WO2020094126A1 - 显示基板及其制作方法、显示装置 - Google Patents
显示基板及其制作方法、显示装置 Download PDFInfo
- Publication number
- WO2020094126A1 WO2020094126A1 PCT/CN2019/116629 CN2019116629W WO2020094126A1 WO 2020094126 A1 WO2020094126 A1 WO 2020094126A1 CN 2019116629 W CN2019116629 W CN 2019116629W WO 2020094126 A1 WO2020094126 A1 WO 2020094126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- gate
- layer
- electrically connected
- auxiliary metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
- H10K59/1315—Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0819—Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1216—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
Definitions
- the present disclosure relates to the field of display technology, and in particular, to a display substrate and a manufacturing method thereof, and a display device including the display substrate.
- the display substrate usually includes a plurality of pixel units, and each pixel unit is provided with a pixel circuit. By providing signals to the pixel circuits in each pixel unit, the pixel unit can be driven to emit light.
- a display substrate including: a substrate; and a first graphics layer, a second graphics layer, and a third graphics layer provided on the substrate, wherein the third The graphics layer is disposed on the substrate, the first graphics layer is disposed on the third graphics layer, the second graphics layer is disposed on the first graphics layer, and the first graphics layer includes at least One auxiliary metal line, the second pattern layer includes at least one power line, the third pattern layer includes multiple rows and columns of second electrodes arranged in an array, and one auxiliary metal line among the at least one auxiliary metal line A row of second electrodes in the plurality of rows and columns of second electrodes is disposed opposite to and partially overlaps with at least one second electrode in the row of second electrodes to form at least one storage capacitor, and the auxiliary metal line passes through The hole is electrically connected to the at least one power line.
- the width of the overlapping portion of the auxiliary metal line and the second electrode is larger than the width of the remaining portion of the auxiliary metal line, and the overlapping portion is used as the first electrode of the storage capacitor.
- the auxiliary metal line has a protrusion at a position opposite to the second electrode, and the protrusion is used as the first electrode of the storage capacitor.
- the extending direction of the at least one power line is parallel to the column direction of the second electrodes of the multiple rows and multiple columns, and the extending direction of the at least one auxiliary metal line is the second direction of the multiple rows and multiple columns
- the row directions of the electrodes are parallel, and the extension direction of the at least one power supply line is perpendicular to the extension direction of the at least one auxiliary metal line.
- the second graphics layer further includes a plurality of data lines
- the third graphics layer further includes a plurality of gate lines
- an extension direction of the at least one power supply line is different from that of the plurality of data lines
- the extending direction is parallel
- the extending direction of the at least one auxiliary metal line is parallel to the extending direction of the plurality of gate lines.
- the first graphic layer further includes at least one reset signal line provided at the same layer as the at least one auxiliary metal line.
- the first pattern layer further includes an interlayer insulating layer, which is disposed on the at least one auxiliary metal line, and each auxiliary metal line in the at least one auxiliary metal line is disposed on the The via in the interlayer insulating layer is electrically connected to the at least one power line.
- the at least one power line and the plurality of data lines in the second graphics layer are disposed on the interlayer insulating layer.
- the third graphic layer further includes: a second gate insulating layer, which is disposed on the second electrodes of the plurality of rows and columns and the plurality of gate lines, on which the at least An auxiliary metal wire.
- the display substrate further includes an active layer provided on the substrate; and a first gate insulating layer provided on the active layer and the exposed substrate The plurality of rows and columns of second electrodes and the plurality of gate lines are provided.
- the display substrate is divided into a plurality of pixel units based on a plurality of rows and columns of second electrodes arranged in an array
- the at least one auxiliary metal line includes a plurality of auxiliary metal lines
- the at least one The power line includes a plurality of power lines
- the plurality of auxiliary metal lines are electrically connected to the plurality of power lines through via holes, respectively
- the plurality of auxiliary metal lines are respectively arranged opposite to the plurality of rows of second electrodes
- Each second electrode of the two electrodes partially overlaps to form a plurality of storage capacitors, and each pixel unit of the plurality of pixel units is provided with a pixel circuit and an organic light-emitting diode.
- the pixel circuit includes a driving transistor, The data writing transistor, the first light-emission control transistor, the second light-emission control transistor, the reset transistor, the compensation sub-circuit and the storage capacitor, and the second electrode of the storage capacitor serves as the drive transistor of the pixel unit where the storage capacitor is located
- the gate wherein the source of the driving transistor is electrically connected to the drain of the first light emitting control transistor, the driving transistor Is electrically connected to the source of the second light-emitting control transistor; the source of the first light-emitting control transistor is electrically connected to one of the power lines, and the The gate is electrically connected to the light emission control signal line; the drain of the second light emission control transistor is electrically connected to the anode of the organic light emitting diode, and the gate of the second light emission control transistor is electrically connected to the light emission control signal line
- the source of the reset transistor is electrically connected to the reset signal line, the drain of the reset transistor is electrically connected to the gate of the drive transistor, and the gate of the reset transistor is
- the compensation sub-circuit includes a first compensation transistor and a second compensation transistor, the gate of the first compensation transistor is electrically connected to the gate of the second compensation transistor, and is formed as the The control terminal of the compensation subcircuit; the source of the first compensation transistor is electrically connected to the drain of the second compensation transistor, and the drain of the first compensation transistor serves as the second end of the compensation subcircuit The drain of the driving transistor is electrically connected, and the source of the second compensation transistor is electrically connected to the gate of the driving transistor as the first end of the compensation sub-circuit.
- the display substrate further includes a buffer layer formed on the substrate, and the active layer is formed on the buffer layer.
- the substrate is made of polyurethane material
- the active layer is made of polysilicon material
- the buffer layer is made of silicon oxide and / or silicon nitride.
- a display device including the above-described display substrate.
- a method for manufacturing a display substrate includes a third graphics layer, a first graphics layer, and a second graphics layer disposed in sequence on a substrate.
