[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020001265A1 - 车辆的对外充电方法和装置 - Google Patents

车辆的对外充电方法和装置 Download PDF

Info

Publication number
WO2020001265A1
WO2020001265A1 PCT/CN2019/090686 CN2019090686W WO2020001265A1 WO 2020001265 A1 WO2020001265 A1 WO 2020001265A1 CN 2019090686 W CN2019090686 W CN 2019090686W WO 2020001265 A1 WO2020001265 A1 WO 2020001265A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
signal
charge
power
battery pack
Prior art date
Application number
PCT/CN2019/090686
Other languages
English (en)
French (fr)
Inventor
庞成哲
张鑫
马爱国
王洪军
邢骁
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020001265A1 publication Critical patent/WO2020001265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of charging, and relates to a method and device for external charging of a vehicle.
  • the present disclosure provides a method and device for external charging of a vehicle, which are used to solve the problems of high cost and low efficiency of charging an anchor electric vehicle in the prior art.
  • a method for externally charging a vehicle includes:
  • the charge and discharge controller detects the connection signal of the discharge gun
  • the charge and discharge controller and the battery management system BMS receive a discharge on signal
  • the BMS controls the high-voltage distribution box to cause the battery pack to release DC power
  • the charge and discharge controller After the charge and discharge controller receives the connection signal and the discharge on signal, the charge and discharge controller detects whether the first signal of the discharge gun is a first rated value, and when the first signal is When the first rated value is preset, the charge and discharge controller sends a second signal to the charged vehicle; when the first signal changes from the first rated value to the preset second rated value, the charge and discharge controller The discharge controller converts the DC power released by the battery pack into AC power to charge the charged vehicle.
  • the method further includes:
  • the BMS controls the high-voltage distribution box to cut off the direct current circuit of the battery pack;
  • the charge and discharge controller stops discharging to the outside.
  • the method when the charge and discharge controller converts the DC power released by the battery pack into AC power to charge a charged vehicle, the method includes:
  • the charge and discharge controller continuously detects whether the first signal is a second rated value
  • the charge and discharge controller When the first signal is the second rated value, it is determined that the charge and discharge controller is in a normal state, and the charge and discharge controller detects the temperature of the discharge port. When the charge and discharge controller stops external discharge.
  • the BMS controlling the high-voltage distribution box to cause the battery pack to release DC power includes:
  • the BMS obtains information of multiple groups of battery packs, and determines whether there is a faulty battery pack
  • the BMS controls the non-faulty battery pack to discharge in order of the voltage value.
  • the method further includes:
  • the charge and discharge controller determines whether a first ratio of the input DC power and the output AC power is less than a preset limit. When the first ratio is less than the limit, the charge and discharge controller increases Bus voltage to suppress circulating current.
  • the first signal is a voltage value of a control confirmation CP signal in the discharge gun
  • the second signal is a signal pulse width modulation (PWM) signal
  • the first rated value is greater than the second rated value
  • the first rating value is used to indicate that the discharge gun is successfully connected to the charging gun of the charging vehicle
  • the second rating value is used to indicate that the charging vehicle is in a normal state and allows charging.
  • the BMS controlling the high-voltage distribution box to cause the battery pack to release DC power includes:
  • the BMS detects the state of the high-voltage power distribution box and the battery pack
  • the BMS controls the high-voltage power distribution box to cause the battery pack to release DC power and pre-charge the charge and discharge controller.
  • the BMS controlling the high-voltage distribution box to cause the battery pack to release DC power further includes:
  • the BMS detects the discharge power and the remaining power of the battery pack
  • the BMS controls the high-voltage distribution box to cut off a direct current circuit of a battery pack.
  • an external charging device for a vehicle including: a charge-discharge controller and a battery management system BMS;
  • the charge and discharge controller is used to detect a connection signal of the discharge gun
  • the charge-discharge controller is configured to receive a discharge-on signal when a discharge switch is turned on;
  • the BMS is configured to receive a discharge on signal when the discharge switch is turned on;
  • the BMS is used to control the high-voltage power distribution box to cause the battery pack to release DC power after receiving the discharge start signal;
  • the charge and discharge controller is configured to detect whether the first signal of the discharge gun is a first rated value after receiving the connection signal and the discharge on signal, and when the first signal is a preset first Send a second signal to the charged vehicle at the rated value; when the first signal changes from the first rated value to a preset second rated value, convert the DC power released by the battery pack to AC power to the charged vehicle Charge it.
  • the BMS is configured to control the high-voltage power distribution box to cut off a direct current circuit of the battery pack after receiving a discharge shutdown signal;
  • the charge and discharge controller is used to stop external discharge.
  • the charge and discharge controller is configured to:
  • the charge and discharge controller When the first signal is the second rated value, it is determined that the charge and discharge controller is in a normal state, and the temperature of the discharge port is detected, and when the temperature of the discharge port is greater than a preset first temperature threshold, external discharge is stopped.
  • the BMS is used for:
  • the charge and discharge controller is configured to:
  • the first signal is a voltage value of a control confirmation CP signal in the discharge gun
  • the second signal is a signal pulse width modulation (PWM) signal
  • the first rated value is greater than the second rated value
  • the first rated value is used to indicate that the discharge gun is successfully connected to the charging gun of the charged vehicle
  • the second rated value is used to indicate that the charged vehicle is in a normal state and allowed to be charged.
  • the BMS is used for:
  • the BMS is used for:
  • the high-voltage distribution box is controlled to cut off the DC power circuit of the battery pack.
  • the present disclosure is applied to a power-supply vehicle.
  • the charge-discharge controller detects a connection signal from the discharge gun, When it is turned on, the charge and discharge controller and the battery management system BMS receive a discharge on signal to indicate the discharge.
  • the BMS controls the high-voltage distribution box to release the DC power from the battery pack.
  • the charge and discharge controller receives the connection signal and the discharge on signal, Obtain the first signal in the discharge gun. When the first signal is the first rated value, send a second signal to the charging vehicle.
  • the DC power released by the bag is converted into AC power to charge the charging vehicle, which can provide the power supply vehicle with the function of a charging cabinet, so that the power of the charging vehicle can be quickly replenished, reducing the charging cost and improving the charging efficiency.
  • Fig. 1 is a flow chart showing a method for external charging of a vehicle according to an exemplary embodiment
  • Fig. 2 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment
  • Fig. 3 is a flow chart showing another method for external charging of a vehicle according to an exemplary embodiment
  • Fig. 4 is a flow chart showing another method for external charging of a vehicle according to an exemplary embodiment
  • Fig. 5 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment
  • Fig. 6 is a flow chart showing another method for external charging of a vehicle according to an exemplary embodiment
  • Fig. 7 is a flow chart showing another method for external charging of a vehicle according to an exemplary embodiment
  • Fig. 8 is a block diagram of an external charging device for a vehicle according to an exemplary embodiment
  • Fig. 9 is a connection relationship diagram of an external charging device of a vehicle according to an exemplary embodiment.
  • both the powered vehicle and the charged vehicle can be any kind of power battery.
  • the device can be, for example, an electric vehicle, such as an electric vehicle, not limited to a pure electric vehicle or a hybrid vehicle.
  • the power-supply vehicle and the charging vehicle include: BMS (English: Battery Management System, Chinese: Battery Management System), charging and discharging Controller, charging port, discharge port, discharge gun and high-voltage distribution box, discharge switch and other modules.
  • the charge-discharge controller may be a V2G (English: Vehicle-to-grid) controller.
  • the power-supply vehicle and the charging vehicle are both electric buses as an example.
  • Fig. 1 is a flowchart illustrating a method for external charging of a vehicle according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 The charge and discharge controller detects a connection signal of the discharge gun.
  • a vehicle as a power supply vehicle discharges externally.
  • the charge and discharge controller collects signals from the discharge gun.
  • the signals in the discharge gun may include:
  • the CC signal represents the CP signal for control confirmation, the PE signal for protective earth, the N signal for the neutral line, and the L1, L2, and L3 signals for three-phase AC power.
  • the charge and discharge controller can detect the connection signal sent by the discharge gun to confirm that the discharge gun has been connected to the charging vehicle.
