WO2020090376A1 - Electric parking brake device - Google Patents
Electric parking brake device Download PDFInfo
- Publication number
- WO2020090376A1 WO2020090376A1 PCT/JP2019/039613 JP2019039613W WO2020090376A1 WO 2020090376 A1 WO2020090376 A1 WO 2020090376A1 JP 2019039613 W JP2019039613 W JP 2019039613W WO 2020090376 A1 WO2020090376 A1 WO 2020090376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric motor
- current
- voltage
- electric
- parking brake
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/14—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
- F16D65/16—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
- F16D65/18—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D66/00—Arrangements for monitoring working conditions, e.g. wear, temperature
Definitions
- the present invention relates to an electric parking brake device used for vehicles such as automobiles.
- Patent Document 1 As a conventional technique using an electric parking brake device, for example, Patent Document 1 is proposed.
- Patent Document 1 after the power supply to the electric motor is cut off, a parameter is detected while the electric motor operates in a power generation mode in which the electric motor rotates by inertia, and a motor constant of the electric motor is determined based on the detected parameter.
- a technique for adjusting the tightening force of the parking brake device is disclosed.
- An object of the present invention is to solve the above problems and to provide an electric parking brake device that can be operated with an appropriate tightening force according to the load of an electric motor.
- the features of the present invention include an electric motor, a reduction mechanism that amplifies the rotation torque of the electric motor, and a rotation that converts the rotational motion output from the reduction mechanism into a linear motion.
- An electric motor equipped with a linear motion conversion mechanism, a piston moved by the rotation / linear motion conversion mechanism, a brake pad pressed against the disc rotor by the thrust of the piston, and an electronic control unit for controlling the rotation of the electric motor.
- the electronic control unit is configured to apply the electric motor in a section in which the electric motor is started to drive and the electric motor is started to drive, and then the load of the electric motor is increased and the current is increased.
- an electric parking brake device that can operate with an appropriate tightening force according to the load of the electric motor.
- FIG. 3 is a control block diagram of model parameters according to the first embodiment of the present invention.
- FIG. 6 is a waveform diagram of a model parameter estimation operation according to the first embodiment of the present invention. It is a flow chart explaining operation of electronic control means concerning a 1st example of the present invention. It is a control block diagram of a model parameter according to the second embodiment of the present invention. It is a waveform diagram of the estimation operation of the model parameter according to the second embodiment of the present invention.
- FIG. 1 is an overall configuration diagram of an electric parking brake device according to a first embodiment of the present invention
- FIG. 2 is a sectional view showing a configuration of a brake caliper shown in FIG.
- the electric parking brake device is composed of an electric motor, a speed reduction mechanism, a rotation / linear motion conversion mechanism, a piston, a brake pad, and electronic control means.
- a brake caliper 10 that constitutes an electric parking brake device includes a caliper main body 11 that forms an outer shell, and a hydraulic chamber 12 provided inside the caliper main body 11.
- a piston 13 is arranged in the hydraulic chamber 12, and the piston 13 has a function of driving the first brake pad 14.
- a second brake pad 15 is attached to one end of the caliper body 11, and a disc rotor 16 fixed to the axle is arranged between the first brake pad 14 and the second brake pad 15. ing.
- the disc rotor 16 is sandwiched between the first brake pad 14 and the second brake pad 15 for braking.
- the piston 13 arranged in the hydraulic chamber 12 is driven by the hydraulic pressure from the hydraulic system MB, the hydraulic pipe 34 from the booster 33 is connected, and the thrust force is applied to the piston 13 by operating the brake pedal 17. Is a structure that occurs.
- the brake pedal 17 When the brake pedal 17 is operated during normal traveling, the hydraulic pressure is supplied to the hydraulic chamber 12, the piston 13 moves to the left side in FIG. 2, and the first brake pad 14 is pressed against the disc rotor 16. To perform the braking operation.
- the piston 13 is connected to a speed reduction mechanism 19 via a rotation / linear motion conversion mechanism 18.
- the rotation / linear motion converting mechanism 18 uses a slide screw, and has a rotary shaft 20 having a spiral screw surface formed on the outer periphery and a screw surface of the rotary shaft 20. It is composed of a linear motion member 21 having a threaded surface inside.
- the linear motion member 21 can be separated from the piston 13, and the linear motion member 21 can move the piston 13 in the axial direction of the rotary shaft 20 by the rotation of the rotary shaft 20.
- the rotation / linear motion converting mechanism 18 is provided with a self-locking function part, and when the rotary shaft 20 is rotated, the linear motion member 21 linearly moves, but the rotation of the rotary shaft 20 does not occur. If is stopped, even if a force acts on the linear motion member 21 in the linear motion direction, the linear motion member 21 holds its position. That is, the rotary shaft 20 and the linear motion member 21 have a spiral threaded surface whose lead angle is smaller than the friction angle, and thereby a self-locking function is obtained. Since a rotation / linear motion conversion mechanism utilizing this type of screw surface is well known, detailed description thereof will be omitted.
- the rotary shaft 20 is fixed to the large-diameter gear 22 of the reduction mechanism 19, and the large-diameter gear 22 meshes with the small-diameter gear 23.
- the small diameter gear 23 is rotated by the electric motor 24, and the rotation of the electric motor 24 is transmitted to the small diameter gear 23 and the large diameter gear 22 to be decelerated.
- the rotation torque of the electric motor 24 is amplified and transmitted to the rotary shaft 20 by the rotation of the large diameter gear 22.
- the electronic control unit 25 controls a relay 27 for energizing / interrupting the battery 26, an H bridge circuit 28 for applying a voltage to the electric motor 24, and each circuit element (not shown).
- the output signal of the current monitor circuit 30 is input to the microprocessor 29 as the motor current detection value 30S.
- the voltage detection values 31S and 32S of the voltage monitor circuits 31 and 32 are input to the microprocessor 29, and the voltage difference between the voltage detection values 31S and 32S becomes the terminal voltage V of the motor.
- the voltage V between the terminals of the motor may directly detect the difference voltage between the terminals of the motor.
- a motor drive stop signal 28S is output from the electronic control means 25 to the H bridge circuit 28, the electric motor 24 is energized via the H bridge circuit 28 to drive the electric motor 24, and this rotation is performed.
- the linear motion member 21 and the piston 13 move to the left to press the brake pad 14 against the disc rotor 16 with a predetermined thrust (pressing force) to apply braking (parking brake).
- I CUT predetermined cutoff current threshold value
- FIG. 3 is a diagram showing the behavior of thrust and current during an operation of applying a thrust to the piston 13 of the brake caliper 10 constituting the electric parking brake device (hereinafter referred to as an apply operation).
- timing T1 is a start time when the voltage is applied to the electric motor 24, and the voltage is applied to the winding of the electric motor 24 together with the operation command.
- the induced voltage is "0" at this time.
- an inrush current (IR) in which the current rapidly increases occurs according to the time constant due to the electric resistance and the inductance.
- the rotation of the electric motor 24 starts immediately before the inrush current (IR) reaches the maximum value, but since the induced voltage is generated by the rotation of the electric motor 24, the current decreases from increase to current (ID). After a while, after a while, as shown by the current (IC), the current value becomes almost constant at timing T2.
- the period between the timings T1 and T2 is the "current decreasing section". At this timing T2, the rotation speed of the electric motor 24 also reaches a substantially constant value.
- this “current constant section” can include a fluctuation state allowed in control, and means a section that can be regarded as substantially constant from the control point of view. Therefore, the term "current constant section” is included below, but it includes a fluctuation state that is allowed from the viewpoint of control.
- the “current decrease section” and the “current constant section”, that is, the section from timing T1 to T6 is an idle section.
- This fantasy section varies depending on the piston position of the electric parking brake device and the wear state of the brake pad 14, and there is an operation mode in which there is almost no "current constant section”.
- the microprocessor 29 calculates the cutoff current threshold value (I CUT ) from the target thrust (F 1 ) and calculates the actual current value ( The detected current value) is compared with the cutoff current threshold value (I CUT ).
- the target thrust force F 1 is maintained. This is because the rotation / linear motion converting mechanism 18 having a reverse actuation property (low reverse efficiency) is used so that the electric motor 24 does not rotate even if it is pushed from the piston 13 side. After this timing T8, it becomes a thrust holding section.
- the holding thrust in the thrust holding section ( ⁇ target thrust F 1 ) is controlled by the cutoff current threshold (I CUT ).
- the cut-off current threshold value changes depending on factors such as temperature, individual hardware differences, and voltage, but even if the holding thrust varies due to these factors, it is necessary to stop the vehicle. The minimum holding thrust must be guaranteed.
- the holding thrust is calculated under many assumed conditions, and the cutoff current threshold is determined so that the minimum value in the holding thrust variation distribution exceeds the minimum guaranteed thrust.
- the maximum value causes an excessive amount of thrust depending on an individual having good mechanical efficiency and motor characteristics, and thus causes excessive stress on the mechanical system of the electric parking brake device, which is a factor of reducing durability.
- the thrust it is necessary to suppress the excessive dispersion of the holding thrust to the upper limit side while ensuring the minimum guaranteed thrust.
- the actual thrust can be adjusted between the minimum guaranteed thrust and the allowable upper limit thrust that is the allowable upper limit.
- the relationship between the cutoff current threshold value and the holding thrust is affected by temperature and the like, it is important to obtain the model parameter of the thrust estimation model each time.
- FIG. 4 is a block diagram of a control model of the electric parking brake system according to the first embodiment of the present invention.
- the control model is mainly composed of each component of a battery 26, a master cylinder 35, a microprocessor 29, an electronic control means 25 including a peripheral circuit, a harness 36, an electric motor 24, and a brake caliper 10.
- the microprocessor 29 uses the switches (in the electronic control means 25) based on the information on the electric current, the voltage of the electric motor 24 and the hydraulic pressure of the master cylinder 35.
- An On / Off command is issued to a relay or the like) to turn on / off the voltage output of the battery 26.
- the applied voltage is applied to the electric motor 24 via the harness 36 to drive the electric motor 24 to rotate.
- the rotation torque generated by the electric motor 24 is input to the brake caliper 10, and the rotation torque of the electric motor 24 that is input in the brake caliper 10 is amplified by the speed reduction mechanism 19 and is transmitted via the rotation / linear motion conversion mechanism 18.
- the thrust is output to the piston 13. Further, the brake caliper 10 is also provided with the hydraulic action by the master cylinder 35.
- the following motion equation and voltage equation are derived based on the main elements expressing the operation of the electric parking brake device described above.
- equation of motion for the clamp section from timing T6 to timing T8 shown in FIG. 3 is expressed as equations (1) and (2).
- K B in the equation (1) corresponds to the rotation / linear motion conversion efficiency of the rotation / linear motion conversion mechanism 18, and is caused by the total friction coefficient generated in the rotation / linear motion conversion mechanism 18 in the clamp section. ..
- the "K B” is set to any value.
- it can be set using a design value.
- a value obtained empirically may be input.
- "T CLP " corresponding to thrust in the idling section is "0" so when estimating model parameters (viscosity coefficient, torque constant, friction torque) in the idling section, K B ”can be ignored.
- V is the voltage between the motor terminals
- R is the winding resistance (including the harness resistance)
- L is the inductance
- the equations (1) and (3) of the electric parking brake device described above include unknown parameters.
- the voltage equation of equation (3) is summarized in this, the right side of the voltage equation is composed of three terms: resistance voltage drop (RI), inductance voltage drop (LdI / dt), and induced voltage (Kt ⁇ ⁇ ). Since all the terms include unknown coefficients and unknown variables, it is difficult to solve exactly, but if there is an element that can be omitted among these three terms, it can be solved approximately.
- FIG. 5 is a diagram for explaining a current, a voltage between motor terminals, and an inductance voltage drop when the electric motor according to the first embodiment of the present invention is started.
- the inductance voltage drop and the induced voltage can be omitted.