- the method includes : Forming the third pattern layer, comprising: forming a plurality of rows and columns of second electrodes arranged in an array on the substrate; forming a second on the bare substrate and the plurality of rows and columns of second electrodes A gate insulating layer, forming the first pattern layer, comprising: forming at least one auxiliary metal line on the second gate insulating layer, and making one auxiliary metal line of the at least one auxiliary metal line and the plurality of rows A row of second electrodes in a plurality of columns of second electrodes is oppositely arranged and partially overlaps with at least one second electrode in the row of second electrodes to form at least one storage capacitor; forming an interlayer insulation on the at least one auxiliary metal wire A layer; forming a via hole extending to the at least one auxiliary metal line in the interlayer
- the method before forming the third pattern layer, further includes: forming an active layer on the substrate; forming a first gate on the active layer and the bare substrate An insulating layer, a plurality of rows and columns of second electrodes arranged in an array are formed on the first gate insulating layer, and forming the first pattern layer further includes: forming at least one auxiliary metal line while forming at least one auxiliary metal line A reset signal line.
- the display substrate is divided into a plurality of pixel units based on the plurality of rows and columns of second electrodes arranged in an array, and each of the plurality of pixel units includes a pixel circuit and An organic light emitting diode
- the pixel circuit includes a driving transistor, a data writing transistor, a first light emitting control transistor, a second light emitting control transistor, a reset transistor, a first compensation transistor, a second compensation transistor, and the storage capacitor
- the third pattern layer further includes: forming a plurality of rows and columns of second electrodes arranged in an array on the first gate insulating layer, and forming the data writing transistor on the first gate insulating layer ,
- the gate of the first emission control transistor, the gate of the second emission control transistor, the gate of the reset transistor, the gate of the first compensation transistor, the second compensation transistor Gate, multiple gate lines, light emission control signal lines and reset control signal lines, the second electrode of the storage capacitor is used as the gate of the driving transistor, And the gate of
- forming the second pattern layer further includes: forming, in the interlayer insulating layer, a source region extending to the first light emission control transistor and a drain of the second light emission control transistor, respectively Electrode region, the second electrode of the storage capacitor, the source region of the data writing transistor, the source region of the second compensation transistor, the source region of the reset transistor and the reset signal line A hole; while forming the at least one power line on the interlayer insulating layer, forming the drain of the second light-emission control transistor, a plurality of data lines, and the via of the second pole of the storage capacitor The electrical connection line between the vias of the source region of the second compensation transistor and the electrical connection line between the vias of the source region of the reset transistor and the via of the reset signal line, and making the The power line electrically connected to one of the at least one auxiliary metal line among the at least one power line is electrically connected to the source region of the first light-emitting control transistor through the via in the interlayer insulating layer connection.
- FIG. 1 is a cross-sectional view of a display substrate at an organic light emitting diode, a driving transistor, and a storage capacitor according to an embodiment of the present disclosure, and shows the connection of an auxiliary metal line and a power line;
- FIG. 2 is a schematic diagram of a pixel circuit on a display substrate according to an embodiment of the present disclosure
- FIG. 3 is a cross-sectional view of a display substrate at a light-emitting control transistor, a driving transistor, and a storage capacitor according to an embodiment of the present disclosure
- FIG. 4 is a cross-sectional view of a display substrate at a reset transistor, a compensation transistor, and a driving transistor according to an embodiment of the present disclosure
- 5A to 5K are schematic diagrams of structures obtained by various steps in a method of manufacturing a display substrate provided by the present disclosure according to an embodiment of the present disclosure
- FIG. 6 is a flowchart of a method of manufacturing a display substrate according to an embodiment of the present disclosure
- FIG. 7 is an exemplary flowchart of a method of manufacturing a display substrate according to an embodiment of the present disclosure.
- the inventor of the present disclosure has repeatedly studied and found that one reason why the display device has uneven light emission during display is as follows.
- the pixel circuit in each pixel unit is provided with a high-level voltage signal through the power line and the power line has an internal resistance. Therefore, in the process of transmitting the high-level voltage signal, the resistance voltage drop (IR Drop) of the power line will cause The high-level voltage signals received by each pixel unit are different, so that each pixel unit emits light unevenly, reducing the display effect.
- the present disclosure provides a display substrate including a substrate and a first graphics layer, a second graphics layer, and a third graphics layer provided on the substrate.
- 1 is a cross-sectional view taken along line aa 'in FIG. 5K
- the third graphic layer 13 is disposed on the substrate 100
- the first graphic layer 11 is disposed on the third graphic layer 13
- the second graphic layer 12 ⁇ on the first graphics layer 11.
- the first pattern layer 11 includes at least one auxiliary metal line 210
- the second pattern layer 12 includes at least one power line 110
- at least one auxiliary metal line 210 is electrically connected to at least one power line 110 through a via
- the layer 13 includes a plurality of rows and columns of second electrodes 320 arranged in an array.
- One auxiliary metal line of at least one auxiliary metal line 210 is disposed opposite to a row of second electrodes in the second electrodes of the plurality of rows and columns and partially overlaps with at least one second electrode in the second electrode of the row to form at least one storage capacitor Cst, and the auxiliary metal line 210 is electrically connected to at least one power line 110 through a via.
- the second electrodes 320 based on multiple rows and columns arranged in an array may divide the display substrate into a plurality of pixel units arranged in an array.
- Each column of pixel units may correspond to one power supply line. Therefore, the number of at least one power supply line may be the same as the number of columns of pixel units. Similarly, the number of at least one auxiliary metal line may be the same as the number of rows of pixel units.
- At least one power line 110 and at least one auxiliary metal line 210 are electrically connected to each other, which is equivalent to increasing the cross-sectional area of the power line, so that the resistance of the combined structure of the two is less than the resistance of the power line 110 itself.
- the power supply line 110 is electrically connected to a DC power supply, and a high-level voltage is provided to the display substrate via the combined structure of the power supply line 110 and the auxiliary metal line 210. Since the resistance of the above-mentioned combined structure is smaller than the resistance of the power supply line 110, compared with the related art that only the high-level voltage is transferred through the power supply line, when the display device including the display substrate provided by the present disclosure performs display, the signal transfer process The IR drop in the resistor is smaller, so that the difference between the high-level signals received by different pixel units can be reduced, thereby improving the uniformity of the display.
- the extension direction of at least one power line 110 is perpendicular to the extension direction of at least one auxiliary metal line 210.
- the orthographic projections of the plurality of power lines 110 and the plurality of auxiliary metal lines 210 on the display substrate form a grid.
- the power supply line 110 is generally electrically connected to the source of the light emission control transistor through the high-level signal terminal ELVDD.
- the source, drain, and data lines of different transistors are usually provided on the same layer. Therefore, in order to simplify the manufacturing process and reduce the thickness of the display substrate, in some embodiments, the power line 110 Set on the same layer as the data line. That is, the second graphics layer 12 further includes multiple data lines.
