[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020088455A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020088455A1
WO2020088455A1 PCT/CN2019/114017 CN2019114017W WO2020088455A1 WO 2020088455 A1 WO2020088455 A1 WO 2020088455A1 CN 2019114017 W CN2019114017 W CN 2019114017W WO 2020088455 A1 WO2020088455 A1 WO 2020088455A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal device
time position
offset
candidate
Prior art date
Application number
PCT/CN2019/114017
Other languages
English (en)
French (fr)
Inventor
陈铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088455A1 publication Critical patent/WO2020088455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • the terminal device can detect the physical downlink control channel (physical downlink control channel, PDCCH) during the active time (DRX) of the DRX cycle, and shut down the receiving circuit into the sleep state in the remaining period, thereby Reduce the power consumption of the terminal.
  • PDCCH physical downlink control channel
  • the activation time includes "onduration" time.
  • the terminal device In a DRX cycle, the terminal device first wakes up from the sleep state, turns on the radio frequency and baseband circuits, obtains time-frequency synchronization, and then detects the PDCCH within the "onduration" time. These processes require a lot of power consumption. If the network device does not have any data scheduling for the terminal device within the "onduration" time, unnecessary energy consumption is generated for the terminal device. Therefore, in order to further save power consumption, a technology combining the wakeup signal (WUS) and the DRX mechanism is introduced in the NR. Specifically, for terminal devices that support WUS, each “on duration” of the DRX cycle corresponds to a WUS time at which WUS is sent.
  • WUS wakeup signal
  • the network device determines whether to send WUS at the time of WUS according to the needs of scheduling data, and The terminal device needs to detect WUS at the WUS moment to determine whether the network device sends WUS.
  • the terminal device when the terminal device is in the sleep state, it can be in a state of extremely low power consumption, for example, the terminal device only turns on a part of the modem (modem) function or uses a simple receiving circuit to detect and demodulate WUS, on the other hand If the device does not detect the WUS signal at the WUS moment or the WUS signal indicates that the terminal device does not have data scheduling at the corresponding "onduration" time, the terminal device can directly enter the sleep state without detecting the PDCCH at the "onduration" time. Therefore, by combining the WUS and DRX mechanisms, the power consumption of the terminal device can be further reduced.
  • the DRX cycle and the WUS time cycle of the multiple terminal devices, as well as the location of "onduration" in the time domain and the location of the WUS time in the time domain, may be different.
  • For network devices if you want to wake up these terminal devices, you need to send WUS at many different WUS moments, which means that more time-frequency resources are needed to send WUS, which increases the consumption and burden of network-side resources.
  • the present application provides a communication method and a communication device, which can save resources of network equipment and improve system resource utilization.
  • a communication method which includes:
  • N first time regions are determined according to the first candidate time position, the duration of the first time area, and the N first offsets configured for at least one terminal device, respectively, and the first candidate time position is a plurality of candidate times Any candidate time location in the location, the multiple candidate time locations are periodically distributed in the time domain, the N offsets are different, N is an integer greater than or equal to 1, and the at least one terminal device Each terminal device is configured with one of the N different first offsets;
  • the multiple candidate time positions are for the terminal device group.
  • the candidate time position corresponding to each first time position of each terminal device in the terminal device group belongs to the multiple candidate time positions.
  • each terminal device in the terminal device group is configured with the duration of the first time zone.
  • the network device may send the first signal in the form of DTX at the candidate time position, or may send the first signal at the candidate time position in each cycle, which is not limited in this application.
  • the first time position may be the starting position corresponding to the DRX cycle, or the starting position corresponding to the "on duration" of the DRX cycle, or the starting position corresponding to the starting position corresponding to the DRX cycle or "on duration”.
  • Time slot or subframe The terminal device may start a first timer (the first timer may be a drx-onDurationTimer) on the starting time slot or subframe (ie, the first time position), or may start to detect the first channel.
  • the first time position may be the starting position of the activation period (Active time) of the terminal device DRX cycle, and the DRX cycle activation time includes the length of "onduration" or the first timing The length of the device.
  • activation period please refer to the technology in the existing DRX mechanism, which will not be repeated here.
  • the first time position may be the time position of the search space of the PDCCH of the terminal device, such as the time position of the downlink control channel search space closest to the candidate time position.
  • the first time position may be the time position of the PDCCH search space closest to the candidate time position on the secondary carrier (SCell) after the terminal device is activated.
  • SCell secondary carrier
  • the network device configures one of the N different first offsets for each terminal device in the terminal device group.
  • the first offset configured by the network device for different terminal devices in the terminal device group may be the same or different, that is, if the terminal device group includes J terminal devices, 1 ⁇ N ⁇ J.
  • the unit of the first offset may be ms or subframes or time slots, but this embodiment of the present application does not limit this.
  • the unit of W may be the same as the unit of the first offset.
  • the value of the first offset may be 2ms, 3ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • N first time regions correspond to N first offsets in one-to-one correspondence. That is, for each first offset, a first time zone can be determined. It should be understood that the N first time regions correspond to the first candidate time positions, and the determined first time regions are different for the candidate time positions in different candidate time position periods.
  • the time distance between the start time position of the first time zone and the first candidate time position determined according to the first offset is the first offset. That is, the time distance between the start time position of each first time zone and the first candidate time position is one of N first offsets, and the start time position of each first time zone
  • the time distance between the first candidate time position and the first candidate time position are different from each other, but the present application is not limited to this, for example, between the start time position of the first time zone and the first candidate time position determined according to the first offset
  • the time distance of may also be greater than the first offset.
  • the "the first signal is used to indicate whether the terminal device in the at least one terminal device whose first time position is within the first time area detects the first channel from the first time position" means, The first signal is used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each of the plurality of terminal devices corresponds to the At least one first time position is located in the first time area corresponding to the terminal device.
  • the first signal may indicate whether the terminal device has changed from the one or more first time The location starts to detect the first channel or stops detecting the first channel.
  • the time distance between the start time position of the first time zone where the first time position of any terminal device is located and the first candidate time position is the first offset configured for the terminal device.
  • step of “sending the first signal to the at least one terminal device at the first candidate time position may or may not be performed”.
  • the network device sends the first signal at the first candidate time position. If any terminal device in the terminal device group whose first time position is in the first time zone does not need to detect the first channel from the first time position in the corresponding first time zone, the network device may not be in the first Send any signal at the candidate time position.
  • the network device can The first signal is sent at a candidate time position. It should be understood that the first signal sent in the second implementation manner may be different from the first signal sent in the second implementation manner.
  • the first channel is a downlink control channel
  • the first time position is the starting time position of the discontinuous reception activation time of the terminal device.
  • the WUS time needs to be configured separately to send WUS, which means that more time-frequency resources are needed to send WUS, thereby increasing the consumption of network-side resources With burden.
  • the candidate time position may be associated with multiple first offsets or multiple terminal devices, and multiple first time regions may be determined according to the multiple first offsets.
  • the first signal corresponding to the first time area may instruct the multiple terminal devices to start or stop detecting the first channel from the corresponding first time position, In this way, even if the cycle of the candidate time position of the terminal device (that is, an example of the DRX cycle) and the offset are different, the purpose of multiplexing the same first signal by multiple terminal devices can be achieved. In other words, the network device does not need to send the first signal (that is, an example of the WUS signal) on different time or frequency domain resources for each terminal device, which can save network device resources and improve system resource utilization .
  • At least one bit of information bits carried in the first signal corresponds to at least one time unit in each first time zone, the At least one bit is used to indicate whether the terminal device in the at least one terminal device whose first time position is within the at least one time unit detects the first channel from the first time position.
  • the terminal device can indicate whether the terminal device detects the first channel through fewer information bits, thereby saving signaling overhead.
  • the first signal includes L information bits, and the first time region is composed of P time units.
  • P ⁇ L ⁇ 1 For example, P ⁇ L ⁇ 1, and P and L are both integers.
  • each information bit corresponds to at least one time unit among P time units included in each first time region.
  • L information bits are used to indicate whether the terminal device in the terminal device group whose first time position is within P time units starts to detect the first channel from the first time position.
  • the L information bits are used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each terminal in the plurality of terminal devices The at least one first time position corresponding to the device is located in the first time area corresponding to the terminal device.
  • Means round down Means round up.
  • Each information bit is used to indicate whether the terminal device in the terminal device group whose first time position is within the time unit corresponding to the information bit detects the first channel from the first time position.
  • the L information bits may correspond to time units in the first time area from high to low, but this embodiment of the present application does not limit this.
  • L information bits correspond to P time units in each first time region.
  • Each of the P time units included in each first time region corresponds to multiple information bits among the L information bits.
  • the multiple information bits are used to indicate whether the terminal device in the terminal device group whose first time position is in the time unit corresponding to the multiple information bits starts to detect the first channel from the first time position.
  • the L information bits are used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each terminal in the plurality of terminal devices The at least one first time position corresponding to the device is located in the first time area corresponding to the terminal device.
  • the time unit may be a time slot or a subframe, but this embodiment of the application is not limited to this, for example, the time unit may also be a mini-slot or a symbol.
  • the unit of the duration of the first time zone and the unit of the time unit may be the same, or the granularity of the duration of the first time zone is one time unit, for example, if the duration of the first time zone is 10 ms or 10 sub In the frame, the first time area may be composed of 10 subframes, but this embodiment of the present application does not limit this.
  • the first signal includes L information bits, and the first time area is composed of P time units.
  • P ⁇ L ⁇ 1 and both P and L are integers.
  • each of the L information bits corresponds to a total of P times included in one of the N first time regions in the first time region At least one time unit in the unit.
  • the number of time units corresponding to each information bit in the L information bits is or or or or The first time region corresponding to each information bit in the L information bits may be indicated according to higher layer signaling configuration or downlink control information (downlink control information, DCI) signaling.
  • DCI downlink control information
  • the time unit indicated by the lth information bit of the L information bits is located on the pth time unit in the first time region, 1 ⁇ p ⁇ P, 1 ⁇ l ⁇ L, and both l and p are integers.
  • the p-th time unit is an index or time unit numbered p-1.
  • the period of the plurality of candidate time positions is equal to the duration of the first time area.
  • the time distance between the first time position of the terminal device and the first candidate time position is configured for all The sum of the first offset of the terminal device and the second offset of the terminal device, the second offset is greater than or equal to 0 and less than the duration of the first time zone.
  • the network device may first determine the offset of the first time position in the corresponding first time zone from the first time zone Shift amount (ie, second offset), and then determine the information bit corresponding to the first time position according to the second offset, thereby determining the first signal.
  • first time zone Shift amount ie, second offset
  • the second offset is greater than or equal to 0 and less than the duration of the first time zone.
  • the unit of the second offset may be ms, or the granularity of the second offset may be a subframe or a time slot, but this embodiment of the present application does not limit this.
  • T is the first offset configured for the terminal device
  • t is the second offset of the terminal device
  • R is the period of the multiple candidate time positions
  • o is the multiple of the multiple candidate time positions Offset.
  • the value range of t is: 0 ⁇ t ⁇ W-1 or 0 ⁇ t ⁇ W.
  • the calculation formula of the first time position Q (that is, the slot where the first time position is located) is:
  • n t, f is the frame number where the first time position is located, The time slot number where the first time position is located.
  • the calculation formula of the first time position Q (that is, the subframe where the first time position is located) is:
  • n t, f is the frame number where the first time position is located
  • a communication method including:
  • the second offset is determined according to the first time position, the period of the candidate time position of the first signal, the first offset configured for the terminal device, and the duration of the first time area, the first time position is located in the first Within a time zone;
  • a first candidate time position from a plurality of candidate time positions of the first signal according to the first time position, the first offset, and the second offset
  • the positions are periodically distributed in the time domain according to the period of the candidate time position
  • the terminal device is any terminal device in the foregoing terminal device group, and the first time position is any time position among a plurality of first time positions that may be periodically distributed.
  • the terminal device may determine the second offset according to the first time position, the period of the candidate time position of the first signal, the first offset configured for the terminal device, and the duration of the first time area, Furthermore, the candidate time position corresponding to the first time position (ie, the first candidate time position) can be determined according to the second offset, and further, whether to select from The first time position starts to detect the first channel. Specifically, the terminal device detects the first signal at the first candidate time position, then the terminal device # 1 may determine whether to detect the first channel from the first time position according to the first signal. If the terminal device does not detect the first signal at the first candidate time position, the terminal device does not detect the first channel from the first time position.
  • the method further includes:
  • the first time zone where the first time position is located is determined according to the second offset and the duration of the first time zone.
  • the time distance between the start position of the first time zone where the first time position is located and the first candidate time position is the The first offset.
  • the time distance between the first candidate time position and the first time position is the first offset and the second The sum of the offsets.
  • the second offset is the time distance between the first time position and the start time position of the first time zone, so The second offset is greater than or equal to 0 and less than the duration of the first time zone.
  • Q is the first time position
  • T is the first offset
  • t is the second offset
  • R is the period of the candidate time position of the first signal
  • o is the offset of the candidate time position of the first signal.
  • the calculation formula of the first time position Q (that is, the slot where the first time position is located) is:
  • n t, f is the frame number where the first time position is located, The time slot number where the first time position is located.
  • the calculation formula of the first time position Q (that is, the subframe where the first time position is located) is:
  • n t, f is the frame number where the first time position is located
  • the determining whether to detect the first channel from the first time position according to the detection result of the first signal includes:
  • the first signal includes L information bits
  • the first time region is composed of P time units, P ⁇ L ⁇ 1, and P And L are integers;
  • the determining at least one bit of the information bits carried by the first signal according to the second offset includes:
  • the determining whether to detect the first channel from the first time position according to the at least one bit includes:
  • the first information bit determine whether to detect the first channel from the first time position.
  • the period of the candidate time position is the same as the duration of the first time area.
  • the first channel is a downlink control channel
  • the first time position is a starting time position of the discontinuous reception activation time of the terminal device.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute the instructions in the memory to implement the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, and the communication interface is controlled to implement communication with other network elements.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the second aspect or the method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, and the communication interface is controlled to implement communication with other network elements.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the first aspect to the second aspect and any possible implementation manner of the first aspect to the second aspect The method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform any of the first aspect to the second aspect and any possible implementation manner of the first aspect to the second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which may be integrated with the processor on the same chip, or may be separately set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc .; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (may also be referred to as code or instructions) that, when the computer program is executed, causes the computer to perform the first to the foregoing aspects The method in the second aspect and any possible implementation manner of the first aspect to the second aspect.
  • a computer-readable medium that stores a computer program (which may also be referred to as code or instructions), which when executed on a computer, causes the computer to perform the above-mentioned first to thirteenth aspects
  • a computer program which may also be referred to as code or instructions
  • a communication system including the aforementioned network device and terminal device.
  • the candidate time position may be associated with multiple first offsets or multiple terminal devices, and multiple first time regions may be determined according to the multiple first offsets.
  • the first signal corresponding to the first time area may instruct the multiple terminal devices to start or stop detecting the first channel from the corresponding first time position.
  • the network device does not need to send the first signal (that is, an example of the WUS signal) on different time or frequency domain resources for each terminal device, which can save network device resources and improve system resource utilization .
  • FIG. 1 is a schematic block diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a downlink time-frequency resource grid.
  • Figure 3 is a schematic diagram of a typical DRX cycle.
  • Figure 4 is an example of DRX cycle time domain location.
  • FIG. 5 is a schematic diagram of DRX cycle time domain positions of different terminal devices.
  • FIG. 6 is a schematic diagram of the combination of WUS and DRX mechanism.
  • FIG. 7 is a schematic diagram of a candidate time position.
  • FIG. 8 is a schematic flowchart of a communication method provided by the present application.
  • FIG. 9 is a schematic diagram of the positional relationship between the first candidate time position, the first offset, and the first time area in the time domain.
  • FIG. 10 is a schematic diagram of the positional relationship between the first time period, the first candidate time position, and the first time area in the time domain.
  • FIG. 11 is a schematic flowchart of a communication method provided by this application.
  • FIG. 12 is a schematic diagram of different terminal devices in the same group detecting the first signal.
  • 13 is another schematic diagram of different terminal devices in the same group detecting the first signal.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas, and the multiple antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • transmitter chain and a receiver chain.
  • receiver chain can include multiple components related to signal transmission and reception (such as processors, modulators, and multiplexers) , Demodulator, demultiplexer or antenna, etc.).
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (Radio Network Controller, RNC), Node B (Node B, NB), base station controller (Base Station Controller, BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be 5G, such as NR , GNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of an antenna panel of a base station
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet, data, protocol, PDCP) layer functions
  • RRC radio resource control
  • packet data convergence layer protocol packet, data, protocol, PDCP
  • DU implements wireless chain The functions of the radio link (control, RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the radio access network (RAN), and can also be divided into network devices in the core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be referred to as user equipment (user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • user equipment user equipment
  • access terminal subscriber unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device User terminal
  • terminal wireless communication device
  • user agent user device
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal
  • Wireless terminals in equipment industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • the basic unit in the frequency domain is a subcarrier, and the subcarrier spacing (SCS) can be 15KHz, 30KHz, and so on.