  • the charge and discharge controller and BMS are powered on.
  • step 102 when the discharge switch is turned on, the charge and discharge controller and the battery management system BMS receive a discharge on signal.
  • the user can control the discharge switch by inputting a discharge on command (such as a switch on the dashboard or an option on the touch screen) on the control panel of the powered vehicle.
  • a discharge on command such as a switch on the dashboard or an option on the touch screen
  • the vehicle can also control the discharge switch on its own. After being turned on, the BMS and the charge and discharge controller receive a discharge on signal.
  • the discharge switch can be turned on first, and a discharge on signal is sent to the BMS and the charge and discharge controller, and then waits for discharge.
  • the connection signal for the connection between the gun and the charging vehicle.
  • the drive module performs power-on operations on the charge and discharge controller and the BMS.
  • step 103 after the BMS receives the discharge start signal, the BMS controls the high-voltage power distribution box to cause the battery pack to release DC power.
  • the BMS can start to enter a discharge-ready mode, that is, control the high-voltage power distribution box to cause the battery pack to release DC power.
  • Step 104 After the charge and discharge controller receives the connection signal and the discharge on signal, the charge and discharge controller detects whether the first signal of the discharge gun is a first rated value. When the first signal is a preset first rated value, The charge and discharge controller sends a second signal to the charged vehicle. When the first signal changes from the first rated value to a preset second rated value, the charge and discharge controller converts the DC power released by the battery pack into AC power to charge the charged vehicle.
  • the charge-discharge controller can start to enter the discharge-ready mode. Based on the signal in the discharge gun, control the charge-discharge controller to convert the DC power released by the battery pack into AC power. It is transmitted to the charging vehicle through the discharge port. For example, the voltage value of the first signal (for example, the CP signal) in the discharge gun can be detected. When the CP signal is the first rated value (for example, 9V), it can be determined that the powered vehicle can be used as a charging device, and the charge and discharge control The device sends a second signal (for example, a square wave signal) to the charged vehicle, which is used to inform the charged vehicle of the power supply information of the vehicle.
  • a second signal for example, a square wave signal
  • the charge and discharge controller converts the DC power released by the high-voltage power distribution box into AC power.
  • the vehicle in this embodiment may further include modules such as a vehicle controller, an ECU (English: Electronic Control Unit, Chinese: electronic control unit), and the like, which are used to control communication between various modules of the powered vehicle, and can To manage the collected signals, communication can be realized through CAN (English: Controller Area Network, Chinese: Controller Area Network) bus, LIN (English: Local Interconnect Network, Chinese: Local Internet) bus, or hard wire.
  • CAN International: Controller Area Network, Chinese: Controller Area Network
  • LIN English: Local Interconnect Network, Chinese: Local Internet
  • hard wire for example, you can Discharge the discharge start signal through the CAN bus, or the connection signal of the discharge gun and the signal in the discharge gun through hard wires.
  • the present disclosure is applied to a power-supply vehicle.
  • the charge-discharge controller detects a connection signal from the discharge gun, When it is turned on, the charge and discharge controller and the battery management system BMS receive a discharge on signal to indicate the discharge.
  • the BMS controls the high-voltage distribution box to release the DC power from the battery pack.
  • the charge and discharge controller receives the connection signal and the discharge on signal, Obtain the first signal in the discharge gun.
  • the first signal is the first rated value
  • the first signal changes from the first rated value to the preset second rated value, change the battery.
  • the DC power released by the bag is converted into AC power to charge the charging vehicle, which can provide the power supply vehicle with the function of a charging cabinet, so that the power of the charging vehicle can be quickly replenished, reducing the charging cost and improving the charging efficiency.
  • Fig. 2 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • step 105 after receiving the discharge shutdown signal, the BMS controls the high-voltage distribution box to cut off the direct current circuit of the battery pack.
  • step 106 the charge / discharge controller stops external discharge.
  • the discharge shutdown signal may be input by a user through a control panel on the powered vehicle, actively controlling the powered vehicle to stop discharging to the charging vehicle, and stopping the powered vehicle from discharging to the charged vehicle.
  • the BMS and the charge / discharge controller receive the discharge shutdown signal, the BMS controls the high-voltage distribution box to cut off the DC circuit of the battery pack.
  • the charge / discharge controller turns off the internal switching devices, cuts off the circuit on the AC side (that is, the discharge port side), and stops. Discharge to the outside.
  • Fig. 3 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 3, step 104 includes:
  • Step 1041 The charge / discharge controller continuously detects whether the first signal is a second rated value.
  • step 1042 when the first signal is not the second rated value, it is determined that the charge-discharge controller is in an abnormal state, and the charge-discharge controller stops external discharge.
  • Step 1043 when the first signal is the second rated value, it is determined that the charge and discharge controller is in a normal state, the charge and discharge controller detects the temperature of the discharge port, and when the temperature of the discharge port is greater than a preset first temperature threshold, the charge and discharge control The device stops discharging to the outside.
  • the charge-discharge controller continuously monitors the state of the first signal.
  • the first signal is not the second rated value, it indicates that the charge-discharge controller is in an abnormal state, that is, the power-supply vehicle.
  • the charge and discharge controller turns off the internal switching device, cuts off the circuit on the AC side (that is, the discharge port side), stops external discharge, and can further control the high-voltage distribution box through BMS. Cut off the DC circuit of the battery pack.
  • the first signal When the first signal is the second rated value, it indicates that when the charge and discharge controller is in a normal state, the temperature of the discharge port (which can be obtained by a temperature sensor provided at the discharge port) and the signal state in the discharge gun are obtained. Any abnormality in the temperature of the discharge port and the signal status in the discharge gun also indicates that the power supply vehicle has failed and cannot continue to discharge to the charged vehicle.
  • the charge and discharge controller turns off the internal switching device and cuts off the AC side (that is, the discharge Port side), stop external discharge, and cut off the DC circuit of the battery pack through the BMS control high-voltage distribution box.
  • the temperature of the discharge port is greater than a preset first temperature threshold (for example, it can be set based on a large amount of experimental data or adjusted according to the specific charging situation of the vehicle), indicating that the temperature of the discharge port is abnormal, and the signal in the discharge gun For example, the voltage value of the CC signal or CP signal exceeds the preset range, which indicates that the signal state in the discharge gun is abnormal.
  • a preset first temperature threshold for example, it can be set based on a large amount of experimental data or adjusted according to the specific charging situation of the vehicle
  • the temperature of the charging port can also be monitored in real time by setting a temperature sensor on the charging port.
  • the temperature of the charging port can be controlled by adjusting the charging current. This can be achieved, for example, by the following steps:
  • the preset correspondence between temperature and current is used to control the charging and discharging controller of the charged vehicle to adjust the charging current It is a target current value corresponding to the temperature of the charging port.
  • the charging current can be adjusted to stabilize the charging process. For example: control the charging current to fall with a certain slope as the temperature of the charging port rises.
  • the temperature of the charging port is greater than the temperature threshold of the first charging port, it indicates that the temperature of the charging port is abnormal.
  • the temperature of the charging port is always greater than the temperature threshold of the first charging port, then the charge and discharge controller that controls the charging vehicle turns off the internal switching device and cuts off the circuit on the AC side (that is, the discharging port side).
  • the charging and discharging controller of the charged vehicle may be controlled to open the charging port again, and the charging current may be controlled to rise at a certain slope until the normal charging state is restored.
  • Fig. 4 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 4, step 103 includes:
  • Step 1031 The BMS obtains information of multiple battery packs, and determines whether there is a faulty battery pack.
  • step 1032 the BMS controls the non-faulty battery pack to discharge in order of the voltage value.
  • the BMS can first obtain the information of multiple groups of battery packs (for example, an information acquisition device such as a sensor can be provided on each group of battery packs to collect the battery status and battery voltage of each group of battery packs) To determine the status of the battery pack), and determine which of the multiple battery packs are faulty battery packs and which are non-faulty battery packs.
  • the discharge sequence of multiple battery packs can be discharged according to the single-cell voltage value of the non-faulty battery pack, that is, the battery pack with a high single-cell voltage is discharged first.