- the extension direction of at least one power line 110 is parallel to the column direction of the second electrodes in multiple rows and columns, and the extension direction of at least one auxiliary metal line 210 is The row directions of the second electrodes in the rows and columns are parallel, and the extending direction of the at least one power line 110 is perpendicular to the extending direction of the at least one auxiliary metal line 210.
- the first pattern layer 11 further includes an interlayer insulating layer 400 disposed on at least one auxiliary metal line 210, and each auxiliary metal line in the at least one auxiliary metal line 210
- the via holes provided in the interlayer insulating layer 400 are electrically connected to at least one power line 110 respectively.
- At least one power line 110 and multiple data lines in the second pattern layer 12 are disposed on the interlayer insulating layer 400.
- the third pattern layer 13 further includes a second gate insulating layer 420, which is disposed on the second electrodes 320 in multiple rows and columns and on multiple gate lines, on which at least one Auxiliary metal wire 210.
- the display substrate further includes an active layer 500 and a first gate insulating layer 410.
- the active layer 500 is provided on the substrate 100.
- the first gate insulating layer 410 is disposed on the active layer 500 and the exposed substrate 100.
- a plurality of rows and columns of second electrodes 320 and a plurality of gate lines GATE are provided on the first gate insulating layer 410.
- the display substrate includes a plurality of pixel units, and each pixel unit includes an organic light emitting diode and a pixel circuit, and the pixel circuit is used to drive the organic light emitting diode to emit light.
- the pixel circuit includes a driving transistor T1 and a storage capacitor Cst.
- the driving transistor T1 is used to generate a driving current
- the storage capacitor Cst is for storing the data voltage and the threshold voltage of the driving transistor T1.
- the purpose of storing the threshold voltage of the driving transistor T1 is to compensate the threshold voltage of the driving transistor T1 when driving the organic light emitting diode to emit light, so as to prevent the threshold voltage of the driving transistor T1 from affecting the light emission of the organic light emitting diode.
- the first electrode of the storage capacitor Cst is electrically connected to the power supply line 110 through the auxiliary metal line 210, and the second electrode of the storage capacitor Cst is electrically connected to the gate of the driving transistor T1.
- a part of the auxiliary metal line 210 may be used as the first electrode of the storage capacitor Cst (in the embodiment shown in FIG. 5E, the auxiliary metal line 210 may be The second electrode of the storage capacitor Cst protrudes at a relative position, and the protrusion is used as the first electrode 220 of the storage capacitor Cst). That is, the portion where the auxiliary metal line 210 overlaps the second electrode is larger than the width of the remaining part of the auxiliary metal line 210.
- the storage capacitor Cst is used to store the data voltage and the threshold voltage of the driving transistor T1. Therefore, in general, the second electrode 320 of the storage capacitor Cst is electrically connected to the gate of the driving transistor T1. In order to simplify the manufacturing process, in some embodiments, the second electrode 320 of the storage capacitor Cst may be used as the gate of the driving transistor T1, as shown in FIG. 5E. In order to facilitate manufacturing, the gates of each transistor in the display substrate and a plurality of gate lines are all located in the third pattern layer 13.
- FIG. 2 is a schematic diagram of a pixel circuit, and the positional relationship of each transistor in the pixel circuit on the display substrate is shown in FIG. 5G.
- the pixel circuit further includes a data writing transistor T2, a first light-emission control transistor T5, a second light-emission control transistor T6, a reset transistor T4, and a compensation sub-circuit.
- the second electrode 320 of the storage capacitor Cst can be used as the gate of the driving transistor T1 in the pixel unit where the storage capacitor is located, and there is no need to provide the gate of the driving transistor T1.
- the source of the driving transistor T1 is electrically connected to the drain of the first light emission control transistor T5
- the gate of the driving transistor T1 is electrically connected to the second electrode 320 of the storage capacitor Cst
- the drain of the driving transistor T1 It is electrically connected to the source of the second light emission control transistor T6.
- the source of the first light-emitting control transistor T5 is electrically connected to one of the at least one power line 110 through the high-level signal terminal ELVDD, and the gate of the first light-emitting control transistor T5 is electrically connected to the light-emitting control signal line EMn through the port Eln .
- the drain of the second emission control transistor T6 is electrically connected to the anode of the organic light emitting diode OLED, and the gate of the second emission control transistor T6 is electrically connected to the emission control signal line EMn through the port Eln.
- the source of the reset transistor T4 is electrically connected to the reset signal line VINT through the reset signal terminal ELVINT, the drain of the reset transistor T4 is electrically connected to the gate of the drive transistor T1, and the gate of the reset transistor T4 passes through the reset signal control terminal SLn-1 It is electrically connected to the reset control signal line RESET.
- the gate of the reset transistor T4 receives an effective reset control signal, the source of the reset transistor and the drain of the reset transistor are turned on, thereby turning on the gate of the driving transistor T1 and the reset signal line VINT, and The gate of the transistor T1 and the storage capacitor Cst are reset.
- the source of the data writing transistor T2 is electrically connected to one of the data lines DATA through the data signal writing terminal DLm, the drain of the data writing transistor T2 is electrically connected to the source of the driving transistor T1, and the data is written
- the gate of the input transistor T2 is electrically connected to one of the gate lines GATE through the data write control signal terminal SLn.
- the data writing transistor T2 is set such that the source of the data writing transistor T2 and the drain of the data writing transistor T2 are turned on when the gate of the data writing transistor T2 receives an effective control signal, thereby passing data
- the data voltage written at the signal writing terminal is written to the storage capacitor Cst.
- the first end of the compensation subcircuit is electrically connected to the gate of the driving transistor T1
- the second end of the compensation subcircuit is electrically connected to the drain of the driving transistor T1
- the control end of the compensation subcircuit is connected to the gate of the data writing transistor T2 Polar connection.
- the compensation sub-circuit may electrically connect the gate and the drain of the driving transistor T1 when the control terminal of the compensation sub-circuit receives an effective control signal, so that the storage capacitor Cst stores the threshold voltage of the driving transistor T1.
- the compensation sub-circuit may include a first compensation transistor T3 and a second compensation transistor T7.
- the source of the first compensation transistor T3 is electrically connected to the drain of the second compensation transistor T7.
- the drain of the first compensation transistor T3 serves as the second end of the compensation subcircuit and is electrically connected to the source of the second light emission control transistor T6.