- the inductance voltage reaches a peak at the same time when the electric motor 24 is energized, but the inductance voltage is sufficiently small by the time the current value reaches the maximum value by rapidly decreasing within a few ms. Is becoming Further, since the electric motor gradually increases its rotation speed from the stopped state, the induced voltage (voltage between motor terminals) is relatively small in the period of a few ms immediately after starting.
- FIG. 6 is a control block diagram of model parameters according to the first embodiment of the present invention
- FIG. 7 is a waveform diagram of model parameter estimation operation according to the first embodiment of the present invention.
- the same reference numerals as those in FIG. 1 perform the same operations.
- the control block 100 mounted on the microprocessor 29 includes a model parameter estimator 110, a drive controller 130 that controls a motor drive signal, and a motor stop determination unit 120.
- an inrush current (IR) in which the current sharply increases is generated according to the time constant of the electric resistance and the inductance.
- the model parameter estimator 110 detects and holds the motor current I (T2) at an arbitrary timing (T2) at which the current of the electric motor 24 in the idling section increases.
- the no-load current INL holds the current value immediately before the timing (T6) when the current increases.
- the motor stop determination unit 120 outputs a free-run request FRcmd for stopping energization of the electric motor to the drive controller 130, and outputs a motor drive stop signal 28S from the drive controller 130 to the H bridge circuit 28 to turn on the electric motor. Rotate by inertia.
- the motor back electromotive force E is generated in the motor terminal voltage, so the motor back electromotive force E (T3) is detected at T3.
- the potential difference between the voltage V (T2) between the motor terminals at the timing T2 and the back electromotive force E (T3) at the timing T3 is the voltage drop (V (T2) ⁇ (V (T2) ⁇ ) due to the motor winding resistance R (including the harness resistance). It can also be detected as E (T3)), or the motor winding resistance R can be derived by dividing by the motor current I (T2) at the timing T2 and used for parameter calculation.
- Timing T4 derives the torque constant Kt and the like at an arbitrary timing during inertial rotation of the electric motor. After deriving the model parameters, the motor energization is restarted at timing T5. The time interval from timing T2 to T5 can be set arbitrarily. In inertial rotation of the electric motor, the motor rotation speed is reduced by the amount reduced by the viscosity coefficient ⁇ of the electric motor 24 and the speed reduction mechanism 19, the friction torque T frc, and the motor load. After the power supply to the electric motor 24 is stopped, the counter electromotive voltage E (T4) of the motor is also detected at a timing (T4) after a predetermined time has elapsed. The number of times of sampling is preferably set in consideration of the filter circuit time constant of the voltage monitor circuits 31 and 32.
- the current of the electric motor 24 is detected at the timing (T2) before the free run in which the current is increasing at least, and the counter electromotive voltage E is generated in the free run in which the power supply to the electric motor 24 is stopped.
- the terminal voltage of the electric motor 24 is detected at the timing (T3), and at an arbitrary timing (T4) when the rotation speed of the electric motor 24 decreases.
- the detection of the terminal voltage of these electric motors 24 is executed in the normal operation of the parking brake (the electric motor 24 drives the piston and the brake pad presses the disc rotor).
- the equation for estimating the model parameter is obtained by multiplying both sides of the equation (1) by the torque constant Kt.
- the suffixes of the back electromotive force E, the motor current I, and the motor rotation speed ⁇ indicate the respective holding values at each timing.
- the motor load T L is the load torque T load (K B ⁇ T CLP ), the friction torque T frc and viscous torque Itaomega (t) When summarized in, it becomes like the formula (5).
- the cutoff current threshold value I CUT is calculated from the equation (9) by using each model parameter derived using the free-run section and the target torque T cmd converted from the target thrust force F 1 into the torque value.
- the motor rotation speed ⁇ is calculated using the result obtained by setting Ldi / dt ⁇ 0 in the equation (3), and the cutoff current threshold value I CUT is repeatedly calculated until the application is completed.
- the model parameters that can be finally estimated can estimate the torque constant Kt and the loss torque (viscosity coefficient ⁇ , friction torque T frc ), and the estimation accuracy is high.
- the clamping force is generated, the detected current value of the electric motor 24 increases, and the current value reaches the cutoff current threshold value I CUT calculated at the timing T7.
- the cutoff current threshold value I CUT I CUT
- FIG. 8 is a flow chart for explaining the operation of the electronic control means according to the first embodiment of the present invention. Here, an example is shown in which it is determined whether the terminal voltage of the electric motor 24 has crossed zero at timing T4.
- a predetermined time After the start of energization of the electric motor 24, it is determined whether a predetermined time has passed and a predetermined current value (for example, 4A to 11A) has been reached (S103). If the current has not reached the predetermined current, this operation is repeated.
- a predetermined current value for example, 4A to 11A
- the terminal voltage / current of the electric motor 24 is detected at the timing T2 when the rotation speed of the electric motor 24 is stable (S104).
- the terminal voltage of the electric motor 24 is detected at timing T4, and it is determined whether the voltage crosses zero (S106). If the voltage does not cross zero, this operation is repeated. When the voltage crosses zero, the energization of the electric motor 24 is restarted (S107).
- the winding resistance R of the electric motor 24 can be calculated from the terminal voltage / current of the electric motor 24 detected at the timing T2 and the timing T3 (S201). Further, the model parameters of the torque constant Kt and the loss torque (viscosity coefficient ⁇ , friction torque T frc ) are calculated from the terminal voltage of the electric motor 24 at the timing T4 (S202).
- the electric parking brake device estimates the model parameter during the apply operation and calculates the cutoff current threshold value.
- a cutoff current threshold calculation model for controlling the thrust of the piston is provided, and a free run section is provided in a section where the load torque T load of the electric motor increases, and at least the voltage value applied to the electric motor is set.
- the current value is detected a plurality of times, a predetermined estimation calculation is performed using the plurality of voltage values and current values to estimate the model parameter used for the cutoff current threshold value calculation unit, and this model parameter is used.
- the cut-off current threshold value is calculated. Moreover, these operations are executed each time the electric parking brake device is operated.
- the free-run section is provided in the section where the load torque T load is generated, and the model parameter of the cutoff current threshold calculation unit can be reliably estimated and calculated. It is possible to estimate the cutoff current threshold value with high accuracy.
- the model parameter can be reliably estimated and calculated even in the section in which the load torque T load is generated and the motor current is increased. Therefore, even in the operation mode in which there is almost no "current constant section", Since the back electromotive force E (T4) of the motor is also detected at a timing (T4) after a lapse of a predetermined time after stopping the energization, the torque constant Kt, the viscosity coefficient ⁇ , and the friction torque T frc are based on the detection results. Since the calculated cut-off current threshold value is set, it is possible to provide an electric parking brake device that can operate with an appropriate tightening force. Further, since the rotation speed information from the rotation sensor is not used for estimating these model parameters, the rotation sensor can be omitted.
- FIG. 8 is a control block diagram of model parameters according to the second embodiment of the present invention
- FIG. 9 is a waveform diagram of model parameter estimation operation according to the second embodiment of the present invention. 8 and 9, the same reference numerals as those in FIGS. 5 and 6 perform the same operation.
- the control block 101 in FIG. 8 includes a transient model parameter estimator 111 that estimates a model parameter in a section in which the current decreases after the electric motor 24 is energized and before the current reaches a constant current section where the current is substantially constant.
- model parameters such as torque constants are estimated by the transient model parameter estimator 111 and the model parameter estimator 110 in different operating states, and model parameter estimation accuracy is obtained using a plurality of results estimated in different operating states. Is highly accurate. This point is different from the first embodiment.
- the model parameter estimator 110 is used to generate the free-run section described in FIGS. 6 and 7, and the torque constant Kt2 can be obtained.
- the motor stop determination unit 121 accurately calculates the torque constant Kt by averaging the torque constant Kt1 and the torque constant Kt2, and calculates the target cutoff current threshold value (I CUT ) based on the equation (9).
- the cutoff current threshold value (I CUT ) is compared with the actual current value, and it is determined that the actual current value exceeds the cutoff current threshold value (I CUT ) and cut off to the drive signal 120S transmitted to the drive controller 130. Request.
- the electronic control unit 25 cuts off the current supplied to the electric motor 24 when the actual current value actually flowing in the electric motor 24 reaches the cutoff current threshold value (I CUT ), and thrusts the electric motor 24. It will move to the holding section.
- the accuracy of the torque constant is improved by using the averaging process of the torque constant Kt1 and the torque constant Kt2, but the torque constant Kt1 estimated by the transient model parameter estimator 111 and the model parameter estimator 110 are estimated. It is also possible to make the parameter estimation calculation highly reliable by using either one of the torque constants within a preset range using the torque constant Kt2.
- the cutoff current threshold calculation model for controlling the thrust of the piston is provided, and the current after the inrush current generated when the electric motor is energized is substantially constant.
- the current decrease section before reaching the section at least the voltage value and the current value applied to the electric motor are detected a plurality of times, and a predetermined estimation calculation is performed using the plurality of voltage values and the current value. Further, an average value with the result of a predetermined estimation calculation based on the free-run section is obtained, the model parameter used for the cutoff current threshold calculation is estimated, and the cutoff current threshold is calculated using this model parameter. .. Moreover, these operations are executed each time the electric parking brake device is operated.
- the second embodiment it is possible to perform highly accurate model parameter estimation calculation from two operating states, that is, within the current decreasing section before reaching the constant current section and in the constant current section of the constant current section.
- the thrust control accuracy based on the cutoff current threshold value can be improved.
- the rotation sensor since the rotation speed information by the rotation sensor is not used for estimating these model parameters, the rotation sensor can be omitted.
- the present invention is not limited to the above-described embodiments, but includes various modifications.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
- other configurations can be added / deleted / replaced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Braking Systems And Boosters (AREA)
- Braking Arrangements (AREA)
- Regulating Braking Force (AREA)
Abstract
The purpose of the present invention is to provide an electric parking brake device capable of operating with appropriate tightening force. Therefore, the present invention is provided with: a piston 13 that is moved by an electric motor 24 and presses a brake pad 15 against a disk rotor 16; and an electronic control means 25 for controlling rotation of the electric motor 24. The electronic control means 25 produces a state in which energization of the electric motor 24 is stopped, within a period during which the electric parking brake device is being applied and the load on the electric motor 24 increases and the current increases after start of driving the electric motor 24, detects a voltage and a current during the energization of the electric motor 24, a voltage when the energization of the electric motor 24 is being stopped, and a voltage after an elapse of a predetermined time during which the number of rotations of the electric motor 24 decreases, from stopping the energization of the electric motor, calculates the torque constant of the electric motor 24 using the detected voltages and current, and sets a cutoff current threshold for the electric motor 24 using the calculated torque constant.
Description
本発明は自動車等の車両に用いる電動パーキングブレーキ装置に関する。
The present invention relates to an electric parking brake device used for vehicles such as automobiles.
電動パーキングブレーキ装置を用いた従来技術としては、例えば特許文献1が提案されている。
As a conventional technique using an electric parking brake device, for example, Patent Document 1 is proposed.
特許文献1には、電動モータへの通電を遮断後、電動モータが慣性で回転する発電モードで動作する間にパラメータを検出し、検出したパラメータを基に電動モータのモータ定数を決定し、電動パーキングブレーキ装置の締付力を調整するようにした技術が開示されている。
In Patent Document 1, after the power supply to the electric motor is cut off, a parameter is detected while the electric motor operates in a power generation mode in which the electric motor rotates by inertia, and a motor constant of the electric motor is determined based on the detected parameter. A technique for adjusting the tightening force of the parking brake device is disclosed.
特許文献1に記載の技術においては、電動モータへの負荷が発生していない状態において電動モータのパラメータを検出するようにしているので、ブレーキパッドがディスクロータに接触し摩擦変動により電動モータに負荷が発生すると、無負荷状態で検出したパラメータが誤差となり、電動パーキングブレーキ装置の適正な締付力を確保できないといった課題があった。
In the technique described in Patent Document 1, since the parameters of the electric motor are detected in a state where no load is generated on the electric motor, the brake pad comes into contact with the disc rotor and the electric motor is loaded by frictional fluctuation. When this occurs, there is a problem in that the parameter detected in the no-load state becomes an error and the proper tightening force of the electric parking brake device cannot be secured.