  • Group C is discharged at the same time to achieve the purpose of voltage balancing of multiple groups of battery packs.
  • Fig. 5 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 5, the method further includes:
  • step 107 the charge-discharge controller determines whether the first ratio of the input DC-side power and the output AC-side power is less than a preset limit. When the first ratio is less than the limit, the charge-discharge controller increases the bus voltage to suppress Circulation.
  • electric buses are usually equipped with two charge and discharge controllers because of their high power consumption.
  • a total of four charge and discharge controllers participate in the charging process, which can achieve At the same time of high-power charging, circulating current problems are also prone to occur (When the bus voltage of the charge and discharge controller on one side is much higher than the bus voltage of the charge and discharge controller on the other side, the current flows from the high-voltage charge-discharge controller to the low-voltage charge and discharge controller. Discharge controller), causing irreversible damage to the hardware of the charge and discharge controller.
  • the charge-discharge controller includes a first charge-discharge controller and a second charge-discharge controller, and first calculates a first ratio of the input DC-side power and the output AC-side power of the first charge-discharge controller. , And the second ratio of the input DC power and the output AC power of the second charge and discharge controller, when the signal power ratio between the DC and AC sides is less than a preset limit (for example, it can be 0.85), It is determined that a circulating current has occurred, and the circulating current can be suppressed by increasing the bus voltage of the side charge-discharge controller to avoid hardware damage of the charge-discharge controller.
  • a preset limit for example, it can be 0.85
  • a third charge-discharge controller and a fourth charge-discharge controller may be included at the end of the charging vehicle.
  • a third ratio of the DC-side power output from the third charge-discharge controller to the input AC-side power is calculated.
  • a preset limit for example 0.85
  • the first signal is a voltage value of a control confirmation CP signal in the discharge gun.
  • the second signal is a PWM (English: Pulse Width Modulation, Chinese: Signal Pulse Width Modulation) signal to inform the charged vehicle of the power supply of the vehicle.
  • PWM Pulse Width Modulation
  • Chinese Signal Pulse Width Modulation
  • the duty of the PWM signal is controlled to indicate the powered vehicle. Battery information.
  • the first rated value is greater than the second rated value.
  • the first rated value may be 9V, and the second rated value may be 6V.
  • the first rated value is used to indicate that the discharge gun is successfully connected to the charging gun of the charged vehicle
  • the second rated value is used to indicate that the charged vehicle is in a normal state and allowed to be charged.
  • Fig. 6 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 6, step 103 includes:
  • Step 1033 The BMS detects the status of the high-voltage power distribution box and the battery pack.
  • step 1034 when the high-voltage power distribution box and the battery pack are in a non-fault state, the BMS controls the high-voltage power distribution box to cause the battery pack to release DC power, and precharge the battery pack and discharge controller.
  • the BMS controls the high voltage distribution box to make the battery pack release DC power. Before, the state of the high-voltage distribution box and the battery pack were detected. When the high-voltage distribution box is in a fault state or the battery pack is in a fault state, BMS controls the high-voltage distribution box to cut off the DC circuit of the battery pack.
  • the BMS controls the high-voltage distribution box to release the DC power from the battery pack, so that the DC voltage of the battery pack is added between the positive and negative poles on the DC side of the charge and discharge controller, and the charge and discharge controller is precharged. To protect the hardware of the charge and discharge controller.
  • Fig. 7 is a flowchart illustrating another external charging method for a vehicle according to an exemplary embodiment. As shown in Fig. 7, step 103 further includes:
  • step 1035 the BMS detects the discharge power and the remaining power of the battery pack.
  • Step 1036 When the discharge power is greater than a preset power threshold or the remaining power is less than a preset power threshold, the BMS controls the high-voltage power distribution box to cut off the DC power circuit of the battery pack.
  • the BMS controls the high-voltage distribution box to make the battery pack release DC power
  • the status of the high-voltage distribution box, the discharge power of the battery pack, and the remaining power are monitored in real time. If the high-voltage distribution box is in an abnormal state, the power supply of the powered vehicle is explained. The system has failed and cannot continue to discharge to the charged vehicle. At this time, the high voltage distribution box is controlled by the BMS to cut off the DC circuit of the battery pack. Similarly, when the discharge power of the battery pack is greater than the power threshold, it indicates that the DC current released by the battery pack has exceeded the control range of the BMS.
  • the power threshold can be set to the maximum discharge power allowed by the BMS, or can be set to less than The power value of the maximum discharge power allowed by the BMS.
  • the high voltage distribution box is controlled by the BMS to cut off the DC circuit of the battery pack.
  • the remaining power (English: State of Charge, abbreviation: SOC) is less than a preset power threshold (for example, it can be set to 30%)
  • a preset power threshold for example, it can be set to 30%
  • the present disclosure is applied to a power-supply vehicle.
  • the charge-discharge controller detects a connection signal from the discharge gun, When it is turned on, the charge and discharge controller and the battery management system BMS receive a discharge on signal to indicate the discharge.
  • the BMS controls the high-voltage distribution box to release the DC power from the battery pack.
  • the charge and discharge controller receives the connection signal and the discharge on signal, Obtain the first signal in the discharge gun.
  • the first signal is the first rated value
  • the first signal changes from the first rated value to the preset second rated value, change the battery.
  • the DC power released by the bag is converted into AC power to charge the charging vehicle, which can provide the power supply vehicle with the function of a charging cabinet, so that the power of the charging vehicle can be quickly replenished, reducing the charging cost and improving the charging efficiency.
  • Fig. 8 is a block diagram of an external charging device for a vehicle according to an exemplary embodiment. As shown in Fig. 8, the device 200 includes a charge-discharge controller 201 and a battery management system BMS 202.
  • the charge and discharge controller 201 is used to detect a connection signal of the discharge gun.
  • the charge-discharge controller 201 is configured to receive a discharge-on signal when a discharge switch is turned on.
  • BMS 202 is used to receive the discharge start signal when the discharge switch is turned on.
  • BMS 202 is used to control the high-voltage distribution box to release DC power from the battery pack after receiving the discharge start signal.
  • the charge and discharge controller 201 is configured to detect whether the first signal of the discharge gun is the first rated value after receiving the connection signal and the discharge on signal. When the first signal is the preset first rated value, it is sent to the charged vehicle. ⁇ ⁇ The second signal. When the first signal changes from the first rated value to a preset second rated value, the DC power released by the battery pack is converted into AC power to charge the charged vehicle.
  • the BMS 202 is used to control the high-voltage power distribution box to cut off the direct current circuit of the battery pack after receiving the discharge shutdown signal.
  • the charge and discharge controller 201 is used to stop external discharge.
  • the charge and discharge controller 201 is configured to:
  • the first signal is the second rated value
  • the temperature of the discharge port is greater than a preset first temperature threshold, the external discharge is stopped.
  • BMS 202 is used to:
  • the charge and discharge controller 201 is configured to:
  • the first signal is a voltage value of a control confirmation CP signal in the discharge gun.
  • the second signal is a signal pulse width modulated PWM signal.
  • the first rated value is greater than the second rated value.
  • the first rated value is used to indicate that the discharge gun is successfully connected to the charging gun of the charged vehicle
  • the second rated value is used to indicate that the charged vehicle is in a normal state and allowed to be charged.
  • BMS 202 is used to:
  • the high-voltage power distribution box and the battery pack are in a non-fault state, the high-voltage power distribution box is controlled to cause the battery pack to release DC power and pre-charge the charge and discharge controller 201.
  • BMS 202 is used to:
  • the high-voltage distribution box is controlled to cut off the DC circuit of the battery pack.
  • FIG. 9 is a connection relationship diagram of an external charging device of any vehicle described in the above embodiment.
  • the device includes two discharge guns (a left discharge gun and a right discharge gun) for charging with The charging port of the vehicle is connected.
  • Two charge and discharge controllers (the left charge and discharge controller and the right charge and discharge controller) are connected to the two discharge guns respectively, and are used to detect signals in the discharge gun (including: connection signals used to indicate whether the discharge gun is connected, CC signal, CP signal, etc.).