- the source of the second compensation transistor T7 is electrically connected to the gate of the drive transistor T1 as the first end of the compensation subcircuit.
- the gate of the first compensation transistor T3 is electrically connected to the gate of the second compensation transistor T7 and forms a control terminal of the compensation sub-circuit.
- the gate of the first compensation transistor T3 and the gate of the second compensation transistor T7 are electrically connected to the gate of the data writing transistor T2, that is, the same gate can be used
- the line control data writing transistor T2, the first compensation transistor T3, and the second compensation transistor T7 are electrically connected to the gate of the data writing transistor T2, that is, the same gate can be used.
- the gate of the driving transistor T1, the gate of the data writing transistor T2, the gate of the first emission control transistor T5, the gate of the second emission control transistor T6, the gate of the reset transistor T4, the first The gate of one compensation transistor T3 and the gate of the second compensation transistor T7 are arranged in the same layer (third pattern layer 13).
- FIG. 3 is a cross-sectional view taken along line bb ′ in FIG. 5K.
- 4 is a cross-sectional view taken along line cc ′ in FIG. 5K.
- a part of the reset transistor T4, the first compensation transistor T3, and the second compensation transistor T7 are cut And a part of the driving transistor T1.
- active layers of different transistors are all formed in the same layer.
- the active layer of the pixel circuit is formed on the substrate.
- a buffer layer 600 may also be provided between the substrate and the active layer 500 .
- the specific material of the substrate is not particularly limited.
- the substrate may be a glass substrate or a flexible substrate made of polyurethane material.
- the buffer layer 600 may be made of silicon oxide (SiOx) or silicon nitride (SiNx).
- each transistor in the display substrate (including the first light-emission control transistor T5, the second light-emission control transistor T6, the reset transistor T4, the drive transistor T1, the first A compensation transistor T3 and a second compensation transistor body T7) are top-gate transistors.
- the third pattern layer 13 is located above the first gate insulating layer 410, and the first pattern layer 11 is located above the third pattern layer 13, and the second pattern layer 12 is located above the first pattern layer 11.
- each transistor may also be a bottom-gate transistor.
- the substrate 100 may be made of polyurethane material
- the active layer 500 may be made of polysilicon material
- the buffer layer 600 may be made of silicon oxide and / or silicon nitride.
- the display substrate further includes a passivation layer 700, which is disposed on the second pattern layer 12 and has a via extending to the drain A of the second emission control transistor T6.
- the display substrate further includes a planarization layer 800, which is disposed on the passivation layer 700 and has a via extending to the via of the passivation layer 700, that is, the via of the planarization layer 800 and the via of the passivation layer 700 are Coaxial in the direction perpendicular to the substrate.
- the display substrate further includes a pixel electrode 900, which is disposed on the planarization layer 800, and is electrically connected to the drain A of the second light emission control transistor T6 through the via of the passivation layer 700 and the via in the planarization layer 800 .
- the display substrate also includes an organic light emitting diode, which is disposed on the pixel electrode 900.
- the passivation layer 700 may be made of silicon nitride.
- the planarization layer 800 may be made of polyurethane material.
- a display device including a display substrate, wherein the display substrate is the above-mentioned display substrate provided by the present disclosure.
- the combined structure of the power supply line and the auxiliary metal line with a small resistance is used to provide high-level signals to each pixel unit, which can reduce the resistance of high-level signals during transmission
- the voltage drop makes the signals received by each pixel unit closer, thereby making the brightness of each pixel unit more uniform and improving the display effect of the display device.
- the display device may be a wearable device, or may be an electronic device such as a tablet computer, a navigator, or the like.
- the manufacturing method of the display substrate provided by the present disclosure includes sequentially forming a third pattern layer, a first pattern layer, and a second pattern layer on a substrate, as shown in FIG. 6.
- the forming of the third pattern layer includes steps S1 and S2, wherein in step S1, a plurality of rows and columns of second electrodes arranged in an array are formed on the substrate; in step S2, the bare substrate and the multi-row A second gate insulating layer is formed on the second electrode of the column.
- the forming of the first pattern layer includes steps S3 and S5, wherein, in step S3, at least one auxiliary metal line is formed on the second gate insulating layer, and at least one auxiliary metal line is provided corresponding to each second electrode row At least one second electrode in the two-electrode row partially overlaps to form at least one storage capacitor; in step S4, an interlayer insulating layer is formed on at least one auxiliary metal line; in step S5, it is formed in the interlayer insulating layer Vias extending to at least one auxiliary metal wire.
- the forming of the second pattern layer includes step S6, wherein in step S6, at least one power line is formed on the interlayer insulating layer, and at least one power line is electrically connected to at least one auxiliary metal line through the via in the interlayer insulating layer connection.
- FIGS. 1 to 4 The manufacturing method for manufacturing the display substrate in FIGS. 1 to 4 will be described below with reference to FIGS. 5A to 5K and FIG. 7.
- a substrate 100 is provided.
- the substrate may be made of polyurethane material.
- a buffer layer 600 is formed on the substrate (as shown in FIG. 5B).
- PECVD plasma enhanced chemical vapor deposition
- SiN silicon nitride
- SiO2 silicon dioxide
- an amorphous silicon layer is formed on the buffer layer 600.
- An amorphous silicon (a-Si) layer is formed on the buffer layer 600 using PECVD or other chemical or physical vapor deposition methods.
- the amorphous silicon layer is crystallized by a laser annealing (ELA) or solid phase crystallization (SPC) method to form a polycrystalline silicon layer.
- ELA laser annealing
- SPC solid phase crystallization
- a first photoresist pattern is formed on the polysilicon layer, the first photoresist pattern is used as an etching barrier layer, and the polysilicon layer not protected by the first photoresist pattern is etched by plasma to form an active ⁇ 500 ⁇ Layer 500.
- FIG. 5A is a plan view of a display substrate having an active layer 500 (a light-transmitting layer is not shown), and FIG. 5B is a cross-sectional view taken along line d-d 'of FIG. 5A.
- the ion implantation process is used to dope the transistor channel in the polysilicon active layer 500 with low concentration ions to form a conductive channel required by the thin film transistor in the polysilicon active layer 500.
- silicon dioxide or silicon dioxide and silicon nitride are deposited to obtain the first gate insulating layer 410.
- the photoresist on the polysilicon active layer 500 is removed through a photoresist stripping process, SiO2 or SiO2 and SiN are deposited using PECVD, and a first gate insulating layer 410 is formed on the polysilicon active layer and the entire buffer layer.