本発明の目的は上記課題を解決し、電動モータの負荷の応じた適切な締付力で動作可能な電動パーキングブレーキ装置を提供することにある。
An object of the present invention is to solve the above problems and to provide an electric parking brake device that can be operated with an appropriate tightening force according to the load of an electric motor.
上記目的を達成するために本発明の特徴とするところは、電動モータと、前記電動モータの回転トルクを増幅する減速機構と、前記減速機構より出力される回転運動を直動運動に変換する回転/直動変換機構と、前記回転/直動変換機構によって移動されるピストンと、前記ピストンの推力によってディスクロータに押し付けられるブレーキパッドと、前記電動モータの回転を制御する電子制御手段を備えた電動パーキングブレーキ装置において、前記電子制御手段は、前記電動パーキングブレーキ装置がアプライ動作中であって、前記電動モータが駆動開始後、前記電動モータの負荷が増大して電流が増加する区間において前記電動モータの通電を停止させる状態を生成し、前記電動モータの通電中の電圧、電流、前記電動モータの通電停止中の電圧、及び前記電動モータの通電停止から所定時間経過後の電圧を検出し、前記検出した電圧と電流を用いて、前記電動モータのトルク定数を算出し、前記トルク定数を用いて、前記電動モータのカットオフ電流閾値を設定することにある。
In order to achieve the above-mentioned object, the features of the present invention include an electric motor, a reduction mechanism that amplifies the rotation torque of the electric motor, and a rotation that converts the rotational motion output from the reduction mechanism into a linear motion. An electric motor equipped with a linear motion conversion mechanism, a piston moved by the rotation / linear motion conversion mechanism, a brake pad pressed against the disc rotor by the thrust of the piston, and an electronic control unit for controlling the rotation of the electric motor. In the parking brake device, the electronic control unit is configured to apply the electric motor in a section in which the electric motor is started to drive and the electric motor is started to drive, and then the load of the electric motor is increased and the current is increased. To generate a state for stopping the energization of the electric motor, and to determine the voltage, current, and energization stoppage of the electric motor during the energization of the electric motor. Voltage at rest, and detecting the voltage after a predetermined time has elapsed from the stop of energization of the electric motor, using the detected voltage and current, to calculate the torque constant of the electric motor, using the torque constant, Setting a cutoff current threshold value of the electric motor.
本発明によれば、電動モータの負荷の応じた適切な締付力で動作可能な電動パーキングブレーキ装置を提供することができる。
According to the present invention, it is possible to provide an electric parking brake device that can operate with an appropriate tightening force according to the load of the electric motor.
以下、本発明に係る電動パーキングブレーキ装置の実施例を図面に基づいて説明する。本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。
An embodiment of an electric parking brake device according to the present invention will be described below with reference to the drawings. The present invention is not limited to the following embodiments, and includes various modifications and applications within the scope of the technical concept of the present invention.
以下、本発明の実施例について図面を引用しながら説明する。図1は本発明の第1実施例に係る電動パーキングブレーキ装置の全体構成図、図2は図1に示すブレーキキャリパの構成を示す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is an overall configuration diagram of an electric parking brake device according to a first embodiment of the present invention, and FIG. 2 is a sectional view showing a configuration of a brake caliper shown in FIG.
電動パーキングブレーキ装置は、電動モータ、減速機構、回転/直動変換機構、ピストン、ブレーキパッド及び電子制御手段によって構成されている。
The electric parking brake device is composed of an electric motor, a speed reduction mechanism, a rotation / linear motion conversion mechanism, a piston, a brake pad, and electronic control means.
図1及び図2において、電動パーキングブレーキ装置を構成するブレーキキャリパ10は、外郭を形成するキャリパ本体11と、このキャリパ本体11の内部に設けられた油圧室12とを備えている。油圧室12にはピストン13が配置され、このピストン13は第1のブレーキパッド14を駆動する機能を備えている。また、キャリパ本体11の一端には第2のブレーキパッド15が取り付けられており、第1のブレーキパッド14と第2のブレーキパッド15の間には、車軸に固定されたディスクロータ16が配置されている。このディスクロータ16は第1のブレーキパッド14と第2のブレーキパッド15に挟まれて制動されるものである。
1 and 2, a brake caliper 10 that constitutes an electric parking brake device includes a caliper main body 11 that forms an outer shell, and a hydraulic chamber 12 provided inside the caliper main body 11. A piston 13 is arranged in the hydraulic chamber 12, and the piston 13 has a function of driving the first brake pad 14. A second brake pad 15 is attached to one end of the caliper body 11, and a disc rotor 16 fixed to the axle is arranged between the first brake pad 14 and the second brake pad 15. ing. The disc rotor 16 is sandwiched between the first brake pad 14 and the second brake pad 15 for braking.
油圧室12に配置されたピストン13は、油圧系統MBからの油圧によって駆動されるものであり、ブースタ33からの液圧配管34が接続されており、ブレーキペダル17の操作によってもピストン13に推力が発生する構造である。そして、通常の走行中にブレーキペダル17の操作が行われると、油圧室12に油圧が供給されてピストン13が図2で左側に移動して、第1のブレーキパッド14をディスクロータ16に押し付けて制動動作を行うものである。
The piston 13 arranged in the hydraulic chamber 12 is driven by the hydraulic pressure from the hydraulic system MB, the hydraulic pipe 34 from the booster 33 is connected, and the thrust force is applied to the piston 13 by operating the brake pedal 17. Is a structure that occurs. When the brake pedal 17 is operated during normal traveling, the hydraulic pressure is supplied to the hydraulic chamber 12, the piston 13 moves to the left side in FIG. 2, and the first brake pad 14 is pressed against the disc rotor 16. To perform the braking operation.
ピストン13は回転/直動変換機構18を介して減速機構19と連結されている。図2に示すように、回転/直動変換機構18は滑りねじを使用したものであり、外周に形成した螺旋状のねじ面を有する回転軸20と、この回転軸20のねじ面に螺合するねじ面を内部に備えた直動部材21より構成されている。直動部材21はピストン13とは切離可能であり、回転軸20の回転によって直動部材21はピストン13を回転軸20の軸方向に移動することができる。
The piston 13 is connected to a speed reduction mechanism 19 via a rotation / linear motion conversion mechanism 18. As shown in FIG. 2, the rotation / linear motion converting mechanism 18 uses a slide screw, and has a rotary shaft 20 having a spiral screw surface formed on the outer periphery and a screw surface of the rotary shaft 20. It is composed of a linear motion member 21 having a threaded surface inside. The linear motion member 21 can be separated from the piston 13, and the linear motion member 21 can move the piston 13 in the axial direction of the rotary shaft 20 by the rotation of the rotary shaft 20.
また、本実施例では、回転/直動変換機構18にはセルフロック機能部が備えられており、回転軸20を回転させれば直動部材21は直動運動するが、回転軸20の回転を停止すれば、直動部材21に直動方向に力が作用しても直動部材21はその位置を保持するものである。すなわち、回転軸20と直動部材21は、摩擦角より進み角が小さい螺旋状のねじ面を有しており、これによってセルフロック機能を得ているものである。この種のねじ面を利用した回転/直動変換機構は良く知られているので、詳細な説明は省略する。
Further, in the present embodiment, the rotation / linear motion converting mechanism 18 is provided with a self-locking function part, and when the rotary shaft 20 is rotated, the linear motion member 21 linearly moves, but the rotation of the rotary shaft 20 does not occur. If is stopped, even if a force acts on the linear motion member 21 in the linear motion direction, the linear motion member 21 holds its position. That is, the rotary shaft 20 and the linear motion member 21 have a spiral threaded surface whose lead angle is smaller than the friction angle, and thereby a self-locking function is obtained. Since a rotation / linear motion conversion mechanism utilizing this type of screw surface is well known, detailed description thereof will be omitted.
図1に示すように、回転軸20は減速機構19の大径歯車22に固定されており、大径歯車22は小径歯車23と噛み合っている。小径歯車23は電動モータ24によって回転されるものであり、電動モータ24の回転は小径歯車23、大径歯車22に伝えられて減速されるものである。大径歯車22が回転されることによって、電動モータ24の回転トルクは増幅されて回転軸20に伝えられるものである。
As shown in FIG. 1, the rotary shaft 20 is fixed to the large-diameter gear 22 of the reduction mechanism 19, and the large-diameter gear 22 meshes with the small-diameter gear 23. The small diameter gear 23 is rotated by the electric motor 24, and the rotation of the electric motor 24 is transmitted to the small diameter gear 23 and the large diameter gear 22 to be decelerated. The rotation torque of the electric motor 24 is amplified and transmitted to the rotary shaft 20 by the rotation of the large diameter gear 22.
電動モータ24への電力の供給は、電動モータ制御機能部を備える電子制御手段25によって制御されており、電子制御手段25は周知のマイクロプロセッサ29や出力回路等からなっている。図1に示すように電子制御手段25は、バッテリ26の通電/遮断を行うリレー27と、電動モータ24に電圧を印加するためのHブリッジ回路28と、各回路素子(図示せず)を制御するマイクロプロセッサ29と、電源電圧モニタ回路37と、電動モータ24に流れる電流を検出する電流モニタ回路30と、Hブリッジ回路28から出力される2つの端子の電圧をそれぞれ検出するモータ端子aの電圧モニタ回路31と、モータ端子bの電圧モニタ回路32から構成されている。
Supply of electric power to the electric motor 24 is controlled by an electronic control unit 25 having an electric motor control function unit, and the electronic control unit 25 is composed of a well-known microprocessor 29, an output circuit and the like. As shown in FIG. 1, the electronic control unit 25 controls a relay 27 for energizing / interrupting the battery 26, an H bridge circuit 28 for applying a voltage to the electric motor 24, and each circuit element (not shown). The microprocessor 29, the power supply voltage monitor circuit 37, the current monitor circuit 30 that detects the current flowing through the electric motor 24, and the voltage at the motor terminal a that detects the voltages at the two terminals output from the H bridge circuit 28. It is composed of a monitor circuit 31 and a voltage monitor circuit 32 of the motor terminal b.
電流モニタ回路30の出力信号は、モータの電流検出値30Sとしてマイクロプロセッサ29に入力する。電圧モニタ回路31、32の電圧検出値31S,32Sがマイクロプロセッサ29に入力され、電圧検出値31Sと32Sの差電圧がモータの端子間電圧Vとなる。尚、モータの端子間電圧Vは、モータ端子間の差電圧を直接検出するようにしても良い。
The output signal of the current monitor circuit 30 is input to the microprocessor 29 as the motor current detection value 30S. The voltage detection values 31S and 32S of the voltage monitor circuits 31 and 32 are input to the microprocessor 29, and the voltage difference between the voltage detection values 31S and 32S becomes the terminal voltage V of the motor. The voltage V between the terminals of the motor may directly detect the difference voltage between the terminals of the motor.
車両が駐停車する場合は電子制御手段25からモータ駆動停止信号28SをHブリッジ回路28に出力し、このHブリッジ回路28を介して電動モータ24に通電して電動モータ24を駆動し、この回転は減速機構19の各歯車23、22を介して回転軸20を回転させる。回転軸20が回転すると直動部材21及びピストン13が左側に移動してブレーキパッド14を所定の推力(押付力)でディスクロータ16に押し付けて制動(パーキングブレーキ)をかける。
When the vehicle is parked or stopped, a motor drive stop signal 28S is output from the electronic control means 25 to the H bridge circuit 28, the electric motor 24 is energized via the H bridge circuit 28 to drive the electric motor 24, and this rotation is performed. Rotates the rotary shaft 20 via the gears 23 and 22 of the reduction mechanism 19. When the rotary shaft 20 rotates, the linear motion member 21 and the piston 13 move to the left to press the brake pad 14 against the disc rotor 16 with a predetermined thrust (pressing force) to apply braking (parking brake).