  • the BMS is connected to the high-voltage distribution box, which is used to control the charging and disconnecting of the charging contactor and DC contactor in the high-voltage distribution box to control the battery pack to release DC power or cut off the DC power circuit.
  • the instrument cluster is connected to two charge and discharge controllers through a drive module, where the drive module is controlled by a dual relay.
  • the discharge switch is connected via a meter, a charging gateway and two charge-discharge controllers.
  • the device also includes a vehicle controller, which is connected to a discharge gun, a charge and discharge controller, a BMS, a combination meter, and a charging gateway, respectively. It is used to control communication between various modules through CAN lines or hard lines, and can collect The received signals can be managed, and the status information of each module can also be detected. For example, after the discharge switch is turned on, the signal indicating the discharge switch is turned on is sent to the vehicle controller through the meter and the charging gateway, and then the vehicle controller sends the discharge on signal to the charge and discharge controller and the BMS, so that The charge-discharge controller and the BMS enter a discharge-ready mode.
  • a vehicle controller which is connected to a discharge gun, a charge and discharge controller, a BMS, a combination meter, and a charging gateway, respectively. It is used to control communication between various modules through CAN lines or hard lines, and can collect The received signals can be managed, and the status information of each module can also be detected. For example, after the discharge switch is turned on, the
  • connection relationship diagram shown in FIG. 9 is only an implementation manner of the foregoing embodiment, and the present disclosure is not limited to the specific structure described above.
  • the present disclosure is applied to a power-supply vehicle.
  • the charge-discharge controller detects a connection signal from the discharge gun, When it is turned on, the charge and discharge controller and the battery management system BMS receive a discharge on signal to indicate the discharge.
  • the BMS controls the high-voltage distribution box to release the DC power from the battery pack.
  • the charge and discharge controller receives the connection signal and the discharge on signal, Obtain the first signal in the discharge gun.
  • the first signal is the first rated value
  • the first signal changes from the first rated value to the preset second rated value, change the battery.
  • the DC power released by the bag is converted into AC power to charge the charging vehicle, which can provide the power supply vehicle with the function of a charging cabinet, so that the power of the charging vehicle can be quickly replenished, reducing the charging cost and improving the charging efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开涉及一种车辆的对外充电方法,包括:充放电控制器检测放电枪的连接信号;BMS接收到放电开启信号后,BMS控制高压配电箱使电池包释放直流电;在充放电控制器接收到连接信号以及放电开启信号后,检测放电枪的第一信号是否为第一额定值,当第一信号为预设的第一额定值时,充放电控制器向充电车辆发送第二信号;当第一信号由第一额定值变为预设的第二额定值时,充放电控制器将电池包释放的直流电转换为交流电对充电车辆进行充电。

Description

车辆的对外充电方法和装置
相关申请的交叉引用
本公开基于申请号为201810715352.3,申请日为2018年6月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及充电技术领域,涉及一种车辆的对外充电方法和装置。
背景技术
随着社会的高速发展,汽车的保有量不断升高,而使用传统能源的汽车由于燃烧石油燃料产生尾气,会对环境造成污染,同时传统能源不可再生的问题也越来越严重,因此大力发展新能源已经成为了必然趋势,使用环保新能源的电动汽车已经成为了汽车技术发展的大趋势。但由于电量不足而导致抛锚的问题一直制约着电动汽车的推广和发展,尤其是针对耗电量较大的电动大巴车,需要大功率充电,救援难度大。现有技术中,通常采用的是移动的储能设备来救援由于电量不足而导致抛锚的电动汽车,成本高,并且无法支持大功率充电,充电效率低。
发明内容
本公开提供一种车辆的对外充电方法和装置,用以解决现有技术中给抛锚电动汽车充电,成本高和效率低的问题。
为了实现上述目的,根据本公开实施例的第一方面,提供一种车辆的对外充电方法,所述方法包括:
充放电控制器检测放电枪的连接信号;
当放电开关被开启时,所述充放电控制器和电池管理系统BMS接收放电开启信号;
所述BMS接收到所述放电开启信号后,所述BMS控制高压配电箱使电池包释放直流电;
在所述充放电控制器接收到所述连接信号以及所述放电开启信号后,所述充放电控 制器检测所述放电枪的第一信号是否为第一额定值,当所述第一信号为预设的第一额定值时,所述充放电控制器向充电车辆发送第二信号;当所述第一信号由所述第一额定值变为预设的第二额定值时,所述充放电控制器将所述电池包释放的直流电转换为交流电对充电车辆进行充电。
根据本公开的一些实施例,所述方法还包括:
在接收到放电关闭信号后,所述BMS控制所述高压配电箱切断所述电池包的直流电回路;
所述充放电控制器停止对外放电。
根据本公开的一些实施例,所述充放电控制器将所述电池包释放的直流电转换为交流电对充电车辆进行充电时,包括:
所述充放电控制器持续检测所述第一信号是否为第二额定值;
当所述第一信号不为第二额定值时,确定所述充放电控制器为异常状态,所述充放电控制器停止对外放电;
当所述第一信号为第二额定值时,确定所述充放电控制器为正常状态,所述充放电控制器检测放电口温度,当所述放电口的温度大于预设的第一温度阈值时,所述充放电控制器停止对外放电。