- one or more low-resistance metal material films are deposited on the first gate insulating layer 410 by a physical vapor deposition method such as magnetron sputtering, and a gate pattern layer is formed by a photolithography process, and the gate pattern layer Including the light emission control signal line EMn, the multiple gate lines GATE, the multiple reset control signal lines RESET, the gates of the transistors (not shown, including the gate of the data writing transistor T2 in FIG.
- FIG. 5C is a top view of the second electrode 320, the light emission control signal line EMn, the plurality of gate lines GATE, and the reset control signal line RESET.
- the second electrode 320 is used as the gate of the driving transistor T1 and allows data to be written into the transistor
- the gate of T2, the gate of the first compensation transistor T3, and the gate of the second compensation transistor T7 are electrically connected to the same gate line GATE of the plurality of gate lines through the data write control signal terminal SLn, and the first light is emitted
- the gates of the control transistor T5 and the second light-emission control transistor T6 are electrically connected to the light-emission control signal line EMn through corresponding light-emission control signal control terminals ELn, respectively.
- Fig. 5D is a cross-sectional view taken along line e-e 'of Fig. 5C.
- the gate pattern layer may be a single-layer metal thin film such as Al, Cu, Mo, Ti, or AlNd, or may be a multi-layer metal thin film such as Mo / Al / Mo or Ti / Al / Ti.
- the gate electrode and the second electrode 320 in the gate pattern layer are used as ion implantation barrier layers to ion-dope the active layer 500 to form a low area in the polysilicon active layer region that is not blocked by the gate electrode Impedance source and drain regions. Based on the structure of the active layer 500 of FIG.
- the source region of the driving transistor T1, the drain region of the first light-emission control transistor T5, and the drain region of the data writing transistor T2 can be in the active layer 500 is formed as one body, the drain region of the driving transistor T1, the source region of the second light emission control transistor T6 and the drain region of the first compensation transistor T3 are formed as one body in the active layer 500, and the drain of the reset transistor T4
- the region and the source region of the first compensation transistor T3 are integrally formed in the active layer 500, and the source region of the first compensation transistor T3 and the drain region of the second compensation transistor T7 are integrally formed in the active layer 500.
- the source region and the drain region in the active layer 500 are respectively equivalent to the source and / or drain of the corresponding transistor, and each transistor is connected through the source-drain region without providing a corresponding source and drain.
- the second gate insulating layer 420 is formed. On the entire surface including the gate pattern layer, a SiO2 film and a SiN film are sequentially deposited using a PECVD process to form a second gate insulating layer 420.
- a plurality of auxiliary metal lines 210 and a plurality of reset signal lines VINT are formed on the second gate insulating layer 420.
- Each of the plurality of auxiliary metal lines 210 has a protrusion at a position opposite to the second electrode 320, and the protrusion is used as the first electrode 220 of the storage capacitor.
- FIG. 5E shows a top view with the auxiliary metal line 210 and the reset signal line VINT
- FIG. 5F shows a cross-sectional view taken along line f-f 'of FIG. 5E.
- FIG. 5G is a cross-sectional view taken along line g-g 'of FIG. 5G, which shows a via extending to the first electrode 220 of the storage capacitor and a via extending to the source region of the first light emission control transistor T5.
- a plurality of power lines 110, a plurality of data lines DATA, a drain A of the second light emission control transistor T6, a via of the second electrode 320 of the storage capacitor, and a second compensation transistor are formed on the interlayer insulating layer 400
- One or more low-resistance metal thin films are deposited on the interlayer insulating layer 400 by a magnetron sputtering process, and a plurality of power lines 110, a plurality of data lines DATA, and a second light-emitting control transistor are formed through a mask and an etching process
- the drain A of T6, and the power line electrically connected to one auxiliary metal line among the plurality of auxiliary metal lines 210 among the plurality of power line 110 is electrically connected to the source of the first light emitting control transistor T5 through the via
- One of the data lines DATA is electrically connected to the source region of the data writing transistor T2 through the via
- the second electrode 320 of the storage capacitor and the source region of the second compensation transistor T7 are electrically connected through the electrical connection line and reset
- the source region of the transistor T4 and the reset signal line VINT are electrically connected by an electrical connection line.
- the metal film of the electrical connection line between the via of the source region of the reset transistor T4 and the via of the reset signal line VINT may be a single-layer metal thin film of Al, Cu, Mo, Ti, or AlNd, It may also be a multilayer metal thin film such as Mo / Al / Mo or Ti / Al / Ti.
- 5I is a plan view of the drain A having the power supply line 110, the data line DATA, and the second light emission control transistor T6, and FIG. 5J is a cross-sectional view taken along line h-h 'of FIG. 5I.
- a layer of silicon nitride film is deposited on the entire surface including the power supply line 110, the data line DATA, and the drain A of the second light emission control transistor T6, and an anode electrode including an organic light emitting diode is formed through a mask and an etching process ⁇ ⁇ passivation layer 700.
- the via on the passivation layer 700 extends to the drain A of the second light emission control transistor T6.
- a rapid thermal annealing or a heat treatment furnace annealing is used to perform a hydrogenation process to repair defects inside and at the interface of the active layer 500.
- an organic planarization layer 800 having a via hole having the same vertical axis as the anode via hole is formed over the passivation layer 700 again by a mask process to fill the device surface with a low concavity to form a flat surface. And the via hole in the planarization layer 800 extends to the via hole in the passivation layer 700.
- magnetron sputtering is used to deposit a transparent conductive film on the organic planarization layer 800, the transparent conductive film is etched through a photolithography process, and the via hole of the organic planarization layer 800 and part of the organic planarization layer 800
- the pixel electrode 900 in the pixel area is formed thereon, as shown in FIG. 5K.
- a layer of photosensitive organic material similar to the organic planarization layer is coated on the exposed organic planarization layer and the pixel electrode, and a partial area of the pixel electrode is exposed through the last mask process to form the pixel definition layer 1000.
- the pixel definition layer covers the organic planarization layer and part of the pixel electrode area.
- the transparent conductive film may be a single-layer oxide conductive film, such as ITO or IZO, or a composite film such as ITO / Ag / ITO or IZO / Ag.