そして、電子制御手段25は電動モータ24の電流検出値30Sが所定のカットオフ電流閾値ICUT(=所定の推力)を超過したときに通電を停止する。電動モータ24への通電が停止されると、回転軸20と直動部材21の間のセルフロック機能部でこの所定の推力を保持して、ディスクロータ16に制動をかけ続けるものである。
Then, the electronic control means 25 stops energization when the detected current value 30S of the electric motor 24 exceeds a predetermined cutoff current threshold value I CUT (= predetermined thrust). When the power supply to the electric motor 24 is stopped, the predetermined thrust is held by the self-locking function portion between the rotary shaft 20 and the linear motion member 21, and the disc rotor 16 is continuously braked.
図3は、電動パーキングブレーキ装置を構成するブレーキキャリパ10のピストン13に推力を与える動作時(以下、アプライ動作時と表記する)における推力と電流の挙動を示す図である。図3において、タイミングT1は電動モータ24に電圧が印加される開始時間であり、動作指令と共に電動モータ24の巻線に電圧が印加される。しかし、電圧印加直後は電動モータ24が停止状態であるので、このとき誘起電圧は「0」である。その後、電気抵抗とインダクタンスによる時定数に従って、電流が急増する突入電流(IR)が発生する。
FIG. 3 is a diagram showing the behavior of thrust and current during an operation of applying a thrust to the piston 13 of the brake caliper 10 constituting the electric parking brake device (hereinafter referred to as an apply operation). In FIG. 3, timing T1 is a start time when the voltage is applied to the electric motor 24, and the voltage is applied to the winding of the electric motor 24 together with the operation command. However, since the electric motor 24 is stopped immediately after the voltage application, the induced voltage is "0" at this time. After that, an inrush current (IR) in which the current rapidly increases occurs according to the time constant due to the electric resistance and the inductance.
そして、突入電流(IR)が最大値を迎える直前で電動モータ24の回転が始まるが、電動モータ24の回転により誘起電圧が発生するため、電流は増加から電流(ID)で示すように減少に転じ、暫くするとタイミングT2において電流(IC)で示すように電流値がほぼ一定に落ち着く状態となる。このタイミングT1~T2の間は「電流減少区間」となる。このタイミングT2のとき、電動モータ24の回転数もほぼ一定に達する。
Then, the rotation of the electric motor 24 starts immediately before the inrush current (IR) reaches the maximum value, but since the induced voltage is generated by the rotation of the electric motor 24, the current decreases from increase to current (ID). After a while, after a while, as shown by the current (IC), the current value becomes almost constant at timing T2. The period between the timings T1 and T2 is the "current decreasing section". At this timing T2, the rotation speed of the electric motor 24 also reaches a substantially constant value.
次に、タイミングT6まではディスクロータ16をクランプする方向にピストン13が動いていくが、まだブレーキパッド14、15がディスクロータ16に当接しておらずクランプ力は発生していない。この時、ピストン13の推力は「0」であり、タイミングT2とT6の間は電動モータの負荷が比較的小さい電流一定区間となる。尚、この「電流一定区間」は、制御上で許容される変動状態をも含むことができものであり、制御上から略一定と見做せる区間を意味している。したがって、以下で「電流一定区間」と表記しているが、制御上から許容される変動状態を含むものである。「電流減少区間」と「電流一定区間」、すなわちタイミングT1からT6の区間は空走区間となる。この空想区間は、電動パーキングブレーキ装置のピストン位置やブレーキパッド14の摩耗状態によって変動し、「電流一定区間」がほとんどない動作形態もあり、「電流減少区間」からすぐに「電流増加区間」に推移することもある。
Next, until timing T6, the piston 13 moves in the direction of clamping the disc rotor 16, but the brake pads 14 and 15 have not yet contacted the disc rotor 16 and no clamping force has been generated. At this time, the thrust of the piston 13 is "0", and a constant current section in which the load of the electric motor is relatively small is between the timings T2 and T6. It should be noted that this “current constant section” can include a fluctuation state allowed in control, and means a section that can be regarded as substantially constant from the control point of view. Therefore, the term "current constant section" is included below, but it includes a fluctuation state that is allowed from the viewpoint of control. The “current decrease section” and the “current constant section”, that is, the section from timing T1 to T6 is an idle section. This fantasy section varies depending on the piston position of the electric parking brake device and the wear state of the brake pad 14, and there is an operation mode in which there is almost no "current constant section". Immediately after the "current decrease section", there is a "current increase section". It may change.
次に、ブレーキパッド14、15がディスクロータ16に当接して電流一定区間が終わる(タイミングT6)と、ピストン13に推力が発生する。推力の増加と共に電動モータ24の回転が減少し電流が増加(電動モータのトルクが増加)する。この電流が増加する区間は「電流増加区間」となる。目標推力(F1)で電動モータ24の駆動を停止させるため、マイクロプロセッサ29では目標推力(F1)からカットオフ電流閾値(ICUT)を算出し、実際の電動モータ24に流れる電流値(検出電流値)とカットオフ電流閾値(ICUT)とが比較される。
Next, when the brake pads 14 and 15 come into contact with the disk rotor 16 and the constant current section ends (timing T6), thrust is generated in the piston 13. As the thrust increases, the rotation of the electric motor 24 decreases and the current increases (the torque of the electric motor increases). The section where the current increases is the “current increase section”. In order to stop the driving of the electric motor 24 with the target thrust (F 1 ), the microprocessor 29 calculates the cutoff current threshold value (I CUT ) from the target thrust (F 1 ) and calculates the actual current value ( The detected current value) is compared with the cutoff current threshold value (I CUT ).
タイミングT7で、実電流値がカットオフ電流閾値(ICUT)を超え、更に確実に超過したことを確認した後にタイミングT8で電動モータ24への電圧印加を停止して電流を遮断する。したがって、タイミングT8以降は、タイミングT6に比べてF1の分だけ推力は増加している。そして、このタイミングT6からT8の間はクランプ区間となる。このときタイミングT8では電動モータ24のロータの慣性で回転し続けることを防止するため電動モータ24の端子間を短絡(ブレーキ動作)させている。
At timing T7, after confirming that the actual current value exceeds the cutoff current threshold value (I CUT ) and further surely exceeded, at time T8, the voltage application to the electric motor 24 is stopped to interrupt the current. Therefore, after the timing T8, the thrust increases by F 1 as compared with the timing T6. Then, a clamp section is provided between the timings T6 and T8. At this time, at timing T8, the terminals of the electric motor 24 are short-circuited (brake operation) in order to prevent the rotor of the electric motor 24 from continuing to rotate due to inertia.
クランプ区間が終わり、電動モータ24への電圧が印加されていない状態では、目標推力F1に保持される。これは、逆作動性(逆効率の低い)の回転/直動変換機構18を使用することによって、ピストン13側から押されても電動モータ24が回転しないようにしている。このタイミングT8以降は推力保持区間となる。
In the state where the clamp section ends and the voltage is not applied to the electric motor 24, the target thrust force F 1 is maintained. This is because the rotation / linear motion converting mechanism 18 having a reverse actuation property (low reverse efficiency) is used so that the electric motor 24 does not rotate even if it is pushed from the piston 13 side. After this timing T8, it becomes a thrust holding section.
以上で説明した通り、推力保持区間の保持推力(≒目標推力F1)はカットオフ電流閾値 (ICUT)によって制御されることが理解できる。ここで、カットオフ電流閾値と保持推力の関係は温度、ハードウェア個体差、電圧などの要因によって変化するが、これらの要因によって保持推力がばらつきを持っても、自動車を停止させるのに必要な最低保持推力は保証されなければならない。
As described above, it can be understood that the holding thrust in the thrust holding section (≉target thrust F 1 ) is controlled by the cutoff current threshold (I CUT ). Here, the relationship between the cut-off current threshold value and the holding thrust changes depending on factors such as temperature, individual hardware differences, and voltage, but even if the holding thrust varies due to these factors, it is necessary to stop the vehicle. The minimum holding thrust must be guaranteed.
そして、保持推力が最低保証推力を下回ると、坂道で駐車した自動車が勝手に動き出す可能性がある。これを防ぐため、想定される多くの条件で保持推力を計算し、保持推力のばらつき分布の中の最小値が最低保証推力を上回るようにカットオフ電流閾値を決めている。一方、その最大値はメカ効率やモータ特性が良い個体によっては必要以上の推力が発生するため、電動パーキングブレーキ装置の機構系に過度の応力がかかり、耐久性を低下させる要因となっている。
And if the holding thrust falls below the minimum guaranteed thrust, the car parked on the slope may start moving without permission. In order to prevent this, the holding thrust is calculated under many assumed conditions, and the cutoff current threshold is determined so that the minimum value in the holding thrust variation distribution exceeds the minimum guaranteed thrust. On the other hand, the maximum value causes an excessive amount of thrust depending on an individual having good mechanical efficiency and motor characteristics, and thus causes excessive stress on the mechanical system of the electric parking brake device, which is a factor of reducing durability.
したがって、最低保証推力を確保しつつ保持推力の上限側への過度のばらつきを抑制することが必要である。換言すると、推力を正確に推定することができれば、最低保証推力と許容される上限となる許容上限推力の間に実際の推力を調整することができる。このためには、推力推定モデルのモデルパラメータを精度よく求めることが重要である。しかも、カットオフ電流閾値と保持推力の関係は温度などの影響を受けるので、推力推定モデルのモデルパラメータをその都度求めることが重要である。
Therefore, it is necessary to suppress the excessive dispersion of the holding thrust to the upper limit side while ensuring the minimum guaranteed thrust. In other words, if the thrust can be accurately estimated, the actual thrust can be adjusted between the minimum guaranteed thrust and the allowable upper limit thrust that is the allowable upper limit. For this purpose, it is important to accurately obtain the model parameters of the thrust estimation model. Moreover, since the relationship between the cutoff current threshold value and the holding thrust is affected by temperature and the like, it is important to obtain the model parameter of the thrust estimation model each time.
図4は本発明の第1実施例に係る電動パーキングブレーキ装置の制御モデルのブロック図である。制御モデルは主にバッテリ26、マスタシリンダ35、マイクロプロセッサ29及び周辺回路を含む電子制御手段25、ハーネス36、電動モータ24、ブレーキキャリパ10の各コンポーネントから構成されている。これらのコンポーネントの主な接続関係と入出力信号を説明すると、マイクロプロセッサ29は電動モータ24の電流、電圧、及びマスタシリンダ35の液圧の情報に基づいて、電子制御手段25の中のスイッチ(リレー等)にOn/Off指令を出し、バッテリ26の電圧出力をOn/Offする。
FIG. 4 is a block diagram of a control model of the electric parking brake system according to the first embodiment of the present invention. The control model is mainly composed of each component of a battery 26, a master cylinder 35, a microprocessor 29, an electronic control means 25 including a peripheral circuit, a harness 36, an electric motor 24, and a brake caliper 10. Explaining the main connection relations and input / output signals of these components, the microprocessor 29 uses the switches (in the electronic control means 25) based on the information on the electric current, the voltage of the electric motor 24 and the hydraulic pressure of the master cylinder 35. An On / Off command is issued to a relay or the like) to turn on / off the voltage output of the battery 26.
印加された電圧は、ハーネス36を介して電動モータ24に与えられ、電動モータ24を回転駆動する。電動モータ24で発生した回転トルクは、ブレーキキャリパ10に入力され、ブレーキキャリパ10の中では入力された電動モータ24の回転トルクを減速機構19によって増幅し、回転/直動変換機構18を介してピストン13に推力を出力する。また、ブレーキキャリパ10にはマスタシリンダ35による液圧作用も付与されている。
The applied voltage is applied to the electric motor 24 via the harness 36 to drive the electric motor 24 to rotate. The rotation torque generated by the electric motor 24 is input to the brake caliper 10, and the rotation torque of the electric motor 24 that is input in the brake caliper 10 is amplified by the speed reduction mechanism 19 and is transmitted via the rotation / linear motion conversion mechanism 18. The thrust is output to the piston 13. Further, the brake caliper 10 is also provided with the hydraulic action by the master cylinder 35.