根据本公开的一些实施例,所述BMS控制高压配电箱使电池包释放直流电,包括:
所述BMS获取多组电池包的信息,判断是否存在故障电池包;
所述BMS控制非故障电池包按照电压值由大到小的顺序放电。
根据本公开的一些实施例,所述方法还包括:
所述充放电控制器判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当所述第一比值小于所述限值时,所述充放电控制器提高母线电压,以抑制环流。
根据本公开的一些实施例,所述第一信号为所述放电枪中的控制确认CP信号的电压值;
所述第二信号为信号脉冲宽度调制PWM信号;
所述第一额定值大于所述第二额定值;
所述第一额定值用于指示所述放电枪与所述充电车辆的充电枪连接成功,所述第二额定值用于指示所述充电车辆状态正常且允许充电。
根据本公开的一些实施例,所述BMS控制高压配电箱使电池包释放直流电包括:
所述BMS检测所述高压配电箱以及所述电池包的状态;
当所述高压配电箱以及所述电池包为无故障状态时,所述BMS控制所述高压配电箱使所述电池包释放直流电,并为所述充放电控制器进行预充。
根据本公开的一些实施例,所述BMS控制高压配电箱使电池包释放直流电,还包括:
所述BMS检测所述电池包的放电功率和剩余电量;
当所述放电功率大于预设的功率阈值或所述剩余电量小于预设的电量阈值时,所述BMS控制所述高压配电箱切断电池包的直流电回路。
根据本公开实施例的第二方面,提供一种车辆的对外充电装置,所述装置包括:充放电控制器和电池管理系统BMS;
所述充放电控制器用于检测放电枪的连接信号;
所述充放电控制器用于当放电开关被开启时,接收放电开启信号;
所述BMS用于当放电开关被开启时,接收放电开启信号;
所述BMS用于接收到所述放电开启信号后,所述BMS控制高压配电箱使电池包释放直流电;
所述充放电控制器用于在接收到所述连接信号以及所述放电开启信号后,检测所述放电枪的第一信号是否为第一额定值,当所述第一信号为预设的第一额定值时,向充电车辆发送第二信号;当所述第一信号由所述第一额定值变为预设的第二额定值时,将所述电池包释放的直流电转换为交流电对充电车辆进行充电。
根据本公开的一些实施例,所述BMS用于在接收到放电关闭信号后,控制所述高压配电箱切断所述电池包的直流电回路;
所述充放电控制器用于停止对外放电。
根据本公开的一些实施例,所述充放电控制器用于:
持续检测所述第一信号是否为第二额定值;
当所述第一信号不为第二额定值时,确定所述充放电控制器为异常状态,停止对外放电;
当所述第一信号为第二额定值时,确定所述充放电控制器为正常状态,检测放电口温度,当所述放电口的温度大于预设的第一温度阈值时,停止对外放电。
根据本公开的一些实施例,所述BMS用于:
获取多组电池包的信息,判断是否存在故障电池包;
控制非故障电池包按照电压值由大到小的顺序放电。
根据本公开的一些实施例,所述充放电控制器用于:
判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当所 述第一比值小于所述限值时,提高母线电压,以抑制环流。
根据本公开的一些实施例,所述第一信号为所述放电枪中的控制确认CP信号的电压值;
所述第二信号为信号脉冲宽度调制PWM信号;
所述第一额定值大于所述第二额定值;
所述第一额定值用于指示所述放电枪与所述充电车辆的充电枪连接成功,所述第二额定值用于指示所述充电车辆状态正常且允许充电。
根据本公开的一些实施例,所述BMS用于:
检测所述高压配电箱以及所述电池包的状态;
当所述高压配电箱以及所述电池包为无故障状态时,控制所述高压配电箱使所述电池包释放直流电,并为所述充放电控制器进行预充。
根据本公开的一些实施例,所述BMS用于:
检测所述电池包的放电功率和剩余电量;
当所述放电功率大于预设的功率阈值或所述剩余电量小于预设的电量阈值时,控制所述高压配电箱切断电池包的直流电回路。
通过上述技术方案,本公开应用于供电车辆,当供电车辆和充电车辆间通过供电车辆的放电枪和充电车辆的充电口连接时,充放电控制器检测到放电枪发出的连接信号,在放电开关被开启时,充放电控制器和电池管理系统BMS接收用于指示放电的放电开启信号,BMS控制高压配电箱使电池包释放直流电,在充放电控制器接收到连接信号以及放电开启信号后,获取放电枪中的第一信号,在第一信号为第一额定值时,向充电车辆发送第二信号,当第一信号由第一额定值变为预设的第二额定值时,将电池包释放的直流电转换为交流电对充电车辆进行充电,能够使供电车辆具备充电柜的功能,使充电车辆的电量能够得到快速补充,降低了充电成本,提高了充电效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种车辆的对外充电方法的流程图;
图2是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图3是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图4是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图5是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图6是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图7是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图;
图8是根据一示例性实施例示出的一种车辆的对外充电装置的框图;
图9是根据一示例性实施例示出的一种车辆的对外充电装置的连接关系图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在介绍本公开提供的车辆的对外充电方法和装置之前,首先对本公开中各个实施例所涉及的应用场景进行介绍,该应用场景中供电车辆和充电车辆均可以是任意一种使用动力电池作为能源的装置,例如可以是电动交通工具,如电动汽车,不限于纯电动汽车或混动汽车等,供电车辆和充电车辆中包括:BMS(英文:Battery Management System,中文:电池管理系统)、充放电控制器、充电口、放电口、放电枪和高压配电箱、放电开关等模块。其中,充放电控制器可以是V2G(英文:Vehicle-to-grid,中文:车辆到电网)控制器,在本实施例中,以供电车辆和充电车辆均为电动大巴车为例进行说明。
图1是根据一示例性实施例示出的一种车辆的对外充电方法的流程图,如图1所示,该方法包括:
步骤101,充放电控制器检测放电枪的连接信号。
举例来说,车辆作为供电车辆对外进行放电,首先,先检测放电枪是否已经与充电车辆连接,充放电控制器采集放电枪中的信号,其中放电枪中的信号可以包括:代表充电连接确认的CC信号,代表控制确认的CP信号,代表保护接地的PE信号,代表中线的N信号、代表三相交流电的L1、L2、L3信号。当供电车辆的放电口通过放电枪与充电车辆的充电口连接好后,充放电控制器能够检测到放电枪发送的连接信号,以确认放电枪已经与充电车辆连接,通过车辆上的驱动模块对充放电控制器和BMS进行上电操作。
步骤102,当放电开关被开启时,充放电控制器和电池管理系统BMS接收放电开启信号。
示例的,用户可以通过在供电车辆上控制面板输入放电开启指令(例如可以是仪表 盘的开关,或者触摸屏上的选项)来控制放电开关开启,还可以由车辆自主控制放电开关开启,在放电开关被开启后,BMS和充放电控制器接收到放电开启信号。
需要说明的是,步骤101和步骤102的执行顺序可以互换,本公开并不局限于上述执行顺序,例如,放电开关可以先开启,向BMS和充放电控制器发送放电开启信号,再等待放电枪与充电车辆连接完成的连接信号,当充放电控制器接收到连接信号后,由驱动模块对充放电控制器和BMS进行上电操作。
步骤103,BMS接收到放电开启信号后,BMS控制高压配电箱使电池包释放直流电。
示例的,BMS在接收到放电开启信号后,可以开始进入准备放电的模式,即控制高压配电箱使电池包释放直流电。
步骤104,在充放电控制器接收到连接信号以及放电开启信号后,充放电控制器检测放电枪的第一信号是否为第一额定值,当第一信号为预设的第一额定值时,充放电控制器向充电车辆发送第二信号。当第一信号由第一额定值变为预设的第二额定值时,充放电控制器将电池包释放的直流电转换为交流电对充电车辆进行充电。
举例来说,充放电控制器在接收到连接信号和放电开启信号后,可以开始进入准备放电的模式,根据放电枪中的信号,控制充放电控制器将电池包释放的直流电转转换为交流电,并通过放电口传输至充电车辆。例如,可以检测放电枪中的第一信号(例如可以是CP信号)的电压值,当CP信号为第一额定值(例如可以是:9V)时,确定供电车辆可以作为充电设备,充放电控制器向充电车辆发送第二信号(例如可以是方波信号),用来告知充电车辆供电车辆的电量信息,当充电车辆上的充电开关闭合、充电车辆状态正常且允许充电时,CP信号的电压值由第一额定值变为第二额定值(例如可以是由9V变为6V),充放电控制器将高压配电箱释放的直流电转换为交流电。
需要说明的是,本实施例中的车辆还可以包括整车控制器、ECU(英文:Electronic Control Unit,中文:电子控制单元)等模块,用于控制供电车辆各个模块之间的通信,并能够对将采集到的信号进行管理,可以通过CAN(英文:Controller Area Network,中文:控制器局域网络)总线、LIN(英文:Local Interconnect Network中文:本地互联网)总线或硬线来实现通信,例如可以通过CAN总线传递放电开启信号,或通过硬线来传递放电枪的连接信号、放电枪中的信号。