  • the unit of uplink / downlink frequency domain resources is a physical resource block (PRB). Each PRB consists of 12 consecutive subcarriers in the frequency domain.
  • 2 is a schematic diagram of a downlink time-frequency resource grid.
  • each element on the resource grid is called a resource element (resource element, RE).
  • RE is the smallest physical resource.
  • a RE contains an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM ) A subcarrier within the symbol.
  • OFDM orthogonal frequency division multiplexing
  • the uplink time-frequency resource grid is similar to the downlink.
  • the basic time unit of downlink resource scheduling in NR is a slot. Generally speaking, a slot consists of 14 OFDM symbols in time.
  • NR transmission is organized into frames with a time length of 10ms, each frame is divided into 10 subframes of the same size and a length of 1ms, and each subframe can contain one or more
  • the time slot for example, when the subcarrier is 15 kHz, it is determined that each subframe contains a time slot according to the subcarrier interval.
  • Each frame is identified by a system frame number (SFN).
  • SFN system frame number
  • the period of SFN is equal to 1024, so SFN repeats itself after 1024 frames.
  • the number of time slots contained in a frame is related to the size of subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the number of time slots in a frame Value range is among them It is the number of time slots contained in the frame.
  • CP cyclic prefix
  • Normal normal cyclic prefix
  • is a value related to the size of SCS.
  • the relationship between the value of ⁇ and the size of SCS is shown in Table 2:
  • the network device transmits a physical downlink shared channel (physical downlink shared channel, PDSCH) and a physical downlink control channel (physical downlink control channel, PDCCH) for the terminal device.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the terminal device needs to demodulate the PDCCH first.
  • the downlink control information (DCI) carried in the PDCCH contains relevant information required to receive the PDSCH, such as the location of the PDSCH time-frequency resources and the size of the time-frequency resources. Antenna configuration information, etc.
  • the terminal device may be in different states, one of which is the radio resource control connection state (RRC_CONNECTED).
  • RRC_CONNECTED the terminal device has established a radio resource control (RRC) connection, that is, the parameters necessary for communication between the terminal device and the network device are known to both.
  • RRC_CONNECTED state is mainly used for the terminal device Perform data transfer.
  • DRX discontinuous reception
  • the network device may configure the DRX cycle (DRX cycle) for the terminal device in the RRC_CONNECTED state.
  • Figure 3 shows a typical DRX cycle.
  • a DRX cycle may include an "on duration" period (or the first period in this patent).
  • the time period is the length of the timer drx-onDurationTimer.
  • the timer can be understood as a period of time starting from the start position of the DRX cycle.
  • the terminal device can start the timer within a certain time slot. Signaling configuration.
  • the terminal device can detect the PDCCH; if within the "onduration" period, the terminal device does not detect the PDCCH, the terminal device can turn off the receiving circuit and enter the sleep state, thereby reducing the terminal's power consumption.
  • each terminal device can be configured with two DRX cycle parameters: drx-LongCycle (ranging from 10 to 10240ms) and drx-ShortCycle (ranging from 2 to 640ms), one for the long DRX cycle (Long DRX cycle), The other is the short DRX cycle (Short DRX cycle).
  • the terminal device can obtain the SFN where the starting position of "onduration" and the subframe number in the frame according to the following formula (1):
  • V is the DRX cycle used by the terminal device. If the terminal device uses a long DRX cycle, then the value of V is drx-LongCycle, and the value of Y at this time is the parameter drx-StartOffset, which can be configured by high-level signaling, the unit is 1ms . If the UE uses a short DRX cycle, then the value of V is drx-ShortCycle, and the value of Y at this time is (drx-StartOffset) modulo (drx-ShortCycle), which can be configured by higher layer signaling, and the unit is also 1ms. The Y value is the offset of DRX.
  • the Y value can be understood as the offset of the starting position of "onduration" (or the starting position of DRX cycle) relative to the reference point, the unit is ms.
  • the starting position of "on duration” can also be understood as the starting position of DRX cycle.
  • the SFN number ranges from 0 to 1023
  • the subframe number ranges from 0 to 9.
  • the scheduling unit of NR is a time slot, and for subcarriers greater than 15kHz, a subframe can contain multiple time slots (such as 60kHz SCS, a subframe can contain 4 time slots), so the high layer
  • the signaling configures the terminal device with the parameter drx-SlotOffset, and the terminal device uses this parameter to further determine the time slot where the start time position of "onduration" is located.
  • the terminal device can start a timer in the determined time slot, the length of the timer (which can be understood as the "onduration" time length) is configured by high-level signaling, and the terminal device detects the PDCCH within the time range of the timer; If the terminal device does not detect the PDCCH within the time range of the timer, the terminal device enters the sleep state after the timer expires.
  • the SCS at 60 kHz as an example, refer to FIG. 4, which is an example of a DRX cycle time domain position example.
  • the periods are all V, but the Y values are different (ie, Y1 ⁇ Y2), so the "onduration" time-domain positions of the two terminal devices are different.
  • the time domain position of the "onduration" of the terminal device is related to the parameters V, Y and even drx-SlotOffset.
  • the terminal device will work in a larger RF and baseband bandwidth, and in a DRX cycle, the terminal device needs to first wake up from the sleep state, turn on the RF and baseband circuit, obtain time-frequency synchronization, and then on the "duration" Detecting the PDCCH during the period, these processes require a lot of energy consumption. Generally speaking, data transmission tends to be bursty and sparse in time. If the network device does not have any data scheduling for the terminal device during the activation period, unnecessary energy consumption is generated for the terminal device. Therefore, in order to save power consumption, a method of combining a wake-up signal (WUS) and a DRX mechanism in the RRC_CONNECTED state is introduced in the NR.
  • WUS wake-up signal
  • FIG. 6 is a schematic diagram of an example of the combination of WUS and DRX mechanism.
  • WUS WUS moment
  • WUS offset WUS offset
  • the network device can send WUS in DTX form for the terminal device at WUS time, that is, the network device decides whether to send WUS at WUS time according to the demand of scheduling data, and the terminal device needs to detect WUS at WUS time to determine whether the network device sends WUS.
  • the terminal device can directly enter the sleep state without detecting the PDCCH during the "onduration" period .
  • the terminal device detects WUS at the time of WUS, or the detected WUS indicates that the terminal device has data scheduling during the "on duration” period, then the terminal device will enter the wakeup state from the sleep state, that is, the terminal The device can start the timer according to the DRX mechanism process described above to detect the PDCCH. At this time, the terminal device needs enough time to enable all modem functions, so that the terminal device can detect the PDCCH from the beginning of the "onduration" period. , Receive data channel.
  • the network device sends a corresponding WUS according to the DRX cycle used by each terminal device, the parameter drx-StartOffset, the parameter drx-SlotOffset, and the parameter WUSoffset.
  • Terminal devices can share a WUS, that is, a WUS sent at a WUS moment can be used to indicate whether a group of terminal devices with the same parameters needs to detect the PDCCH during the "onduration" period in the DRX cycle.
  • the present application provides a communication method that provides the possibility of multiplexing the same WUS for at least one different terminal device in the DRX cycle, parameter drx-StartOffset, and parameter drx-SlotOffset, thereby helping to save the network device sending WUS Required resources to improve system resource utilization.
  • the candidate time positions in this application are periodically distributed in the time domain.
  • FIG. 7 a schematic diagram of a candidate time position is shown in FIG. 7.
  • the first time position may be the starting position corresponding to the DRX cycle, or the starting position corresponding to the "on duration" of the DRX cycle, or the starting position corresponding to the starting position corresponding to the DRX cycle or "on duration”.
  • Time slot or subframe The terminal device may start a first timer (the first timer may be a drx-onDurationTimer) on the starting time slot or subframe (ie, the first time position), or may start to detect the first channel.
  • the first time position may be the starting position of the activation period (Active time) of the terminal device DRX cycle, and the DRX cycle activation time includes the length of "onduration" or the first timing The length of the device.
  • activation period please refer to the technology in the existing DRX mechanism, which will not be repeated here.
  • the first time position may be the time position of the search space of the PDCCH of the terminal device, such as the time position of the downlink control channel search space closest to the candidate time position.
  • the first time position may be the time position of the PDCCH search space closest to the candidate time position on the secondary carrier (SCell) after the terminal device is activated.
  • SCell secondary carrier
  • the network device may send the first signal in the form of DTX at the candidate time position, or may send the first signal at the candidate time position in each cycle, which will be described in detail below.
  • the network device may send a first signal at the candidate time position to indicate whether the terminal device starts to detect the first channel from the corresponding first time position.
  • the first signal may be a "wake up signal” (WUS) or a “power saving signal”, but this application is not limited to this.
  • the terminal device If the first signal instructs the terminal device to detect the first channel from the corresponding first time position, the terminal device starts to detect the first channel from the first time position.
  • the terminal device may detect the first channel within a first time period starting from the first time position, and the first time period may be a time length of "onduration" or a time length of the first timer, Or the length of the activation period of the DRX cycle, or the time zone composed of K consecutive time slots / subframes, K is not less than 1. That is, the terminal device can detect the first channel within the first time period according to the related configuration of the first channel (such as the detection period and the offset value).
  • the terminal device may stop detecting the first channel after the first period of time, and at the same time shut down the receiving or sending circuit to enter the sleep state. If the first signal does not instruct the terminal device to detect the first channel from the first time position, or the first signal instructs the terminal device not to detect the first channel from the first time position, the terminal device may directly enter the sleep state, in the DRX The terminal device does not need to detect the first channel in the cycle.
  • the network device may not send the first signal at the candidate time position. If the terminal device does not detect the first signal at the corresponding candidate time position, the terminal device does not need to detect the first channel from the corresponding first time position or the first channel. The first channel is detected within a period of time.
  • the network device may send a first signal at the candidate time position to indicate whether the terminal device stops detecting the first channel from the first time position.
  • the first signal may be called a "sleep signal" (go to sleep, GTS), but this application is not limited to this.
  • the terminal device may stop detecting the first signal within the first time period from the first time position.
  • the first time period may be the time length of "onduration", or the time length of the first timer, or the length of the activation period of the DRX cycle, or the time composed of K consecutive time slots / subframes
  • the area, or the length of DRX cycle, K is not less than 1.
  • the terminal device stops detecting the first channel within the first time period and continues to enter the sleep state. If the first signal does not instruct the terminal device to stop detecting the first channel within the first time period, or the first signal indicates that the terminal device does not stop detecting the first channel within the first time period, the terminal device starts detecting the first channel from the first time position One channel.
  • the network device may not send the first signal at the candidate time position. If the terminal device does not detect the first signal at the corresponding candidate time position, the terminal device does not need to stop detecting the first channel from the corresponding first time position or at the first time. Stop detecting the first channel within a period of time.
  • the first channel may be a PDCCH or a data channel PDSCH, which is not limited in this embodiment of the application.
  • first channel may also be replaced with a reference signal or other signal used for channel state information (channel state information (CSI) measurement or time-frequency tracking / synchronization).
  • CSI channel state information
  • the candidate time position may be determined according to the period of the candidate time position and the offset of the candidate time position.
  • the unit of the period of the candidate time position and the offset of the candidate time position is generally a slot, but may also be a subframe (ie, ms), which is not limited in this embodiment of the present application.
  • the unit of the period of the candidate time position and the unit of the offset of the candidate time position are the same. It should be understood that the period of the candidate time position is the length of time between two adjacent candidate time positions.
  • the candidate Frame number n f and time slot number where the time position is located Meet the following formula (2):
  • the offset of the candidate time position may be understood as the time offset of the candidate time position relative to the reference point, and the frame number where the reference point is located And the slot number Satisfy the following formula (3):
  • the candidate time position is behind the reference point, and the time distance from the reference point is the offset.
  • the unit of the period of the candidate time position and the offset of the candidate time position is a subframe or ms
  • record the period of the candidate time position as R and the offset of the candidate time position as o then as an example and not a limitation ,
  • the frame number n f where the candidate time position is located and the sub frame number n sf satisfy the following formula (4):
  • the offset of the candidate time position can be understood as the time offset relative to the reference point, and the frame number where the reference point is located And the subframe number Satisfy the following formula (5):
  • the candidate time position is behind the reference point, and the time distance from the reference point is the offset.
  • the slot position of the candidate time position in the subframe where it is located may be configured by higher layer signaling.
  • the first time position when the first time position is the starting position corresponding to the DRX cycle, or the starting position corresponding to the "onduration" of the DRX cycle, the first time position can be directly determined according to formula (1), here No longer. If the first time position is the time position of the downlink control channel search space of the terminal device, the first time position may be determined according to the period of the PDCCH search space and the offset value (unit is slot). The method is the same as the method for determining the candidate time position. Repeat again.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not be applied to the embodiments of this application
  • the implementation process constitutes no limitation.
  • terminal devices and network devices are mainly used as execution bodies to explain the corresponding steps or methods.
  • the execution bodies of these steps or methods may also be chips applied to terminal devices and applied to networks.
  • the chip of the device may also be used as a chip to explain the corresponding steps or methods.
  • FIG. 8 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • the method 200 mainly introduces a process in which the network device sends the first signal at the first candidate time position from the perspective of the network device.
  • each step of the method 200 will be described in detail.
  • the network device determines N first time zones according to the first candidate time position, N different first offsets configured for the terminal device group, and the duration of the first time zone.
  • the first candidate time position is any candidate time position among a plurality of candidate time positions, and the plurality of candidate time positions are periodically distributed in the time domain.
  • the multiple candidate time positions are for the terminal device group.
  • the candidate time position corresponding to each first time position of each terminal device in the terminal device group belongs to the multiple candidate time positions. It should be noted that each terminal device in the terminal device group may not need to detect the first signal at each candidate time position of the plurality of candidate time positions.
  • the multiple candidate time positions may also be specific to a specific terminal device.
  • Each terminal device in the terminal device group is configured with a first duration W, and the terminal device group includes at least one (ie, one or more) terminal devices.
  • the first duration is the duration of the first time zone. That is, the duration of the first time zone of each terminal device in the terminal device group or the duration of the first time zone corresponding to each terminal device is W. W is a value greater than 1.
  • the unit of W may be ms or slot, but this embodiment of the present application does not limit this.
  • the network device may configure the first duration W for each terminal device through high-layer signaling.
  • W may be equal to the period of the candidate time position, for example, all are 10 ms or 20 ms, or all are 10 slots or 20 slots.
  • the terminal device may directly obtain the duration of the first time area according to the period of the candidate time position, where the period of the candidate time position may be obtained through high-layer signaling.
  • the network device may configure one of the N different first offsets for each terminal device in the terminal device group.
  • the first offset configured by the network device for different terminal devices in the terminal device group may be the same or different, that is, if the terminal device group includes J terminal devices, 1 ⁇ N ⁇ J.
  • the terminal device group includes terminal device # 1, terminal device # 2, and terminal device # 3.
  • the network device may configure terminal device # 1 with a first offset of T1 and terminal device # 2.
  • the value is the first offset of T2, and the first offset of T3 is configured for terminal device # 3; or, the network device may configure the first offset of T1 for both terminal device # 1 and terminal device # 2 Amount T1, configure terminal device # 3 with a first offset of T3; or, the network device may configure terminal device # 1, terminal device # 2, and terminal device # 3 with a first offset of T1 .
  • the unit of the first offset may be ms or subframe or time slot, but this embodiment of the present application does not limit this.
  • the unit of W may be the same as the unit of the first offset.
  • the value of the first offset may be 2ms, 3ms, 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the network device may configure the first offset for each terminal device according to the capability information of each terminal device in the terminal device group.
  • terminal device # 1 in the terminal device group as an example for description.
  • terminal device # 1 can report its capability information to the network device, and the network device can determine the first offset of terminal device # 1 according to the capability information reported by terminal device # 1, and can determine the determined terminal device # 1
  • the first offset of 1 is allocated to terminal device # 1.
  • the capability information may be the minimum time required for terminal device # 1 to detect the first signal to detect the downlink control channel and receive the data channel, or the terminal device is in a low power consumption state (such as Deep sleep, Light sleep, Or Micro sleep (power) state to the minimum time required for a non-low power consumption state (such as Non-sleep power state), or the terminal device from the "sleep" state (only turn on some modem functions or use a simple receiving circuit)
  • the network device can select from the multiple first offsets configured by higher layer signaling the closest to the minimum time and greater than or equal to the minimum time according to the minimum time The first offset, and then configure the selected first offset as the first offset of terminal device # 1.
  • the N first time regions determined in S210 are in one-to-one correspondence with the N first offsets. That is, for each first offset, a first time zone can be determined.
  • N first time regions correspond to the first candidate time positions, and the determined first time regions are different for the candidate time positions in different candidate time position periods.
  • the time distance between the start time position of the first time zone and the first candidate time position determined according to the first offset is the first offset . That is, the time distance between the start time position of each first time zone and the first candidate time position is one of N first offsets, and the start time position of each first time zone
  • the time distance between the first candidate time position and the first candidate time position are different from each other, but the present application is not limited to this, for example, between the start time position of the first time zone and the first candidate time position determined according to the first offset
  • the time distance of may also be greater than the first offset.