そして、このような制御モデルに対して、運動方程式、及び電圧方程式を導き出すことができる。本実施例では上述した電動パーキングブレーキ装置の動作を表現する主な要素に基づき、以下に示すような運動方程式、及び電圧方程式を導き出した。
Then, it is possible to derive a motion equation and a voltage equation for such a control model. In the present embodiment, the following motion equation and voltage equation are derived based on the main elements expressing the operation of the electric parking brake device described above.
まず、図3に示すタイミングT6からタイミングT8までのクランプ区間の運動方程式を表現すると(1)式及び(2)式のように表される。
First, the equation of motion for the clamp section from timing T6 to timing T8 shown in FIG. 3 is expressed as equations (1) and (2).
ここで、(1)式において、「Jdω/dt」は慣性抵抗、「J」は慣性係数、「Kt」はトルク定数、「I」は電流、「η」は粘性係数、「ω」は回転速度、「Tfrc」は電動モータ24から動力伝達機構の回転/直動変換機構18までを総合した摩擦トルク、「TCLP」は推力のトルク換算値である。尚、粘性係数「η」、トルク定数「Kt」、摩擦トルク「Tfrc」の少なくとも1つが、本実施例で求めようとする推力を推定するためのモデルパラメータである。
Here, in the equation (1), “Jdω / dt” is inertial resistance, “J” is inertia coefficient, “Kt” is torque constant, “I” is current, “η” is viscosity coefficient, and “ω” is rotation. The speed, “T frc ”, is the total friction torque from the electric motor 24 to the rotation / linear motion conversion mechanism 18 of the power transmission mechanism, and “T CLP ” is the torque conversion value of thrust. At least one of the viscosity coefficient “η”, the torque constant “Kt”, and the friction torque “T frc ” is a model parameter for estimating the thrust to be obtained in this embodiment.
また、(1)式中の「KB」は回転/直動変換機構18の回転/直動変換効率に相当し、クランプ区間に回転/直動変換機構18で生ずる総摩擦係数等に起因する。尚、本実施例のアプライ時の動作から、この「KB」は任意の値に設定される。例えば、設計値を用いて設定することができる。また、経験的に得られる値を入力するようにしても良い。ただし、以下に示すように空走区間では推力に対応する「TCLP」が「0」であるため、空走区間でモデルパラメータ(粘性係数、トルク定数、摩擦トルク)を推定する場合には「KB」は無視することができる。
Further, “K B ” in the equation (1) corresponds to the rotation / linear motion conversion efficiency of the rotation / linear motion conversion mechanism 18, and is caused by the total friction coefficient generated in the rotation / linear motion conversion mechanism 18 in the clamp section. .. Incidentally, the operation when applied in the present embodiment, the "K B" is set to any value. For example, it can be set using a design value. Alternatively, a value obtained empirically may be input. However, as shown below, "T CLP " corresponding to thrust in the idling section is "0", so when estimating model parameters (viscosity coefficient, torque constant, friction torque) in the idling section, K B ”can be ignored.
また、(2)式において、「FCLP」はピストン13に与えられる推力であり、また、「K」は回転/直動変換におけるトルク/推力変換係数である。したがって、推力「FCLP」にトルク/推力変換係数「K」を乗じてトルク換算値「TCLP」を求めることができる。ここで、トルク/推力変換係数「K」は回転/直動変換部の構造のリードや減速機の減速比から決定することも可能である。
Further, in the equation (2), “ FCLP ” is the thrust applied to the piston 13, and “K” is the torque / thrust conversion coefficient in the rotation / linear motion conversion. Therefore, the torque conversion value " TCLP " can be obtained by multiplying the thrust " FCLP " by the torque / thrust conversion coefficient "K". Here, the torque / thrust force conversion coefficient “K” can be determined from the lead of the structure of the rotation / linear motion conversion portion and the reduction ratio of the speed reducer.
また、電動モータの電圧方程式は(3)式のように表される。
Also, the voltage equation of the electric motor is expressed as in equation (3).
ここで、(3)式において、「V」はモータ端子間電圧、「R」は巻線抵抗(ハーネス抵抗含む)、「L」はインダクタンスである。
Here, in the equation (3), “V” is the voltage between the motor terminals, “R” is the winding resistance (including the harness resistance), and “L” is the inductance.
次に、これらの運動方程式と電圧方程式に基づくパラメータ推定と推力計算について説明する。上述した電動パーキングブレーキ装置の(1)式及び(3)式に示す方程式には未知パラメータが含まれている。そして、この中で(3)式の電圧方程式について整理すると、電圧方程式の右辺は抵抗電圧降下(RI)、インダクタンス電圧降下(LdI/dt)、及び誘起電圧(Kt・ω)の3項からなり、いずれの項も未知係数、未知変数を含むため、厳密に解くことは難しいが、この3項のうち省略できる要素があるならば、近似的に解くことができる。
Next, parameter estimation and thrust calculation based on these equations of motion and voltage will be explained. The equations (1) and (3) of the electric parking brake device described above include unknown parameters. When the voltage equation of equation (3) is summarized in this, the right side of the voltage equation is composed of three terms: resistance voltage drop (RI), inductance voltage drop (LdI / dt), and induced voltage (Kt · ω). Since all the terms include unknown coefficients and unknown variables, it is difficult to solve exactly, but if there is an element that can be omitted among these three terms, it can be solved approximately.
ここで、電動モータ24の起動時の過渡的な電流、モータ端子間電圧、インダクタンス電圧降下の電気特性について図5で説明する。図5は本発明の第1実施例に係る電動モータの起動時の電流、モータ端子間電圧、インダクタンス電圧降下を説明する図である。
Here, the electrical characteristics of the transient current at the time of starting the electric motor 24, the voltage between the motor terminals, and the inductance voltage drop will be described with reference to FIG. FIG. 5 is a diagram for explaining a current, a voltage between motor terminals, and an inductance voltage drop when the electric motor according to the first embodiment of the present invention is started.
電動モータ24の起動時の過渡的な電流、モータ端子間電圧、インダクタンス電圧降下の電気特性に着目すると、インダクタンス電圧降下と誘起電圧が省略できる要素であること判明した。図5に示すように、電動モータ24への通電開始と同時に、インダクタンス電圧はピークを迎えるが、数ms以内に急速に減少して電流値が最大値を取る頃には、インダクタンス電圧は十分小さくなっている。また、電動モータは停止している状態から徐々に回転数を上げるため、起動直後の数ms期間では誘起電圧(モータ端子間電圧)が比較的小さいものである。
When focusing on the electrical characteristics of the transient current at start-up of the electric motor 24, the voltage between the motor terminals, and the inductance voltage drop, it was found that the inductance voltage drop and the induced voltage can be omitted. As shown in FIG. 5, the inductance voltage reaches a peak at the same time when the electric motor 24 is energized, but the inductance voltage is sufficiently small by the time the current value reaches the maximum value by rapidly decreasing within a few ms. Is becoming Further, since the electric motor gradually increases its rotation speed from the stopped state, the induced voltage (voltage between motor terminals) is relatively small in the period of a few ms immediately after starting.
これらのことから、電動モータ24の起動時、つまり、アプライ動作の開始時においては、(3)式に示す電圧方程式のうち、インダクタンス電圧降下(LdI/dt)と誘起電圧(Kt・ω)の項を無視できるとするならば、以下の(4)式で示すように電気抵抗(R)が近似して求められる。
From these facts, when the electric motor 24 is started, that is, when the apply operation is started, the inductance voltage drop (LdI / dt) and the induced voltage (Kt · ω) in the voltage equation shown in the equation (3) are calculated. If the term can be ignored, the electric resistance (R) can be obtained by approximation as shown in the following equation (4).
図6と図7を用いて本実施例のモデルパラメータ推定方法について説明する。図6は本発明の第1実施例に係るモデルパラメータの制御ブロック図、図7は本発明の第1実施例に係るモデルパラメータの推定動作の波形図である。図1と同一の符号は同じ動作をするものである。
The model parameter estimation method of this embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a control block diagram of model parameters according to the first embodiment of the present invention, and FIG. 7 is a waveform diagram of model parameter estimation operation according to the first embodiment of the present invention. The same reference numerals as those in FIG. 1 perform the same operations.
マイクロプロセッサ29に実装する制御ブロック100には、モデルパラメータ推定器110と、モータ駆動信号を制御する駆動制御器130と、モータ停止判定器120を備えている。
The control block 100 mounted on the microprocessor 29 includes a model parameter estimator 110, a drive controller 130 that controls a motor drive signal, and a motor stop determination unit 120.
電動モータ24作動指令により電動モータ24の巻線に電圧が印加される(T1)と、電気抵抗とインダクタンスによる時定数に従って、電流が急増する突入電流(IR)が発生する。モデルパラメータ推定器110は、空走区間の電動モータ24の電流増加した任意のタイミング(T2)でモータ電流I(T2)を検出保持する。無負荷電流INLは電流が増加するタイミング(T6)の直前の電流値を保持している。その後、モータ停止判定器120は電動モータの通電を停止するフリーラン要求FRcmdを駆動制御器130に出力し、駆動制御器130からモータ駆動停止信号28SをHブリッジ回路28に出力して電動モータを惰性回転させる。フリーラン区間では、モータの端子電圧にはモータの逆起電圧Eが発生されるので、T3にてモータの逆起電圧E(T3)を検出する。
When a voltage is applied to the winding of the electric motor 24 by the operation command of the electric motor 24 (T1), an inrush current (IR) in which the current sharply increases is generated according to the time constant of the electric resistance and the inductance. The model parameter estimator 110 detects and holds the motor current I (T2) at an arbitrary timing (T2) at which the current of the electric motor 24 in the idling section increases. The no-load current INL holds the current value immediately before the timing (T6) when the current increases. After that, the motor stop determination unit 120 outputs a free-run request FRcmd for stopping energization of the electric motor to the drive controller 130, and outputs a motor drive stop signal 28S from the drive controller 130 to the H bridge circuit 28 to turn on the electric motor. Rotate by inertia. In the free-run section, the motor back electromotive force E is generated in the motor terminal voltage, so the motor back electromotive force E (T3) is detected at T3.
ここで、タイミングT2のモータ端子間電圧V(T2)とタイミングT3の逆起電圧E(T3)の電位差は、モータ巻線抵抗R(ハーネス抵抗を含む)による電圧降下分(V(T2)-E(T3))として検出することもでき、タイミングT2におけるモータ電流I(T2)で除算することでモータ巻線抵抗Rを導出してパラメータ演算に活用することもできる。
Here, the potential difference between the voltage V (T2) between the motor terminals at the timing T2 and the back electromotive force E (T3) at the timing T3 is the voltage drop (V (T2) − (V (T2) −) due to the motor winding resistance R (including the harness resistance). It can also be detected as E (T3)), or the motor winding resistance R can be derived by dividing by the motor current I (T2) at the timing T2 and used for parameter calculation.