综上所述,本公开应用于供电车辆,当供电车辆和充电车辆间通过供电车辆的放电枪和充电车辆的充电口连接时,充放电控制器检测到放电枪发出的连接信号,在放电开关被开启时,充放电控制器和电池管理系统BMS接收用于指示放电的放电开启信号,BMS控制高压配电箱使电池包释放直流电,在充放电控制器接收到连接信号以及放电开启信 号后,获取放电枪中的第一信号,在第一信号为第一额定值时,向充电车辆发送第二信号,当第一信号由第一额定值变为预设的第二额定值时,将电池包释放的直流电转换为交流电对充电车辆进行充电,能够使供电车辆具备充电柜的功能,使充电车辆的电量能够得到快速补充,降低了充电成本,提高了充电效率。
图2是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图2所示,该方法包括:
步骤105,在接收到放电关闭信号后,BMS控制高压配电箱切断电池包的直流电回路。
步骤106,充放电控制器停止对外放电。
举例来说,放电关闭信号可以是用户通过供电车辆上控制面板输入的,主动控制供电车辆停止向充电车辆放电,使供电车辆停止向充电车辆放电。BMS和充放电控制器接收到放电关闭信号后,BMS控制高压配电箱切断电池包的直流电回路,充放电控制器关断内部的开关器件,切断交流侧(即放电口侧)的回路,停止对外放电。
图3是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图3所示,步骤104包括:
步骤1041,充放电控制器持续检测第一信号是否为第二额定值。
步骤1042,当第一信号不为第二额定值时,确定充放电控制器为异常状态,充放电控制器停止对外放电。
步骤1043,当第一信号为第二额定值时,确定充放电控制器为正常状态,充放电控制器检测放电口温度,当放电口的温度大于预设的第一温度阈值时,充放电控制器停止对外放电。
示例的,在供电车辆开始向充电车辆放电后,充放电控制器持续监测第一信号的状态,当第一信号不为第二额定值时,说明充放电控制器为异常状态时,即供电车辆出现了故障,无法继续向充电车辆放电,此时充放电控制器关断内部的开关器件,切断交流侧(即放电口侧)的回路,停止对外放电,还可以进一步通过BMS控制高压配电箱切断电池包的直流电回路。当第一信号为第二额定值时,说明充放电控制器为正常状态时,进一步获取放电口的温度(可以通过设置在放电口的温度传感器来获取),和放电枪中的信号状态,当放电口的温度和放电枪中的信号状态中任一项出现异常,同样说明供电车辆出现了故障,无法继续向充电车辆放电,充放电控制器关断内部的开关器件,切断交流侧(即放电口侧)的回路,停止对外放电,通过BMS控制高压配电箱切断电池包的直流电回路。例如,放电口的温度大于预设的第一温度阈值(例如可以根据大量的实验数据来设定,也可以根据车辆的具体充电情况来调整),说明放电口的温度异常,放电 枪中的信号例如CC信号或CP信号的电压值超出预设的范围,表示放电枪中的信号状态为异常状态。
需要说明的是,在充电车辆这一侧,也可以通过设置在充电口温度传感器来实时监测充电口的温度,当充电口的温度出现异常时,可以通过调整充电电流来控制充电口的温度。例如可以通过以下步骤来实现:
当充电口的温度小于等于第一充电口温度阈值,且大于预设的第二充电口温度阈值时,利用温度与电流的预设的对应关系,控制充电车辆的充放电控制器将充电电流调整为与充电口的温度对应的目标电流值。
举例来说,当充电口的温度还没有超过第一充电口温度阈值,但已经开始发热时(大于预设的第二充电口温度阈值),可以通过调整充电电流以稳定充电过程。例如:控制充电电流以一定的斜率随充电口的温度的升高而下降,当充电口的温度大于第一充电口温度阈值时,表示充电口的温度异常,若预设时间段内(例如1s)充电口的温度一直大于第一充电口温度阈值,那么控制充电车辆的充放电控制器关断内部的开关器件,切断交流侧(即放电口侧)的回路。
根据本公开的一些实施例,随着充电口的温度不断下降至正常温度时,可以控制充电车辆的充放电控制器再次打开充电口,控制充电电流以一定的斜率上升,直至恢复正常充电状态。
图4是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图4所示,步骤103包括:
步骤1031,BMS获取多组电池包的信息,判断是否存在故障电池包。
步骤1032,BMS控制非故障电池包按照电压值由大到小的顺序放电。
举例来说,电动大巴车由于耗电量大,高压配电箱中通常配置有多组电池包,能够给充电车辆提供大功率的直流电,而多组电池包的单节电压通常并不一致。为了保证多组电池包的电压均衡,BMS可以先获取多组电池包的信息(例如可以在每组电池包上设置有传感器等信息采集装置,用来采集每组电池包的电池状态和电池电压,从而判断电池包的状态),判断多组电池包中哪些是故障电池包,哪些是非故障电池包。多组电池包的放电顺序可以根据非故障电池包的单节电压值由大到小的顺序放电,即单节电压高的电池组先放电。
以非故障电池包有三组,分别为电池组A、电池组B、电池组C来举例,电池组A、电池组B、电池组C对应的单节电压分别为:UA、UB、UC,其中UA>UB>UC,那么可以先控制电池组A放电,直至UA=UB,再控制电池组A和电池组B同时放电,直至UA=UB=UC, 再控制电池组A、电池组B、电池组C同时放电,以达到多组电池包的电压均衡的目的。
图5是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图5所示,该方法还包括:
步骤107,充放电控制器判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当第一比值小于限值时,充放电控制器提高母线电压,以抑制环流。
举例来说,电动大巴车由于耗电量大通常设置有两个充放电控制器,当利用电动大巴车给电动大巴车充电时,一共有四个充放电控制器参与到充电的过程,能够实现大功率充电的同时,也容易出现环流问题(一侧充放电控制器的母线电压高出另一侧充放电控制器的母线电压很多时,电流从电压高的充放电控制器流向电压低的充放电控制器),造成充放电控制器的硬件不可逆的损坏。以供电车辆为例,充放电控制器包括:第一充放电控制器和第二充放电控制器,先计算第一充放电控制器的输入的直流侧功率与输出的交流侧功率的第一比值,和第二充放电控制器的输入的直流侧功率与输出的交流侧功率的第二比值,当直流侧和交流侧的信号功率比小于预设的限值(例如可以是0.85)时,可以判定产生了环流,可以通过提高该侧充放电控制器的母线电压来抑制环流,避免充放电控制器的硬件损坏。
同样的,在充电车辆这一端,可以包括第三充放电控制器和第四充放电控制器,先计算第三充放电控制器的输出的直流侧功率与输入的交流侧功率的第三比值,和第四充放电控制器的输出的直流侧功率与输入的交流侧功率的第四比值,当直流侧和交流侧的信号功率比小于预设的限值(例如可以是0.85)时,可以判定产生了环流,可以通过降低该侧充放电控制器的母线电压来抑制环流,避免充电车辆的充放电控制器的硬件损坏。
根据本公开的一些实施例,第一信号为放电枪中的控制确认CP信号的电压值。
第二信号为PWM(英文:Pulse Width Modulation,中文:信号脉冲宽度调制)信号,以告知充电车辆供电车辆的电量信息,例如可以是方波信号,通过控制PWM信号的占空比来指示供电车辆的电量信息。
第一额定值大于第二额定值。其中,第一额定值例如可以是9V,第二额定值可以是6V。
第一额定值用于指示放电枪与充电车辆的充电枪连接成功,第二额定值用于指示充电车辆状态正常且允许充电。
图6是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图6所示,步骤103包括:
步骤1033,BMS检测高压配电箱以及电池包的状态。
步骤1034,当高压配电箱以及电池包为无故障状态时,BMS控制高压配电箱使电池包释放直流电,并为充放电控制器进行预充。
示例的,由于整个放电过程中电压较高,如果直接将电池包释放直流电加载到充放电控制器上,容易对充放电控制器的硬件造成损坏,因此BMS控制高压配电箱使电池包释放直流电之前,先检测高压配电箱的状态以及电池包的状态,当高压配电箱为故障状态或电池包为故障状态时,BMS控制高压配电箱切断电池包的直流电回路,当高压配电箱以及电池包均为无故障状态时,BMS控制高压配电箱使电池包释放直流电,使电池包的直流电压加在充放电控制器直流侧正负极之间,对充放电控制器进行预充,以保护充放电控制器的硬件。
图7是根据一示例性实施例示出的另一种车辆的对外充电方法的流程图,如图7所示,步骤103还包括:
步骤1035,BMS检测电池包的放电功率和剩余电量。
步骤1036,当放电功率大于预设的功率阈值或剩余电量小于预设的电量阈值时,BMS控制高压配电箱切断电池包的直流电回路。
举例来说,在BMS控制高压配电箱使电池包释放直流电后,实时监测高压配电箱的状态、电池包的放电功率和剩余电量,若高压配电箱为异常状态,说明供电车辆的供电系统出现了故障,无法继续向充电车辆放电,此时通过BMS控制高压配电箱切断电池包的直流电回路。同样的,当电池包的放电功率大于功率阈值时,说明当前电池包释放的直流电已经超出BMS的控制范围,其中,功率阈值可以设置为BMS允许的最大放电功率,也可以根据具体需求设置为小于BMS允许的最大放电功率的功率值,此时通过BMS控制高压配电箱切断电池包的直流电回路。
根据本公开的一些实施例,为了保证供电车辆本身的续航能力,在剩余电量(英文:State of Charge,缩写:SOC)小于预设的电量阈值(例如可以设置为30%)时,通过BMS控制高压配电箱切断电池包的直流电回路。
综上所述,本公开应用于供电车辆,当供电车辆和充电车辆间通过供电车辆的放电枪和充电车辆的充电口连接时,充放电控制器检测到放电枪发出的连接信号,在放电开关被开启时,充放电控制器和电池管理系统BMS接收用于指示放电的放电开启信号,BMS控制高压配电箱使电池包释放直流电,在充放电控制器接收到连接信号以及放电开启信号后,获取放电枪中的第一信号,在第一信号为第一额定值时,向充电车辆发送第二信号,当第一信号由第一额定值变为预设的第二额定值时,将电池包释放的直流电转换为 交流电对充电车辆进行充电,能够使供电车辆具备充电柜的功能,使充电车辆的电量能够得到快速补充,降低了充电成本,提高了充电效率。