- the display substrate provided by the present disclosure can be obtained through 8 to 9 mask processes. After the display substrate provided by the present disclosure is obtained, each functional layer of the organic light emitting diode can also be formed on the display substrate, and the display substrate is encapsulated to obtain a display panel.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
Claims (19)
- 一种显示基板,包括:衬底;以及在所述衬底上设置的第一图形层、第二图形层和第三图形层,其中,所述第三图形层设置在所述衬底上,所述第一图形层设置在所述第三图形层上,所述第二图形层设置在所述第一图形层上,所述第一图形层包括至少一条辅助金属线,所述第二图形层包括至少一条电源线,所述第三图形层包括呈阵列排布的多行多列第二电极,所述至少一条辅助金属线中的一条辅助金属线与所述多行多列第二电极中的一行第二电极相对设置并与该行第二电极中的至少一个第二电极部分地重叠以形成至少一个存储电容,并且该条辅助金属线通过过孔与所述至少一条电源线电连接。
- 根据权利要求1所述的显示基板,其中,所述辅助金属线与所述第二电极的重叠部分的宽度大于所述辅助金属线的其余部分的宽度,并将该重叠部分作为所述存储电容的第一电极。
- 根据权利要求2所述的显示基板,其中,所述辅助金属线在与所述第二电极的相对位置处具有突出,并将该突出作为所述存储电容的第一电极。
- 根据权利要求3所述的显示基板,其中,所述至少一条电源线的延伸方向与所述多行多列第二电极的列方向平行,所述至少一条辅助金属线的延伸方向与所述多行多列第二电极的行方向平行,所述至少一条电源线的延伸方向与所述至少一条辅助金属线的延伸方向垂直。
- 根据权利要求1-4中任一项所述的显示基板,其中,所述第二图形层还包括多条数据线,所述第三图形层还包括多条栅线,所述至少一条电源线的延伸方向与所述多条数据线的延伸方向平行,所述至少一条辅助金属线的延伸方向与所述多条栅线的延伸方向平行。
- 根据权利要求5所述的显示基板,其中,所述第一图形层还包括与所述至少一条辅助金属线同层设置的至少一条复位信号线。
- 根据权利要求6所述的显示基板,其中,所述第一图形层还包括层间绝缘层,其设置在所述至少一条辅助金属线上,所述至少一条辅助金属线中的每一条辅助金属线通过设置在所述层间绝缘层中的过孔与所述至少一条电源线电连接。
- 根据权利要求7所述的显示基板,其中,所述第二图形层中的所述至少一条电源线和所述多条数据线设置在所述层间绝缘层上。
- 根据权利要求8所述的显示基板,其中,所述第三图形层还包括:第二栅绝缘层,其设置在所述多行多列第二电极以及所述多条栅线上,其上设置有所述至少一条辅助金属线。
- 根据权利要求9所述的显示基板,还包括,有源层,其设置在所述衬底上;以及第一栅绝缘层,其设置在所述有源层和裸露的衬底上,其上设置有所述多行多列第二电极以及所述多条栅线。
- 根据权利要求10所述的显示基板,其中,所述显示基板基于呈阵列排布的多行多列第二电极被划分为多个像素单元,所述至少一条辅助金属线包括多条辅助金属线,所述至少一条电源线包括多条电源线,所述多条辅助金属线通过过孔分别与所述多条电源线电连 接,所述多条辅助金属线分别与多行第二电极相对设置并与相应行第二电极中的每个第二电极部分地重叠以形成多个存储电容,所述多个像素单元中的每一个像素单元内均设置有像素电路和有机发光二极管,所述像素电路包括驱动晶体管、数据写入晶体管、第一发光控制晶体管、第二发光控制晶体管、复位晶体管、补偿子电路和所述存储电容,所述存储电容的第二电极作为该存储电容所在的像素单元中的驱动晶体管的栅极,其中,所述驱动晶体管的源极与所述第一发光控制晶体管的漏极电连接,所述驱动晶体管的漏极与所述第二发光控制晶体管的源极电连接;所述第一发光控制晶体管的源极与所述多条电源线中的一条电源线电连接,所述第一发光控制晶体管的栅极与发光控制信号线电连接;所述第二发光控制晶体管的漏极与所述有机发光二极管的阳极电连接,所述第二发光控制晶体管的栅极与所述发光控制信号线电连接;所述复位晶体管的源极与所述复位信号线电连接,所述复位晶体管的漏极与所述驱动晶体管的栅极电连接,所述复位晶体管的栅极与复位控制信号线电连接;所述数据写入晶体管的源极与所述多条数据线中的一条数据线电连接,所述数据写入晶体管的漏极与所述驱动晶体管的源极电连接,所述数据写入晶体管的栅极与所述多条栅线中的一条栅线电连接,所述数据写入晶体管设置为该数据写入晶体管的源极与该数据写入晶体管的漏极在该数据写入晶体管的栅极接收到有效的控制信号时导通;所述补偿子电路的第一端与所述驱动晶体管的栅极电连接,所述补偿子电路的第二端与所述驱动晶体管的漏极电连接,所述补偿子电路的控制端与所述数据写入晶体管的栅极电连接,所述补偿子电路设置为在该补偿子电路的控制端接收到有效的控制信号时将所述驱动晶体管的漏极和所述驱动晶体管的栅极电连接,以使得所述存储电 容存储所述驱动晶体管的阈值电压。
- 根据权利要求11所述的显示基板,其中,所述补偿子电路包括第一补偿晶体管和第二补偿晶体管,所述第一补偿晶体管的栅极与所述第二补偿晶体管的栅极电连接,并形成为所述补偿子电路的控制端;所述第一补偿晶体管的源极与所述第二补偿晶体管的漏极电连接,所述第一补偿晶体管的漏极作为所述补偿子电路的第二端而与所述驱动晶体管的漏极电连接,所述第二补偿晶体管的源极作为所述补偿子电路的第一端而与所述驱动晶体管的栅极电连接。
- 根据权利要求12所述的显示基板,还包括形成在所述衬底上的缓冲层,所述有源层形成在所述缓冲层上。
- 根据权利要求13所述的显示基板,其中,所述衬底由聚氨酯材料制成,所述有源层由多晶硅材料制成,所述缓冲层由硅的氧化物和/或硅的氮化物制成。
- 一种显示装置,包括权利要求1至14中任一项所述的显示基板。
- 一种用于制作显示基板的方法,所述显示基板包括在衬底上依次设置的第三图形层、第一图形层和第二图形层,所述方法包括:形成所述第三图形层,包括:在所述衬底上形成呈阵列排布的多行多列第二电极;在裸露的衬底和所述多行多列第二电极上形成第二栅绝缘层,形成所述第一图形层,包括:在所述第二栅绝缘层上形成至少一条辅助金属线,并使得所述至少一条辅助金属线中的一条辅助金属线与所述多行多列第二电极中的一行第二电极相对设置并与该行第二电极中的至少一个第二电 极部分地重叠以形成至少一个存储电容;在所述至少一条辅助金属线上形成层间绝缘层;在所述层间绝缘层中形成延伸至所述至少一条辅助金属线的过孔,形成所述第二图形层,包括:在所述层间绝缘层上形成至少一条电源线,并使得所述至少一条电源线通过所述层间绝缘层中的过孔与所述至少一条辅助金属线电连接。
- 根据权利要求16所述的方法,其中,在形成所述第三图形层之前,所述方法还包括:在所述衬底上形成有源层;在所述有源层和裸露的衬底上形成第一栅绝缘层,呈阵列排布的多行多列第二电极形成在所述第一栅绝缘层上,形成所述第一图形层还包括:在形成所述至少一条辅助金属线的同时,形成至少一条复位信号线。
- 根据权利要求17所述的方法,其中,所述显示基板基于呈阵列排布的所述多行多列第二电极被划分为多个像素单元,所述多个像素单元中的每一个像素单元包括像素电路和有机发光二极管,所述像素电路包括驱动晶体管、数据写入晶体管、第一发光控制晶体管、第二发光控制晶体管、复位晶体管、第一补偿晶体管、第二补偿晶体管和所述存储电容,其中,形成所述第三图形层还包括:在所述第一栅绝缘层上形成呈阵列排布的多行多列第二电极的同时,在所述第一栅绝缘层上形成所述数据写入晶体管的栅极、所述第一发光控制晶体管的栅极、所述第二发光控制晶体管的栅极、所述复位晶体管的栅极、所述第一补偿晶体管的栅极、所述第二补偿晶体管的栅极、多条栅线、发光控制信号线以及复位控制信号线,将所述 存储电容的第二电极作为所述驱动晶体管的栅极,并使得所述数据写入晶体管的栅极、所述第一补偿晶体管的栅极和所述第二补偿晶体管的栅极均与所述多条栅线中的同一条栅线电连接,所述第一发光控制晶体管的栅极和所述第二发光控制晶体管的栅极分别与所述发光控制信号线电连接;使用各晶体管的栅极和所述多行多列第二电极作为离子注入阻挡层,以对所述有源层进行离子掺杂,从而在未被所述离子注入阻挡层阻挡的有源层区域中形成各晶体管的源极区和漏极区,其中,所述驱动晶体管的源极区、所述第一发光控制晶体管的漏极区和所述数据写入晶体管的漏极区在所述有源层中形成为一体;所述驱动晶体管的漏极区、所述第二发光控制晶体管的源极区和所述第一补偿晶体管的漏极区形成为一体;所述复位晶体管的漏极区和所述第二补偿晶体管的源极区在所述有源层中形成为一体;所述第一补偿晶体管的源极区与所述第二补偿晶体管的漏极区在所述有源层中形成为一体。