タイミングT4は、電動モータの惰性回転中の任意のタイミングで、トルク定数Ktなどを導出する。モデルパラメータを導出後、タイミングT5でモータ通電を再開する。タイミングT2からT5までの時間間隔は任意に設定できる。電動モータの惰性回転は、電動モータ24と減速機構19の粘性係数ηや摩擦トルクTfrcおよびモータ負荷で減速した分だけのモータ回転速度が低下する。電動モータ24の通電を停止後、所定時間経過後のタイミング(T4)でもモータの逆起電圧E(T4)を検出する。尚、サンプリング回数は電圧モニタ回路31、32のフィルタ回路時定数などを考慮して設定することが好ましい。
Timing T4 derives the torque constant Kt and the like at an arbitrary timing during inertial rotation of the electric motor. After deriving the model parameters, the motor energization is restarted at timing T5. The time interval from timing T2 to T5 can be set arbitrarily. In inertial rotation of the electric motor, the motor rotation speed is reduced by the amount reduced by the viscosity coefficient η of the electric motor 24 and the speed reduction mechanism 19, the friction torque T frc, and the motor load. After the power supply to the electric motor 24 is stopped, the counter electromotive voltage E (T4) of the motor is also detected at a timing (T4) after a predetermined time has elapsed. The number of times of sampling is preferably set in consideration of the filter circuit time constant of the voltage monitor circuits 31 and 32.
本実施例では、少なくとも電流が増加しているフリーラン前のタイミング(T2)にて電動モータ24の電流を検出し、電動モータ24への通電が停止されたフリーランで逆起電圧Eが発生するタイミング(T3)、電動モータ24の回転数が低下した任意のタイミング(T4)にて、電動モータ24の端子電圧を検出している。これら電動モータ24の端子電圧の検出は通常のパーキングブレーキの動作(電動モータ24でピストンを駆動し、ブレーキパッドでディスクロータを押圧する)において実行される。
In the present embodiment, the current of the electric motor 24 is detected at the timing (T2) before the free run in which the current is increasing at least, and the counter electromotive voltage E is generated in the free run in which the power supply to the electric motor 24 is stopped. The terminal voltage of the electric motor 24 is detected at the timing (T3), and at an arbitrary timing (T4) when the rotation speed of the electric motor 24 decreases. The detection of the terminal voltage of these electric motors 24 is executed in the normal operation of the parking brake (the electric motor 24 drives the piston and the brake pad presses the disc rotor).
ここでモデルパラメータの推定演算式は、(1)式の両辺にトルク定数Ktを乗じ、(6)式を得る。逆起電圧Eとモータ電流Iとモータ回転速度ωのサフィックスは各タイミングおけるそれぞれの保持値を示している。(6)式を得るにあたり、モータ負荷TLは、負荷トルクTload(KB・TCLP),摩擦トルクTfrcと粘性トルクηω(t)
でまとめると(5)式のようになる。 Here, the equation for estimating the model parameter is obtained by multiplying both sides of the equation (1) by the torque constant Kt. The suffixes of the back electromotive force E, the motor current I, and the motor rotation speed ω indicate the respective holding values at each timing. Upon obtaining the equation (6), the motor load T L is the load torque T load (K B · T CLP ), the friction torque T frc and viscous torque Itaomega (t)
When summarized in, it becomes like the formula (5).
でまとめると(5)式のようになる。 Here, the equation for estimating the model parameter is obtained by multiplying both sides of the equation (1) by the torque constant Kt. The suffixes of the back electromotive force E, the motor current I, and the motor rotation speed ω indicate the respective holding values at each timing. Upon obtaining the equation (6), the motor load T L is the load torque T load (K B · T CLP ), the friction torque T frc and viscous torque Itaomega (t)
When summarized in, it becomes like the formula (5).
また、(1)式と(5)式から(7)式を得る。
Also, obtain expression (7) from expression (1) and expression (5).
フリーラン区間中の電動モータ24の回転数変化は比較的に単調現象であるので、(8)式のトルク定数Ktを得る。(8)式を得るにあたっては、速度ωを逆起電圧Eで表現するために、(7)式の両辺にトルク定数KTを乗算し、(6)式を置き換える。E(t1)/tzは電圧傾き平均値を示す。
Since the change in the rotation speed of the electric motor 24 during the free run section is a relatively monotonous phenomenon, the torque constant Kt of the expression (8) is obtained. To obtain the formula (8), in order to express the speed ω by the counter electromotive voltage E, both sides of the formula (7) are multiplied by the torque constant K T, and the formula (6) is replaced. E (t1) / tz shows the average value of the voltage gradient.
電動モータが惰性回転しているときの逆起電圧変化は、負であると共にモータ減速率が概ね一定とみなすことで各タイミングにおける逆起電圧の差分は概ね等しい。
The change in back electromotive force when the electric motor is rotating by inertia is negative, and the difference in back electromotive force at each timing is almost the same, assuming that the motor deceleration rate is almost constant.
フリーラン区間を用いて導出した各モデルパラメータと目標推力F1からトルク値に換算した目標トルクTcmdを用いて(9)式からカットオフ電流閾値ICUTを演算する。尚、モータ回転速度ωは、(3)式においてLdi/dt≒0として求めた結果を用いて演算し、アプライ完了するまでカットオフ電流閾値ICUTを繰り返し演算する。
The cutoff current threshold value I CUT is calculated from the equation (9) by using each model parameter derived using the free-run section and the target torque T cmd converted from the target thrust force F 1 into the torque value. The motor rotation speed ω is calculated using the result obtained by setting Ldi / dt≈0 in the equation (3), and the cutoff current threshold value I CUT is repeatedly calculated until the application is completed.
最終的に推定できるモデルパラメータは、トルク定数Kt、ロストルク(粘性係数η、摩擦トルクTfrc)を推定可能であり、推定精度が高くなるものである。
The model parameters that can be finally estimated can estimate the torque constant Kt and the loss torque (viscosity coefficient η, friction torque T frc ), and the estimation accuracy is high.
その後、タイミングT6にてクランプ力が発生すると共に、検出される電動モータ24の電流値が上昇し、タイミングT7にて演算されたカットオフ電流閾値ICUTに電流値が達する。検出される電動モータ24の電流値がカットオフ電流閾値ICUTを超えたところ(T8)で、電流を遮断する。第1実施例において、上述した一連の動作は電動パーキングブレーキ装置が動作するその都度に実行される。
After that, at the timing T6, the clamping force is generated, the detected current value of the electric motor 24 increases, and the current value reaches the cutoff current threshold value I CUT calculated at the timing T7. When the detected current value of the electric motor 24 exceeds the cutoff current threshold value I CUT (T8), the current is cut off. In the first embodiment, the series of operations described above is executed each time the electric parking brake device is operated.
次に図8を用いて、電子制御手段25の動作を纏めて説明する。図8は本発明の第1実施例に係る電子制御手段の動作を説明するフローチャートである。ここでは、タイミングT4にて電動モータ24の端子電圧がゼロクロスしたかを判別する例を示す。
Next, the operation of the electronic control unit 25 will be described collectively with reference to FIG. FIG. 8 is a flow chart for explaining the operation of the electronic control means according to the first embodiment of the present invention. Here, an example is shown in which it is determined whether the terminal voltage of the electric motor 24 has crossed zero at timing T4.
図8において、電子制御手段25が起動(スタート)すると、電動パーキングブレーキ装置(PB)に動作指令があるか否か判断する(S101)。
In FIG. 8, when the electronic control means 25 is started (start), it is determined whether or not there is an operation command to the electric parking brake device (PB) (S101).
電動パーキングブレーキ装置に動作していない場合には、この動作を繰り返す。電動パーキングブレーキ装置に動作指令がある場合には、電動モータ24への通電を開始する(S102)。
If the electric parking brake device is not operating, repeat this operation. When there is an operation command to the electric parking brake device, energization of the electric motor 24 is started (S102).
電動モータ24への通電開始後、所定時間経過し、所定の電流値(例えば4A~11A)に達したか否か判断する(S103)。電流が所定の電流に達していない場合には、この動作を繰り返す。
After the start of energization of the electric motor 24, it is determined whether a predetermined time has passed and a predetermined current value (for example, 4A to 11A) has been reached (S103). If the current has not reached the predetermined current, this operation is repeated.
電動モータ24の回転数が安定したタイミングT2において電動モータ24の端子電圧・電流を検出する(S104)。
The terminal voltage / current of the electric motor 24 is detected at the timing T2 when the rotation speed of the electric motor 24 is stable (S104).
電動モータ24の回転数が安定したしたところで、電動モータ24の通電を停止し、停止したタイミングT3において電動モータ24の端子電圧を検出する(S105)。電動モータ24は惰性回転する。
When the number of rotations of the electric motor 24 becomes stable, the energization of the electric motor 24 is stopped, and the terminal voltage of the electric motor 24 is detected at the stop timing T3 (S105). The electric motor 24 rotates by inertia.
所定時間経過後、タイミングT4にて電動モータ24の端子電圧を検出し、電圧がゼロクロスしたか否かを判断する(S106)。電圧がゼロクロスしていない場合には、この動作を繰り返す。電圧がゼロクロスした場合は、電動モータ24の通電を再開する(S107)。
After a lapse of a predetermined time, the terminal voltage of the electric motor 24 is detected at timing T4, and it is determined whether the voltage crosses zero (S106). If the voltage does not cross zero, this operation is repeated. When the voltage crosses zero, the energization of the electric motor 24 is restarted (S107).
一方、タイミングT2及びタイミングT3で検出された電動モータ24の端子電圧・電流から、電動モータ24の巻線抵抗Rを算出することもできる(S201)。また、タイミングT4における電動モータ24の端子電圧から、トルク定数Kt、ロストルク(粘性係数η、摩擦トルクTfrc)のモデルパラメータを演算する(S202)。
On the other hand, the winding resistance R of the electric motor 24 can be calculated from the terminal voltage / current of the electric motor 24 detected at the timing T2 and the timing T3 (S201). Further, the model parameters of the torque constant Kt and the loss torque (viscosity coefficient η, friction torque T frc ) are calculated from the terminal voltage of the electric motor 24 at the timing T4 (S202).
電気抵抗R及びモデルパラメータからカットオフ電流閾値を演算し、設定する(S203)。
Calculating and setting the cutoff current threshold value from the electric resistance R and the model parameter (S203).
電動モータ24の通電を再開(S107)後、検出される電流値がS203で設定されたカットオフ電流閾値に到達したか否か判断する(S108)。検出される電流値がカットオフ電流閾値に到達していなければ、この動作を繰り返す。
After the energization of the electric motor 24 is restarted (S107), it is determined whether or not the detected current value has reached the cutoff current threshold value set in S203 (S108). If the detected current value does not reach the cutoff current threshold value, this operation is repeated.
検出される電流値がカットオフ電流閾値に到達した場合には、電動モータ24の通電を停止する(S109)。
When the detected current value reaches the cutoff current threshold value, the energization of the electric motor 24 is stopped (S109).
このように第1実施例では、電動パーキングブレーキ装置がアプライ動作中にモデルパラメータを推定し、カットオフ電流閾値の演算を行うようにしている。
As described above, in the first embodiment, the electric parking brake device estimates the model parameter during the apply operation and calculates the cutoff current threshold value.
第1実施例では、ピストンの推力を制御するカットオフ電流閾値演算モデルを備えると共に、電動モータの負荷トルクTloadが増加する区間においてフリーラン区間を設け、少なくとも電動モータに印加される電圧値と電流値を複数回に亘って検出し、この複数の電圧値と電流値を用いて所定の推定演算を行ってカットオフ電流閾値演算部に使用されるモデルパラメータを推定し、このモデルパラメータを用いてカットオフ電流閾値の演算を行なう構成とした。しかも、これらの動作は、電動パーキングブレーキ装置が動作するその都度に実行される。
In the first embodiment, a cutoff current threshold calculation model for controlling the thrust of the piston is provided, and a free run section is provided in a section where the load torque T load of the electric motor increases, and at least the voltage value applied to the electric motor is set. The current value is detected a plurality of times, a predetermined estimation calculation is performed using the plurality of voltage values and current values to estimate the model parameter used for the cutoff current threshold value calculation unit, and this model parameter is used. The cut-off current threshold value is calculated. Moreover, these operations are executed each time the electric parking brake device is operated.