图8是根据一示例性实施例示出的一种车辆的对外充电装置的框图,如图8所示,该装置200包括:充放电控制器201和电池管理系统BMS 202。
充放电控制器201用于检测放电枪的连接信号。
充放电控制器201用于当放电开关被开启时,接收放电开启信号。
BMS 202用于当放电开关被开启时,接收放电开启信号。
BMS 202用于接收到放电开启信号后,BMS 202控制高压配电箱使电池包释放直流电。
充放电控制器201用于在接收到连接信号以及放电开启信号后,检测放电枪的第一信号是否为第一额定值,当第一信号为预设的第一额定值时,向充电车辆发送第二信号。当第一信号由第一额定值变为预设的第二额定值时,将电池包释放的直流电转换为交流电对充电车辆进行充电。
根据本公开的一些实施例,BMS 202用于在接收到放电关闭信号后,控制高压配电箱切断电池包的直流电回路。
充放电控制器201用于停止对外放电。
根据本公开的一些实施例,充放电控制器201用于:
持续检测第一信号是否为第二额定值。
当第一信号不为第二额定值时,确定充放电控制器201为异常状态,停止对外放电。
当第一信号为第二额定值时,确定充放电控制器201为正常状态,检测放电口温度,当放电口的温度大于预设的第一温度阈值时,停止对外放电。
根据本公开的一些实施例,BMS 202用于:
获取多组电池包的信息,判断是否存在故障电池包。
控制非故障电池包按照电压值由大到小的顺序放电。
根据本公开的一些实施例,充放电控制器201用于:
判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当第一比值小于限值时,提高母线电压,以抑制环流。
根据本公开的一些实施例,第一信号为放电枪中的控制确认CP信号的电压值。
第二信号为信号脉冲宽度调制PWM信号。
第一额定值大于第二额定值。
第一额定值用于指示放电枪与充电车辆的充电枪连接成功,第二额定值用于指示充电车辆状态正常且允许充电。
根据本公开的一些实施例,BMS 202用于:
检测高压配电箱以及电池包的状态。
当高压配电箱以及电池包为无故障状态时,控制高压配电箱使电池包释放直流电,并为充放电控制器201进行预充。
根据本公开的一些实施例,BMS 202用于:
检测电池包的放电功率和剩余电量。
当放电功率大于预设的功率阈值或剩余电量小于预设的电量阈值时,控制高压配电箱切断电池包的直流电回路。
图9是上述实施例中所述的任一种车辆的对外充电装置的连接关系图,如图9所示,该装置包括两个放电枪(左放电枪和右放电枪),用于与充电车辆的充电口连接。两个充放电控制器(左充放电控制器和右充放电控制器)分别和两个放电枪连接,用于检测放电枪中的信号(包括:用于指示放电枪是否已连接的连接信号、CC信号、CP信号等)。BMS和高压配电箱连接,用于控制高压配电箱中的充电接触器、直流接触器的吸合和断开,以控制电池包释放直流电或切断电直流电回路。组合仪表通过驱动模块与两个充放电控制器连接,其中,驱动模块由双路继电器来控制。放电开关通过仪表、充电网关和两个充放电控制器连接。
该装置中还包括整车控制器,分别与放电枪、充放电控制器、BMS、组合仪表、充电网关连接,用于通过CAN线或硬线来控制各个模块之间的通信、能够对将采集到的信号进行管理,还能够检测各个模块的状态信息。例如:放电开关被开启后通过仪表、充电网关,将用于指示放电开关被开启的信号发送给整车控制器,再由整车控制器发送放电开启信号发送给充放电控制器和BMS,使充放电控制器和BMS进入准备放电的模式。
需要说明的是,图9所示的连接关系图只是上述实施例的一种实现方式,本公开并不局限于上面已经描述出的具体结构。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
综上所述,本公开应用于供电车辆,当供电车辆和充电车辆间通过供电车辆的放电枪和充电车辆的充电口连接时,充放电控制器检测到放电枪发出的连接信号,在放电开关被开启时,充放电控制器和电池管理系统BMS接收用于指示放电的放电开启信号,BMS控制高压配电箱使电池包释放直流电,在充放电控制器接收到连接信号以及放电开启信号后,获取放电枪中的第一信号,在第一信号为第一额定值时,向充电车辆发送第二信号,当第一信号由第一额定值变为预设的第二额定值时,将电池包释放的直流电转换为 交流电对充电车辆进行充电,能够使供电车辆具备充电柜的功能,使充电车辆的电量能够得到快速补充,降低了充电成本,提高了充电效率。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,本领域技术人员在考虑说明书及实践本公开后,容易想到本公开的其它实施方案,均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。同时本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。本公开并不局限于上面已经描述出的精确结构,本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种车辆的对外充电方法,其特征在于,所述方法包括:
    充放电控制器检测放电枪的连接信号;
    当放电开关被开启时,所述充放电控制器和电池管理系统BMS接收放电开启信号;
    所述BMS接收到所述放电开启信号后,所述BMS控制高压配电箱使电池包释放直流电;
    在所述充放电控制器接收到所述连接信号以及所述放电开启信号后,所述充放电控制器检测所述放电枪的第一信号是否为第一额定值,当所述第一信号为预设的第一额定值时,所述充放电控制器向充电车辆发送第二信号;当所述第一信号由所述第一额定值变为预设的第二额定值时,所述充放电控制器将所述电池包释放的直流电转换为交流电对充电车辆进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在接收到放电关闭信号后,所述BMS控制所述高压配电箱切断所述电池包的直流电回路;
    所述充放电控制器停止对外放电。
  3. 根据权利要求1或2所述的方法,其特征在于,所述充放电控制器将所述电池包释放的直流电转换为交流电对充电车辆进行充电时,包括:
    所述充放电控制器持续检测所述第一信号是否为第二额定值;
    当所述第一信号不为第二额定值时,确定所述充放电控制器为异常状态,所述充放电控制器停止对外放电;
    当所述第一信号为第二额定值时,确定所述充放电控制器为正常状态,所述充放电控制器检测放电口温度,当所述放电口的温度大于预设的第一温度阈值时,所述充放电控制器停止对外放电。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述BMS控制高压配电箱使电池包释放直流电,包括:
    所述BMS获取多组电池包的信息,判断是否存在故障电池包;
    所述BMS控制非故障电池包按照电压值由大到小的顺序放电。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述充放电控制器判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当所述第一比值小于所述限值时,所述充放电控制器提高母线电压,以抑制环流。
  6. 根据权利要求1-5中任一项中所述的方法,其特征在于,所述第一信号为所述放电枪中的控制确认CP信号的电压值;
    所述第二信号为信号脉冲宽度调制PWM信号;
    所述第一额定值大于所述第二额定值;
    所述第一额定值用于指示所述放电枪与所述充电车辆的充电枪连接成功,所述第二额定值用于指示所述充电车辆状态正常且允许充电。
  7. 根据权利要求1-6中任一项中所述的方法,其特征在于,所述BMS控制高压配电箱使电池包释放直流电包括:
    所述BMS检测所述高压配电箱以及所述电池包的状态;
    当所述高压配电箱以及所述电池包为无故障状态时,所述BMS控制所述高压配电箱使所述电池包释放直流电,并为所述充放电控制器进行预充。
  8. 根据权利要求7所述的方法,其特征在于,所述BMS控制高压配电箱使电池包释放直流电,还包括:
    所述BMS检测所述电池包的放电功率和剩余电量;
    当所述放电功率大于预设的功率阈值或所述剩余电量小于预设的电量阈值时,所述BMS控制所述高压配电箱切断电池包的直流电回路。
  9. 一种车辆的对外充电装置,其特征在于,所述装置包括:充放电控制器和电池管理系统BMS;
    所述充放电控制器用于检测放电枪的连接信号;
    所述充放电控制器用于当放电开关被开启时,接收放电开启信号;
    所述BMS用于当放电开关被开启时,接收放电开启信号;
    所述BMS用于接收到所述放电开启信号后,所述BMS控制高压配电箱使电池包释放 直流电;
    所述充放电控制器用于在接收到所述连接信号以及所述放电开启信号后,检测所述放电枪的第一信号是否为第一额定值,当所述第一信号为预设的第一额定值时,向充电车辆发送第二信号;当所述第一信号由所述第一额定值变为预设的第二额定值时,将所述电池包释放的直流电转换为交流电对充电车辆进行充电。
  10. 根据权利要求9所述的装置,其特征在于,所述BMS用于在接收到放电关闭信号后,控制所述高压配电箱切断所述电池包的直流电回路;
    所述充放电控制器用于停止对外放电。
  11. 根据权利要求9或10所述的装置,其特征在于,所述充放电控制器用于:
    持续检测所述第一信号是否为第二额定值;
    当所述第一信号不为第二额定值时,确定所述充放电控制器为异常状态,停止对外放电;
    当所述第一信号为第二额定值时,确定所述充放电控制器为正常状态,检测放电口温度,当所述放电口的温度大于预设的第一温度阈值时,停止对外放电。