  • FIG. 9 shows the relationship between the first candidate time position, the first offset, and the first time area.
  • T1 is the first offset of terminal device # 1
  • T2 is the first offset of terminal device # 2.
  • the first candidate time position is candidate time position # 1.
  • the distance between the start time position of the first time zone # 1 (an example of the first time zone) and the candidate time position # 1 is T1
  • the start of the first time zone # 2 is T2.
  • the network device determines a first time position or a first time period of each terminal device in the terminal device group.
  • the meaning of the first time position may be as described above, for example, the first time position may be the starting position of the "on duration" of the DRX cycle.
  • the first time position and / or the first time period of each terminal device can be determined by referring to the method described above, which will not be repeated here.
  • the network device sends a first signal to the terminal device group at the first candidate time position.
  • the first signal is used to indicate whether the terminal device in the terminal device group whose first time position is within the first time area starts detecting the first channel from the first time position or stops detecting the first channel.
  • the first signal is used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each of the plurality of terminal devices The corresponding at least one first time position is located in the first time area corresponding to the terminal device.
  • the first signal may indicate whether the terminal device has changed from the one or more first time The location starts to detect the first channel or stops detecting the first channel.
  • the time distance between the start time position of the first time zone where the first time position of any terminal device is located and the first candidate time position is the first offset configured for the terminal device.
  • the following uses the first signal to determine whether the terminal device detects the first channel from the first time position as an example.
  • the first time zone of the terminal device # 1 is the first time zone # 1
  • the first time zone of the terminal device # 2 is the first time zone # 2.
  • the first signal may indicate whether the terminal device # 1 detects the first channel from the starting position of the first time period # 11 and whether the terminal device # 2 detects the first channel from the starting position of the first time period # 21 .
  • the first signal may also indicate whether terminal device # 1 has fallen in the first time The other first time position in area # 1 starts to detect the first channel. It should also be understood that even if a certain first time position of the terminal device # 2 falls in the first time area # 1, the first signal cannot indicate whether the terminal device # 2 starts detecting the first channel from the first time position.
  • S230 may or may not be executed.
  • the network device sends the first signal at the first candidate time position. If any terminal device in the terminal device group whose first time position is in the first time zone does not need to detect the first channel from the first time position in the corresponding first time zone, the network device may not be in the first Send any signal at the candidate time position.
  • the network device can The first signal is sent at a candidate time position. It should be understood that the first signal sent in the second implementation manner may be different from the first signal sent in the second implementation manner.
  • the network device can determine whether the following conditions are true:
  • the terminal device # 1 needs to detect the first channel from the starting position of the first time period # 11;
  • Condition (2) The terminal device # 2 needs to detect the first channel from the starting position of the first time period # 21.
  • condition (1) and condition (2) are satisfied or both are satisfied, the network device can send the first signal at the first candidate time position; if neither condition (1) or condition (2) is satisfied , Then the network device may not send the first signal at the first candidate time position.
  • the first signal will be described in detail below.
  • the first signal includes L information bits (or source bits), L ⁇ 1, and L is an integer. It should be understood that information bits are bits that have not undergone channel coding processing.
  • the value of L can be specified by a protocol, but this embodiment of the present application does not limit this, for example, L can also be configured by a network device.
  • the first signal may carry a total of L information bits, or may carry more information bits than L information bits.
  • L may be the total number of terminal devices included in the terminal device group, and each of the L information bits corresponds to one terminal device in the terminal device group.
  • the L information bits correspond to the terminal devices in the terminal device group from large to small in order from high to low.
  • L 2
  • the terminal equipment group includes terminal equipment # 1 and terminal equipment # 2.
  • the positional relationship between the first time period of terminal device # 1 and terminal device # 2 and the first time zone is shown in FIG. 10, then when L information bits are "01", the first signal may indicate that terminal device # 1 The first channel is detected from the starting position of the first time period # 1 (ie, the first time position), and the terminal device # 2 does not need to start from the starting position of the first time period # 1 (ie, the first time position) The first channel of the detection signal. Or, conversely, when L information bits are "01", the first signal may indicate that terminal device # 1 does not need to detect the first channel from the beginning of the first time period # 1, while terminal device # 2 needs The first channel is detected from the beginning of the first time period # 1.
  • At least one information bit of the L information bits corresponds to at least one time unit in each first time zone, and the at least one information bit is used to indicate a first time position in the at least one terminal device Whether the terminal device located in the at least one time unit starts to detect the first channel from the first time position.
  • the first time zone is composed of P time units. Among them, P ⁇ L ⁇ 1, and P is an integer.
  • L information bits correspond to P time units in each first time zone. Each information bit corresponds to at least one time unit among P time units included in each first time region. Among them, L information bits are used to indicate whether the terminal device in the terminal device group whose first time position is within P time units starts to detect the first channel from the first time position. In other words, the L information bits are used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each terminal in the plurality of terminal devices The at least one first time position corresponding to the device is located in the first time area corresponding to the terminal device.
  • Means round down Means round up.
  • Each information bit is used to indicate whether the terminal device in the terminal device group whose first time position is within the time unit corresponding to the information bit detects the first channel from the first time position.
  • the L information bits may correspond to time units in the first time area from high to low, but this embodiment of the present application does not limit this.
  • L information bits correspond to P time units in each first time region.
  • Each of the P time units included in each first time region corresponds to multiple information bits among the L information bits.
  • the multiple information bits are used to indicate whether the terminal device in the terminal device group whose first time position is in the time unit corresponding to the multiple information bits starts to detect the first channel from the first time position.
  • the L information bits are used to indicate whether several terminal devices start to detect the first channel or stop detecting the first channel from at least one corresponding first time position, wherein each terminal in the plurality of terminal devices The at least one first time position corresponding to the device is located in the first time area corresponding to the terminal device.
  • the time unit may be a time slot or a subframe, but this embodiment of the application is not limited to this, for example, the time unit may also be a mini-slot or a symbol.
  • the unit of W and the time unit may be the same, or the granularity of W is a time unit, for example, if W is 10 ms or 10 subframes, the first time region may be composed of 10 subframes, but this application is implemented Examples do not limit this.
  • each of the L information bits corresponds to at least one time unit among P time units included in one of the N first time regions in the first time region.
  • the number of time units corresponding to each information bit in the L information bits is or or or or The first time zone corresponding to each information bit in the L information bits may be indicated according to higher layer signaling configuration or DCI signaling.
  • the time unit indicated by the lth information bit in the L information bits is located on the pth time unit in the first time area, 1 ⁇ p ⁇ P, 1 ⁇ l ⁇ L, and both l and p are integers.
  • the p-th time unit is an index or time unit numbered p-1.
  • the L information bits correspond to all time units included in the first time area # 11, and the L information bits correspond to all time units included in the first time area # 21.
  • Each of the L information bits corresponds to at least one time unit of all time units included in the first time area # 11, and each of the L information bits corresponds to the first time At least one time unit among all time units included in the area # 21.
  • the first time position of the first time period # 11 is located in the third time unit in the first time area # 1
  • the first time position of the first time period # 21 is located in the fourth time in the first time area # 21 Time unit.
  • the information bit carried by the first signal is "0110100000"
  • the third bit in the information bit can indicate that terminal device # 1 needs to start from the first time period # 11
  • the detection of the first channel is started, and the fourth bit in the first indication information may indicate that the terminal device # 2 does not need to detect the first channel from the start position of its first time period # 21.
  • the first signal is “011”
  • the second bit in the first indication information may indicate that terminal device # 1 needs to detect the first position from the beginning of the first time period # 11
  • One channel and terminal device # 2 need to detect the first channel from the beginning of its first time period # 21.
  • the network device may first determine the offset of the first time position located in the corresponding first time zone from the first time zone (ie, the second Offset), and then determine the information bit corresponding to the first time position according to the second offset, thereby determining the first signal.
  • the second offset is greater than or equal to 0 and less than the duration of the first time zone.
  • the unit of the second offset may be ms, or the granularity of the second offset may be a subframe or a time slot, but this embodiment of the present application does not limit this.
  • T is the first offset configured for the terminal device
  • t is the second offset of the terminal device
  • R is the period of the multiple candidate time positions
  • o is the multiple of the multiple candidate time positions Offset.
  • the value range of t is: 0 ⁇ t ⁇ W-1 or 0 ⁇ t ⁇ W.
  • the calculation formula of the first time position Q (that is, the slot where the first time position is located) is:
  • n t, f is the frame number where the first time position is located, The time slot number where the first time position is located.
  • the calculation formula of the first time position Q (that is, the subframe where the first time position is located) is:
  • n t, f is the frame number where the first time position is located
  • the candidate time position may be associated with multiple first offsets or multiple terminal devices, and multiple first time regions may be determined according to the multiple first offsets.
  • the first signal corresponding to the first time area may instruct the multiple terminal devices to start or stop detecting the first channel from the corresponding first time position, In this way, even if the cycle of the candidate time position of the terminal device (ie, an example of the DRX cycle) and the offset (that is, an example of the offset of the activation period can also be regarded as the Y value in Formula 1), it can be achieved
  • the purpose of multiple terminal equipment multiplexing the same first signal In other words, the network device does not need to send the first signal (that is, an example of the WUS signal) on different time or frequency domain resources for each terminal device, which can save network device resources and improve system resource utilization .
  • FIG. 11 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application. The method is used for the terminal device to determine the candidate time position corresponding to the first time position and to detect the first channel on the determined candidate time position.
  • the method provided by the present application will be described by taking the terminal device # 1 determining the candidate time position corresponding to the first time position # 1 and the process of detecting the first channel at the determined candidate time position as an example.
  • the first time position # 1 may be any time position among a plurality of first time positions distributed periodically.
  • other terminal devices in the terminal device group may use a similar method to determine a candidate time position corresponding to any first time position and detect the first channel at the determined candidate time position.
  • the terminal device # 1 determines the second offset t according to the first time position # 1, the period R of the candidate time position, the first offset T, and the duration W of the first time area.
  • the first time position # 1 is located in the first time area # 1.
  • terminal device # 1 is any terminal device in the terminal device group described above.
  • the first offset T and the duration W of the first time zone can be configured by the network device, and will not be repeated here.
  • the period R of the candidate time position may be notified to the terminal device # 1 by the network device, for example, by high-level signaling.
  • the network device may also notify the terminal device # 1 of the offset o of the candidate time position, for example, by high-level signaling.
  • the value of W may be equal to the value of R.
  • the first time position # 1 of the terminal device # 1 can be determined according to formula (1) or according to the period of the PDCCH search space and the offset value (unit is slot), which will not be repeated here.
  • the second offset t is the time distance between the first time position # 1 and the starting position of the first time area # 1 corresponding to the first time position # 1, and the second offset is greater than Or it is equal to 0 and less than the duration of the first time zone.
  • the unit of the second offset may be ms, or the granularity of the second offset may be a subframe or a time slot, but this embodiment of the present application does not limit this.
  • the value range of t is: 0 ⁇ t ⁇ W-1 or 0 ⁇ t ⁇ W.
  • the calculation formula of the first time position Q (that is, the slot where the first time position is located) is:
  • n t, f is the frame number where the first time position is located, The time slot number where the first time position is located.
  • the calculation formula of the first time position Q (that is, the subframe where the first time position is located) is:
  • n t, f is the frame number where the first time position is located
  • the terminal device # 1 detects the first signal at the first candidate time position.
  • the terminal device # 1 determines whether to start or stop detecting the first channel from the first time position # 1 according to the detection result of the first signal.
  • the terminal device # 1 may determine whether to start or stop detecting the first channel from the first time position # 1 according to the first signal. If the terminal device # 1 does not detect the first signal at the first candidate time position, the terminal device # 1 does not start or stop detecting the first channel from the first time position # 1.
  • S930 may specifically be: terminal device # 1 determines at least one bit of information bits included in the first signal according to the second offset t, and then according to the at least one bit The bit determines whether to detect the first channel from the first time position # 1.
  • the first signal may include L information bits, and the first time zone # 1 is composed of P time units, and the L information bits correspond to the P time units.
  • the terminal device # 1 determines the first signal according to the second offset t, including: the terminal device # 1 determines the first time position according to the second offset t and the duration W of the first time zone # 1 is the time unit of the P time units, and according to the indication of the information bit corresponding to the time unit corresponding to the first time position # 1 in the L information bits, determine whether to start from the first time Position # 1 starts detecting the first channel or stops detecting the first channel.
  • terminal device # 1 needs to determine which of the P time units the first time position # 1 corresponds to, and then determine whether to start from the first according to the information bits corresponding to the determined time unit Time position # 1 starts to detect the first channel or stops detecting the first channel.
  • the time unit corresponding to the first time position can be determined to be the second time of the 10 time units unit.
  • the information bit corresponding to the tth time unit is the lth information bit from the highest bit among the L information bits, where, then
  • the terminal device # 1 can determine the lth information bit, and thus can determine whether to detect the first channel from the first time position # 1 or stop detecting the first channel. For example, when the lth information bit is "1", the terminal device # 1 may determine that the first channel needs to be detected from the first time position # 1, and when the lth information bit is "0", the terminal device # 1 It can be determined that it is not necessary to detect the first channel from the first time position # 1.
  • the terminal device # 1 may determine that the first channel needs to be detected from the first time position # 1, and when the lth information bit is "1", the terminal device # 1 may determine that it is not necessary to detect the first channel from the first time position # 1.
  • the method may further include: the terminal device # 1 determines the first time zone # 1 where the first conversion period is located according to the second offset t and the duration W of the first time zone.
  • the time distance between the start position of the first time zone # 1 where the first time position is located and the first candidate time position is the first offset T.
  • the second offset t is the time distance between the start position of the first conversion period and the start time position of the first time zone # 1, and the second offset is greater than or equal to 0 and less than the first time The duration of the area.
  • FIG. 12 A specific example of different terminal devices detecting the first signal.
  • FIG. 12 is the first signal to be detected by three terminal devices from the perspective of the terminal device.
  • the terminal device in order to enable a group of terminal devices with different DRX parameters (including DRX cycle and "on duration" offset) to multiplex the same first signal, the terminal device "on duration" start position and candidate time position The distance can be dynamically changed and may be different under different DRX cycles.
  • the candidate time position where the first signal is detected is determined based on the DRX cycle and the duration of the first time area.
  • the bits corresponding to the three terminal devices are the 3rd, 5th, and 9th bits of the source information bit; if the source bit value is "0110100000", it means Terminal device # 1 and terminal device # 2 need to detect the first channel from the corresponding "onduration" starting position, while terminal device # 3 continues to enter the sleep state.
  • the terminal device If the first signal only carries 1-bit information or energy detection, if the terminal device detects the first signal at the candidate time position, it can be determined that the first channel needs to be detected from the corresponding "onduration" starting position; if the terminal device Without detecting the first signal, the terminal device continues to enter the sleep state.
  • the communication device 400 may include a processing unit 410 and a transceiver unit 420.
  • the communication device 400 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 400 may correspond to the network device in the method 200 according to an embodiment of the present application.
  • the communication device 400 may include a unit for performing the method performed by the network device in the method 200 in FIG. 8.
  • each unit in the communication device 400 and the other operations and / or functions described above are respectively for implementing the corresponding flow of the method 200 in FIG. 8.
  • the processing unit 410 may be used to perform steps S210 and S220 in the method 200
  • the transceiver unit 420 may be used to perform step S230 in the method 200.
  • processing unit 410 in the communication apparatus 400 may correspond to the processor 610 in the network device 600 shown in FIG. 16, and the transceiving unit 420 may correspond to the transceiver in the network device 600 shown in FIG. 16 620.
  • the communication device 400 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 400 may correspond to the terminal device in the method 300 according to an embodiment of the present application, and the communication device 400 may include a unit for performing the method performed by the terminal device in the method 300 in FIG. 11.
  • each unit in the communication device 400 and the other operations and / or functions described above are respectively to implement the corresponding flow of the method 300 in FIG. 11.
  • the processing unit 410 may be used to perform steps S310 and S330 in the method 300, and the transceiver unit 420 may be used to perform step S320 in the method 300.
  • step S320 may be performed by the processing unit 410.
  • processing unit 410 in the communication apparatus 400 may correspond to the processor 501 in the terminal device 500 shown in FIG. 15, and the transceiving unit 420 may correspond to the transceiver in the terminal device 500 shown in FIG. 15 502.
  • the terminal device 500 includes a processor 501 and a transceiver 502.
  • the terminal device 500 further includes a memory 503.
  • the processor 501, the transceiver 502 and the memory 503 can communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 503 is used to store a computer program
  • the processor 501 is used from the memory 503 Call and run the computer program to control the transceiver 502 to send and receive signals.
  • the terminal device 500 may further include an antenna 504 for sending uplink data or uplink control signaling output by the transceiver 502 through a wireless signal.
  • the above processor 501 and the memory 503 can be combined into one processing device.
