分别延伸至定子外侧的转轴(4),同轴套在转轴(4)上的轴向转子铁心(41),以及分别连接于轴向转子铁心(41)的中部和两端的径向转子铁心(2)、径向转子齿(21),所述径向转子铁心(2)的外圆周通过径向磁化的永磁环(3)连接有轴向转子铁心(1),所述轴向转子铁心(1)的两端分别均匀设置有数个轴向转子齿(20);所述定子包括对称设置于转子两侧的两个定子铁心,每一个定子铁心由一体的轴向定子铁心(5)和径向定子铁心(6)组成,所述轴向定子铁心(5)的内端均匀设置有数个轴向悬浮齿(7),以及均匀分布在设置于相邻轴向悬浮齿(7)之间的轴向隔磁块(18)上的数个轴向转矩齿(9),所述径向定子铁心(6)的内圆周均匀设置有数个正对径向转子齿(21)的径向悬浮齿(11),以及均匀分布在设置于相邻径向悬浮齿(11)之间的径向隔磁块(42)上的数个径向转矩齿(13),所述轴向悬浮齿(7)、轴向转矩齿(9)、径向悬浮齿(11)、径向转矩齿(13)上分别绕制有轴向悬浮绕组(8)、轴向转矩绕组(10)、径向悬浮绕组(12)、径向转矩绕组(19)。
  2. 如权利要求1所述的一种五自由度无轴承开关磁阻电机,其特征在于:所述轴向转子齿(20)、径向转子齿(21)的齿宽、齿厚分别与轴向转矩齿(9)、径向转矩齿(13)的齿宽、齿厚相同。
  3. 如权利要求1所述的一种五自由度无轴承开关磁阻电机,其特征在于:所述永磁环(3)采用稀土永磁体或铁氧体永磁体制成。
  4. 如权利要求1所述的一种五自由度无轴承开关磁阻电机,其特征在于:所述轴向悬浮齿(7)的齿宽大于轴向转矩齿(9)的齿宽,以及电机的轴向极距;径向悬浮齿(11)的齿宽大于径向转矩齿(13)的齿宽,以及电机的径向极距;轴向转矩齿(9)、径向转矩齿(13)的齿宽分别与轴向转子齿(20)、径向转子齿(21)的相同,电机的径向极距与轴向极距相等。
PCT/CN2019/091320 2018-06-30 2019-06-14 一种五自由度无轴承开关磁阻电机 WO2020001294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810702186.3A CN108599504B (zh) 2018-06-30 2018-06-30 一种五自由度无轴承开关磁阻电机
CN201810702186.3 2018-06-30

Publications (1)

Publication Number Publication Date
WO2020001294A1 true WO2020001294A1 (zh) 2020-01-02

Family

ID=63635166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091320 WO2020001294A1 (zh) 2018-06-30 2019-06-14 一种五自由度无轴承开关磁阻电机

Country Status (2)