- 根据权利要求18所述的方法,其中,形成所述第二图形层还包括:在所述层间绝缘层中形成分别延伸至所述第一发光控制晶体管的源极区、所述第二发光控制晶体管的漏极区、所述存储电容的第二极、所述数据写入晶体管的源极区、所述第二补偿晶体管的源极区、所述复位晶体管的源极区和所述复位信号线的过孔;在所述层间绝缘层上形成所述至少一条电源线的同时,形成所述第二发光控制晶体管的漏极、多条数据线、所述存储电容的第二极的过孔与所述第二补偿晶体管的源极区的过孔之间的电连接线以及所述复位晶体管的源极区的过孔与所述复位信号线的过孔之间的电连接线,并使得所述至少一条电源线中的与所述至少一条辅助金属线中的一条辅助金属线电连接的电源线通过所述层间绝缘层中的过孔而与所述第一发光控制晶体管的源极区电连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/768,555 US11244606B2 (en) | 2018-11-08 | 2019-11-08 | Display substrate and manufacturing method thereof, display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821835171.6 | 2018-11-08 | ||
CN201821835171.6U CN208753327U (zh) | 2018-11-08 | 2018-11-08 | 显示基板和显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020094126A1 true WO2020094126A1 (zh) | 2020-05-14 |
Family
ID=66086174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/116629 WO2020094126A1 (zh) | 2018-11-08 | 2019-11-08 | 显示基板及其制作方法、显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11244606B2 (zh) |
CN (1) | CN208753327U (zh) |
WO (1) | WO2020094126A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208753327U (zh) * | 2018-11-08 | 2019-04-16 | 京东方科技集团股份有限公司 | 显示基板和显示装置 |
CN110010058B (zh) * | 2019-05-20 | 2021-01-29 | 京东方科技集团股份有限公司 | 阵列基板及显示面板 |
CN110265458B (zh) | 2019-06-27 | 2021-12-03 | 京东方科技集团股份有限公司 | 阵列基板及其制作方法、显示面板及显示装置 |
KR102612405B1 (ko) * | 2019-07-09 | 2023-12-12 | 엘지디스플레이 주식회사 | 전자장치 |
CN112820763B (zh) | 2019-07-31 | 2024-06-28 | 京东方科技集团股份有限公司 | 电致发光显示面板及显示装置 |
US12073790B2 (en) | 2019-07-31 | 2024-08-27 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Display substrate and display device |
US12041826B2 (en) | 2019-10-29 | 2024-07-16 | Boe Technology Group Co., Ltd. | Display substrate and manufacturing method thereof, and display apparatus |
CN110690265B (zh) * | 2019-10-29 | 2022-07-26 | 京东方科技集团股份有限公司 | 一种显示基板及其制作方法、显示装置 |
CN110751922B (zh) * | 2019-10-31 | 2022-12-06 | 武汉天马微电子有限公司 | 显示面板及显示装置 |
CN110890387A (zh) * | 2019-11-26 | 2020-03-17 | 京东方科技集团股份有限公司 | 显示基板、显示面板和显示装置 |
CN111129093A (zh) * | 2019-12-23 | 2020-05-08 | 武汉华星光电半导体显示技术有限公司 | 阵列基板和显示面板 |
KR20210087602A (ko) * | 2020-01-02 | 2021-07-13 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치의 정렬 검사 방법 |
CN117750810A (zh) * | 2020-03-19 | 2024-03-22 | 京东方科技集团股份有限公司 | 显示基板及显示装置 |
JP7529758B2 (ja) | 2020-03-19 | 2024-08-06 | 京東方科技集團股▲ふん▼有限公司 | 表示基板及び表示装置 |
CN112259577A (zh) * | 2020-10-09 | 2021-01-22 | 武汉华星光电半导体显示技术有限公司 | 像素结构 |
GB2611440A (en) * | 2020-10-19 | 2023-04-05 | Boe Technology Group Co Ltd | Array substrate and display apparatus |
CN114902320B (zh) * | 2020-11-12 | 2024-06-21 | 京东方科技集团股份有限公司 | 显示基板及其驱动方法、显示装置 |
US11997898B2 (en) * | 2020-12-28 | 2024-05-28 | Boe Technology Group Co., Ltd. | Display panel and display device including blocker |
CN113066804B (zh) * | 2021-03-23 | 2023-04-18 | 合肥鑫晟光电科技有限公司 | 显示面板和显示装置 |
CN114361218B (zh) * | 2021-12-27 | 2024-09-24 | 京东方科技集团股份有限公司 | 衬底基板、显示基板以及光探测基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1822738A (zh) * | 2005-01-20 | 2006-08-23 | 精工爱普生株式会社 | 电光学装置及其制造方法、以及电子仪器 |
US20060192492A1 (en) * | 2005-02-28 | 2006-08-31 | Nobuyuki Ushifusa | Display panel |
CN107665909A (zh) * | 2016-07-27 | 2018-02-06 | 乐金显示有限公司 | 混合型薄膜晶体管以及使用其的有机发光显示装置 |
CN108122928A (zh) * | 2016-11-30 | 2018-06-05 | 乐金显示有限公司 | 包括多类型薄膜晶体管的有机发光显示装置 |
CN208753327U (zh) * | 2018-11-08 | 2019-04-16 | 京东方科技集团股份有限公司 | 显示基板和显示装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102391421B1 (ko) * | 2016-01-28 | 2022-04-28 | 삼성디스플레이 주식회사 | 표시 장치 |