  • the processor 501 is used to execute the program code stored in the memory 503 to realize the above function. It should be understood that the processing devices shown in the figures are only examples. In specific implementation, the memory 503 may also be integrated in the processor 501 or independent of the processor 501. This application does not limit this.
  • the above-mentioned terminal device 500 further includes an antenna 510 for sending the uplink data or uplink control signal output by the transceiver 502 through a wireless signal.
  • the processor 501 When the program instructions stored in the memory 503 are executed by the processor 501, the processor 501 is used for according to the first time position, the period of the candidate time position of the first signal, the first offset configured for the terminal device, and the first The length of the time zone determines a second offset, and the first time position is within the first time zone; the processing unit is further configured to, according to the first time position, the first offset, and The second offset determines a first candidate time position from a plurality of candidate time positions of the first signal, and the plurality of candidate time positions are periodically distributed in the time domain according to a period of the candidate time position; Detecting the first signal at the first candidate time position; the processing unit is further configured to determine whether to detect the first channel from the first time position according to the detection result of the first signal. Or "detect the first signal at the first candidate time position" may be performed by the transceiver 502.
  • the terminal device 500 may correspond to the terminal device in the method 300 according to an embodiment of the present application, and the terminal device 500 may include a unit for performing the method performed by the terminal device in the method 300 in FIG. 11.
  • each unit in the terminal device 500 and the other operations and / or functions described above are respectively for implementing the corresponding flow of the method 300 in FIG. 11.
  • the foregoing processor 501 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 502 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 500 may correspond to the terminal device in the method 300 according to an embodiment of the present application, and the terminal device 500 may include a unit for performing the method performed by the terminal device in the method 300 in FIG. 11.
  • each unit in the terminal device 500 and the other operations and / or functions described above are respectively for implementing the corresponding flow of the method 300 in FIG. 11.
  • the above-mentioned terminal device 500 may further include a power supply 506 for providing power to various devices or circuits in the terminal device.
  • the terminal device 500 may further include one or more of an input unit 505, a display unit 507, an audio circuit 508, a camera 509, a sensor 511, etc.
  • the audio circuit A speaker 5082, a microphone 5084, etc. may also be included.
  • the network device 600 includes a processor 610 and a transceiver 620.
  • the network device 600 further includes a memory 630.
  • the processor 610, the transceiver 620 and the memory 630 communicate with each other through an internal connection channel to transfer control and / or data signals.
  • the memory 630 is used to store a computer program, and the processor 610 is used to call from the memory 630 And run the computer program to control the transceiver 620 to send and receive signals.
  • the processor 610 and the memory 630 may be combined into one processing device.
  • the processor 610 is used to execute the program code stored in the memory 630 to implement the above functions.
  • the memory 630 may also be integrated in the processor 610 or independent of the processor 610.
  • the above-mentioned network device 600 may further include an antenna 640 for sending downlink data or downlink control signaling output by the transceiver 620 through a wireless signal.
  • the processor 610 When the program instructions stored in the memory 630 are executed by the processor 610, the processor 610 is used for according to the first time position, the period of the candidate time position of the first signal, the first offset configured for the terminal device and the first The length of the time zone determines a second offset, and the first time position is within the first time zone; the processing unit is further configured to, according to the first time position, the first offset, and The second offset determines a first candidate time position from a plurality of candidate time positions of the first signal, and the plurality of candidate time positions are periodically distributed in the time domain according to a period of the candidate time position; Detecting the first signal at the first candidate time position; the processing unit is further configured to determine whether to detect the first channel from the first time position according to the detection result of the first signal. Or "detect the first signal at the first candidate time position" may be performed by the transceiver 620.
  • the network device 600 may correspond to the network device in the method 200 according to an embodiment of the present application, and the network device 600 may include a unit for performing the method performed by the network device in the method 200 in FIG. 8.
  • each unit in the network device 600 and the other operations and / or functions described above are to implement the corresponding process of the method 200 in FIG. For brevity, I will not repeat them here.
  • the foregoing processor 610 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the network device, and the transceiver 620 may be used to perform the operations described in the previous method embodiments that the network device sends to or receives from the terminal device action.
  • the transceiver 620 may be used to perform the operations described in the previous method embodiments that the network device sends to or receives from the terminal device action.
  • processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmableROM, PROM), erasable programmable read-only memory (erasablePROM, EPROM), electrically erasable programmable only Read memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • random access memory random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data Srate double data Srate
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to execute FIG. 8 or FIG. 11 The method in the embodiment is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer is allowed to execute the program shown in FIG. 8 or FIG. 11 The method in the embodiment is shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more collections of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital universal disc (DVD)), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法,能够节省网络设备的资源,提高系统资源利用率。该方法包括:网络设备根据针对终端设备组的任一特定的候选时间位置(如,第一候选时间位置)、为终端设备组配置的第一时间区域的时长和为该终端设备组配置的N个第一偏移量,与N个第一偏移量一一对应的确定N个第一时间区域;网络设备确定每个终端设备的第一时间位置;在所述第一候选时间位置上针对所述至少一个终端设备发送第一信号,第一信号用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。

Description

通信方法和通信装置
本申请要求于2018年10月31日提交中国专利局、申请号为201811286992.3、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
在新无线(new radio,NR)通信系统中,为了减小终端设备的功耗,提出了非连续接收(discontinuous reception,DRX)技术。在DRX模式下,终端设备可以在DRX周期(DRX cycle)内的激活时间(Active Time)检测物理下行控制信道(physical downlink control channel,PDCCH),而在其余时段内关闭接收电路进入睡眠状态,从而降低终端的功耗。其中,该激活时间包括“on duration”时间。
在一个DRX周期中,终端设备首先从睡眠状态唤醒,开启射频和基带电路,获取时频同步,然后在“on duration”时间内检测PDCCH,这些过程需要不少功耗。若在“on duration”时间内网络设备对终端设备没有任何数据调度,那么对于终端设备而言就产生了不必要的能量消耗。因此为了进一步节省功耗,在NR中引入唤醒信号(wake up signal,WUS)与DRX机制相结合的技术。具体而言,对于支持WUS的终端设备,每一个DRX周期的“on duration”时间对应一个发送WUS的WUS时刻(WUS occasion),网络设备根据调度数据的需求决定是否在WUS时刻上发送WUS,而终端设备需要在WUS时刻上通过检测WUS来判断网络设备是否发送WUS。由于一方面终端设备处于睡眠状态时,可以处于极低功耗的状态,例如终端设备仅开启部分调制解调器(modem)的功能或使用一个简单的接收电路来检测和解调WUS,另一方面若终端设备没有在WUS时刻检测到WUS信号或者WUS信号指示终端设备在对应的“on duration”时间没有数据调度,则终端设备可以直接进入睡眠状态,不需要在“on duration”时间检测PDCCH。因此,通过将WUS与DRX机制相结合,能够进一步降低终端设备的功耗。
一个小区内可能会存在多个终端设备,该多个终端设备的DRX周期和WUS时刻的周期,以及“on duration”在时域上的位置和WUS时刻在时域上的位置,可能各不相同。对于网络设备而言,如果要唤醒这些终端设备,需要在很多不同的WUS时刻上发送WUS,也就是说需要较多的时频资源用来发送WUS,从而增加了网络侧资源的消耗与负担。
发明内容
本申请提供一种通信方法和通信装置,能够节省网络设备的资源,提高系统资源利用率。
第一方面,提供了一种通信方法,其特征在于,包括:
根据第一候选时间位置、第一时间区域的时长和为至少一个终端设备配置的N个第一偏移量,分别确定N个第一时间区域,所述第一候选时间位置为多个候选时间位置中任一候选时间位置,所述多个候选时间位置在时域上周期分布,所述N个偏移量各不相同,N为大于或等于1的整数,所述至少一个终端设备中的每个终端设备配置所述N个不同的第一偏移量中的其中一个第一偏移量;
确定每个终端设备的第一时间位置;
在所述第一候选时间位置上针对所述至少一个终端设备发送第一信号,所述第一信号用于指示所述至少一个终端设备中第一时间位置位于所述第一时间区域内的终端设备是否从所述第一时间位置开始检测第一信道。
其中,该多个候选时间位置是针对终端设备组的。换句话说,该终端设备组中每个终端设备的每个第一时间位置所对应的候选时间位置都属于该多个候选时间位置。并且,该终端设备组中每个终端设备都被配置了第一时间区域的时长。
本申请中,网络设备可以在候选时间位置上以DTX形式发送第一信号,也可以在每个周期内的候选时间位置上都发送第一信号,本申请对此不作限定。
在一种可能的实现方式中,针对每个终端设备的每个DRX cycle,都有一个与之对应的候选时间位置。同时第一时间位置可以为对应DRX cycle的起始位置,或者为对应DRX cycle的“on duration”的起始位置,或者说第一时间位置为对应DRX cycle或“on duration”的起始位置所在的时隙或子帧。终端设备在该起始时隙或子帧(即第一时间位置)上可以启动第一定时器(该第一定时器可以为定时器drx-onDurationTimer),或者可以开始检测第一信道。从更一般的概念来说,该第一时间位置可以为终端设备DRX cycle的激活时段(Active time)的起始位置,所述DRX cycle激活时间包括了“on duration”的时间长度或第一定时器的时间长度。关于激活时段的具体含义可以参照现有DRX机制中技术,这里不再赘述。
在另一种可能的实现方式中,第一时间位置可以是终端设备的PDCCH的搜索空间的时间位置,如距离候选时间位置最近的下行控制信道搜索空间的时间位置。比如,第一时间位置可以是终端设备激活后的辅载波(SCell)上距离候选时间位置最近的PDCCH搜索空间的时间位置。
本申请中,网络设备为该终端设备组中的每个终端设备配置N个不同的第一偏移量中的其中一个第一偏移量。网络设备为该终端设备组中不同的终端设备配置的第一偏移量可以相同,也可以不同,即,如果该终端设备组包括J个终端设备,则1≤N≤J。
可选地,第一偏移量的单位可以是ms或者子帧或者时隙,但本申请实施例对此不作限定。W的单位与第一偏移量的单位可以相同。进一步地,第一偏移量的取值可以为2ms,3ms,5ms,10ms,20ms,40ms,80ms,160ms等。
本申请中,N个第一时间区域与N个第一偏移量一一对应。也就是说,针对每个第一偏移量,能够确定一个第一时间区域。应理解,该N个第一时间区域与第一候选时间位置对应,对于不同候选时间位置周期中的候选时间位置,确定出的第一时间区域不同。