第1実施例によれば、負荷トルクTloadが発生している区間においてフリーラン区間を設け、カットオフ電流閾値演算部のモデルパラメータを確実に推定演算することができ、カットオフ電流閾値演算部による高精度なカットオフ電流閾値の推定を行なうことができる。
According to the first embodiment, the free-run section is provided in the section where the load torque T load is generated, and the model parameter of the cutoff current threshold calculation unit can be reliably estimated and calculated. It is possible to estimate the cutoff current threshold value with high accuracy.
第1実施例では、負荷トルクTloadが発生してモータ電流が増加する区間でもモデルパラメータを確実に推定演算することができるため、「電流一定区間」がほとんどない動作形態においても電動モータ24の通電を停止後、所定時間経過後のタイミング(T4)でもモータの逆起電圧E(T4)を検出しているので、この検出結果を基にトルク定数Kt、粘性係数η、摩擦トルクTfrcを算出し、カットオフ電流閾値を設定しているので、適切な締付力で動作可能な電動パーキングブレーキ装置を提供することができる。また、これらのモデルパラメータの推定に回転センサからの回転速度情報を使用しないので、回転センサを省略することができる。さらに、これらのモデルパラメータの推定は、電動パーキングブレーキ装置が動作するその都度に実行されるので、ブレーキパッドの摩耗、回転/直動変換機構、減速機構等の経年変化、温度変化等に起因するトルク定数の変化を精度よく検出でき、適正な締め付け力で動作可能な電動パーキングブレーキ装置を提供することができる。
In the first embodiment, the model parameter can be reliably estimated and calculated even in the section in which the load torque T load is generated and the motor current is increased. Therefore, even in the operation mode in which there is almost no "current constant section", Since the back electromotive force E (T4) of the motor is also detected at a timing (T4) after a lapse of a predetermined time after stopping the energization, the torque constant Kt, the viscosity coefficient η, and the friction torque T frc are based on the detection results. Since the calculated cut-off current threshold value is set, it is possible to provide an electric parking brake device that can operate with an appropriate tightening force. Further, since the rotation speed information from the rotation sensor is not used for estimating these model parameters, the rotation sensor can be omitted. Further, since the estimation of these model parameters is executed each time the electric parking brake device operates, it is caused by wear of the brake pad, aging change of the rotation / linear motion conversion mechanism, reduction mechanism, temperature change, etc. It is possible to provide an electric parking brake device capable of accurately detecting a change in torque constant and operating with an appropriate tightening force.
上述では、モータ駆動後の負荷トルクTloadが発生してモータ電流が増加する区間においてモータ通電停止(フリーラン)状態を1回生成する事例について説明したが、モータ通電停止(フリーラン)状態を複数回生成して、繰り返し検出して検出精度を向上することもできる。
In the above, the case where the motor energization stop (free run) state is generated once in the section where the load torque T load after the motor drive is generated and the motor current increases has been described. It is also possible to generate the data a plurality of times and detect it repeatedly to improve the detection accuracy.
次に、本発明の第2実施例について図8、図9を用いて説明する。図8は本発明の第2実施例に係るモデルパラメータの制御ブロック図であり、図9は本発明の第2実施例に係るモデルパラメータの推定動作の波形図である。図8と図9において、図5と図6と同一の符号は同じ動作をするものである。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a control block diagram of model parameters according to the second embodiment of the present invention, and FIG. 9 is a waveform diagram of model parameter estimation operation according to the second embodiment of the present invention. 8 and 9, the same reference numerals as those in FIGS. 5 and 6 perform the same operation.
図8における制御ブロック101には、電動モータ24に通電開始後、電流が略一定になる電流一定区間に至る前の電流が減少する区間にモデルパラメータを推定する過渡モデルパラメータ推定器111を備えている。第2実施例では、過渡モデルパラメータ推定器111とモデルパラメータ推定器110にてトルク定数などのモデルパラメータを異なる動作状態で推定し、異なる動作状態で推定した複数の結果を用いてモデルパラメータ推定精度を高精度化している。この点が第1実施例と異なる。
The control block 101 in FIG. 8 includes a transient model parameter estimator 111 that estimates a model parameter in a section in which the current decreases after the electric motor 24 is energized and before the current reaches a constant current section where the current is substantially constant. There is. In the second embodiment, model parameters such as torque constants are estimated by the transient model parameter estimator 111 and the model parameter estimator 110 in different operating states, and model parameter estimation accuracy is obtained using a plurality of results estimated in different operating states. Is highly accurate. This point is different from the first embodiment.
図8における過渡モデルパラメータ推定器111は、図9の電流減少区間において、電動モータ24に印加される電圧、電流を複数回(サンプリングSp1,Sp2,Sp3)に亘って検出し、(4)式を用いて電圧(V)と電流(I)から電動モータ24の起動時の電気抵抗(R)を求めている。さらに、(3)式において、Ldi/dt≒0としたときの数式から、誘起電圧(ωKt=V-RI)を演算して求めている。この誘起電圧(ωKt)は、温度変化の影響を考慮して推定しているので、電動モータ24の温度による推力変化を補償することができる。
The transient model parameter estimator 111 in FIG. 8 detects the voltage and current applied to the electric motor 24 a plurality of times (sampling Sp1, Sp2, Sp3) in the current decrease section of FIG. Is used to determine the electric resistance (R) at the time of starting the electric motor 24 from the voltage (V) and the current (I). Further, the induced voltage (ωKt = V−RI) is calculated and calculated from the mathematical expression when Ldi / dt≈0 in the expression (3). Since the induced voltage (ωKt) is estimated in consideration of the influence of the temperature change, it is possible to compensate the thrust change due to the temperature of the electric motor 24.
機械パラメータに相当する無負荷ロストルクTLossは、粘性トルク(ηω)と摩擦トルク(Tfrc)を加算したものとして表せるので、(10)式を得る。
Since the no-load loss torque T Loss corresponding to the machine parameter can be expressed as a sum of the viscous torque (ηω) and the friction torque (T frc ), the formula (10) is obtained.
微少時間変化における変化が小さいときは、(10)式における2つ以上のサンプリングSp1,Sp2,Sp3分(電流減少区間)の差分を求めることで無負荷ロストルクTLossを消去してトルク定数Kt1を演算する。ここで、慣性係数「J」はばらつかないと仮定しても良く、既知の値として入力されている。
When the change in the minute time change is small, the difference between two or more samplings Sp1, Sp2, Sp3 (current decrease section) in the equation (10) is obtained to eliminate the no-load loss torque T Loss and the torque constant Kt1 is obtained. Calculate Here, it may be assumed that the inertia coefficient “J” does not vary, and it is input as a known value.
次に空走区間の電流一定区間においてモデルパラメータ推定器110を用いて、図6と図7で説明したフリーラン区間を生成し、トルク定数Kt2を求めることができる。モータ停止判定器121では、トルク定数Kt1とトルク定数Kt2の平均処理することで、精度良くトルク定数Ktを求め、(9)式に基づいて目標とするカットオフ電流閾値(ICUT)を求める。カットオフ電流閾値(ICUT)は実電流値と比較して、実電流値がカットオフ電流閾値(ICUT)を超えたことを判定して駆動制御器130に伝達する駆動信号120Sにカットオフ要求する。このようにして、電子制御手段25は、実際に電動モータ24に流れている実電流値がカットオフ電流閾値(ICUT)に達すると、電動モータ24に供給されている電流を遮断して推力保持区間に移行することになる。
Next, in the constant current section of the idling section, the model parameter estimator 110 is used to generate the free-run section described in FIGS. 6 and 7, and the torque constant Kt2 can be obtained. The motor stop determination unit 121 accurately calculates the torque constant Kt by averaging the torque constant Kt1 and the torque constant Kt2, and calculates the target cutoff current threshold value (I CUT ) based on the equation (9). The cutoff current threshold value (I CUT ) is compared with the actual current value, and it is determined that the actual current value exceeds the cutoff current threshold value (I CUT ) and cut off to the drive signal 120S transmitted to the drive controller 130. Request. In this way, the electronic control unit 25 cuts off the current supplied to the electric motor 24 when the actual current value actually flowing in the electric motor 24 reaches the cutoff current threshold value (I CUT ), and thrusts the electric motor 24. It will move to the holding section.
第2実施例では、トルク定数Kt1とトルク定数Kt2の平均処理を用いたトルク定数の高精度化を示したが、過渡モデルパラメータ推定器111で推定したトルク定数Kt1とモデルパラメータ推定器110で推定したトルク定数Kt2を用いて予め設定した範囲内のトルク定数の何れか一方を用いてパラメータ推定演算の高信頼化することも可能である。
In the second embodiment, the accuracy of the torque constant is improved by using the averaging process of the torque constant Kt1 and the torque constant Kt2, but the torque constant Kt1 estimated by the transient model parameter estimator 111 and the model parameter estimator 110 are estimated. It is also possible to make the parameter estimation calculation highly reliable by using either one of the torque constants within a preset range using the torque constant Kt2.
以上説明したように、第2実施例では、ピストンの推力を制御するカットオフ電流閾値演算モデルを備えると共に、電動モータに通電を開始した時に生じる突入電流の後の電流が略一定になる電流一定区間に至る前の電流減少区間内で、少なくとも電動モータに印加される電圧値と電流値を複数回に亘って検出し、この複数の電圧値と電流値を用いて所定の推定演算を行う。更に、フリーラン区間による所定の推定演算した結果との平均値を求め、カットオフ電流閾値演算に使用するモデルパラメータを推定し、このモデルパラメータを用いてカットオフ電流閾値の演算を行なう構成とした。しかも、これらの動作は、電動パーキングブレーキ装置が動作するその都度に実行される。
As described above, in the second embodiment, the cutoff current threshold calculation model for controlling the thrust of the piston is provided, and the current after the inrush current generated when the electric motor is energized is substantially constant. Within the current decrease section before reaching the section, at least the voltage value and the current value applied to the electric motor are detected a plurality of times, and a predetermined estimation calculation is performed using the plurality of voltage values and the current value. Further, an average value with the result of a predetermined estimation calculation based on the free-run section is obtained, the model parameter used for the cutoff current threshold calculation is estimated, and the cutoff current threshold is calculated using this model parameter. .. Moreover, these operations are executed each time the electric parking brake device is operated.
第2実施例によれば、電流一定区間に至る前の電流減少区間内と、電流一定区間の電流一定区間との2つの動作状態から高精度なモデルパラメータ推定演算することができ、高精度なカットオフ電流閾値による推力制御精度を向上することができる。また、これらのモデルパラメータの推定に回転センサによる回転速度情報を使用しないので、回転センサを省略することができる。
According to the second embodiment, it is possible to perform highly accurate model parameter estimation calculation from two operating states, that is, within the current decreasing section before reaching the constant current section and in the constant current section of the constant current section. The thrust control accuracy based on the cutoff current threshold value can be improved. Further, since the rotation speed information by the rotation sensor is not used for estimating these model parameters, the rotation sensor can be omitted.
さらに、これらのモデルパラメータの推定は、電動パーキングブレーキ装置が動作するその都度に実行されるので、ブレーキパッドの摩耗、回転/直動変換機構、減速機構等の経年変化、温度変化等に起因するトルク定数の変化を精度よく検出でき、適正な締め付け力で動作可能な電動パーキングブレーキ装置を提供することができる。
Further, since the estimation of these model parameters is executed each time the electric parking brake device operates, it is caused by wear of the brake pad, aging change of the rotation / linear motion conversion mechanism, reduction mechanism, temperature change, etc. It is possible to provide an electric parking brake device capable of accurately detecting a change in torque constant and operating with an appropriate tightening force.
尚、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added / deleted / replaced.