US10490122B2 (en) * | 2016-02-29 | 2019-11-26 | Samsung Display Co., Ltd. | Display device |
KR102605283B1 (ko) * | 2016-06-30 | 2023-11-27 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102613863B1 (ko) * | 2016-09-22 | 2023-12-18 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102611958B1 (ko) * | 2016-09-23 | 2023-12-12 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102715304B1 (ko) * | 2016-11-29 | 2024-10-14 | 삼성디스플레이 주식회사 | 표시 장치 |
KR20180096875A (ko) * | 2017-02-21 | 2018-08-30 | 삼성디스플레이 주식회사 | 표시 장치 |
-
2018
- 2018-11-08 CN CN201821835171.6U patent/CN208753327U/zh active Active
-
2019
- 2019-11-08 WO PCT/CN2019/116629 patent/WO2020094126A1/zh active Application Filing
- 2019-11-08 US US16/768,555 patent/US11244606B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1822738A (zh) * | 2005-01-20 | 2006-08-23 | 精工爱普生株式会社 | 电光学装置及其制造方法、以及电子仪器 |
US20060192492A1 (en) * | 2005-02-28 | 2006-08-31 | Nobuyuki Ushifusa | Display panel |
CN107665909A (zh) * | 2016-07-27 | 2018-02-06 | 乐金显示有限公司 | 混合型薄膜晶体管以及使用其的有机发光显示装置 |
CN108122928A (zh) * | 2016-11-30 | 2018-06-05 | 乐金显示有限公司 | 包括多类型薄膜晶体管的有机发光显示装置 |
CN208753327U (zh) * | 2018-11-08 | 2019-04-16 | 京东方科技集团股份有限公司 | 显示基板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200294446A1 (en) | 2020-09-17 |
US11244606B2 (en) | 2022-02-08 |
CN208753327U (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020094126A1 (zh) | 显示基板及其制作方法、显示装置 | |
US9252198B2 (en) | Organic light emitting display device with reduced generation of parasitic capacitance and method for manufacturing the same | |
US10886409B2 (en) | Display backplate and fabrication method thereof, display panel and display device | |
WO2020198975A1 (zh) | 显示基板及其制备方法、显示面板 | |
US8405084B2 (en) | Organic light emitting diode display and method for manufacturing the same | |
USRE48032E1 (en) | Thin-film semiconductor substrate, light-emitting panel, and method of manufacturing the thin-film semiconductor substrate | |
KR101962852B1 (ko) | 유기 발광 표시 장치 및 그 제조 방법 | |
US20140361276A1 (en) | Thin film transistor and active matrix organic light emitting diode assembly and method for manufacturing the same | |
US11653541B2 (en) | Display device and manufacturing method thereof | |
KR20140071806A (ko) | 유기 발광 표시 장치 | |
KR20110134687A (ko) | 표시 장치 및 그 제조 방법 | |
KR20070117363A (ko) | 유기 전계 발광 표시 장치 및 그 제조 방법 | |
US9202823B2 (en) | Thin film transistor array panel and manufacturing method thereof | |
US8461593B2 (en) | Display apparatus and method of manufacturing the same | |
KR20130110990A (ko) | 유기 발광 표시 장치 및 유기 발광 표시 장치의 리페어 방법 | |
US10879329B2 (en) | Semiconductor device, semiconductor substrate, luminescent unit, and display unit | |
KR20150001154A (ko) | 박막 트랜지스터 표시판 및 그 제조 방법 | |
US7402950B2 (en) | Active matrix organic light emitting display device and method of fabricating the same | |
JP6594818B2 (ja) | 半導体装置およびその半導体装置を用いたアクティブマトリクス基板 | |
CN115917636A (zh) | 显示装置以及显示装置的制造方法 | |
US20190245016A1 (en) | Display apparatus and method of manufacturing the same | |
US20130015453A1 (en) | Display device, thin-film transistor used for display device, and method of manufacturing thin-film transistor | |
US12120919B2 (en) | Display apparatus and method of manufacturing the same | |
KR20240044580A (ko) | 표시 장치 | |
KR20240030756A (ko) | 산화물 반도체를 포함하는 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19881224 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19881224 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.08.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19881224 Country of ref document: EP Kind code of ref document: A1 |