可选地,针对每个第一偏移量,根据该第一偏移量确定的第一时间区域的起始时间位置与第一候选时间位置之间的时间距离为该第一偏移量。也就是说,每个第一时间区域的 起始时间位置与第一候选时间位置之间的时间距离为N个第一偏移量中的一个,且每个第一时间区域的起始时间位置与第一候选时间位置之间的时间距离互不相同,但本申请不限定于此,比如根据该第一偏移量确定的第一时间区域的起始时间位置与第一候选时间位置之间的时间距离还可以大于该第一偏移量。
所述“所述第一信号用于指示所述至少一个终端设备中第一时间位置位于所述第一时间区域内的终端设备是否从所述第一时间位置开始检测第一信道”是指,第一信号用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。或者说,若某一终端设备的一个或多个第一时间位置位于该终端设备对应的第一时间区域内,那么第一信号就可以指示该终端设备是否从所述一个或多个第一时间位置开始检测第一信道或者停止检测第一信道。
可选地,任一终端设备的第一时间位置所在的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为为该终端设备配置的第一偏移量。
需要说明的是,步骤“在所述第一候选时间位置上针对所述至少一个终端设备发送第一信号可执行也可不执行”。
具体来说,在实现方式一中,若该终端设备组中第一时间位置位于第一时间区域的终端设备中有至少一个终端设备需要从其对应的第一时间区域内的第一时间位置开始检测第一信道,比如,若网络设备需要在第一时间位置位于终端设备#A的第一时间区域内的终端设备#A的某一第一时间段内对终端设备#A进行数据调度,则网络设备在第一候选时间位置上发送第一信号。若该终端设备组中第一时间位置位于第一时间区域的任一终端设备都不需要从其对应的第一时间区域内的第一时间位置开始检测第一信道,则网络设备可以不在第一候选时间位置上发送任何信号。
在实现方式二中,无论终端设备组中第一时间位置位于第一时间区域的终端设备是否需要从对应的第一时间区域内的第一时间位置开始检测第一信道,网络设备都可以在第一候选时间位置上发送第一信号。应理解,实现方式二中发送的第一信号可能和实现方式二中发送的第一信号不同。
可选地,第一信道为下行控制信道,第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
现有技术中,对于DRX周期和偏移量不同的终端设备,需要分别配置WUS时刻以发送WUS,也就是说就需要较多的时频资源用来发送WUS,从而增加了网络侧资源的消耗与负担。而本申请实施例的方法,候选时间位置可以与多个第一偏移量或者多个终端设备关联,根据多个第一偏移量可以确定多个第一时间区域,在该多个终端设备的第一时间位置落入各自对应的第一时间区域时,与该第一时间区域对应的第一信号可以指示该多个终端设备从对应的第一时间位置开始检测或停止检测第一信道,这样即使终端设备的候选时间位置的周期(即,DRX周期的一例)和偏移量不同,也能实现多个终端设备复用同一第一信号的目的。也就是说,网络设备不需要针对每个终端设备在不同的时域或频域资源上分别发送第一信号(即,WUS信号的一例),从而能够节省网络设备的资源,提高系统资源利用率。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一信号所承载的信息比 特中的至少一个比特对应于每个第一时间区域内的至少一个时间单元,所述至少一个比特用于指示所述至少一个终端设备中第一时间位置位于所述至少一个时间单元内的终端设备是否从所述第一时间位置开始检测所述第一信道。
因此,可以通过较少的信息比特可以指示终端设备是否检测第一信道,从而能够节省信令开销。
以第一信号包括L个信息比特,第一时间区域由P个时间单元构成为例进行说明,其中,P≥L≥1,且P和L均为整数。
比如,每个信息比特对应于每个第一时间区域内共包括的P个时间单元中的至少一个时间单元。其中,L个信息比特用于指示该终端设备组中第一时间位置位于P个时间单元内的终端设备是否从第一时间位置开始检测第一信道。或者说,该L个信息比特用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。
进一步地,该L个信息比特中每个信息比特对应的时间单元的数量为
Figure PCTCN2019114017-appb-000001
Figure PCTCN2019114017-appb-000002
其中,
Figure PCTCN2019114017-appb-000003
表示向下取整,
Figure PCTCN2019114017-appb-000004
表示向上取整。其中,每个信息比特用于指示该终端设备组中第一时间位置位于所述信息比特所对应的时间单元内的终端设备是否从该第一时间位置开始检测第一信道。
本申请中,L个信息比特可以按照从高位到低位与第一时间区域中的时间单元对应,但本申请实施例对此不作限定。
又如,L个信息比特对应于每个第一时间区域内的P个时间单元。每个第一时间区域内共包括的P个时间单元中的每个时间单元对应L个信息比特中的多个信息比特。其中,该多个信息比特用于指示该终端设备组中第一时间位置位于该多个信息比特对应的时间单元中的终端设备是否从第一时间位置开始检测第一信道。或者说,该L个信息比特用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。
本申请中,所述时间单元可以为时隙或者子帧,但本申请实施例对此不作限定,比如所述时间单元还可以是微时隙(mini-slot)或者符号等。
本申请中,第一时间区域的时长的单位和该时间单元的单位可以相同,或者,第一时间区域的时长的粒度为一个时间单元,比如,若第一时间区域的时长为10ms或者10个子帧,第一时间区域可以由10个子帧构成,但本申请实施例对此不作限定。
同样以第一信号包括L个信息比特,第一时间区域由P个时间单元构成为例进行说明,其中,P≥L≥1,且P和L均为整数。结合第一方面,在第一方面的一种可能的实现方式中,L个信息比特中每个信息比特对应于N个第一时间区域中的其中一个第一时间区域内共包括的P个时间单元中的至少一个时间单元。
进一步地,该L个信息比特中每个信息比特对应的时间单元的数量为
Figure PCTCN2019114017-appb-000005
Figure PCTCN2019114017-appb-000006
Figure PCTCN2019114017-appb-000007
Figure PCTCN2019114017-appb-000008
L个信息比特中每个信息比特所对应的第一时间区域可根据高层信令配置或下行控制信息(downlink control information,DCI)信令指示。
结合第一方面,在第一方面的一种可能的实现方式中,该L个信息比特中的第l个信 息比特所指示的时间单元位于第一时间区域内的第p个时间单元上,
Figure PCTCN2019114017-appb-000009
1≤p≤P,1≤l≤L,且l和p均为整数。
应理解,第p个时间单元为索引或者编号为p-1的时间单元。
结合第一方面,在第一方面的一种可能的实现方式中,所述多个候选时间位置的周期与所述第一时间区域的时长相等。
结合第一方面,在第一方面的一种可能的实现方式中,针对每个终端设备,所述终端设备的第一时间位置与所述第一候选时间位置之间的时间距离为配置给所述终端设备的第一偏移量与所述终端设备的第二偏移量之和,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
结合第一方面,在第一方面的一种可能的实现方式中,网络设备发送第一信号之前,可以首先确定位于对应的第一时间区域中的第一时间位置距离该第一时间区域的偏移量(即,第二偏移量),然后再根据该第二偏移量确定该第一时间位置对应的信息比特,从而确定第一信号。
其中,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。第二偏移量的单位可以是ms,或者第二偏移量的粒度可以是子帧或时隙,但本申请实施例对此不作限定。
进一步地,第二偏移量满足(Q-T-1-t)mod R=o或(Q-T-t)mod R=o,其中,Q为所述第一时间位置#1。T为配置给所述终端设备的第一偏移量,t为所述终端设备的第二偏移量,R为所述多个候选时间位置的周期,o为所述多个候选时间位置的偏移量。其中t的取值范围为:0≤t≤W-1或0≤t≤W。
具体地,如果T、t、R、o的单位均为时隙,第一时间位置Q的计算公式(即第一时间位置所在的slot)为:
Figure PCTCN2019114017-appb-000010
其中n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000011
为第一时间位置所在的时隙编号。
其中
Figure PCTCN2019114017-appb-000012
为帧内所包含的slot的数量,可参见下文中的表1。
如果T、t、R、o的单位均为子帧,第一时间位置Q的计算公式(即第一时间位置所在的子帧)为:
Figure PCTCN2019114017-appb-000013
其中,n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000014
为第一时间位置所在的子帧编号。
第二方面,提供了一种通信方法,包括:
根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,所述第一时间位置位于所述第一时间区域内;
根据所述第一时间位置、所述第一偏移量以及所述第二偏移量,从所述第一信号的多个候选时间位置中确定第一候选时间位置,所述多个候选时间位置按照所述候选时间位置的周期在时域上周期分布;
在所述第一候选时间位置上检测所述第一信号;
根据对所述第一信号的检测结果确定是否从所述第一时间位置开始检测第一信道。
应理解,该终端设备为上述中的终端设备组中的任一终端设备,第一时间位置为可以是周期分布的多个第一时间位置中的任一时间位置。
本申请实施例的方法,终端设备可以根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,进而可以根据第二偏移量确定与该第一时间位置对应的候选时间位置(即,第一候选时间位置),进而可以根据在第一候选时间位置上检测第一信号的结果,确定是否从该第一时间位置开始检测第一信道。具体地,终端设备在第一候选时间位置上检测到了第一信号,那么终端设备#1可以根据第一信号确定是否从第一时间位置开始检测第一信道。若终端设备没有在第一候选时间位置上检测到第一信号,则终端设备不从第一时间位置开始检测第一信道。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:
根据所述第二偏移量以及所述第一时间区域的时长,确定所述第一时间位置所在的第一时间区域。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一时间位置所在的第一时间区域的起始位置与所述第一候选时间位置之间的时间距离为所述第一偏移量。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一候选时间位置与所述第一时间位置之间的时间距离为所述第一偏移量与所述第二偏移量之和。
结合第二方面,在第二方面的一种可能的实现方式中,所述第二偏移量为所述第一时间位置与所述第一时间区域起始时间位置之间的时间距离,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
进一步地,第二偏移量满足(Q-T-1-t)mod R=o,其中,Q为所述第一时间位置,T为所述第一偏移量,t为所述第二偏移量,R为所述第一信号的候选时间位置的周期,o为所述第一信号的候选时间位置的偏移量。
具体地,如果T、t、R、o的单位均为时隙,第一时间位置Q的计算公式(即第一时间位置所在的slot)为:
Figure PCTCN2019114017-appb-000015
其中n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000016
为第一时间位置所在的时隙编号。
其中
Figure PCTCN2019114017-appb-000017
为帧内所包含的slot的数量,可参见下文中的表1。
如果T、t、R、o的单位均为子帧,第一时间位置Q的计算公式(即第一时间位置所在的子帧)为:
Figure PCTCN2019114017-appb-000018
其中,n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000019
为第一时间位置所在的子帧编号。
结合第二方面,在第二方面的一种可能的实现方式中,所述根据对第一信号的检测结果确定是否从第一时间位置开始检测第一信道,包括:
根据所述第二偏移量确定所述第一信号所包括的信息比特中的至少一个比特;
根据所述至少一个比特确定是否从所述第一时间位置开始检侧所述第一信道。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一信号包括L个信息比特,所述第一时间区域由P个时间单元构成,P≥L≥1,且P和L均为整数;
其中,所述根据第二偏移量确定所述第一信号所承载的信息比特中的至少一个比特,包括:
根据所述第二偏移量确定所述L个信息比特中从最高位开始的第l个信息比特,
Figure PCTCN2019114017-appb-000020
l为所述第二偏移量,1≤p≤P,1≤l≤L,且l和p均为整数;
其中,所述根据所述至少一个比特确定是否从所述第一时间位置开始检测第一信道,包括:
根据所述第l个信息比特确定是否从所述第一时间位置开始检测所述第一信道。
结合第二方面,在第二方面的一种可能的实现方式中,所述候选时间位置的周期与所述第一时间区域的时长相同。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一信道为下行控制信道,所述第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,控制通信接口实现与其他网元的通信。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面或第二方面任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,控制通信接口实现与其他网元的通信。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所 接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
根据本申请实施例的通信方法,候选时间位置可以与多个第一偏移量或者多个终端设备关联,根据多个第一偏移量可以确定多个第一时间区域,在该多个终端设备的第一时间位置落入各自对应的第一时间区域时,与该第一时间区域对应的第一信号可以指示该多个终端设备从对应的第一时间位置开始检测或停止检测第一信道,这样即使终端设备的候选时间位置的周期(即,DRX周期的一例)和偏移量不同,也能实现多个终端设备复用同一第一信号的目的。也就是说,网络设备不需要针对每个终端设备在不同的时域或频域资源上分别发送第一信号(即,WUS信号的一例),从而能够节省网络设备的资源,提高系统资源利用率。
附图说明
图1是适用于本申请实施例的通信系统的示意性框图。
图2是下行时频资源网格的示意图。
图3是一个典型的DRX周期示意图。
图4是DRX cycle时域位置示例图。
图5是不同终端设备的DRX cycle时域位置示意图。
图6是WUS与DRX机制相结合的示意图。
图7是一种候选时间位置的示意图。
图8是本申请提供的一种通信方法的示意性流程图。
图9是第一候选时间位置、第一偏移量和第一时间区域之间在时域上的位置关系示意图。
图10是第一时间段、第一候选时间位置和第一时间区域在时域上的位置关系示意图。
图11本申请提供的一种通信方法的示意性流程图。
图12是是同一组的不同终端设备检测第一信号的一个示意图。
图13是是同一组的不同终端设备检测第一信号的另一示意图。
图14是本申请实施例提供的通信装置的示意性框图。
图15是本申请实施例提供的终端设备的结构示意图。
图16是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network  Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
NR中,频域上的基本单位为一个子载波,子载波间隔(subcarrier spacing,SCS)可以为15KHz、30KHz等。在NR物理层中,上/下行频域资源的单位是物理资源块(physical resource block,PRB),每个PRB由频域上12个连续子载波组成。图2为下行时频资源网格的示意图。
如图2所示,资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,一个RE包含一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内的一个子载波。上行时频资源网格与下行类似。NR中下行资源调度的基本时间单位是一个时隙(slot),一般而言,一个时隙在时间上由14个OFDM符号组成。在时域上,NR传输被组织成时间长度为10ms的帧(frame),每个帧被分成10个大小相同、长度为1ms的子帧(subframe),而每个子帧可以包含一个或多个时隙,例如当子载波为15kHz时,根据子载波间隔确定每个子帧包含一个时隙。每个帧由一个系 统帧号(system frame number,SFN)来标识,SFN的周期等于1024,因此SFN在1024个帧后自行重复。
一个帧(frame)内包含的时隙数与子载波间隔(subcarrier spacing,SCS)的大小有关,帧内的时隙编号
Figure PCTCN2019114017-appb-000021
取值范围为
Figure PCTCN2019114017-appb-000022
其中
Figure PCTCN2019114017-appb-000023
为帧内所包含的时隙数。以循环前缀(cyclic prefix,CP)为常规(Normal)循环前缀为例,一个帧内所包含的时隙数如表1所示:
表1:一个帧所包含的slot数
Figure PCTCN2019114017-appb-000024
在表中,μ是一个与SCS大小相关的值,μ的值与SCS大小的关系如表2所示:
表2:μ与SCS大小Δf的关系
Figure PCTCN2019114017-appb-000025
网络设备为终端设备传输物理下行共享信道(physical downlink share channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)。为了正确接收PDSCH,终端设备需要先解调PDCCH,PDCCH携带的下行控制信息(downlink control information,DCI)中包含接收PDSCH所需要的相关信息,例如PDSCH时频资源位置和时频资源的大小,多天线配置信息等。
在NR中,终端设备可以处于不同的状态,其中一种状态为无线资源控制连接状态(RRC_CONNECTED)。在RRC_CONNECTED状态下,终端设备已经建立了无线资源控制(radio resource control,RRC)连接,即终端设备与网络设备之间通信所必需的参数对于两者是已知的,RRC_CONNECTED状态主要用于终端设备进行数据传输。
一般而言,基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。因此NR中可以为终端设备配置非连续接收(discontinuous reception,DRX)处理流程,在没有数据传输的时候,可以通过使终端设备停止检测PDCCH来降低功耗,从而提升电池使用时间。
在DRX中,网络设备可为处于RRC_CONNECTED状态的终端设备配置DRX周期(DRX cycle)。图3示出了一个典型的DRX周期。
如图3所示,一个DRX周期可以包括一个“on duration”时间段(或本专利中的第一时 间段)。该时间段为定时器drx-onDurationTimer的时间长度,该定时器可以理解为从DRX cycle起始位置开始的一段时间长度,终端设备可以在某一时隙内开启该定时器,该定时器长度由高层信令配置。在“on duration”时间段内,终端设备可以检测PDCCH;如果在“on duration”时间段内,终端设备没有检测到PDCCH,终端设备可以关闭接收电路进入睡眠状态,从而降低终端的功耗。
DRX周期的选择需要考虑功耗与时延之间的平衡。从一个方面讲,长的DRX周期有利于降低功耗,但也意味着对网络设备调度器的限制,不利于时延。从另一个方面讲,当有新的数据传输时,一个更短的DRX周期有利于更快的响应,减少时延。为了满足上述需求,每个终端设备可以配置两个DRX周期参数:drx-LongCycle(范围为10~10240ms)和drx-ShortCycle(范围为2~640ms),一个为长DRX周期(Long DRX cycle),另一个为短DRX周期(Short DRX cycle)。
在RRC_CONNECTED状态下,对于配置了DRX机制的终端设备,终端设备可以根据下述公式(1)得到“on duration”的起始位置所在的SFN以及子帧在帧内的编号subframe number:
[(SFN×10)+subframe number]mod V=Y   (1)
其中,V为终端设备所使用DRX的周期,如果终端设备使用长DRX周期,那么V的值为drx-LongCycle,此时Y的值为参数drx-StartOffset,可通过高层信令配置,单位为1ms。如果UE使用短DRX周期,那么V的值为drx-ShortCycle,此时Y的值为(drx-StartOffset)modulo(drx-ShortCycle),可通过高层信令配置,单位同样为1ms。Y值为DRX的偏移量,Y值可以理解为“on duration”的起始位置(或者理解为DRX cycle的起始位置)相对参考点的偏移量,单位为ms,所述参考点的时间位置f则满足:f mod V=0,其中f=10*n1+n2,其中n1为参考点的帧号,n2为参考点的子帧编号,且“on duration”的起始位置在所述参考点时间位置之后,且与参考点的时间距离不小于0且不大于V-1。参见图3,图3所示其中的一个参考点为SFN=0,子帧号也为0。
应理解,在本专利中,“on duration”的起始位置也可以理解为DRX cycle的起始位置。