10…ブレーキキャリパ、11…キャリパ本体、12…油圧室、13…ピストン、14,15…ブレーキパッド、16…ディスクロータ、17…ブレーキペダル、18…回転/直動変換機構、19…減速機構、20…回転軸、21…直動部材、22…大径歯車、23…小径歯車、24…電動モータ、25…電子制御手段、26…バッテリ、27…リレー、28…Hブリッジ回路、30…電流モニタ回路、31…モータ端子aの電圧モニタ回路、32…第モータ端子bの電圧モニタ回路、35…マスタシリンダ、36…ハーネス、37…電源電圧モニタ回路、100,101…制御ブロック、110…モデルパラメータ推定器、111…過渡モデルパラメータ推定器、120…モータ停止判定器、130…駆動制御器。
10 ... Brake caliper, 11 ... Caliper body, 12 ... Hydraulic chamber, 13 ... Piston, 14, 15 ... Brake pad, 16 ... Disk rotor, 17 ... Brake pedal, 18 ... Rotation / linear motion converting mechanism, 19 ... Reduction mechanism, 20 ... Rotating shaft, 21 ... Linear motion member, 22 ... Large diameter gear, 23 ... Small diameter gear, 24 ... Electric motor, 25 ... Electronic control means, 26 ... Battery, 27 ... Relay, 28 ... H bridge circuit, 30 ... Current Monitor circuit, 31 ... Voltage monitor circuit for motor terminal a, 32 ... Voltage monitor circuit for motor terminal b, 35 ... Master cylinder, 36 ... Harness, 37 ... Power supply voltage monitor circuit, 100, 101 ... Control block, 110 ... Model Parameter estimator, 111 ... Transient model parameter estimator, 120 ... Motor stop determiner, 130 ... Drive controller.
Claims (10)
- 電動モータと、前記電動モータの回転トルクを増幅する減速機構と、前記減速機構より出力される回転運動を直動運動に変換する回転/直動変換機構と、前記回転/直動変換機構によって移動されるピストンと、前記ピストンの推力によってディスクロータに押し付けられるブレーキパッドと、前記電動モータの回転を制御する電子制御手段を備えた電動パーキングブレーキ装置において、
前記電子制御手段は、前記電動パーキングブレーキ装置がアプライ動作中であって、前記電動モータが駆動開始後、前記電動モータの負荷が増大して電流が増加する区間において前記電動モータの通電を停止させる状態を生成し、前記電動モータの通電中の電圧、電流、前記電動モータの通電停止中の電圧、及び前記電動モータの通電停止から前記電動モータの回転数が低下する所定時間経過後の電圧を検出し、前記検出した電圧と電流を用いて、前記電動モータのトルク定数を算出し、前記トルク定数を用いて、前記電動モータのカットオフ電流閾値を設定することを特徴とする電動パーキングブレーキ装置。 An electric motor, a speed reducing mechanism that amplifies the rotation torque of the electric motor, a rotation / linear motion converting mechanism that converts the rotary motion output from the speed reducing mechanism into a linear motion, and movement by the rotary / linear motion converting mechanism. An electric parking brake device including a piston, a brake pad that is pressed against the disc rotor by the thrust of the piston, and an electronic control unit that controls the rotation of the electric motor,
The electronic control means stops energization of the electric motor in a section in which the electric parking brake device is in an applying operation and after the electric motor starts driving, the load of the electric motor increases and the current increases. The state is generated, and the voltage during the energization of the electric motor, the current, the voltage during the de-energization of the electric motor, and the voltage after a lapse of a predetermined time after the de-energization of the electric motor decreases An electric parking brake device, characterized by detecting and using the detected voltage and current to calculate a torque constant of the electric motor, and using the torque constant to set a cutoff current threshold of the electric motor. .. - 請求項1において、
前記電子制御手段は、前記電動モータの通電停止後、前記電動モータに再通電することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electric parking brake device, wherein the electronic control unit re-energizes the electric motor after the electric motor is de-energized. - 請求項2において、
前記電子制御手段は、前記電動モータの電流が前記カットオフ電流閾値を超えた場合に、前記電動モータの通電を停止させることを特徴とする電動パーキングブレーキ装置。 In claim 2,
The electric parking brake device, wherein the electronic control unit stops energization of the electric motor when a current of the electric motor exceeds the cutoff current threshold value. - 請求項1において、
前記電子制御手段は、前記電動モータの通電停止中に、前記電動モータの電圧を複数回検出することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electric parking brake device, wherein the electronic control unit detects the voltage of the electric motor a plurality of times while the power supply to the electric motor is stopped. - 請求項1において、
前記電子制御手段は、前記電動モータが駆動開始後、前記電動モータの電流が略一定になった状態で前記電動モータの通電中における電圧、電流を検出することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electric parking brake device, wherein the electronic control means detects a voltage and a current during energization of the electric motor in a state where the electric current of the electric motor is substantially constant after the electric motor starts driving. - 請求項1において、
前記回転/直動変換機構はセルフロック機構部を備えたことを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electric parking brake device, wherein the rotation / linear motion converting mechanism includes a self-locking mechanism portion. - 請求項1において、
前記電子制御手段は、
前記検出した電圧、電流から前記電動モータのトルク定数、粘性係数、摩擦トルクを推定演算することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electronic control means,
An electric parking brake device, which estimates and calculates a torque constant, a viscosity coefficient, and a friction torque of the electric motor from the detected voltage and current. - 請求項1において、
前記電子制御手段は、前記電動モータの通電中の電圧と、前記電動モータの通電停止中の電圧の電位差から前記電動モータの巻線抵抗を検出することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electric parking brake device, wherein the electronic control unit detects a winding resistance of the electric motor from a potential difference between a voltage when the electric motor is energized and a voltage when the electric motor is not energized. - 請求項1において、
前記電子制御手段は、前記電動モータに通電を開始した時に生じる突入電流後、電流減少区間内で、前記電動モータに印加される電圧、電流を検出し、前記電流減少区間内で検出された電圧及び電流と、前記電動モータの通電停止中に検出された電圧及び電流を用いて、前記電動モータのカットオフ電流閾値を設定することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electronic control unit detects a voltage and a current applied to the electric motor within a current decrease section after a rush current generated when energization of the electric motor is started, and a voltage detected within the current decrease section. And a current and a voltage and a current detected while the electric motor is not energized, the cut-off current threshold of the electric motor is set. - 請求項1において、
前記電子制御手段は、前記電動モータに通電を開始した時に生じる突入電流後、電流減少区間内で、前記電動モータに印加される電圧、電流を検出し、前記電流減少区間内で検出された電圧及び電流、若しくは前記電動モータの通電停止中に検出された電圧及び電流の何れか一方を用いて、前記電動モータのカットオフ電流閾値を設定することを特徴とする電動パーキングブレーキ装置。 In claim 1,
The electronic control unit detects a voltage and a current applied to the electric motor within a current decrease section after a rush current generated when energization of the electric motor is started, and a voltage detected within the current decrease section. And a current or a voltage or current detected while the electric motor is not energized, the cut-off current threshold value of the electric motor is set.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-206375 | 2018-11-01 | ||
JP2018206375A JP7136662B2 (en) | 2018-11-01 | 2018-11-01 | electric parking brake device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090376A1 true WO2020090376A1 (en) | 2020-05-07 |
Family
ID=70462205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039613 WO2020090376A1 (en) | 2018-11-01 | 2019-10-08 | Electric parking brake device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7136662B2 (en) |
WO (1) | WO2020090376A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022167269A1 (en) * | 2021-02-08 | 2022-08-11 | Hitachi Astemo France | Unit for electronically controlling a motor of an electric parking brake with a boost converter |
WO2023062833A1 (en) * | 2021-10-15 | 2023-04-20 | 日立Astemo株式会社 | Electric parking brake device and brake control device |
WO2023074891A1 (en) * | 2021-10-29 | 2023-05-04 | 株式会社アドヴィックス | Electric cylinder device |
JP7431972B2 (en) | 2020-07-07 | 2024-02-15 | 日立Astemo株式会社 | Electric parking brake control device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7332541B2 (en) * | 2020-06-26 | 2023-08-23 | 日立Astemo株式会社 | Electric parking brake device and brake control device |
JP7488630B2 (en) * | 2020-07-07 | 2024-05-22 | 日立Astemo株式会社 | Electric parking brake control device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015512824A (en) * | 2012-04-04 | 2015-04-30 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for supplying a clamping force generated by a parking brake |
WO2016104683A1 (en) * | 2014-12-27 | 2016-06-30 | 日立オートモティブシステムズ株式会社 | Brake device |
JP2018118524A (en) * | 2017-01-23 | 2018-08-02 | 日立オートモティブシステムズ株式会社 | Electric parking brake device and brake control system |
-
2018
- 2018-11-01 JP JP2018206375A patent/JP7136662B2/en active Active
-
2019
- 2019-10-08 WO PCT/JP2019/039613 patent/WO2020090376A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015512824A (en) * | 2012-04-04 | 2015-04-30 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for supplying a clamping force generated by a parking brake |
WO2016104683A1 (en) * | 2014-12-27 | 2016-06-30 | 日立オートモティブシステムズ株式会社 | Brake device |
JP2018118524A (en) * | 2017-01-23 | 2018-08-02 | 日立オートモティブシステムズ株式会社 | Electric parking brake device and brake control system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7431972B2 (en) | 2020-07-07 | 2024-02-15 | 日立Astemo株式会社 | Electric parking brake control device |
WO2022167269A1 (en) * | 2021-02-08 | 2022-08-11 | Hitachi Astemo France | Unit for electronically controlling a motor of an electric parking brake with a boost converter |
FR3119592A1 (en) * | 2021-02-08 | 2022-08-12 | Foundation Brakes France | Electronic control unit of an electric parking brake motor with a Boost converter |
WO2023062833A1 (en) * | 2021-10-15 | 2023-04-20 | 日立Astemo株式会社 | Electric parking brake device and brake control device |
WO2023074891A1 (en) * | 2021-10-29 | 2023-05-04 | 株式会社アドヴィックス | Electric cylinder device |
Also Published As
Publication number | Publication date |
---|---|
JP7136662B2 (en) | 2022-09-13 |
JP2020069948A (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020090376A1 (en) | Electric parking brake device | |
JP6811101B2 (en) | Electric parking brake device and brake device | |
KR101958503B1 (en) | Method, regulating and/or control unit, and parking brake having a regulating and/or control unit of said type for adjusting a parking brake in a vehicle | |
US8521388B2 (en) | Method for setting the clamping force exerted by a parking brake | |
US11292442B2 (en) | Electromechanical brake system | |
US20120205202A1 (en) | Method for setting the clamping force of a hydraulically supported electric motor-driven parking brake | |
JP2000033862A (en) | Method for controlling wheel brake and apparatus for same | |
JP2015512824A (en) | Method for supplying a clamping force generated by a parking brake | |
US9902378B2 (en) | Brake system | |
CN103863294A (en) | Method for operating a parking brake having an electromotively driven parking brake mechanism | |
US9441689B2 (en) | Method for adjusting a parking brake in a vehicle | |
US9616864B2 (en) | Method and device for operating a braking device, braking device | |
US10814852B2 (en) | Technique for characterizing an electromechanical actuator unit for a vehicle brake | |
JP5996090B2 (en) | Method for adjusting tightening force generated by parking brake, control device, and parking brake | |
KR20180047998A (en) | electronic parking brake system and control method thereof | |
WO2020188850A1 (en) | Electric parking brake device | |
JP4000675B2 (en) | Brake device for vehicle | |
KR20180020171A (en) | Method for determining working distance in electromechanical brake device | |
JP2007002904A (en) | Electric braking device | |
WO2021246124A1 (en) | Electric parking brake control device and electric parking brake control method | |
JP5864158B2 (en) | Program for realizing function for determining efficiency of in-vehicle electrically operated parking brake, and control / operation device for executing the program | |
CN110958963A (en) | Method for estimating the braking force that can be applied between a pad and a brake disc by an electric parking brake system of a vehicle and electric parking brake system of a vehicle implementing the method | |
WO2019093030A1 (en) | Electric parking brake device, and electric brake device | |
CN106167013A (en) | For operating the method for parking brake in vehicle | |
CN113573960A (en) | Estimation of the temperature of an electric motor of a vehicle brake actuator and control of the motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880518 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19880518 Country of ref document: EP Kind code of ref document: A1 |