Country Link
CN (1) CN108599504B (zh)
WO (1) WO2020001294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472241A (zh) * 2021-07-19 2021-10-01 大连交通大学 一种五自由度永磁磁悬浮电机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599504B (zh) * 2018-06-30 2019-12-31 淮阴工学院 一种五自由度无轴承开关磁阻电机
CN109888942A (zh) * 2019-04-13 2019-06-14 山东科技大学 一种新型16相磁悬浮开关磁阻电机
CN109962569B (zh) * 2019-04-22 2024-09-24 南京埃克锐特机电科技有限公司 一种五自由度电磁型磁悬浮开关磁阻电机及控制方法
CN112202304B (zh) * 2020-10-19 2021-07-27 华中科技大学 一种全自由度交替极无轴承电机及其主动控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220832A (zh) * 2007-11-28 2008-07-16 江苏大学 径向四极二相交流驱动的径向-轴向混合磁轴承
CN102306995A (zh) * 2011-08-26 2012-01-04 北京航空航天大学 一种永磁偏置无轴承开关磁阻电机
CN106026615A (zh) * 2016-06-08 2016-10-12 淮阴工学院 一种集成化的五自由度磁悬浮直驱电机
CN108599504A (zh) * 2018-06-30 2018-09-28 淮阴工学院 一种五自由度无轴承开关磁阻电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062753A1 (de) * 1999-12-23 2001-10-04 Wolfgang Amrhein Elektrischer Reluktanzbetrieb mit Permanent-Magneterregung zur leistungsarmen Erzeugung von Drehmomenten und gegebenenfalls Tragkräften
US20040256935A1 (en) * 2003-06-19 2004-12-23 Andrew Kenny Magnetic bearing with permanent magnet poles
CN106050918B (zh) * 2016-06-08 2019-05-24 淮阴工学院 一种永磁偏置五自由度集成化磁悬浮支撑系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220832A (zh) * 2007-11-28 2008-07-16 江苏大学 径向四极二相交流驱动的径向-轴向混合磁轴承
CN102306995A (zh) * 2011-08-26 2012-01-04 北京航空航天大学 一种永磁偏置无轴承开关磁阻电机
CN106026615A (zh) * 2016-06-08 2016-10-12 淮阴工学院 一种集成化的五自由度磁悬浮直驱电机
CN108599504A (zh) * 2018-06-30 2018-09-28 淮阴工学院 一种五自由度无轴承开关磁阻电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472241A (zh) * 2021-07-19 2021-10-01 大连交通大学 一种五自由度永磁磁悬浮电机
CN113472241B (zh) * 2021-07-19 2023-08-25 大连交通大学 一种五自由度永磁磁悬浮电机

Also Published As

Publication number Publication date
CN108599504B (zh) 2019-12-31
CN108599504A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US11456631B2 (en) Disc-type three-degree-of-freedom magnetic suspension switched reluctance motor
WO2020001294A1 (zh) 一种五自由度无轴承开关磁阻电机
US11303191B2 (en) Three-degree-of-freedom bearingless switch reluctance motor excited by constant current source
WO2019161624A1 (zh) 一种非对称双三相弧线永磁同步电机
CN108847725B (zh) 一种定子永磁式薄片型无轴承开关磁阻电机
CN107888041A (zh) 一种无轴承开关磁阻电机
WO2022057625A1 (zh) 三悬浮极磁悬浮薄片开关磁阻电机
WO2020001290A1 (zh) 一种恒流源励磁的三自由度无轴承异步电机
CN108712043B (zh) 一种定子永磁偏置五自由度无轴承异步电机
CN108809024B (zh) 一种轴向单自由度无轴承开关磁阻电机
CN108649764B (zh) 一种恒流源励磁的三自由度无轴承永磁电机
CN108599501B (zh) 一种轴向单自由度无轴承异步电机
CN108696078B (zh) 一种磁悬浮笼型异步主轴电机
CN108696190A (zh) 一种带隔磁环的三自由度永磁型无轴承电机
CN108599505A (zh) 一种五自由度无轴承开关磁阻电机
CN108809021B (zh) 一种双薄片式五自由度无轴承开关磁阻电机
CN108696191A (zh) 一种集成式五自由度无轴承异步电机
CN112713814A (zh) 一种五自由度锥形混合励磁磁悬浮开关磁阻电机
CN108712048B (zh) 一种定子永磁式五自由度锥形无轴承开关磁阻电机
CN108768215A (zh) 一种径向电机轴向轴承的盘式磁悬浮开关磁阻电机
CN108847726B (zh) 一种盘式三自由度无轴承异步电机
CN209120023U (zh) 一种悬浮齿内置式外转子无轴承开关磁阻电机
WO2020001292A1 (zh) 一种三自由度异步型无轴承电机
CN108696189A (zh) 一种径向轴承轴向电机的盘式磁悬浮开关磁阻电机
CN109412369A (zh) 一种悬浮齿内置式外转子无轴承开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826312

Country of ref document: EP

Kind code of ref document: A1