应理解,SFN的编号取值范围为0到1023,subframe number的取值范围为0到9。。同时,由于NR的调度单位为时隙,而对于大于15kHz的子载波,一个子帧中可包含多个时隙(比如对于60kHz的SCS,一个子帧中可包含4个时隙),因此高层信令为终端设备配置参数drx-SlotOffset,终端设备通过该参数进一步确定“on duration”的起始时间位置所在的时隙。终端设备在所确定的时隙内可以开启一个定时器,该定时器的长度(可以理解为“on duration”的时间长度)通过高层信令配置,终端设备在定时器的时间范围内检测PDCCH;如果在该定时器时间范围内终端设备没有检测到PDCCH,那么定时器到期后终端设备进入睡眠状态。以SCS为60kHz为例,参见图4,图4是DRX cycle时域位置示例图的一例。
参见图5,图5为不同终端设备的DRX cycle时域位置示意图(假设时域参考点为SFN=0),图中两个终端设备(即,终端设备#1和终端设备#2)的DRX周期均为V,但Y值不同(即Y1≠Y2),因此两个终端设备的“on duration”的时域位置不一样。可以看出,终端设备的“on duration”的时域位置与参数V、Y甚至drx-SlotOffset相关。
在NR中,终端设备会工作在更大的射频与基带带宽,而在一个DRX周期中,终端 设备需要首先从睡眠状态唤醒,开启射频和基带电路,获取时频同步,然后在“on duration”时段检测PDCCH,这些过程需要不少能耗。而一般而言,数据传输在时间上往往具有突发性和稀疏性,如果在激活时段内网络设备对终端设备没有任何数据调度的话,那么对于终端设备而言就产生了不必要的能量消耗。所以为了节省功耗,在NR中引入唤醒信号(wake up signal,WUS)与RRC_CONNECTED状态下的DRX机制相结合的方法。
图6是一例WUS与DRX机制相结合的示意图。如图6所示,对于支持WUS的终端设备,针对每一个DRX周期的“on duration”时段,在其起始位置之前有一个WUS时刻(WUS occasion),WUS时刻与“on duration”的起始位置之间的距离(即,时间距离),可以称之为WUS偏移(WUS offset),或者也可称为间隙(gap value)。网络设备可在WUS时刻上为终端设备以DTX形式发送WUS,即网络设备根据调度数据的需求决定是否在WUS时刻上发送WUS,而终端设备需要在WUS时刻上通过检测WUS来判断网络设备是否发送了WUS。当终端设备在WUS时刻上没有检测到WUS,或检测到的WUS指示终端设备在对应“on duration”时段内没有数据调度时,终端设备可以直接进入睡眠状态,不用在“on duration”时段检测PDCCH。当终端设备在WUS时刻上检测到WUS,或检测到的WUS指示终端设备在“on duration”时段有数据调度时,那么终端设备就会从睡眠状态进入唤醒状态(wake up),即此时终端设备可以按照前面所述的DRX机制流程启动定时器,检测PDCCH,此时终端设备需要足够的时间来开启全部modem的功能,从而使终端设备能够从“on duration”时段的起始位置开始检测PDCCH,接收数据信道。
当前技术中,对于配置了使用WUS的终端设备,网络设备根据每个终端设备所使用的DRX周期、参数drx-StartOffset、参数drx-SlotOffset以及参数WUS offset发送相应的WUS,上述参数相同的一组终端设备可以共享一个WUS,即一个WUS时刻上发送的WUS可用于指示上述参数相同的一组终端设备是否需要在DRX周期中的“on duration”时段内检测PDCCH。
在一个小区内可能会存在很多终端设备,且这些终端设备的DRX周期、参数drx-StartOffset、参数drx-SlotOffset以及参数WUS offset可能不全相同,可以说很难使所有终端设备的这四个参数值均一样,因此这些终端设备的“on duration”所在的子帧(或时隙)一般不同。对于网络设备而言,如果要唤醒这些终端设备,需要在很多不同的WUS时刻上发送WUS,也就是说就需要较多的时频资源用来发送WUS,从而增加了网络侧资源的消耗与负担。
为此,本申请提供了一种通信方法,为DRX周期、参数drx-StartOffset和参数drx-SlotOffset中至少一个不同的多个终端设备复用同一WUS提供可能,从而有利于节省网络设备发送WUS所需的资源,提高系统资源利用率。
在具体介绍本申请的方法之前,首先对本申请所涉及的“候选时间位置”和“第一时间位置”这两个概念进行说明。
本申请中的候选时间位置在时域上周期分布。参见图7,图7出了一种候选时间位置的示意图。
在一种可能的实现方式中,针对每个终端设备的每个DRX cycle,都有一个与之对应的候选时间位置。同时第一时间位置可以为对应DRX cycle的起始位置,或者为对应DRX cycle的“on duration”的起始位置,或者说第一时间位置为对应DRX cycle或“on duration” 的起始位置所在的时隙或子帧。终端设备在该起始时隙或子帧(即第一时间位置)上可以启动第一定时器(该第一定时器可以为定时器drx-onDurationTimer),或者可以开始检测第一信道。从更一般的概念来说,该第一时间位置可以为终端设备DRX cycle的激活时段(Active time)的起始位置,所述DRX cycle激活时间包括了“on duration”的时间长度或第一定时器的时间长度。关于激活时段的具体含义可以参照现有DRX机制中技术,这里不再赘述。
在另一种可能的实现方式中,第一时间位置可以是终端设备的PDCCH的搜索空间的时间位置,如距离候选时间位置最近的下行控制信道搜索空间的时间位置。比如,第一时间位置可以是终端设备激活后的辅载波(SCell)上距离候选时间位置最近的PDCCH搜索空间的时间位置。
网络设备可以在候选时间位置上以DTX形式发送第一信号,也可以在每个周期内的候选时间位置上都发送第一信号,下面进行详细说明。
可选地,网络设备可以在候选时间位置上发送第一信号,以指示终端设备是否从对应的第一时间位置开始检测第一信道。此时第一信号可以为“唤醒信号”(wake up signal,WUS),也可以称为“节能信号”(power saving signal),但本申请不限定于此。
若第一信号指示终端设备从对应的第一时间位置开始检测第一信道,则终端设备从第一时间位置开始检测第一信道。示例性的,终端设备可以从第一时间位置开始在第一时间段内检测第一信道,所述第一时间段可以为“on duration”的时间长度,或为第一定时器的时间长度,或为DRX cycle的激活时段的长度,或为由K个连续时隙/子帧组成的时间区域,K不小于1。即终端设备可以根据第一信道的相关配置(比如检测周期以及偏移值)在第一时间段内检测第一信道。如果终端设备在第一时间段内没有检测到第一信道,在第一时间段后可以停止检测第一信道,同时关闭接收或者发送电路进入睡眠状态。若第一信号没有指示终端设备从第一时间位置开始检测第一信道,或者第一信号指示终端设备不从第一时间位置开始检测第一信道,则终端设备可以直接进入睡眠状态,在该DRX cycle内终端设备不用检测第一信道。
网络设备也可以不在候选时间位置上发送第一信号,终端设备没有在相应地候选时间位置上检测到第一信号,则终端设备不用从对应的第一时间位置开始检测第一信道或者不用在第一时间段内检测第一信道。
可选地,网络设备可以在候选时间位置上发送第一信号,以指示终端设备是否从第一时间位置开始停止检测第一信道。此时第一信号可以称为“休眠信号”(go to sleep,GTS),但本申请不限定于此。示例性的,终端设备可以从第一时间位置开始在第一时间段内停止检测第一信号。所述第一时间段可以为“on duration”的时间长度,或为第一定时器的时间长度,或为DRX cycle的激活时段的长度,或为由K个连续时隙/子帧组成的时间区域,或为DRX cycle的时间长度,K不小于1。若第一信号指示终端设备在第一时间段内停止检测第一信道,则终端设备在第一时间段内停止检测第一信道,并继续进入睡眠状态。如果第一信号没有指示终端设备在第一时间段内停止检测第一信道,或者第一信号指示终端设备不在第一时间段内停止检测第一信道,则终端设备从第一时间位置开始检测第一信道。
网络设备也可以不在候选时间位置上发送第一信号,终端设备没有在相应地候选时间 位置上检测到第一信号,则终端设备不用从对应的第一时间位置停止检测第一信道或者不用在第一时间段内停止检测第一信道。
本申请中,第一信道可以是PDCCH,还可以是数据信道PDSCH,本申请实施例对此不作限定。
此外,上述第一信道也可以替换为用于信道状态信息(channel state information,CSI)测量或时频跟踪/同步的参考信号或者其他的信号。下面对如何确定候选时间位置和第一时间位置进行说明。
候选时间位置可以根据候选时间位置的周期以及候选时间位置的偏移量确定。其中候选时间位置的周期以及候选时间位置的偏移量的单位一般为slot,但也可以为子帧(即ms),本申请实施例对此不作限定。候选时间位置的周期的单位和候选时间位置的偏移量的单位相同。应理解,所述候选时间位置的周期为相邻两个候选时间位置间隔的时间长度。
如果候选时间位置的周期和候选时间位置的偏移量的单位为slot,且将候选时间位置的周期记作R,将候选时间位置的偏移量记作o,那么作为示例而非限定,候选时间位置所在的帧号n f以及时隙编号
Figure PCTCN2019114017-appb-000026
满足如下公式(2):
Figure PCTCN2019114017-appb-000027
其中,
Figure PCTCN2019114017-appb-000028
为一个帧内所包含的slot的数量,可参见表1。候选时间位置的偏移量可以理解为候选时间位置相对于参考点的时间偏移量,所述参考点所在的帧号
Figure PCTCN2019114017-appb-000029
以及时隙编号
Figure PCTCN2019114017-appb-000030
满足如下公式(3):
Figure PCTCN2019114017-appb-000031
同时候选时间位置在所述参考点之后,且与参考点的时间距离即为偏移量。
如果候选时间位置的周期和候选时间位置的偏移量的单位为子帧或ms,将候选时间位置的周期记作R,将候选时间位置的偏移量记作o,那么作为示例而非限定,候选时间位置所在的帧号n f以及子帧编号n sf满足如下公式(4):
(n f*10+n sf-o)mod R=0   (4)
那么候选时间位置的偏移量可以理解为相对于参考点的时间偏移量,所述参考点的所在的帧号
Figure PCTCN2019114017-appb-000032
以及子帧编号
Figure PCTCN2019114017-appb-000033
满足如下公式(5):
Figure PCTCN2019114017-appb-000034
同时候选时间位置在所述参考点之后,且与参考点的时间距离即为所述偏移量。
另外,候选时间位置在其所在的子帧中的时隙位置可以由高层信令配置。
对于第一时间位置,当第一时间位置为对应DRX cycle的起始位置,或者为对应DRX cycle的“on duration”的起始位置时,第一时间位置可直接根据公式(1)确定,这里不再赘述。如果第一时间位置为终端设备下行控制信道搜索空间的时间位置,第一时间位置可根据PDCCH搜索空间的周期以及偏移值(单位为slot)确定,方法与确定候选时间位置的方法一样,不再赘述。
以下,结合上文中对第一时间位置和候选时间位置的说明,分别从网络设备和终端设备的角度详细描述本申请提供的通信方法。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以 相结合。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。下面将结合附图详细说明本申请提供的技术方案。
应理解,本文中主要以终端设备和网络设备作为执行主体来对相应地步骤或方法进行说明,在实际应用中,这些步骤或方法的执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片。
图8是本申请实施例提供的一种通信方法200的示意性流程图。方法200主要从网络设备的角度介绍了网络设备在第一候选时间位置上发送第一信号的过程。下面,对方法200的每个步骤进行详细说明。
S210,网络设备根据第一候选时间位置、为终端设备组配置的N个不同的第一偏移量以及第一时间区域的时长,确定N个第一时间区域。
第一候选时间位置为多个候选时间位置中的任一候选时间位置,该多个候选时间位置在时域上周期分布。其中,该多个候选时间位置是针对终端设备组的。换句话说,该终端设备组中每个终端设备的每个第一时间位置所对应的候选时间位置都属于该多个候选时间位置。需要说明的是,该终端设备组内各终端设备可能并不需要在该多个候选时间位置中的每个候选时间位置上都检测第一信号。
可选的,该多个候选时间位置也可以是针对特定终端设备的。
该终端设备组中的每个终端设备被配置了第一时长W,该终端设备组包括至少一个(即,一个或多个)终端设备。其中,第一时长为第一时间区域的时长。也就是说,该终端设备组中每个终端设备的第一时间区域的时长或者每个终端设备对应的第一时间区域的时长都为W。W为大于1的值。W的单位可以是ms或者slot,但本申请实施例对此不作限定。可选地,网络设备可通过高层信令为所述每个终端设备配置第一时长W。
可选地,W可以与候选时间位置的周期相等,比如都为10ms或20ms,或者都为10个slot或20个slot。此时,终端设备可根据候选时间位置的周期直接获得第一时间区域的时长,其中所述候选时间位置的周期可通过高层信令获得。
本申请中,网络设备可以为该终端设备组中的每个终端设备配置N个不同的第一偏移量中的其中一个第一偏移量。网络设备为该终端设备组中不同的终端设备配置的第一偏移量可以相同,也可以不同,即,如果该终端设备组包括J个终端设备,则1≤N≤J。
举例来说,假设该终端设备组包括终端设备#1、终端设备#2和终端设备#3,网络设备可为终端设备#1配置值为T1的第一偏移量,为终端设备#2配置值为T2第一偏移量,为终端设备#3配置值为T3的第一偏移量;或者,网络设备可为终端设备#1和终端设备#2都配置值为T1的第一偏移量T1,为终端设备#3配置值为T3的第一偏移量;或者,网络设备可以为终端设备#1、终端设备#2和终端设备#3都配置值为T1的第一偏移量。
可选地,第一偏移量的单位可以是ms或者子帧或者时隙,但本申请实施例对此不作 限定。W的单位与第一偏移量的单位可以相同。
可选地,所述第一偏移量的取值可以为2ms,3ms,5ms,10ms,20ms,40ms,80ms,160ms等。
可选地,网络设备可以根据该终端设备组中每个终端设备的能力信息,为各终端设备配置第一偏移量。
为便于理解,以终端设备组中的终端设备#1为例进行说明。
具体来讲,终端设备#1可以向网络设备上报其能力信息,网络设备根据终端设备#1上报的能力信息可以确定终端设备#1的第一偏移量,并且可以将所确定的终端设备#1的第一偏移量配置给终端设备#1。其中,该能力信息可以是终端设备#1从检测到第一信号到能检测下行控制信道,接收数据信道所需的最少时间,或者是终端设备以低功耗状态(比如Deep sleep,Light sleep,或Micro sleep power state)到非低功耗状态(比如Non-sleep power state)所需的最少时间,或者是终端设备从“睡眠”状态(仅开启部分modem的功能或使用一个简单的接收电路)到开启全部modem的功能所需的最少时间,网络设备根据该最少时间,可以从高层信令配置的多个第一偏移量中选择出与该最少时间最接近且大于或者等于该最少时间的第一偏移量,然后将所选择出的第一偏移量配置为终端设备#1的第一偏移量。
本申请中,在S210中所确定出的N个第一时间区域与N个第一偏移量一一对应。也就是说,针对每个第一偏移量,能够确定一个第一时间区域。
应理解,该N个第一时间区域与第一候选时间位置对应,对于不同候选时间位置周期中的候选时间位置,确定出的第一时间区域不同。
作为一种示例,针对每个第一偏移量,根据该第一偏移量确定的第一时间区域的起始时间位置与第一候选时间位置之间的时间距离为该第一偏移量。也就是说,每个第一时间区域的起始时间位置与第一候选时间位置之间的时间距离为N个第一偏移量中的一个,且每个第一时间区域的起始时间位置与第一候选时间位置之间的时间距离互不相同,但本申请不限定于此,比如根据该第一偏移量确定的第一时间区域的起始时间位置与第一候选时间位置之间的时间距离还可以大于该第一偏移量。
示例性的,图9示出了第一候选时间位置、第一偏移量和第一时间区域之间的关系。其中,T1为终端设备#1的第一偏移量,T2为终端设备#2的第一偏移量。第一候选时间位置为候选时间位置#1。第一时间区域#1(第一时间区域的一例)的起始时间位置与候选时间位置#1之间的距离为T1,第一时间区域#2(第一时间区域的又一例)的起始时间位置与第一候选时间位置之间的距离为T2。
S220,网络设备确定该终端设备组中各终端设备的第一时间位置或第一时间段。
第一时间位置的含义具体可以按照前文的描述,例如第一时间位置可以是DRX cycle的“on duration”的起始位置。相应地,可以参照前文描述的方法,确定出各终端设备的第一时间位置和/或第一时间段,这里不再赘述。
S230,网络设备在第一候选时间位置上针对该终端设备组发送第一信号。
所述第一信号用于指示该终端设备组中第一时间位置位于第一时间区域内的终端设备是否从第一时间位置开始检测第一信道或者停止检测第一信道。换句话说,第一信号用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者 停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。或者说,若某一终端设备的一个或多个第一时间位置位于该终端设备对应的第一时间区域内,那么第一信号就可以指示该终端设备是否从所述一个或多个第一时间位置开始检测第一信道或者停止检测第一信道。
同时,任一终端设备的第一时间位置所在的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为为该终端设备配置的第一偏移量。
为使本领域技术人员更好的理解本申请,下文中以第一信号用于终端设备是否从第一时间位置开始检测第一信道为例进行说明。
参见图10,终端设备#1的第一时间区域为第一时间区域#1,终端设备#2的第一时间区域为第一时间区域#2。终端设备#1的第一时间段中,只有第一时间段#11的起始位置位于第一时间区域#1中。终端设备#2的第一时间段中,只有第一时间段#21的起始位置位于第二时间区域#2中。那么,第一信号可以指示终端设备#1是否从第一时间段#11的起始位置开始检测第一信道以及终端设备#2是否从第一时间段#21的起始位置开始检测第一信道。
应理解,若终端设备#1的第一时间位置中,还有其他第一时间位置落入第一时间区域#1中,那么第一信号还可以指示终端设备#1是否从落入第一时间区域#1中的该其他第一时间位置开始检测第一信道。还应理解,即使终端设备#2的某一第一时间位置落入第一时间区域#1中,第一信号也不能指示终端设备#2是否从该第一时间位置开始检测第一信道。
需要说明的是,S230可以执行也可以不执行。
具体来说,在实现方式一中,若该终端设备组中第一时间位置位于第一时间区域的终端设备中有至少一个终端设备需要从其对应的第一时间区域内的第一时间位置开始检测第一信道,比如,若网络设备需要在第一时间位置位于终端设备#A的第一时间区域内的终端设备#A的某一第一时间段内对终端设备#A进行数据调度,则网络设备在第一候选时间位置上发送第一信号。若该终端设备组中第一时间位置位于第一时间区域的任一终端设备都不需要从其对应的第一时间区域内的第一时间位置开始检测第一信道,则网络设备可以不在第一候选时间位置上发送任何信号。
在实现方式二中,无论终端设备组中第一时间位置位于第一时间区域的终端设备是否需要从对应的第一时间区域内的第一时间位置开始检测第一信道,网络设备都可以在第一候选时间位置上发送第一信号。应理解,实现方式二中发送的第一信号可能和实现方式二中发送的第一信号不同。
以图10所示的第一时间段与第一时间区域的位置关系为例,对上文所描述的实现方式一进行说明。
具体来讲,网络设备可以确定下述条件是否成立:
条件(1):终端设备#1需要从第一时间段#11的起始位置开始检测第一信道;
条件(2):终端设备#2需要从第一时间段#21的起始位置开始检测第一信道。
若条件(1)和条件(2)中的其中一个条件成立或者二者均成立,则网络设备可以在第一候选时间位置上发送第一信号;若条件(1)和条件(2)均不成立,则网络设备可以不在第一候选时间位置上发送第一信号。
以下对第一信号进行详细说明。
第一信号包括L个信息比特(或者说,信源比特),L≥1,且L为整数。应理解,信息比特是没有经过信道编码处理的比特。L的取值可以由协议规定,但本申请实施例对此不作限定,比如,L也可以由网络设备配置。
应理解,第一信号可以总共承载L个信息比特,也可以承载比L个信息比特更多的信息比特。
作为一种示例,L可以是该终端设备组总共包括的终端设备的数量,L个信息比特中的每个信息比特与该终端设备组中的一个终端设备对应。
比如,该L个信息比特按照从高位至低位的顺序,依次对应该终端设备组中标识由大至小的终端设备。举例来说,L=2,该终端设备组共包括终端设备#1和终端设备#2。终端设备#1和终端设备#2的第一时间段与第一时间区域的位置关系如图10所示,那么当L个信息比特为“01”时,第一信号可以指示终端设备#1需要从第一时间段#1的起始位置(即第一时间位置)开始检测第一信道,而终端设备#2不需要从第一时间段#1的起始位置(即第一时间位置)开始检测信号第一信道。或者,相反地,当L个信息比特为“01”时,第一信号可以指示终端设备#1不需要从第一时间段#1的起始位置开始检测第一信道,而终端设备#2需要从第一时间段#1的起始位置开始检测第一信道。
作为另一示例,L个信息比特中的至少一个信息比特对应于每个第一时间区域内的至少一个时间单元,所述至少一个信息比特用于指示所述至少一个终端设备中第一时间位置位于所述至少一个时间单元内的终端设备是否从第一时间位置开始检测第一信道。以下以第一时间区域由P个时间单元构成为例对此进行说明。其中,P≥L≥1,且P为整数。
比如,L个信息比特对应于每个第一时间区域内的P个时间单元。每个信息比特对应于每个第一时间区域内共包括的P个时间单元中的至少一个时间单元。其中,L个信息比特用于指示该终端设备组中第一时间位置位于P个时间单元内的终端设备是否从第一时间位置开始检测第一信道。或者说,该L个信息比特用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时间位置位于该终端设备对应的第一时间区域内。