  12. 根据权利要求9-11中任一项所述的装置,其特征在于,所述BMS用于:
    获取多组电池包的信息,判断是否存在故障电池包;
    控制非故障电池包按照电压值由大到小的顺序放电。
  13. 根据权利要求9-12中任一项所述的装置,其特征在于,所述充放电控制器用于:
    判断输入的直流侧功率与输出的交流侧功率的第一比值是否小于预设的限值,当所述第一比值小于所述限值时,提高母线电压,以抑制环流。
  14. 根据权利要求9-13中任一项所述的装置,其特征在于,所述第一信号为所述放电枪中的控制确认CP信号的电压值;
    所述第二信号为信号脉冲宽度调制PWM信号;
    所述第一额定值大于所述第二额定值;
    所述第一额定值用于指示所述放电枪与所述充电车辆的充电枪连接成功,所述第二额定值用于指示所述充电车辆状态正常且允许充电。
  15. 根据权利要求9-14中任一项所述的装置,其特征在于,所述BMS用于:
    检测所述高压配电箱以及所述电池包的状态;
    当所述高压配电箱以及所述电池包为无故障状态时,控制所述高压配电箱使所述电池包释放直流电,并为所述充放电控制器进行预充。
  16. 根据权利要求15所述的装置,其特征在于,所述BMS用于:
    检测所述电池包的放电功率和剩余电量;
    当所述放电功率大于预设的功率阈值或所述剩余电量小于预设的电量阈值时,控制所述高压配电箱切断电池包的直流电回路。
PCT/CN2019/090686 2018-06-29 2019-06-11 车辆的对外充电方法和装置 WO2020001265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810715352.3A CN110661309A (zh) 2018-06-29 2018-06-29 车辆的对外充电方法和装置
CN201810715352.3 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001265A1 true WO2020001265A1 (zh) 2020-01-02

Family

ID=68986008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090686 WO2020001265A1 (zh) 2018-06-29 2019-06-11 车辆的对外充电方法和装置

Country Status (2)

Country Link
CN (1) CN110661309A (zh)
WO (1) WO2020001265A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715638B (zh) * 2020-05-26 2024-03-01 北京新能源汽车股份有限公司 一种车对车充电的控制方法及电动汽车
CN113824191A (zh) * 2021-10-20 2021-12-21 启东达普电子有限公司 一种电动客车移动应急电源系统
CN114604185A (zh) * 2022-03-25 2022-06-10 浙江极氪智能科技有限公司 一种充放电一体化的显示控制系统和车辆
CN118269704A (zh) * 2022-12-31 2024-07-02 华为技术有限公司 一种放电控制方法、装置、系统及车辆
CN116118548A (zh) * 2023-01-12 2023-05-16 公牛集团股份有限公司 用于电动汽车充电系统的cp信号适配装置和方法
CN118322869B (zh) * 2024-06-14 2024-09-10 比亚迪股份有限公司 车辆高压回路的控制方法及电源装置、电子设备和车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061990A (ja) * 2009-09-10 2011-03-24 Ricoh Co Ltd 充放電制御装置及び充電制御方法
CN104253464A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车之间相互充电的系统及充电连接器
CN105835714A (zh) * 2015-11-04 2016-08-10 郑州宇通客车股份有限公司 一种车对车充电机和系统以及充电方法
CN207291701U (zh) * 2017-07-31 2018-05-01 青岛特来电新能源有限公司 一种充电桩

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203205183U (zh) * 2011-12-31 2013-09-18 比亚迪股份有限公司 电感组件
CN104167770B (zh) * 2013-07-19 2017-07-28 郑州宇通客车股份有限公司 一种电池组放电控制方法和充电控制方法
EP3420434A4 (en) * 2016-02-25 2019-09-18 Valery Miftakhov AUTONOMOUS ADAPTER FOR CHARGING CONTROL OF ENERGY STORAGE DEVICES
CN107404132B (zh) * 2016-05-18 2021-06-04 台达电子工业股份有限公司 充电枪与电动车充电设备
CN107791872B (zh) * 2017-10-27 2020-07-24 北京新能源汽车股份有限公司 车载充电机及其控制方法和控制装置、车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061990A (ja) * 2009-09-10 2011-03-24 Ricoh Co Ltd 充放電制御装置及び充電制御方法
CN104253464A (zh) * 2013-06-28 2014-12-31 比亚迪股份有限公司 电动汽车之间相互充电的系统及充电连接器
CN105835714A (zh) * 2015-11-04 2016-08-10 郑州宇通客车股份有限公司 一种车对车充电机和系统以及充电方法
CN207291701U (zh) * 2017-07-31 2018-05-01 青岛特来电新能源有限公司 一种充电桩

Also Published As

Publication number Publication date
CN110661309A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2020001265A1 (zh) 车辆的对外充电方法和装置
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及系统
KR101921389B1 (ko) 전기 차량용 전원 시스템, 전기 차량, 및 전원 배터리를 충전하기 위한 방법
US8410755B2 (en) Fault tolerant modular battery management system
TWI474577B (zh) 電池管理系統、電池模組及均衡多個電池模組的方法
CA2860940C (en) System and method for high voltage cable detection in hybrid vehicles
JP2008099538A (ja) 自動車バッテリー管理システム
WO2013042166A1 (ja) 蓄電システムおよび、蓄電システムの制御方法
CN103324180A (zh) 电池组远程监控系统及方法、储能供电装置远程监控系统
JP2014082857A (ja) 車両の電源装置
GB2550955A (en) Electric vehicle battery management apparatus and method
KR20130084875A (ko) 릴레이 제어신호 독립 모니터링 장치 및 방법
US20220239140A1 (en) Charging method and power conversion apparatus
KR20180057231A (ko) 배터리 고장 방지 장치
CN103963656A (zh) 蓄电池系统
US10158246B2 (en) Energy storage device, transport apparatus, and control method
WO2022160935A1 (zh) 一种车载分布式供电系统、车载供电控制方法及装置
KR20150008378A (ko) 절연 접촉기 천이 극성 제어
US10439544B2 (en) Drive system, transporter, and control method performed by drive system
US10391879B2 (en) Energy storage system, transporter, and control method
JP2012074333A (ja) 蓄電装置及びそれに用いられる監視制御装置
KR20220096838A (ko) 전기 차량용 배터리 충전 장치 및 충전 방법
CN205417198U (zh) 一种混合动力汽车高压互锁控制电路
KR20160071206A (ko) 셀 밸런싱 고장 보호 장치 및 방법
CN104300660A (zh) 一种复合电源管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825600

Country of ref document: EP

Kind code of ref document: A1