进一步地,该L个信息比特中每个信息比特对应的时间单元的数量为
Figure PCTCN2019114017-appb-000035
Figure PCTCN2019114017-appb-000036
其中,
Figure PCTCN2019114017-appb-000037
表示向下取整,
Figure PCTCN2019114017-appb-000038
表示向上取整。其中,每个信息比特用于指示该终端设备组中第一时间位置位于所述信息比特所对应的时间单元内的终端设备是否从该第一时间位置开始检测第一信道。
本申请中,L个信息比特可以按照从高位到低位与第一时间区域中的时间单元对应,但本申请实施例对此不作限定。
又如,L个信息比特对应于每个第一时间区域内的P个时间单元。每个第一时间区域内共包括的P个时间单元中的每个时间单元对应L个信息比特中的多个信息比特。其中,该多个信息比特用于指示该终端设备组中第一时间位置位于该多个信息比特对应的时间单元中的终端设备是否从第一时间位置开始检测第一信道。或者说,该L个信息比特用于指示若干个终端设备是否从各自对应的至少一个第一时间位置开始检测第一信道或者停止检测第一信道,其中,该若干个终端设备中的每个终端设备对应的所述至少一个第一时 间位置位于该终端设备对应的第一时间区域内。
本申请中,所述时间单元可以为时隙或者子帧,但本申请实施例对此不作限定,比如所述时间单元还可以是微时隙(mini-slot)或者符号等。
本申请中,W和该时间单元的单位可以相同,或者,W的粒度为一个时间单元,比如,若W为10ms或者10个子帧,第一时间区域可以由10个子帧构成,但本申请实施例对此不作限定。
作为再一示例,L个信息比特中每个信息比特对应于N个第一时间区域中的其中一个第一时间区域内共包括的P个时间单元中的至少一个时间单元。
进一步地,该L个信息比特中每个信息比特对应的时间单元的数量为
Figure PCTCN2019114017-appb-000039
Figure PCTCN2019114017-appb-000040
Figure PCTCN2019114017-appb-000041
Figure PCTCN2019114017-appb-000042
L个信息比特中每个信息比特所对应的第一时间区域可根据高层信令配置或DCI信令指示。
比如,时间单元为时隙时,若P=10,L=10,则P=L,每个比特对应一个时隙。再如,若P=20,L=8,则每个比特可以对应2个或3个时隙。
可选地,该L个信息比特中的第l个信息比特所指示的时间单元位于第一时间区域内的第p个时间单元上,
Figure PCTCN2019114017-appb-000043
1≤p≤P,1≤l≤L,且l和p均为整数。
应理解,第p个时间单元为索引或者编号为p-1的时间单元。
结合图10进行说明。所述L个信息比特与第一时间区域#11所包括的全部时间单元对应,并且,所述L个信息比特与第一时间区域#21所包括的全部时间单元对应。所述L个信息比特中的每个信息比特对应第一时间区域#11所包括的全部时间单元中的至少一个时间单元,并且,所述L个信息比特中的每个信息比特对应第一时间区域#21所包括的全部时间单元中的至少一个时间单元。假设第一时间段#11的第一时间位置位于第一时间区域#1内的第三个时间单元,第一时间段#21的第一时间位置位于第一时间区域#21内的第四个时间单元。若L=10,且P=10,第一信号所承载的信息比特为“0110100000”,那么信息比特中的第三个比特可以指示终端设备#1需要从第一时间段#11的起始位置开始检测第一信道,第一指示信息中的第四个比特可以指示终端设备#2不需要从其第一时间段#21的起始位置开始检测第一信道。若L=3,且P=10,第一信号为“011”,那么第一指示信息中的第二个比特可以指示终端设备#1需要从第一时间段#11的起始位置开始检测第一信道以及终端设备#2需要从其第一时间段#21的起始位置开始检测第一信道。
可选地,作为本申请一个实施例,网络设备发送第一信号之前,可以首先确定位于对应的第一时间区域中的第一时间位置距离该第一时间区域的偏移量(即,第二偏移量),然后再根据该第二偏移量确定该第一时间位置对应的信息比特,从而确定第一信号。
其中,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。第二偏移量的单位可以是ms,或者第二偏移量的粒度可以是子帧或时隙,但本申请实施例对此不作限定。
进一步地,第二偏移量满足(Q-T-1-t)mod R=o或(Q-T-t)mod R=o,其中,Q为所述第一时间位置#1。T为配置给所述终端设备的第一偏移量,t为所述终端设备的第二偏移量,R为所述多个候选时间位置的周期,o为所述多个候选时间位置的偏移量。其中t的取值范围为:0≤t≤W-1或0≤t≤W。
具体地,如果T、t、R、o的单位均为时隙,第一时间位置Q的计算公式(即第一时 间位置所在的slot)为:
Figure PCTCN2019114017-appb-000044
其中n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000045
为第一时间位置所在的时隙编号。
其中
Figure PCTCN2019114017-appb-000046
为帧内所包含的slot的数量,可参见表1。
如果T、t、R、o的单位均为子帧,第一时间位置Q的计算公式(即第一时间位置所在的子帧)为:
Figure PCTCN2019114017-appb-000047
其中,n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000048
为第一时间位置所在的子帧编号。
现有技术中,对于DRX周期和偏移量(即公式一中的Y值)不同的终端设备,需要分别配置WUS时刻以发送WUS,也就是说就需要较多的时频资源用来发送WUS,从而增加了网络侧资源的消耗与负担。而本申请实施例的方法,候选时间位置可以与多个第一偏移量或者多个终端设备关联,根据多个第一偏移量可以确定多个第一时间区域,在该多个终端设备的第一时间位置落入各自对应的第一时间区域时,与该第一时间区域对应的第一信号可以指示该多个终端设备从对应的第一时间位置开始检测或停止检测第一信道,这样即使终端设备的候选时间位置的周期(即,DRX周期的一例)和偏移量(即,激活时段的偏移量的一例,也可认为是公式一中的Y值)不同,也能实现多个终端设备复用同一第一信号的目的。也就是说,网络设备不需要针对每个终端设备在不同的时域或频域资源上分别发送第一信号(即,WUS信号的一例),从而能够节省网络设备的资源,提高系统资源利用率。
图11是本申请实施例提供的一种通信方法300的示意性流程图。该方法用于终端设备确定第一时间位置所对应的候选时间位置以及在所确定的候选时间位置上检测第一信道。
以下,为了便于理解,以终端设备#1确定第一时间位置#1所对应的候选时间位置以及在所确定的候选时间位置上检测第一信道的过程为例,对本申请提供的方法进行说明。应理解,第一时间位置#1可以是周期分布的多个第一时间位置中的任一时间位置。还应理解,该终端设备组中其他终端设备可以采用类似的方法,确定任一第一时间位置所对应的候选时间位置以及在所确定的候选时间位置上检测第一信道。
S310,终端设备#1根据第一时间位置#1、候选时间位置的周期R、第一偏移量T和第一时间区域的时长W,确定第二偏移量t。第一时间位置#1位于第一时间区域#1内。
应理解,终端设备#1为上文所描述的终端设备组中的任一终端设备。
如前文所述,第一偏移量T和第一时间区域的时长W可以由网络设备配置,这里不再赘述。候选时间位置的周期R可以由网络设备通知给终端设备#1,比如通过高层信令通知。此外,网络设备还可以向终端设备#1通知候选时间位置的偏移量o,比如通过高层信令通知。
可选的,W的值可以等于R值。
如前文所述,终端设备#1的第一时间位置#1可以根据公式(1)确定或者根据PDCCH搜索空间的周期以及偏移值(单位为slot)确定,这里不再赘述。
可选地,第二偏移量t为第一时间位置#1与第一时间位置#1对应的第一时间区域#1 的起始位置之间的时间距离,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。第二偏移量的单位可以是ms,或者第二偏移量的粒度可以是子帧或时隙,但本申请实施例对此不作限定。
进一步地,第二偏移量满足(Q-T-1-t)mod R=o或(Q-T-t)mod R=o,其中,Q为所述第一时间位置#1。其中t的取值范围为:0≤t≤W-1或0≤t≤W。
具体地,如果T、t、R、o的单位均为时隙,第一时间位置Q的计算公式(即第一时间位置所在的slot)为:
Figure PCTCN2019114017-appb-000049
其中n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000050
为第一时间位置所在的时隙编号。
其中
Figure PCTCN2019114017-appb-000051
为帧内所包含的slot的数量,可参见表1。
如果T、t、R、o的单位均为子帧,第一时间位置Q的计算公式(即第一时间位置所在的子帧)为:
Figure PCTCN2019114017-appb-000052
其中,n t,f为第一时间位置所在的帧号,
Figure PCTCN2019114017-appb-000053
为第一时间位置所在的子帧编号。
S320,终端设备#1在第一候选时间位置上检测第一信号。
S330,终端设备#1根据对第一信号的检测结果,确定是否从第一时间位置#1开始检测或停止检测第一信道。
具体来讲,若终端设备#1在第一候选时间位置上检测到了第一信号,那么终端设备#1可以根据第一信号确定是否从第一时间位置#1开始检测或停止检测第一信道。若终端设备#1没有在第一候选时间位置上检测到第一信号,则终端设备#1不从第一时间位置#1开始检测或停止检测第一信道。
可选地,作为本申请一个实施例,S930具体可以是:终端设备#1根据第二偏移量t确定所述第一信号所包括的信息比特中的至少一个比特,然后根据所述至少一个比特确定是否从第一时间位置#1开始检侧第一信道。
如前文所述,第一信号可以包括L个信息比特,第一时间区域#1由P个时间单元构成,L个信息比特对应于该P个时间单元。在此情况下,终端设备#1根据第二偏移量t确定所述第一信号,包括:终端设备#1根据第二偏移量t和第一时间区域的时长W,确定第一时间位置#1所在的所述P个时间单元中的时间单元,并根据所述L个信息比特中所述第一时间位置#1所对应的时间单元对应的信息比特的指示,确定是否从第一时间位置#1开始检测第一信道或停止检测第一信道。
简而言之就是,终端设备#1需要确定第一时间位置#1对应该P个时间单元中的哪个时间单元,然后再根据所确定出的时间单元所对应的信息比特,确定是否从第一时间位置#1开始检测第一信道或停止检测第一信道。
可选地,第一时间位置#1所对应的时间单元为该P个时间单元中的第p个时间单元,第一时间区域的时长的粒度和第二偏移量t的粒度为1个时间单元,p=t,1≤p≤P。
举例来讲,假设W=10ms,时间单元为子帧,那么P=10,若t为2个子帧,则可以确定第一时间位置所对应的时间单元为10个时间单元中的第二个时间单元。
进一步地,第t个时间单元对应的信息比特为L个信息比特中从最高位开始的第l个 信息比特,其中,则
Figure PCTCN2019114017-appb-000054
那么,终端设备#1在确定p后,可以确定第l个信息比特,从而可以确定是否从第一时间位置#1开始检测第一信道或停止检测第一信道。比如,当第l个信息比特为“1”时,终端设备#1可以确定需要从第一时间位置#1开始检测第一信道,当第l个信息比特为“0”时,终端设备#1可以确定不需要从第一时间位置#1开始检测第一信道。或者相反地,当第l个信息比特为“0”时,终端设备#1可以确定需要从第一时间位置#1开始检测第一信道,当第l个信息比特为“1”时,终端设备#1可以确定不需要从第一时间位置#1开始检测第一信道。
可选地,该方法还可以包括:终端设备#1根据第二偏移量t以及第一时间区域的时长W,确定第一转换时段所在的第一时间区域#1。
可选地,第一时间位置所在的第一时间区域#1的起始位置与第一候选时间位置之间的时间距离为第一偏移量T。
可选地,第二偏移量t为第一转换时段的起始位置与第一时间区域#1的起始时间位置之间的时间距离,第二偏移量大于等于0且小于第一时间区域的时长。
上文主要从一个终端设备的角度描述了本申请提供的方法,下面结合图12和图13,以第一时间位置为DRX周期中的“on duration”的起始slot为例,给出同一组的不同终端设备检测第一信号的一个具体示例。
如图12所示,假设同一组有3个终端设备(即,终端设备#1、终端设备#2和终端设备#3)的DRX周期分别为16ms、20ms和8ms,第一偏移量均为T=40ms,第一时间区域的长度为8ms,候选时间位置的偏移量为7ms。图12为从终端设备角度看,三个终端设备所需检测的第一信号。对于终端设备#1而言,两个DRX周期中的“on duration”起始位置与其余两个终端设备共享的第一信号的距离都为T+t=40+3=43(ms)。对于终端设备#2而言,三个DRX周期中的“on duration”起始位置与对应的第一信号的距离都为T+t3=40+4=44(ms)。而对于终端设备#2的“on duration”起始位置而言,如果对于该终端设备的其中一个DRX周期,其“on duration”起始位置与其余两个终端设备共享的第一信号的距离为T+t=40+1=41(ms);那么对于该终端设备的下一个DRX周期,由于终端设备#2的DRX周期的影响,其“on duration”起始位置与其余两个终端设备共享的候选时间位置的距离变为T+t=40+5=45(ms)。也就是说,为了使具有不同DRX参数(包括DRX周期和“on duration”的偏移量)一组终端设备能复用同一个第一信号,终端设备“on duration”起始位置与候选时间位置的距离可以是动态变化的,在不同DRX周期下可能不一样。对于终端设备而言,其检测第一信号所在的候选时间位置是根据DRX周期以及第一时间区域的时长共同决定。
如图13所示,终端设备#1、终端设备#2和终端设备#3共享同一个第一信号,该第一信号携带L=10比特的信源信息。根据3个终端设备的第二偏移量可以得到这3个终端设备所对应的比特分别为信源信息比特的第3、5、9个比特;如果信源比特值为“0110100000”,那么意味着终端设备#1和终端设备#2需要从对应的“on duration”起始位置开始检测第一信道,而终端设备#3则继续进入睡眠状态。
如果第一信号仅携带1比特信息或是能量检测,那么如果终端设备在候选时间位置检测到了第一信号就可以确定需要从对应的“on duration”起始位置开始检测第一信道;如果 终端设备没有检测到第一信号,终端设备就继续进入睡眠状态。
以上,结合图2至图13详细说明了本申请实施例提供的方法。以下,结合图14至图16详细说明本申请实施例提供的装置。
图14是本申请实施例提供的通信装置的示意性框图。如图14所示,该通信装置400可以包括处理单元410和收发单元420。
在一种可能的设计中,该通信装置400可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置400可对应于根据本申请实施例的方法200中的网络设备,该通信装置400可以包括用于执行图8中的方法200中的网络设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图8中的方法200的相应流程。当该通信装置400用于执行图8中的方法200时,处理单元410可用于执行方法200中的步骤S210和步骤S220,收发单元420可用于执行方法200中的步骤S230。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置400中的处理单元410可对应于图16中示出的网络设备600中的处理器610,收发单元420可对应于图16中示出的网络设备600中的收发器620。
在另一种可能的设计中,该通信装置400可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置400可对应于根据本申请实施例的方法300中的终端设备,该通信装置400可以包括用于执行图11中的方法300中的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图11中的方法300的相应流程。当该通信装置400用于执行图11中的方法300时,处理单元410可用于执行方法300中的步骤S310和步骤S330,收发单元420可用于执行方法300中的步骤S320。或者,步骤S320可由处理单元410执行。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置400中的处理单元410可对应于图15中示出的终端设备500中的处理器501,收发单元420可对应于图15中示出的终端设备500中的收发器502。
图15是本申请实施例提供的终端设备500的结构示意图。如图所示,该终端设备500包括处理器501和收发器502。可选地,该终端设备500还包括存储器503。其中,处理器501、收发器502和存储器503之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器503用于存储计算机程序,该处理器501用于从该存储器503中调用并运行该计算机程序,以控制该收发器502收发信号。可选地,终端设备500还可以包括天线504,用于将收发器502输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器501和存储器503可以合成一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。应理解,图中所示的处理装置仅为示例。在具体实现时,该存储器503也可以集成在处理器501中,或者独立于处理器501。本申请对此不做限定。
上述终端设备500还包括天线510,用于将收发器502输出的上行数据或上行控制信 令通过无线信号发送出去。
当存储器503中存储的程序指令被处理器501执行时,该处理器501用于根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,所述第一时间位置位于所述第一时间区域内;所述处理单元还用于,根据所述第一时间位置、所述第一偏移量以及所述第二偏移量,从所述第一信号的多个候选时间位置中确定第一候选时间位置,所述多个候选时间位置按照所述候选时间位置的周期在时域上周期分布;在所述第一候选时间位置上检测所述第一信号;所述处理单元还用于,根据对所述第一信号的检测结果确定是否从所述第一时间位置开始检测第一信道。或者“在所述第一候选时间位置上检测所述第一信号”可由收发器502执行。
具体地,该终端设备500可对应于根据本申请实施例的方法300中的终端设备,该终端设备500可以包括用于执行图11中的方法300中的终端设备执行的方法的单元。并且,该终端设备500中的各单元和上述其他操作和/或功能分别为了实现图11中的方法300的相应流程。上述处理器501可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器502可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备500还可以包括电源506,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备500还可以包括输入单元505、显示单元507、音频电路508、摄像头509和传感器511等中的一个或多个,所述音频电路还可以包括扬声器5082、麦克风5084等。
图16是本申请实施例提供的网络设备600的结构示意图。如图所示,该网络设备600包括处理器610和收发器620。可选地,该网络设备600还包括存储器630。其中,处理器610、收发器620和存储器630之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器630用于存储计算机程序,该处理器610用于从该存储器630中调用并运行该计算机程序,以控制该收发器620收发信号。
上述处理器610和存储器630可以合成一个处理装置,处理器610用于执行存储器630中存储的程序代码来实现上述功能。具体实现时,该存储器630也可以集成在处理器610中,或者独立于处理器610。
上述网络设备600还可以包括天线640,用于将收发器620输出的下行数据或下行控制信令通过无线信号发送出去。
当存储器630中存储的程序指令被处理器610执行时,该处理器610用于根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,所述第一时间位置位于所述第一时间区域内;所述处理单元还用于,根据所述第一时间位置、所述第一偏移量以及所述第二偏移量,从所述第一信号的多个候选时间位置中确定第一候选时间位置,所述多个候选时间位置按照所述候选时间位置的周期在时域上周期分布;在所述第一候选时间位置上检测所述第一信号;所述处理单元还用于,根据对所述第一信号的检测结果确定是否从所述第一时间位置开始检测第一信道。或者“在所述第一候选时间位置上检测所述第一信号”可由收发器620执行。
具体地,该网络设备600可对应于根据本申请实施例的方法200中的网络设备,该网 络设备600可以包括用于执行图8中的方法200中的网络设备执行的方法的单元。并且,该网络设备600中的各单元和上述其他操作和/或功能分别为了实现图8中的方法200的相应流程,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上述处理器610可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器620可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图8或图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图8或图11所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无 线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,其特征在于,包括:
    根据第一候选时间位置、第一时间区域的时长和为至少一个终端设备配置的N个第一偏移量,分别确定N个第一时间区域,所述第一候选时间位置为多个候选时间位置中任一候选时间位置,所述多个候选时间位置在时域上周期分布,所述N个偏移量各不相同,N为大于或等于1的整数,所述至少一个终端设备中的每个终端设备配置所述N个不同的第一偏移量中的其中一个第一偏移量;
    确定每个终端设备的第一时间位置;
    在所述第一候选时间位置上针对所述至少一个终端设备发送第一信号,所述第一信号用于指示所述至少一个终端设备中第一时间位置位于所述第一时间区域内的终端设备是否从所述第一时间位置开始检测第一信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号所承载的信息比特中的至少一个比特对应于每个第一时间区域内的至少一个时间单元,所述至少一个比特用于指示所述至少一个终端设备中第一时间位置位于所述至少一个时间单元内的终端设备是否从所述第一时间位置开始检测所述第一信道。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信号包括L个信息比特,所述第一时间区域由P个时间单元构成,每个比特对应的时间单元的数量为
    Figure PCTCN2019114017-appb-100001
    Figure PCTCN2019114017-appb-100002
    P≥L≥1,每个比特用于指示所述至少一个终端设备之中第一时间位置位于所述比特所对应的时间单元内的终端设备是否从所述第一时间位置开始检测所述第一信道。
  4. 根据权利要求3所述的方法,其特征在于,所述L个比特中的第l个比特所指示的时间单元位于第一时间区域内的第p个时间单元上,
    Figure PCTCN2019114017-appb-100003
    1≤p≤P,1≤l≤L,p和l均为整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,针对每个第一偏移量,根据所述第一偏移量确定的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为所述第一偏移量。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备的第一时间位置所在的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为为所述终端设备配置的第一偏移量。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述多个候选时间位置的周期与所述第一时间区域的时长相等。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,针对每个终端设备,所述终端设备的第一时间位置与所述第一候选时间位置之间的时间距离为配置给所述终端设备的第一偏移量与所述终端设备的第二偏移量之和,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
  9. 根据权利要求8所述的方法,其特征在于,针对每个终端设备,所述终端设备的第二偏移量满足(Q-T-1-t)mod R=o,其中,Q为所述终端设备的第一时间位置,T为配置给所述终端设备的第一偏移量,t为所述终端设备的第二偏移量,R为所述多个候选时间位置的周期,o为所述多个候选时间位置的偏移量。
  10. 根据权利要求1至9中任一项所述的方法,所述第一信道为下行控制信道,所述第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
  11. 一种通信方法,其特征在于,包括:
    根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,所述第一时间位置位于所述第一时间区域内;
    根据所述第一时间位置、所述第一偏移量以及所述第二偏移量,从所述第一信号的多个候选时间位置中确定第一候选时间位置,所述多个候选时间位置按照所述候选时间位置的周期在时域上周期分布;
    在所述第一候选时间位置上检测所述第一信号;
    根据对所述第一信号的检测结果确定是否从所述第一时间位置开始检测第一信道。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据所述第二偏移量以及所述第一时间区域的时长,确定所述第一时间位置所在的第一时间区域。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时间位置所在的第一时间区域的起始位置与所述第一候选时间位置之间的时间距离为所述第一偏移量。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述第一候选时间位置与所述第一时间位置之间的时间距离为所述第一偏移量与所述第二偏移量之和。
  15. 根据权利要求11至14中任一项所述的方法,所述第二偏移量为所述第一时间位置与所述第一时间区域起始时间位置之间的时间距离,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二偏移量满足(Q-T-1-t)mod R=o,其中,Q为所述第一时间位置,T为所述第一偏移量,t为所述第二偏移量,R为所述第一信号的候选时间位置的周期,o为所述第一信号的候选时间位置的偏移量。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述根据对第一信号的检测结果确定是否从第一时间位置开始检测第一信道,包括:
    根据所述第二偏移量确定所述第一信号所包括的信息比特中的至少一个比特;
    根据所述至少一个比特确定是否从所述第一时间位置开始检侧所述第一信道。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信号包括L个信息比特,所述第一时间区域由P个时间单元构成,P≥L≥1,且P和L均为整数;
    其中,所述根据第二偏移量确定所述第一信号所承载的信息比特中的至少一个比特,包括:
    根据所述第二偏移量确定所述L个信息比特中从最高位开始的第l个信息比特,
    Figure PCTCN2019114017-appb-100004
    l为所述第二偏移量,1≤p≤P,1≤l≤L,且l和p均为整数;
    其中,所述根据所述至少一个比特确定是否从所述第一时间位置开始检测第一信道,包括:
    根据所述第l个信息比特确定是否从所述第一时间位置开始检测所述第一信道。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述候选时间位置的周期与所述第一时间区域的时长相同。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述第一信道为下行控制信道,所述第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
  21. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一候选时间位置、第一时间区域的时长和为至少一个终端设备配置的N个第一偏移量,分别确定N个第一时间区域,所述第一候选时间位置为多个候选时间位置中任一候选时间位置,所述多个候选时间位置在时域上周期分布,所述N个偏移量各不相同,N为大于或等于1的整数,所述至少一个终端设备中的每个终端设备配置所述N个不同的第一偏移量中的其中一个第一偏移量;
    所述处理单元还用于,确定每个终端设备的第一时间位置;
    收发单元,用于在所述第一候选时间位置上针对所述至少一个终端设备发送第一信号,所述第一信号用于指示所述至少一个终端设备中第一时间位置位于所述第一时间区域内的终端设备是否从所述第一时间位置开始检测第一信道。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信号所承载的信息比特中的至少一个比特对应于每个第一时间区域内的至少一个时间单元,所述至少一个比特用于指示所述至少一个终端设备中第一时间位置位于所述至少一个时间单元内的终端设备是否从所述第一时间位置开始检测所述第一信道。
  23. 根据权利要求22所述的装置,其特征在于,所述第一信号包括L个信息比特,所述第一时间区域由P个时间单元构成,每个比特对应的时间单元的数量为
    Figure PCTCN2019114017-appb-100005
    Figure PCTCN2019114017-appb-100006
    P≥L≥1,每个比特用于指示所述至少一个终端设备之中第一时间位置位于所述比特所对应的时间单元内的终端设备是否从所述第一时间位置开始检测所述第一信道。
  24. 根据权利要求23所述的装置,其特征在于,所述L个比特中的第l个比特所指示的时间单元位于第一时间区域内的第p个时间单元上,
    Figure PCTCN2019114017-appb-100007
    p和l均为整数,1≤p≤P,1≤l≤L。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,针对每个第一偏移量,根据所述第一偏移量确定的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为所述第一偏移量。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述终端设备的第一时间位置所在的第一时间区域的起始时间位置与所述第一候选时间位置之间的时间距离为为所述终端设备配置的第一偏移量。
  27. 根据权利要求21至26中任一项所述的装置,其特征在于,所述多个候选时间位置的周期与所述第一时间区域的时长相等。
  28. 根据权利要求21至27中任一项所述的装置,其特征在于,针对每个终端设备,所述终端设备的第一时间位置与所述第一候选时间位置之间的时间距离为配置给所述终端设备的第一偏移量与所述终端设备的第二偏移量之和,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
  29. 根据权利要求28所述的装置,其特征在于,针对每个终端设备,所述终端设备的第二偏移量满足(Q-T-1-t)mod R=o,其中,Q为所述终端设备的第一时间位置,T为配置给所述终端设备的第一偏移量,t为所述终端设备的第二偏移量,R为所述多个候选时间位置的周期,o为所述多个候选时间位置的偏移量。
  30. 根据权利要求21至29中任一项所述的装置,所述第一信道为下行控制信道,所述第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
  31. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一时间位置、第一信号的候选时间位置的周期、配置给终端设备的第一偏移量以及第一时间区域的时长确定第二偏移量,所述第一时间位置位于所述第一时间区域内;
    所述处理单元还用于,根据所述第一时间位置、所述第一偏移量以及所述第二偏移量,从所述第一信号的多个候选时间位置中确定第一候选时间位置,所述多个候选时间位置按照所述候选时间位置的周期在时域上周期分布;
    收发单元,用于在所述第一候选时间位置上检测所述第一信号;
    所述处理单元还用于,根据对所述第一信号的检测结果确定是否从所述第一时间位置开始检测第一信道。
  32. 根据权利要求31所述的装置,其特征在于,所述处理单元还用于:
    根据所述第二偏移量以及所述第一时间区域的时长,确定所述第一时间位置所在的第一时间区域。
  33. 根据权利要求32所述的装置,其特征在于,所述第一时间位置所在的第一时间区域的起始位置与所述第一候选时间位置之间的时间距离为所述第一偏移量。
  34. 根据权利要求31至33中任一项所述的装置,其特征在于,所述第一候选时间位置与所述第一时间位置之间的时间距离为所述第一偏移量与所述第二偏移量之和。
  35. 根据权利要求31至34中任一项所述的装置,所述第二偏移量为所述第一时间位置与所述第一时间区域起始时间位置之间的时间距离,所述第二偏移量大于或者等于0且小于所述第一时间区域的时长。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第二偏移量满足(Q-T-1-t)mod R=o,其中,Q为所述第一时间位置,T为所述第一偏移量,t为所述第二偏移量,R为所述第一信号的候选时间位置的周期,o为所述第一信号的候选时间位置的偏移量。
  37. 根据权利要求31至36中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第二偏移量确定所述第一信号所包括的信息比特中的至少一个比特;
    根据所述至少一个比特确定是否从所述第一时间位置开始检侧所述第一信道。
  38. 根据权利要求37所述的装置,其特征在于,所述第一信号包括L个信息比特,所述第一时间区域由P个时间单元构成,P≥L≥1,且P和L均为整数;
    其中,所述处理单元具体用于:
    根据所述第二偏移量确定所述L个信息比特中从最高位开始的第l个信息比特,
    Figure PCTCN2019114017-appb-100008
    l为所述第二偏移量,1≤p≤P,1≤l≤L,且l和p均为整数;
    根据所述第l个信息比特确定是否从所述第一时间位置开始检测所述第一信道。
  39. 根据权利要求31至38中任一项所述的装置,其特征在于,所述候选时间位置的周期与所述第一时间区域的时长相同。
  40. 根据权利要求31至39中任一项所述的装置,其特征在于,所述第一信道为下行 控制信道,所述第一时间位置为所述终端设备非连续接收激活时间的起始时间位置。
  41. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至20中任一项所述的方法。
PCT/CN2019/114017 2018-10-31 2019-10-29 通信方法和通信装置 WO2020088455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811286992.3 2018-10-31
CN201811286992.3A CN111132277B (zh) 2018-10-31 2018-10-31 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020088455A1 true WO2020088455A1 (zh) 2020-05-07

Family

ID=70462518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114017 WO2020088455A1 (zh) 2018-10-31 2019-10-29 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN111132277B (zh)
WO (1) WO2020088455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023226022A1 (en) * 2022-05-27 2023-11-30 Lenovo (Beijing) Limited Methods and apparatuses of a power saving mechanism for xr traffic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474682A (zh) * 2013-08-12 2016-04-06 瑞典爱立信有限公司 用于异构网络中的测量的聚簇周期间隙
CN105474711A (zh) * 2013-08-01 2016-04-06 株式会社Ntt都科摩 用户终端、无线基站以及通信控制方法
US20170251518A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method of connected mode discontinuous operation in beamformed system
CN107431978A (zh) * 2015-03-27 2017-12-01 高通股份有限公司 包括基于竞争的频谱的lte/lte‑a中的非连续接收

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453788B (zh) * 2007-12-03 2011-04-06 华为技术有限公司 确定寻呼时刻的方法
CN101547501B (zh) * 2008-03-24 2012-05-23 电信科学技术研究院 一种配置非连续接收周期起点的方法及装置
WO2012149322A1 (en) * 2011-04-29 2012-11-01 Research In Motion Limited Managing group messages for lte wakeup
EP2621242A1 (en) * 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
US20140003312A1 (en) * 2012-07-02 2014-01-02 Vadim Sergeyev Wake-up functionality for an lte enodeb
CN102740429B (zh) * 2012-07-05 2016-03-30 华为技术有限公司 一种非连续性接收周期设置方法及移动终端
CN104581898B (zh) * 2013-10-21 2019-10-25 南京中兴新软件有限责任公司 多模终端的省电方法及装置
JP6982715B2 (ja) * 2016-10-07 2021-12-17 ソニーグループ株式会社 間欠受信
US20180124701A1 (en) * 2016-10-31 2018-05-03 Mediatek Inc. Scheduling request (sr) period extension for low power enhancement in a wireless communication device
CN108449786B (zh) * 2018-03-23 2021-06-01 深圳市华奥通通信技术有限公司 一种多时间窗口的信号收发方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474711A (zh) * 2013-08-01 2016-04-06 株式会社Ntt都科摩 用户终端、无线基站以及通信控制方法
CN105474682A (zh) * 2013-08-12 2016-04-06 瑞典爱立信有限公司 用于异构网络中的测量的聚簇周期间隙
CN107431978A (zh) * 2015-03-27 2017-12-01 高通股份有限公司 包括基于竞争的频谱的lte/lte‑a中的非连续接收
US20170251518A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method of connected mode discontinuous operation in beamformed system

Also Published As

Publication number Publication date
CN111132277A (zh) 2020-05-08
CN111132277B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
TWI821368B (zh) 非連續傳輸的方法和設備
US20210392582A1 (en) Reference Signal Receiving Method, Reference Signal Sending Method, and Apparatus
WO2020019235A1 (zh) 传输信号的方法、网络设备和终端设备
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
WO2019233175A1 (zh) 信号传输方法及装置
WO2020063896A1 (zh) 信号处理的方法和装置
WO2021088087A1 (zh) 一种参考信号发送和接收的方法及装置
US11184142B2 (en) Discontinuous reception for carrier aggregation
JP7418447B2 (ja) ユーザ機器、基地局及び方法
WO2020215332A1 (zh) 非连续接收的方法和设备
WO2019196038A1 (zh) 节能信号的传输方法和设备
WO2021017603A1 (zh) 一种节能信号的传输方法、基站及终端设备
CN111867016B (zh) 一种通信方法以及通信装置
WO2020143747A1 (zh) 通信方法和装置
WO2021088017A1 (zh) 用于确定下行控制信息类型的方法及设备
EP4024961A1 (en) Indicator information sending method and apparatus
US20230074206A1 (en) Communication method, apparatus, and system
JP2024503648A (ja) リソース選択方法、装置及びシステム
CN114731580B (zh) 检测物理下行控制信道pdcch的方法以及装置
EP4223022A1 (en) Adaptive tracking loop updates in user equipment
WO2024022517A1 (zh) 发送节能信号的方法、配置方法、装置及设备
WO2020088455A1 (zh) 通信方法和通信装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
WO2022152045A1 (zh) 信息传输方法和信息传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880043

Country of ref document: EP

Kind code of ref document: A1